
User Guide

Amazon Private Certificate Authority

Version latest

Amazon Private Certificate Authority User Guide

Amazon Private Certificate Authority: User Guide

Amazon Private Certificate Authority User Guide

Table of Contents

What is Amazon Private CA? .. 1
Regional availability ... 1
Integrated services ... 2
Supported algorithms .. 2
RFC 5280 compliance .. 3
Pricing ... 5
Terms and concepts for Amazon Private CA .. 5

Trust ... 6
TLS server certificates .. 6
Certificate signature ... 6
Certificate authority ... 6
Root CA ... 7
CA certificate .. 7
Root CA certificate .. 8
End-entity certificate .. 8
Self-signed certificates ... 8
Private certificate .. 9
Certificate path .. 10
Path length constraint ... 10

What is the best certificate service for my needs? .. 11
Best practices ... 12

Documenting CA structure and policies .. 12
Minimize use of the root CA if possible .. 12
Give the root CA its own Amazon Web Services account ... 13
Separate administrator and issuer roles ... 13
Implement managed revocation of certificates ... 13
Turn on Amazon CloudTrail ... 14
Rotate the CA private key .. 14
Delete unused CAs ... 14
Block public access to your CRLs .. 15
Amazon EKS application best practices .. 15

Use Amazon Private CA with the Amazon SDK for Java ... 16
API examples ... 16

Create and activate a root CA programmatically ... 17

Version latest iii

Amazon Private Certificate Authority User Guide

Create and activate a subordinate CA programmatically ... 26
CreateCertificateAuthority .. 35
Using CreateCertificateAuthority to support Active Directory .. 36
CreateCertificateAuthorityAuditReport .. 45
CreatePermission ... 47
DeleteCertificateAuthority .. 50
DeletePermission ... 52
DeletePolicy .. 54
DescribeCertificateAuthority ... 56
DescribeCertificateAuthorityAuditReport ... 58
GetCertificate ... 61
GetCertificateAuthorityCertificate ... 64
GetCertificateAuthorityCsr .. 66
GetPolicy ... 68
ImportCertificateAuthorityCertificate ... 70
IssueCertificate .. 73
ListCertificateAuthorities ... 76
ListPermissions .. 81
ListTags .. 83
PutPolicy ... 85
RestoreCertificateAuthority .. 87
RevokeCertificate .. 89
TagCertificateAuthorities ... 91
UntagCertificateAuthority ... 93
UpdateCertificateAuthority ... 95
Create CAs and certificates with custom subject names .. 98
Create certificates with custom extensions .. 106

Matter examples .. 121
Activate a Product Attestation Authority (PAA) ... 122
Activate an Product Attestation Intermediate (PAI) .. 132
Create a Device Attestation Certificate (DAC) .. 143
Activate a Root CA for Node Operational Certificates (NOC). ... 147
Activate a Subordinate CA for Node Operational Certificates (NOC) 157
Create a Node Operational Certificate (NOC) .. 167

mDL examples .. 172
Activate an issuing authority certificate authority (IACA) certificate 172

Version latest iv

Amazon Private Certificate Authority User Guide

Create a document signer certificate ... 181
Architect your solution for Amazon Private CA .. 186

Design a CA hierarchy ... 186
Validate end-entity certificates ... 188
Plan the structure of a CA hierarchy .. 190
Set length constraints on the certification path .. 193

Manage the CA lifecycle ... 195
Choose validity periods ... 195
Manage CA succession ... 197
Revoke a CA ... 198

Plan certificate revocation ... 198
Requirements ... 200
Set up CRL ... 201
Customize OCSP URL .. 208

CA mode .. 211
General-purpose (default) ... 212
Short-lived certificate .. 212

Plan for resilience .. 212
Redundancy and disaster recovery ... 213

Certificate authorities ... 214
Set up ... 215

Sign up for an Amazon Web Services account ... 215
Secure IAM users .. 215
Install the Amazon Command Line Interface ... 216

Create a private CA ... 216
CLI examples .. 225

Install CA certificate .. 237
Compatible signing algorithms ... 237
Install a root CA certificate .. 239
Install a subordinate CA certificate hosted by Amazon Private CA .. 247
Install a subordinate CA certificate signed by an external parent CA 248

Control access ... 249
Create single-account permissions for an IAM user .. 249
Attach a policy for cross-account access ... 252

List private CAs .. 254
View a private CA .. 256

Version latest v

Amazon Private Certificate Authority User Guide

Add tags ... 259
CA status .. 262

Relation between CA status and CA lifecycle ... 264
Update a CA .. 265

Update a CA (console) ... 265
Updating a CA (CLI) ... 269

Delete a CA ... 277
Restore a CA ... 279

Restoring a private CA (console) ... 279
Restore a private CA (Amazon CLI) ... 279

Externally signed CA certificates .. 281
Issue and manage certificates .. 285

Issue private end-entity certificates .. 285
Issue a standard certificate (Amazon CLI) ... 287
Issue a certificate with a custom subject name using an APIPassthrough template 289
Issue a certificate with custom extensions using an APIPassthrough template 291

Retrieve a private certificate ... 293
List private certificates ... 294
Export a certificate .. 299
Revoke a private certificate ... 299

Revoked certificates and OCSP ... 301
Revoked certificates in a CRL ... 301
Revoked certificates in an audit report ... 302

Automate export .. 303
Certificate templates ... 303

Template varieties .. 304
Template order of operations .. 315
Template definitions .. 316

Security .. 359
IAM .. 360

API permissions ... 361
Amazon managed policies .. 366
Customer managed policies ... 368
Inline policies ... 369

Cross-account access ... 374
Resource-based policies .. 375

Version latest vi

Amazon Private Certificate Authority User Guide

Data protection .. 379
Storage and security compliance of Amazon Private CA private keys 380
Data encryption in Amazon Private CA Connector for Active Directory 380

Compliance validation .. 380
Create an audit report ... 381

Infrastructure security ... 389
VPC Endpoints (Amazon PrivateLink) ... 389
Dual-stack endpoint support ... 394
Using IPv6 addresses in IAM and Amazon Private CA .. 394

CP/CPS .. 396
CP/CPS Requirements and Responsibilities .. 397

Monitor resources .. 408
Amazon Private CA CloudWatch metrics .. 409

.. 409
Monitor Amazon Private CA with CloudWatch Events ... 410

Success or failure when creating a private CA ... 410
Success or failure when issuing a certificate .. 411
Success when revoking a certificate ... 412
Success or failure when generating a CRL .. 413
Success or failure when creating a CA audit report .. 415

CloudTrail logs .. 416
Amazon Private CA information in CloudTrail ... 417
Amazon Private CA management events .. 418
Example Amazon Private CA events ... 419

Troubleshoot .. 422
Certificate revocation issues .. 422

OCSP response latency ... 422
Amazon S3 bucket creation failure for CRLs .. 422
Revocation of self-signed certificates .. 422

Exception messages ... 422
Matter-compliant certificate errors .. 426

Secure Kubernetes with Amazon Private CA ... 428
Cross-account use of the cert-manager .. 430
Supported certificate templates ... 430
Example solutions .. 431

Connector for Active Directory ... 380

Version latest vii

Amazon Private Certificate Authority User Guide

Are You a First-Time Connector for AD User? ... 432
Access Connector for AD .. 432
Pricing ... 433

Set up ... 433
Step 1: Create a private CA using Amazon Private CA ... 433
Step 2: Set up an Active Directory ... 433
(Active Directory Connector only) Step 3: Delegate permissions to service account 434
Step 4: Create IAM Policy ... 435
Step 5: Share your private CA with Connector for AD ... 437
Step 6: Create directory registration .. 438
Step 7: Configure security groups .. 438
Step 8: Configure network access for directory objects ... 438

Get started .. 439
Before you begin .. 440
Step 1: Create a connector ... 440
Step 2: Configure Microsoft Active Directory policies .. 440
Step 3: Create a template .. 442
Step 4: Configure Microsoft group permissions ... 442

Connectors for Active Directory ... 442
Create connector .. 442
Create template .. 445
Update template ... 449
List connectors .. 450
List templates .. 451
View connector ... 452
View template ... 453
Directory registrations ... 456
Template access control entries .. 458
Service principal name .. 459
Tags .. 460

Troubleshoot Connector for Active Directory .. 461
Connector for AD error codes .. 462
Connector creation failure .. 467
SPN creation failure ... 472
Template update issues ... 473

Connector for SCEP ... 474

Version latest viii

Amazon Private Certificate Authority User Guide

Features .. 474
How to get started with Connector for SCEP .. 475
Related services .. 475
Access Connector for SCEP .. 475
Pricing ... 476
Concepts ... 476
Considerations and limitations ... 477

Considerations ... 477
Limitations .. 478

Set up ... 479
Step 1: Create an Amazon Identity and Access Management policy 479
Step 2: Create a private CA .. 481
Step 3: Create a resource share .. 481

Get started .. 482
Before you begin .. 482
Step 1: Create a connector ... 483
Step 2: Copy connector details into your MDM system ... 484

Configure your MDM system ... 485
General-purpose connector .. 485
Amazon Private CA Connector for SCEP for Microsoft Intune .. 486
Configure Jamf Pro .. 487
Configure Microsoft Intune .. 494

Monitor ... 497
Automate using EventBridge ... 498
CloudTrail logs .. 503

Troubleshoot ... 512
HTTP errors .. 513
Client errors ... 531

Service quotas ... 533
Document History .. 534

Earlier Updates ... 542

Version latest ix

Amazon Private Certificate Authority User Guide

What is Amazon Private CA?

Amazon Private CA enables creation of private certificate authority (CA) hierarchies, including root
and subordinate CAs, without the investment and maintenance costs of operating an on-premises
CA. Your private CAs can issue end-entity X.509 certificates useful in scenarios including:

• Creating encrypted TLS communication channels

• Authenticating users, computers, API endpoints, and IoT devices

• Cryptographically signing code

• Implementing Online Certificate Status Protocol (OCSP) for obtaining certificate revocation
status

Amazon Private CA operations can be accessed from the Amazon Web Services Management
Console, using the Amazon Private CA API, or using the Amazon CLI.

Topics

• Regional availability for Amazon Private Certificate Authority

• Services integrated with Amazon Private Certificate Authority

• Supported cryptographic algorithms in Amazon Private Certificate Authority

• RFC 5280 compliance in Amazon Private Certificate Authority

• Pricing for Amazon Private Certificate Authority

• Terms and concepts for Amazon Private CA

Regional availability for Amazon Private Certificate Authority

Like most Amazon resources, private certificate authorities (CAs) are Regional resources. To use
private CAs in more than one Region, you must create your CAs in those Regions. You cannot copy
private CAs between Regions. Visit Amazon Regions and Endpoints in the Amazon Web Services
General Reference or the Amazon Region Table to see the Regional availability for Amazon Private
CA.

Regional availability Version latest 1

https://docs.amazonaws.cn/general/latest/gr/rande.html#pca_region
http://www.amazonaws.cn/about-aws/global-infrastructure/regional-product-services/

Amazon Private Certificate Authority User Guide

Note

ACM is currently available in some regions that Amazon Private CA is not.

Services integrated with Amazon Private Certificate Authority

If you use Amazon Certificate Manager to request a private certificate, you can associate that
certificate with any service that is integrated with ACM. This applies both to certificates chained to
a Amazon Private CA root and to certificates chained to an external root. For more information, see
Integrated Services in the Amazon Certificate Manager User Guide.

You can also integrate private CAs into Amazon Elastic Kubernetes Service to provide certificate
issuance inside a Kubernetes cluster. For more information, see Secure Kubernetes with Amazon
Private CA.

Note

Amazon Elastic Kubernetes Service is not an ACM integrated service.

If you use the Amazon Private CA API or Amazon CLI to issue a certificate or to export a private
certificate from ACM, you can install the certificate anywhere you want.

Supported cryptographic algorithms in Amazon Private
Certificate Authority

Amazon Private CA supports the following cryptographic algorithms for private key generation and
certificate signing.

Supported algorithm

Private key algorithms Signing algorithms

RSA_2048

RSA_3072

RSA_4096

SHA256WITHECDSA

SHA384WITHECDSA

SHA512WITHECDSA

Integrated services Version latest 2

https://docs.amazonaws.cn/acm/latest/userguide/acm-services.html

Amazon Private Certificate Authority User Guide

Private key algorithms Signing algorithms

EC_prime256v1

EC_secp384r1

EC_secp521r1

SM2 (China Regions only)

SHA256WITHRSA
SHA384WITHRSA

SHA512WITHRSA

SM3WITHSM2

This list applies only to certificates issued directly by Amazon Private CA through its console, API,
or command line. When Amazon Certificate Manager issues certificates using a CA from Amazon
Private CA, it supports some but not all of these algorithms. For more information, see Request a
Private Certificate in the Amazon Certificate Manager User Guide.

Note

In all cases, the specified signing algorithm family (RSA or ECDSA) must match the
algorithm family of the CA's private key.

RFC 5280 compliance in Amazon Private Certificate Authority

Amazon Private CA does not enforce certain constraints defined in RFC 5280. The reverse situation
is also true: Certain additional constraints appropriate to a private CA are enforced.

Enforced

• Not After date. In conformity with RFC 5280, Amazon Private CA prevents the issuance of
certificates bearing a Not After date later than the Not After date of the issuing CA's
certificate.

• Basic constraints. Amazon Private CA enforces basic constraints and path length in imported CA
certificates.

Basic constraints indicate whether or not the resource identified by the certificate is a CA
and can issue certificates. CA certificates imported to Amazon Private CA must include the
basic constraints extension, and the extension must be marked critical. In addition to the
critical flag, CA=true must be set. Amazon Private CA enforces basic constraints by failing
with a validation exception for the following reasons:

RFC 5280 compliance Version latest 3

https://docs.amazonaws.cn/acm/latest/userguide/gs-acm-request-private.html
https://docs.amazonaws.cn/acm/latest/userguide/gs-acm-request-private.html
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5280#section-4.1.2.5
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.1.9

Amazon Private Certificate Authority User Guide

• The extension is not included in the CA certificate.

• The extension is not marked critical.

Path length (pathLenConstraint) determines how many subordinate CAs may exist downstream
from the imported CA certificate. Amazon Private CA enforces path length by failing with a
validation exception for the following reasons:

• Importing a CA certificate would violate the path length constraint in the CA certificate or in
any CA certificate in the chain.

• Issuing a certificate would violate a path length constraint.

• Name constraints indicate a name space within which all subject names in subsequent
certificates in a certification path must be located. Restrictions apply to the subject distinguished
name and subject alternative names.

Not enforced

• Certificate policies. Certificate policies regulate the conditions under which a CA issue
certificates.

• Inhibit anyPolicy. Used in certificates issued to CAs.

• Issuer Alternative Name. Allows additional identities to be associated with the issuer of the CA
certificate.

• Policy Constraints. These constraints limit a CA's capacity to issue subordinate CA certificates.

• Policy Mappings. Used in CA certificates. Lists one or more pairs of OIDs; each pair includes an
issuerDomainPolicy and a subjectDomainPolicy.

• Subject Directory Attributes. Used to convey identification attributes of the subject.

• Subject Information Access. How to access information and services for the subject of the
certificate in which the extension appears.

• Subject Key Identifier (SKI) and Authority Key Identifier (AKI). The RFC requires a CA certificate to
contain the SKI extension. Certificates issued by the CA must contain an AKI extension matching
the CA certificate's SKI. Amazon does not enforce these requirements. If your CA Certificate does
not contain an SKI, the issued end-entity or subordinate CA certificate AKI will be the SHA-1 hash
of the issuer public key instead.

• SubjectPublicKeyInfo and Subject Alternative Name (SAN). When issuing a certificate, Amazon
Private CA copies the SubjectPublicKeyInfo and SAN extensions from the provided CSR without
performing validation.

RFC 5280 compliance Version latest 4

https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.1.10
https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.1.4
https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.1.14
https://datatracker.ietf.org/doc/html/rfc5280#section-section-4.2.1.7
https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.1.11
https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.1.5
https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.1.8
https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.2.2
https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.1.2
https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.1.1
https://datatracker.ietf.org/doc/html/rfc5280#section-4.1
https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.1.6

Amazon Private Certificate Authority User Guide

Pricing for Amazon Private Certificate Authority

Your account is charged a monthly price for each private CA starting from the time that you create
it. You are also charged for each certificate that you issue. This charge includes certificates that
you export from ACM and certificates that you create from the Amazon Private CA API or Amazon
Private CA CLI. You are not charged for a private CA after it has been deleted. However, if you
restore a private CA, you are charged for the time between deletion and restoration. Private
certificates whose private key you cannot access are free. These include certificates that are used
with Integrated Services such as Elastic Load Balancing, CloudFront, and API Gateway.

For the latest Amazon Private CA pricing information, see Amazon Private Certificate Authority
Pricing. You can also use the Amazon pricing calculator to estimate costs.

Terms and concepts for Amazon Private CA

The following terms and concepts can help you as you work with Amazon Private Certificate
Authority.

Topics

• Trust

• TLS server certificates

• Certificate signature

• Certificate authority

• Root CA

• CA certificate

• Root CA certificate

• End-entity certificate

• Self-signed certificates

• Private certificate

• Certificate path

• Path length constraint

Pricing Version latest 5

https://docs.amazonaws.cn/acm/latest/userguide/acm-services.html
http://www.amazonaws.cn/private-ca/pricing/
http://www.amazonaws.cn/private-ca/pricing/
https://calculator.aws/#/createCalculator/certificateManager

Amazon Private Certificate Authority User Guide

Trust

In order for a web browser to trust the identity of a website, the browser must be able to verify the
website's certificate. Browsers, however, trust only a small number of certificates known as CA root
certificates. A trusted third party, known as a certificate authority (CA), validates the identity of the
website and issues a signed digital certificate to the website's operator. The browser can then check
the digital signature to validate the identity of the website. If validation is successful, the browser
displays a lock icon in the address bar.

TLS server certificates

HTTPS transactions require server certificates to authenticate a server. A server certificate is an
X.509 v3 data structure that binds the public key in the certificate to the subject of the certificate.
A TLS certificate is signed by a certificate authority (CA). It contains the name of the server, the
validity period, the public key, the signature algorithm, and more.

Certificate signature

A digital signature is an encrypted hash over a certificate. A signature is used to affirm the integrity
of the certificate data. Your private CA creates a signature by using a cryptographic hash function
such as SHA256 over the variable-sized certificate content. This hash function produces an
effectively unforgeable fixed-size data string. This string is called a hash. The CA then encrypts the
hash value with its private key and concatenates the encrypted hash with the certificate.

Certificate authority

A certificate authority (CA) issues and if necessary revokes digital certificates. The most common
type of certificate is based on the ISO X.509 standard. An X.509 certificate affirms the identity
of the certificate subject and binds that identity to a public key. The subject can be a user, an
application, a computer, or other device. The CA signs a certificate by hashing the contents and
then encrypting the hash with the private key related to the public key in the certificate. A client
application such as a web browser that needs to affirm the identity of a subject uses the public
key to decrypt the certificate signature. It then hashes the certificate contents and compares the
hashed value to the decrypted signature to determine whether they match. For information about
certificate signing, see Certificate signature.

You can use Amazon Private CA to create a private CA and use the private CA to issue certificates.
Your private CA issues only private SSL/TLS certificates for use within your organization. For more

Trust Version latest 6

Amazon Private Certificate Authority User Guide

information, see Private certificate. Your private CA also requires a certificate before you can use it.
For more information, see CA certificate.

Root CA

A cryptographic building block and root of trust upon which certificates can be issued. It comprises
a private key for signing (issuing) certificates and a root certificate that identifies the root CA and
binds the private key to the name of the CA. The root certificate is distributed to the trust stores of
each entity in an environment. Administrators construct trust stores to include only the CAs that
they trust. Administrators update or build the trust stores into the operating systems, instances,
and host machine images of entities in their environment. When resources attempt to connect with
one another, they check the certificates that each entity presents. A client checks the certificates
for validity and whether a chain exists from the certificate to a root certificate installed in the
trust store. If those conditions are met, a “handshake" is accomplished between the resources.
This handshake cryptographically proves the identity of each entity to the other and creates an
encrypted communication channel (TLS/SSL) between them.

CA certificate

A certificate authority (CA) certificate affirms the identity of the CA and binds it to the public key
that is contained in the certificate.

You can use Amazon Private CA to create a private root CA or a private subordinate CA, each
backed by a CA certificate. Subordinate CA certificates are signed by another CA certificate higher
in a chain of trust. But in the case of a root CA, the certificate is self-signed. You can also establish
an external root authority (hosted on premises, for example). You can then use your root authority
to sign a subordinate root CA certificate hosted by Amazon Private CA.

The following example shows the typical fields contained in an Amazon Private CA X.509 CA
certificate. Note that for a CA certificate, the CA: value in the Basic Constraints field is set to
TRUE.

Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 4121 (0x1019)
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: C=US, ST=Washington, L=Seattle, O=Example Company Root CA, OU=Corp,
 CN=www.example.com/emailAddress=corp@www.example.com
 Validity

Root CA Version latest 7

Amazon Private Certificate Authority User Guide

 Not Before: Feb 26 20:27:56 2018 GMT
 Not After : Feb 24 20:27:56 2028 GMT
 Subject: C=US, ST=WA, L=Seattle, O=Examples Company Subordinate CA,
 OU=Corporate Office, CN=www.example.com
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 Public-Key: (2048 bit)
 Modulus:
 00:c0: ... a3:4a:51
 Exponent: 65537 (0x10001)
 X509v3 extensions:
 X509v3 Subject Key Identifier:
 F8:84:EE:37:21:F2:5E:0B:6C:40:C2:9D:C6:FE:7E:49:53:67:34:D9
 X509v3 Authority Key Identifier:
 keyid:0D:CE:76:F2:E3:3B:93:2D:36:05:41:41:16:36:C8:82:BC:CB:F8:A0

 X509v3 Basic Constraints: critical
 CA:TRUE
 X509v3 Key Usage: critical
 Digital Signature, CRL Sign
 Signature Algorithm: sha256WithRSAEncryption
 6:bb:94: ... 80:d8

Root CA certificate

A certificate authority (CA) typically exists within a hierarchical structure that contains multiple
other CAs with clearly defined parent–child relationships between them. Child or subordinate CAs
are certified by their parent CAs, creating a certificate chain. The CA at the top of the hierarchy is
referred to as the root CA, and its certificate is called the root certificate. This certificate is typically
self-signed.

End-entity certificate

An end-entity certificate identifies a resource, such as a server, instance, container or device. Unlike
CA certificates, end-entity certificates cannot be used to issue certificates. Other common terms for
end-entity certificate are "client" or "leaf" certificate.

Self-signed certificates

A certificate signed by the issuer instead of a higher CA. Unlike certificates issued from a secure
root maintained by a CA, self-signed certificates act as their own root, and as a result they have

Root CA certificate Version latest 8

Amazon Private Certificate Authority User Guide

significant limitations: They can be used to provide on the wire encryption but not to verify
identity, and they cannot be revoked. They are unacceptable from a security perspective. But
organizations use them nonetheless because they are easy to generate, require no expertise or
infrastructure, and many applications accept them. There are no controls in place for issuing self-
signed certificates. Organizations that use them incur greater risk of outages caused by certificate
expirations because they have no way to track expiration dates.

Private certificate

Amazon Private CA certificates are private SSL/TLS certificates that you can use within your
organization, but are untrusted on the public internet. Use them to identify resources such
as clients, servers, applications, services, devices, and users. When establishing a secure
encrypted communications channel, each resource uses a certificate like the following as well as
cryptographic techniques to prove its identity to another resource. Internal API endpoints, web
servers, VPN users, IoT devices, and many other applications use private certificates to establish
encrypted communication channels that are necessary for their secure operation. By default,
private certificates are not publicly trusted. An internal administrator must explicitly configure
applications to trust private certificates and distribute the certificates.

Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number:
 e8:cb:d2:be:db:12:23:29:f9:77:06:bc:fe:c9:90:f8
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: C=US, ST=WA, L=Seattle, O=Example Company CA, OU=Corporate,
 CN=www.example.com
 Validity
 Not Before: Feb 26 18:39:57 2018 GMT
 Not After : Feb 26 19:39:57 2019 GMT
 Subject: C=US, ST=Washington, L=Seattle, O=Example Company, OU=Sales,
 CN=www.example.com/emailAddress=sales@example.com
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 Public-Key: (2048 bit)
 Modulus:
 00...c7
 Exponent: 65537 (0x10001)
 X509v3 extensions:
 X509v3 Basic Constraints:
 CA:FALSE

Private certificate Version latest 9

Amazon Private Certificate Authority User Guide

 X509v3 Authority Key Identifier:
 keyid:AA:6E:C1:8A:EC:2F:8F:21:BC:BE:80:3D:C5:65:93:79:99:E7:71:65

 X509v3 Subject Key Identifier:
 C6:6B:3C:6F:0A:49:9E:CC:4B:80:B2:8A:AB:81:22:AB:89:A8:DA:19
 X509v3 Key Usage: critical
 Digital Signature, Key Encipherment
 X509v3 Extended Key Usage:
 TLS Web Server Authentication, TLS Web Client Authentication
 X509v3 CRL Distribution Points:

 Full Name:
 URI:http://NA/crl/12345678-1234-1234-1234-123456789012.crl

 Signature Algorithm: sha256WithRSAEncryption
 58:32:...:53

Certificate path

A client that relies on a certificate validates that a path exists from the end-entity certificate,
possibly through a chain of intermediate certificates, to a trusted root. The client checks that each
certificate along the path is valid (not revoked). It also checks that the end-entity certificate has
not expired, has integrity (has not been tampered with or modified), and that constraints in the
certificate are enforced.

Path length constraint

The basic constraints pathLenConstraint for a CA certificate sets the number of subordinate CA
certificates that may exist in the chain below it. For example, a CA certificate with a path length
constraint of zero cannot have any subordinate CAs. A CA with a path length constraint of one may
have up to one level of subordinate CAs underneath it. RFC 5280 defines this as, “the maximum
number of non-self-issued intermediate certificates that may follow this certificate in a valid
certification path." The path length value excludes the end-entity certificate, though informal
language about the "length" or "depth" of a validation chain may include it...leading to confusion.

Certificate path Version latest 10

https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.1.9

Amazon Private Certificate Authority User Guide

What is the best certificate service for my needs?

There are two Amazon services for issuing and deploying X.509 certificates. Choose the one that
best fits your needs. Considerations include whether you need public- or private-facing certificates,
customized certificates, certificates you want to deploy into other Amazon services, or automated
certificate management and renewal.

1. Amazon Private CA—This service is for enterprise customers building a public key infrastructure
(PKI) inside the Amazon cloud and intended for private use within an organization. With Amazon
Private CA, you can create your own CA hierarchy and issue certificates with it for authenticating
internal users, computers, applications, services, servers, and other devices, and for signing
computer code. Certificates issued by a private CA are trusted only within your organization, not
on the internet.

After creating a private CA, you have the ability to issue certificates directly (that is, without
obtaining validation from a third-party CA) and to customize them to meet your organization's
internal needs. For example, you may want to:

• Create certificates with any subject name.

• Create certificates with any expiration date.

• Use any supported private key algorithm and key length.

• Use any supported signing algorithm.

• Control certificate issuance using templates.

You are in the right place for this service. To get started, sign into the https://
console.amazonaws.cn/acm-pca/ console.

2. Amazon Certificate Manager (ACM)—This service manages certificates for enterprise customers
who need a publicly trusted secure web presence using TLS. You can deploy ACM certificates into
Amazon Elastic Load Balancing, Amazon CloudFront, Amazon API Gateway, and other integrated
services. The most common application of this kind is a secure public website with significant
traffic requirements.

With this service, you can use public certificates provided by ACM (ACM certificates) or
certificates that you import into ACM. If you use Amazon Private CA to create a CA, ACM can
manage certificate issuance from that private CA and automate certificate renewals.

For more information, see the Amazon Certificate Manager User Guide.

Version latest 11

https://console.amazonaws.cn/acm-pca/
https://console.amazonaws.cn/acm-pca/
https://docs.amazonaws.cn/acm/latest/userguide/acm-services.html
https://docs.amazonaws.cn/acm/latest/userguide/acm-services.html
https://docs.aws.amazon.com/acm/latest/userguide/gs-acm-request-public.html
https://docs.aws.amazon.com/acm/latest/userguide/import-certificate.html
https://docs.aws.amazon.com/acm/latest/userguide/import-certificate.html
https://docs.amazonaws.cn/acm/latest/userguide/acm-overview.html

Amazon Private Certificate Authority User Guide

Amazon Private CA best practices

Best practices are recommendations that can help you use Amazon Private CA effectively. The
following best practices are based on real-world experience from current Amazon Certificate
Manager and Amazon Private CA customers.

Documenting CA structure and policies

Amazon recommends documenting all of your policies and practices for operating your CA. This
might include:

• Reasoning for your decisions about CA structure

• A diagram showing your CAs and their relationships

• Policies on CA validity periods

• Planning for CA succession

• Policies on path length

• Catalog of permissions

• Description of administrative control structures

• Security

You can capture this information in two documents, known as Certification Policy (CP) and
Certification Practices Statement (CPS). Refer to RFC 3647 for a framework for capturing important
information about your CA operations.

Minimize use of the root CA if possible

A root CA should in general only be used to issue certificates for intermediate CAs. This allows the
root CA to be stored out of harm's way while the intermediate CAs perform the daily task of issuing
end-entity certificates.

However, if your organization's current practice is to issue end-entity certificates directly from a
root CA, Amazon Private CA can support this workflow while improving security and operational
controls. Issuing end-entity certificates in this scenario requires an IAM permissions policy that
permits your root CA to use an end-entity certificate template. For information about IAM policies,
see Identity and Access Management (IAM) for Amazon Private Certificate Authority.

Documenting CA structure and policies Version latest 12

https://www.ietf.org/rfc/rfc3647.txt

Amazon Private Certificate Authority User Guide

Note

This configuration imposes limitations that might result in operational challenges.
For example, if your root CA is compromised or lost, you must create a new root CA
and distribute it to all of the clients in your environment. Until this recovery process is
complete, you will not be able to issue new certificates. Issuing certificates directly from a
root CA also prevents you from restricting access and limiting the number of certificates
issued from your root, which are both considered best practices for managing a root CA.

Give the root CA its own Amazon Web Services account

Creating a root CA and subordinate CA in two different Amazon accounts is a recommended best
practice. Doing so can provide you with additional protection and access controls for your root CA.
You can do so by exporting the CSR from the subordinate CA in one account, and signing it with a
root CA in a different account. The benefit of this approach is that you can separate control of your
CAs by account. The disadvantage is that you cannot use the Amazon Web Services Management
Console wizard to simplify the process of signing the CA certificate of a subordinate CA from your
root CA.

Important

We strongly recommend the use of multi-factor authentication (MFA) any time you access
Amazon Private CA.

Separate administrator and issuer roles

The CA administrator role should be separate from users who need only to issue end-entity
certificates. If your CA administrator and certificate issuer reside in the same Amazon Web Services
account, you can limit issuer permissions by creating an IAM user specifically for that purpose.

Implement managed revocation of certificates

Managed revocation automatically provides notice to certificate clients when a certificate has
been revoked. You might need to revoke a certificate if its cryptographic information has been
compromised or if it was issued in error. Clients typically refuse to accept revoked certificates.

Give the root CA its own Amazon Web Services account Version latest 13

Amazon Private Certificate Authority User Guide

Amazon Private CA offers two standard options for managed revocation: Online Certificate Status
Protocol (OCSP), and certificate revocation lists (CRLs). For more information, see Plan your
Amazon Private CA certificate revocation method.

Turn on Amazon CloudTrail

Turn on CloudTrail logging before you create and start operating a private CA. With CloudTrail, you
can retrieve a history of Amazon API calls for your account to monitor your Amazon deployments.
This history includes API calls made from the Amazon Web Services Management Console, the
Amazon SDKs, the Amazon Command Line Interface, and higher-level Amazon services. You can
also identify which users and accounts called the PCA API operations, the source IP address the
calls were made from, and when the calls occurred. You can integrate CloudTrail into applications
using the API, automate trail creation for your organization, check the status of your trails, and
control how administrators turn CloudTrail logging on and off. For more information, see Creating
a Trail. Go to Logging Amazon Private Certificate Authority API calls using Amazon CloudTrail to
see example trails for Amazon Private CA operations.

Rotate the CA private key

It is a best practice to periodically update the private key for your private CA. You can update a key
by importing a new CA certificate, or you can replace the private CA with a new CA.

Note

If you replace the CA itself, be aware that the ARN of the CA changes. This would cause
automation relying on a hard-coded ARN to fail.

Delete unused CAs

You can permanently delete a private CA. You might want to do so if you no longer need the
CA or if you want to replace it with a CA that has a newer private key. To safely delete a CA, we
recommend that you follow the process outlined in Delete your private CA.

Note

Amazon bills you for a CA until it has been deleted.

Turn on Amazon CloudTrail Version latest 14

https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html

Amazon Private Certificate Authority User Guide

Block public access to your CRLs

Amazon Private CA recommends using the Amazon S3 Block Public Access (BPA) feature on buckets
that contain CRLs. This avoids unnecessarily exposing details of your private PKI to potential
adversaries. BPA is an S3 best practice and is enabled by default on new buckets. Additional setup
is needed in some cases. For more information, see Enable S3 Block Public Access (BPA) with
CloudFront.

Amazon EKS application best practices

When using Amazon Private CA to provision Amazon EKS with X.509 certificates, follow the
recommendations for securing multi-tenant environments in the Amazon EKS Best Practices
Guides. For general information about integrating Amazon Private CA with Kubernetes, see Secure
Kubernetes with Amazon Private CA.

Block public access to your CRLs Version latest 15

https://docs.amazonaws.cn/AmazonS3/latest/userguide/security-best-practices.html
https://aws.github.io/aws-eks-best-practices/security/docs/multitenancy/#kubernetes-as-a-service
https://aws.github.io/aws-eks-best-practices/security/docs/multitenancy/#kubernetes-as-a-service

Amazon Private Certificate Authority User Guide

Use Amazon Private CA with the Amazon SDK for Java

You can use the Amazon Private Certificate Authority API to programmatically interact with the
service by sending HTTP requests. The service returns HTTP responses. For more information see
Amazon Private Certificate Authority API Reference.

In addition to the HTTP API, you can use the Amazon SDKs and command line tools to interact
with Amazon Private CA. This is recommended over the HTTP API. For more information, see Tools
for Amazon Web Services. The following topics show you how to use the Amazon SDK for Java to
program the Amazon Private CA API.

The GetCertificateAuthorityCsr, GetCertificate, and DescribeCertificateAuthorityAuditReport
operations support waiters. You can use waiters to control the progression of your code based on
the presence or state of certain resources. For more information, see the following topics, as well as
Waiters in the Amazon SDK for Java in the Amazon Developer Blog.

Amazon Private CA API examples

The following code examples show how to use select Amazon Private CA API actions and data
types with the Amazon SDK for Java.

Topics

• Create and activate a root CA programmatically

• Create and activate a subordinate CA programmatically

• CreateCertificateAuthority

• Using CreateCertificateAuthority to support Active Directory

• CreateCertificateAuthorityAuditReport

• CreatePermission

• DeleteCertificateAuthority

• DeletePermission

• DeletePolicy

• DescribeCertificateAuthority

• DescribeCertificateAuthorityAuditReport

• GetCertificate

• GetCertificateAuthorityCertificate

API examples Version latest 16

https://docs.amazonaws.cn/privateca/latest/APIReference/
http://www.amazonaws.cn/tools/
http://www.amazonaws.cn/tools/
http://www.amazonaws.cn/sdk-for-java/
http://www.amazonaws.cn/blogs/developer/waiters-in-the-aws-sdk-for-java/
http://www.amazonaws.cn/blogs/developer/

Amazon Private Certificate Authority User Guide

• GetCertificateAuthorityCsr

• GetPolicy

• ImportCertificateAuthorityCertificate

• IssueCertificate

• ListCertificateAuthorities

• ListPermissions

• ListTags

• PutPolicy

• RestoreCertificateAuthority

• RevokeCertificate

• TagCertificateAuthorities

• UntagCertificateAuthority

• UpdateCertificateAuthority

• Create CAs and certificates with custom subject names

• Create certificates with custom extensions

Create and activate a root CA programmatically

This Java sample shows how to activate a root CA using the following Amazon Private CA API
actions:

• CreateCertificateAuthority

• GetCertificateAuthorityCsr

• IssueCertificate

• GetCertificate

• ImportCertificateAuthorityCertificate

package com.amazonaws.samples;

import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.client.builder.AwsClientBuilder;
import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration;

Create and activate a root CA programmatically Version latest 17

https://docs.amazonaws.cn/privateca/latest/APIReference/API_CreateCertificateAuthority.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_GetCertificateAuthorityCsr.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_IssueCertificate.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_GetCertificate.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_ImportCertificateAuthorityCertificate.html

Amazon Private Certificate Authority User Guide

import com.amazonaws.samples.GetCertificateAuthorityCertificate;
import com.amazonaws.auth.AWSStaticCredentialsProvider;

import com.amazonaws.services.acmpca.AWSACMPCA;
import com.amazonaws.services.acmpca.AWSACMPCAClientBuilder;

import com.amazonaws.services.acmpca.model.ASN1Subject;
import com.amazonaws.services.acmpca.model.CertificateAuthorityConfiguration;
import com.amazonaws.services.acmpca.model.CertificateAuthorityType;
import com.amazonaws.services.acmpca.model.CreateCertificateAuthorityResult;
import com.amazonaws.services.acmpca.model.CreateCertificateAuthorityRequest;
import com.amazonaws.services.acmpca.model.CrlConfiguration;
import com.amazonaws.services.acmpca.model.KeyAlgorithm;
import com.amazonaws.services.acmpca.model.KeyStorageSecurityStandard;
import com.amazonaws.services.acmpca.model.SigningAlgorithm;
import com.amazonaws.services.acmpca.model.Tag;

import java.nio.ByteBuffer;
import java.nio.charset.StandardCharsets;
import java.util.ArrayList;
import java.util.Objects;

import com.amazonaws.services.acmpca.model.GetCertificateAuthorityCsrRequest;
import com.amazonaws.services.acmpca.model.GetCertificateAuthorityCsrResult;
import com.amazonaws.services.acmpca.model.GetCertificateRequest;
import com.amazonaws.services.acmpca.model.GetCertificateResult;
import
 com.amazonaws.services.acmpca.model.ImportCertificateAuthorityCertificateRequest;
import com.amazonaws.services.acmpca.model.IssueCertificateRequest;
import com.amazonaws.services.acmpca.model.IssueCertificateResult;
import com.amazonaws.services.acmpca.model.SigningAlgorithm;
import com.amazonaws.services.acmpca.model.Validity;

import com.amazonaws.AmazonClientException;
import com.amazonaws.services.acmpca.model.CertificateMismatchException;
import com.amazonaws.services.acmpca.model.ConcurrentModificationException;
import com.amazonaws.services.acmpca.model.LimitExceededException;
import com.amazonaws.services.acmpca.model.InvalidArgsException;
import com.amazonaws.services.acmpca.model.InvalidArnException;
import com.amazonaws.services.acmpca.model.InvalidPolicyException;
import com.amazonaws.services.acmpca.model.InvalidStateException;
import com.amazonaws.services.acmpca.model.MalformedCertificateException;
import com.amazonaws.services.acmpca.model.MalformedCSRException;

Create and activate a root CA programmatically Version latest 18

Amazon Private Certificate Authority User Guide

import com.amazonaws.services.acmpca.model.RequestFailedException;
import com.amazonaws.services.acmpca.model.RequestInProgressException;
import com.amazonaws.services.acmpca.model.ResourceNotFoundException;
import com.amazonaws.services.acmpca.model.RevocationConfiguration;
import com.amazonaws.services.acmpca.model.AWSACMPCAException;

import com.amazonaws.waiters.Waiter;
import com.amazonaws.waiters.WaiterParameters;
import com.amazonaws.waiters.WaiterTimedOutException;
import com.amazonaws.waiters.WaiterUnrecoverableException;

public class RootCAActivation {
 public static void main(String[] args) throws Exception {
 // Define the endpoint region for your sample.
 String endpointRegion = "region"; // Substitute your region here, e.g. "us-
west-2"

 // Define a CA subject.
 ASN1Subject subject = new ASN1Subject();
 subject.setOrganization("Example Organization");
 subject.setOrganizationalUnit("Example");
 subject.setCountry("US");
 subject.setState("Virginia");
 subject.setLocality("Arlington");
 subject.setCommonName("www.example.com");

 // Define the CA configuration.
 CertificateAuthorityConfiguration configCA = new
 CertificateAuthorityConfiguration();
 configCA.withKeyAlgorithm(KeyAlgorithm.RSA_2048);
 configCA.withSigningAlgorithm(SigningAlgorithm.SHA256WITHRSA);
 configCA.withSubject(subject);

 // Define a certificate revocation list configuration.
 CrlConfiguration crlConfigure = new CrlConfiguration();
 crlConfigure.withEnabled(true);
 crlConfigure.withExpirationInDays(365);
 crlConfigure.withCustomCname(null);
 crlConfigure.withS3BucketName("your-bucket-name");

 // Define a certificate authority type
 CertificateAuthorityType CAtype = CertificateAuthorityType.ROOT;

 // ** Execute core code samples for Root CA activation in sequence **

Create and activate a root CA programmatically Version latest 19

Amazon Private Certificate Authority User Guide

 AWSACMPCA client = ClientBuilder(endpointRegion);
 String rootCAArn = CreateCertificateAuthority(configCA, crlConfigure, CAtype,
 client);
 String csr = GetCertificateAuthorityCsr(rootCAArn, client);
 String rootCertificateArn = IssueCertificate(rootCAArn, csr, client);
 String rootCertificate = GetCertificate(rootCertificateArn, rootCAArn, client);
 ImportCertificateAuthorityCertificate(rootCertificate, rootCAArn, client);
 }

 private static AWSACMPCA ClientBuilder(String endpointRegion) {
 // Retrieve your credentials from the C:\Users\name\.aws\credentials file
 // in Windows or the .aws/credentials file in Linux.
 AWSCredentials credentials = null;
 try {
 credentials = new ProfileCredentialsProvider("default").getCredentials();
 } catch (Exception e) {
 throw new AmazonClientException(
 "Cannot load the credentials from the credential profiles file. " +
 "Please make sure that your credentials file is at the correct " +
 "location (C:\\Users\\joneps\\.aws\\credentials), and is in valid
 format.",
 e);
 }

 String endpointProtocol = "https://acm-pca." + endpointRegion +
 ".amazonaws.com.cn/";
 EndpointConfiguration endpoint =
 new AwsClientBuilder.EndpointConfiguration(endpointProtocol,
 endpointRegion);

 // Create a client that you can use to make requests.
 AWSACMPCA client = AWSACMPCAClientBuilder.standard()
 .withEndpointConfiguration(endpoint)
 .withCredentials(new AWSStaticCredentialsProvider(credentials))
 .build();

 return client;
 }

 private static String CreateCertificateAuthority(CertificateAuthorityConfiguration
 configCA, CrlConfiguration crlConfigure, CertificateAuthorityType CAtype, AWSACMPCA
 client)

{

Create and activate a root CA programmatically Version latest 20

Amazon Private Certificate Authority User Guide

 RevocationConfiguration revokeConfig = new RevocationConfiguration();
 revokeConfig.setCrlConfiguration(crlConfigure);

 // Create the request object.
 CreateCertificateAuthorityRequest createCARequest = new
 CreateCertificateAuthorityRequest();
 createCARequest.withCertificateAuthorityConfiguration(configCA);
 createCARequest.withRevocationConfiguration(revokeConfig);
 createCARequest.withIdempotencyToken("123987");
 createCARequest.withCertificateAuthorityType(CAtype);

 createCARequest.withKeyStorageSecurityStandard(KeyStorageSecurityStandard.CCPC_LEVEL_1_OR_HIGHER);

 // Create the private CA.
 CreateCertificateAuthorityResult createCAResult = null;
 try {
 createCAResult = client.createCertificateAuthority(createCARequest);
 } catch (InvalidArgsException ex) {
 throw ex;
 } catch (InvalidPolicyException ex) {
 throw ex;
 } catch (LimitExceededException ex) {
 throw ex;
 }

 // Retrieve the ARN of the private CA.
 String rootCAArn = createCAResult.getCertificateAuthorityArn();
 System.out.println("Root CA Arn: " + rootCAArn);

 return rootCAArn;
 }

 private static String GetCertificateAuthorityCsr(String rootCAArn, AWSACMPCA
 client) {

 // Create the CSR request object and set the CA ARN.
 GetCertificateAuthorityCsrRequest csrRequest = new
 GetCertificateAuthorityCsrRequest();
 csrRequest.withCertificateAuthorityArn(rootCAArn);

 // Create waiter to wait on successful creation of the CSR file.
 Waiter< GetCertificateAuthorityCsrRequest> getCSRWaiter =
 client.waiters().certificateAuthorityCSRCreated();
 try {

Create and activate a root CA programmatically Version latest 21

Amazon Private Certificate Authority User Guide

 getCSRWaiter.run(new WaiterParameters<(csrRequest));
 } catch (WaiterUnrecoverableException e) {
 //Explicit short circuit when the recourse transitions into
 //an undesired state.
 } catch (WaiterTimedOutException e) {
 //Failed to transition into desired state even after polling.
 } catch (AWSACMPCAException e) {
 //Unexpected service exception.
 }

 // Retrieve the CSR.
 GetCertificateAuthorityCsrResult csrResult = null;
 try {
 csrResult = client.getCertificateAuthorityCsr(csrRequest);
 } catch (RequestInProgressException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (RequestFailedException ex) {
 throw ex;
 }

 // Retrieve and display the CSR;
 String csr = csrResult.getCsr();
 System.out.println(csr);

 return csr;
 }

 private static String IssueCertificate(String rootCAArn, String csr, AWSACMPCA
 client) {

 // Create a certificate request:
 IssueCertificateRequest issueRequest = new IssueCertificateRequest();

 // Set the CA ARN.
 issueRequest.withCertificateAuthorityArn(rootCAArn);

 // Set the template ARN.
 issueRequest.withTemplateArn("arn:aws-cn:acm-pca:::template/RootCACertificate/
V1");

Create and activate a root CA programmatically Version latest 22

Amazon Private Certificate Authority User Guide

 ByteBuffer csrByteBuffer = stringToByteBuffer(csr);
 issueRequest.setCsr(csrByteBuffer);

 // Set the signing algorithm.
 issueRequest.withSigningAlgorithm(SigningAlgorithm.SHA256WITHRSA);

 // Set the validity period for the certificate to be issued.
 Validity validity = new Validity();
 validity.withValue(3650L);
 validity.withType("DAYS");
 issueRequest.withValidity(validity);

 // Set the idempotency token.
 issueRequest.setIdempotencyToken("1234");

 // Issue the certificate.
 IssueCertificateResult issueResult = null;
 try {
 issueResult = client.issueCertificate(issueRequest);
 } catch (LimitExceededException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (InvalidStateException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (InvalidArgsException ex) {
 throw ex;
 } catch (MalformedCSRException ex) {
 throw ex;
 }

 // Retrieve and display the certificate ARN.
 String rootCertificateArn = issueResult.getCertificateArn();
 System.out.println("Root Certificate Arn: " + rootCertificateArn);

 return rootCertificateArn;
 }

 private static String GetCertificate(String rootCertificateArn, String rootCAArn,
 AWSACMPCA client) {

 // Create a request object.

Create and activate a root CA programmatically Version latest 23

Amazon Private Certificate Authority User Guide

 GetCertificateRequest certificateRequest = new GetCertificateRequest();

 // Set the certificate ARN.
 certificateRequest.withCertificateArn(rootCertificateArn);

 // Set the certificate authority ARN.
 certificateRequest.withCertificateAuthorityArn(rootCAArn);

 // Create waiter to wait on successful creation of the certificate file.
 Waiter<GetCertificateRequest> getCertificateWaiter =
 client.waiters().certificateIssued();
 try {
 getCertificateWaiter.run(new WaiterParameters<(certificateRequest));
 } catch (WaiterUnrecoverableException e) {
 //Explicit short circuit when the recourse transitions into
 //an undesired state.
 } catch (WaiterTimedOutException e) {
 //Failed to transition into desired state even after polling.
 } catch (AWSACMPCAException e) {
 //Unexpected service exception.
 }

 // Retrieve the certificate and certificate chain.
 GetCertificateResult certificateResult = null;
 try {
 certificateResult = client.getCertificate(certificateRequest);
 } catch (RequestInProgressException ex) {
 throw ex;
 } catch (RequestFailedException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (InvalidStateException ex) {
 throw ex;
 }

 // Get the certificate and certificate chain and display the result.
 String rootCertificate = certificateResult.getCertificate();
 System.out.println(rootCertificate);

 return rootCertificate;
 }

Create and activate a root CA programmatically Version latest 24

Amazon Private Certificate Authority User Guide

 private static void ImportCertificateAuthorityCertificate(String rootCertificate,
 String rootCAArn, AWSACMPCA client) {

 // Create the request object and set the signed certificate, chain and CA ARN.
 ImportCertificateAuthorityCertificateRequest importRequest =
 new ImportCertificateAuthorityCertificateRequest();

 ByteBuffer certByteBuffer = stringToByteBuffer(rootCertificate);
 importRequest.setCertificate(certByteBuffer);

 importRequest.setCertificateChain(null);

 // Set the certificate authority ARN.
 importRequest.withCertificateAuthorityArn(rootCAArn);

 // Import the certificate.
 try {
 client.importCertificateAuthorityCertificate(importRequest);
 } catch (CertificateMismatchException ex) {
 throw ex;
 } catch (MalformedCertificateException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (RequestInProgressException ex) {
 throw ex;
 } catch (ConcurrentModificationException ex) {
 throw ex;
 } catch (RequestFailedException ex) {
 throw ex;
 }

 System.out.println("Root CA certificate successfully imported.");
 System.out.println("Root CA activated successfully.");
 }

 private static ByteBuffer stringToByteBuffer(final String string) {
 if (Objects.isNull(string)) {
 return null;
 }
 byte[] bytes = string.getBytes(StandardCharsets.UTF_8);

Create and activate a root CA programmatically Version latest 25

Amazon Private Certificate Authority User Guide

 return ByteBuffer.wrap(bytes);
 }
}

Create and activate a subordinate CA programmatically

This Java sample shows how to activate a subordinate CA using the following Amazon Private CA
API actions:

• GetCertificateAuthorityCertificate

• CreateCertificateAuthority

• GetCertificateAuthorityCsr

• IssueCertificate

• GetCertificate

• ImportCertificateAuthorityCertificate

package com.amazonaws.samples;

import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.client.builder.AwsClientBuilder;
import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration;
import com.amazonaws.auth.AWSStaticCredentialsProvider;

import com.amazonaws.services.acmpca.AWSACMPCA;
import com.amazonaws.services.acmpca.AWSACMPCAClientBuilder;

import com.amazonaws.services.acmpca.model.ASN1Subject;
import com.amazonaws.services.acmpca.model.CertificateAuthorityConfiguration;
import com.amazonaws.services.acmpca.model.CertificateAuthorityType;
import com.amazonaws.services.acmpca.model.CreateCertificateAuthorityResult;
import com.amazonaws.services.acmpca.model.CreateCertificateAuthorityRequest;
import com.amazonaws.services.acmpca.model.CrlConfiguration;
import com.amazonaws.services.acmpca.model.KeyAlgorithm;
import com.amazonaws.services.acmpca.model.KeyStorageSecurityStandard;
import com.amazonaws.services.acmpca.model.SigningAlgorithm;
import com.amazonaws.services.acmpca.model.Tag;

import java.nio.ByteBuffer;

Create and activate a subordinate CA programmatically Version latest 26

https://docs.amazonaws.cn/privateca/latest/APIReference/API_GetCertificateAuthorityCertificate.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_CreateCertificateAuthority.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_GetCertificateAuthorityCsr.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_IssueCertificate.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_GetCertificate.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_ImportCertificateAuthorityCertificate.html

Amazon Private Certificate Authority User Guide

import java.nio.charset.StandardCharsets;
import java.util.ArrayList;
import java.util.Objects;

import com.amazonaws.services.acmpca.model.GetCertificateAuthorityCertificateRequest;
import com.amazonaws.services.acmpca.model.GetCertificateAuthorityCertificateResult;
import com.amazonaws.services.acmpca.model.GetCertificateAuthorityCsrRequest;
import com.amazonaws.services.acmpca.model.GetCertificateAuthorityCsrResult;
import com.amazonaws.services.acmpca.model.GetCertificateRequest;
import com.amazonaws.services.acmpca.model.GetCertificateResult;
import
 com.amazonaws.services.acmpca.model.ImportCertificateAuthorityCertificateRequest;
import com.amazonaws.services.acmpca.model.IssueCertificateRequest;
import com.amazonaws.services.acmpca.model.IssueCertificateResult;
import com.amazonaws.services.acmpca.model.SigningAlgorithm;
import com.amazonaws.services.acmpca.model.Validity;

import com.amazonaws.AmazonClientException;
import com.amazonaws.services.acmpca.model.CertificateMismatchException;
import com.amazonaws.services.acmpca.model.ConcurrentModificationException;
import com.amazonaws.services.acmpca.model.LimitExceededException;
import com.amazonaws.services.acmpca.model.InvalidArgsException;
import com.amazonaws.services.acmpca.model.InvalidArnException;
import com.amazonaws.services.acmpca.model.InvalidPolicyException;
import com.amazonaws.services.acmpca.model.InvalidStateException;
import com.amazonaws.services.acmpca.model.MalformedCertificateException;
import com.amazonaws.services.acmpca.model.MalformedCSRException;
import com.amazonaws.services.acmpca.model.RequestFailedException;
import com.amazonaws.services.acmpca.model.RequestInProgressException;
import com.amazonaws.services.acmpca.model.ResourceNotFoundException;
import com.amazonaws.services.acmpca.model.RevocationConfiguration;
import com.amazonaws.services.acmpca.model.AWSACMPCAException;

import com.amazonaws.waiters.Waiter;
import com.amazonaws.waiters.WaiterParameters;
import com.amazonaws.waiters.WaiterTimedOutException;
import com.amazonaws.waiters.WaiterUnrecoverableException;

public class SubordinateCAActivation {

 public static void main(String[] args) throws Exception {
 // Place your own Root CA ARN here.
 String rootCAArn = "arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566";

Create and activate a subordinate CA programmatically Version latest 27

Amazon Private Certificate Authority User Guide

 // Define the endpoint region for your sample.
 String endpointRegion = "region"; // Substitute your region here, e.g. "us-
west-2"

 // Define a CA subject.
 ASN1Subject subject = new ASN1Subject();
 subject.setOrganization("Example Organization");
 subject.setOrganizationalUnit("Example");
 subject.setCountry("US");
 subject.setState("Virginia");
 subject.setLocality("Arlington");
 subject.setCommonName("www.example.com");

 // Define the CA configuration.
 CertificateAuthorityConfiguration configCA = new
 CertificateAuthorityConfiguration();
 configCA.withKeyAlgorithm(KeyAlgorithm.RSA_2048);
 configCA.withSigningAlgorithm(SigningAlgorithm.SHA256WITHRSA);
 configCA.withSubject(subject);

 // Define a certificate revocation list configuration.
 CrlConfiguration crlConfigure = new CrlConfiguration();
 crlConfigure.withEnabled(true);
 crlConfigure.withExpirationInDays(365);
 crlConfigure.withCustomCname(null);
 crlConfigure.withS3BucketName("your-bucket-name");

 // Define a certificate authority type
 CertificateAuthorityType CAtype = CertificateAuthorityType.SUBORDINATE;

 // ** Execute core code samples for Subordinate CA activation in sequence **
 AWSACMPCA client = ClientBuilder(endpointRegion);
 String rootCertificate = GetCertificateAuthorityCertificate(rootCAArn, client);
 String subordinateCAArn = CreateCertificateAuthority(configCA, crlConfigure,
 CAtype, client);
 String csr = GetCertificateAuthorityCsr(subordinateCAArn, client);
 String subordinateCertificateArn = IssueCertificate(rootCAArn, csr, client);
 String subordinateCertificate = GetCertificate(subordinateCertificateArn,
 rootCAArn, client);
 ImportCertificateAuthorityCertificate(subordinateCertificate, rootCertificate,
 subordinateCAArn, client);

 }

Create and activate a subordinate CA programmatically Version latest 28

Amazon Private Certificate Authority User Guide

 private static AWSACMPCA ClientBuilder(String endpointRegion) {
 // Retrieve your credentials from the C:\Users\name\.aws\credentials file
 // in Windows or the .aws/credentials file in Linux.
 AWSCredentials credentials = null;
 try {
 credentials = new ProfileCredentialsProvider("default").getCredentials();
 } catch (Exception e) {
 throw new AmazonClientException(
 "Cannot load the credentials from the credential profiles file. " +
 "Please make sure that your credentials file is at the correct " +
 "location (C:\\Users\\joneps\\.aws\\credentials), and is in valid
 format.",
 e);
 }

 String endpointProtocol = "https://acm-pca." + endpointRegion +
 ".amazonaws.com.cn/";
 EndpointConfiguration endpoint =
 new AwsClientBuilder.EndpointConfiguration(endpointProtocol,
 endpointRegion);

 // Create a client that you can use to make requests.
 AWSACMPCA client = AWSACMPCAClientBuilder.standard()
 .withEndpointConfiguration(endpoint)
 .withCredentials(new AWSStaticCredentialsProvider(credentials))
 .build();

 return client;
 }

 private static String GetCertificateAuthorityCertificate(String rootCAArn,
 AWSACMPCA client)

{
 // ** GetCertificateAuthorityCertificate **

 // Create a request object and set the certificate authority ARN,
 GetCertificateAuthorityCertificateRequest getCACertificateRequest =
 new GetCertificateAuthorityCertificateRequest();
 getCACertificateRequest.withCertificateAuthorityArn(rootCAArn);

 // Create a result object.
 GetCertificateAuthorityCertificateResult getCACertificateResult = null;

Create and activate a subordinate CA programmatically Version latest 29

Amazon Private Certificate Authority User Guide

 try {
 getCACertificateResult =
 client.getCertificateAuthorityCertificate(getCACertificateRequest);
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (InvalidStateException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 }

 // Retrieve and display the certificate information.
 String rootCertificate = getCACertificateResult.getCertificate();
 System.out.println("Root CA Certificate / Certificate Chain:");
 System.out.println(rootCertificate);

 return rootCertificate;
 }

 private static String CreateCertificateAuthority(CertificateAuthorityConfiguration
 configCA, CrlConfiguration crlConfigure, CertificateAuthorityType CAtype, AWSACMPCA
 client) {
 RevocationConfiguration revokeConfig = new RevocationConfiguration();
 revokeConfig.setCrlConfiguration(crlConfigure);

 // Create the request object.
 CreateCertificateAuthorityRequest createCARequest = new
 CreateCertificateAuthorityRequest();
 createCARequest.withCertificateAuthorityConfiguration(configCA);
 createCARequest.withRevocationConfiguration(revokeConfig);
 createCARequest.withIdempotencyToken("123987");
 createCARequest.withCertificateAuthorityType(CAtype);

 createCARequest.withKeyStorageSecurityStandard(KeyStorageSecurityStandard.CCPC_LEVEL_1_OR_HIGHER);

 // Create the private CA.
 CreateCertificateAuthorityResult createCAResult = null;
 try {
 createCAResult = client.createCertificateAuthority(createCARequest);
 } catch (InvalidArgsException ex) {
 throw ex;
 } catch (InvalidPolicyException ex) {
 throw ex;
 } catch (LimitExceededException ex) {

Create and activate a subordinate CA programmatically Version latest 30

Amazon Private Certificate Authority User Guide

 throw ex;
 }

 // Retrieve the ARN of the private CA.
 String subordinateCAArn = createCAResult.getCertificateAuthorityArn();
 System.out.println("Subordinate CA Arn: " + subordinateCAArn);

 return subordinateCAArn;
 }

 private static String GetCertificateAuthorityCsr(String subordinateCAArn, AWSACMPCA
 client) {

 // Create the CSR request object and set the CA ARN.
 GetCertificateAuthorityCsrRequest csrRequest = new
 GetCertificateAuthorityCsrRequest();
 csrRequest.withCertificateAuthorityArn(subordinateCAArn);

 // Create waiter to wait on successful creation of the CSR file.
 Waiter<GetCertificateAuthorityCsrRequest> getCSRWaiter =
 client.waiters().certificateAuthorityCSRCreated();
 try {
 getCSRWaiter.run(new WaiterParameters<(csrRequest));
 } catch (WaiterUnrecoverableException e) {
 //Explicit short circuit when the recourse transitions into
 //an undesired state.
 } catch (WaiterTimedOutException e) {
 //Failed to transition into desired state even after polling.
 } catch(AWSACMPCAException e) {
 //Unexpected service exception.
 }

 // Retrieve the CSR.
 GetCertificateAuthorityCsrResult csrResult = null;
 try {
 csrResult = client.getCertificateAuthorityCsr(csrRequest);
 } catch (RequestInProgressException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (RequestFailedException ex) {
 throw ex;

Create and activate a subordinate CA programmatically Version latest 31

Amazon Private Certificate Authority User Guide

 }

 // Retrieve and display the CSR;
 String csr = csrResult.getCsr();
 System.out.println("Subordinate CSR:");
 System.out.println(csr);

 return csr;
 }

 private static String IssueCertificate(String rootCAArn, String csr, AWSACMPCA
 client) {

 // Create a certificate request:
 IssueCertificateRequest issueRequest = new IssueCertificateRequest();

 // Set the issuing CA ARN.
 issueRequest.withCertificateAuthorityArn(rootCAArn);

 // Set the template ARN.
 issueRequest.withTemplateArn("arn:aws-cn:acm-pca:::template/
SubordinateCACertificate_PathLen0/V1");

 ByteBuffer csrByteBuffer = stringToByteBuffer(csr);
 issueRequest.setCsr(csrByteBuffer);

 // Set the signing algorithm.
 issueRequest.withSigningAlgorithm(SigningAlgorithm.SHA256WITHRSA);

 // Set the validity period for the certificate to be issued.
 Validity validity = new Validity();
 validity.withValue(730L); // Approximately two years
 validity.withType("DAYS");
 issueRequest.withValidity(validity);

 // Set the idempotency token.
 issueRequest.setIdempotencyToken("1234");

 // Issue the certificate.
 IssueCertificateResult issueResult = null;
 try {
 issueResult = client.issueCertificate(issueRequest);
 } catch (LimitExceededException ex) {
 throw ex;

Create and activate a subordinate CA programmatically Version latest 32

Amazon Private Certificate Authority User Guide

 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (InvalidStateException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (InvalidArgsException ex) {
 throw ex;
 } catch (MalformedCSRException ex) {
 throw ex;
 }

 // Retrieve and display the certificate ARN.
 String subordinateCertificateArn = issueResult.getCertificateArn();
 System.out.println("Subordinate Certificate Arn: " +
 subordinateCertificateArn);

 return subordinateCertificateArn;
 }

 private static String GetCertificate(String subordinateCertificateArn, String
 rootCAArn, AWSACMPCA client) {

 // Create a request object.
 GetCertificateRequest certificateRequest = new GetCertificateRequest();

 // Set the certificate ARN.
 certificateRequest.withCertificateArn(subordinateCertificateArn);

 // Set the certificate authority ARN.
 certificateRequest.withCertificateAuthorityArn(rootCAArn);

 // Create waiter to wait on successful creation of the certificate file.
 Waiter<GetCertificateRequest> getCertificateWaiter =
 client.waiters().certificateIssued();
 try {
 getCertificateWaiter.run(new WaiterParameters<(certificateRequest));
 } catch (WaiterUnrecoverableException e) {
 //Explicit short circuit when the recourse transitions into
 //an undesired state.
 } catch (WaiterTimedOutException e) {
 //Failed to transition into desired state even after polling.
 } catch (AWSACMPCAException e) {
 //Unexpected service exception.

Create and activate a subordinate CA programmatically Version latest 33

Amazon Private Certificate Authority User Guide

 }

 // Retrieve the certificate and certificate chain.
 GetCertificateResult certificateResult = null;
 try {
 certificateResult = client.getCertificate(certificateRequest);
 } catch (RequestInProgressException ex) {
 throw ex;
 } catch (RequestFailedException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (InvalidStateException ex) {
 throw ex;
 }

 // Get the certificate and certificate chain and display the result.
 String subordinateCertificate = certificateResult.getCertificate();
 System.out.println("Subordinate CA Certificate:");
 System.out.println(subordinateCertificate);

 return subordinateCertificate;
 }

 private static void ImportCertificateAuthorityCertificate(String
 subordinateCertificate, String rootCertificate, String subordinateCAArn, AWSACMPCA
 client) {

 // Create the request object and set the signed certificate, chain and CA ARN.
 ImportCertificateAuthorityCertificateRequest importRequest =
 new ImportCertificateAuthorityCertificateRequest();

 ByteBuffer certByteBuffer = stringToByteBuffer(subordinateCertificate);
 importRequest.setCertificate(certByteBuffer);

 ByteBuffer rootCACertByteBuffer = stringToByteBuffer(rootCertificate);
 importRequest.setCertificateChain(rootCACertByteBuffer);

 // Set the certificate authority ARN.
 importRequest.withCertificateAuthorityArn(subordinateCAArn);

 // Import the certificate.

Create and activate a subordinate CA programmatically Version latest 34

Amazon Private Certificate Authority User Guide

 try {
 client.importCertificateAuthorityCertificate(importRequest);
 } catch (CertificateMismatchException ex) {
 throw ex;
 } catch (MalformedCertificateException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (RequestInProgressException ex) {
 throw ex;
 } catch (ConcurrentModificationException ex) {
 throw ex;
 } catch (RequestFailedException ex) {
 throw ex;
 }
 System.out.println("Subordinate CA certificate successfully imported.");
 System.out.println("Subordinate CA activated successfully.");
 }

 private static ByteBuffer stringToByteBuffer(final String string) {
 if (Objects.isNull(string)) {
 return null;
 }
 byte[] bytes = string.getBytes(StandardCharsets.UTF_8);
 return ByteBuffer.wrap(bytes);
 }
}

CreateCertificateAuthority

The following Java sample shows how to use the CreateCerticateAuthority operation.

The operation creates a private subordinate certificate authority (CA). You must specify the CA
configuration, the revocation configuration, the CA type, and an optional idempotency token.

The CA configuration specifies the following:

• The name of the algorithm and key size to be used to create the CA private key

• The type of signing algorithm that the CA uses to sign

• X.500 subject information

CreateCertificateAuthority Version latest 35

https://docs.amazonaws.cn/privateca/latest/APIReference/API_CreateCertificateAuthority.html

Amazon Private Certificate Authority User Guide

The CRL configuration specifies the following:

• The CRL expiration period in days (the validity period of the CRL)

• The Amazon S3 bucket that will contain the CRL

• A CNAME alias for the S3 bucket that is included in certificates issued by the CA

If successful, this function returns the Amazon Resource Name (ARN) of the CA.

Your output should be similar to the following:

arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566

Using CreateCertificateAuthority to support Active Directory

The following Java sample shows how to use the CreateCerticateAuthority operation to create a CA
that can be installed in the Enterprise NTAuth store of Microsoft Active Directory (AD).

The operation creates a private root certificate authority (CA) using custom object identifiers
(OIDs). For more information and an Amazon CLI example of an equivalent operation, see Create a
CA for Active Directory login.

If successful, this function returns the Amazon Resource Name (ARN) of the CA.

package com.amazonaws.samples.appstream;

import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.client.builder.AwsClientBuilder;
import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration;
import com.amazonaws.samples.GetCertificateAuthorityCertificate;
import com.amazonaws.auth.AWSStaticCredentialsProvider;

import com.amazonaws.services.acmpca.AWSACMPCA;
import com.amazonaws.services.acmpca.AWSACMPCAClientBuilder;

import com.amazonaws.services.acmpca.model.ASN1Subject;
import com.amazonaws.services.acmpca.model.ApiPassthrough;
import com.amazonaws.services.acmpca.model.CertificateAuthorityConfiguration;
import com.amazonaws.services.acmpca.model.CertificateAuthorityType;
import com.amazonaws.services.acmpca.model.CreateCertificateAuthorityResult;

Using CreateCertificateAuthority to support Active Directory Version latest 36

https://docs.amazonaws.cn/privateca/latest/APIReference/API_CreateCertificateAuthority.html

Amazon Private Certificate Authority User Guide

import com.amazonaws.services.acmpca.model.CreateCertificateAuthorityRequest;
import com.amazonaws.services.acmpca.model.CrlConfiguration;
import com.amazonaws.services.acmpca.model.CustomAttribute;
import com.amazonaws.services.acmpca.model.KeyAlgorithm;
import com.amazonaws.services.acmpca.model.SigningAlgorithm;
import com.amazonaws.services.acmpca.model.Tag;

import java.io.ByteArrayInputStream;
import java.io.InputStreamReader;
import java.nio.ByteBuffer;
import java.nio.charset.StandardCharsets;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Base64;
import java.util.List;
import java.util.Objects;

import com.amazonaws.services.acmpca.model.GetCertificateAuthorityCsrRequest;
import com.amazonaws.services.acmpca.model.GetCertificateAuthorityCsrResult;
import com.amazonaws.services.acmpca.model.GetCertificateRequest;
import com.amazonaws.services.acmpca.model.GetCertificateResult;
import
 com.amazonaws.services.acmpca.model.ImportCertificateAuthorityCertificateRequest;
import com.amazonaws.services.acmpca.model.IssueCertificateRequest;
import com.amazonaws.services.acmpca.model.IssueCertificateResult;
import com.amazonaws.services.acmpca.model.SigningAlgorithm;
import com.amazonaws.services.acmpca.model.Validity;

import com.amazonaws.AmazonClientException;
import com.amazonaws.services.acmpca.model.CertificateMismatchException;
import com.amazonaws.services.acmpca.model.ConcurrentModificationException;
import com.amazonaws.services.acmpca.model.LimitExceededException;
import com.amazonaws.services.acmpca.model.InvalidArgsException;
import com.amazonaws.services.acmpca.model.InvalidArnException;
import com.amazonaws.services.acmpca.model.InvalidPolicyException;
import com.amazonaws.services.acmpca.model.InvalidStateException;
import com.amazonaws.services.acmpca.model.MalformedCertificateException;
import com.amazonaws.services.acmpca.model.MalformedCSRException;
import com.amazonaws.services.acmpca.model.RequestFailedException;
import com.amazonaws.services.acmpca.model.RequestInProgressException;
import com.amazonaws.services.acmpca.model.ResourceNotFoundException;
import com.amazonaws.services.acmpca.model.RevocationConfiguration;
import com.amazonaws.services.acmpca.model.AWSACMPCAException;

Using CreateCertificateAuthority to support Active Directory Version latest 37

Amazon Private Certificate Authority User Guide

import com.amazonaws.waiters.Waiter;
import com.amazonaws.waiters.WaiterParameters;
import com.amazonaws.waiters.WaiterTimedOutException;
import com.amazonaws.waiters.WaiterUnrecoverableException;

import org.bouncycastle.asn1.x509.SubjectPublicKeyInfo;
import org.bouncycastle.cert.jcajce.JcaX509ExtensionUtils;
import org.bouncycastle.openssl.PEMParser;
import org.bouncycastle.pkcs.PKCS10CertificationRequest;
import org.bouncycastle.util.io.pem.PemReader;

import lombok.SneakyThrows;

public class RootCAActivation {
 public static void main(String[] args) throws Exception {
 // Define the endpoint region for your sample.
 String endpointRegion = "region"; // Substitute your region here, e.g. "ap-
southeast-2"

 // Define custom attributes
 List<CustomAttribute> customAttributes = Arrays.asList(
 new CustomAttribute()
 .withObjectIdentifier("2.5.4.3") // OID for Common Name
 .withValue("root CA"),
 new CustomAttribute()
 .withObjectIdentifier("0.9.2342.19200300.100.1.25") // OID for Domain
 Component
 .withValue("example"),
 new CustomAttribute()
 .withObjectIdentifier("0.9.2342.19200300.100.1.25") // OID for Domain
 Component
 .withValue("com")

);

 // Define a CA subject.
 ASN1Subject subject = new ASN1Subject();
 subject.setCustomAttributes(customAttributes);

 // Define the CA configuration.
 CertificateAuthorityConfiguration configCA = new
 CertificateAuthorityConfiguration();
 configCA.withKeyAlgorithm(KeyAlgorithm.EC_prime256v1);
 configCA.withSigningAlgorithm(SigningAlgorithm.SHA256WITHECDSA);

Using CreateCertificateAuthority to support Active Directory Version latest 38

Amazon Private Certificate Authority User Guide

 configCA.withSubject(subject);

 // Define a certificate authority type
 CertificateAuthorityType CAtype = CertificateAuthorityType.ROOT;

 // ** Execute core code samples for Root CA activation in sequence **
 AWSACMPCA client = ClientBuilder(endpointRegion);
 String rootCAArn = CreateCertificateAuthority(configCA, CAtype, client);
 String csr = GetCertificateAuthorityCsr(rootCAArn, client);
 String rootCertificateArn = IssueCertificate(rootCAArn, csr, client);
 String rootCertificate = GetCertificate(rootCertificateArn, rootCAArn, client);
 ImportCertificateAuthorityCertificate(rootCertificate, rootCAArn, client);
 }

 private static AWSACMPCA ClientBuilder(String endpointRegion) {
 // Retrieve your credentials from the C:\Users\name\.aws\credentials file
 // in Windows or the .aws/credentials file in Linux.
 AWSCredentials credentials = null;
 try {
 credentials = new ProfileCredentialsProvider("default").getCredentials();
 } catch (Exception e) {
 throw new AmazonClientException(
 "Cannot load the credentials from the credential profiles file. " +
 "Please make sure that your credentials file is at the correct " +
 "location (C:\\Users\\joneps\\.aws\\credentials), and is in valid
 format.",
 e);
 }

 String endpointProtocol = "https://acm-pca." + endpointRegion +
 ".amazonaws.com/";
 EndpointConfiguration endpoint =
 new AwsClientBuilder.EndpointConfiguration(endpointProtocol,
 endpointRegion);

 // Create a client that you can use to make requests.
 AWSACMPCA client = AWSACMPCAClientBuilder.standard()
 .withEndpointConfiguration(endpoint)
 .withCredentials(new AWSStaticCredentialsProvider(credentials))
 .build();

 return client;
 }

Using CreateCertificateAuthority to support Active Directory Version latest 39

Amazon Private Certificate Authority User Guide

 private static String CreateCertificateAuthority(CertificateAuthorityConfiguration
 configCA, CertificateAuthorityType CAtype, AWSACMPCA client) {
 // Create the request object.
 CreateCertificateAuthorityRequest createCARequest = new
 CreateCertificateAuthorityRequest();
 createCARequest.withCertificateAuthorityConfiguration(configCA);
 createCARequest.withIdempotencyToken("123987");
 createCARequest.withCertificateAuthorityType(CAtype);

 // Create the private CA.
 CreateCertificateAuthorityResult createCAResult = null;
 try {
 createCAResult = client.createCertificateAuthority(createCARequest);
 } catch (InvalidArgsException ex) {
 throw ex;
 } catch (InvalidPolicyException ex) {
 throw ex;
 } catch (LimitExceededException ex) {
 throw ex;
 }

 // Retrieve the ARN of the private CA.
 String rootCAArn = createCAResult.getCertificateAuthorityArn();
 System.out.println("Root CA Arn: " + rootCAArn);

 return rootCAArn;
 }

 private static String GetCertificateAuthorityCsr(String rootCAArn, AWSACMPCA
 client) {

 // Create the CSR request object and set the CA ARN.
 GetCertificateAuthorityCsrRequest csrRequest = new
 GetCertificateAuthorityCsrRequest();
 csrRequest.withCertificateAuthorityArn(rootCAArn);

 // Create waiter to wait on successful creation of the CSR file.
 Waiter<GetCertificateAuthorityCsrRequest> getCSRWaiter =
 client.waiters().certificateAuthorityCSRCreated();
 try {
 getCSRWaiter.run(new WaiterParameters<>(csrRequest));
 } catch (WaiterUnrecoverableException e) {
 //Explicit short circuit when the recourse transitions into
 //an undesired state.

Using CreateCertificateAuthority to support Active Directory Version latest 40

Amazon Private Certificate Authority User Guide

 } catch (WaiterTimedOutException e) {
 //Failed to transition into desired state even after polling.
 } catch (AWSACMPCAException e) {
 //Unexpected service exception.
 }

 // Retrieve the CSR.
 GetCertificateAuthorityCsrResult csrResult = null;
 try {
 csrResult = client.getCertificateAuthorityCsr(csrRequest);
 } catch (RequestInProgressException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (RequestFailedException ex) {
 throw ex;
 }

 // Retrieve and display the CSR;
 String csr = csrResult.getCsr();
 System.out.println(csr);

 return csr;
 }

 private static String IssueCertificate(String rootCAArn, String csr, AWSACMPCA
 client) {

 // Create a certificate request:
 IssueCertificateRequest issueRequest = new IssueCertificateRequest();

 // Set the CA ARN.
 issueRequest.withCertificateAuthorityArn(rootCAArn);

 // Set the template ARN.
 issueRequest.withTemplateArn("arn:aws:acm-pca:::template/RootCACertificate/
V1");

 ByteBuffer csrByteBuffer = stringToByteBuffer(csr);
 issueRequest.setCsr(csrByteBuffer);

 // Set the signing algorithm.

Using CreateCertificateAuthority to support Active Directory Version latest 41

Amazon Private Certificate Authority User Guide

 issueRequest.withSigningAlgorithm(SigningAlgorithm.SHA256WITHECDSA);

 // Set the validity period for the certificate to be issued.
 Validity validity = new Validity();
 validity.withValue(3650L);
 validity.withType("DAYS");
 issueRequest.withValidity(validity);

 // Set the idempotency token.
 issueRequest.setIdempotencyToken("1234");

 // Issue the certificate.
 IssueCertificateResult issueResult = null;
 try {
 issueResult = client.issueCertificate(issueRequest);
 } catch (LimitExceededException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (InvalidStateException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (InvalidArgsException ex) {
 throw ex;
 } catch (MalformedCSRException ex) {
 throw ex;
 }

 // Retrieve and display the certificate ARN.
 String rootCertificateArn = issueResult.getCertificateArn();
 System.out.println("Root Certificate Arn: " + rootCertificateArn);

 return rootCertificateArn;
 }

 private static String GetCertificate(String rootCertificateArn, String rootCAArn,
 AWSACMPCA client) {

 // Create a request object.
 GetCertificateRequest certificateRequest = new GetCertificateRequest();

 // Set the certificate ARN.
 certificateRequest.withCertificateArn(rootCertificateArn);

Using CreateCertificateAuthority to support Active Directory Version latest 42

Amazon Private Certificate Authority User Guide

 // Set the certificate authority ARN.
 certificateRequest.withCertificateAuthorityArn(rootCAArn);

 // Create waiter to wait on successful creation of the certificate file.
 Waiter<GetCertificateRequest> getCertificateWaiter =
 client.waiters().certificateIssued();
 try {
 getCertificateWaiter.run(new WaiterParameters<>(certificateRequest));
 } catch (WaiterUnrecoverableException e) {
 //Explicit short circuit when the recourse transitions into
 //an undesired state.
 } catch (WaiterTimedOutException e) {
 //Failed to transition into desired state even after polling.
 } catch (AWSACMPCAException e) {
 //Unexpected service exception.
 }

 // Retrieve the certificate and certificate chain.
 GetCertificateResult certificateResult = null;
 try {
 certificateResult = client.getCertificate(certificateRequest);
 } catch (RequestInProgressException ex) {
 throw ex;
 } catch (RequestFailedException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (InvalidStateException ex) {
 throw ex;
 }

 // Get the certificate and certificate chain and display the result.
 String rootCertificate = certificateResult.getCertificate();
 System.out.println(rootCertificate);

 return rootCertificate;
 }

 private static void ImportCertificateAuthorityCertificate(String rootCertificate,
 String rootCAArn, AWSACMPCA client) {

Using CreateCertificateAuthority to support Active Directory Version latest 43

Amazon Private Certificate Authority User Guide

 // Create the request object and set the signed certificate, chain and CA ARN.
 ImportCertificateAuthorityCertificateRequest importRequest =
 new ImportCertificateAuthorityCertificateRequest();

 ByteBuffer certByteBuffer = stringToByteBuffer(rootCertificate);
 importRequest.setCertificate(certByteBuffer);

 importRequest.setCertificateChain(null);

 // Set the certificate authority ARN.
 importRequest.withCertificateAuthorityArn(rootCAArn);

 // Import the certificate.
 try {
 client.importCertificateAuthorityCertificate(importRequest);
 } catch (CertificateMismatchException ex) {
 throw ex;
 } catch (MalformedCertificateException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (RequestInProgressException ex) {
 throw ex;
 } catch (ConcurrentModificationException ex) {
 throw ex;
 } catch (RequestFailedException ex) {
 throw ex;
 }

 System.out.println("Root CA certificate successfully imported.");
 System.out.println("Root CA activated successfully.");
 }

 private static ByteBuffer stringToByteBuffer(final String string) {
 if (Objects.isNull(string)) {
 return null;
 }
 byte[] bytes = string.getBytes(StandardCharsets.UTF_8);
 return ByteBuffer.wrap(bytes);
 }
}

Using CreateCertificateAuthority to support Active Directory Version latest 44

Amazon Private Certificate Authority User Guide

Your output should be similar to the following:

arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566

CreateCertificateAuthorityAuditReport

The following Java sample shows how to use the CreateCertificateAuthorityAuditReport operation.

The operation creates an audit report that lists every time a certificate is issued or revoked. The
report is saved in the Amazon S3 bucket that you specify on input. You can generate a new report
once every 30 minutes.

package com.amazonaws.samples;

import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.client.builder.AwsClientBuilder;
import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration;
import com.amazonaws.AmazonClientException;
import com.amazonaws.auth.AWSStaticCredentialsProvider;

import com.amazonaws.services.acmpca.AWSACMPCA;
import com.amazonaws.services.acmpca.AWSACMPCAClientBuilder;

import
 com.amazonaws.services.acmpca.model.CreateCertificateAuthorityAuditReportRequest;
import com.amazonaws.services.acmpca.model.CreateCertificateAuthorityAuditReportResult;

import com.amazonaws.services.acmpca.model.RequestInProgressException;
import com.amazonaws.services.acmpca.model.RequestFailedException;
import com.amazonaws.services.acmpca.model.InvalidArgsException;
import com.amazonaws.services.acmpca.model.InvalidArnException;
import com.amazonaws.services.acmpca.model.ResourceNotFoundException;
import com.amazonaws.services.acmpca.model.InvalidStateException;

public class CreateCertificateAuthorityAuditReport {

 public static void main(String[] args) throws Exception {

 // Retrieve your credentials from the C:\Users\name\.aws\credentials file
 // in Windows or the .aws/credentials file in Linux.
 AWSCredentials credentials = null;

CreateCertificateAuthorityAuditReport Version latest 45

https://docs.amazonaws.cn/privateca/latest/APIReference/API_CreateCertificateAuthorityAuditReport.html

Amazon Private Certificate Authority User Guide

 try {
 credentials = new ProfileCredentialsProvider("default").getCredentials();
 } catch (Exception e) {
 throw new AmazonClientException("Cannot load your credentials from file.", e);
 }

 // Define the endpoint for your sample.
 String endpointRegion = "region"; // Substitute your region here, e.g. "us-
west-2"
 String endpointProtocol = "https://acm-pca." + endpointRegion +
 ".amazonaws.com/";
 EndpointConfiguration endpoint =
 new AwsClientBuilder.EndpointConfiguration(endpointProtocol,
 endpointRegion);

 // Create a client that you can use to make requests.
 AWSACMPCA client = AWSACMPCAClientBuilder.standard()
 .withEndpointConfiguration(endpoint)
 .withCredentials(new AWSStaticCredentialsProvider(credentials))
 .build();

 // Create a request object and set the certificate authority ARN.
 CreateCertificateAuthorityAuditReportRequest req =
 new CreateCertificateAuthorityAuditReportRequest();

 // Set the certificate authority ARN.
 req.setCertificateAuthorityArn("arn:aws:acm-pca:us-
east-1:111122223333:certificate-authority/11223344-1234-1122-2233-112233445566");

 // Specify the S3 bucket name for your report.
 req.setS3BucketName("your-bucket-name");

 // Specify the audit response format.
 req.setAuditReportResponseFormat("JSON");

 // Create a result object.
 CreateCertificateAuthorityAuditReportResult result = null;
 try {
 result = client.createCertificateAuthorityAuditReport(req);
 } catch (RequestInProgressException ex) {
 throw ex;
 } catch (RequestFailedException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {

CreateCertificateAuthorityAuditReport Version latest 46

Amazon Private Certificate Authority User Guide

 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (InvalidArgsException ex) {
 throw ex;
 } catch (InvalidStateException ex) {
 throw ex;
 }

 String ID = result.getAuditReportId();
 String S3Key = result.getS3Key();

 System.out.println(ID);
 System.out.println(S3Key);

 }
}

Your output should be similar to the following:

58904752-7de3-4bdf-ba89-6953e48c3cc7
audit-report/16075838-061c-4f7a-b54b-49bbc111bcff/58904752-7de3-4bdf-
ba89-6953e48c3cc7.json

CreatePermission

The following Java sample shows how to use the CreatePermission operation.

The operation assigns access permissions from a private CA to a designated Amazon service
principal. Services can be given permission to create and retrieve certificates from a private CA,
as well as list the active permissions that the private CA has granted. In order to automatically
renew certificates through ACM, you must assign all possible permissions (IssueCertificate,
GetCertificate, and ListPermissions) from the CA to the ACM service principal
(acm.amazonaws.com). You can find a CA's ARN by calling the ListCertificateAuthorities function.

Once a permission is created, you can inspect it with the ListPermissions function or delete it with
the DeletePermission function.

package com.amazonaws.samples;

import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;

CreatePermission Version latest 47

https://docs.amazonaws.cn/privateca/latest/APIReference/API_CreatePermission.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_ListCertificateAuthorities.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_ListPermissions.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_DeletePermission.html

Amazon Private Certificate Authority User Guide

import com.amazonaws.client.builder.AwsClientBuilder;
import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration;
import com.amazonaws.AmazonClientException;
import com.amazonaws.auth.AWSStaticCredentialsProvider;

import com.amazonaws.services.acmpca.AWSACMPCA;
import com.amazonaws.services.acmpca.AWSACMPCAClientBuilder;

import com.amazonaws.services.acmpca.model.CreatePermissionRequest;
import com.amazonaws.services.acmpca.model.CreatePermissionResult;

import com.amazonaws.services.acmpca.model.InvalidArnException;
import com.amazonaws.services.acmpca.model.InvalidStateException;
import com.amazonaws.services.acmpca.model.LimitExceededException;
import com.amazonaws.services.acmpca.model.PermissionAlreadyExistsException;
import com.amazonaws.services.acmpca.model.RequestFailedException;
import com.amazonaws.services.acmpca.model.ResourceNotFoundException;

import java.util.ArrayList;

public class CreatePermission {

 public static void main(String[] args) throws Exception {

 // Retrieve your credentials from the C:\Users\name\.aws\credentials file
 // in Windows or the .aws/credentials file in Linux.
 AWSCredentials credentials = null;
 try {
 credentials = new ProfileCredentialsProvider("default").getCredentials();
 } catch (Exception e) {
 throw new AmazonClientException("Cannot load your credentials from file.", e);
 }

 // Define the endpoint for your sample.
 String endpointRegion = "region"; // Substitute your region here, e.g. "us-
west-2"
 String endpointProtocol = "https://acm-pca." + endpointRegion +
 ".amazonaws.com/";
 EndpointConfiguration endpoint =
 new AwsClientBuilder.EndpointConfiguration(endpointProtocol,
 endpointRegion);

 // Create a client that you can use to make requests.
 AWSACMPCA client = AWSACMPCAClientBuilder.standard()

CreatePermission Version latest 48

Amazon Private Certificate Authority User Guide

 .withEndpointConfiguration(endpoint)
 .withCredentials(new AWSStaticCredentialsProvider(credentials))
 .build();

 // Create a request object.
 CreatePermissionRequest req =
 new CreatePermissionRequest();

 // Set the certificate authority ARN.
 req.setCertificateAuthorityArn("arn:aws:acm-pca:us-
east-1:111122223333:certificate-authority/11223344-1234-1122-2233-112233445566");

 // Set the permissions to give the user.
 ArrayList<String> permissions = new ArrayList<>();
 permissions.add("IssueCertificate");
 permissions.add("GetCertificate");
 permissions.add("ListPermissions");

 req.setActions(permissions);

 // Set the Principal.
 req.setPrincipal("acm.amazonaws.com");

 // Create a result object.
 CreatePermissionResult result = null;
 try {
 result = client.createPermission(req);
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (InvalidStateException ex) {
 throw ex;
 } catch (LimitExceededException ex) {
 throw ex;
 } catch (PermissionAlreadyExistsException ex) {
 throw ex;
 } catch (RequestFailedException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 }
 }
}

CreatePermission Version latest 49

Amazon Private Certificate Authority User Guide

DeleteCertificateAuthority

The following Java sample shows how to use the DeleteCertificateAuthority operation.

This operation deletes the private certificate authority (CA) that you created using the
CreateCertificateAuthority operation. The DeleteCertificateAuthority operation
requires that you provide an ARN for the CA to be deleted. You can find the ARN by calling
the ListCertificateAuthorities operation. You can delete the private CA immediately if its
status is CREATING or PENDING_CERTIFICATE. If you have already imported the certificate,
however, you cannot delete it immediately. You must first disable the CA by calling the
UpdateCertificateAuthority operation and set the Status parameter to DISABLED. You can then
use the PermanentDeletionTimeInDays parameter in the DeleteCertificateAuthority
operation to specify the number of days, from 7 to 30. During that period the private CA can be
restored to disabled status. By default, if you do not set the PermanentDeletionTimeInDays
parameter, the restoration period is 30 days. After this period expires, the private CA is
permanently deleted and cannot be restored. For more information, see Restore a CA.

For a Java example that shows you how to use the RestoreCertificateAuthority operation, see
RestoreCertificateAuthority.

package com.amazonaws.samples;

import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.client.builder.AwsClientBuilder;
import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration;
import com.amazonaws.auth.AWSStaticCredentialsProvider;

import com.amazonaws.services.acmpca.AWSACMPCA;
import com.amazonaws.services.acmpca.AWSACMPCAClientBuilder;

import com.amazonaws.services.acmpca.model.DeleteCertificateAuthorityRequest;

import com.amazonaws.AmazonClientException;
import com.amazonaws.services.acmpca.model.ResourceNotFoundException;
import com.amazonaws.services.acmpca.model.InvalidArnException;
import com.amazonaws.services.acmpca.model.InvalidStateException;
import com.amazonaws.services.acmpca.model.RequestFailedException;

public class DeleteCertificateAuthority {

DeleteCertificateAuthority Version latest 50

https://docs.amazonaws.cn/privateca/latest/APIReference/API_DeleteCertificateAuthority.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_CreateCertificateAuthority.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_ListCertificateAuthorities.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_UpdateCertificateAuthority.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_RestoreCertificateAuthority.html

Amazon Private Certificate Authority User Guide

 public static void main(String[] args) throws Exception{

 // Retrieve your credentials from the C:\Users\name\.aws\credentials file
 // in Windows or the .aws/credentials file in Linux.
 AWSCredentials credentials = null;
 try {
 credentials = new ProfileCredentialsProvider("default").getCredentials();
 } catch (Exception e) {
 throw new AmazonClientException("Cannot load your credentials from disk", e);
 }

 // Define the endpoint for your sample.
 String endpointRegion = "region"; // Substitute your region here, e.g. "us-
west-2"
 String endpointProtocol = "https://acm-pca." + endpointRegion +
 ".amazonaws.com/";
 EndpointConfiguration endpoint =
 new AwsClientBuilder.EndpointConfiguration(endpointProtocol,
 endpointRegion);

 // Create a client that you can use to make requests.
 AWSACMPCA client = AWSACMPCAClientBuilder.standard()
 .withEndpointConfiguration(endpoint)
 .withCredentials(new AWSStaticCredentialsProvider(credentials))
 .build();

 // Create a requrest object and set the ARN of the private CA to delete.
 DeleteCertificateAuthorityRequest req = new DeleteCertificateAuthorityRequest();

 // Set the certificate authority ARN.
 req.withCertificateAuthorityArn("arn:aws:acm-pca:us-
east-1:111122223333:certificate-authority/11223344-1234-1122-2233-112233445566");

 // Set the recovery period.
 req.withPermanentDeletionTimeInDays(12);

 // Delete the CA.
 try {
 client.deleteCertificateAuthority(req);
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (InvalidStateException ex) {

DeleteCertificateAuthority Version latest 51

Amazon Private Certificate Authority User Guide

 throw ex;
 } catch (RequestFailedException ex) {
 throw ex;
 }
 }
}

DeletePermission

The following Java sample shows how to use the DeletePermission operation.

The operation deletes permissions that a private CA delegated to an Amazon service
principal using the CreatePermissions operation. You can find a CA's ARN by calling the
ListCertificateAuthorities function. You can inspect the permissions that a CA granted by calling the
ListPermissions function.

package com.amazonaws.samples;

import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.client.builder.AwsClientBuilder;
import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration;
import com.amazonaws.AmazonClientException;
import com.amazonaws.auth.AWSStaticCredentialsProvider;

import com.amazonaws.services.acmpca.AWSACMPCA;
import com.amazonaws.services.acmpca.AWSACMPCAClientBuilder;

import com.amazonaws.services.acmpca.model.DeletePermissionRequest;
import com.amazonaws.services.acmpca.model.DeletePermissionResult;

import com.amazonaws.services.acmpca.model.InvalidArnException;
import com.amazonaws.services.acmpca.model.InvalidStateException;
import com.amazonaws.services.acmpca.model.RequestFailedException;
import com.amazonaws.services.acmpca.model.ResourceNotFoundException;

public class DeletePermission {

 public static void main(String[] args) throws Exception {

 // Retrieve your credentials from the C:\Users\name\.aws\credentials file
 // in Windows or the .aws/credentials file in Linux.
 AWSCredentials credentials = null;

DeletePermission Version latest 52

https://docs.amazonaws.cn/privateca/latest/APIReference/API_DeletePermission.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_CreatePermission.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_ListCertificateAuthorities.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_ListPermissions.html

Amazon Private Certificate Authority User Guide

 try {
 credentials = new ProfileCredentialsProvider("default").getCredentials();
 } catch (Exception e) {
 throw new AmazonClientException("Cannot load your credentials from file.", e);
 }

 // Define the endpoint for your sample.
 String endpointRegion = "region"; // Substitute your region here, e.g. "us-
west-2"
 String endpointProtocol = "https://acm-pca." + endpointRegion +
 ".amazonaws.com/";
 EndpointConfiguration endpoint =
 new AwsClientBuilder.EndpointConfiguration(endpointProtocol,
 endpointRegion);

 // Create a client that you can use to make requests.
 AWSACMPCA client = AWSACMPCAClientBuilder.standard()
 .withEndpointConfiguration(endpoint)
 .withCredentials(new AWSStaticCredentialsProvider(credentials))
 .build();

 // Create a request object.
 DeletePermissionRequest req =
 new DeletePermissionRequest();

 // Set the certificate authority ARN.
 req.setCertificateAuthorityArn("arn:aws:acm-pca:us-
east-1:111122223333:certificate-authority/11223344-1234-1122-2233-112233445566");

 // Set the AWS service principal.
 req.setPrincipal("acm.amazonaws.com");

 // Create a result object.
 DeletePermissionResult result = null;
 try {
 result = client.deletePermission(req);
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (InvalidStateException ex) {
 throw ex;
 } catch (RequestFailedException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;

DeletePermission Version latest 53

Amazon Private Certificate Authority User Guide

 }
 }
}

DeletePolicy

The following Java sample shows how to use the DeletePolicy operation.

The operation delete the resource-based policy attached to a private CA. A resource-based policy
is used to enable cross-account CA sharing. You can find the ARN of a private CA by calling the
ListCertificateAuthorities action.

Related API actions include PutPolicy and GetPolicy.

package com.amazonaws.samples;

import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.client.builder.AwsClientBuilder;
import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration;
import com.amazonaws.auth.AWSStaticCredentialsProvider;

import com.amazonaws.services.acmpca.AWSACMPCA;
import com.amazonaws.services.acmpca.AWSACMPCAClientBuilder;

import com.amazonaws.AmazonClientException;
import com.amazonaws.services.acmpca.model.DeletePolicyRequest;
import com.amazonaws.services.acmpca.model.DeletePolicyResult;
import com.amazonaws.services.acmpca.model.AWSACMPCAException;
import com.amazonaws.services.acmpca.model.ConcurrentModificationException;
import com.amazonaws.services.acmpca.model.InvalidArnException;
import com.amazonaws.services.acmpca.model.InvalidStateException;
import com.amazonaws.services.acmpca.model.LockoutPreventedException;
import com.amazonaws.services.acmpca.model.RequestFailedException;
import com.amazonaws.services.acmpca.model.ResourceNotFoundException;

public class DeletePolicy {

 public static void main(String[] args) throws Exception {

 // Retrieve your credentials from the C:\Users\name\.aws\credentials file
 // in Windows or the .aws/credentials file in Linux.
 AWSCredentials credentials = null;

DeletePolicy Version latest 54

https://docs.amazonaws.cn/privateca/latest/APIReference/API_DeletePolicy.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_ListCertificateAuthorities.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_PutPolicy.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_GetPolicy.html

Amazon Private Certificate Authority User Guide

 try {
 credentials = new ProfileCredentialsProvider("default").getCredentials();
 } catch (Exception e) {
 throw new AmazonClientException("Cannot load your credentials from file.",
 e);
 }

 // Define the endpoint for your sample.
 String endpointRegion = "us-west-2"; // Substitute your Region here, e.g. "us-
west-2"
 String endpointProtocol = "https://acm-pca." + endpointRegion +
 ".amazonaws.com/";
 EndpointConfiguration endpoint =
 new AwsClientBuilder.EndpointConfiguration(endpointProtocol,
 endpointRegion);

 // Create a client that you can use to make requests.
 AWSACMPCA client = AWSACMPCAClientBuilder.standard()
 .withEndpointConfiguration(endpoint)
 .withCredentials(new AWSStaticCredentialsProvider(credentials))
 .build();

 // Create the request object.
 DeletePolicyRequest req = new DeletePolicyRequest();

 // Set the resource ARN.
 req.withResourceArn("arn:aws:acm-pca:us-west-2:111122223333:certificate-
authority/11223344-44ee-aa22-bb33-4cd2d13f1f18");

 // Retrieve a list of your CAs.
 DeletePolicyResult result = null;
 try {
 result = client.deletePolicy(req);
 } catch (ConcurrentModificationException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (InvalidStateException ex) {
 throw ex;
 } catch (LockoutPreventedException ex) {
 throw ex;
 } catch (RequestFailedException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {

DeletePolicy Version latest 55

Amazon Private Certificate Authority User Guide

 throw ex;
 } catch (AWSACMPCAException ex) {
 throw ex;
 }
 }
}

DescribeCertificateAuthority

The following Java sample shows how to use the DescribeCertificateAuthority operation.

The operation lists information about your private certificate authority (CA). You must specify the
ARN (Amazon Resource Name) of the private CA. The output contains the status of your CA. This
can be any of the following:

• CREATING – Amazon Private CA is creating your private certificate authority.

• PENDING_CERTIFICATE – The certificate is pending. You must use your on-premises root or
subordinate CA to sign your private CA CSR and then import it into PCA.

• ACTIVE – Your private CA is active.

• DISABLED – Your private CA has been disabled.

• EXPIRED – Your private CA certificate has expired.

• FAILED – Your private CA cannot be created.

• DELETED – Your private CA is within the restoration period, after which it will be permanently
deleted.

package com.amazonaws.samples;

import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.client.builder.AwsClientBuilder;
import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration;
import com.amazonaws.auth.AWSStaticCredentialsProvider;

import com.amazonaws.services.acmpca.AWSACMPCA;
import com.amazonaws.services.acmpca.AWSACMPCAClientBuilder;

import com.amazonaws.services.acmpca.model.CertificateAuthority;
import com.amazonaws.services.acmpca.model.DescribeCertificateAuthorityRequest;
import com.amazonaws.services.acmpca.model.DescribeCertificateAuthorityResult;

DescribeCertificateAuthority Version latest 56

https://docs.amazonaws.cn/privateca/latest/APIReference/API_DescribeCertificateAuthority.html

Amazon Private Certificate Authority User Guide

import com.amazonaws.AmazonClientException;
import com.amazonaws.services.acmpca.model.ResourceNotFoundException;
import com.amazonaws.services.acmpca.model.InvalidArnException;

public class DescribeCertificateAuthority {

 public static void main(String[] args) throws Exception {

 // Retrieve your credentials from the C:\Users\name\.aws\credentials file
 // in Windows or the .aws/credentials file in Linux.
 AWSCredentials credentials = null;
 try {
 credentials = new ProfileCredentialsProvider("default").getCredentials();
 } catch (Exception e) {
 throw new AmazonClientException("Cannot load your credentials from disk", e);
 }

 // Define the endpoint for your sample.
 String endpointRegion = "region"; // Substitute your region here, e.g. "us-
west-2"
 String endpointProtocol = "https://acm-pca." + endpointRegion +
 ".amazonaws.com/";
 EndpointConfiguration endpoint =
 new AwsClientBuilder.EndpointConfiguration(endpointProtocol,
 endpointRegion);

 // Create a client that you can use to make requests.
 AWSACMPCA client = AWSACMPCAClientBuilder.standard()
 .withEndpointConfiguration(endpoint)
 .withCredentials(new AWSStaticCredentialsProvider(credentials))
 .build();

 // Create a request object
 DescribeCertificateAuthorityRequest req = new
 DescribeCertificateAuthorityRequest();

 // Set the certificate authority ARN.
 req.withCertificateAuthorityArn("arn:aws:acm-pca:us-
east-1:111122223333:certificate-authority/11223344-1234-1122-2233-112233445566");

 // Create a result object.
 DescribeCertificateAuthorityResult result = null;
 try {

DescribeCertificateAuthority Version latest 57

Amazon Private Certificate Authority User Guide

 result = client.describeCertificateAuthority(req);
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 }

 // Retrieve and display information about the CA.
 CertificateAuthority PCA = result.getCertificateAuthority();
 String strPCA = PCA.toString();
 System.out.println(strPCA);
 }
}

DescribeCertificateAuthorityAuditReport

The following Java sample shows how to use the DescribeCertificateAuthorityAuditReport
operation.

The operation lists information about a specific audit report that you created by calling the
CreateCertificateAuthorityAuditReport operation. Audit information is created every time the
certificate authority (CA) private key is used. The private key is used when you issue a certificate,
sign a CRL, or revoke a certificate.

package com.amazonaws.samples;

import java.util.Date;

import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.client.builder.AwsClientBuilder;
import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration;
import com.amazonaws.auth.AWSStaticCredentialsProvider;

import com.amazonaws.services.acmpca.AWSACMPCA;
import com.amazonaws.services.acmpca.AWSACMPCAClientBuilder;

import
 com.amazonaws.services.acmpca.model.DescribeCertificateAuthorityAuditReportRequest;
import
 com.amazonaws.services.acmpca.model.DescribeCertificateAuthorityAuditReportResult;

import com.amazonaws.AmazonClientException;

DescribeCertificateAuthorityAuditReport Version latest 58

https://docs.amazonaws.cn/privateca/latest/APIReference/API_DescribeCertificateAuthorityAuditReport.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_CreateCertificateAuthorityAuditReport.html

Amazon Private Certificate Authority User Guide

import com.amazonaws.services.acmpca.model.InvalidArgsException;
import com.amazonaws.services.acmpca.model.ResourceNotFoundException;
import com.amazonaws.services.acmpca.model.AWSACMPCAException;

import com.amazonaws.waiters.Waiter;
import com.amazonaws.waiters.WaiterParameters;
import com.amazonaws.waiters.WaiterTimedOutException;
import com.amazonaws.waiters.WaiterUnrecoverableException;

public class DescribeCertificateAuthorityAuditReport {

 public static void main(String[] args) throws Exception {

 // Retrieve your credentials from the C:\Users\name\.aws\credentials file
 // in Windows or the .aws/credentials file in Linux.
 AWSCredentials credentials = null;
 try {
 credentials = new ProfileCredentialsProvider("default").getCredentials();
 } catch (Exception e) {
 throw new AmazonClientException("Cannot load your credentials from file.", e);
 }

 // Define the endpoint for your sample.
 String endpointRegion = "region"; // Substitute your region here, e.g. "us-
west-2"
 String endpointProtocol = "https://acm-pca." + endpointRegion +
 ".amazonaws.com/";
 EndpointConfiguration endpoint =
 new AwsClientBuilder.EndpointConfiguration(endpointProtocol,
 endpointRegion);

 // Create a client that you can use to make requests.
 AWSACMPCA client = AWSACMPCAClientBuilder.standard()
 .withEndpointConfiguration(endpoint)
 .withCredentials(new AWSStaticCredentialsProvider(credentials))
 .build();

 // Create a request object.
 DescribeCertificateAuthorityAuditReportRequest req =
 new DescribeCertificateAuthorityAuditReportRequest();

 // Set the certificate authority ARN.
 req.withCertificateAuthorityArn("arn:aws:acm-pca:us-
east-1:111122223333:certificate-authority/11223344-1234-1122-2233-112233445566");

DescribeCertificateAuthorityAuditReport Version latest 59

Amazon Private Certificate Authority User Guide

 // Set the audit report ID.
 req.withAuditReportId("11111111-2222-3333-4444-555555555555");

 // Create waiter to wait on successful creation of the audit report file.
 Waiter<DescribeCertificateAuthorityAuditReportRequest> waiter =
 client.waiters().auditReportCreated();
 try {
 waiter.run(new WaiterParameters<>(req));
 } catch (WaiterUnrecoverableException e) {
 //Explicit short circuit when the recourse transitions into
 //an undesired state.
 } catch (WaiterTimedOutException e) {
 //Failed to transition into desired state even after polling.
 } catch (AWSACMPCAException e) {
 //Unexpected service exception.
 }

 // Create a result object.
 DescribeCertificateAuthorityAuditReportResult result = null;
 try {
 result = client.describeCertificateAuthorityAuditReport(req);
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (InvalidArgsException ex) {
 throw ex;
 }

 String status = result.getAuditReportStatus();
 String S3Bucket = result.getS3BucketName();
 String S3Key = result.getS3Key();
 Date createdAt = result.getCreatedAt();

 System.out.println(status);
 System.out.println(S3Bucket);
 System.out.println(S3Key);
 System.out.println(createdAt);
 }
}

Your output should be similar to the following:

SUCCESS

DescribeCertificateAuthorityAuditReport Version latest 60

Amazon Private Certificate Authority User Guide

your-audit-report-bucket-name
audit-report/a4119411-8153-498a-a607-2cb77b858043/25211c3d-f2fe-479f-b437-
fe2b3612bc45.json
Tue Jan 16 13:07:58 PST 2018

GetCertificate

The following Java sample shows how to use the GetCertificate operation.

The operation retrieves a certificate from your private CA. The ARN of the certificate is returned
when you call the IssueCertificate operation. You must specify both the ARN of your private CA and
the ARN of the issued certificate when calling the GetCertificate operation. You can retrieve
the certificate if it is in the ISSUED state. You can call the CreateCertificateAuthorityAuditReport
operation to create a report that contains information about all of the certificates issued and
revoked by your private CA.

package com.amazonaws.samples;

import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.client.builder.AwsClientBuilder;
import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration;
import com.amazonaws.auth.AWSStaticCredentialsProvider;

import com.amazonaws.services.acmpca.AWSACMPCA;
import com.amazonaws.services.acmpca.AWSACMPCAClientBuilder;

import com.amazonaws.services.acmpca.model.GetCertificateRequest;
import com.amazonaws.services.acmpca.model.GetCertificateResult;

import com.amazonaws.AmazonClientException;
import com.amazonaws.services.acmpca.model.RequestInProgressException;
import com.amazonaws.services.acmpca.model.RequestFailedException ;
import com.amazonaws.services.acmpca.model.ResourceNotFoundException;
import com.amazonaws.services.acmpca.model.InvalidArnException;
import com.amazonaws.services.acmpca.model.InvalidStateException;

import com.amazonaws.waiters.Waiter;
import com.amazonaws.waiters.WaiterParameters;
import com.amazonaws.waiters.WaiterTimedOutException;
import com.amazonaws.waiters.WaiterUnrecoverableException;

GetCertificate Version latest 61

https://docs.amazonaws.cn/privateca/latest/APIReference/API_GetCertificate.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_IssueCertificate.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_CreateCertificateAuthorityAuditReport.html

Amazon Private Certificate Authority User Guide

import com.amazonaws.services.acmpca.model.AWSACMPCAException;

public class GetCertificate {

 public static void main(String[] args) throws Exception{

 // Retrieve your credentials from the C:\Users\name\.aws\credentials file
 // in Windows or the .aws/credentials file in Linux.
 AWSCredentials credentials = null;
 try {
 credentials = new ProfileCredentialsProvider("default").getCredentials();
 } catch (Exception e) {
 throw new AmazonClientException("Cannot load your credentials from disk", e);
 }

 // Define the endpoint for your sample.
 String endpointRegion = "region"; // Substitute your region here, e.g. "us-
west-2"
 String endpointProtocol = "https://acm-pca." + endpointRegion +
 ".amazonaws.com/";
 EndpointConfiguration endpoint =
 new AwsClientBuilder.EndpointConfiguration(endpointProtocol,
 endpointRegion);

 // Create a client.
 AWSACMPCA client = AWSACMPCAClientBuilder.standard()
 .withEndpointConfiguration(endpoint)
 .withCredentials(new AWSStaticCredentialsProvider(credentials))
 .build();

 // Create a request object.
 GetCertificateRequest req = new GetCertificateRequest();

 // Set the certificate ARN.
 req.withCertificateArn("arn:aws:acm-pca:region:account:certificate-
authority/CA_ID/certificate/certificate_ID");

 // Set the certificate authority ARN.
 req.withCertificateAuthorityArn("arn:aws:acm-pca:us-
east-1:111122223333:certificate-authority/11223344-1234-1122-2233-112233445566");

 // Create waiter to wait on successful creation of the certificate file.
 Waiter<GetCertificateRequest> waiter = client.waiters().certificateIssued();
 try {

GetCertificate Version latest 62

Amazon Private Certificate Authority User Guide

 waiter.run(new WaiterParameters<>(req));
 } catch (WaiterUnrecoverableException e) {
 //Explicit short circuit when the recourse transitions into
 //an undesired state.
 } catch (WaiterTimedOutException e) {
 //Failed to transition into desired state even after polling.
 } catch (AWSACMPCAException e) {
 //Unexpected service exception.
 }

 // Retrieve the certificate and certificate chain.
 GetCertificateResult result = null;
 try {
 result = client.getCertificate(req);
 } catch (RequestInProgressException ex) {
 throw ex;
 } catch (RequestFailedException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (InvalidStateException ex) {
 throw ex;
 }

 // Get the certificate and certificate chain and display the result.
 String strCert = result.getCertificate();
 System.out.println(strCert);
 }
}

Your output should be a certificate chain similar to the following for the certificate authority (CA)
and certificate that you specified.

-----BEGIN CERTIFICATE----- base64-encoded certificate -----END CERTIFICATE-----

-----BEGIN CERTIFICATE----- base64-encoded certificate -----END CERTIFICATE-----

-----BEGIN CERTIFICATE----- base64-encoded certificate -----END CERTIFICATE-----

GetCertificate Version latest 63

Amazon Private Certificate Authority User Guide

GetCertificateAuthorityCertificate

The following Java sample shows how to use the GetCertificateAuthorityCertificate operation.

This operation retrieves the certificate and certificate chain for your private certificate authority
(CA). Both the certificate and the chain are base64-encoded strings in PEM format. The chain does
not include the CA certificate. Each certificate in the chain signs the one before it.

package com.amazonaws.samples;

import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.client.builder.AwsClientBuilder;
import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration;
import com.amazonaws.auth.AWSStaticCredentialsProvider;

import com.amazonaws.services.acmpca.AWSACMPCA;
import com.amazonaws.services.acmpca.AWSACMPCAClientBuilder;

import com.amazonaws.services.acmpca.model.GetCertificateAuthorityCertificateRequest;
import com.amazonaws.services.acmpca.model.GetCertificateAuthorityCertificateResult;

import com.amazonaws.AmazonClientException;
import com.amazonaws.services.acmpca.model.ResourceNotFoundException;
import com.amazonaws.services.acmpca.model.InvalidStateException;
import com.amazonaws.services.acmpca.model.InvalidArnException;

public class GetCertificateAuthorityCertificate {

 public static void main(String[] args) throws Exception {

 // Retrieve your credentials from the C:\Users\name\.aws\credentials file
 // in Windows or the .aws/credentials file in Linux.
 AWSCredentials credentials = null;
 try {
 credentials = new ProfileCredentialsProvider("default").getCredentials();
 } catch (Exception e) {
 throw new AmazonClientException("Cannot load your credentials from disk", e);
 }

 // Define the endpoint for your sample.
 String endpointRegion = "region"; // Substitute your region here, e.g. "us-
west-2"

GetCertificateAuthorityCertificate Version latest 64

https://docs.amazonaws.cn/privateca/latest/APIReference/API_GetCertificateAuthorityCertificate.html

Amazon Private Certificate Authority User Guide

 String endpointProtocol = "https://acm-pca." + endpointRegion +
 ".amazonaws.com/";
 EndpointConfiguration endpoint =
 new AwsClientBuilder.EndpointConfiguration(endpointProtocol,
 endpointRegion);

 // Create a client that you can use to make requests.
 AWSACMPCA client = AWSACMPCAClientBuilder.standard()
 .withEndpointConfiguration(endpoint)
 .withCredentials(new AWSStaticCredentialsProvider(credentials))
 .build();

 // Create a request object
 GetCertificateAuthorityCertificateRequest req =
 new GetCertificateAuthorityCertificateRequest();

 // Set the certificate authority ARN,
 req.withCertificateAuthorityArn("arn:aws:acm-pca:us-
east-1:111122223333:certificate-authority/11223344-1234-1122-2233-112233445566");

 // Create a result object.
 GetCertificateAuthorityCertificateResult result = null;
 try {
 result = client.getCertificateAuthorityCertificate(req);
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (InvalidStateException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 }

 // Retrieve and display the certificate information.
 String strPcaCert = result.getCertificate();
 System.out.println(strPcaCert);
 String strPCACChain = result.getCertificateChain();
 System.out.println(strPCACChain);
 }
}

Your output should be a certificate and chain similar to the following for the certificate authority
(CA) that you specified.

GetCertificateAuthorityCertificate Version latest 65

Amazon Private Certificate Authority User Guide

-----BEGIN CERTIFICATE----- base64-encoded certificate -----END CERTIFICATE-----

-----BEGIN CERTIFICATE----- base64-encoded certificate -----END CERTIFICATE-----

GetCertificateAuthorityCsr

The following Java sample shows how to use the GetCertificateAuthorityCsr operation.

This operation retrieves the certificate signing request (CSR) for your private certificate authority
(CA). The CSR is created when you call the CreateCertificateAuthority operation. Take the CSR to
your on-premises X.509 infrastructure and sign it using your root or a subordinate CA. Then import
the signed certificate back into ACM PCA by calling the ImportCertificateAuthorityCertificate
operation. The CSR is returned as a base64-encoded string in PEM format.

package com.amazonaws.samples;

import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.client.builder.AwsClientBuilder;
import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration;
import com.amazonaws.auth.AWSStaticCredentialsProvider;

import com.amazonaws.services.acmpca.AWSACMPCA;
import com.amazonaws.services.acmpca.AWSACMPCAClientBuilder;

import com.amazonaws.services.acmpca.model.GetCertificateAuthorityCsrRequest;
import com.amazonaws.services.acmpca.model.GetCertificateAuthorityCsrResult;

import com.amazonaws.AmazonClientException;
import com.amazonaws.services.acmpca.model.ResourceNotFoundException;
import com.amazonaws.services.acmpca.model.InvalidArnException;
import com.amazonaws.services.acmpca.model.RequestInProgressException;
import com.amazonaws.services.acmpca.model.RequestFailedException;
import com.amazonaws.services.acmpca.model.AWSACMPCAException;

import com.amazonaws.waiters.Waiter;
import com.amazonaws.waiters.WaiterParameters;
import com.amazonaws.waiters.WaiterTimedOutException;
import com.amazonaws.waiters.WaiterUnrecoverableException;

public class GetCertificateAuthorityCsr {

GetCertificateAuthorityCsr Version latest 66

https://docs.amazonaws.cn/privateca/latest/APIReference/API_GetCertificateAuthorityCsr.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_CreateCertificateAuthority.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_ImportCertificateAuthorityCertificate.html

Amazon Private Certificate Authority User Guide

 public static void main(String[] args) throws Exception {

 // Retrieve your credentials from the C:\Users\name\.aws\credentials file
 // in Windows or the .aws/credentials file in Linux.
 AWSCredentials credentials = null;
 try {
 credentials = new ProfileCredentialsProvider("default").getCredentials();
 } catch (Exception e) {
 throw new AmazonClientException("Cannot load your credentials from disk", e);
 }

 // Define the endpoint for your sample.
 String endpointRegion = "region"; // Substitute your region here, e.g. "us-
west-2"
 String endpointProtocol = "https://acm-pca." + endpointRegion +
 ".amazonaws.com/";
 EndpointConfiguration endpoint =
 new AwsClientBuilder.EndpointConfiguration(endpointProtocol,
 endpointRegion);

 // Create a client that you can use to make requests.
 AWSACMPCA client = AWSACMPCAClientBuilder.standard()
 .withEndpointConfiguration(endpoint)
 .withCredentials(new AWSStaticCredentialsProvider(credentials))
 .build();

 // Create the request object and set the CA ARN.
 GetCertificateAuthorityCsrRequest req = new GetCertificateAuthorityCsrRequest();
 req.withCertificateAuthorityArn("arn:aws:acm-pca:us-
east-1:111122223333:certificate-authority/11223344-1234-1122-2233-112233445566");

 // Create waiter to wait on successful creation of the CSR file.
 Waiter<GetCertificateAuthorityCsrRequest> waiter =
 client.waiters().certificateAuthorityCSRCreated();
 try {
 waiter.run(new WaiterParameters<>(req));
 } catch (WaiterUnrecoverableException e) {
 //Explicit short circuit when the recourse transitions into
 //an undesired state.
 } catch (WaiterTimedOutException e) {
 //Failed to transition into desired state even after polling.
 } catch (AWSACMPCAException e) {
 //Unexpected service exception.
 }

GetCertificateAuthorityCsr Version latest 67

Amazon Private Certificate Authority User Guide

 // Retrieve the CSR.
 GetCertificateAuthorityCsrResult result = null;
 try {
 result = client.getCertificateAuthorityCsr(req);
 } catch (RequestInProgressException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (RequestFailedException ex) {
 throw ex;
 }

 // Retrieve and display the CSR;
 String Csr = result.getCsr();
 System.out.println(Csr);
 }
}

Your output should be similar to the following for the certificate authority (CA) that you specify.
The certificate signing request (CSR) is base64-encoded in PEM format. Save it to a local file, take it
to your on-premises X.509 infrastructure, and sign it by using your root or a subordinate CA.

-----BEGIN CERTIFICATE REQUEST----- base64-encoded request -----END CERTIFICATE
 REQUEST-----

GetPolicy

The following Java sample shows how to use the GetPolicy operation.

The operation retrieves the resource-based policy attached to a private CA. A resource-based policy
is used to enable cross-account CA sharing. You can find the ARN of a private CA by calling the
ListCertificateAuthorities action.

Related API actions include PutPolicy and DeletePolicy.

package com.amazonaws.samples;

import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;

GetPolicy Version latest 68

https://docs.amazonaws.cn/privateca/latest/APIReference/API_GetPolicy.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_ListCertificateAuthorities.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_PutPolicy.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_DeletePolicy.html

Amazon Private Certificate Authority User Guide

import com.amazonaws.client.builder.AwsClientBuilder;
import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration;
import com.amazonaws.auth.AWSStaticCredentialsProvider;

import com.amazonaws.services.acmpca.AWSACMPCA;
import com.amazonaws.services.acmpca.AWSACMPCAClientBuilder;

import com.amazonaws.AmazonClientException;
import com.amazonaws.services.acmpca.model.GetPolicyRequest;
import com.amazonaws.services.acmpca.model.GetPolicyResult;
import com.amazonaws.services.acmpca.model.AWSACMPCAException;
import com.amazonaws.services.acmpca.model.InvalidArnException;
import com.amazonaws.services.acmpca.model.InvalidStateException;
import com.amazonaws.services.acmpca.model.RequestFailedException;
import com.amazonaws.services.acmpca.model.ResourceNotFoundException;

public class GetPolicy {

 public static void main(String[] args) throws Exception {

 // Retrieve your credentials from the C:\Users\name\.aws\credentials file
 // in Windows or the .aws/credentials file in Linux.
 AWSCredentials credentials = null;
 try {
 credentials = new ProfileCredentialsProvider("default").getCredentials();
 } catch (Exception e) {
 throw new AmazonClientException("Cannot load your credentials from file.",
 e);
 }

 // Define the endpoint for your sample.
 String endpointRegion = "region"; // Substitute your region here, e.g. "us-
west-2"
 String endpointProtocol = "https://acm-pca." + endpointRegion +
 ".amazonaws.com/";
 EndpointConfiguration endpoint =
 new AwsClientBuilder.EndpointConfiguration(endpointProtocol,
 endpointRegion);

 // Create a client that you can use to make requests.
 AWSACMPCA client = AWSACMPCAClientBuilder.standard()
 .withEndpointConfiguration(endpoint)
 .withCredentials(new AWSStaticCredentialsProvider(credentials))
 .build();

GetPolicy Version latest 69

Amazon Private Certificate Authority User Guide

 // Create the request object.
 GetPolicyRequest req = new GetPolicyRequest();

 // Set the resource ARN.
 req.withResourceArn("arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566");

 // Retrieve a list of your CAs.
 GetPolicyResult result= null;
 try {
 result = client.getPolicy(req);
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (InvalidStateException ex) {
 throw ex;
 } catch (RequestFailedException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (AWSACMPCAException ex) {
 throw ex;
 }

 // Display the policy.
 System.out.println(result.getPolicy());
 }
}

ImportCertificateAuthorityCertificate

The following Java sample shows how to use the ImportCertificateAuthorityCertificate operation.

This operation imports your signed private CA certificate into Amazon Private CA. Before
you can call this operation, you must create the private certificate authority by calling the
CreateCertificateAuthority operation. You must then generate a certificate signing request (CSR)
by calling the GetCertificateAuthorityCsr operation. Take the CSR to your on-premises CA and use
your root certificate or a subordinate certificate to sign it. Create a certificate chain and copy the
signed certificate and the certificate chain to your working directory.

package com.amazonaws.samples;

ImportCertificateAuthorityCertificate Version latest 70

https://docs.amazonaws.cn/privateca/latest/APIReference/API_ImportCertificateAuthorityCertificate.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_CreateCertificateAuthority.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_GetCertificateAuthorityCsr.html

Amazon Private Certificate Authority User Guide

import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.client.builder.AwsClientBuilder;
import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration;
import com.amazonaws.auth.AWSStaticCredentialsProvider;

import com.amazonaws.services.acmpca.AWSACMPCA;
import com.amazonaws.services.acmpca.AWSACMPCAClientBuilder;

import
 com.amazonaws.services.acmpca.model.ImportCertificateAuthorityCertificateRequest;

import com.amazonaws.AmazonClientException;
import com.amazonaws.services.acmpca.model.RequestInProgressException;
import com.amazonaws.services.acmpca.model.MalformedCertificateException;
import com.amazonaws.services.acmpca.model.ResourceNotFoundException;
import com.amazonaws.services.acmpca.model.ConcurrentModificationException;
import com.amazonaws.services.acmpca.model.InvalidArnException;
import com.amazonaws.services.acmpca.model.CertificateMismatchException;
import com.amazonaws.services.acmpca.model.RequestFailedException;

import java.nio.ByteBuffer;
import java.nio.charset.StandardCharsets;
import java.util.Objects;

public class ImportCertificateAuthorityCertificate {

 public static ByteBuffer stringToByteBuffer(final String string) {
 if (Objects.isNull(string)) {
 return null;
 }
 byte[] bytes = string.getBytes(StandardCharsets.UTF_8);
 return ByteBuffer.wrap(bytes);
 }

 public static void main(String[] args) throws Exception {

 // Retrieve your credentials from the C:\Users\name\.aws\credentials file
 // in Windows or the .aws/credentials file in Linux.
 AWSCredentials credentials = null;
 try {
 credentials = new ProfileCredentialsProvider("default").getCredentials();
 } catch (Exception e) {
 throw new AmazonClientException("Cannot load your credentials from disk", e);

ImportCertificateAuthorityCertificate Version latest 71

Amazon Private Certificate Authority User Guide

 }

 // Define the endpoint for your sample.
 String endpointRegion = "region"; // Substitute your region here, e.g. "us-
west-2"
 String endpointProtocol = "https://acm-pca." + endpointRegion +
 ".amazonaws.com/";
 EndpointConfiguration endpoint =
 new AwsClientBuilder.EndpointConfiguration(endpointProtocol, endpointRegion);

 // Create a client that you can use to make requests.
 AWSACMPCA client = AWSACMPCAClientBuilder.standard()
 .withEndpointConfiguration(endpoint)
 .withCredentials(new AWSStaticCredentialsProvider(credentials))
 .build();

 // Create the request object and set the signed certificate, chain and CA ARN.
 ImportCertificateAuthorityCertificateRequest req =
 new ImportCertificateAuthorityCertificateRequest();

 // Set the signed certificate.
 String strCertificate =
 "-----BEGIN CERTIFICATE-----\n" +
 "base64-encoded certificate\n" +
 "-----END CERTIFICATE-----\n";
 ByteBuffer certByteBuffer = stringToByteBuffer(strCertificate);
 req.setCertificate(certByteBuffer);

 // Set the certificate chain.
 String strCertificateChain =
 "-----BEGIN CERTIFICATE-----\n" +
 "base64-encoded certificate\n" +
 "-----END CERTIFICATE-----\n";
 ByteBuffer chainByteBuffer = stringToByteBuffer(strCertificateChain);
 req.setCertificateChain(chainByteBuffer);

 // Set the certificate authority ARN.
 req.withCertificateAuthorityArn("arn:aws:acm-pca:us-
east-1:111122223333:certificate-authority/11223344-1234-1122-2233-112233445566");

 // Import the certificate.
 try {
 client.importCertificateAuthorityCertificate(req);
 } catch (CertificateMismatchException ex) {

ImportCertificateAuthorityCertificate Version latest 72

Amazon Private Certificate Authority User Guide

 throw ex;
 } catch (MalformedCertificateException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (RequestInProgressException ex) {
 throw ex;
 } catch (ConcurrentModificationException ex) {
 throw ex;
 } catch (RequestFailedException ex) {
 throw ex;
 }
 }
}

IssueCertificate

The following Java sample shows how to use the IssueCertificate operation.

This operation uses your private certificate authority (CA) to issue an end-entity certificate. This
operation returns the Amazon Resource Name (ARN) of the certificate. You can retrieve the
certificate by calling the GetCertificate and specifying the ARN.

Note

The IssueCertificate operation requires you to specify a certificate template. This example
uses the EndEntityCertificate/V1 template. For information about all of the available
templates, see Use Amazon Private CA certificate templates.

package com.amazonaws.samples;

import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.client.builder.AwsClientBuilder;
import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration;
import com.amazonaws.auth.AWSStaticCredentialsProvider;

import java.nio.ByteBuffer;
import java.nio.charset.StandardCharsets;

IssueCertificate Version latest 73

https://docs.amazonaws.cn/privateca/latest/APIReference/API_IssueCertificate.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_GetCertificate.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_IssueCertificate.html

Amazon Private Certificate Authority User Guide

import java.util.Objects;

import com.amazonaws.services.acmpca.AWSACMPCA;
import com.amazonaws.services.acmpca.AWSACMPCAClientBuilder;

import com.amazonaws.services.acmpca.model.IssueCertificateRequest;
import com.amazonaws.services.acmpca.model.IssueCertificateResult;
import com.amazonaws.services.acmpca.model.SigningAlgorithm;
import com.amazonaws.services.acmpca.model.Validity;

import com.amazonaws.AmazonClientException;
import com.amazonaws.services.acmpca.model.LimitExceededException;
import com.amazonaws.services.acmpca.model.ResourceNotFoundException;
import com.amazonaws.services.acmpca.model.InvalidStateException;
import com.amazonaws.services.acmpca.model.InvalidArnException;
import com.amazonaws.services.acmpca.model.InvalidArgsException;
import com.amazonaws.services.acmpca.model.MalformedCSRException;

public class IssueCertificate {
 public static ByteBuffer stringToByteBuffer(final String string) {
 if (Objects.isNull(string)) {
 return null;
 }
 byte[] bytes = string.getBytes(StandardCharsets.UTF_8);
 return ByteBuffer.wrap(bytes);
 }

 public static void main(String[] args) throws Exception {

 // Retrieve your credentials from the C:\Users\name\.aws\credentials file
 // in Windows or the .aws/credentials file in Linux.
 AWSCredentials credentials = null;
 try {
 credentials = new ProfileCredentialsProvider("default").getCredentials();
 } catch (Exception e) {
 throw new AmazonClientException("Cannot load your credentials from disk", e);
 }

 // Define the endpoint for your sample.
 String endpointRegion = "region"; // Substitute your region here, e.g. "us-
west-2"
 String endpointProtocol = "https://acm-pca." + endpointRegion +
 ".amazonaws.com/";
 EndpointConfiguration endpoint =

IssueCertificate Version latest 74

Amazon Private Certificate Authority User Guide

 new AwsClientBuilder.EndpointConfiguration(endpointProtocol, endpointRegion);

 // Create a client that you can use to make requests.
 AWSACMPCA client = AWSACMPCAClientBuilder.standard()
 .withEndpointConfiguration(endpoint)
 .withCredentials(new AWSStaticCredentialsProvider(credentials))
 .build();

 // Create a certificate request:
 IssueCertificateRequest req = new IssueCertificateRequest();

 // Set the CA ARN.
 req.withCertificateAuthorityArn("arn:aws:acm-pca:us-
east-1:111122223333:certificate-authority/11223344-1234-1122-2233-112233445566");

 // Specify the certificate signing request (CSR) for the certificate to be signed
 and issued.
 String strCSR =
 "-----BEGIN CERTIFICATE REQUEST-----\n" +
 "base64-encoded certificate\n" +
 "-----END CERTIFICATE REQUEST-----\n";
 ByteBuffer csrByteBuffer = stringToByteBuffer(strCSR);
 req.setCsr(csrByteBuffer);

 // Specify the template for the issued certificate.
 req.withTemplateArn("arn:aws:acm-pca:::template/EndEntityCertificate/V1");

 // Set the signing algorithm.
 req.withSigningAlgorithm(SigningAlgorithm.SHA256WITHRSA);

 // Set the validity period for the certificate to be issued.
 Validity validity = new Validity();
 validity.withValue(<<3650L>>);
 validity.withType("DAYS");
 req.withValidity(validity);

 // Set the idempotency token.
 req.setIdempotencyToken("1234");

 // Issue the certificate.
 IssueCertificateResult result = null;
 try {
 result = client.issueCertificate(req);
 } catch (LimitExceededException ex) {

IssueCertificate Version latest 75

Amazon Private Certificate Authority User Guide

 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (InvalidStateException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (InvalidArgsException ex) {
 throw ex;
 } catch (MalformedCSRException ex) {
 throw ex;
 }

 // Retrieve and display the certificate ARN.
 String arn = result.getCertificateArn();
 System.out.println(arn);
 }
}

Your output should be similar to the following:

arn:aws:acm-pca:region:account:certificate-authority/CA_ID/certificate/certificate_ID

ListCertificateAuthorities

The following Java sample shows how to use the ListCertificateAuthorities operation.

This operation lists the private certificate authorities (CAs) that you created using the
CreateCertificateAuthority operation.

package com.amazonaws.samples;

import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.client.builder.AwsClientBuilder;
import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration;
import com.amazonaws.auth.AWSStaticCredentialsProvider;

import com.amazonaws.services.acmpca.AWSACMPCA;
import com.amazonaws.services.acmpca.AWSACMPCAClientBuilder;

import com.amazonaws.AmazonClientException;
import com.amazonaws.services.acmpca.model.ListCertificateAuthoritiesRequest;

ListCertificateAuthorities Version latest 76

https://docs.amazonaws.cn/privateca/latest/APIReference/API_ListCertificateAuthorities.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_CreateCertificateAuthority.html

Amazon Private Certificate Authority User Guide

import com.amazonaws.services.acmpca.model.ListCertificateAuthoritiesResult;
import com.amazonaws.services.acmpca.model.InvalidNextTokenException;

public class ListCertificateAuthorities {

 public static void main(String[] args) throws Exception {

 // Retrieve your credentials from the C:\Users\name\.aws\credentials file
 // in Windows or the .aws/credentials file in Linux.
 AWSCredentials credentials = null;
 try {
 credentials = new ProfileCredentialsProvider("default").getCredentials();
 } catch (Exception e) {
 throw new AmazonClientException("Cannot load your credentials from file.",
 e);
 }

 // Define the endpoint for your sample.
 String endpointRegion = "region"; // Substitute your region here, e.g. "us-
west-2"
 String endpointProtocol = "https://acm-pca." + endpointRegion +
 ".amazonaws.com/";
 EndpointConfiguration endpoint =
 new AwsClientBuilder.EndpointConfiguration(endpointProtocol, endpointRegion);

 // Create a client that you can use to make requests.
 AWSACMPCA client = AWSACMPCAClientBuilder.standard()
 .withEndpointConfiguration(endpoint)
 .withCredentials(new AWSStaticCredentialsProvider(credentials))
 .build();

 // Create the request object.
 ListCertificateAuthoritiesRequest req = new ListCertificateAuthoritiesRequest();
 req.withMaxResults(10);

 // Retrieve a list of your CAs.
 ListCertificateAuthoritiesResult result= null;
 try {
 result = client.listCertificateAuthorities(req);
 } catch (InvalidNextTokenException ex) {
 throw ex;
 }

 // Display the CA list.

ListCertificateAuthorities Version latest 77

Amazon Private Certificate Authority User Guide

 System.out.println(result.getCertificateAuthorities());
 }
}

If you have any certificate authorities to list, your output should be similar to the following:

[{
 Arn: arn: aws: acm-pca: region: account: certificate-
authority/12345678-1234-1234-1234-123456789012,
 CreatedAt: TueNov0712: 05: 39PST2017,
 LastStateChangeAt: WedJan1012: 35: 39PST2018,
 Type: SUBORDINATE,
 Serial: 4109,
 Status: DISABLED,
 NotBefore: TueNov0712: 19: 15PST2017,
 NotAfter: FriNov0513: 19: 15PDT2027,
 CertificateAuthorityConfiguration: {
 KeyType: RSA2048,
 SigningAlgorithm: SHA256WITHRSA,
 Subject: {
 Organization: ExampleCorp,
 OrganizationalUnit: HR,
 State: Washington,
 CommonName: www.example.com,
 Locality: Seattle,

 }
 },
 RevocationConfiguration: {
 CrlConfiguration: {
 Enabled: true,
 ExpirationInDays: 3650,
 CustomCname: your-custom-name,
 S3BucketName: your-bucket-name
 }
 }
},
{
 Arn: arn: aws: acm-pca: region: account>: certificate-
authority/12345678-1234-1234-1234-123456789012,
 CreatedAt: WedSep1312: 54: 52PDT2017,
 LastStateChangeAt: WedSep1312: 54: 52PDT2017,
 Type: SUBORDINATE,

ListCertificateAuthorities Version latest 78

Amazon Private Certificate Authority User Guide

 Serial: 4100,
 Status: ACTIVE,
 NotBefore: WedSep1314: 11: 19PDT2017,
 NotAfter: SatSep1114: 11: 19PDT2027,
 CertificateAuthorityConfiguration: {
 KeyType: RSA2048,
 SigningAlgorithm: SHA256WITHRSA,
 Subject: {
 Country: US,
 Organization: ExampleCompany,
 OrganizationalUnit: Sales,
 State: Washington,
 CommonName: www.example.com,
 Locality: Seattle,

 }
 },
 RevocationConfiguration: {
 CrlConfiguration: {
 Enabled: false,
 ExpirationInDays: 5,
 CustomCname: your-custom-name,
 S3BucketName: your-bucket-name
 }
 }
},
{
 Arn: arn: aws: acm-pca: region: account>: certificate-
authority/12345678-1234-1234-1234-123456789012,
 CreatedAt: FriJan1213: 57: 11PST2018,
 LastStateChangeAt: FriJan1213: 57: 11PST2018,
 Type: SUBORDINATE,
 Status: PENDING_CERTIFICATE,
 CertificateAuthorityConfiguration: {
 KeyType: RSA2048,
 SigningAlgorithm: SHA256WITHRSA,
 Subject: {
 Country: US,
 Organization: Examples-R-Us Ltd.,
 OrganizationalUnit: corporate,
 State: WA,
 CommonName: www.examplesrus.com,
 Locality: Seattle,

ListCertificateAuthorities Version latest 79

Amazon Private Certificate Authority User Guide

 }
 },
 RevocationConfiguration: {
 CrlConfiguration: {
 Enabled: true,
 ExpirationInDays: 365,
 CustomCname: your-custom-name,
 S3BucketName: your-bucket-name
 }
 }
},
{
 Arn: arn: aws: acm-pca: region: account>: certificate-
authority/12345678-1234-1234-1234-123456789012,
 CreatedAt: FriJan0511: 14: 21PST2018,
 LastStateChangeAt: FriJan0511: 14: 21PST2018,
 Type: SUBORDINATE,
 Serial: 4116,
 Status: ACTIVE,
 NotBefore: FriJan0512: 12: 56PST2018,
 NotAfter: MonJan0312: 12: 56PST2028,
 CertificateAuthorityConfiguration: {
 KeyType: RSA2048,
 SigningAlgorithm: SHA256WITHRSA,
 Subject: {
 Country: US,
 Organization: ExamplesLLC,
 OrganizationalUnit: CorporateOffice,
 State: WA,
 CommonName: www.example.com,
 Locality: Seattle,

 }
 },
 RevocationConfiguration: {
 CrlConfiguration: {
 Enabled: true,
 ExpirationInDays: 3650,
 CustomCname: your-custom-name,
 S3BucketName: your-bucket-name
 }
 }
}]

ListCertificateAuthorities Version latest 80

Amazon Private Certificate Authority User Guide

ListPermissions

The following Java sample shows how to use the ListPermissions operation.

This operation lists the permissions, if any, that your private CA has assigned. Permissions,
including IssueCertificate, GetCertificate, and ListPermissions, can be assigned
to an Amazon service principal with the CreatePermission operation, and revoked with the
DeletePermissions operation.

package com.amazonaws.samples;

import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.client.builder.AwsClientBuilder;
import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration;
import com.amazonaws.auth.AWSStaticCredentialsProvider;

import com.amazonaws.services.acmpca.AWSACMPCA;
import com.amazonaws.services.acmpca.AWSACMPCAClientBuilder;

import com.amazonaws.services.acmpca.model.ListPermissionsRequest;
import com.amazonaws.services.acmpca.model.ListPermissionsResult;

import com.amazonaws.AmazonClientException;
import com.amazonaws.services.acmpca.model.InvalidArnException;
import com.amazonaws.services.acmpca.model.InvalidNextTokenException;
import com.amazonaws.services.acmpca.model.InvalidStateException;
import com.amazonaws.services.acmpca.model.ResourceNotFoundException;
import com.amazonaws.services.acmpca.model.RequestFailedException;

public class ListPermissions {

 public static void main(String[] args) throws Exception {

 // Retrieve your credentials from the C:\Users\name\.aws\credentials file
 // in Windows or the .aws/credentials file in Linux.
 AWSCredentials credentials = null;
 try {
 credentials = new ProfileCredentialsProvider("default").getCredentials();
 } catch (Exception e) {
 throw new AmazonClientException("Cannot load your credentials from disk", e);
 }

ListPermissions Version latest 81

https://docs.amazonaws.cn/privateca/latest/APIReference/API_ListPermissions.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_CreatePermission.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_DeletePermission.html

Amazon Private Certificate Authority User Guide

 // Define the endpoint for your sample.
 String endpointRegion = "region"; // Substitute your region here, e.g. "us-
west-2"
 String endpointProtocol = "https://acm-pca." + endpointRegion +
 ".amazonaws.com/";
 EndpointConfiguration endpoint =
 new AwsClientBuilder.EndpointConfiguration(endpointProtocol, endpointRegion);

 // Create a client that you can use to make requests.
 AWSACMPCA client = AWSACMPCAClientBuilder.standard()
 .withEndpointConfiguration(endpoint)
 .withCredentials(new AWSStaticCredentialsProvider(credentials))
 .build();

 // Create a request object and set the CA ARN.
 ListPermissionsRequest req = new ListPermissionsRequest();
 req.withCertificateAuthorityArn("arn:aws:acm-pca:us-
east-1:111122223333:certificate-authority/11223344-1234-1122-2233-112233445566");

 // List the tags.
 ListPermissionsResult result = null;
 try {
 result = client.listPermissions(req);
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (InvalidStateException ex) {
 throw ex;
 } catch(RequestFailedException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 }

 // Retrieve and display the permissions.
 System.out.println(result);
 }
}

If the designated private CA has assigned permissions to a service principal, your output should be
similar to the following:

[{

ListPermissions Version latest 82

Amazon Private Certificate Authority User Guide

 Arn: arn:aws:acm-
pca:region:account:permission/12345678-1234-1234-1234-123456789012,
 CreatedAt: WedFeb0317: 05: 39PST2019,
 Prinicpal: acm.amazonaws.com,
 Permissions: {
 ISSUE_CERTIFICATE,
 GET_CERTIFICATE,
 DELETE,CERTIFICATE
 },
 SourceAccount: account
}]

ListTags

The following Java sample shows how to use the ListTags operation.

This operation lists the tags, if any, that are associated with your private CA. Tags are labels
that you can use to identify and organize your CAs. Each tag consists of a key and an optional
value. Call the TagCertificateAuthority operation to add one or more tags to your CA. Call the
UntagCertificateAuthority operation to remove tags.

package com.amazonaws.samples;

import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.client.builder.AwsClientBuilder;
import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration;
import com.amazonaws.auth.AWSStaticCredentialsProvider;

import com.amazonaws.services.acmpca.AWSACMPCA;
import com.amazonaws.services.acmpca.AWSACMPCAClientBuilder;

import com.amazonaws.services.acmpca.model.ListTagsRequest;
import com.amazonaws.services.acmpca.model.ListTagsResult;

import com.amazonaws.AmazonClientException;
import com.amazonaws.services.acmpca.model.ResourceNotFoundException;
import com.amazonaws.services.acmpca.model.InvalidArnException;

public class ListTags {

 public static void main(String[] args) throws Exception {

ListTags Version latest 83

https://docs.amazonaws.cn/privateca/latest/APIReference/API_ListTags.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_TagCertificateAuthority.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_UntagCertificateAuthority.html

Amazon Private Certificate Authority User Guide

 // Retrieve your credentials from the C:\Users\name\.aws\credentials file
 // in Windows or the .aws/credentials file in Linux.
 AWSCredentials credentials = null;
 try {
 credentials = new ProfileCredentialsProvider("default").getCredentials();
 } catch (Exception e) {
 throw new AmazonClientException("Cannot load your credentials from disk", e);
 }

 // Define the endpoint for your sample.
 String endpointRegion = "region"; // Substitute your region here, e.g. "us-
west-2"
 String endpointProtocol = "https://acm-pca." + endpointRegion +
 ".amazonaws.com/";
 EndpointConfiguration endpoint =
 new AwsClientBuilder.EndpointConfiguration(endpointProtocol, endpointRegion);

 // Create a client that you can use to make requests.
 AWSACMPCA client = AWSACMPCAClientBuilder.standard()
 .withEndpointConfiguration(endpoint)
 .withCredentials(new AWSStaticCredentialsProvider(credentials))
 .build();

 // Create a request object and set the CA ARN.
 ListTagsRequest req = new ListTagsRequest();
 req.withCertificateAuthorityArn("arn:aws:acm-pca:us-
east-1:111122223333:certificate-authority/11223344-1234-1122-2233-112233445566");

 // List the tags
 ListTagsResult result = null;
 try {
 result = client.listTags(req);
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 }

 // Retrieve and display the tags.
 System.out.println(result);
 }
}

ListTags Version latest 84

Amazon Private Certificate Authority User Guide

If you have any tags to list, your output should be similar to the following:

{Tags: [{Key: Admin,Value: Alice}, {Key: Purpose,Value: WebServices}],}

PutPolicy

The following Java sample shows how to use the PutPolicy operation.

The operation attaches a resource-based policy to a private CA, enabling cross-account sharing.
When authorized by a policy, a principal residing in another Amazon account can issue and renew
private end-entity certificates using a private CA that it does not own. You can find the ARN of a
private CA by calling the ListCertificateAuthorities action. For examples of policies, see the Amazon
Private CA guidance on Resource-Based Policies.

Once a policy is attached to a CA, you can inspect it with the GetPolicy action or delete it with the
DeletePolicy action.

package com.amazonaws.samples;

import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.client.builder.AwsClientBuilder;
import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration;
import com.amazonaws.auth.AWSStaticCredentialsProvider;

import com.amazonaws.services.acmpca.AWSACMPCA;
import com.amazonaws.services.acmpca.AWSACMPCAClientBuilder;

import com.amazonaws.AmazonClientException;
import com.amazonaws.services.acmpca.model.PutPolicyRequest;
import com.amazonaws.services.acmpca.model.PutPolicyResult;
import com.amazonaws.services.acmpca.model.AWSACMPCAException;
import com.amazonaws.services.acmpca.model.ConcurrentModificationException;
import com.amazonaws.services.acmpca.model.InvalidArnException;
import com.amazonaws.services.acmpca.model.InvalidStateException;
import com.amazonaws.services.acmpca.model.InvalidPolicyException;
import com.amazonaws.services.acmpca.model.LockoutPreventedException;
import com.amazonaws.services.acmpca.model.RequestFailedException;
import com.amazonaws.services.acmpca.model.ResourceNotFoundException;

import java.io.IOException;
import java.nio.file.Files;

PutPolicy Version latest 85

https://docs.amazonaws.cn/privateca/latest/APIReference/API_PutPolicy.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_ListCertificateAuthorities.html
https://docs.amazonaws.cn/privateca/latest/userguide/pca-rbp.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_GetPolicy.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_DeletePolicy.html

Amazon Private Certificate Authority User Guide

import java.nio.file.Paths;

public class PutPolicy {

 public static void main(String[] args) throws Exception {

 // Retrieve your credentials from the C:\Users\name\.aws\credentials file
 // in Windows or the .aws/credentials file in Linux.
 AWSCredentials credentials = null;
 try {
 credentials = new ProfileCredentialsProvider("default").getCredentials();
 } catch (Exception e) {
 throw new AmazonClientException("Cannot load your credentials from file.",
 e);
 }

 // Define the endpoint for your sample.
 String endpointRegion = "region"; // Substitute your region here, e.g. "us-
west-2"
 String endpointProtocol = "https://acm-pca." + endpointRegion +
 ".amazonaws.com/";
 EndpointConfiguration endpoint =
 new AwsClientBuilder.EndpointConfiguration(endpointProtocol,
 endpointRegion);

 // Create a client that you can use to make requests.
 AWSACMPCA client = AWSACMPCAClientBuilder.standard()
 .withEndpointConfiguration(endpoint)
 .withCredentials(new AWSStaticCredentialsProvider(credentials))
 .build();

 // Create the request object.
 PutPolicyRequest req = new PutPolicyRequest();

 // Set the resource ARN.
 req.withResourceArn("arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566");

 // Import and set the policy.
 // Note: This code assumes the file "ShareResourceWithAccountPolicy.json" is in
 a folder titled policy.
 String policy = new String(Files.readAllBytes(Paths.get("policy",
 "ShareResourceWithAccountPolicy.json")));
 req.withPolicy(policy);

PutPolicy Version latest 86

Amazon Private Certificate Authority User Guide

 // Retrieve a list of your CAs.
 PutPolicyResult result = null;
 try {
 result = client.putPolicy(req);
 } catch (ConcurrentModificationException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (InvalidStateException ex) {
 throw ex;
 } catch (InvalidPolicyException ex) {
 throw ex;
 } catch (LockoutPreventedException ex) {
 throw ex;
 } catch (RequestFailedException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (AWSACMPCAException ex) {
 throw ex;
 }
 }
}

RestoreCertificateAuthority

The following Java sample shows how to use the RestoreCertificateAuthority operation. A private
CA can be restored at any time during its restoration period. Currently, this period can last 7 to 30
days from the date of deletion and can be defined when you delete the CA. For more information,
see Restore a CA. See also the DeleteCertificateAuthority Java example.

package com.amazonaws.samples;

import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.client.builder.AwsClientBuilder;
import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration;
import com.amazonaws.auth.AWSStaticCredentialsProvider;

import com.amazonaws.services.acmpca.AWSACMPCA;
import com.amazonaws.services.acmpca.AWSACMPCAClientBuilder;

RestoreCertificateAuthority Version latest 87

https://docs.amazonaws.cn/privateca/latest/APIReference/API_RestoreCertificateAuthority.html

Amazon Private Certificate Authority User Guide

import com.amazonaws.services.acmpca.model.RestoreCertificateAuthorityRequest;

import com.amazonaws.AmazonClientException;
import com.amazonaws.services.acmpca.model.InvalidArnException;
import com.amazonaws.services.acmpca.model.InvalidStateException;
import com.amazonaws.services.acmpca.model.ResourceNotFoundException;

public class RestoreCertificateAuthority {

 public static void main(String[] args) throws Exception {

 // Retrieve your credentials from the C:\Users\name\.aws\credentials file
 // in Windows or the .aws/credentials file in Linux.
 AWSCredentials credentials = null;
 try {
 credentials = new ProfileCredentialsProvider("default").getCredentials();
 } catch (Exception e) {
 throw new AmazonClientException("Cannot load your credentials from file.",
 e);
 }

 // Define the endpoint for your sample.
 String endpointRegion = "region"; // Substitute your region here, e.g. "us-
west-2"
 String endpointProtocol = "https://acm-pca." + endpointRegion +
 ".amazonaws.com/";
 EndpointConfiguration endpoint =
 new AwsClientBuilder.EndpointConfiguration(endpointProtocol, endpointRegion);

 // Create a client that you can use to make requests.
 AWSACMPCA client = AWSACMPCAClientBuilder.standard()
 .withEndpointConfiguration(endpoint)
 .withCredentials(new AWSStaticCredentialsProvider(credentials))
 .build();

 // Create the request object.
 RestoreCertificateAuthorityRequest req = new
 RestoreCertificateAuthorityRequest();

 // Set the certificate authority ARN.
 req.withCertificateAuthorityArn("arn:aws:acm-pca:us-
east-1:111122223333:certificate-authority/11223344-1234-1122-2233-112233445566");

 // Restore the CA.

RestoreCertificateAuthority Version latest 88

Amazon Private Certificate Authority User Guide

 try {
 client.restoreCertificateAuthority(req);
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (InvalidStateException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 }
 }
}

RevokeCertificate

The following Java sample shows how to use the RevokeCertificate operation.

This operation revokes a certificate that you issued by calling the IssueCertificate operation. If
you enabled a certificate revocation list (CRL) when you created or updated your private CA,
information about the revoked certificates is included in the CRL. Amazon Private CA writes the
CRL to an Amazon S3 bucket that you specify. For more information, see the CrlConfiguration
structure.

package com.amazonaws.samples;

import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.client.builder.AwsClientBuilder;
import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration;
import com.amazonaws.AmazonClientException;
import com.amazonaws.auth.AWSStaticCredentialsProvider;

import com.amazonaws.services.acmpca.AWSACMPCA;
import com.amazonaws.services.acmpca.AWSACMPCAClientBuilder;

import com.amazonaws.services.acmpca.model.RevokeCertificateRequest;
import com.amazonaws.services.acmpca.model.RevocationReason;

import com.amazonaws.services.acmpca.model.ResourceNotFoundException;
import com.amazonaws.services.acmpca.model.InvalidStateException;
import com.amazonaws.services.acmpca.model.InvalidArnException;
import com.amazonaws.services.acmpca.model.RequestFailedException;
import com.amazonaws.services.acmpca.model.RequestAlreadyProcessedException;
import com.amazonaws.services.acmpca.model.RequestInProgressException;

RevokeCertificate Version latest 89

https://docs.amazonaws.cn/privateca/latest/APIReference/API_RevokeCertificate.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_IssueCertificate.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_CrlConfiguration.html

Amazon Private Certificate Authority User Guide

public class RevokeCertificate {

 public static void main(String[] args) throws Exception {

 // Retrieve your credentials from the C:\Users\name\.aws\credentials file
 // in Windows or the .aws/credentials file in Linux.
 AWSCredentials credentials = null;
 try {
 credentials = new ProfileCredentialsProvider("default").getCredentials();
 } catch (Exception e) {
 throw new AmazonClientException("Cannot load your credentials from disk", e);
 }

 // Define the endpoint for your sample.
 String endpointRegion = "region"; // Substitute your region here, e.g. "us-
west-2"
 String endpointProtocol = "https://acm-pca." + endpointRegion +
 ".amazonaws.com/";
 EndpointConfiguration endpoint =
 new AwsClientBuilder.EndpointConfiguration(endpointProtocol, endpointRegion);

 // Create a client that you can use to make requests.
 AWSACMPCA client = AWSACMPCAClientBuilder.standard()
 .withEndpointConfiguration(endpoint)
 .withCredentials(new AWSStaticCredentialsProvider(credentials))
 .build();

 // Create a request object.
 RevokeCertificateRequest req = new RevokeCertificateRequest();

 // Set the certificate authority ARN.
 req.setCertificateAuthorityArn("arn:aws:acm-pca:us-
east-1:111122223333:certificate-authority/11223344-1234-1122-2233-112233445566");

 // Set the certificate serial number.
 req.setCertificateSerial("79:3f:0d:5b:6a:04:12:5e:2c:9c:fb:52:37:35:98:fe");

 // Set the RevocationReason.
 req.withRevocationReason(RevocationReason.<<KEY_COMPROMISE>>);

 // Revoke the certificate.
 try {
 client.revokeCertificate(req);

RevokeCertificate Version latest 90

Amazon Private Certificate Authority User Guide

 } catch (InvalidArnException ex) {
 throw ex;
 } catch (InvalidStateException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (RequestAlreadyProcessedException ex) {
 throw ex;
 } catch (RequestInProgressException ex) {
 throw ex;
 } catch (RequestFailedException ex) {
 throw ex;
 }
 }
}

TagCertificateAuthorities

The following Java sample shows how to use the TagCertificateAuthority operation.

This operation adds one or more tags to your private CA. Tags are labels that you can use to
identify and organize your Amazon resources. Each tag consists of a key and an optional value.
When you call this operation, you specify the private CA by its Amazon Resource Name (ARN).
You specify the tag by using a key-value pair. To identify a specific characteristic of that CA,
you can apply a tag to just one private CA. Or, to filter for a common relationship among those
CAs, you can apply the same tag to multiple private CAs. To remove one or more tags, use the
UntagCertificateAuthority operation. Call the ListTags operation to see what tags are associated
with your CA.

package com.amazonaws.samples;

import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.client.builder.AwsClientBuilder;
import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration;
import com.amazonaws.auth.AWSStaticCredentialsProvider;

import com.amazonaws.services.acmpca.AWSACMPCA;
import com.amazonaws.services.acmpca.AWSACMPCAClientBuilder;

import com.amazonaws.services.acmpca.model.TagCertificateAuthorityRequest;
import com.amazonaws.services.acmpca.model.Tag;

TagCertificateAuthorities Version latest 91

https://docs.amazonaws.cn/privateca/latest/APIReference/API_TagCertificateAuthority.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_UntagCertificateAuthority.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_ListTags.html

Amazon Private Certificate Authority User Guide

import java.util.ArrayList;

import com.amazonaws.AmazonClientException;
import com.amazonaws.services.acmpca.model.ResourceNotFoundException;
import com.amazonaws.services.acmpca.model.InvalidArnException;
import com.amazonaws.services.acmpca.model.InvalidTagException;
import com.amazonaws.services.acmpca.model.TooManyTagsException;

public class TagCertificateAuthorities {

 public static void main(String[] args) throws Exception {

 // Retrieve your credentials from the C:\Users\name\.aws\credentials file
 // in Windows or the .aws/credentials file in Linux.
 AWSCredentials credentials = null;
 try {
 credentials = new ProfileCredentialsProvider("default").getCredentials();
 } catch (Exception e) {
 throw new AmazonClientException("Cannot load your credentials from disk", e);
 }

 // Define the endpoint for your sample.
 String endpointRegion = "region"; // Substitute your region here, e.g. "us-
west-2"
 String endpointProtocol = "https://acm-pca." + endpointRegion +
 ".amazonaws.com/";
 EndpointConfiguration endpoint =
 new AwsClientBuilder.EndpointConfiguration(endpointProtocol, endpointRegion);

 // Create a client that you can use to make requests.
 AWSACMPCA client = AWSACMPCAClientBuilder.standard()
 .withEndpointConfiguration(endpoint)
 .withCredentials(new AWSStaticCredentialsProvider(credentials))
 .build();

 // Create a tag - method 1
 Tag tag1 = new Tag();
 tag1.withKey("Administrator");
 tag1.withValue("Bob");

 // Create a tag - method 2
 Tag tag2 = new Tag()
 .withKey("Purpose")

TagCertificateAuthorities Version latest 92

Amazon Private Certificate Authority User Guide

 .withValue("WebServices");

 // Add the tags to a collection.
 ArrayList<Tag> tags = new ArrayList<Tag>();
 tags.add(tag1);
 tags.add(tag2);

 // Create a request object and specify the certificate authority ARN.
 TagCertificateAuthorityRequest req = new TagCertificateAuthorityRequest();
 req.setCertificateAuthorityArn("arn:aws:acm-pca:us-
east-1:111122223333:certificate-authority/11223344-1234-1122-2233-112233445566");
 req.setTags(tags);

 // Add a tag
 try {
 client.tagCertificateAuthority(req);
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (InvalidTagException ex) {
 throw ex;
 } catch (TooManyTagsException ex) {
 throw ex;
 }
 }
}

UntagCertificateAuthority

The following Java sample shows how to use the UntagCertificateAuthority operation.

This operation removes one or more tags from your private CA. A tag consists of a key-value pair.
If you do not specify the value portion of the tag when calling this operation, the tag is removed
regardless of value. If you specify a value, the tag is removed only if it is associated with the
specified value. To add tags to a private CA, use the TagCertificateAuthority operation. Call the
ListTags operation to see what tags are associated with your CA.

package com.amazonaws.samples;

import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.client.builder.AwsClientBuilder;

UntagCertificateAuthority Version latest 93

https://docs.amazonaws.cn/privateca/latest/APIReference/API_UntagCertificateAuthority.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_TagCertificateAuthority.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_ListTags.html

Amazon Private Certificate Authority User Guide

import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration;
import com.amazonaws.auth.AWSStaticCredentialsProvider;

import java.util.ArrayList;

import com.amazonaws.services.acmpca.AWSACMPCA;
import com.amazonaws.services.acmpca.AWSACMPCAClientBuilder;

import com.amazonaws.services.acmpca.model.UntagCertificateAuthorityRequest;
import com.amazonaws.services.acmpca.model.Tag;

import com.amazonaws.AmazonClientException;
import com.amazonaws.services.acmpca.model.ResourceNotFoundException;
import com.amazonaws.services.acmpca.model.InvalidArnException;
import com.amazonaws.services.acmpca.model.InvalidTagException;

public class UntagCertificateAuthority {

 public static void main(String[] args) throws Exception {

 // Retrieve your credentials from the C:\Users\name\.aws\credentials file
 // in Windows or the .aws/credentials file in Linux.
 AWSCredentials credentials = null;
 try {
 credentials = new ProfileCredentialsProvider("default").getCredentials();
 } catch (Exception e) {
 throw new AmazonClientException("Cannot load your credentials from disk", e);
 }

 // Define the endpoint for your sample.
 String endpointRegion = "region"; // Substitute your region here, e.g. "us-
west-2"
 String endpointProtocol = "https://acm-pca." + endpointRegion +
 ".amazonaws.com/";
 EndpointConfiguration endpoint =
 new AwsClientBuilder.EndpointConfiguration(endpointProtocol, endpointRegion);

 // Create a client that you can use to make requests.
 AWSACMPCA client = AWSACMPCAClientBuilder.standard()
 .withEndpointConfiguration(endpoint)
 .withCredentials(new AWSStaticCredentialsProvider(credentials))
 .build();

 // Create a Tag object with the tag to delete.

UntagCertificateAuthority Version latest 94

Amazon Private Certificate Authority User Guide

 Tag tag = new Tag();
 tag.withKey("Administrator");
 tag.withValue("Bob");

 // Add the tags to a collection.
 ArrayList<Tag> tags = new ArrayList<Tag>();
 tags.add(tag);

 // Create a request object and specify the certificate authority ARN.
 UntagCertificateAuthorityRequest req = new UntagCertificateAuthorityRequest();
 req.withCertificateAuthorityArn("arn:aws:acm-pca:us-
east-1:111122223333:certificate-authority/11223344-1234-1122-2233-112233445566");
 req.withTags(tags);

 // Delete the tag
 try {
 client.untagCertificateAuthority(req);
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (InvalidTagException ex) {
 throw ex;
 }
 }
}

UpdateCertificateAuthority

The following Java sample shows how to use the UpdateCertificateAuthority operation.

The operation updates the status or configuration of a private certificate authority (CA). Your
private CA must be in the ACTIVE or DISABLED state before you can update it. You can disable a
private CA that is in the ACTIVE state or make a CA that is in the DISABLED state active again.

package com.amazonaws.samples;

import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.client.builder.AwsClientBuilder;
import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration;
import com.amazonaws.auth.AWSStaticCredentialsProvider;

UpdateCertificateAuthority Version latest 95

https://docs.amazonaws.cn/privateca/latest/APIReference/API_UpdateCertificateAuthority.html

Amazon Private Certificate Authority User Guide

import com.amazonaws.services.acmpca.AWSACMPCA;
import com.amazonaws.services.acmpca.AWSACMPCAClientBuilder;

import com.amazonaws.services.acmpca.model.UpdateCertificateAuthorityRequest;
import com.amazonaws.services.acmpca.model.CertificateAuthorityStatus;

import com.amazonaws.AmazonClientException;
import com.amazonaws.services.acmpca.model.ConcurrentModificationException;
import com.amazonaws.services.acmpca.model.ResourceNotFoundException;
import com.amazonaws.services.acmpca.model.InvalidArgsException;
import com.amazonaws.services.acmpca.model.InvalidArnException;
import com.amazonaws.services.acmpca.model.InvalidStateException;
import com.amazonaws.services.acmpca.model.InvalidPolicyException;
import com.amazonaws.services.acmpca.model.CrlConfiguration;
import com.amazonaws.services.acmpca.model.RevocationConfiguration;

public class UpdateCertificateAuthority {

 public static void main(String[] args) throws Exception {

 // Retrieve your credentials from the C:\Users\name\.aws\credentials file
 // in Windows or the .aws/credentials file in Linux.
 AWSCredentials credentials = null;
 try {
 credentials = new ProfileCredentialsProvider("default").getCredentials();
 } catch (Exception e) {
 throw new AmazonClientException("Cannot load your credentials from file.",
 e);
 }

 // Define the endpoint for your sample.
 String endpointRegion = "region"; // Substitute your region here, e.g. "us-
west-2"
 String endpointProtocol = "https://acm-pca." + endpointRegion +
 ".amazonaws.com/";
 EndpointConfiguration endpoint =
 new AwsClientBuilder.EndpointConfiguration(endpointProtocol, endpointRegion);

 // Create a client that you can use to make requests.
 AWSACMPCA client = AWSACMPCAClientBuilder.standard()
 .withEndpointConfiguration(endpoint)
 .withCredentials(new AWSStaticCredentialsProvider(credentials))
 .build();

UpdateCertificateAuthority Version latest 96

Amazon Private Certificate Authority User Guide

 // Create the request object.
 UpdateCertificateAuthorityRequest req = new UpdateCertificateAuthorityRequest();

 // Set the ARN of the private CA that you want to update.
 req.setCertificateAuthorityArn("arn:aws:acm-pca:us-
east-1:111122223333:certificate-authority/11223344-1234-1122-2233-112233445566");

 // Define the certificate revocation list configuration. If you do not want to
 // update the CRL configuration, leave the CrlConfiguration structure alone and
 // do not set it on your UpdateCertificateAuthorityRequest object.
 CrlConfiguration crlConfigure = new CrlConfiguration();
 crlConfigure.withEnabled(true);
 crlConfigure.withExpirationInDays(365);
 crlConfigure.withCustomCname("your-custom-name");
 crlConfigure.withS3BucketName("your-bucket-name");

 // Set the CRL configuration onto your UpdateCertificateAuthorityRequest object.
 // If you do not want to change your CRL configuration, do not use the
 // setCrlConfiguration method.
 RevocationConfiguration revokeConfig = new RevocationConfiguration();
 revokeConfig.setCrlConfiguration(crlConfigure);
 req.setRevocationConfiguration(revokeConfig);

 // Set the status.
 req.withStatus(CertificateAuthorityStatus.<<ACTIVE>>);

 // Create the result object.
 try {
 client.updateCertificateAuthority(req);
 } catch (ConcurrentModificationException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (InvalidArgsException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (InvalidStateException ex) {
 throw ex;
 } catch (InvalidPolicyException ex) {
 throw ex;
 }
 }

UpdateCertificateAuthority Version latest 97

Amazon Private Certificate Authority User Guide

}

Create CAs and certificates with custom subject names

The CustomAttribute object allows administrators to pass custom object identifiers (OIDs)
to private CAs and certificates. Custom OIDs can be used to create specialized subject-name
hierarchies that reflect the structure and needs of your organization. Customized certificates must
be created using one of the ApiPassthrough templates. For more information about templates,
see Amazon Private CA template varieties. For more information about using custom attrributes,
see Issue private end-entity certificates and Create a private CA in Amazon Private CA.

You cannot use StandardAttributes in conjunction with CustomAttributes. However, you
can pass standard OIDs as part of a CustomAttributes. The default subject name OIDs are listed
in the following table:

Subject name Object ID

Country 2.5.4.6

CommonName 2.5.4.3

DistinguishedNameQualifier 2.5.4.46

GenerationQualifier 2.5.4.44

GivenName 2.5.4.42

Initials 2.5.4.43

Locality 2.5.4.7

Organization 2.5.4.10

OrganizationalUnit 2.5.4.11

Pseudonym 2.5.4.65

SerialNumber 2.5.4.5

State 2.5.4.8

Create CAs and certificates with custom subject names Version latest 98

https://docs.amazonaws.cn/privateca/latest/APIReference/API_CustomAttribute.html

Amazon Private Certificate Authority User Guide

Subject name Object ID

Surname 2.5.4.4

Title 2.5.4.12

Topics

• Create CA with CustomAttribute

• Issue a certificate with CustomAttribute

Create CA with CustomAttribute

package com.amazonaws.samples;

import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.client.builder.AwsClientBuilder;
import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration;
import com.amazonaws.auth.AWSStaticCredentialsProvider;

import com.amazonaws.services.acmpca.AWSACMPCA;
import com.amazonaws.services.acmpca.AWSACMPCAClientBuilder;

import com.amazonaws.services.acmpca.model.ASN1Subject;
import com.amazonaws.services.acmpca.model.CertificateAuthorityConfiguration;
import com.amazonaws.services.acmpca.model.CertificateAuthorityType;
import com.amazonaws.services.acmpca.model.CreateCertificateAuthorityResult;
import com.amazonaws.services.acmpca.model.CreateCertificateAuthorityRequest;
import com.amazonaws.services.acmpca.model.CrlConfiguration;
import com.amazonaws.services.acmpca.model.CustomAttribute;
import com.amazonaws.services.acmpca.model.KeyAlgorithm;
import com.amazonaws.services.acmpca.model.SigningAlgorithm;
import com.amazonaws.services.acmpca.model.Tag;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

import com.amazonaws.AmazonClientException;

Create CAs and certificates with custom subject names Version latest 99

Amazon Private Certificate Authority User Guide

import com.amazonaws.services.acmpca.model.LimitExceededException;
import com.amazonaws.services.acmpca.model.InvalidArgsException;
import com.amazonaws.services.acmpca.model.InvalidPolicyException;
import com.amazonaws.services.acmpca.model.RevocationConfiguration;

public class CreateCertificateAuthorityWithCustomAttributes {

 public static void main(String[] args) throws Exception {

 // Retrieve your credentials from the C:\Users\name\.aws\credentials file
 // in Windows or the .aws/credentials file in Linux.
 AWSCredentials credentials = null;
 try {
 credentials = new ProfileCredentialsProvider("default").getCredentials();
 } catch (Exception e) {
 throw new AmazonClientException(
 "Cannot load the credentials from the credential profiles file. " +
 "Please make sure that your credentials file is at the correct " +
 "location (C:\\Users\\joneps\\.aws\\credentials), and is in valid
 format.",
 e);
 }

 // Define the endpoint for your sample.
 String endpointRegion = "us-west-2"; // Substitute your region here, e.g. "us-
west-2"
 String endpointProtocol = "https://acm-pca." + endpointRegion +
 ".amazonaws.com/";
 EndpointConfiguration endpoint =
 new AwsClientBuilder.EndpointConfiguration(endpointProtocol,
 endpointRegion);

 // Create a client that you can use to make requests.
 AWSACMPCA client = AWSACMPCAClientBuilder.standard()
 .withEndpointConfiguration(endpoint)
 .withCredentials(new AWSStaticCredentialsProvider(credentials))
 .build();

 // Define custom attributes
 List<CustomAttribute> customAttributes = Arrays.asList(
 new CustomAttribute()
 .withObjectIdentifier("2.5.4.6") // Country
 .withValue("US"),

Create CAs and certificates with custom subject names Version latest 100

Amazon Private Certificate Authority User Guide

 new CustomAttribute()
 .withObjectIdentifier("2.5.4.3") // CommonName
 .withValue("CommonName"),
 new CustomAttribute()
 .withObjectIdentifier("1.3.6.1.4.1") // CustomOID
 .withValue("ABCDEFG"),
 new CustomAttribute()
 .withObjectIdentifier("1.3.6.1.4.1") // CustomOID
 .withValue("BCDEFGH")
);

 // Define a CA subject.
 ASN1Subject subject = new ASN1Subject();
 subject.setCustomAttributes(customAttributes);

 // Define the CA configuration.
 CertificateAuthorityConfiguration configCA = new
 CertificateAuthorityConfiguration();
 configCA.withKeyAlgorithm(KeyAlgorithm.RSA_2048);
 configCA.withSigningAlgorithm(SigningAlgorithm.SHA256WITHRSA);
 configCA.withSubject(subject);

 // Define a certificate revocation list configuration.
 CrlConfiguration crlConfigure = new CrlConfiguration();
 crlConfigure.withEnabled(true);
 crlConfigure.withExpirationInDays(365);
 crlConfigure.withCustomCname(null);
 crlConfigure.withS3BucketName("your-bucket-name");

 RevocationConfiguration revokeConfig = new RevocationConfiguration();
 revokeConfig.setCrlConfiguration(crlConfigure);

 // Define a certificate authority type: ROOT or SUBORDINATE
 CertificateAuthorityType caType = CertificateAuthorityType.SUBORDINATE;

 // Create a tag - method 1
 Tag tag1 = new Tag();
 tag1.withKey("PrivateCA");
 tag1.withValue("Sample");

 // Create a tag - method 2
 Tag tag2 = new Tag()
 .withKey("Purpose")
 .withValue("WebServices");

Create CAs and certificates with custom subject names Version latest 101

Amazon Private Certificate Authority User Guide

 // Add the tags to a collection.
 ArrayList<Tag> tags = new ArrayList<Tag>();
 tags.add(tag1);
 tags.add(tag2);

 // Create the request object.
 CreateCertificateAuthorityRequest req = new
 CreateCertificateAuthorityRequest();
 req.withCertificateAuthorityConfiguration(configCA);
 req.withRevocationConfiguration(revokeConfig);
 req.withIdempotencyToken("1234");
 req.withCertificateAuthorityType(caType);
 req.withTags(tags);

 // Create the private CA.
 CreateCertificateAuthorityResult result = null;
 try {
 result = client.createCertificateAuthority(req);
 } catch (InvalidArgsException ex) {
 throw ex;
 } catch (InvalidPolicyException ex) {
 throw ex;
 } catch (LimitExceededException ex) {
 throw ex;
 }

 // Retrieve the ARN of the private CA.
 String arn = result.getCertificateAuthorityArn();
 System.out.println(arn);
 }
}

Issue a certificate with CustomAttribute

package com.amazonaws.samples;

import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.client.builder.AwsClientBuilder;
import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration;
import com.amazonaws.auth.AWSStaticCredentialsProvider;

Create CAs and certificates with custom subject names Version latest 102

Amazon Private Certificate Authority User Guide

import java.nio.ByteBuffer;
import java.nio.charset.StandardCharsets;
import java.util.Arrays;
import java.util.Base64;
import java.util.List;
import java.util.Objects;

import com.amazonaws.services.acmpca.AWSACMPCA;
import com.amazonaws.services.acmpca.AWSACMPCAClientBuilder;
import com.amazonaws.services.acmpca.model.ASN1Subject;
import com.amazonaws.services.acmpca.model.ApiPassthrough;
import com.amazonaws.services.acmpca.model.CustomAttribute;
import com.amazonaws.services.acmpca.model.Extensions;
import com.amazonaws.services.acmpca.model.IssueCertificateRequest;
import com.amazonaws.services.acmpca.model.IssueCertificateResult;
import com.amazonaws.services.acmpca.model.SigningAlgorithm;
import com.amazonaws.services.acmpca.model.Validity;

import com.amazonaws.AmazonClientException;
import com.amazonaws.services.acmpca.model.LimitExceededException;
import com.amazonaws.services.acmpca.model.ResourceNotFoundException;
import com.amazonaws.services.acmpca.model.InvalidStateException;
import com.amazonaws.services.acmpca.model.InvalidArnException;
import com.amazonaws.services.acmpca.model.InvalidArgsException;
import com.amazonaws.services.acmpca.model.MalformedCSRException;

public class IssueCertificateWithCustomAttributes {
 private static ByteBuffer stringToByteBuffer(final String string) {
 if (Objects.isNull(string)) {
 return null;
 }
 byte[] bytes = string.getBytes(StandardCharsets.UTF_8);
 return ByteBuffer.wrap(bytes);
 }

 public static void main(String[] args) throws Exception {

 // Retrieve your credentials from the C:\Users\name\.aws\credentials file
 // in Windows or the .aws/credentials file in Linux.
 AWSCredentials credentials = null;
 try {
 credentials = new ProfileCredentialsProvider("default").getCredentials();
 } catch (Exception e) {

Create CAs and certificates with custom subject names Version latest 103

Amazon Private Certificate Authority User Guide

 throw new AmazonClientException("Cannot load your credentials from disk", e);
 }

 // Define the endpoint for your sample.
 String endpointRegion = "us-west-2"; // Substitute your region here, e.g. "us-
west-2"
 String endpointProtocol = "https://acm-pca." + endpointRegion +
 ".amazonaws.com/";
 EndpointConfiguration endpoint =
 new AwsClientBuilder.EndpointConfiguration(endpointProtocol, endpointRegion);

 // Create a client that you can use to make requests.
 AWSACMPCA client = AWSACMPCAClientBuilder.standard()
 .withEndpointConfiguration(endpoint)
 .withCredentials(new AWSStaticCredentialsProvider(credentials))
 .build();

 // Create a certificate request:
 IssueCertificateRequest req = new IssueCertificateRequest();

 // Set the CA ARN.
 req.withCertificateAuthorityArn("arn:aws:acm-pca:region:account:" +
 "certificate-authority/12345678-1234-1234-1234-123456789012");

 // Specify the certificate signing request (CSR) for the certificate to be signed
 and issued.
 String strCSR =
 "-----BEGIN CERTIFICATE REQUEST-----\n" +
 "base64-encoded CSR\n" +
 "-----END CERTIFICATE REQUEST-----\n";
 ByteBuffer csrByteBuffer = stringToByteBuffer(strCSR);
 req.setCsr(csrByteBuffer);

 // Specify the template for the issued certificate.
 req.withTemplateArn("arn:aws:acm-pca:::template/
EndEntityCertificate_APIPassthrough/V1");

 // Set the signing algorithm.
 req.withSigningAlgorithm(SigningAlgorithm.SHA256WITHRSA);

 // Set the validity period for the certificate to be issued.
 Validity validity = new Validity();
 validity.withValue(100L);
 validity.withType("DAYS");

Create CAs and certificates with custom subject names Version latest 104

Amazon Private Certificate Authority User Guide

 req.withValidity(validity);

 // Set the idempotency token.
 req.setIdempotencyToken("1234");

 // Define custom attributes
 List<CustomAttribute> customAttributes = Arrays.asList(
 new CustomAttribute()
 .withObjectIdentifier("2.5.4.6") // Country
 .withValue("US"),
 new CustomAttribute()
 .withObjectIdentifier("2.5.4.3") // CommonName
 .withValue("CommonName"),
 new CustomAttribute()
 .withObjectIdentifier("1.3.6.1.4.1") // CustomOID
 .withValue("ABCDEFG"),
 new CustomAttribute()
 .withObjectIdentifier("1.3.6.1.4.1") // CustomOID
 .withValue("BCDEFGH")
);

 // Define certificate subject.
 ASN1Subject subject = new ASN1Subject();
 subject.setCustomAttributes(customAttributes);

 // Add subject to api-passthrough
 ApiPassthrough apiPassthrough = new ApiPassthrough();
 apiPassthrough.setSubject(subject);
 req.setApiPassthrough(apiPassthrough);

 // Issue the certificate.
 IssueCertificateResult result = null;
 try {
 result = client.issueCertificate(req);
 } catch (LimitExceededException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (InvalidStateException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (InvalidArgsException ex) {
 throw ex;

Create CAs and certificates with custom subject names Version latest 105

Amazon Private Certificate Authority User Guide

 } catch (MalformedCSRException ex) {
 throw ex;
 }

 // Retrieve and display the certificate ARN.
 String arn = result.getCertificateArn();
 System.out.println(arn);
 }
}

Create certificates with custom extensions

The CustomExtension object allows administrators to set custom X.509 extensions in private
certificates. Customized certificates must be created using one of the ApiPassthrough templates.
For more information about templates, see Amazon Private CA template varieties. For more
information about using custom extensions, see Issue private end-entity certificates.

Topics

• Activate a subordinate CA with the NameConstraints extension

• Issue a certificate with the QC statement extension

Activate a subordinate CA with the NameConstraints extension

package com.amazonaws.samples;

import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.client.builder.AwsClientBuilder;
import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration;
import com.amazonaws.auth.AWSStaticCredentialsProvider;

import java.io.IOException;
import java.nio.ByteBuffer;
import java.nio.charset.StandardCharsets;
import java.util.Arrays;
import java.util.Base64;
import java.util.Objects;

import com.amazonaws.services.acmpca.AWSACMPCA;
import com.amazonaws.services.acmpca.AWSACMPCAClientBuilder;

Create certificates with custom extensions Version latest 106

https://docs.amazonaws.cn/privateca/latest/APIReference/API_CustomExtension.html

Amazon Private Certificate Authority User Guide

import com.amazonaws.services.acmpca.model.IssueCertificateRequest;
import com.amazonaws.services.acmpca.model.IssueCertificateResult;
import com.amazonaws.services.acmpca.model.KeyAlgorithm;
import com.amazonaws.services.acmpca.model.SigningAlgorithm;
import com.amazonaws.services.acmpca.model.Validity;
import com.amazonaws.waiters.Waiter;
import com.amazonaws.waiters.WaiterParameters;
import com.amazonaws.waiters.WaiterTimedOutException;
import com.amazonaws.waiters.WaiterUnrecoverableException;
import com.amazonaws.AmazonClientException;
import com.amazonaws.services.acmpca.model.LimitExceededException;
import com.amazonaws.services.acmpca.model.ResourceNotFoundException;
import com.amazonaws.services.acmpca.model.RevocationConfiguration;
import com.amazonaws.services.acmpca.model.InvalidStateException;
import com.amazonaws.services.acmpca.model.InvalidArnException;
import com.amazonaws.services.acmpca.model.InvalidPolicyException;
import com.amazonaws.services.acmpca.model.ASN1Subject;
import com.amazonaws.services.acmpca.model.AWSACMPCAException;
import com.amazonaws.services.acmpca.model.ApiPassthrough;
import com.amazonaws.services.acmpca.model.CertificateAuthorityConfiguration;
import com.amazonaws.services.acmpca.model.CertificateAuthorityType;
import com.amazonaws.services.acmpca.model.CertificateMismatchException;
import com.amazonaws.services.acmpca.model.ConcurrentModificationException;
import com.amazonaws.services.acmpca.model.CreateCertificateAuthorityRequest;
import com.amazonaws.services.acmpca.model.CreateCertificateAuthorityResult;
import com.amazonaws.services.acmpca.model.CrlConfiguration;
import com.amazonaws.services.acmpca.model.CustomExtension;
import com.amazonaws.services.acmpca.model.Extensions;
import com.amazonaws.services.acmpca.model.GetCertificateAuthorityCertificateRequest;
import com.amazonaws.services.acmpca.model.GetCertificateAuthorityCertificateResult;
import com.amazonaws.services.acmpca.model.GetCertificateAuthorityCsrRequest;
import com.amazonaws.services.acmpca.model.GetCertificateAuthorityCsrResult;
import com.amazonaws.services.acmpca.model.GetCertificateRequest;
import com.amazonaws.services.acmpca.model.GetCertificateResult;
import
 com.amazonaws.services.acmpca.model.ImportCertificateAuthorityCertificateRequest;
import com.amazonaws.services.acmpca.model.InvalidArgsException;
import com.amazonaws.services.acmpca.model.MalformedCSRException;
import com.amazonaws.services.acmpca.model.MalformedCertificateException;
import com.amazonaws.services.acmpca.model.RequestFailedException;
import com.amazonaws.services.acmpca.model.RequestInProgressException;

import org.bouncycastle.asn1.x509.GeneralName;
import org.bouncycastle.asn1.x509.GeneralSubtree;

Create certificates with custom extensions Version latest 107

Amazon Private Certificate Authority User Guide

import org.bouncycastle.asn1.x509.NameConstraints;

import lombok.SneakyThrows;

public class SubordinateCAActivationWithNameConstraints {
 public static void main(String[] args) throws Exception {
 // Place your own Root CA ARN here.
 String rootCAArn = "arn:aws:acm-pca:region:123456789012:certificate-
authority/12345678-1234-1234-1234-123456789012";

 // Define the endpoint region for your sample.
 String endpointRegion = "us-west-2"; // Substitute your region here, e.g. "us-
west-2"

 // Define a CA subject.
 ASN1Subject subject = new ASN1Subject();
 subject.setOrganization("Example Organization");
 subject.setOrganizationalUnit("Example");
 subject.setCountry("US");
 subject.setState("Virginia");
 subject.setLocality("Arlington");
 subject.setCommonName("SubordinateCA");

 // Define the CA configuration.
 CertificateAuthorityConfiguration configCA = new
 CertificateAuthorityConfiguration();
 configCA.withKeyAlgorithm(KeyAlgorithm.RSA_2048);
 configCA.withSigningAlgorithm(SigningAlgorithm.SHA256WITHRSA);
 configCA.withSubject(subject);

 // Define a certificate revocation list configuration.
 CrlConfiguration crlConfigure = new CrlConfiguration();
 crlConfigure.withEnabled(true);
 crlConfigure.withExpirationInDays(365);
 crlConfigure.withCustomCname(null);
 crlConfigure.withS3BucketName("your-bucket-name");

 // Define a certificate authority type
 CertificateAuthorityType caType = CertificateAuthorityType.SUBORDINATE;

 // ** Execute core code samples for Subordinate CA activation in sequence **
 AWSACMPCA client = ClientBuilder(endpointRegion);
 String rootCertificate = GetCertificateAuthorityCertificate(rootCAArn, client);

Create certificates with custom extensions Version latest 108

Amazon Private Certificate Authority User Guide

 String subordinateCAArn = CreateCertificateAuthority(configCA, crlConfigure,
 caType, client);
 String csr = GetCertificateAuthorityCsr(subordinateCAArn, client);
 String subordinateCertificateArn = IssueCertificate(rootCAArn, csr, client);
 String subordinateCertificate = GetCertificate(subordinateCertificateArn,
 rootCAArn, client);
 ImportCertificateAuthorityCertificate(subordinateCertificate, rootCertificate,
 subordinateCAArn, client);
 }

 private static AWSACMPCA ClientBuilder(String endpointRegion) {
 // Retrieve your credentials from the C:\Users\name\.aws\credentials file
 // in Windows or the .aws/credentials file in Linux.
 AWSCredentials credentials = null;
 try {
 credentials = new ProfileCredentialsProvider("default").getCredentials();
 } catch (Exception e) {
 throw new AmazonClientException(
 "Cannot load the credentials from the credential profiles file. " +
 "Please make sure that your credentials file is at the correct " +
 "location (C:\\Users\\joneps\\.aws\\credentials), and is in valid
 format.",
 e);
 }

 String endpointProtocol = "https://acm-pca." + endpointRegion +
 ".amazonaws.com/";
 EndpointConfiguration endpoint =
 new AwsClientBuilder.EndpointConfiguration(endpointProtocol,
 endpointRegion);

 // Create a client that you can use to make requests.
 AWSACMPCA client = AWSACMPCAClientBuilder.standard()
 .withEndpointConfiguration(endpoint)
 .withCredentials(new AWSStaticCredentialsProvider(credentials))
 .build();

 return client;
 }

 private static String GetCertificateAuthorityCertificate(String rootCAArn, AWSACMPCA
 client) {
 // ** GetCertificateAuthorityCertificate **

Create certificates with custom extensions Version latest 109

Amazon Private Certificate Authority User Guide

 // Create a request object and set the certificate authority ARN,
 GetCertificateAuthorityCertificateRequest getCACertificateRequest =
 new GetCertificateAuthorityCertificateRequest();
 getCACertificateRequest.withCertificateAuthorityArn(rootCAArn);

 // Create a result object.
 GetCertificateAuthorityCertificateResult getCACertificateResult = null;
 try {
 getCACertificateResult =
 client.getCertificateAuthorityCertificate(getCACertificateRequest);
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (InvalidStateException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 }

 // Retrieve and display the certificate information.
 String rootCertificate = getCACertificateResult.getCertificate();
 System.out.println("Root CA Certificate / Certificate Chain:");
 System.out.println(rootCertificate);

 return rootCertificate;
 }

 private static String CreateCertificateAuthority(CertificateAuthorityConfiguration
 configCA, CrlConfiguration crlConfigure, CertificateAuthorityType caType, AWSACMPCA
 client) {
 RevocationConfiguration revokeConfig = new RevocationConfiguration();
 revokeConfig.setCrlConfiguration(crlConfigure);

 // Create the request object.
 CreateCertificateAuthorityRequest createCARequest = new
 CreateCertificateAuthorityRequest();
 createCARequest.withCertificateAuthorityConfiguration(configCA);
 createCARequest.withRevocationConfiguration(revokeConfig);
 createCARequest.withIdempotencyToken("1234");
 createCARequest.withCertificateAuthorityType(caType);

 // Create the private CA.
 CreateCertificateAuthorityResult createCAResult = null;
 try {
 createCAResult = client.createCertificateAuthority(createCARequest);

Create certificates with custom extensions Version latest 110

Amazon Private Certificate Authority User Guide

 } catch (InvalidArgsException ex) {
 throw ex;
 } catch (InvalidPolicyException ex) {
 throw ex;
 } catch (LimitExceededException ex) {
 throw ex;
 }

 // Retrieve the ARN of the private CA.
 String subordinateCAArn = createCAResult.getCertificateAuthorityArn();
 System.out.println("Subordinate CA Arn: " + subordinateCAArn);

 return subordinateCAArn;
 }

 private static String GetCertificateAuthorityCsr(String subordinateCAArn, AWSACMPCA
 client) {

 // Create the CSR request object and set the CA ARN.
 GetCertificateAuthorityCsrRequest csrRequest = new
 GetCertificateAuthorityCsrRequest();
 csrRequest.withCertificateAuthorityArn(subordinateCAArn);

 // Create waiter to wait on successful creation of the CSR file.
 Waiter<GetCertificateAuthorityCsrRequest> getCSRWaiter =
 client.waiters().certificateAuthorityCSRCreated();
 try {
 getCSRWaiter.run(new WaiterParameters<>(csrRequest));
 } catch (WaiterUnrecoverableException e) {
 //Explicit short circuit when the recourse transitions into
 //an undesired state.
 } catch (WaiterTimedOutException e) {
 //Failed to transition into desired state even after polling.
 } catch(AWSACMPCAException e) {
 //Unexpected service exception.
 }

 // Retrieve the CSR.
 GetCertificateAuthorityCsrResult csrResult = null;
 try {
 csrResult = client.getCertificateAuthorityCsr(csrRequest);
 } catch (RequestInProgressException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {

Create certificates with custom extensions Version latest 111

Amazon Private Certificate Authority User Guide

 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (RequestFailedException ex) {
 throw ex;
 }

 // Retrieve and display the CSR;
 String csr = csrResult.getCsr();
 System.out.println("Subordinate CSR:");
 System.out.println(csr);

 return csr;
 }

 private static String IssueCertificate(String rootCAArn, String csr, AWSACMPCA
 client) {

 // Create a certificate request:
 IssueCertificateRequest issueRequest = new IssueCertificateRequest();

 // Set the issuing CA ARN.
 issueRequest.withCertificateAuthorityArn(rootCAArn);

 // Set the template ARN.
 issueRequest.withTemplateArn("arn:aws:acm-pca:::template/
SubordinateCACertificate_PathLen0_APIPassthrough/V1");

 ByteBuffer csrByteBuffer = stringToByteBuffer(csr);
 issueRequest.setCsr(csrByteBuffer);

 // Set the signing algorithm.
 issueRequest.withSigningAlgorithm(SigningAlgorithm.SHA256WITHRSA);

 // Set the validity period for the certificate to be issued.
 Validity validity = new Validity();
 validity.withValue(100L);
 validity.withType("DAYS");
 issueRequest.withValidity(validity);

 // Set the idempotency token.
 issueRequest.setIdempotencyToken("1234");

 // Generate Base64 encoded Nameconstraints extension value

Create certificates with custom extensions Version latest 112

Amazon Private Certificate Authority User Guide

 String base64EncodedExtValue = getNameConstraintExtensionValue();

 // Generate custom extension
 CustomExtension customExtension = new CustomExtension();
 customExtension.setCritical(true);
 customExtension.setObjectIdentifier("2.5.29.30"); // NameConstraints Extension
 OID
 customExtension.setValue(base64EncodedExtValue);

 // Add custom extension to api-passthrough
 ApiPassthrough apiPassthrough = new ApiPassthrough();
 Extensions extensions = new Extensions();
 extensions.setCustomExtensions(Arrays.asList(customExtension));
 apiPassthrough.setExtensions(extensions);
 issueRequest.setApiPassthrough(apiPassthrough);

 // Issue the certificate.
 IssueCertificateResult issueResult = null;
 try {
 issueResult = client.issueCertificate(issueRequest);
 } catch (LimitExceededException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (InvalidStateException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (InvalidArgsException ex) {
 throw ex;
 } catch (MalformedCSRException ex) {
 throw ex;
 }

 // Retrieve and display the certificate ARN.
 String subordinateCertificateArn = issueResult.getCertificateArn();
 System.out.println("Subordinate Certificate Arn: " + subordinateCertificateArn);

 return subordinateCertificateArn;
 }

 @SneakyThrows
 private static String getNameConstraintExtensionValue() {
 // Generate Base64 encoded Nameconstraints extension value

Create certificates with custom extensions Version latest 113

Amazon Private Certificate Authority User Guide

 GeneralSubtree dnsPrivate = new GeneralSubtree(new
 GeneralName(GeneralName.dNSName, ".private"));
 GeneralSubtree dnsLocal = new GeneralSubtree(new GeneralName(GeneralName.dNSName,
 ".local"));
 GeneralSubtree dnsCorp = new GeneralSubtree(new GeneralName(GeneralName.dNSName,
 ".corp"));
 GeneralSubtree dnsSecretCorp = new GeneralSubtree(new
 GeneralName(GeneralName.dNSName, ".secret.corp"));
 GeneralSubtree dnsExample = new GeneralSubtree(new
 GeneralName(GeneralName.dNSName, ".example.com"));
 GeneralSubtree[] permittedSubTree = new GeneralSubtree[] { dnsPrivate, dnsLocal,
 dnsCorp };
 GeneralSubtree[] excludedSubTree = new GeneralSubtree[] { dnsSecretCorp,
 dnsExample };
 NameConstraints nameConstraints = new NameConstraints(permittedSubTree,
 excludedSubTree);

 return new String(Base64.getEncoder().encode(nameConstraints.getEncoded()));
 }

 private static String GetCertificate(String subordinateCertificateArn, String
 rootCAArn, AWSACMPCA client) {

 // Create a request object.
 GetCertificateRequest certificateRequest = new GetCertificateRequest();

 // Set the certificate ARN.
 certificateRequest.withCertificateArn(subordinateCertificateArn);

 // Set the certificate authority ARN.
 certificateRequest.withCertificateAuthorityArn(rootCAArn);

 // Create waiter to wait on successful creation of the certificate file.
 Waiter<GetCertificateRequest> getCertificateWaiter =
 client.waiters().certificateIssued();
 try {
 getCertificateWaiter.run(new WaiterParameters<>(certificateRequest));
 } catch (WaiterUnrecoverableException e) {
 //Explicit short circuit when the recourse transitions into
 //an undesired state.
 } catch (WaiterTimedOutException e) {
 //Failed to transition into desired state even after polling.
 } catch (AWSACMPCAException e) {
 //Unexpected service exception.

Create certificates with custom extensions Version latest 114

Amazon Private Certificate Authority User Guide

 }

 // Retrieve the certificate and certificate chain.
 GetCertificateResult certificateResult = null;
 try {
 certificateResult = client.getCertificate(certificateRequest);
 } catch (RequestInProgressException ex) {
 throw ex;
 } catch (RequestFailedException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (InvalidStateException ex) {
 throw ex;
 }

 // Get the certificate and certificate chain and display the result.
 String subordinateCertificate = certificateResult.getCertificate();
 System.out.println("Subordinate CA Certificate:");
 System.out.println(subordinateCertificate);

 return subordinateCertificate;
 }

 private static void ImportCertificateAuthorityCertificate(String
 subordinateCertificate, String rootCertificate, String subordinateCAArn, AWSACMPCA
 client) {

 // Create the request object and set the signed certificate, chain and CA ARN.
 ImportCertificateAuthorityCertificateRequest importRequest =
 new ImportCertificateAuthorityCertificateRequest();

 ByteBuffer certByteBuffer = stringToByteBuffer(subordinateCertificate);
 importRequest.setCertificate(certByteBuffer);

 ByteBuffer rootCACertByteBuffer = stringToByteBuffer(rootCertificate);
 importRequest.setCertificateChain(rootCACertByteBuffer);

 // Set the certificate authority ARN.
 importRequest.withCertificateAuthorityArn(subordinateCAArn);

 // Import the certificate.

Create certificates with custom extensions Version latest 115

Amazon Private Certificate Authority User Guide

 try {
 client.importCertificateAuthorityCertificate(importRequest);
 } catch (CertificateMismatchException ex) {
 throw ex;
 } catch (MalformedCertificateException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (RequestInProgressException ex) {
 throw ex;
 } catch (ConcurrentModificationException ex) {
 throw ex;
 } catch (RequestFailedException ex) {
 throw ex;
 }
 System.out.println("Subordinate CA certificate successfully imported.");
 System.out.println("Subordinate CA activated successfully.");
 }

 private static ByteBuffer stringToByteBuffer(final String string) {
 if (Objects.isNull(string)) {
 return null;
 }
 byte[] bytes = string.getBytes(StandardCharsets.UTF_8);
 return ByteBuffer.wrap(bytes);
 }
}

Issue a certificate with the QC statement extension

package com.amazonaws.samples;

import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.client.builder.AwsClientBuilder;
import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration;
import com.amazonaws.auth.AWSStaticCredentialsProvider;

import java.nio.ByteBuffer;
import java.nio.charset.StandardCharsets;
import java.util.Arrays;

Create certificates with custom extensions Version latest 116

Amazon Private Certificate Authority User Guide

import java.util.Base64;
import java.util.Objects;

import com.amazonaws.services.acmpca.AWSACMPCA;
import com.amazonaws.services.acmpca.AWSACMPCAClientBuilder;
import com.amazonaws.services.acmpca.model.ApiPassthrough;
import com.amazonaws.services.acmpca.model.CustomExtension;
import com.amazonaws.services.acmpca.model.Extensions;
import com.amazonaws.services.acmpca.model.IssueCertificateRequest;
import com.amazonaws.services.acmpca.model.IssueCertificateResult;
import com.amazonaws.services.acmpca.model.SigningAlgorithm;
import com.amazonaws.services.acmpca.model.Validity;

import com.amazonaws.AmazonClientException;
import com.amazonaws.services.acmpca.model.LimitExceededException;
import com.amazonaws.services.acmpca.model.ResourceNotFoundException;
import com.amazonaws.services.acmpca.model.InvalidStateException;
import com.amazonaws.services.acmpca.model.InvalidArnException;
import com.amazonaws.services.acmpca.model.InvalidArgsException;
import com.amazonaws.services.acmpca.model.MalformedCSRException;

import org.bouncycastle.asn1.ASN1EncodableVector;
import org.bouncycastle.asn1.ASN1ObjectIdentifier;
import org.bouncycastle.asn1.DERSequence;
import org.bouncycastle.asn1.DERUTF8String;
import org.bouncycastle.asn1.x509.qualified.ETSIQCObjectIdentifiers;
import org.bouncycastle.asn1.x509.qualified.QCStatement;

import lombok.SneakyThrows;

public class IssueCertificateWithQCStatement {
 private static ByteBuffer stringToByteBuffer(final String string) {
 if (Objects.isNull(string)) {
 return null;
 }
 byte[] bytes = string.getBytes(StandardCharsets.UTF_8);
 return ByteBuffer.wrap(bytes);
 }

 @SneakyThrows
 private static String generateQCStatementBase64ExtValue() {
 DERSequence qcTypeSeq = new DERSequence(ETSIQCObjectIdentifiers.id_etsi_qct_web);
 QCStatement qcType = new QCStatement(ETSIQCObjectIdentifiers.id_etsi_qcs_QcType,
 qcTypeSeq);

Create certificates with custom extensions Version latest 117

Amazon Private Certificate Authority User Guide

 ASN1EncodableVector pspAIVector = new ASN1EncodableVector(2);
 pspAIVector.add(new ASN1ObjectIdentifier("0.4.0.19495.1.3"));
 pspAIVector.add(new DERUTF8String("PSP_AI"));
 DERSequence pspAISeq = new DERSequence(pspAIVector);

 ASN1EncodableVector pspASVector = new ASN1EncodableVector(2);
 pspASVector.add(new ASN1ObjectIdentifier("0.4.0.19495.1.1"));
 pspASVector.add(new DERUTF8String("PSP_AS"));
 DERSequence pspASSeq = new DERSequence(pspASVector);

 ASN1EncodableVector pspPIVector = new ASN1EncodableVector(2);
 pspPIVector.add(new ASN1ObjectIdentifier("0.4.0.19495.1.2"));
 pspPIVector.add(new DERUTF8String("PSP_PI"));
 DERSequence pspPISeq = new DERSequence(pspPIVector);

 ASN1EncodableVector pspICVector = new ASN1EncodableVector(2);
 pspICVector.add(new ASN1ObjectIdentifier("0.4.0.19495.1.4"));
 pspICVector.add(new DERUTF8String("PSP_IC"));
 DERSequence pspICSeq = new DERSequence(pspICVector);

 ASN1EncodableVector pspSeqVector = new ASN1EncodableVector(4);
 pspSeqVector.add(pspPISeq);
 pspSeqVector.add(pspICSeq);
 pspSeqVector.add(pspASSeq);
 pspSeqVector.add(pspAISeq);
 DERSequence pspSeq = new DERSequence(pspSeqVector);

 ASN1EncodableVector pspVector = new ASN1EncodableVector(3);
 pspVector.add(pspSeq);
 pspVector.add(new DERUTF8String("Your Financial Authority"));
 pspVector.add(new DERUTF8String("AB-CD"));
 DERSequence psp = new DERSequence(pspVector);
 QCStatement qcPSP = new QCStatement(new ASN1ObjectIdentifier("0.4.0.19495.2"),
 psp);

 DERSequence qcSeq = new DERSequence(new QCStatement[] { qcType, qcPSP });

 byte[] qcExtValueInBytes = qcSeq.getEncoded();
 return Base64.getEncoder().encodeToString(qcExtValueInBytes);
 }

 public static void main(String[] args) throws Exception {

Create certificates with custom extensions Version latest 118

Amazon Private Certificate Authority User Guide

 // Retrieve your credentials from the C:\Users\name\.aws\credentials file
 // in Windows or the .aws/credentials file in Linux.
 AWSCredentials credentials = null;
 try {
 credentials = new ProfileCredentialsProvider("default").getCredentials();
 } catch (Exception e) {
 throw new AmazonClientException("Cannot load your credentials from disk", e);
 }

 // Define the endpoint for your sample.
 String endpointRegion = "us-west-2"; // Substitute your region here, e.g. "us-
west-2"
 String endpointProtocol = "https://acm-pca." + endpointRegion +
 ".amazonaws.com/";
 EndpointConfiguration endpoint =
 new AwsClientBuilder.EndpointConfiguration(endpointProtocol, endpointRegion);

 // Create a client that you can use to make requests.
 AWSACMPCA client = AWSACMPCAClientBuilder.standard()
 .withEndpointConfiguration(endpoint)
 .withCredentials(new AWSStaticCredentialsProvider(credentials))
 .build();

 // Create a certificate request:
 IssueCertificateRequest req = new IssueCertificateRequest();

 // Set the CA ARN.
 req.withCertificateAuthorityArn("arn:aws:acm-pca:region:account:" +
 "certificate-authority/12345678-1234-1234-1234-123456789012");

 // Specify the certificate signing request (CSR) for the certificate to be signed
 and issued.
 String strCSR =
 "-----BEGIN CERTIFICATE REQUEST-----\n" +
 "base64-encoded CSR\n" +
 "-----END CERTIFICATE REQUEST-----\n";
 ByteBuffer csrByteBuffer = stringToByteBuffer(strCSR);
 req.setCsr(csrByteBuffer);

 // Specify the template for the issued certificate.
 req.withTemplateArn("arn:aws:acm-pca:::template/
EndEntityCertificate_APIPassthrough/V1");

 // Set the signing algorithm.

Create certificates with custom extensions Version latest 119

Amazon Private Certificate Authority User Guide

 req.withSigningAlgorithm(SigningAlgorithm.SHA256WITHRSA);

 // Set the validity period for the certificate to be issued.
 Validity validity = new Validity();
 validity.withValue(30L);
 validity.withType("DAYS");
 req.withValidity(validity);

 // Set the idempotency token.
 req.setIdempotencyToken("1234");

 // Generate Base64 encoded extension value for QC Statement
 String base64EncodedExtValue = generateQCStatementBase64ExtValue();

 // Generate custom extension
 CustomExtension customExtension = new CustomExtension();
 customExtension.setObjectIdentifier("1.3.6.1.5.5.7.1.3"); // QC Statement
 Extension OID
 customExtension.setValue(base64EncodedExtValue);

 // Add custom extension to api-passthrough
 ApiPassthrough apiPassthrough = new ApiPassthrough();
 Extensions extensions = new Extensions();
 extensions.setCustomExtensions(Arrays.asList(customExtension));
 apiPassthrough.setExtensions(extensions);
 req.setApiPassthrough(apiPassthrough);

 // Issue the certificate.
 IssueCertificateResult result = null;
 try {
 result = client.issueCertificate(req);
 } catch (LimitExceededException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (InvalidStateException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (InvalidArgsException ex) {
 throw ex;
 } catch (MalformedCSRException ex) {
 throw ex;
 }

Create certificates with custom extensions Version latest 120

Amazon Private Certificate Authority User Guide

 // Retrieve and display the certificate ARN.
 String arn = result.getCertificateArn();
 System.out.println(arn);
 }
}

Use Amazon Private CA to implement Matter certificates

You can use the Amazon Private Certificate Authority API to create certificates that conform to the
Matter connectivity standard. Matter specifies certificate configurations that improve the security
and consistency of internet of things (IoT) devices across multiple engineering platforms. For more
information about Matter, see buildwithmatter.com.

Matter 1.2, released in October 2023, supports DAC revocation using Certificate Revocation
Lists (CRLs). To help you conform to the current Matter standard, when you enable CRL
revocation for CAs that issue Matter certificates, in the CrlConfiguration object, in the
CrlDistributionPointExtensionConfiguration structure, set OmitExtension to true.

Typically, CAs embed the CRL Distribution Point (CDP) in the certificates they issue so that the
relying parties performing certificate chain validation can fetch the CRL and check the certificate
status. In Matter, the CDP URI is not written to certificates. Instead, users fetch CDPs from the
Matter Distributed Compliance Ledger (DCL), the trusted Matter data store. You must upload
the CDP URI to the Matter DCL so that it can be discovered when validating DACs. For more
information about determining the CDP URI, see Determining the CRL Distribution Point (CDP) URI
. For more information about Matter, see the Matter DCL documentation.

Topics

• Activate a Product Attestation Authority (PAA)

• Activate an Product Attestation Intermediate (PAI)

• Create a Device Attestation Certificate (DAC)

• Activate a Root CA for Node Operational Certificates (NOC).

• Activate a Subordinate CA for Node Operational Certificates (NOC)

• Create a Node Operational Certificate (NOC)

Matter examples Version latest 121

https://github.com/project-chip/connectedhomeip
https://buildwithmatter.com
https://on.dcl.csa-iot.org/

Amazon Private Certificate Authority User Guide

Activate a Product Attestation Authority (PAA)

This Java sample shows how to use the RootCACertificate_APIPassthrough/V1 definition
template to create and install a Matter Root CA (PAA) certificate for product attestation. The
AuthorityKeyIdentifier (AKI) extension is optional for PAAs. To set an AKI, you must generate a
Base64-encoded AKI value and pass it through a CustomExtension.

The example calls the following Amazon Private CA API actions:

• CreateCertificateAuthority

• GetCertificateAuthorityCsr

• IssueCertificate

• GetCertificate

• ImportCertificateAuthorityCertificate

If you encounter problems, see Troubleshoot Amazon Private CA Matter-compliant certificate
errors in the Troubleshooting section.

package com.amazonaws.samples.matter;

import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.client.builder.AwsClientBuilder;
import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration;
import com.amazonaws.samples.GetCertificateAuthorityCertificate;
import com.amazonaws.auth.AWSStaticCredentialsProvider;

import com.amazonaws.services.acmpca.AWSACMPCA;
import com.amazonaws.services.acmpca.AWSACMPCAClientBuilder;

import com.amazonaws.services.acmpca.model.ASN1Subject;
import com.amazonaws.services.acmpca.model.ApiPassthrough;
import com.amazonaws.services.acmpca.model.CertificateAuthorityConfiguration;
import com.amazonaws.services.acmpca.model.CertificateAuthorityType;
import com.amazonaws.services.acmpca.model.CreateCertificateAuthorityResult;
import com.amazonaws.services.acmpca.model.CreateCertificateAuthorityRequest;
import com.amazonaws.services.acmpca.model.CrlConfiguration;
import com.amazonaws.services.acmpca.model.CustomAttribute;
import com.amazonaws.services.acmpca.model.CustomExtension;

Activate a Product Attestation Authority (PAA) Version latest 122

https://buildwithmatter.com
https://docs.amazonaws.cn/privateca/latest/APIReference/API_CreateCertificateAuthority.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_GetCertificateAuthorityCsr.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_IssueCertificate.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_GetCertificate.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_ImportCertificateAuthorityCertificate.html

Amazon Private Certificate Authority User Guide

import com.amazonaws.services.acmpca.model.Extensions;
import com.amazonaws.services.acmpca.model.KeyAlgorithm;
import com.amazonaws.services.acmpca.model.SigningAlgorithm;
import com.amazonaws.services.acmpca.model.Tag;

import java.io.ByteArrayInputStream;
import java.io.InputStreamReader;
import java.nio.ByteBuffer;
import java.nio.charset.StandardCharsets;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Base64;
import java.util.List;
import java.util.Objects;

import com.amazonaws.services.acmpca.model.GetCertificateAuthorityCsrRequest;
import com.amazonaws.services.acmpca.model.GetCertificateAuthorityCsrResult;
import com.amazonaws.services.acmpca.model.GetCertificateRequest;
import com.amazonaws.services.acmpca.model.GetCertificateResult;
import
 com.amazonaws.services.acmpca.model.ImportCertificateAuthorityCertificateRequest;
import com.amazonaws.services.acmpca.model.IssueCertificateRequest;
import com.amazonaws.services.acmpca.model.IssueCertificateResult;
import com.amazonaws.services.acmpca.model.SigningAlgorithm;
import com.amazonaws.services.acmpca.model.Validity;
import com.amazonaws.services.acmpca.model.RevocationConfiguration;
import com.amazonaws.services.acmpca.model.CrlConfiguration;
import com.amazonaws.services.acmpca.model.CrlDistributionPointExtensionConfiguration;

import com.amazonaws.AmazonClientException;
import com.amazonaws.services.acmpca.model.CertificateMismatchException;
import com.amazonaws.services.acmpca.model.ConcurrentModificationException;
import com.amazonaws.services.acmpca.model.LimitExceededException;
import com.amazonaws.services.acmpca.model.InvalidArgsException;
import com.amazonaws.services.acmpca.model.InvalidArnException;
import com.amazonaws.services.acmpca.model.InvalidPolicyException;
import com.amazonaws.services.acmpca.model.InvalidStateException;
import com.amazonaws.services.acmpca.model.MalformedCertificateException;
import com.amazonaws.services.acmpca.model.MalformedCSRException;
import com.amazonaws.services.acmpca.model.RequestFailedException;
import com.amazonaws.services.acmpca.model.RequestInProgressException;
import com.amazonaws.services.acmpca.model.ResourceNotFoundException;
import com.amazonaws.services.acmpca.model.AWSACMPCAException;

Activate a Product Attestation Authority (PAA) Version latest 123

Amazon Private Certificate Authority User Guide

import com.amazonaws.waiters.Waiter;
import com.amazonaws.waiters.WaiterParameters;
import com.amazonaws.waiters.WaiterTimedOutException;
import com.amazonaws.waiters.WaiterUnrecoverableException;

import org.bouncycastle.asn1.x509.SubjectPublicKeyInfo;
import org.bouncycastle.cert.jcajce.JcaX509ExtensionUtils;
import org.bouncycastle.openssl.PEMParser;
import org.bouncycastle.pkcs.PKCS10CertificationRequest;
import org.bouncycastle.util.io.pem.PemReader;

import lombok.SneakyThrows;

public class ProductAttestationAuthorityActivation {

 public static void main(String[] args) throws Exception {
 // Define the endpoint region for your sample.
 String endpointRegion = "region"; // Substitute your region here, e.g. "ap-
southeast-2"

 // Define custom attributes
 List<CustomAttribute> customAttributes = Arrays.asList(
 new CustomAttribute()
 .withObjectIdentifier("2.5.4.3") // CommonName
 .withValue("Matter Test PAA"),
 new CustomAttribute()
 .withObjectIdentifier("1.3.6.1.4.1.37244.2.1") // Vendor ID
 .withValue("FFF1")
);

 // Define a CA subject.
 ASN1Subject subject = new ASN1Subject();
 subject.setCustomAttributes(customAttributes);

 // Define the CA configuration.
 CertificateAuthorityConfiguration configCA = new
 CertificateAuthorityConfiguration();
 configCA.withKeyAlgorithm(KeyAlgorithm.EC_prime256v1);
 configCA.withSigningAlgorithm(SigningAlgorithm.SHA256WITHECDSA);
 configCA.withSubject(subject);

 // Define a CRL distribution point extension configuration
 CrlDistributionPointExtensionConfiguration CDPConfigure = new
 CrlDistributionPointExtensionConfiguration();

Activate a Product Attestation Authority (PAA) Version latest 124

Amazon Private Certificate Authority User Guide

 CDPConfigure.withOmitExtension(true);

 // Define a certificate revocation list configuration.
 CrlConfiguration crlConfigure = new CrlConfiguration();
 crlConfigure.withEnabled(true);
 crlConfigure.withExpirationInDays(365);
 crlConfigure.withCustomCname(null);
 crlConfigure.withS3BucketName("your-bucket-name");
 crlConfigure.withS3ObjectAcl("BUCKET_OWNER_FULL_CONTROL");
 crlConfigure.withCrlDistributionPointExtensionConfiguration(CDPConfigure);

 // Define a certificate authority type
 CertificateAuthorityType CAtype = CertificateAuthorityType.ROOT;

 // ** Execute core code samples for Root CA activation in sequence **
 AWSACMPCA client = ClientBuilder(endpointRegion);
 String rootCAArn = CreateCertificateAuthority(configCA, crlConfigure, CAtype,
 client);
 String csr = GetCertificateAuthorityCsr(rootCAArn, client);
 String rootCertificateArn = IssueCertificate(rootCAArn, csr, client);
 String rootCertificate = GetCertificate(rootCertificateArn, rootCAArn, client);
 ImportCertificateAuthorityCertificate(rootCertificate, rootCAArn, client);
 }

 private static AWSACMPCA ClientBuilder(String endpointRegion) {
 // Retrieve your credentials from the C:\Users\name\.aws\credentials file
 // in Windows or the .aws/credentials file in Linux.
 AWSCredentials credentials = null;
 try {
 credentials = new ProfileCredentialsProvider("default").getCredentials();
 } catch (Exception e) {
 throw new AmazonClientException(
 "Cannot load the credentials from the credential profiles file. " +
 "Please make sure that your credentials file is at the correct " +
 "location (C:\\Users\\joneps\\.aws\\credentials), and is in valid
 format.",
 e);
 }

 String endpointProtocol = "https://acm-pca." + endpointRegion +
 ".amazonaws.com/";
 EndpointConfiguration endpoint =
 new AwsClientBuilder.EndpointConfiguration(endpointProtocol,
 endpointRegion);

Activate a Product Attestation Authority (PAA) Version latest 125

Amazon Private Certificate Authority User Guide

 // Create a client that you can use to make requests.
 AWSACMPCA client = AWSACMPCAClientBuilder.standard()
 .withEndpointConfiguration(endpoint)
 .withCredentials(new AWSStaticCredentialsProvider(credentials))
 .build();

 return client;
 }

 private static String CreateCertificateAuthority(CertificateAuthorityConfiguration
 configCA, CrlConfiguration crlConfigure, CertificateAuthorityType CAtype, AWSACMPCA
 client) {
 RevocationConfiguration revokeConfig = new RevocationConfiguration();
 revokeConfig.setCrlConfiguration(crlConfigure);

 // Create the request object.
 CreateCertificateAuthorityRequest createCARequest = new
 CreateCertificateAuthorityRequest();
 createCARequest.withCertificateAuthorityConfiguration(configCA);
 createCARequest.withIdempotencyToken("123987");
 createCARequest.withCertificateAuthorityType(CAtype);
 createCARequest.withRevocationConfiguration(revokeConfig);

 // Create the private CA.
 CreateCertificateAuthorityResult createCAResult = null;
 try {
 createCAResult = client.createCertificateAuthority(createCARequest);
 } catch (InvalidArgsException ex) {
 throw ex;
 } catch (InvalidPolicyException ex) {
 throw ex;
 } catch (LimitExceededException ex) {
 throw ex;
 }

 // Retrieve the ARN of the private CA.
 String rootCAArn = createCAResult.getCertificateAuthorityArn();
 System.out.println("Product Attestation Authority (PAA) Arn: " + rootCAArn);

 return rootCAArn;
 }

Activate a Product Attestation Authority (PAA) Version latest 126

Amazon Private Certificate Authority User Guide

 private static String GetCertificateAuthorityCsr(String rootCAArn, AWSACMPCA
 client) {

 // Create the CSR request object and set the CA ARN.
 GetCertificateAuthorityCsrRequest csrRequest = new
 GetCertificateAuthorityCsrRequest();
 csrRequest.withCertificateAuthorityArn(rootCAArn);

 // Create waiter to wait on successful creation of the CSR file.
 Waiter<GetCertificateAuthorityCsrRequest> getCSRWaiter =
 client.waiters().certificateAuthorityCSRCreated();
 try {
 getCSRWaiter.run(new WaiterParameters<>(csrRequest));
 } catch (WaiterUnrecoverableException e) {
 //Explicit short circuit when the recourse transitions into
 //an undesired state.
 } catch (WaiterTimedOutException e) {
 //Failed to transition into desired state even after polling.
 } catch (AWSACMPCAException e) {
 //Unexpected service exception.
 }

 // Retrieve the CSR.
 GetCertificateAuthorityCsrResult csrResult = null;
 try {
 csrResult = client.getCertificateAuthorityCsr(csrRequest);
 } catch (RequestInProgressException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (RequestFailedException ex) {
 throw ex;
 }

 // Retrieve and display the CSR;
 String csr = csrResult.getCsr();
 System.out.println(csr);

 return csr;
 }

 @SneakyThrows

Activate a Product Attestation Authority (PAA) Version latest 127

Amazon Private Certificate Authority User Guide

 private static String generateAuthorityKeyIdentifier(final String csrPEM) {
 PKCS10CertificationRequest csr = getPKCS10CertificationRequest(csrPEM);
 SubjectPublicKeyInfo spki = csr.getSubjectPublicKeyInfo();

 JcaX509ExtensionUtils extensionUtils = new JcaX509ExtensionUtils();
 byte[] akiBytes =
 extensionUtils.createAuthorityKeyIdentifier(spki).getEncoded();

 return Base64.getEncoder().encodeToString(akiBytes);
 }

 @SneakyThrows
 private static PKCS10CertificationRequest getPKCS10CertificationRequest(final
 String csrPEM) {
 ByteArrayInputStream bais = new ByteArrayInputStream(csrPEM.getBytes());
 PemReader pemReader = new PemReader(new InputStreamReader(bais));
 PEMParser parser = new PEMParser(pemReader);
 Object o = parser.readObject();
 if (o instanceof PKCS10CertificationRequest) {
 return (PKCS10CertificationRequest) o;
 }
 return null;
 }

 private static String IssueCertificate(String rootCAArn, String csr, AWSACMPCA
 client) {

 // Create a certificate request:
 IssueCertificateRequest issueRequest = new IssueCertificateRequest();

 // Set the CA ARN.
 issueRequest.withCertificateAuthorityArn(rootCAArn);

 // Set the template ARN.
 issueRequest.withTemplateArn("arn:aws:acm-pca:::template/
RootCACertificate_APIPassthrough/V1");

 ByteBuffer csrByteBuffer = stringToByteBuffer(csr);
 issueRequest.setCsr(csrByteBuffer);

 // Set the signing algorithm.
 issueRequest.withSigningAlgorithm(SigningAlgorithm.SHA256WITHECDSA);

 // Set the validity period for the certificate to be issued.

Activate a Product Attestation Authority (PAA) Version latest 128

Amazon Private Certificate Authority User Guide

 Validity validity = new Validity();
 validity.withValue(3650L);
 validity.withType("DAYS");
 issueRequest.withValidity(validity);

 // Set the idempotency token.
 issueRequest.setIdempotencyToken("1234");

 // Generate Base64 encoded extension value for AuthorityKeyIdentifier
 String base64EncodedExtValue = generateAuthorityKeyIdentifier(csr);

 // Generate custom extension
 CustomExtension customExtension = new CustomExtension();
 customExtension.setObjectIdentifier("2.5.29.35"); // AuthorityKeyIdentifier
 Extension OID
 customExtension.setValue(base64EncodedExtValue);

 // Add custom extension to api-passthrough
 ApiPassthrough apiPassthrough = new ApiPassthrough();
 Extensions extensions = new Extensions();
 extensions.setCustomExtensions(Arrays.asList(customExtension));
 apiPassthrough.setExtensions(extensions);
 issueRequest.setApiPassthrough(apiPassthrough);

 // Issue the certificate.
 IssueCertificateResult issueResult = null;
 try {
 issueResult = client.issueCertificate(issueRequest);
 } catch (LimitExceededException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (InvalidStateException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (InvalidArgsException ex) {
 throw ex;
 } catch (MalformedCSRException ex) {
 throw ex;
 }

 // Retrieve and display the certificate ARN.
 String rootCertificateArn = issueResult.getCertificateArn();

Activate a Product Attestation Authority (PAA) Version latest 129

Amazon Private Certificate Authority User Guide

 System.out.println("Product Attestation Authority (PAA) Certificate Arn: " +
 rootCertificateArn);

 return rootCertificateArn;
 }

 private static String GetCertificate(String rootCertificateArn, String rootCAArn,
 AWSACMPCA client) {

 // Create a request object.
 GetCertificateRequest certificateRequest = new GetCertificateRequest();

 // Set the certificate ARN.
 certificateRequest.withCertificateArn(rootCertificateArn);

 // Set the certificate authority ARN.
 certificateRequest.withCertificateAuthorityArn(rootCAArn);

 // Create waiter to wait on successful creation of the certificate file.
 Waiter<GetCertificateRequest> getCertificateWaiter =
 client.waiters().certificateIssued();
 try {
 getCertificateWaiter.run(new WaiterParameters<>(certificateRequest));
 } catch (WaiterUnrecoverableException e) {
 //Explicit short circuit when the recourse transitions into
 //an undesired state.
 } catch (WaiterTimedOutException e) {
 //Failed to transition into desired state even after polling.
 } catch (AWSACMPCAException e) {
 //Unexpected service exception.
 }

 // Retrieve the certificate and certificate chain.
 GetCertificateResult certificateResult = null;
 try {
 certificateResult = client.getCertificate(certificateRequest);
 } catch (RequestInProgressException ex) {
 throw ex;
 } catch (RequestFailedException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;

Activate a Product Attestation Authority (PAA) Version latest 130

Amazon Private Certificate Authority User Guide

 } catch (InvalidStateException ex) {
 throw ex;
 }

 // Get the certificate and certificate chain and display the result.
 String rootCertificate = certificateResult.getCertificate();
 System.out.println(rootCertificate);

 return rootCertificate;
 }

 private static void ImportCertificateAuthorityCertificate(String rootCertificate,
 String rootCAArn, AWSACMPCA client) {

 // Create the request object and set the signed certificate, chain and CA ARN.
 ImportCertificateAuthorityCertificateRequest importRequest =
 new ImportCertificateAuthorityCertificateRequest();

 ByteBuffer certByteBuffer = stringToByteBuffer(rootCertificate);
 importRequest.setCertificate(certByteBuffer);

 importRequest.setCertificateChain(null);

 // Set the certificate authority ARN.
 importRequest.withCertificateAuthorityArn(rootCAArn);

 // Import the certificate.
 try {
 client.importCertificateAuthorityCertificate(importRequest);
 } catch (CertificateMismatchException ex) {
 throw ex;
 } catch (MalformedCertificateException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (RequestInProgressException ex) {
 throw ex;
 } catch (ConcurrentModificationException ex) {
 throw ex;
 } catch (RequestFailedException ex) {
 throw ex;
 }

Activate a Product Attestation Authority (PAA) Version latest 131

Amazon Private Certificate Authority User Guide

 System.out.println("Product Attestation Authority (PAA) certificate
 successfully imported.");
 System.out.println("Product Attestation Authority (PAA) activated
 successfully.");
 }

 private static ByteBuffer stringToByteBuffer(final String string) {
 if (Objects.isNull(string)) {
 return null;
 }
 byte[] bytes = string.getBytes(StandardCharsets.UTF_8);
 return ByteBuffer.wrap(bytes);
 }
}

Activate an Product Attestation Intermediate (PAI)

This Java sample shows how to use the BlankSubordinateCACertificate_PathLen0_APIPassthrough/
V1 definition template to create and install a Matter Subordinate CA (PAI) certificate for product
attestation. You must generate a Base64-encoded KeyUsage value and pass it through a
CustomExtension.

The example calls the following Amazon Private CA API actions:

• CreateCertificateAuthority

• GetCertificateAuthorityCsr

• IssueCertificate

• GetCertificate

• ImportCertificateAuthorityCertificate

• GetCertificateAuthorityCertificate

If you encounter problems, see Troubleshoot Amazon Private CA Matter-compliant certificate
errors in the Troubleshooting section.

package com.amazonaws.samples.matter;

import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.client.builder.AwsClientBuilder;

Activate an Product Attestation Intermediate (PAI) Version latest 132

https://buildwithmatter.com
https://docs.amazonaws.cn/privateca/latest/APIReference/API_CreateCertificateAuthority.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_GetCertificateAuthorityCsr.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_IssueCertificate.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_GetCertificate.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_ImportCertificateAuthorityCertificate.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_GetCertificateAuthorityCertificate.html

Amazon Private Certificate Authority User Guide

import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration;
import com.amazonaws.auth.AWSStaticCredentialsProvider;

import com.amazonaws.services.acmpca.AWSACMPCA;
import com.amazonaws.services.acmpca.AWSACMPCAClientBuilder;

import com.amazonaws.services.acmpca.model.ASN1Subject;
import com.amazonaws.services.acmpca.model.ApiPassthrough;
import com.amazonaws.services.acmpca.model.CertificateAuthorityConfiguration;
import com.amazonaws.services.acmpca.model.CertificateAuthorityType;
import com.amazonaws.services.acmpca.model.CreateCertificateAuthorityResult;
import com.amazonaws.services.acmpca.model.CreateCertificateAuthorityRequest;
import com.amazonaws.services.acmpca.model.CustomAttribute;
import com.amazonaws.services.acmpca.model.CustomExtension;
import com.amazonaws.services.acmpca.model.Extensions;
import com.amazonaws.services.acmpca.model.KeyAlgorithm;
import com.amazonaws.services.acmpca.model.SigningAlgorithm;
import com.amazonaws.services.acmpca.model.RevocationConfiguration;
import com.amazonaws.services.acmpca.model.CrlConfiguration;
import com.amazonaws.services.acmpca.model.CrlDistributionPointExtensionConfiguration;

import java.nio.ByteBuffer;
import java.nio.charset.StandardCharsets;
import java.util.Arrays;
import java.util.Base64;
import java.util.List;
import java.util.Objects;

import org.bouncycastle.asn1.x509.KeyUsage;
import org.bouncycastle.jce.X509KeyUsage;

import com.amazonaws.services.acmpca.model.GetCertificateAuthorityCertificateRequest;
import com.amazonaws.services.acmpca.model.GetCertificateAuthorityCertificateResult;
import com.amazonaws.services.acmpca.model.GetCertificateAuthorityCsrRequest;
import com.amazonaws.services.acmpca.model.GetCertificateAuthorityCsrResult;
import com.amazonaws.services.acmpca.model.GetCertificateRequest;
import com.amazonaws.services.acmpca.model.GetCertificateResult;
import
 com.amazonaws.services.acmpca.model.ImportCertificateAuthorityCertificateRequest;
import com.amazonaws.services.acmpca.model.IssueCertificateRequest;
import com.amazonaws.services.acmpca.model.IssueCertificateResult;
import com.amazonaws.services.acmpca.model.Validity;

Activate an Product Attestation Intermediate (PAI) Version latest 133

Amazon Private Certificate Authority User Guide

import com.amazonaws.AmazonClientException;
import com.amazonaws.services.acmpca.model.CertificateMismatchException;
import com.amazonaws.services.acmpca.model.ConcurrentModificationException;
import com.amazonaws.services.acmpca.model.LimitExceededException;
import com.amazonaws.services.acmpca.model.InvalidArgsException;
import com.amazonaws.services.acmpca.model.InvalidArnException;
import com.amazonaws.services.acmpca.model.InvalidPolicyException;
import com.amazonaws.services.acmpca.model.InvalidStateException;
import com.amazonaws.services.acmpca.model.MalformedCertificateException;
import com.amazonaws.services.acmpca.model.MalformedCSRException;
import com.amazonaws.services.acmpca.model.RequestFailedException;
import com.amazonaws.services.acmpca.model.RequestInProgressException;
import com.amazonaws.services.acmpca.model.ResourceNotFoundException;
import com.amazonaws.services.acmpca.model.AWSACMPCAException;

import com.amazonaws.waiters.Waiter;
import com.amazonaws.waiters.WaiterParameters;
import com.amazonaws.waiters.WaiterTimedOutException;
import com.amazonaws.waiters.WaiterUnrecoverableException;

import lombok.SneakyThrows;

public class ProductAttestationIntermediateActivation {

 public static void main(String[] args) throws Exception {
 // Place your own Root CA ARN here.
 String paaArn = "arn:aws:acm-pca:region:123456789012:certificate-
authority/12345678-1234-1234-1234-123456789012";

 // Define the endpoint region for your sample.
 String endpointRegion = "region"; // Substitute your region here, e.g. "ap-
southeast-2"

 // Define custom attributes
 List<CustomAttribute> customAttributes = Arrays.asList(
 new CustomAttribute()
 .withObjectIdentifier("2.5.4.3") // CommonName
 .withValue("Matter Test PAI"),
 new CustomAttribute()
 .withObjectIdentifier("1.3.6.1.4.1.37244.2.1") // Vendor ID
 .withValue("FFF1"),
 new CustomAttribute()
 .withObjectIdentifier("1.3.6.1.4.1.37244.2.2") // Product ID
 .withValue("8000")

Activate an Product Attestation Intermediate (PAI) Version latest 134

Amazon Private Certificate Authority User Guide

);

 // Define a CA subject.
 ASN1Subject subject = new ASN1Subject();
 subject.setCustomAttributes(customAttributes);

 // Define the CA configuration.
 CertificateAuthorityConfiguration configCA = new
 CertificateAuthorityConfiguration();
 configCA.withKeyAlgorithm(KeyAlgorithm.EC_prime256v1);
 configCA.withSigningAlgorithm(SigningAlgorithm.SHA256WITHECDSA);
 configCA.withSubject(subject);

 // Define a CRL distribution point extension configuration
 CrlDistributionPointExtensionConfiguration CDPConfigure = new
 CrlDistributionPointExtensionConfiguration();
 CDPConfigure.withOmitExtension(true);

 // Define a certificate revocation list configuration.
 CrlConfiguration crlConfigure = new CrlConfiguration();
 crlConfigure.withEnabled(true);
 crlConfigure.withExpirationInDays(365);
 crlConfigure.withCustomCname(null);
 crlConfigure.withS3BucketName("your-bucket-name");
 crlConfigure.withS3ObjectAcl("BUCKET_OWNER_FULL_CONTROL");
 crlConfigure.withCrlDistributionPointConfiguration(CDPConfigure);

 // Define a certificate authority type
 CertificateAuthorityType CAtype = CertificateAuthorityType.SUBORDINATE;

 // ** Execute core code samples for Subordinate CA activation in sequence **
 AWSACMPCA client = ClientBuilder(endpointRegion);
 String rootCertificate = GetCertificateAuthorityCertificate(paaArn, client);
 String subordinateCAArn = CreateCertificateAuthority(configCA, crlConfigure,
 CAtype, client);
 String csr = GetCertificateAuthorityCsr(subordinateCAArn, client);
 String subordinateCertificateArn = IssueCertificate(paaArn, csr, client);
 String subordinateCertificate = GetCertificate(subordinateCertificateArn,
 paaArn, client);
 ImportCertificateAuthorityCertificate(subordinateCertificate, rootCertificate,
 subordinateCAArn, client);

 }

Activate an Product Attestation Intermediate (PAI) Version latest 135

Amazon Private Certificate Authority User Guide

 private static AWSACMPCA ClientBuilder(String endpointRegion) {
 // Retrieve your credentials from the C:\Users\name\.aws\credentials file
 // in Windows or the .aws/credentials file in Linux.
 AWSCredentials credentials = null;
 try {
 credentials = new ProfileCredentialsProvider("default").getCredentials();
 } catch (Exception e) {
 throw new AmazonClientException(
 "Cannot load the credentials from the credential profiles file. " +
 "Please make sure that your credentials file is at the correct " +
 "location (C:\\Users\\joneps\\.aws\\credentials), and is in valid
 format.",
 e);
 }

 String endpointProtocol = "https://acm-pca." + endpointRegion +
 ".amazonaws.com/";
 EndpointConfiguration endpoint =
 new AwsClientBuilder.EndpointConfiguration(endpointProtocol,
 endpointRegion);

 // Create a client that you can use to make requests.
 AWSACMPCA client = AWSACMPCAClientBuilder.standard()
 .withEndpointConfiguration(endpoint)
 .withCredentials(new AWSStaticCredentialsProvider(credentials))
 .build();

 return client;
 }

 private static String GetCertificateAuthorityCertificate(String rootCAArn,
 AWSACMPCA client) {
 // ** GetCertificateAuthorityCertificate **

 // Create a request object and set the certificate authority ARN,
 GetCertificateAuthorityCertificateRequest getCACertificateRequest =
 new GetCertificateAuthorityCertificateRequest();
 getCACertificateRequest.withCertificateAuthorityArn(rootCAArn);

 // Create a result object.
 GetCertificateAuthorityCertificateResult getCACertificateResult = null;
 try {
 getCACertificateResult =
 client.getCertificateAuthorityCertificate(getCACertificateRequest);

Activate an Product Attestation Intermediate (PAI) Version latest 136

Amazon Private Certificate Authority User Guide

 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (InvalidStateException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 }

 // Retrieve and display the certificate information.
 String rootCertificate = getCACertificateResult.getCertificate();
 System.out.println("Product Attestation Authority (PAA) Certificate /
 Certificate Chain:");
 System.out.println(rootCertificate);

 return rootCertificate;
 }

 private static String CreateCertificateAuthority(CertificateAuthorityConfiguration
 configCA, CrlConfiguration crlConfigure, CertificateAuthorityType CAtype, AWSACMPCA
 client) {
 RevocationConfiguration revokeConfig = new RevocationConfiguration();
 revokeConfig.setCrlConfiguration(crlConfigure);

 // Create the request object.
 CreateCertificateAuthorityRequest createCARequest = new
 CreateCertificateAuthorityRequest();
 createCARequest.withCertificateAuthorityConfiguration(configCA);
 createCARequest.withIdempotencyToken("123987");
 createCARequest.withCertificateAuthorityType(CAtype);
 createCARequest.withRevocationConfiguration(revokeConfig);

 // Create the private CA.
 CreateCertificateAuthorityResult createCAResult = null;
 try {
 createCAResult = client.createCertificateAuthority(createCARequest);
 } catch (InvalidArgsException ex) {
 throw ex;
 } catch (InvalidPolicyException ex) {
 throw ex;
 } catch (LimitExceededException ex) {
 throw ex;
 }

 // Retrieve the ARN of the private CA.

Activate an Product Attestation Intermediate (PAI) Version latest 137

Amazon Private Certificate Authority User Guide

 String subordinateCAArn = createCAResult.getCertificateAuthorityArn();
 System.out.println("Product Attestation Intermediate (PAI) Arn: " +
 subordinateCAArn);

 return subordinateCAArn;
 }

 private static String GetCertificateAuthorityCsr(String subordinateCAArn, AWSACMPCA
 client) {

 // Create the CSR request object and set the CA ARN.
 GetCertificateAuthorityCsrRequest csrRequest = new
 GetCertificateAuthorityCsrRequest();
 csrRequest.withCertificateAuthorityArn(subordinateCAArn);

 // Create waiter to wait on successful creation of the CSR file.
 Waiter<GetCertificateAuthorityCsrRequest> getCSRWaiter =
 client.waiters().certificateAuthorityCSRCreated();
 try {
 getCSRWaiter.run(new WaiterParameters<>(csrRequest));
 } catch (WaiterUnrecoverableException e) {
 //Explicit short circuit when the recourse transitions into
 //an undesired state.
 } catch (WaiterTimedOutException e) {
 //Failed to transition into desired state even after polling.
 } catch(AWSACMPCAException e) {
 //Unexpected service exception.
 }

 // Retrieve the CSR.
 GetCertificateAuthorityCsrResult csrResult = null;
 try {
 csrResult = client.getCertificateAuthorityCsr(csrRequest);
 } catch (RequestInProgressException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (RequestFailedException ex) {
 throw ex;
 }

 // Retrieve and display the CSR;

Activate an Product Attestation Intermediate (PAI) Version latest 138

Amazon Private Certificate Authority User Guide

 String csr = csrResult.getCsr();
 System.out.println("Subordinate CSR:");
 System.out.println(csr);

 return csr;
 }

 private static String IssueCertificate(String rootCAArn, String csr, AWSACMPCA
 client) {

 // Create a certificate request:
 IssueCertificateRequest issueRequest = new IssueCertificateRequest();

 // Set the issuing CA ARN.
 issueRequest.withCertificateAuthorityArn(rootCAArn);

 // Set the template ARN.
 issueRequest.withTemplateArn("arn:aws:acm-pca:::template/
BlankSubordinateCACertificate_PathLen0_APIPassthrough/V1");

 ByteBuffer csrByteBuffer = stringToByteBuffer(csr);
 issueRequest.setCsr(csrByteBuffer);

 // Set the signing algorithm.
 issueRequest.withSigningAlgorithm(SigningAlgorithm.SHA256WITHECDSA);

 // Set the validity period for the certificate to be issued.
 Validity validity = new Validity();
 validity.withValue(730L); // Approximately two years
 validity.withType("DAYS");
 issueRequest.withValidity(validity);

 // Set the idempotency token.
 issueRequest.setIdempotencyToken("1234");

 ApiPassthrough apiPassthrough = new ApiPassthrough();

 // Generate Base64 encoded extension value for ExtendedKeyUsage
 String base64EncodedKUValue = generateKeyUsageValue();

 // Generate custom extension
 CustomExtension customKeyUsageExtension = new CustomExtension();
 customKeyUsageExtension.setObjectIdentifier("2.5.29.15");
 customKeyUsageExtension.setValue(base64EncodedKUValue);

Activate an Product Attestation Intermediate (PAI) Version latest 139

Amazon Private Certificate Authority User Guide

 customKeyUsageExtension.setCritical(true);

 // Set KeyUsage extension to api passthrough
 Extensions extensions = new Extensions();
 extensions.setCustomExtensions(Arrays.asList(customKeyUsageExtension));
 apiPassthrough.setExtensions(extensions);
 issueRequest.setApiPassthrough(apiPassthrough);

 // Issue the certificate.
 IssueCertificateResult issueResult = null;
 try {
 issueResult = client.issueCertificate(issueRequest);
 } catch (LimitExceededException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (InvalidStateException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (InvalidArgsException ex) {
 throw ex;
 } catch (MalformedCSRException ex) {
 throw ex;
 }

 // Retrieve and display the certificate ARN.
 String subordinateCertificateArn = issueResult.getCertificateArn();
 System.out.println("Subordinate Certificate Arn: " +
 subordinateCertificateArn);

 return subordinateCertificateArn;
 }

 @SneakyThrows
 private static String generateKeyUsageValue() {
 KeyUsage keyUsage = new KeyUsage(X509KeyUsage.keyCertSign |
 X509KeyUsage.cRLSign);
 byte[] kuBytes = keyUsage.getEncoded();
 return Base64.getEncoder().encodeToString(kuBytes);
 }

 private static String GetCertificate(String subordinateCertificateArn, String
 rootCAArn, AWSACMPCA client) {

Activate an Product Attestation Intermediate (PAI) Version latest 140

Amazon Private Certificate Authority User Guide

 // Create a request object.
 GetCertificateRequest certificateRequest = new GetCertificateRequest();

 // Set the certificate ARN.
 certificateRequest.withCertificateArn(subordinateCertificateArn);

 // Set the certificate authority ARN.
 certificateRequest.withCertificateAuthorityArn(rootCAArn);

 // Create waiter to wait on successful creation of the certificate file.
 Waiter<GetCertificateRequest> getCertificateWaiter =
 client.waiters().certificateIssued();
 try {
 getCertificateWaiter.run(new WaiterParameters<>(certificateRequest));
 } catch (WaiterUnrecoverableException e) {
 //Explicit short circuit when the recourse transitions into
 //an undesired state.
 } catch (WaiterTimedOutException e) {
 //Failed to transition into desired state even after polling.
 } catch (AWSACMPCAException e) {
 //Unexpected service exception.
 }

 // Retrieve the certificate and certificate chain.
 GetCertificateResult certificateResult = null;
 try {
 certificateResult = client.getCertificate(certificateRequest);
 } catch (RequestInProgressException ex) {
 throw ex;
 } catch (RequestFailedException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (InvalidStateException ex) {
 throw ex;
 }

 // Get the certificate and certificate chain and display the result.
 String subordinateCertificate = certificateResult.getCertificate();
 System.out.println("Subordinate CA Certificate:");
 System.out.println(subordinateCertificate);

Activate an Product Attestation Intermediate (PAI) Version latest 141

Amazon Private Certificate Authority User Guide

 return subordinateCertificate;
 }

 private static void ImportCertificateAuthorityCertificate(String
 subordinateCertificate, String rootCertificate, String subordinateCAArn, AWSACMPCA
 client) {

 // Create the request object and set the signed certificate, chain and CA ARN.
 ImportCertificateAuthorityCertificateRequest importRequest =
 new ImportCertificateAuthorityCertificateRequest();

 ByteBuffer certByteBuffer = stringToByteBuffer(subordinateCertificate);
 importRequest.setCertificate(certByteBuffer);

 ByteBuffer rootCACertByteBuffer = stringToByteBuffer(rootCertificate);
 importRequest.setCertificateChain(rootCACertByteBuffer);

 // Set the certificate authority ARN.
 importRequest.withCertificateAuthorityArn(subordinateCAArn);

 // Import the certificate.
 try {
 client.importCertificateAuthorityCertificate(importRequest);
 } catch (CertificateMismatchException ex) {
 throw ex;
 } catch (MalformedCertificateException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (RequestInProgressException ex) {
 throw ex;
 } catch (ConcurrentModificationException ex) {
 throw ex;
 } catch (RequestFailedException ex) {
 throw ex;
 }
 System.out.println("Product Attestation Intermediate (PAI) certificate
 successfully imported.");
 System.out.println("Product Attestation Intermediate (PAI) activated
 successfully.");
 }

Activate an Product Attestation Intermediate (PAI) Version latest 142

Amazon Private Certificate Authority User Guide

 private static ByteBuffer stringToByteBuffer(final String string) {
 if (Objects.isNull(string)) {
 return null;
 }
 byte[] bytes = string.getBytes(StandardCharsets.UTF_8);
 return ByteBuffer.wrap(bytes);
 }
}

Create a Device Attestation Certificate (DAC)

This Java sample shows how to use the
BlankEndEntityCertificate_CriticalBasicConstraints_APIPassthrough/V1 template to create a Matter
Device Attestation Certificate. You must generate a Base64-encoded KeyUsage value and pass it
through a CustomExtension.

The example calls the following Amazon Private CA API action:

• IssueCertificate

If you encounter problems, see Troubleshoot Amazon Private CA Matter-compliant certificate
errors in the Troubleshooting section.

package com.amazonaws.samples.matter;

import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.client.builder.AwsClientBuilder;
import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration;
import com.amazonaws.auth.AWSStaticCredentialsProvider;

import java.nio.ByteBuffer;
import java.nio.charset.StandardCharsets;
import java.util.Arrays;
import java.util.Base64;
import java.util.List;
import java.util.Objects;

import com.amazonaws.services.acmpca.AWSACMPCA;
import com.amazonaws.services.acmpca.AWSACMPCAClientBuilder;

Create a Device Attestation Certificate (DAC) Version latest 143

https://buildwithmatter.com
https://docs.amazonaws.cn/privateca/latest/APIReference/API_IssueCertificate.html

Amazon Private Certificate Authority User Guide

import com.amazonaws.services.acmpca.model.ASN1Subject;
import com.amazonaws.services.acmpca.model.ApiPassthrough;
import com.amazonaws.services.acmpca.model.CustomAttribute;
import com.amazonaws.services.acmpca.model.CustomExtension;
import com.amazonaws.services.acmpca.model.Extensions;
import com.amazonaws.services.acmpca.model.IssueCertificateRequest;
import com.amazonaws.services.acmpca.model.IssueCertificateResult;
import com.amazonaws.services.acmpca.model.SigningAlgorithm;
import com.amazonaws.services.acmpca.model.Validity;

import com.amazonaws.AmazonClientException;
import com.amazonaws.services.acmpca.model.LimitExceededException;
import com.amazonaws.services.acmpca.model.ResourceNotFoundException;
import com.amazonaws.services.acmpca.model.InvalidStateException;
import com.amazonaws.services.acmpca.model.InvalidArnException;
import com.amazonaws.services.acmpca.model.InvalidArgsException;
import com.amazonaws.services.acmpca.model.MalformedCSRException;

import org.bouncycastle.asn1.x509.KeyUsage;
import org.bouncycastle.jce.X509KeyUsage;

import lombok.SneakyThrows;

public class IssueDeviceAttestationCertificate {
 public static ByteBuffer stringToByteBuffer(final String string) {
 if (Objects.isNull(string)) {
 return null;
 }
 byte[] bytes = string.getBytes(StandardCharsets.UTF_8);
 return ByteBuffer.wrap(bytes);
 }

 @SneakyThrows
 private static String generateKeyUsageValue() {
 KeyUsage keyUsage = new KeyUsage(X509KeyUsage.digitalSignature);
 byte[] kuBytes = keyUsage.getEncoded();
 return Base64.getEncoder().encodeToString(kuBytes);
 }

 public static void main(String[] args) throws Exception {

 // Retrieve your credentials from the C:\Users\name\.aws\credentials file
 // in Windows or the .aws/credentials file in Linux.
 AWSCredentials credentials = null;

Create a Device Attestation Certificate (DAC) Version latest 144

Amazon Private Certificate Authority User Guide

 try {
 credentials = new ProfileCredentialsProvider("default").getCredentials();
 } catch (Exception e) {
 throw new AmazonClientException("Cannot load your credentials from disk", e);
 }

 // Define the endpoint for your sample.
 String endpointRegion = "region"; // Substitute your region here, e.g. "ap-
southeast-2"
 String endpointProtocol = "https://acm-pca." + endpointRegion +
 ".amazonaws.com/";
 EndpointConfiguration endpoint =
 new AwsClientBuilder.EndpointConfiguration(endpointProtocol, endpointRegion);

 // Create a client that you can use to make requests.
 AWSACMPCA client = AWSACMPCAClientBuilder.standard()
 .withEndpointConfiguration(endpoint)
 .withCredentials(new AWSStaticCredentialsProvider(credentials))
 .build();

 // Create a certificate request:
 IssueCertificateRequest req = new IssueCertificateRequest();

 // Set the CA ARN.
 req.withCertificateAuthorityArn("arn:aws:acm-pca:region:123456789012:certificate-
authority/12345678-1234-1234-1234-123456789012");

 // Specify the certificate signing request (CSR) for the certificate to be signed
 and issued.
 String strCSR =
 "-----BEGIN CERTIFICATE REQUEST-----\n" +
 "base64-encoded certificate\n" +
 "-----END CERTIFICATE REQUEST-----\n";
 ByteBuffer csrByteBuffer = stringToByteBuffer(strCSR);
 req.setCsr(csrByteBuffer);

 // Specify the template for the issued certificate.
 req.withTemplateArn("arn:aws:acm-pca:::template/
BlankEndEntityCertificate_CriticalBasicConstraints_APIPassthrough/V1");

 // Set the signing algorithm.
 req.withSigningAlgorithm(SigningAlgorithm.SHA256WITHECDSA);

 // Set the validity period for the certificate to be issued.

Create a Device Attestation Certificate (DAC) Version latest 145

Amazon Private Certificate Authority User Guide

 Validity validity = new Validity();
 validity.withValue(10L);
 validity.withType("DAYS");
 req.withValidity(validity);

 // Set the idempotency token.
 req.setIdempotencyToken("1234");

 // Define custom attributes
 List<CustomAttribute> customAttributes = Arrays.asList(
 new CustomAttribute()
 .withObjectIdentifier("2.5.4.3")
 .withValue("Matter Test DAC 0001"),
 new CustomAttribute()
 .withObjectIdentifier("1.3.6.1.4.1.37244.2.1")
 .withValue("FFF1"),
 new CustomAttribute()
 .withObjectIdentifier("1.3.6.1.4.1.37244.2.2")
 .withValue("8000")
);

 // Define a cert subject.
 ASN1Subject subject = new ASN1Subject();
 subject.setCustomAttributes(customAttributes);

 ApiPassthrough apiPassthrough = new ApiPassthrough();
 apiPassthrough.setSubject(subject);

 // Generate Base64 encoded extension value for ExtendedKeyUsage
 String base64EncodedKUValue = generateKeyUsageValue();

 // Generate custom extension
 CustomExtension customKeyUsageExtension = new CustomExtension();
 customKeyUsageExtension.setObjectIdentifier("2.5.29.15"); // KeyUsage Extension
 OID
 customKeyUsageExtension.setValue(base64EncodedKUValue);
 customKeyUsageExtension.setCritical(true);

 Extensions extensions = new Extensions();
 extensions.setCustomExtensions(Arrays.asList(customKeyUsageExtension));
 apiPassthrough.setExtensions(extensions);
 req.setApiPassthrough(apiPassthrough);

 // Issue the certificate.

Create a Device Attestation Certificate (DAC) Version latest 146

Amazon Private Certificate Authority User Guide

 IssueCertificateResult result = null;
 try {
 result = client.issueCertificate(req);
 } catch (LimitExceededException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (InvalidStateException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (InvalidArgsException ex) {
 throw ex;
 } catch (MalformedCSRException ex) {
 throw ex;
 }

 // Retrieve and display the certificate ARN.
 String arn = result.getCertificateArn();
 System.out.println(arn);
 }
}

Activate a Root CA for Node Operational Certificates (NOC).

This Java sample shows how to use the RootCACertificate_APIPassthrough/V1 definition template
to create and install a Matter Root CA certificate to issue NOCs. The AuthorityKeyIdentifier (AKI)
extension is optional for NOC Root CA certificates. To set an AKI, you must generate a Base64-
encoded AKI value and pass it through a CustomExtension.

The example calls the following Amazon Private CA API actions:

• CreateCertificateAuthority

• GetCertificateAuthorityCsr

• IssueCertificate

• GetCertificate

• ImportCertificateAuthorityCertificate

If you encounter problems, see Troubleshoot Amazon Private CA Matter-compliant certificate
errors in the Troubleshooting section.

Activate a Root CA for Node Operational Certificates (NOC). Version latest 147

https://buildwithmatter.com
https://docs.amazonaws.cn/privateca/latest/APIReference/API_CreateCertificateAuthority.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_GetCertificateAuthorityCsr.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_IssueCertificate.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_GetCertificate.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_ImportCertificateAuthorityCertificate.html

Amazon Private Certificate Authority User Guide

package com.amazonaws.samples.matter;

import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.client.builder.AwsClientBuilder;
import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration;
import com.amazonaws.samples.GetCertificateAuthorityCertificate;
import com.amazonaws.auth.AWSStaticCredentialsProvider;

import com.amazonaws.services.acmpca.AWSACMPCA;
import com.amazonaws.services.acmpca.AWSACMPCAClientBuilder;

import com.amazonaws.services.acmpca.model.ASN1Subject;
import com.amazonaws.services.acmpca.model.ApiPassthrough;
import com.amazonaws.services.acmpca.model.CertificateAuthorityConfiguration;
import com.amazonaws.services.acmpca.model.CertificateAuthorityType;
import com.amazonaws.services.acmpca.model.CreateCertificateAuthorityResult;
import com.amazonaws.services.acmpca.model.CreateCertificateAuthorityRequest;
import com.amazonaws.services.acmpca.model.CrlConfiguration;
import com.amazonaws.services.acmpca.model.CustomAttribute;
import com.amazonaws.services.acmpca.model.CustomExtension;
import com.amazonaws.services.acmpca.model.Extensions;
import com.amazonaws.services.acmpca.model.KeyAlgorithm;
import com.amazonaws.services.acmpca.model.SigningAlgorithm;
import com.amazonaws.services.acmpca.model.Tag;

import java.io.ByteArrayInputStream;
import java.io.InputStreamReader;
import java.nio.ByteBuffer;
import java.nio.charset.StandardCharsets;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Base64;
import java.util.List;
import java.util.Objects;

import com.amazonaws.services.acmpca.model.GetCertificateAuthorityCsrRequest;
import com.amazonaws.services.acmpca.model.GetCertificateAuthorityCsrResult;
import com.amazonaws.services.acmpca.model.GetCertificateRequest;
import com.amazonaws.services.acmpca.model.GetCertificateResult;
import
 com.amazonaws.services.acmpca.model.ImportCertificateAuthorityCertificateRequest;

Activate a Root CA for Node Operational Certificates (NOC). Version latest 148

Amazon Private Certificate Authority User Guide

import com.amazonaws.services.acmpca.model.IssueCertificateRequest;
import com.amazonaws.services.acmpca.model.IssueCertificateResult;
import com.amazonaws.services.acmpca.model.SigningAlgorithm;
import com.amazonaws.services.acmpca.model.Validity;

import com.amazonaws.AmazonClientException;
import com.amazonaws.services.acmpca.model.CertificateMismatchException;
import com.amazonaws.services.acmpca.model.ConcurrentModificationException;
import com.amazonaws.services.acmpca.model.LimitExceededException;
import com.amazonaws.services.acmpca.model.InvalidArgsException;
import com.amazonaws.services.acmpca.model.InvalidArnException;
import com.amazonaws.services.acmpca.model.InvalidPolicyException;
import com.amazonaws.services.acmpca.model.InvalidStateException;
import com.amazonaws.services.acmpca.model.MalformedCertificateException;
import com.amazonaws.services.acmpca.model.MalformedCSRException;
import com.amazonaws.services.acmpca.model.RequestFailedException;
import com.amazonaws.services.acmpca.model.RequestInProgressException;
import com.amazonaws.services.acmpca.model.ResourceNotFoundException;
import com.amazonaws.services.acmpca.model.RevocationConfiguration;
import com.amazonaws.services.acmpca.model.AWSACMPCAException;

import com.amazonaws.waiters.Waiter;
import com.amazonaws.waiters.WaiterParameters;
import com.amazonaws.waiters.WaiterTimedOutException;
import com.amazonaws.waiters.WaiterUnrecoverableException;

import org.bouncycastle.asn1.x509.SubjectPublicKeyInfo;
import org.bouncycastle.cert.jcajce.JcaX509ExtensionUtils;
import org.bouncycastle.openssl.PEMParser;
import org.bouncycastle.pkcs.PKCS10CertificationRequest;
import org.bouncycastle.util.io.pem.PemReader;

import lombok.SneakyThrows;

public class RootCAActivation {
 public static void main(String[] args) throws Exception {
 // Define the endpoint region for your sample.
 String endpointRegion = "region"; // Substitute your region here, e.g. "ap-
southeast-2"

 // Define custom attributes
 List<CustomAttribute> customAttributes = Arrays.asList(
 new CustomAttribute()
 .withObjectIdentifier("1.3.6.1.4.1.37244.1.4")

Activate a Root CA for Node Operational Certificates (NOC). Version latest 149

Amazon Private Certificate Authority User Guide

 .withValue("CACACACA00000001")
);

 // Define a CA subject.
 ASN1Subject subject = new ASN1Subject();
 subject.setCustomAttributes(customAttributes);

 // Define the CA configuration.
 CertificateAuthorityConfiguration configCA = new
 CertificateAuthorityConfiguration();
 configCA.withKeyAlgorithm(KeyAlgorithm.EC_prime256v1);
 configCA.withSigningAlgorithm(SigningAlgorithm.SHA256WITHECDSA);
 configCA.withSubject(subject);

 // Define a certificate authority type
 CertificateAuthorityType CAtype = CertificateAuthorityType.ROOT;

 // ** Execute core code samples for Root CA activation in sequence **
 AWSACMPCA client = ClientBuilder(endpointRegion);
 String rootCAArn = CreateCertificateAuthority(configCA, CAtype, client);
 String csr = GetCertificateAuthorityCsr(rootCAArn, client);
 String rootCertificateArn = IssueCertificate(rootCAArn, csr, client);
 String rootCertificate = GetCertificate(rootCertificateArn, rootCAArn, client);
 ImportCertificateAuthorityCertificate(rootCertificate, rootCAArn, client);
 }

 private static AWSACMPCA ClientBuilder(String endpointRegion) {
 // Retrieve your credentials from the C:\Users\name\.aws\credentials file
 // in Windows or the .aws/credentials file in Linux.
 AWSCredentials credentials = null;
 try {
 credentials = new ProfileCredentialsProvider("default").getCredentials();
 } catch (Exception e) {
 throw new AmazonClientException(
 "Cannot load the credentials from the credential profiles file. " +
 "Please make sure that your credentials file is at the correct " +
 "location (C:\\Users\\joneps\\.aws\\credentials), and is in valid
 format.",
 e);
 }

 String endpointProtocol = "https://acm-pca." + endpointRegion +
 ".amazonaws.com/";
 EndpointConfiguration endpoint =

Activate a Root CA for Node Operational Certificates (NOC). Version latest 150

Amazon Private Certificate Authority User Guide

 new AwsClientBuilder.EndpointConfiguration(endpointProtocol,
 endpointRegion);

 // Create a client that you can use to make requests.
 AWSACMPCA client = AWSACMPCAClientBuilder.standard()
 .withEndpointConfiguration(endpoint)
 .withCredentials(new AWSStaticCredentialsProvider(credentials))
 .build();

 return client;
 }

 private static String CreateCertificateAuthority(CertificateAuthorityConfiguration
 configCA, CertificateAuthorityType CAtype, AWSACMPCA client) {
 // Create the request object.
 CreateCertificateAuthorityRequest createCARequest = new
 CreateCertificateAuthorityRequest();
 createCARequest.withCertificateAuthorityConfiguration(configCA);
 createCARequest.withIdempotencyToken("123987");
 createCARequest.withCertificateAuthorityType(CAtype);

 // Create the private CA.
 CreateCertificateAuthorityResult createCAResult = null;
 try {
 createCAResult = client.createCertificateAuthority(createCARequest);
 } catch (InvalidArgsException ex) {
 throw ex;
 } catch (InvalidPolicyException ex) {
 throw ex;
 } catch (LimitExceededException ex) {
 throw ex;
 }

 // Retrieve the ARN of the private CA.
 String rootCAArn = createCAResult.getCertificateAuthorityArn();
 System.out.println("Root CA Arn: " + rootCAArn);

 return rootCAArn;
 }

 private static String GetCertificateAuthorityCsr(String rootCAArn, AWSACMPCA
 client) {

 // Create the CSR request object and set the CA ARN.

Activate a Root CA for Node Operational Certificates (NOC). Version latest 151

Amazon Private Certificate Authority User Guide

 GetCertificateAuthorityCsrRequest csrRequest = new
 GetCertificateAuthorityCsrRequest();
 csrRequest.withCertificateAuthorityArn(rootCAArn);

 // Create waiter to wait on successful creation of the CSR file.
 Waiter<GetCertificateAuthorityCsrRequest> getCSRWaiter =
 client.waiters().certificateAuthorityCSRCreated();
 try {
 getCSRWaiter.run(new WaiterParameters<>(csrRequest));
 } catch (WaiterUnrecoverableException e) {
 //Explicit short circuit when the recourse transitions into
 //an undesired state.
 } catch (WaiterTimedOutException e) {
 //Failed to transition into desired state even after polling.
 } catch (AWSACMPCAException e) {
 //Unexpected service exception.
 }

 // Retrieve the CSR.
 GetCertificateAuthorityCsrResult csrResult = null;
 try {
 csrResult = client.getCertificateAuthorityCsr(csrRequest);
 } catch (RequestInProgressException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (RequestFailedException ex) {
 throw ex;
 }

 // Retrieve and display the CSR;
 String csr = csrResult.getCsr();
 System.out.println(csr);

 return csr;
 }

 @SneakyThrows
 private static String generateAuthorityKeyIdentifier(final String csrPEM) {
 PKCS10CertificationRequest csr = getPKCS10CertificationRequest(csrPEM);
 SubjectPublicKeyInfo spki = csr.getSubjectPublicKeyInfo();

Activate a Root CA for Node Operational Certificates (NOC). Version latest 152

Amazon Private Certificate Authority User Guide

 JcaX509ExtensionUtils extensionUtils = new JcaX509ExtensionUtils();
 byte[] akiBytes =
 extensionUtils.createAuthorityKeyIdentifier(spki).getEncoded();

 return Base64.getEncoder().encodeToString(akiBytes);
 }

 @SneakyThrows
 private static PKCS10CertificationRequest getPKCS10CertificationRequest(final
 String csrPEM) {
 ByteArrayInputStream bais = new ByteArrayInputStream(csrPEM.getBytes());
 PemReader pemReader = new PemReader(new InputStreamReader(bais));
 PEMParser parser = new PEMParser(pemReader);
 Object o = parser.readObject();
 if (o instanceof PKCS10CertificationRequest) {
 return (PKCS10CertificationRequest) o;
 }
 return null;
 }

 private static String IssueCertificate(String rootCAArn, String csr, AWSACMPCA
 client) {

 // Create a certificate request:
 IssueCertificateRequest issueRequest = new IssueCertificateRequest();

 // Set the CA ARN.
 issueRequest.withCertificateAuthorityArn(rootCAArn);

 // Set the template ARN.
 issueRequest.withTemplateArn("arn:aws:acm-pca:::template/
RootCACertificate_APIPassthrough/V1");

 ByteBuffer csrByteBuffer = stringToByteBuffer(csr);
 issueRequest.setCsr(csrByteBuffer);

 // Set the signing algorithm.
 issueRequest.withSigningAlgorithm(SigningAlgorithm.SHA256WITHECDSA);

 // Set the validity period for the certificate to be issued.
 Validity validity = new Validity();
 validity.withValue(3650L);
 validity.withType("DAYS");
 issueRequest.withValidity(validity);

Activate a Root CA for Node Operational Certificates (NOC). Version latest 153

Amazon Private Certificate Authority User Guide

 // Set the idempotency token.
 issueRequest.setIdempotencyToken("1234");

 // Generate Base64 encoded extension value for AuthorityKeyIdentifier
 String base64EncodedExtValue = generateAuthorityKeyIdentifier(csr);

 // Generate custom extension
 CustomExtension customExtension = new CustomExtension();
 customExtension.setObjectIdentifier("2.5.29.35"); // AuthorityKeyIdentifier
 Extension OID
 customExtension.setValue(base64EncodedExtValue);

 // Add custom extension to api-passthrough
 ApiPassthrough apiPassthrough = new ApiPassthrough();
 Extensions extensions = new Extensions();
 extensions.setCustomExtensions(Arrays.asList(customExtension));
 apiPassthrough.setExtensions(extensions);
 issueRequest.setApiPassthrough(apiPassthrough);

 // Issue the certificate.
 IssueCertificateResult issueResult = null;
 try {
 issueResult = client.issueCertificate(issueRequest);
 } catch (LimitExceededException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (InvalidStateException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (InvalidArgsException ex) {
 throw ex;
 } catch (MalformedCSRException ex) {
 throw ex;
 }

 // Retrieve and display the certificate ARN.
 String rootCertificateArn = issueResult.getCertificateArn();
 System.out.println("Root Certificate Arn: " + rootCertificateArn);

 return rootCertificateArn;
 }

Activate a Root CA for Node Operational Certificates (NOC). Version latest 154

Amazon Private Certificate Authority User Guide

 private static String GetCertificate(String rootCertificateArn, String rootCAArn,
 AWSACMPCA client) {

 // Create a request object.
 GetCertificateRequest certificateRequest = new GetCertificateRequest();

 // Set the certificate ARN.
 certificateRequest.withCertificateArn(rootCertificateArn);

 // Set the certificate authority ARN.
 certificateRequest.withCertificateAuthorityArn(rootCAArn);

 // Create waiter to wait on successful creation of the certificate file.
 Waiter<GetCertificateRequest> getCertificateWaiter =
 client.waiters().certificateIssued();
 try {
 getCertificateWaiter.run(new WaiterParameters<>(certificateRequest));
 } catch (WaiterUnrecoverableException e) {
 //Explicit short circuit when the recourse transitions into
 //an undesired state.
 } catch (WaiterTimedOutException e) {
 //Failed to transition into desired state even after polling.
 } catch (AWSACMPCAException e) {
 //Unexpected service exception.
 }

 // Retrieve the certificate and certificate chain.
 GetCertificateResult certificateResult = null;
 try {
 certificateResult = client.getCertificate(certificateRequest);
 } catch (RequestInProgressException ex) {
 throw ex;
 } catch (RequestFailedException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (InvalidStateException ex) {
 throw ex;
 }

 // Get the certificate and certificate chain and display the result.

Activate a Root CA for Node Operational Certificates (NOC). Version latest 155

Amazon Private Certificate Authority User Guide

 String rootCertificate = certificateResult.getCertificate();
 System.out.println(rootCertificate);

 return rootCertificate;
 }

 private static void ImportCertificateAuthorityCertificate(String rootCertificate,
 String rootCAArn, AWSACMPCA client) {

 // Create the request object and set the signed certificate, chain and CA ARN.
 ImportCertificateAuthorityCertificateRequest importRequest =
 new ImportCertificateAuthorityCertificateRequest();

 ByteBuffer certByteBuffer = stringToByteBuffer(rootCertificate);
 importRequest.setCertificate(certByteBuffer);

 importRequest.setCertificateChain(null);

 // Set the certificate authority ARN.
 importRequest.withCertificateAuthorityArn(rootCAArn);

 // Import the certificate.
 try {
 client.importCertificateAuthorityCertificate(importRequest);
 } catch (CertificateMismatchException ex) {
 throw ex;
 } catch (MalformedCertificateException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (RequestInProgressException ex) {
 throw ex;
 } catch (ConcurrentModificationException ex) {
 throw ex;
 } catch (RequestFailedException ex) {
 throw ex;
 }

 System.out.println("Root CA certificate successfully imported.");
 System.out.println("Root CA activated successfully.");
 }

Activate a Root CA for Node Operational Certificates (NOC). Version latest 156

Amazon Private Certificate Authority User Guide

 private static ByteBuffer stringToByteBuffer(final String string) {
 if (Objects.isNull(string)) {
 return null;
 }
 byte[] bytes = string.getBytes(StandardCharsets.UTF_8);
 return ByteBuffer.wrap(bytes);
 }
}

Activate a Subordinate CA for Node Operational Certificates (NOC)

This Java sample shows how to use the BlankSubordinateCACertificate_PathLen0_APIPassthrough/
V1 definition template to issue and install a Matter Subordinate CA certificate to issue NOCs. You
must generate a Base64-encoded KeyUsage value and pass it through a CustomExtension.

The example calls the following Amazon Private CA API actions:

• CreateCertificateAuthority

• GetCertificateAuthorityCsr

• IssueCertificate

• GetCertificate

• ImportCertificateAuthorityCertificate

• GetCertificateAuthorityCertificate

If problems occur, see Troubleshoot Amazon Private CA Matter-compliant certificate errors in the
Troubleshooting section.

package com.amazonaws.samples.matter;

import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.client.builder.AwsClientBuilder;
import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration;
import com.amazonaws.auth.AWSStaticCredentialsProvider;

import com.amazonaws.services.acmpca.AWSACMPCA;
import com.amazonaws.services.acmpca.AWSACMPCAClientBuilder;

import com.amazonaws.services.acmpca.model.ASN1Subject;

Activate a Subordinate CA for Node Operational Certificates (NOC) Version latest 157

https://buildwithmatter.com
https://docs.amazonaws.cn/privateca/latest/APIReference/API_CreateCertificateAuthority.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_GetCertificateAuthorityCsr.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_IssueCertificate.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_GetCertificate.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_ImportCertificateAuthorityCertificate.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_GetCertificateAuthorityCertificate.html

Amazon Private Certificate Authority User Guide

import com.amazonaws.services.acmpca.model.ApiPassthrough;
import com.amazonaws.services.acmpca.model.CertificateAuthorityConfiguration;
import com.amazonaws.services.acmpca.model.CertificateAuthorityType;
import com.amazonaws.services.acmpca.model.CreateCertificateAuthorityResult;
import com.amazonaws.services.acmpca.model.CreateCertificateAuthorityRequest;
import com.amazonaws.services.acmpca.model.CustomAttribute;
import com.amazonaws.services.acmpca.model.CustomExtension;
import com.amazonaws.services.acmpca.model.Extensions;
import com.amazonaws.services.acmpca.model.KeyAlgorithm;
import com.amazonaws.services.acmpca.model.SigningAlgorithm;

import java.nio.ByteBuffer;
import java.nio.charset.StandardCharsets;
import java.util.Arrays;
import java.util.Base64;
import java.util.List;
import java.util.Objects;

import org.bouncycastle.asn1.x509.KeyUsage;
import org.bouncycastle.jce.X509KeyUsage;

import com.amazonaws.services.acmpca.model.GetCertificateAuthorityCertificateRequest;
import com.amazonaws.services.acmpca.model.GetCertificateAuthorityCertificateResult;
import com.amazonaws.services.acmpca.model.GetCertificateAuthorityCsrRequest;
import com.amazonaws.services.acmpca.model.GetCertificateAuthorityCsrResult;
import com.amazonaws.services.acmpca.model.GetCertificateRequest;
import com.amazonaws.services.acmpca.model.GetCertificateResult;
import
 com.amazonaws.services.acmpca.model.ImportCertificateAuthorityCertificateRequest;
import com.amazonaws.services.acmpca.model.IssueCertificateRequest;
import com.amazonaws.services.acmpca.model.IssueCertificateResult;
import com.amazonaws.services.acmpca.model.Validity;

import com.amazonaws.AmazonClientException;
import com.amazonaws.services.acmpca.model.CertificateMismatchException;
import com.amazonaws.services.acmpca.model.ConcurrentModificationException;
import com.amazonaws.services.acmpca.model.LimitExceededException;
import com.amazonaws.services.acmpca.model.InvalidArgsException;
import com.amazonaws.services.acmpca.model.InvalidArnException;
import com.amazonaws.services.acmpca.model.InvalidPolicyException;
import com.amazonaws.services.acmpca.model.InvalidStateException;
import com.amazonaws.services.acmpca.model.MalformedCertificateException;
import com.amazonaws.services.acmpca.model.MalformedCSRException;
import com.amazonaws.services.acmpca.model.RequestFailedException;

Activate a Subordinate CA for Node Operational Certificates (NOC) Version latest 158

Amazon Private Certificate Authority User Guide

import com.amazonaws.services.acmpca.model.RequestInProgressException;
import com.amazonaws.services.acmpca.model.ResourceNotFoundException;
import com.amazonaws.services.acmpca.model.AWSACMPCAException;

import com.amazonaws.waiters.Waiter;
import com.amazonaws.waiters.WaiterParameters;
import com.amazonaws.waiters.WaiterTimedOutException;
import com.amazonaws.waiters.WaiterUnrecoverableException;

import lombok.SneakyThrows;

public class IntermediateCAActivation {

 public static void main(String[] args) throws Exception {
 // Place your own Root CA ARN here.
 String rootCAArn = "arn:aws:acm-pca:region:123456789012:certificate-
authority/12345678-1234-1234-1234-123456789012";

 // Define the endpoint region for your sample.
 String endpointRegion = "region"; // Substitute your region here, e.g. "ap-
southeast-2"

 // Define custom attributes
 List<CustomAttribute> customAttributes = Arrays.asList(
 new CustomAttribute()
 .withObjectIdentifier("1.3.6.1.4.1.37244.1.3")
 .withValue("CACACACA00000003")
);

 // Define a CA subject.
 ASN1Subject subject = new ASN1Subject();
 subject.setCustomAttributes(customAttributes);

 // Define the CA configuration.
 CertificateAuthorityConfiguration configCA = new
 CertificateAuthorityConfiguration();
 configCA.withKeyAlgorithm(KeyAlgorithm.EC_prime256v1);
 configCA.withSigningAlgorithm(SigningAlgorithm.SHA256WITHECDSA);
 configCA.withSubject(subject);

 // Define a certificate authority type
 CertificateAuthorityType CAtype = CertificateAuthorityType.SUBORDINATE;

 // ** Execute core code samples for Subordinate CA activation in sequence **

Activate a Subordinate CA for Node Operational Certificates (NOC) Version latest 159

Amazon Private Certificate Authority User Guide

 AWSACMPCA client = ClientBuilder(endpointRegion);
 String rootCertificate = GetCertificateAuthorityCertificate(rootCAArn, client);
 String subordinateCAArn = CreateCertificateAuthority(configCA, CAtype, client);
 String csr = GetCertificateAuthorityCsr(subordinateCAArn, client);
 String subordinateCertificateArn = IssueCertificate(rootCAArn, csr, client);
 String subordinateCertificate = GetCertificate(subordinateCertificateArn,
 rootCAArn, client);
 ImportCertificateAuthorityCertificate(subordinateCertificate, rootCertificate,
 subordinateCAArn, client);

 }

 private static AWSACMPCA ClientBuilder(String endpointRegion) {
 // Get your credentials from the C:\Users\name\.aws\credentials file
 // in Windows or the .aws/credentials file in Linux.
 AWSCredentials credentials = null;
 try {
 credentials = new ProfileCredentialsProvider("default").getCredentials();
 } catch (Exception e) {
 throw new AmazonClientException(
 "Cannot load the credentials from the credential profiles file. " +
 "Please make sure that your credentials file is at the correct " +
 "location (C:\\Users\\joneps\\.aws\\credentials), and is in valid
 format.",
 e);
 }

 String endpointProtocol = "https://acm-pca." + endpointRegion +
 ".amazonaws.com/";
 EndpointConfiguration endpoint =
 new AwsClientBuilder.EndpointConfiguration(endpointProtocol,
 endpointRegion);

 // Create a client that you can use to make requests.
 AWSACMPCA client = AWSACMPCAClientBuilder.standard()
 .withEndpointConfiguration(endpoint)
 .withCredentials(new AWSStaticCredentialsProvider(credentials))
 .build();

 return client;
 }

 private static String GetCertificateAuthorityCertificate(String rootCAArn,
 AWSACMPCA client) {

Activate a Subordinate CA for Node Operational Certificates (NOC) Version latest 160

Amazon Private Certificate Authority User Guide

 // ** GetCertificateAuthorityCertificate **

 // Create a request object and set the certificate authority ARN,
 GetCertificateAuthorityCertificateRequest getCACertificateRequest =
 new GetCertificateAuthorityCertificateRequest();
 getCACertificateRequest.withCertificateAuthorityArn(rootCAArn);

 // Create a result object.
 GetCertificateAuthorityCertificateResult getCACertificateResult = null;
 try {
 getCACertificateResult =
 client.getCertificateAuthorityCertificate(getCACertificateRequest);
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (InvalidStateException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 }

 // Get and display the certificate information.
 String rootCertificate = getCACertificateResult.getCertificate();
 System.out.println("Root CA Certificate / Certificate Chain:");
 System.out.println(rootCertificate);

 return rootCertificate;
 }

 private static String CreateCertificateAuthority(CertificateAuthorityConfiguration
 configCA, CertificateAuthorityType CAtype, AWSACMPCA client) {
 // Create the request object.
 CreateCertificateAuthorityRequest createCARequest = new
 CreateCertificateAuthorityRequest();
 createCARequest.withCertificateAuthorityConfiguration(configCA);
 createCARequest.withIdempotencyToken("123987");
 createCARequest.withCertificateAuthorityType(CAtype);

 // Create the private CA.
 CreateCertificateAuthorityResult createCAResult = null;
 try {
 createCAResult = client.createCertificateAuthority(createCARequest);
 } catch (InvalidArgsException ex) {
 throw ex;
 } catch (InvalidPolicyException ex) {

Activate a Subordinate CA for Node Operational Certificates (NOC) Version latest 161

Amazon Private Certificate Authority User Guide

 throw ex;
 } catch (LimitExceededException ex) {
 throw ex;
 }

 // Retrieve the ARN of the private CA.
 String subordinateCAArn = createCAResult.getCertificateAuthorityArn();
 System.out.println("Subordinate CA Arn: " + subordinateCAArn);

 return subordinateCAArn;
 }

 private static String GetCertificateAuthorityCsr(String subordinateCAArn, AWSACMPCA
 client) {

 // Create the CSR request object and set the CA ARN.
 GetCertificateAuthorityCsrRequest csrRequest = new
 GetCertificateAuthorityCsrRequest();
 csrRequest.withCertificateAuthorityArn(subordinateCAArn);

 // Create waiter to wait on successful creation of the CSR file.
 Waiter<GetCertificateAuthorityCsrRequest> getCSRWaiter =
 client.waiters().certificateAuthorityCSRCreated();
 try {
 getCSRWaiter.run(new WaiterParameters<>(csrRequest));
 } catch (WaiterUnrecoverableException e) {
 //Explicit short circuit when the recourse transitions into
 //an undesired state.
 } catch (WaiterTimedOutException e) {
 //Failed to transition into desired state even after polling.
 } catch(AWSACMPCAException e) {
 //Unexpected service exception.
 }

 // Get the CSR.
 GetCertificateAuthorityCsrResult csrResult = null;
 try {
 csrResult = client.getCertificateAuthorityCsr(csrRequest);
 } catch (RequestInProgressException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;

Activate a Subordinate CA for Node Operational Certificates (NOC) Version latest 162

Amazon Private Certificate Authority User Guide

 } catch (RequestFailedException ex) {
 throw ex;
 }

 // Get and display the CSR;
 String csr = csrResult.getCsr();
 System.out.println("Subordinate CSR:");
 System.out.println(csr);

 return csr;
 }

 private static String IssueCertificate(String rootCAArn, String csr, AWSACMPCA
 client) {

 // Create a certificate request:
 IssueCertificateRequest issueRequest = new IssueCertificateRequest();

 // Set the issuing CA ARN.
 issueRequest.withCertificateAuthorityArn(rootCAArn);

 // Set the template ARN.
 issueRequest.withTemplateArn("arn:aws:acm-pca:::template/
BlankSubordinateCACertificate_PathLen0_APIPassthrough/V1");

 ByteBuffer csrByteBuffer = stringToByteBuffer(csr);
 issueRequest.setCsr(csrByteBuffer);

 // Set the signing algorithm.
 issueRequest.withSigningAlgorithm(SigningAlgorithm.SHA256WITHECDSA);

 // Set the validity period for the certificate to be issued.
 Validity validity = new Validity();
 validity.withValue(730L); // Approximately two years
 validity.withType("DAYS");
 issueRequest.withValidity(validity);

 // Set the idempotency token.
 issueRequest.setIdempotencyToken("1234");

 ApiPassthrough apiPassthrough = new ApiPassthrough();

 // Generate base64 encoded extension value for ExtendedKeyUsage
 String base64EncodedKUValue = generateKeyUsageValue();

Activate a Subordinate CA for Node Operational Certificates (NOC) Version latest 163

Amazon Private Certificate Authority User Guide

 // Generate custom extension
 CustomExtension customKeyUsageExtension = new CustomExtension();
 customKeyUsageExtension.setObjectIdentifier("2.5.29.15");
 customKeyUsageExtension.setValue(base64EncodedKUValue);
 customKeyUsageExtension.setCritical(true);

 // Set KeyUsage extension to api passthrough
 Extensions extensions = new Extensions();
 extensions.setCustomExtensions(Arrays.asList(customKeyUsageExtension));
 apiPassthrough.setExtensions(extensions);
 issueRequest.setApiPassthrough(apiPassthrough);

 // Issue the certificate.
 IssueCertificateResult issueResult = null;
 try {
 issueResult = client.issueCertificate(issueRequest);
 } catch (LimitExceededException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (InvalidStateException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (InvalidArgsException ex) {
 throw ex;
 } catch (MalformedCSRException ex) {
 throw ex;
 }

 // Get and display the certificate ARN.
 String subordinateCertificateArn = issueResult.getCertificateArn();
 System.out.println("Subordinate Certificate Arn: " +
 subordinateCertificateArn);

 return subordinateCertificateArn;
 }

 @SneakyThrows
 private static String generateKeyUsageValue() {
 KeyUsage keyUsage = new KeyUsage(X509KeyUsage.keyCertSign |
 X509KeyUsage.cRLSign);
 byte[] kuBytes = keyUsage.getEncoded();

Activate a Subordinate CA for Node Operational Certificates (NOC) Version latest 164

Amazon Private Certificate Authority User Guide

 return Base64.getEncoder().encodeToString(kuBytes);
 }

 private static String GetCertificate(String subordinateCertificateArn, String
 rootCAArn, AWSACMPCA client) {

 // Create a request object.
 GetCertificateRequest certificateRequest = new GetCertificateRequest();

 // Set the certificate ARN.
 certificateRequest.withCertificateArn(subordinateCertificateArn);

 // Set the certificate authority ARN.
 certificateRequest.withCertificateAuthorityArn(rootCAArn);

 // Create waiter to wait on successful creation of the certificate file.
 Waiter<GetCertificateRequest> getCertificateWaiter =
 client.waiters().certificateIssued();
 try {
 getCertificateWaiter.run(new WaiterParameters<>(certificateRequest));
 } catch (WaiterUnrecoverableException e) {
 //Explicit short circuit when the recourse transitions into
 //an undesired state.
 } catch (WaiterTimedOutException e) {
 //Failed to transition into desired state even after polling.
 } catch (AWSACMPCAException e) {
 //Unexpected service exception.
 }

 // Get the certificate and certificate chain.
 GetCertificateResult certificateResult = null;
 try {
 certificateResult = client.getCertificate(certificateRequest);
 } catch (RequestInProgressException ex) {
 throw ex;
 } catch (RequestFailedException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (InvalidStateException ex) {
 throw ex;
 }

Activate a Subordinate CA for Node Operational Certificates (NOC) Version latest 165

Amazon Private Certificate Authority User Guide

 // Get the certificate and certificate chain and display the result.
 String subordinateCertificate = certificateResult.getCertificate();
 System.out.println("Subordinate CA Certificate:");
 System.out.println(subordinateCertificate);

 return subordinateCertificate;
 }

 private static void ImportCertificateAuthorityCertificate(String
 subordinateCertificate, String rootCertificate, String subordinateCAArn, AWSACMPCA
 client) {

 // Create the request object and set the signed certificate, chain and CA ARN.
 ImportCertificateAuthorityCertificateRequest importRequest =
 new ImportCertificateAuthorityCertificateRequest();

 ByteBuffer certByteBuffer = stringToByteBuffer(subordinateCertificate);
 importRequest.setCertificate(certByteBuffer);

 ByteBuffer rootCACertByteBuffer = stringToByteBuffer(rootCertificate);
 importRequest.setCertificateChain(rootCACertByteBuffer);

 // Set the certificate authority ARN.
 importRequest.withCertificateAuthorityArn(subordinateCAArn);

 // Import the certificate.
 try {
 client.importCertificateAuthorityCertificate(importRequest);
 } catch (CertificateMismatchException ex) {
 throw ex;
 } catch (MalformedCertificateException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (RequestInProgressException ex) {
 throw ex;
 } catch (ConcurrentModificationException ex) {
 throw ex;
 } catch (RequestFailedException ex) {
 throw ex;
 }

Activate a Subordinate CA for Node Operational Certificates (NOC) Version latest 166

Amazon Private Certificate Authority User Guide

 System.out.println("Subordinate CA certificate successfully imported.");
 System.out.println("Subordinate CA activated successfully.");
 }

 private static ByteBuffer stringToByteBuffer(final String string) {
 if (Objects.isNull(string)) {
 return null;
 }
 byte[] bytes = string.getBytes(StandardCharsets.UTF_8);
 return ByteBuffer.wrap(bytes);
 }
}

Create a Node Operational Certificate (NOC)

This Java sample shows how to use the
BlankEndEntityCertificate_CriticalBasicConstraints_APIPassthrough/V1 template to create a Matter
Node Operational Certificate. You must generate a Base64-encoded KeyUsage value and pass it
through a CustomExtension.

The example calls the following Amazon Private CA API action:

• IssueCertificate

If you encounter problems, see Troubleshoot Amazon Private CA Matter-compliant certificate
errors in the Troubleshooting section.

package com.amazonaws.samples.matter;

import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.client.builder.AwsClientBuilder;
import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration;
import com.amazonaws.auth.AWSStaticCredentialsProvider;

import java.nio.ByteBuffer;
import java.nio.charset.StandardCharsets;
import java.util.Arrays;
import java.util.Base64;
import java.util.List;
import java.util.Objects;

Create a Node Operational Certificate (NOC) Version latest 167

https://buildwithmatter.com
https://docs.amazonaws.cn/privateca/latest/APIReference/API_IssueCertificate.html

Amazon Private Certificate Authority User Guide

import com.amazonaws.services.acmpca.AWSACMPCA;
import com.amazonaws.services.acmpca.AWSACMPCAClientBuilder;

import com.amazonaws.services.acmpca.model.ASN1Subject;
import com.amazonaws.services.acmpca.model.ApiPassthrough;
import com.amazonaws.services.acmpca.model.CustomAttribute;
import com.amazonaws.services.acmpca.model.CustomExtension;
import com.amazonaws.services.acmpca.model.Extensions;
import com.amazonaws.services.acmpca.model.IssueCertificateRequest;
import com.amazonaws.services.acmpca.model.IssueCertificateResult;
import com.amazonaws.services.acmpca.model.SigningAlgorithm;
import com.amazonaws.services.acmpca.model.Validity;

import com.amazonaws.AmazonClientException;
import com.amazonaws.services.acmpca.model.LimitExceededException;
import com.amazonaws.services.acmpca.model.ResourceNotFoundException;
import com.amazonaws.services.acmpca.model.InvalidStateException;
import com.amazonaws.services.acmpca.model.InvalidArnException;
import com.amazonaws.services.acmpca.model.InvalidArgsException;
import com.amazonaws.services.acmpca.model.MalformedCSRException;

import org.bouncycastle.asn1.x509.ExtendedKeyUsage;
import org.bouncycastle.asn1.x509.KeyPurposeId;
import org.bouncycastle.asn1.x509.KeyUsage;
import org.bouncycastle.jce.X509KeyUsage;

import lombok.SneakyThrows;

public class IssueNodeOperatingCertificate {
 public static ByteBuffer stringToByteBuffer(final String string) {
 if (Objects.isNull(string)) {
 return null;
 }
 byte[] bytes = string.getBytes(StandardCharsets.UTF_8);
 return ByteBuffer.wrap(bytes);
 }

 @SneakyThrows
 private static String generateExtendedKeyUsageValue() {
 KeyPurposeId[] keyPurposeIds = new KeyPurposeId[]
 { KeyPurposeId.id_kp_clientAuth, KeyPurposeId.id_kp_serverAuth };
 ExtendedKeyUsage eku = new ExtendedKeyUsage(keyPurposeIds);
 byte[] ekuBytes = eku.getEncoded();
 return Base64.getEncoder().encodeToString(ekuBytes);

Create a Node Operational Certificate (NOC) Version latest 168

Amazon Private Certificate Authority User Guide

 }

 @SneakyThrows
 private static String generateKeyUsageValue() {
 KeyUsage keyUsage = new KeyUsage(X509KeyUsage.digitalSignature);
 byte[] kuBytes = keyUsage.getEncoded();
 return Base64.getEncoder().encodeToString(kuBytes);
 }

 public static void main(String[] args) throws Exception {

 // Retrieve your credentials from the C:\Users\name\.aws\credentials file
 // in Windows or the .aws/credentials file in Linux.
 AWSCredentials credentials = null;
 try {
 credentials = new ProfileCredentialsProvider("default").getCredentials();
 } catch (Exception e) {
 throw new AmazonClientException("Cannot load your credentials from disk", e);
 }

 // Define the endpoint for your sample.
 String endpointRegion = "region"; // Substitute your region here, e.g. "ap-
southeast-2"
 String endpointProtocol = "https://acm-pca." + endpointRegion +
 ".amazonaws.com/";
 EndpointConfiguration endpoint =
 new AwsClientBuilder.EndpointConfiguration(endpointProtocol, endpointRegion);

 // Create a client that you can use to make requests.
 AWSACMPCA client = AWSACMPCAClientBuilder.standard()
 .withEndpointConfiguration(endpoint)
 .withCredentials(new AWSStaticCredentialsProvider(credentials))
 .build();

 // Create a certificate request:
 IssueCertificateRequest req = new IssueCertificateRequest();

 // Set the CA ARN.
 req.withCertificateAuthorityArn("arn:aws:acm-pca:region:123456789012:certificate-
authority/12345678-1234-1234-1234-123456789012");

 // Specify the certificate signing request (CSR) for the certificate to be signed
 and issued.
 String strCSR =

Create a Node Operational Certificate (NOC) Version latest 169

Amazon Private Certificate Authority User Guide

 "-----BEGIN CERTIFICATE REQUEST-----\n" +
 "base64-encoded certificate\n" +
 "-----END CERTIFICATE REQUEST-----\n";
 ByteBuffer csrByteBuffer = stringToByteBuffer(strCSR);
 req.setCsr(csrByteBuffer);

 // Specify the template for the issued certificate.
 req.withTemplateArn("arn:aws:acm-pca:::template/
BlankEndEntityCertificate_CriticalBasicConstraints_APIPassthrough/V1");

 // Set the signing algorithm.
 req.withSigningAlgorithm(SigningAlgorithm.SHA256WITHECDSA);

 // Set the validity period for the certificate to be issued.
 Validity validity = new Validity();
 validity.withValue(10L);
 validity.withType("DAYS");
 req.withValidity(validity);

 // Set the idempotency token.
 req.setIdempotencyToken("1234");

 // Define custom attributes
 List<CustomAttribute> customAttributes = Arrays.asList(
 new CustomAttribute()
 .withObjectIdentifier("1.3.6.1.4.1.37244.1.1")
 .withValue("DEDEDEDE00010001"),
 new CustomAttribute()
 .withObjectIdentifier("1.3.6.1.4.1.37244.1.5")
 .withValue("FAB000000000001D")
);

 // Define a cert subject.
 ASN1Subject subject = new ASN1Subject();
 subject.setCustomAttributes(customAttributes);

 ApiPassthrough apiPassthrough = new ApiPassthrough();
 apiPassthrough.setSubject(subject);

 // Generate Base64 encoded extension value for ExtendedKeyUsage
 String base64EncodedKUValue = generateKeyUsageValue();

 // Generate custom extension
 CustomExtension customKeyUsageExtension = new CustomExtension();

Create a Node Operational Certificate (NOC) Version latest 170

Amazon Private Certificate Authority User Guide

 customKeyUsageExtension.setObjectIdentifier("2.5.29.15");
 customKeyUsageExtension.setValue(base64EncodedKUValue);
 customKeyUsageExtension.setCritical(true);

 // Generate Base64 encoded extension value for ExtendedKeyUsage
 String base64EncodedEKUValue = generateExtendedKeyUsageValue();

 CustomExtension customExtendedKeyUsageExtension = new CustomExtension();
 customExtendedKeyUsageExtension.setObjectIdentifier("2.5.29.37"); //
 ExtendedKeyUsage Extension OID
 customExtendedKeyUsageExtension.setValue(base64EncodedEKUValue);
 customExtendedKeyUsageExtension.setCritical(true);

 // Set KeyUsage and ExtendedKeyUsage extension to api-passthrough
 Extensions extensions = new Extensions();
 extensions.setCustomExtensions(Arrays.asList(customKeyUsageExtension,
 customExtendedKeyUsageExtension));
 apiPassthrough.setExtensions(extensions);
 req.setApiPassthrough(apiPassthrough);

 // Issue the certificate.
 IssueCertificateResult result = null;
 try {
 result = client.issueCertificate(req);
 } catch (LimitExceededException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (InvalidStateException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (InvalidArgsException ex) {
 throw ex;
 } catch (MalformedCSRException ex) {
 throw ex;
 }

 // Retrieve and display the certificate ARN.
 String arn = result.getCertificateArn();
 System.out.println(arn);
 }
}

Create a Node Operational Certificate (NOC) Version latest 171

Amazon Private Certificate Authority User Guide

Use Amazon Private CA to implement mDL certificates

You can use the Amazon Private Certificate Authority API to create certificates that conform
to the ISO/IEC standard for mobile driving license (mDL) . This standard establishes interface
specifications for the implementation of a driving license in association with a mobile device,
including certificate configurations.

Topics

• Activate an issuing authority certificate authority (IACA) certificate

• Create a document signer certificate

Activate an issuing authority certificate authority (IACA) certificate

This Java sample shows how to use the BlankRootCACertificate_PathLen0_APIPassthrough/
V1 definition template to create and install an ISO/IEC mDL standard-compliant issuing
authority certificate authority (IACA) certificate. You must generate base64-encoded values for
KeyUsage, IssuerAlternativeName, and CRLDistributionPoint, and pass them through
CustomExtensions.

Note

The IACA link certificate establishes a trust path from the old IACA root certificate to the
new IACA root certificate. The issuing authority can generate and distribute an IACA link
certificate during the IACA re-key process. You cannot issue an IACA link certificate by using
an IACA root certificate with pathLen=0 set.

The example calls the following Amazon Private CA API actions:

• CreateCertificateAuthority

• GetCertificateAuthorityCsr

• IssueCertificate

• GetCertificate

• ImportCertificateAuthorityCertificate

package com.amazonaws.samples.mdl;

mDL examples Version latest 172

https://www.iso.org/standard/69084.html
https://www.iso.org/standard/69084.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_CreateCertificateAuthority.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_GetCertificateAuthorityCsr.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_IssueCertificate.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_GetCertificate.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_ImportCertificateAuthorityCertificate.html

Amazon Private Certificate Authority User Guide

import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.auth.AWSStaticCredentialsProvider;

import com.amazonaws.services.acmpca.AWSACMPCA;
import com.amazonaws.services.acmpca.AWSACMPCAClientBuilder;

import com.amazonaws.services.acmpca.model.ASN1Subject;
import com.amazonaws.services.acmpca.model.ApiPassthrough;
import com.amazonaws.services.acmpca.model.CertificateAuthorityConfiguration;
import com.amazonaws.services.acmpca.model.CertificateAuthorityType;
import com.amazonaws.services.acmpca.model.CreateCertificateAuthorityResult;
import com.amazonaws.services.acmpca.model.CreateCertificateAuthorityRequest;
import com.amazonaws.services.acmpca.model.CustomExtension;
import com.amazonaws.services.acmpca.model.Extensions;
import com.amazonaws.services.acmpca.model.KeyAlgorithm;
import com.amazonaws.services.acmpca.model.SigningAlgorithm;

import java.nio.ByteBuffer;
import java.nio.charset.StandardCharsets;
import java.util.Arrays;
import java.util.Base64;
import java.util.Objects;

import com.amazonaws.services.acmpca.model.GetCertificateAuthorityCsrRequest;
import com.amazonaws.services.acmpca.model.GetCertificateAuthorityCsrResult;
import com.amazonaws.services.acmpca.model.GetCertificateRequest;
import com.amazonaws.services.acmpca.model.GetCertificateResult;
import
 com.amazonaws.services.acmpca.model.ImportCertificateAuthorityCertificateRequest;
import com.amazonaws.services.acmpca.model.IssueCertificateRequest;
import com.amazonaws.services.acmpca.model.IssueCertificateResult;
import com.amazonaws.services.acmpca.model.Validity;

import com.amazonaws.AmazonClientException;
import com.amazonaws.services.acmpca.model.CertificateMismatchException;
import com.amazonaws.services.acmpca.model.ConcurrentModificationException;
import com.amazonaws.services.acmpca.model.LimitExceededException;
import com.amazonaws.services.acmpca.model.InvalidArgsException;
import com.amazonaws.services.acmpca.model.InvalidArnException;
import com.amazonaws.services.acmpca.model.InvalidPolicyException;
import com.amazonaws.services.acmpca.model.InvalidStateException;
import com.amazonaws.services.acmpca.model.MalformedCertificateException;

Activate an issuing authority certificate authority (IACA) certificate Version latest 173

Amazon Private Certificate Authority User Guide

import com.amazonaws.services.acmpca.model.MalformedCSRException;
import com.amazonaws.services.acmpca.model.RequestFailedException;
import com.amazonaws.services.acmpca.model.RequestInProgressException;
import com.amazonaws.services.acmpca.model.ResourceNotFoundException;
import com.amazonaws.services.acmpca.model.AWSACMPCAException;

import com.amazonaws.waiters.Waiter;
import com.amazonaws.waiters.WaiterParameters;
import com.amazonaws.waiters.WaiterTimedOutException;
import com.amazonaws.waiters.WaiterUnrecoverableException;

import org.bouncycastle.asn1.x509.GeneralNames;
import org.bouncycastle.asn1.x509.GeneralName;
import org.bouncycastle.asn1.x509.CRLDistPoint;
import org.bouncycastle.asn1.x509.DistributionPoint;
import org.bouncycastle.asn1.x509.DistributionPointName;
import org.bouncycastle.asn1.x509.KeyUsage;
import org.bouncycastle.jce.X509KeyUsage;

import lombok.SneakyThrows;

public class IssuingAuthorityCertificateAuthorityActivation {
 public static void main(String[] args) throws Exception {
 // Define the endpoint region for your sample.
 String endpointRegion = null; // Substitute your region here, e.g. "ap-
southeast-2"
 if (endpointRegion == null) throw new Exception("Region cannot be null");

 // Define a CA subject.
 ASN1Subject subject = new ASN1Subject()
 .withCountry("US") // mDL spec requires ISO 3166-1-alpha-2 country code
 e.g. "US"
 .withCommonName("mDL Test IACA");

 // Define the CA configuration.
 CertificateAuthorityConfiguration configCA = new
 CertificateAuthorityConfiguration()
 .withKeyAlgorithm(KeyAlgorithm.EC_prime256v1)
 .withSigningAlgorithm(SigningAlgorithm.SHA256WITHECDSA)
 .withSubject(subject);

 // Define a certificate authority type
 CertificateAuthorityType CAType = CertificateAuthorityType.ROOT;

Activate an issuing authority certificate authority (IACA) certificate Version latest 174

Amazon Private Certificate Authority User Guide

 // Execute core code samples for Root CA activation in sequence
 AWSACMPCA client = buildClient(endpointRegion);
 String rootCAArn = createCertificateAuthority(configCA, CAType, client);
 String csr = getCertificateAuthorityCsr(rootCAArn, client);
 String rootCertificateArn = issueCertificate(rootCAArn, csr, client);
 String rootCertificate = getCertificate(rootCertificateArn, rootCAArn, client);
 importCertificateAuthorityCertificate(rootCertificate, rootCAArn, client);
 }

 private static AWSACMPCA buildClient(String endpointRegion) {
 // Get your credentials from the C:\Users\name\.aws\credentials file
 // in Windows or the .aws/credentials file in Linux.
 AWSCredentials credentials = null;
 try {
 credentials = new ProfileCredentialsProvider("default").getCredentials();
 } catch (Exception e) {
 throw new AmazonClientException("Cannot load your credentials from disk",
 e);
 }

 // Create a client that you can use to make requests.
 AWSACMPCA client = AWSACMPCAClientBuilder.standard()
 .withRegion(endpointRegion)
 .withCredentials(new AWSStaticCredentialsProvider(credentials))
 .build();

 return client;
 }

 private static String createCertificateAuthority(CertificateAuthorityConfiguration
 configCA, CertificateAuthorityType CAtype, AWSACMPCA client) {
 // Create the request object.
 CreateCertificateAuthorityRequest createCARequest = new
 CreateCertificateAuthorityRequest()
 .withCertificateAuthorityConfiguration(configCA)
 .withIdempotencyToken("123987")
 .withCertificateAuthorityType(CAtype);

 // Create the private CA.
 CreateCertificateAuthorityResult createCAResult = null;
 try {
 createCAResult = client.createCertificateAuthority(createCARequest);
 } catch (InvalidArgsException ex) {
 throw ex;

Activate an issuing authority certificate authority (IACA) certificate Version latest 175

Amazon Private Certificate Authority User Guide

 } catch (InvalidPolicyException ex) {
 throw ex;
 } catch (LimitExceededException ex) {
 throw ex;
 }

 // Get the ARN of the private CA.
 String rootCAArn = createCAResult.getCertificateAuthorityArn();
 System.out.println("Issuing Authority Certificate Authority (IACA) Arn: " +
 rootCAArn);

 return rootCAArn;
 }

 private static String getCertificateAuthorityCsr(String rootCAArn, AWSACMPCA
 client) {

 // Create the CSR request object and set the CA ARN.
 GetCertificateAuthorityCsrRequest csrRequest = new
 GetCertificateAuthorityCsrRequest()
 .withCertificateAuthorityArn(rootCAArn);

 // Create waiter to wait on successful creation of the CSR file.
 Waiter<GetCertificateAuthorityCsrRequest> getCSRWaiter =
 client.waiters().certificateAuthorityCSRCreated();
 try {
 getCSRWaiter.run(new WaiterParameters<>(csrRequest));
 } catch (WaiterUnrecoverableException e) {
 // Explicit short circuit when the recourse transitions into
 // an undesired state.
 } catch (WaiterTimedOutException e) {
 // Failed to transition into desired state even after polling.
 } catch (AWSACMPCAException e) {
 // Unexpected service exception.
 }

 // Get the CSR.
 GetCertificateAuthorityCsrResult csrResult = null;
 try {
 csrResult = client.getCertificateAuthorityCsr(csrRequest);
 } catch (RequestInProgressException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;

Activate an issuing authority certificate authority (IACA) certificate Version latest 176

Amazon Private Certificate Authority User Guide

 } catch (InvalidArnException ex) {
 throw ex;
 } catch (RequestFailedException ex) {
 throw ex;
 }

 // Get and display the CSR;
 String csr = csrResult.getCsr();
 System.out.println("CSR:");
 System.out.println(csr);

 return csr;
 }

 @SneakyThrows
 private static String issueCertificate(String rootCAArn, String csr, AWSACMPCA
 client) {
 IssueCertificateRequest issueRequest = new IssueCertificateRequest()
 .withCertificateAuthorityArn(rootCAArn)
 .withTemplateArn("arn:aws:acm-pca:::template/
BlankRootCACertificate_PathLen0_APIPassthrough/V1")
 .withSigningAlgorithm(SigningAlgorithm.SHA256WITHECDSA)
 .withIdempotencyToken("1234");

 // Set the CSR.
 ByteBuffer csrByteBuffer = stringToByteBuffer(csr);
 issueRequest.setCsr(csrByteBuffer);

 // Set the validity period for the certificate to be issued.
 Validity validity = new Validity()
 .withValue(3650L)
 .withType("DAYS");
 issueRequest.setValidity(validity);

 // Generate base64 encoded extension value for KeyUsage
 KeyUsage keyUsage = new KeyUsage(X509KeyUsage.keyCertSign +
 X509KeyUsage.cRLSign);
 byte[] kuBytes = keyUsage.getEncoded();
 String base64EncodedKUValue = Base64.getEncoder().encodeToString(kuBytes);

 CustomExtension keyUsageCustomExtension = new CustomExtension()
 .withObjectIdentifier("2.5.29.15") // KeyUsage Extension OID
 .withValue(base64EncodedKUValue)
 .withCritical(true);

Activate an issuing authority certificate authority (IACA) certificate Version latest 177

Amazon Private Certificate Authority User Guide

 // Generate base64 encoded extension value for IssuerAlternativeName
 GeneralNames issuerAlternativeName = new GeneralNames(new
 GeneralName(GeneralName.uniformResourceIdentifier, "https://issuer-alternative-
name.com"));
 String base64EncodedIANValue =
 Base64.getEncoder().encodeToString(issuerAlternativeName.getEncoded());

 CustomExtension ianCustomExtension = new CustomExtension()
 .withValue(base64EncodedIANValue)
 .withObjectIdentifier("2.5.29.18"); // IssuerAlternativeName Extension
 OID

 // Generate base64 encoded extension value for CRLDistributionPoint
 CRLDistPoint crlDistPoint = new CRLDistPoint(new DistributionPoint[]{new
 DistributionPoint(new DistributionPointName(
 new GeneralNames(new GeneralName(GeneralName.uniformResourceIdentifier,
 "dummycrl.crl"))), null, null)});
 String base64EncodedCDPValue =
 Base64.getEncoder().encodeToString(crlDistPoint.getEncoded());

 CustomExtension cdpCustomExtension = new CustomExtension()
 .withValue(base64EncodedCDPValue)
 .withObjectIdentifier("2.5.29.31"); // CRLDistributionPoint Extension
 OID

 // Add custom extension to api-passthrough
 Extensions extensions = new Extensions()
 .withCustomExtensions(Arrays.asList(keyUsageCustomExtension,
 ianCustomExtension, cdpCustomExtension));
 ApiPassthrough apiPassthrough = new ApiPassthrough()
 .withExtensions(extensions);
 issueRequest.setApiPassthrough(apiPassthrough);

 // Issue the certificate.
 IssueCertificateResult issueResult = null;
 try {
 issueResult = client.issueCertificate(issueRequest);
 } catch (LimitExceededException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (InvalidStateException ex) {
 throw ex;

Activate an issuing authority certificate authority (IACA) certificate Version latest 178

Amazon Private Certificate Authority User Guide

 } catch (InvalidArnException ex) {
 throw ex;
 } catch (InvalidArgsException ex) {
 throw ex;
 } catch (MalformedCSRException ex) {
 throw ex;
 }

 // Get and display the certificate ARN.
 String rootCertificateArn = issueResult.getCertificateArn();
 System.out.println("mDL IACA Certificate Arn: " + rootCertificateArn);

 return rootCertificateArn;
 }

 private static String getCertificate(String rootCertificateArn, String rootCAArn,
 AWSACMPCA client) {

 // Create a request object.
 GetCertificateRequest certificateRequest = new GetCertificateRequest()
 .withCertificateArn(rootCertificateArn)
 .withCertificateAuthorityArn(rootCAArn);

 // Create waiter to wait on successful creation of the certificate file.
 Waiter<GetCertificateRequest> getCertificateWaiter =
 client.waiters().certificateIssued();
 try {
 getCertificateWaiter.run(new WaiterParameters<>(certificateRequest));
 } catch (WaiterUnrecoverableException e) {
 // Explicit short circuit when the recourse transitions into
 // an undesired state.
 } catch (WaiterTimedOutException e) {
 // Failed to transition into desired state even after polling.
 } catch (AWSACMPCAException e) {
 // Unexpected service exception.
 }

 // Get the certificate and certificate chain.
 GetCertificateResult certificateResult = null;
 try {
 certificateResult = client.getCertificate(certificateRequest);
 } catch (RequestInProgressException ex) {
 throw ex;
 } catch (RequestFailedException ex) {

Activate an issuing authority certificate authority (IACA) certificate Version latest 179

Amazon Private Certificate Authority User Guide

 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (InvalidStateException ex) {
 throw ex;
 }

 // Get the certificate and certificate chain and display the result.
 String rootCertificate = certificateResult.getCertificate();
 System.out.println(rootCertificate);

 return rootCertificate;
 }

 private static void importCertificateAuthorityCertificate(String rootCertificate,
 String rootCAArn, AWSACMPCA client) {

 // Create the request object and set the signed certificate, chain and CA ARN.
 ImportCertificateAuthorityCertificateRequest importRequest =
 new ImportCertificateAuthorityCertificateRequest()
 .withCertificateChain(null)
 .withCertificateAuthorityArn(rootCAArn);

 ByteBuffer certByteBuffer = stringToByteBuffer(rootCertificate);
 importRequest.setCertificate(certByteBuffer);

 // Import the certificate.
 try {
 client.importCertificateAuthorityCertificate(importRequest);
 } catch (CertificateMismatchException ex) {
 throw ex;
 } catch (MalformedCertificateException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (RequestInProgressException ex) {
 throw ex;
 } catch (ConcurrentModificationException ex) {
 throw ex;
 } catch (RequestFailedException ex) {

Activate an issuing authority certificate authority (IACA) certificate Version latest 180

Amazon Private Certificate Authority User Guide

 throw ex;
 }

 System.out.println("Root CA certificate successfully imported.");
 System.out.println("Root CA activated successfully.");
 }

 private static ByteBuffer stringToByteBuffer(final String string) {
 if (Objects.isNull(string)) {
 return null;
 }
 byte[] bytes = string.getBytes(StandardCharsets.UTF_8);
 return ByteBuffer.wrap(bytes);
 }
}

Create a document signer certificate

This Java sample shows how to use the BlankEndEntityCertificate_APIPassthrough/V1 template to
create a ISO/IEC mDL standard-compliant document signer certificate. You must generate base64-
encoded values for KeyUsage, IssuerAlternativeName, and CRLDistributionPoint and
pass them through CustomExtensions.

The example calls the following Amazon Private CA API action:

• IssueCertificate

package com.amazonaws.samples.mdl;

import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.auth.AWSStaticCredentialsProvider;

import java.nio.ByteBuffer;
import java.nio.charset.StandardCharsets;
import java.util.Arrays;
import java.util.Base64;
import java.util.Objects;

import com.amazonaws.services.acmpca.AWSACMPCA;
import com.amazonaws.services.acmpca.AWSACMPCAClientBuilder;

Create a document signer certificate Version latest 181

https://www.iso.org/standard/69084.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_IssueCertificate.html

Amazon Private Certificate Authority User Guide

import com.amazonaws.services.acmpca.model.ASN1Subject;
import com.amazonaws.services.acmpca.model.ApiPassthrough;
import com.amazonaws.services.acmpca.model.ExtendedKeyUsage;
import com.amazonaws.services.acmpca.model.CustomExtension;
import com.amazonaws.services.acmpca.model.Extensions;
import com.amazonaws.services.acmpca.model.IssueCertificateRequest;
import com.amazonaws.services.acmpca.model.IssueCertificateResult;
import com.amazonaws.services.acmpca.model.SigningAlgorithm;
import com.amazonaws.services.acmpca.model.Validity;

import com.amazonaws.AmazonClientException;
import com.amazonaws.services.acmpca.model.LimitExceededException;
import com.amazonaws.services.acmpca.model.ResourceNotFoundException;
import com.amazonaws.services.acmpca.model.InvalidStateException;
import com.amazonaws.services.acmpca.model.InvalidArnException;
import com.amazonaws.services.acmpca.model.InvalidArgsException;
import com.amazonaws.services.acmpca.model.MalformedCSRException;

import org.bouncycastle.asn1.x509.GeneralNames;
import org.bouncycastle.asn1.x509.GeneralName;
import org.bouncycastle.asn1.x509.CRLDistPoint;
import org.bouncycastle.asn1.x509.DistributionPoint;
import org.bouncycastle.asn1.x509.DistributionPointName;
import org.bouncycastle.asn1.x509.KeyUsage;
import org.bouncycastle.jce.X509KeyUsage;

public class IssueDocumentSignerCertificate {
 public static ByteBuffer stringToByteBuffer(final String string) {
 if (Objects.isNull(string)) {
 return null;
 }
 byte[] bytes = string.getBytes(StandardCharsets.UTF_8);
 return ByteBuffer.wrap(bytes);
 }

 public static void main(String[] args) throws Exception {

 // Get your credentials from the C:\Users\name\.aws\credentials file
 // in Windows or the .aws/credentials file in Linux.
 AWSCredentials credentials = null;
 try {
 credentials = new ProfileCredentialsProvider("default").getCredentials();
 } catch (Exception e) {

Create a document signer certificate Version latest 182

Amazon Private Certificate Authority User Guide

 throw new AmazonClientException("Cannot load your credentials from disk",
 e);
 }

 // Create a client that you can use to make requests.
 String endpointRegion = null; // Substitute your region here, e.g. "ap-
southeast-2"
 if (endpointRegion == null) throw new Exception("Region cannot be null");

 AWSACMPCA client = AWSACMPCAClientBuilder.standard()
 .withRegion(endpointRegion)
 .withCredentials(new AWSStaticCredentialsProvider(credentials))
 .build();

 // Create a certificate request:
 String caArn = null;
 if (caArn == null) throw new Exception("Certificate authority ARN cannot be
 null");

 IssueCertificateRequest req = new IssueCertificateRequest()
 .withCertificateAuthorityArn(caArn)
 .withTemplateArn("arn:aws:acm-pca:::template/
BlankEndEntityCertificate_APIPassthrough/V1")
 .withSigningAlgorithm(SigningAlgorithm.SHA256WITHECDSA)
 .withIdempotencyToken("1234");

 // Specify the certificate signing request (CSR) for the certificate to be
 signed and issued.
 // Format: "-----BEGIN CERTIFICATE REQUEST-----\n" +
 // "base64-encoded certificate\n" +
 // "-----END CERTIFICATE REQUEST-----\n";
 String strCSR = null;
 if (strCSR == null) throw new Exception("CSR string cannot be null");

 ByteBuffer csrByteBuffer = stringToByteBuffer(strCSR);
 req.setCsr(csrByteBuffer);

 // Set the validity period for the certificate to be issued.
 Validity validity = new Validity()
 .withValue(365L)
 .withType("DAYS");
 req.setValidity(validity);

 // Define a cert subject.

Create a document signer certificate Version latest 183

Amazon Private Certificate Authority User Guide

 ASN1Subject subject = new ASN1Subject()
 .withCountry("US") // mDL spec requires ISO 3166-1-alpha-2 country code
 e.g. "US"
 .withCommonName("mDL Test DS");

 ApiPassthrough apiPassthrough = new ApiPassthrough()
 .withSubject(subject);

 // Generate base64 encoded extension value for KeyUsage
 KeyUsage keyUsage = new KeyUsage(X509KeyUsage.digitalSignature);
 byte[] kuBytes = keyUsage.getEncoded();
 String base64EncodedKUValue = Base64.getEncoder().encodeToString(kuBytes);

 CustomExtension customKeyUsageExtension = new CustomExtension()
 .withObjectIdentifier("2.5.29.15") // KeyUsage Extension OID
 .withValue(base64EncodedKUValue)
 .withCritical(true);

 // Generate base64 encoded extension value for IssuerAlternativeName
 GeneralNames issuerAlternativeName = new GeneralNames(new
 GeneralName(GeneralName.uniformResourceIdentifier, "https://issuer-alternative-
name.com"));
 String base64EncodedIANValue =
 Base64.getEncoder().encodeToString(issuerAlternativeName.getEncoded());

 CustomExtension ianCustomExtension = new CustomExtension()
 .withValue(base64EncodedIANValue)
 .withObjectIdentifier("2.5.29.18"); // IssuerAlternativeName Extension
 OID

 // Generate base64 encoded extension value for CRLDistributionPoint
 CRLDistPoint crlDistPoint = new CRLDistPoint(new DistributionPoint[]{new
 DistributionPoint(new DistributionPointName(
 new GeneralNames(new GeneralName(GeneralName.uniformResourceIdentifier,
 "dummycrl.crl"))), null, null)});
 String base64EncodedCDPValue =
 Base64.getEncoder().encodeToString(crlDistPoint.getEncoded());

 CustomExtension cdpCustomExtension = new CustomExtension()
 .withValue(base64EncodedCDPValue)
 .withObjectIdentifier("2.5.29.31"); // CRLDistributionPoint Extension
 OID

 // Generate EKU

Create a document signer certificate Version latest 184

Amazon Private Certificate Authority User Guide

 ExtendedKeyUsage eku = new ExtendedKeyUsage()
 .withExtendedKeyUsageObjectIdentifier("1.0.18013.5.1.2"); // EKU value
 reserved for mDL DS

 // Set KeyUsage, ExtendedKeyUsage, IssuerAlternativeName, CRL Distribution
 Point extensions to api-passthrough
 Extensions extensions = new Extensions()
 .withCustomExtensions(Arrays.asList(customKeyUsageExtension,
 ianCustomExtension, cdpCustomExtension))
 .withExtendedKeyUsage(Arrays.asList(eku));
 apiPassthrough.setExtensions(extensions);
 req.setApiPassthrough(apiPassthrough);

 // Issue the certificate.
 IssueCertificateResult result = null;
 try {
 result = client.issueCertificate(req);
 } catch (LimitExceededException ex) {
 throw ex;
 } catch (ResourceNotFoundException ex) {
 throw ex;
 } catch (InvalidStateException ex) {
 throw ex;
 } catch (InvalidArnException ex) {
 throw ex;
 } catch (InvalidArgsException ex) {
 throw ex;
 } catch (MalformedCSRException ex) {
 throw ex;
 }

 // Get and display the certificate ARN.
 String arn = result.getCertificateArn();
 System.out.println("mDL DS Certificate Arn: " + arn);
 }
}

Create a document signer certificate Version latest 185

Amazon Private Certificate Authority User Guide

Architect your solution for Amazon Private CA

Amazon Private CA gives you complete, cloud-based control over your organization's private PKI
(public key infrastructure), extending from a root certificate authority (CA), through subordinate
CAs, to end-entity certificates. Thorough planning is essential for a PKI that is secure, maintainable,
extensible, and suited to your organization's needs. This section provides guidance on designing a
CA hierarchy, managing your private CA and private end-entity certificate lifecycles, and applying
best practices for security.

This section describes how to prepare Amazon Private CA for use before you create a private
certificate authority (CA). It also explains the option to add revocation support through Online
Certificate Status Protocol (OCSP) or a certificate revocation list (CRL).

In addition, you should determine whether your organization prefers to host its private root CA
credentials on premises rather than with Amazon. In that case, you need to set up and secure
a self-managed private PKI before using Amazon Private CA. In this scenario, you then create a
subordinate CA in Amazon Private CA backed by a parent CA outside of Amazon Private CA. For
more information, see Installing a subordinate CA certificate signed by an external parent CA.

Topics

• Design a CA hierarchy

• Manage the private CA lifecycle

• Plan your Amazon Private CA certificate revocation method

• Understand Amazon Private CA CA modes

• Plan for resilience in Amazon Private CA

Design a CA hierarchy

With Amazon Private CA, you can create a hierarchy of certificate authorities with up to five levels.
The root CA, at the top of a hierarchy tree, can have any number of branches. The root CA can have
as many as four levels of subordinate CAs on each branch. You can also create multiple hierarchies,
each with its own root.

A well-designed CA hierarchy offers the following benefits:

• Granular security controls appropriate to each CA

Design a CA hierarchy Version latest 186

https://docs.amazonaws.cn/privateca/latest/userguide/PCACertInstall.html#InstallSubordinateExternal

Amazon Private Certificate Authority User Guide

• Division of administrative tasks for better load balancing and security

• Use of CAs with limited, revocable trust for daily operations

• Validity periods and certificate path limits

The following diagram illustrates a simple, three-level CA hierarchy.

Each CA in the tree is backed by an X.509 v3 certificate with signing authority (symbolized by
the pen-and-paper icon). This means that as CAs, they can sign other certificates subordinate to
them. When a CA signs a lower-level CA's certificate, it confers limited, revocable authority on the
signed certificate. The root CA in level 1 signs high-level subordinate CA certificates in level 2.
These CAs, in turn, sign certificates for CAs in level 3 that are used by PKI (public key infrastructure)
administrators who manage end-entity certificates.

Security in a CA hierarchy should be configured to be strongest at the top of the tree. This
arrangement protects the root CA certificate and its private key. The root CA anchors trust for all
of the subordinate CAs and the end-entity certificates below it. While localized damage can result
from the compromise of an end-entity certificate, compromise of the root destroys trust in the
entire PKI. Root and high-level subordinate CAs are used only infrequently (usually to sign other
CA certificates). Consequently, they are tightly controlled and audited to ensure a lower risk of
compromise. At the lower levels of the hierarchy, security is less restrictive. This approach allows

Design a CA hierarchy Version latest 187

Amazon Private Certificate Authority User Guide

the routine administrative tasks of issuing and revoking end-entity certificates for users, computer
hosts, and software services.

Note

Using a root CA to sign a subordinate certificate is a rare event that occurs in only a handful
of circumstances:

• When the PKI is created

• When a high-level certificate authority needs to be replaced

• When a certificate revocation list (CRL) or Online Certificate Status Protocol (OCSP)
responder needs to be configured

Root and other high-level CAs require highly secure operational processes and access-
control protocols.

Topics

• Validate end-entity certificates

• Plan the structure of a CA hierarchy

• Set length constraints on the certification path

Validate end-entity certificates

End-entity certificates derive their trust from a certification path leading back through the
subordinate CAs to a root CA. When a web browser or other client is presented with an end-entity
certificate, it attempts to construct a chain of trust. For example, it may check to see that the
certificate's issuer distinguished name and subject distinguished name match with the corresponding
fields of the issuing CA certificate. Matching would continue at each successive level up the
hierarchy until the client reaches a trusted root that is contained in its trust store.

The trust store is a library of trusted CAs that the browser or operating system contains. For
a private PKI, your organization's IT must ensure that each browser or system has previously
added the private root CA to its trust store. Otherwise, the certification path cannot be validated,
resulting in client errors.

Validate end-entity certificates Version latest 188

Amazon Private Certificate Authority User Guide

The next diagram shows the validation path that a browser follows when presented with an end-
entity X.509 certificate. Note that the end-entity certificate lacks signing authority and serves only
to authenticate the entity that owns it.

The browser inspects the end-entity certificate. The browser finds that the certificate offers a
signature from subordinate CA (level 3) as its trust credential. The certificates for the subordinate
CAs must be included in the same PEM file. Alternatively, they can also be in a separate file that
contains the certificates that make up the trust chain. Upon finding these, the browser checks the
certificate of subordinate CA (level 3) and finds that it offers a signature from subordinate CA (level
2). In turn, subordinate CA (level 2) offers a signature from root CA (level 1) as its trust credential. If
the browser finds a copy of the private root CA certificate preinstalled in its trust store, it validates
the end-entity certificate as trusted.

Typically, the browser also checks each certificate against a certificate revocation list (CRL). An
expired, revoked, or misconfigured certificate is rejected and validation fails.

Validate end-entity certificates Version latest 189

Amazon Private Certificate Authority User Guide

Plan the structure of a CA hierarchy

In general, your CA hierarchy should reflect the structure of your organization. Aim for a path
length (that is, number of CA levels) no greater than necessary to delegate administrative and
security roles. Adding a CA to the hierarchy means increasing the number of certificates in the
certification path, which increases validation time. Keeping the path length to a minimum also
reduces the number of certificates sent from the server to the client when validating an end-entity
certificate.

In theory, a root CA, which has no pathLenConstraint parameter, can authorize unlimited levels of
subordinate CAs. A subordinate CA can have as many child subordinate CAs as are allowed by its
internal configuration. Amazon Private CA managed hierarchies support CA certification paths up
to five levels deep.

Well designed CA structures have several benefits:

• Separate administrative controls for different organizational units

• The ability to delegate access to subordinate CAs

• A hierarchical structure that protects higher-level CAs with additional security controls

Two common CA structures accomplish all of this:

• Two CA levels: root CA and subordinate CA

This is the simplest CA structure that allows separate administration, control, and security
policies for the root CA and a subordinate CA. You can maintain restrictive controls and policies
for your root CA while allowing more permissive access for the subordinate CA. The latter is used
for bulk issuance of end-entity certificates.

• Three CA levels: root CA and two layers of subordinate CA

Similar to the above, this structure adds an additional CA layer to further separate the root CA
from low-level CA operations. The middle CA layer is only used to sign subordinate CAs that
carry out the issuance of end-entity certificates.

Less common CA structures include the following:

• Four or more CA levels

Plan the structure of a CA hierarchy Version latest 190

Amazon Private Certificate Authority User Guide

Though less common than three-level hierarchies, CA hierarchies with four or more levels are
possible and may be required to allow administrative delegation.

• One CA level: root CA only

This structure is commonly used for development and testing when a full chain of trust is not
required. Used in production, it is atypical. Moreover, it violates the best practice of maintaining
separate security policies for the root CA and the CAs that issue end-entity certificates.

However, if you are already issuing certificates directly from a root CA, you can migrate to
Amazon Private CA. Doing so provides security and control advantages over using a root CA
managed with OpenSSL or other software.

Example of a private PKI for a manufacturer

In this example, a hypothetical technology company manufactures two Internet of Things (IoT)
products, a smart light bulb and a smart toaster. During production, each device is issued an end-
entity certificate so it can communicate securely over the internet with the manufacturer. The
company's PKI also secures its computer infrastructure, including the internal website and various
self-hosted computer services that run finance and business operations.

Consequently, the CA hierarchy closely models these administrative and operational aspects of the
business.

Plan the structure of a CA hierarchy Version latest 191

https://www.openssl.org/

Amazon Private Certificate Authority User Guide

This hierarchy contains three roots, one for Internal Operations and two for External Operations
(one root CA for each product line). It also illustrates multiple certification path length, with two
levels of CA for Internal Operations and three levels for External Operations.

The use of separated root CAs and additional subordinate CA layers on the External Operations
side is a design decision serving business and security needs. With multiple CA trees, the PKI is
future-proofed against corporate reorganizations, divestitures, or acquisitions. When changes
occur, an entire root CA hierarchy can move cleanly with the division it secures. And with two
levels of subordinate CA, the roots CAs have a high level of isolation from the level 3 CAs that are
responsible for bulk-signing the certificates for thousands or millions of manufactured items.

On the internal side, corporate web and internal computer operations complete a two-level
hierarchy. These levels allow web administrators and operations engineers to manage certificate
issuance independently for their own work domains. The compartmentalization of PKI into
distinct functional domains is a security best practice and protects each from a compromise
that might affect the other. Web administrators issue end-entity certificates for use by web
browsers throughout the company, authenticating and encrypting communications on the internal
website. Operations engineers issue end-entity certificates that authenticate data center hosts and
computer services to one another. This system helps keep sensitive data secure by encrypting it on
the LAN.

Plan the structure of a CA hierarchy Version latest 192

Amazon Private Certificate Authority User Guide

Set length constraints on the certification path

The structure of a CA hierarchy is defined and enforced by the basics constraints extension that
each certificate contains. The extension defines two constraints:

• cA – Whether the certificate defines a CA. If this value is false (the default), then the certificate is
an end-entity certificate.

• pathLenConstraint – The maximum number of lower-level subordinate CAs that can exist in a
valid chain of trust. The end-entity certificate is not counted because it is not a CA certificate.

A root CA certificate needs maximum flexibility and does not include a path length constraint. This
allows the root to define a certification path of any length.

Note

Amazon Private CA limits the certification path to five levels.

Subordinate CAs have pathLenConstraint values equal to or greater than zero, depending
on location in the hierarchy placement and desired features. For example, in a hierarchy with
three CAs, no path constraint is specified for the root CA. The first subordinate CA has a path
length of 1 and can therefore sign child CAs. Each of these child CAs must necessarily have a
pathLenConstraint value of zero. This means that they can sign end-entity certificates but
cannot issue additional CA certificates. Limiting the power to create new CAs is an important
security control.

The following diagram illustrates this propagation of limited authority down the hierarchy.

Set length constraints on the certification path Version latest 193

Amazon Private Certificate Authority User Guide

In this four-level hierarchy, the root is unconstrained (as always). But the first subordinate CA has
a pathLenConstraint value of 2, which limits its child CAs from going more than two levels
deeper. Consequently, for a valid certification path, the constraint value must decrement to zero
in the next two levels. If a web browser encounters an end-entity certificate from this branch that
has a path length greater than four, validation fails. Such a certificate could be the result of an
accidentally created CA, a misconfigured CA, or a unauthorized issuance.

Manage path length with templates

Amazon Private CA provides templates for issuing root, subordinate, and end-entity certificates.
These templates encapsulate best practices for the basic constraints values, including path length.
The templates include the following:

• RootCACertificate/V1

• SubordinateCACertificate_PathLen0/V1

• SubordinateCACertificate_PathLen1/V1

• SubordinateCACertificate_PathLen2/V1

• SubordinateCACertificate_PathLen3/V1

Set length constraints on the certification path Version latest 194

Amazon Private Certificate Authority User Guide

• EndEntityCertificate/V1

The IssueCertificate API will return an error if you attempt to create a CA with a path length
greater than or equal to the path length of its issuing CA certificate.

For more information about certificate templates, see Use Amazon Private CA certificate templates.

Automate CA hierarchy setup with Amazon CloudFormation

When you have settled on a design for your CA hierarchy, you can test it and put it into production
using a Amazon CloudFormation template. For an example of such a template, see Declaring a
Private CA Hierarchy in the Amazon CloudFormation User Guide.

Manage the private CA lifecycle

CA certificates have a fixed lifetime, or validity period. When a CA certificate expires, all of the
certificates issued directly or indirectly by subordinate CAs below it in the CA hierarchy become
invalid. You can avoid CA certificate expiration by planning in advance.

Choose validity periods

The validity period of an X.509 certificate is a required basic certificate field. It determines the
time-range during which the issuing CA certifies that the certificate can be trusted, barring
revocation. (A root certificate, being self-signed, certifies its own validity period.)

Amazon Private CA and Amazon Certificate Manager assist with the configuration of certificate
validity periods subject to the following constraints:

• A certificate managed by Amazon Private CA must have a validity period shorter than or equal to
the validity period of the CA that issued it. In other words, child CAs and end-entity certificates
cannot outlive their parent certificates. Attempting to use the IssueCertificate API to issue
a CA certificate with a validity period greater than or equal to the parent's CA fails.

• Certificates issued and managed by Amazon Certificate Manager (those for which ACM generates
the private key) have a validity period of 13 months (395 days). ACM manages the renewal
process for these certificates. If you use Amazon Private CA to issue certificates directly, you can
choose any validity period.

Manage the CA lifecycle Version latest 195

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-acmpca-certificateauthority.html#aws-resource-acmpca-certificateauthority--examples
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-acmpca-certificateauthority.html#aws-resource-acmpca-certificateauthority--examples

Amazon Private Certificate Authority User Guide

The following diagram shows a typical configuration of nested validity periods. The root certificate
is the most long-lived; end-entity certificates are relatively short-lived; and subordinate CAs range
between these extremes.

When you plan your CA hierarchy, determine the optimal lifetime for your CA certificates. Work
backwards from the desired lifetime of the end-entity certificates that you want to issue.

End-entity certificates

End-entity certificates should have a validity period appropriate to the use case. A short lifetime
minimizes the exposure of a certificate in the event that its private key is lost or stolen. However,
short lifetimes mean frequent renewals. Failure to renew an expiring certificate can result in
downtime.

The distributed use of end-entity certificates can also present logistical problems if there is a
security breach. Your planning should account for renewal and distribution certificates, revocation
of compromised certificates, and how quickly revocations propagate to clients that rely on the
certificates.

The default validity period for an end-entity certificate issued through ACM is 13 months (395
days). In Amazon Private CA, you can use the IssueCertificate API to apply any validity period
so long as it is less than that of the issuing CA.

Subordinate CA Certificates

Subordinate CA certificates should have significantly longer validity periods than the certificates
they issue. A good range for a CA certificate's validity is two to five times the period of any child
CA certificate or end-entity certificate it issues. For example, assume you have a two-level CA
hierarchy (root CA and one subordinate CA). If you want to issue end-entity certificates with a one-
year lifetime, you could configure the subordinate issuing CA lifetime to be three years. This is
the default validity period for a subordinate CA certificate in Amazon Private CA. Subordinate CA
certificates can be changed without replacing the root CA certificate.

Choose validity periods Version latest 196

Amazon Private Certificate Authority User Guide

Root Certificates

Changes to a root CA certificate affect the entire PKI (public key infrastructure) and require
you to update all the dependent client operating system and browser trust stores. To minimize
operational impact, you should choose a long validity period for the root certificate. The Amazon
Private CA default for root certificates is ten years.

Manage CA succession

You have two ways to manage CA succession: Replace the old CA, or reissue the CA with a new
validity period.

Replace an old CA

To replace an old CA, you create a new CA and chain it to the same parent CA. Afterward, you issue
certificates from the new CA.

Certificates issued from the new CA have a new CA chain. Once the new CA is established, you
can disable the old CA to prevent it from issuing new certificates. While disabled, the old CA
supports revocation for old certificates issued from the CA, and, if configured to do so, it continues
to validate certificates by means of OCSP and/or certificate revocation lists (CRLs). When the
last certificate issued from the old CA expires, you can delete the old CA. You can generate an
audit report for all of the certificates issued from the CA to confirm that all of the certificates
issued have expired. If the old CA has subordinate CAs, you must also replace them, because
subordinate CAs expire at the same time or before their parent CA. Start by replacing the highest
CA in the hierarchy that needs to be replaced. Then create new replacement subordinate CAs at
each subsequent lower level.

Amazon recommends that you include a CA generation identifier in the names of CAs as needed.
For example, assume that you name the first generation CA “Corporate Root CA." When you create
the second generation CA, name it “Corporate Root CA G2." This simple naming convention can
help avoid confusion when both CAs are unexpired.

This method of CA succession is preferred because it rotates the private key of the CA. Rotating the
private key is a best practice for CA keys. The frequency of rotation should be proportional to the
frequency of key use: CAs that issue more certificates should be rotated more frequently.

Manage CA succession Version latest 197

Amazon Private Certificate Authority User Guide

Note

Private certificates issued through ACM cannot be renewed if you replace the CA. If you use
ACM for issuance and renewal, you must re-issue the CA certificate to extend the lifetime of
the CA.

Reissue an old CA

When a CA nears expiration, an alternative method of extending its life is to reissue the CA
certificate with a new expiration date. Reissuance leaves all of the CA metadata in place and
preserves the existing private and public keys. In this scenario, the existing certificate chain and
unexpired end-entity certificates issued by the CA remain valid until they expire. New certificate
issuance can also continue without interruption. To update a CA with a reissued certificate, follow
the usual installation procedures described in Installing the CA certificate.

Note

We recommend replacing an expiring CA rather than reissuing its certificate because of the
security advantages gained by rotating to a new key pair.

Revoke a CA

You revoke a CA by revoking its underlying certificate. This also effectively revokes all of the
certificates issued by the CA. Revocation information is distributed to clients by means of OCSP or
a CRL. You should revoke a CA certificate only if you want to revoke all of its issued end-entity and
subordinate CA certificates.

Plan your Amazon Private CA certificate revocation method

As you plan your private PKI with Amazon Private CA, you should consider how to handle situations
where you no longer wish endpoints to trust an issued certificate, such as when the private key of
an endpoint is exposed. The common approaches to this problem are to use short-lived certificates
or to configure certificate revocation. Short-lived certificates expire in such a short period of time,
in hours or days, that revocation makes no sense, with the certificate becoming invalid in about
the same time it takes to notify an endpoint of revocation. This section describes the revocation
options for Amazon Private CA customers, including configuration and best practices.

Revoke a CA Version latest 198

Amazon Private Certificate Authority User Guide

Customers looking for a revocation method can choose Online Certificate Status Protocol (OCSP),
certificate revocation lists (CRLs), or both.

Note

If you create your CA without configuring revocation, you can always configure it later. For
more information, see Update a private CA in Amazon Private Certificate Authority.

• Online Certificate Status Protocol (OCSP)

Amazon Private CA provides a fully managed OCSP solution to notify endpoints that certificates
have been revoked without the need for customers to operate infrastructure themselves.
Customers can enable OCSP on new or existing CAs with a single operation using the Amazon
Private CA console, the API, the CLI, or through Amazon CloudFormation. Whereas CRLs are
stored and processed on the endpoint and can become stale, OCSP storage and processing
requirements are handled synchronously on the responder backend.

When you enable OCSP for a CA, Amazon Private CA includes the URL of the OCSP responder
in the Authority Information Access (AIA) extension of each new certificate issued. The extension
allows clients such as web browsers to query the responder and determine whether an end-
entity or subordinate CA certificate can be trusted. The responder returns a status message that
is cryptographically signed to assure its authenticity.

The Amazon Private CA OCSP responder is compliant with RFC 5019.

OCSP considerations

• OCSP status messages are signed using the same signing algorithm that the issuing CA was
configured to use. CAs created in the Amazon Private CA console use the SHA256WITHRSA
signature algorithm by default. Other supported algorithms can be found in the
CertificateAuthorityConfiguration API documentation.

• APIPassthrough and CSRPassthrough certificate templates will not work with the AIA
extension if the OCSP responder is enabled.

• The endpoint of the managed OCSP service is accessible on the public internet. Customers
who want OCSP but prefer not to have a public endpoint will need to operate their own OCSP
infrastructure.

• Certificate Revocation Lists (CRLs)

Plan certificate revocation Version latest 199

https://datatracker.ietf.org/doc/html/rfc5019
https://docs.amazonaws.cn/privateca/latest/APIReference/API_CertificateAuthorityConfiguration.html
https://docs.amazonaws.cn/privateca/latest/userguide/UsingTemplates.html#template-varieties

Amazon Private Certificate Authority User Guide

A certificate revocation list (CRL) is a file that contains a list of certificates revoked before
their scheduled expiration date. The CRL contains a list of certificates that should no longer be
trusted, the reason for revocation, and other relevant information.

When you configure your certificate authority (CA), you can choose whether Amazon Private
CA creates a complete or partitioned CRL. Your choice determines the maximum number of
certificates that the certificate authority can issue and revoke. For more information, see Amazon
Private CA quotas.

CRL considerations

• Memory and bandwidth considerations: CRLs require more memory than OCSP due to local
download and processing requirements. However, CRLs might reduce network bandwidth
compared to OCSP by caching revocation lists instead of checking status per connection. For
memory-constrained devices, such as certain IoT devices, consider using partitioned CRLs.

• Changing the CRL type: When changing from a complete to partitioned CRL, Amazon Private
CA creates new partitions as needed and adds the IDP extension to all CRLs, including the
original. Changing from partitioned to complete updates only a single CRL and prevents future
revocation of certificates associated with previous partitions.

Note

Both OCSP and CRLs exhibit some delay between revocation and the availability of the
status change.

• OCSP responses may take up to 60 minutes to reflect the new status when you revoke
a certificate. In general, OCSP tends to support faster distribution of revocation
information because, unlike CRLs which can be cached by clients for days, OCSP
responses are typically not cached by clients.

• A CRL is typically updated approximately 30 minutes after a certificate is revoked. If
for any reason a CRL update fails, Amazon Private CA makes further attempts every 15
minutes.

General requirements for revocation configurations

The following requirements apply to all revocation configurations.

Requirements Version latest 200

https://docs.amazonaws.cn/general/latest/gr/pca.html#limits_pca
https://docs.amazonaws.cn/general/latest/gr/pca.html#limits_pca

Amazon Private Certificate Authority User Guide

• A configuration disabling CRLs or OCSP must contain only the Enabled=False parameter, and
will fail if other parameters such as CustomCname or ExpirationInDays are included.

• In a CRL configuration, the S3BucketName parameter must conform to Amazon Simple Storage
Service bucket naming rules.

• A configuration containing a custom Canonical Name (CNAME) parameter for CRLs or OCSP must
conform to RFC7230 restrictions on the use of special characters in a CNAME.

• In a CRL or OCSP configuration, the value of a CNAME parameter must not include a protocol
prefix such as "http://" or "https://".

Topics

• Set up a CRL for Amazon Private CA

• Customize OCSP URL for Amazon Private CA

Set up a CRL for Amazon Private CA

Before you can configure a certificate revocation list (CRL) as part of the CA creation process, some
prior setup may be necessary. This section explains the prerequisites and options that you should
understand before creating a CA with a CRL attached.

For information about using Online Certificate Status Protocol (OCSP) as an alternative or a
supplement to a CRL, see Certificate revocation options and Customize OCSP URL for Amazon
Private CA.

Topics

• CRL types

• CRL structure

• Access policies for CRLs in Amazon S3

• Enable S3 Block Public Access (BPA) with CloudFront

• Determining the CRL Distribution Point (CDP) URI

•

Set up CRL Version latest 201

https://docs.amazonaws.cn/AmazonS3/latest/userguide/bucketnamingrules.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/bucketnamingrules.html
https://www.ietf.org/rfc/rfc7230.txt

Amazon Private Certificate Authority User Guide

CRL types

• Complete - The default setting. Amazon Private CA maintains a single, unpartitioned CRL file for
all unexpired certificates issued by a CA that have been revoked. Each certificate that Amazon
Private CA issues is bound to a specific CRL through its CRL distribution point (CDP) extension, as
defined in RFC 5280. You can have up to 1 million private certificates for each CA with complete
CRL enabled. For more information, see the Amazon Private CA quotas.

• Partitioned - Compared to complete CRLs, partitioned CRLs dramatically increase the number of
certificates your private CA can issue, and saves you from frequently rotating your CAs.

Important

When using partitioned CRLs, you must validate that the CRL's associated issuing
distribution point (IDP) URI matches the certificate's CDP URI to ensure the right CRL has
been fetched. Amazon Private CA marks the IDP extension as critical, which your client
must be able to process.

CRL structure

Each CRL is a DER encoded file. To download the file and use OpenSSL to view it, use a command
similar to the following:

openssl crl -inform DER -in path-to-crl-file -text -noout

CRLs have the following format:

Certificate Revocation List (CRL):
 Version 2 (0x1)
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: /C=US/ST=WA/L=Seattle/O=Example Company CA/OU=Corporate/
CN=www.example.com
 Last Update: Feb 26 19:28:25 2018 GMT
 Next Update: Feb 26 20:28:25 2019 GMT
 CRL extensions:
 X509v3 Authority Key Identifier:
 keyid:AA:6E:C1:8A:EC:2F:8F:21:BC:BE:80:3D:C5:65:93:79:99:E7:71:65

 X509v3 CRL Number:
 1519676905984

Set up CRL Version latest 202

https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.1.9
https://docs.amazonaws.cn/general/latest/gr/pca.html#limits_pca
https://www.openssl.org/

Amazon Private Certificate Authority User Guide

 Revoked Certificates:
 Serial Number: E8CBD2BEDB122329F97706BCFEC990F8
 Revocation Date: Feb 26 20:00:36 2018 GMT
 CRL entry extensions:
 X509v3 CRL Reason Code:
 Key Compromise
 Serial Number: F7D7A3FD88B82C6776483467BBF0B38C
 Revocation Date: Jan 30 21:21:31 2018 GMT
 CRL entry extensions:
 X509v3 CRL Reason Code:
 Key Compromise
 Signature Algorithm: sha256WithRSAEncryption
 82:9a:40:76:86:a5:f5:4e:1e:43:e2:ea:83:ac:89:07:49:bf:
 c2:fd:45:7d:15:d0:76:fe:64:ce:7b:3d:bb:4c:a0:6c:4b:4f:
 9e:1d:27:f8:69:5e:d1:93:5b:95:da:78:50:6d:a8:59:bb:6f:
 49:9b:04:fa:38:f2:fc:4c:0d:97:ac:02:51:26:7d:3e:fe:a6:
 c6:83:34:b4:84:0b:5d:b1:c4:25:2f:66:0a:2e:30:f6:52:88:
 e8:d2:05:78:84:09:01:e8:9d:c2:9e:b5:83:bd:8a:3a:e4:94:
 62:ed:92:e0:be:ea:d2:59:5b:c7:c3:61:35:dc:a9:98:9d:80:
 1c:2a:f7:23:9b:fe:ad:6f:16:7e:22:09:9a:79:8f:44:69:89:
 2a:78:ae:92:a4:32:46:8d:76:ee:68:25:63:5c:bd:41:a5:5a:
 57:18:d7:71:35:85:5c:cd:20:28:c6:d5:59:88:47:c9:36:44:
 53:55:28:4d:6b:f8:6a:00:eb:b4:62:de:15:56:c8:9c:45:d7:
 83:83:07:21:84:b4:eb:0b:23:f2:61:dd:95:03:02:df:0d:0f:
 97:32:e0:9d:38:de:7c:15:e4:36:66:7a:18:da:ce:a3:34:94:
 58:a6:5d:5c:04:90:35:f1:8b:55:a9:3c:dd:72:a2:d7:5f:73:
 5a:2c:88:85

Note

The CRL will only be deposited in Amazon S3 after a certificate has been issued that refers
to it. Prior to that, there will only be an acm-pca-permission-test-key file visible in
the Amazon S3 bucket.

Access policies for CRLs in Amazon S3

If you plan to create a CRL, you need to prepare an Amazon S3 bucket to store it in. Amazon
Private CA automatically deposits the CRL in the Amazon S3 bucket you designate and updates it
periodically. For more information, see Creating a bucket.

Set up CRL Version latest 203

https://docs.amazonaws.cn/AmazonS3/latest/userguide/create-bucket.html

Amazon Private Certificate Authority User Guide

Your S3 bucket must be secured by an attached IAM permissions policy. Authorized users and
service principals require Put permission to allow Amazon Private CA to place objects in the
bucket, and Get permission to retrieve them. During the console procedure for creating a CA, you
can choose to let Amazon Private CA create a new bucket and apply a default permissions policy.

Note

The IAM policy configuration depends on the Amazon Web Services Regions involved.
Regions fall into two categories:

• Default-enabled Regions – Regions that are enabled by default for all Amazon Web
Services accounts.

• Default-disabled Regions – Regions that are disabled by default, but may be manually
enabled by the customer.

For more information and a list of the default-disabled Regions, see Managing Amazon
Web Services Regions. For a discussion of service principals in the context of IAM, see
Amazon service principals in opt-in Regions.
When you configure CRLs as the certificate revocation method, Amazon Private CA creates
a CRL and publishes it to an S3 bucket. The S3 bucket requires an IAM policy that allows
the Amazon Private CA service principal to write to the bucket. The name of the service
principal varies according to the Regions used, and not all possibilities are supported.

PCA S3 Service principal

Both in same Region acm-pca.amazonaws.com

Enabled Enabled acm-pca.amazonaws.com

Disabled Enabled
acm-pca.Region.amazonaw
s.com

Enabled Disabled
Not supported

Set up CRL Version latest 204

https://docs.amazonaws.cn/general/latest/gr/rande-manage.html
https://docs.amazonaws.cn/general/latest/gr/rande-manage.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_principal.html#principal-services-in-opt-in-regions

Amazon Private Certificate Authority User Guide

The default policy applies no SourceArn restriction on the CA. We recommend that you apply
a less permissive policy such as the following, which restricts access to both a specific Amazon
account and a specific private CA. Alternatively, you can use the aws:SourceOrgID condition key to
constrain access to a specific organization in Amazon Organizations. For more information about
bucket policies, see Bucket policies for Amazon Simple Storage Service.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Principal":{
 "Service":"acm-pca.amazonaws.com"
 },
 "Action":[
 "s3:PutObject",
 "s3:PutObjectAcl",
 "s3:GetBucketAcl",
 "s3:GetBucketLocation"
],
 "Resource":[
 "arn:aws:s3:::amzn-s3-demo-bucket/*",
 "arn:aws:s3:::amzn-s3-demo-bucket1"
],
 "Condition":{
 "StringEquals":{
 "aws:SourceAccount":"111122223333",
 "aws:SourceArn":"arn:partition:acm-pca:region:111122223333:certificate-
authority/CA_ID"
 }
 }
 }
]
}

If you choose to allow the default policy, you can always modify it later.

Enable S3 Block Public Access (BPA) with CloudFront

New Amazon S3 buckets are configured by default with the Block Public Access (BPA) feature
activated. Included in the Amazon S3 security best practices, BPA is a set of access controls that
customers can use to fine-tune access to objects in their S3 buckets and to the buckets as a whole.

Set up CRL Version latest 205

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceorgid
https://docs.amazonaws.cn/AmazonS3/latest/userguide/bucket-policies.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/add-bucket-policy.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/security-best-practices.html

Amazon Private Certificate Authority User Guide

When BPA is active and correctly configured, only authorized and authenticated Amazon users have
access to a bucket and its contents.

Amazon recommends the use of BPA on all S3 buckets to avoid exposure of sensitive information
to potential adversaries. However, additional planning is required if your PKI clients retrieve CRLs
across the public internet (that is, while not logged into an Amazon account). This section describes
how to configure a private PKI solution using Amazon CloudFront, a content delivery network
(CDN), to serve CRLs without requiring authenticated client access to an S3 bucket.

Note

Using CloudFront incurs additional costs on your Amazon account. For more information,
see Amazon CloudFront Pricing.
If you choose to store your CRL in an S3 bucket with BPA enabled, and you do not use
CloudFront, you must build another CDN solution to ensure that your PKI client has access
to your CRL.

Set up CloudFront for BPA

Create a CloudFront distribution that will have access to your private S3 bucket, and can serve CRLs
to unauthenticated clients.

To configure a CloudFront distribution for the CRL

1. Create a new CloudFront distribution using the procedure in Creating a Distribution in the
Amazon CloudFront Developer Guide.

While completing the procedure, apply the following settings:

• In Origin Domain Name, choose your S3 bucket.

• Choose Yes for Restrict Bucket Access.

• Choose Create a New Identity for Origin Access Identity.

• Choose Yes, Update Bucket Policy under Grant Read Permissions on Bucket.

Set up CRL Version latest 206

https://www.amazonaws.cn/cloudfront/pricing/
https://docs.amazonaws.cn/AmazonCloudFront/latest/DeveloperGuide/distribution-web-creating-console.html

Amazon Private Certificate Authority User Guide

Note

In this procedure, CloudFront modifies your bucket policy to allow it to access bucket
objects. Consider editing this policy to allow access only to objects under the crl
folder.

2. After the distribution has initialized, locate its domain name in the CloudFront console and
save it for the next procedure.

Note

If your S3 bucket was newly created in a Region other than us-east-1, you might get
an HTTP 307 temporary redirect error when you access your published application
through CloudFront. It might take several hours for the address of the bucket to
propagate.

Set up your CA for BPA

While configuring your new CA, include the alias to your CloudFront distribution.

To configure your CA with a CNAME for CloudFront

• Create your CA using Create a private CA in Amazon Private CA.

When you perform the procedure, the revocation file revoke_config.txt should include
the following lines to specify a non-public CRL object and to provide a URL to the distribution
endpoint in CloudFront:

"S3ObjectAcl":"BUCKET_OWNER_FULL_CONTROL",
 "CustomCname":"abcdef012345.cloudfront.net"

Afterward, when you issue certificates with this CA, they will contain a block like the following:

X509v3 CRL Distribution Points:
 Full Name:
 URI:http://abcdef012345.cloudfront.net/crl/01234567-89ab-
cdef-0123-456789abcdef.crl

Set up CRL Version latest 207

https://docs.amazonaws.cn/AmazonS3/latest/userguide/add-bucket-policy.html

Amazon Private Certificate Authority User Guide

Note

If you have older certificates that were issued by this CA, they will be unable to access the
CRL.

Determining the CRL Distribution Point (CDP) URI

If you need to use the CRL Distribution Point (CDP) URI in your workflow, you can either issue a
certificate use the CRL URI on that certificate or use the following method. This only works for
complete CRLs. Partitioned CRLs have a random GUID appended to them.

If you use the S3 bucket as the CRL Distribution Point (CDP) for your CA, the CDP URI can be in one
of the following formats.

• http://amzn-s3-demo-bucket.s3.region-code.amazonaws.com/crl/CA-ID.crl

• http://s3.region-code.amazonaws.com/amzn-s3-demo-bucket/crl/CA-ID.crl

If you have configured your CA with a custom CNAME, the CDP URI will include the CNAME, for
example, http://alternative.example.com/crl/CA-ID.crl

By default, Amazon Private CA writes CDP extensions using regional, IPv4-only amazonaws.com
endpoints. To use CRLs over IPv6, do one of the following steps so that CDPs are written with URLs
that point to S3's dualstack endpoints:

• Set your CRL custom name to the S3 dualstack endpoint domain. For example,
bucketname.s3.dualstack.region-code.amazonaws.com

• Set up your own CNAME DNS record pointing at the relevant S3 dualstack endpoint, then use it
as your CRL custom name

Customize OCSP URL for Amazon Private CA

Note

This topic is for customers who want to customize the public URL of the Online Certificate
Status Protocol (OCSP) responder endpoint for branding or other purposes. If you plan to

Customize OCSP URL Version latest 208

https://docs.aws.amazon.com/AmazonS3/latest/API/dual-stack-endpoints.html

Amazon Private Certificate Authority User Guide

use the default configuration of Amazon Private CA managed OCSP, you can skip this topic
and follow the configuration instructions in Configure revocation.

By default, when you enable OCSP for Amazon Private CA, each certificate that you issue contains
the URL for the Amazon OCSP responder. This allows clients requesting a cryptographically secure
connection to send OCSP validation queries directly to Amazon. However, in some cases it might
be preferable to state a different URL in your certificates while still ultimately submitting OCSP
queries to Amazon.

Note

For information about using a certificate revocation list (CRL) as an alternative or a
supplement to OCSP, see Configure revocation and Planning a certificate revocation list
(CRL).

Three elements are involved in configuring a custom URL for OCSP.

• CA configuration – Specify a custom OCSP URL in the RevocationConfiguration for your
CA as described in Example 2: Create a CA with OCSP and a custom CNAME enabled in Create a
private CA in Amazon Private CA.

• DNS – Add a CNAME record to your domain configuration to map the URL appearing in the
certificates to a proxy server URL. For more information, see Example 2: Create a CA with OCSP
and a custom CNAME enabled in Create a private CA in Amazon Private CA.

• Forwarding proxy server – Set up a proxy server that can transparently forward OCSP traffic
that it receives to the Amazon OCSP responder.

The following diagram illustrates how these elements work together.

Customize OCSP URL Version latest 209

Amazon Private Certificate Authority User Guide

As shown in the diagram, the customized OCSP validation process involves the following steps:

1. Client queries DNS for the target domain.

2. Client receives the target IP.

3. Client opens a TCP connection with target.

4. Client receives target TLS certificate.

5. Client queries DNS for the OCSP domain listed in the certificate.

6. Client receives proxy IP.

7. Client sends OCSP query to proxy.

8. Proxy forwards query to the OCSP responder.

9. Responder returns certificate status to the proxy.

10.Proxy forwards certificate status to the client.

11.If certificate is valid, client begins TLS handshake.

Customize OCSP URL Version latest 210

Amazon Private Certificate Authority User Guide

Tip

This example can be implemented using Amazon CloudFront and Amazon Route 53 after
you have configured a CA as described above.

1. In CloudFront, create a distribution and configure it as follows:

• Create an alternate name that matches your custom CNAME.

• Bind your certificate to it.

• Set ocsp.acm-pca.<region>.amazonaws.com as the origin.

• To use IPv6 connections, use the dualstack endpoint acm-pca-
ocsp.<region>.api.aws

• Apply the Managed-CachingDisabled policy.

• Set Viewer protocol policy to HTTP and HTTPS.

• Set Allowed HTTP methods to GET, HEAD, OPTIONS, PUT, POST, PATCH, DELETE.

2. In Route 53, create a DNS record that maps your custom CNAME to the URL of the
CloudFront distribution.

Using OCSP over IPv6

The default Amazon Private CA OCSP responder URL is IPv4-only. To use OCSP over IPv6, configure
a custom OCSP URL for your CA. The URL can be either:

• The FQDN of the dualstack PCA OCSP responder, which takes the form acm-pca-
ocsp.region-name.api.aws

• A CNAME record that you have configured to point at the dualstack OCSP responder, as
explained above.

Understand Amazon Private CA CA modes

Amazon Private CA supports the creation of a certificate authority (CA) in either of two modes.
The modes, general-purpose and short-lived certificate, affect the allowed validity period of the
certificates issued by the CA.

CA mode Version latest 211

https://docs.amazonaws.cn/AmazonCloudFront/latest/DeveloperGuide/
https://docs.amazonaws.cn/Route53/latest/DeveloperGuide/

Amazon Private Certificate Authority User Guide

Note

Amazon Private CA does not perform validity checks on root CA certificates.

General-purpose (default)

This mode permits the CA to issue certificates with any validity period. Most applications use
certificates of this type. Typically, the CA also specifies a revocation mechanism.

Short-lived certificate

This mode defines a CA that exclusively issues certificates with a maximum validity period of
seven days. These short-lived certificates expire so quickly that they can be deployed without a
revocation mechanism in place. For some applications, it makes more sense to frequently deploy
short-lived certificates than to incur the network and processing overhead of revocation.

CAs with short-lived certificate mode cost less than general-purpose CAs. For more information,
see Amazon Private Certificate Authority Pricing.

To create a CA that issues short-lived certificates, set the UsageMode parameter to short-lived
certificate using the create a CA procedure for creating a CA.

Note

Amazon Certificate Manager cannot issue certificates signed by a private CA with short-
lived mode.

Use of short-lived certificates is supported by the following Amazon services:

• Amazon AppStream

• Amazon WorkSpaces

Plan for resilience in Amazon Private CA

The Amazon global infrastructure is built around Amazon Regions and Availability Zones. Amazon
Regions provide multiple physically separated and isolated Availability Zones, which are connected

General-purpose (default) Version latest 212

http://www.amazonaws.cn/private-ca/pricing/
https://docs.amazonaws.cn/appstream/latest/developerguide/
https://docs.amazonaws.cn/workspaces/latest/adminguide/

Amazon Private Certificate Authority User Guide

with low-latency, high-throughput, and highly redundant networking. With Availability Zones, you
can design and operate applications and databases that automatically fail over between zones
without interruption. Availability Zones are more highly available, fault tolerant, and scalable than
traditional single or multiple data center infrastructures.

For more information about Amazon Regions and Availability Zones, see Amazon Global
Infrastructure.

Redundancy and disaster recovery

Consider redundancy and DR when planning your CA hierarchy. Amazon Private CA is available
in multiple Regions, which allows you to create redundant CAs in multiple Regions. The Amazon
Private CA service operates with a service level agreement (SLA) of 99.9% availability. There are
at least two approaches that you can consider for redundancy and disaster recovery. You can
configure redundancy at the root CA or at the highest subordinate CA. Each approach has pros and
cons.

1. You can create two root CAs in two different Amazon Regions for redundancy and disaster
recovery. With this configuration, each root CA operates independently in an Amazon Region,
protecting you in the event of a single-Region disaster. Creating redundant root CAs does,
however, increase operational complexity: You will need to distribute both root CA certificates to
the trust stores of browsers and operating systems in your environment.

2. You can also create redundant subordinate CAs to deploy in each of your Amazon Regions,
and chain them to the same unique root CA in a single Amazon Region. The benefit of this
approach is that you need to distribute only a single root CA certificate to the trust stores in your
environment. The limitation is that you don’t have a redundant root CA in the event of a disaster
that affects the Amazon Region in which your root CA exists.

Redundancy and disaster recovery Version latest 213

https://www.amazonaws.cn/about-aws/global-infrastructure/
https://www.amazonaws.cn/about-aws/global-infrastructure/
https://docs.amazonaws.cn/general/latest/gr/pca.html
http://www.amazonaws.cn/certificate-manager/private-certificate-authority/sla/

Amazon Private Certificate Authority User Guide

Certificate authorities in Amazon Private CA

Using Amazon Private Certificate Authority, you can create an entirely Amazon hosted hierarchy
of root and subordinate certificate authorities (CAs) for internal use by your organization. To
manage certificate revocation, you can enable Online Certificate Status Protocol (OCSP), certificate
revocation lists (CRLs), or both. Amazon Private CA stores and manages your CA certificates, CRLs,
and OCSP responses, and the private keys for your root authorities are securely stored by Amazon.

Note

The OCSP implementation in Amazon Private CA does not support OCSP request
extensions. If you submit an OCSP batch query containing multiple certificates, the Amazon
OCSP responder processes only the first certificate in the queue and drops the others. A
revocation might take up to an hour to appear in OCSP responses.

You can access Amazon Private CA using the Amazon Web Services Management Console, the
Amazon CLI, and the Amazon Private CA API. The following topics show you how to use the
console and the CLI. To learn more about the API, see the Amazon Private Certificate Authority API
Reference. For Java examples that show you how to use the API, see Use Amazon Private CA with
the Amazon SDK for Java.

After you create an active private CA and configured access to it, you can issue and retrieve
certificates, as described in Issue and manage certificates in Amazon Private CA.

Topics

• Set up to use Amazon Private CA

• Create a private CA in Amazon Private CA

• Installing the CA certificate

• Control access to the private CA

• List private CAs

• View a private CA

• Add tags for your private CA

• Understand Amazon Private CA CA status

• Update a private CA in Amazon Private Certificate Authority

Version latest 214

https://docs.amazonaws.cn/privateca/latest/APIReference/
https://docs.amazonaws.cn/privateca/latest/APIReference/

Amazon Private Certificate Authority User Guide

• Delete your private CA

• Restore a private CA

• Use externally signed private CA certificates

Set up to use Amazon Private CA

If you're not already an Amazon Web Services (Amazon) customer, you must sign up to be able to
use Amazon Private CA. Your account automatically has access to all available services, but you are
charged only for services that you use.

Topics

• Sign up for an Amazon Web Services account

• Secure IAM users

• Install the Amazon Command Line Interface

Sign up for an Amazon Web Services account

If you do not have an Amazon Web Services account, use the following procedure to create one.

To sign up for Amazon Web Services

1. Open http://www.amazonaws.cn/ and choose Sign Up.

2. Follow the on-screen instructions.

Amazon sends you a confirmation email after the sign-up process is complete. At any time,
you can view your current account activity and manage your account by going to http://
www.amazonaws.cn/ and choosing My Account.

Secure IAM users

After you sign up for an Amazon Web Services account, safeguard your administrative user by
turning on multi-factor authentication (MFA). For instructions, see Enable a virtual MFA device for
an IAM user (console) in the IAM User Guide.

Set up Version latest 215

http://www.amazonaws.cn/
http://www.amazonaws.cn/
http://www.amazonaws.cn/
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user

Amazon Private Certificate Authority User Guide

To give other users access to your Amazon Web Services account resources, create IAM users. To
secure your IAM users, turn on MFA and only give the IAM users the permissions needed to perform
their tasks.

For more information about creating and securing IAM users, see the following topics in the IAM
User Guide:

• Creating an IAM user in your Amazon Web Services account

• Access management for Amazon resources

• Example IAM identity-based policies

Install the Amazon Command Line Interface

If you have not installed the Amazon CLI but want to use it, follow the directions at Amazon
Command Line Interface. In this guide, we assume that you have configured your endpoint, Region,
and authentication details, and we omit these parameters from the sample commands.

Create a private CA in Amazon Private CA

You can use the procedures in this section to create either root CAs or subordinate CAs, resulting
in an auditable hierarchy of trust relationships that matches your organizational needs. You can
create a CA using the Amazon Web Services Management Console, the PCA portion of the Amazon
CLI, or Amazon CloudFormation.

For information about updating the configuration of a CA that you have already created, see
Update a private CA in Amazon Private Certificate Authority.

For information about using a CA to sign end-entity certificates for your users, devices, and
applications, see Issue private end-entity certificates.

Note

Your account is charged a monthly price for each private CA starting from the time that you
create it.
For the latest Amazon Private CA pricing information, see Amazon Private Certificate
Authority Pricing. You can also use the Amazon pricing calculator to estimate costs.

Install the Amazon Command Line Interface Version latest 216

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_examples.html
http://www.amazonaws.cn/cli/
http://www.amazonaws.cn/cli/
https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-quickstart.html
http://www.amazonaws.cn/private-ca/pricing/
http://www.amazonaws.cn/private-ca/pricing/
https://calculator.aws/#/createCalculator/certificateManager

Amazon Private Certificate Authority User Guide

Topics

• CLI examples for creating a private CA

Console

To create a private CA using the console

1.
Complete the following steps to create a private CA using the Amazon Web Services
Management Console.

To get started using the console

Sign in to your Amazon account and open the Amazon Private CA console at https://
console.amazonaws.cn/acm-pca/home .

• If you are opening the console in a Region where you have no private CAs, the
introductory page appears. Choose Create a private CA.

• If you are opening the console in a Region where you have already created a CA, the
Private certificate authorities page opens with a list of your CAs. Choose Create CA.

2.
Under Mode options, choose the expiration mode of the certificates that your CA issues.

• General-purpose – Issues certificates that can be configured with any expiration date.
This is the default.

• Short-lived certificate – Issues certificates with a maximum validity period of seven days.
A short validity period can substitute in some cases for a revocation mechanism.

3.
On the Type options section of the console, choose the type of private certificate authority
that you want to create.

• Choosing Root establishes a new CA hierarchy. This CA is backed by a self-signed
certificate. It serves as the ultimate signing authority for other CAs and end-entity
certificates in the hierarchy.

• Choosing Subordinate creates a CA that must be signed by a parent CA above it in the
hierarchy. Subordinate CAs are typically used to create other subordinate CAs or to issue
end-entity certificates to users, computers, and applications.

Create a private CA Version latest 217

https://console.amazonaws.cn/acm-pca/home
https://console.amazonaws.cn/acm-pca/home

Amazon Private Certificate Authority User Guide

Note

Amazon Private CA provides an automated signing process when your
subordinate CA's parent CA is also hosted by Amazon Private CA. All you do is
choose the parent CA to use.
Your subordinate CA might need to be signed by an external trust services
provider. If so, Amazon Private CA provides you with a certificate signing request
(CSR) that you must download and use to obtain a signed CA certificate. For more
information, see Install a subordinate CA certificate signed by an external parent
CA.

4.
Under Subject distinguished name options, configure the subject name of your private CA.
You must enter a value for at least one of the following options:

• Organization (O) – For example, a company name

• Organization Unit (OU) – For example, a division within a company

• Country name (C) – A two-letter country code

• State or province name – Full name of a state or province

• Locality name – The name of a city

• Common Name (CN) – A human-readable string to identify the CA.

Note

You can further customize the subject name of a certificate by applying an
APIPassthrough template at the time of issue. For more information and a
detailed example, see Issue a certificate with a custom subject name using an
APIPassthrough template.

Because the backing certificate is self-signed, the subject information that you provide
for a private CA is probably more sparse than what a public CA would contain. For more
information about each of the values that make up a subject distinguished name, see RFC
5280.

5.

Create a private CA Version latest 218

https://datatracker.ietf.org/doc/html/rfc5280#section-4.1.2.4
https://datatracker.ietf.org/doc/html/rfc5280#section-4.1.2.4

Amazon Private Certificate Authority User Guide

Under Key algorithm options, choose the key algorithm and the bit-size of the key. The
default value is an RSA algorithm with a 2048-bit key length. You can choose from the
following algorithms:

• RSA 2048

• RSA 3072

• RSA 4096

• ECDSA P256

• ECDSA P384

• ECDSA P521

6.
Under Certificate revocation options, you can select from two methods of sharing
revocation status with clients that use your certificates:

• Activate CRL distribution

• Turn on OCSP

You can configure either, neither, or both of these revocation options for your CA. Although
optional, managed revocation is recommended as a best practice. Before completing this
step, see Plan your Amazon Private CA certificate revocation method for information
about the advantages of each method, the preliminary setup that might be required, and
additional revocation features.

Note

If you create your CA without configuring revocation, you can always configure it
later. For more information, see Update a private CA in Amazon Private Certificate
Authority.

To configure Certificate revocation options, perform the following steps.

a. Under Certificate revocation options, choose Activate CRL distribution.

b. To create an Amazon S3 bucket for your CRL entries, choose Create a new S3 bucket
and type a unique bucket name. (You do not need to include the path to the bucket.)
Otherwise, under S3 bucket URI, choose an existing bucket from the list.

Create a private CA Version latest 219

Amazon Private Certificate Authority User Guide

When you create a new bucket through the console, Amazon Private CA attempts
to attach the required access policy to the bucket, and to disable the S3 default
Block Public Access (BPA) setting on it. If you instead specify an existing bucket, you
must ensure that BPA is disabled for the account and for the bucket. Otherwise, the
operation to create the CA fail. If the CA is created successfully, you must still manually
attach a policy to it before you can begin generating CRLs. Use one of the policy
patterns described in Access policies for CRLs in Amazon S3 . For more information, see
Adding a bucket policy using the Amazon S3 console.

Important

An attempt to create a CA using the Amazon Private CA console fails if all of
the following conditions apply:

• You are setting up a CRL.

• You ask Amazon Private CA to create an S3 bucket automatically.

• You are enforcing BPA settings in S3.

In this situation, the console creates a bucket, but attempts and fails to make
it publicly accessible. Check your Amazon S3 settings if this occurs, disable
BPA as needed, and then repeat the procedure for creating a CA. For more
information, see Blocking public access to your Amazon S3 storage.

c. Expand CRL settings for additional configuration options.

• Choose Enable partitioning to enable partitioning of CRLs. If you don't enable
partitioning, your CA is subject to the maximum number of revoked certificates.
For more information, see Amazon Private Certificate Authority quotas. For more
information about partitioned CRLs, see CRL types.

• Add a Custom CRL Name to create an alias for your Amazon S3 bucket. This
name is contained in certificates issued by the CA in the “CRL Distribution Points"
extension that is defined by RFC 5280. To use CRLs over IPv6, set this to your
bucket's dualstack S3 endpoint as described in Using CRLs over IPv6.

• Add a Custom path to create a DNS alias for the file path in your Amazon S3 bucket.

Create a private CA Version latest 220

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/add-bucket-policy.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/access-control-block-public-access.html
https://docs.amazonaws.cn/general/latest/gr/pca.html#limits_pca

Amazon Private Certificate Authority User Guide

• Type the Validity in days your CRL will remain valid. The default value is 7 days.
For online CRLs, a validity period of 2-7 days is common. Amazon Private CA tries to
regenerate the CRL at the midpoint of the specified period.

d. Expand S3 settings for optional configuration of Bucket versioning and Bucket access
logging.

7. For Certificate revocation options, choose Turn on OCSP.

• In the Custom OCSP endpoint - optional field, you can provide a fully qualified
domain name (FQDN) for a non-Amazon OCSP endpoint. To use OCSP over IPv6, set
this field to a dualstack endpoint as described in Using OCSP over IPv6.

When you provide an FQDN in this field, Amazon Private CA inserts the FQDN into
the Authority Information Access extension of each issued certificate in place of the
default URL for the Amazon OCSP responder. When an endpoint receives a certificate
containing the custom FQDN, it queries that address for an OCSP response. For this
mechanism to work, you need to take two additional actions:

• Use a proxy server to forward traffic that arrives at your custom FQDN to the
Amazon OCSP responder.

• Add a corresponding CNAME record to your DNS database.

Tip

For more information about implementing a complete OCSP solution using a
custom CNAME, see Customize OCSP URL for Amazon Private CA.

For example, here is a CNAME record for customized OCSP as it would appear in
Amazon Route 53.

Record name Type Routing
policy

Differentiator Value/Route
traffic to

alternati
ve.exampl
e.com

CNAME Simple - proxy.exa
mple.com

Create a private CA Version latest 221

Amazon Private Certificate Authority User Guide

Note

The value of the CNAME must not include a protocol prefix such as "http://" or
"https://".

8.
Under Add tags, you can optionally tag your CA. Tags are key-value pairs that serve as
metadata for identifying and organizing Amazon resources. For a list of Amazon Private CA
tag parameters and for instructions on how to add tags to CAs after creation, see Add tags
for your private CA.

Note

To attach tags to a private CA during the creation procedure, a CA administrator
must first associate an inline IAM policy with the CreateCertificateAuthority
action and explicitly allow tagging. For more information, see Tag-on-create:
Attaching tags to a CA at the time of creation.

9.
Under CA permissions options, you can optionally delegate automatic renewal permissions
to the Amazon Certificate Manager service principal. ACM can only automatically renew
private end-entity certificates generated by this CA if this permission is granted. You can
assign renewal permissions at any time with the Amazon Private CA CreatePermission API
or create-permission CLI command.

The default is to enable these permissions.

Note

Amazon Certificate Manager does not support the automatic renewal of short-lived
certificates.

10.
Under Pricing, confirm that you understand the pricing for a private CA.

Create a private CA Version latest 222

https://docs.amazonaws.cn/privateca/latest/APIReference/API_CreatePermission.html
https://docs.amazonaws.cn/cli/latest/reference/acm-pca/create-permission.html

Amazon Private Certificate Authority User Guide

Note

For the latest Amazon Private CA pricing information, see Amazon Private
Certificate Authority Pricing. You can also use the Amazon pricing calculator to
estimate costs.

11.
Choose Create CA after you have checked all of the entered information for accuracy. The
details page for the CA opens and displays its status as Pending certificate.

Note

While on the details page, you can finish configuring your CA by choosing Actions,
Install CA certificate, or you can return later to the Private certificate authorities
list and complete the installation procedure that applies in your case:

• Install a root CA certificate

• Install a subordinate CA certificate hosted by Amazon Private CA

• Install a subordinate CA certificate signed by an external parent CA

CLI

Use the create-certificate-authority command to create a private CA. You must specify the
CA configuration (containing algorithm and subject-name information), the revocation
configuration (if you plan to use OCSP and/or a CRL), and the CA type (root or subordinate). The
configuration and revocation configuration details are contained in two files that you supply as
arguments to the command. Optionally, you can also configure the CA usage mode (for issuing
standard or short-lived certificates), attach tags, and provide an idempotency token.

If you are configuring a CRL, you must have a secured Amazon S3 bucket in place before you
issue the create-certificate-authority command. For more information, see Access policies for
CRLs in Amazon S3 .

The CA configuration file specifies the following information:

• The name of the algorithm

• The key size to be used to create the CA private key

Create a private CA Version latest 223

http://www.amazonaws.cn/private-ca/pricing/
http://www.amazonaws.cn/private-ca/pricing/
https://calculator.aws/#/createCalculator/certificateManager
https://docs.amazonaws.cn/cli/latest/reference/acm-pca/create-certificate-authority.html

Amazon Private Certificate Authority User Guide

• The type of signing algorithm that the CA uses to sign

• X.500 subject information

The revocation configuration for OCSP defines an OcspConfiguration object with the
following information:

• The Enabled flag set to "true".

• (Optional) A custom CNAME declared as a value for OcspCustomCname.

The revocation configuration for a CRL defines a CrlConfiguration object with the following
information:

• The Enabled flag set to "true".

• The CRL expiration period in days (the validity period of the CRL).

• The Amazon S3 bucket that will contain the CRL.

• (Optional) An S3ObjectAcl value that determines whether the CRL is publicly accessible. In
the example presented here, public access is blocked. For more information, see Enable S3
Block Public Access (BPA) with CloudFront.

• (Optional) A CNAME alias for the S3 bucket that is included in certificates issued by the CA. If
the CRL is not publicly accessible, this will point to a distribution mechanism such as Amazon
CloudFront.

• (Optional) A CrlDistributionPointExtensionConfiguration object with the
following information:

• The OmitExtension flag set to "true" or "false". This controls whether the default
value for the CDP extension will be written to a certificate issued by the CA. For more
information about the CDP extension, see Determining the CRL Distribution Point (CDP) URI
. A CustomCname cannot be set if OmitExtension is "true".

• (Optional) A custom path for the CRL in the S3 bucket.

• (Optional) A CrlType value that determines whether the CRL will be complete or partitioned.
If not supplied, the CRL will default to complete.

Create a private CA Version latest 224

https://docs.amazonaws.cn/privateca/latest/APIReference/API_CrlConfiguration.html#privateca-Type-CrlConfiguration-S3ObjectAcl
https://docs.amazonaws.cn/privateca/latest/APIReference/API_CrlConfiguration.html#privateca-Type-CrlConfiguration-CrlType

Amazon Private Certificate Authority User Guide

Note

You can enable both revocation mechanisms on the same CA by defining both an
OcspConfiguration object and a CrlConfiguration object. If you supply no --
revocation-configuration parameter, both mechanisms are disabled by default. If you
need revocation validation support later, see Updating a CA (CLI).

See the following section for CLI examples.

CLI examples for creating a private CA

The following examples assume that you have set up your .aws configuration directory with a
valid default Region, endpoint, and credentials. For information about configuring your Amazon
CLI environment, see Configuration and credential file settings. For readability, we supply the CA
configuration and revocation input as JSON files in the example commands. Modify the example
files as needed for your use.

All of the examples use the following ca_config.txt configuration file unless otherwise stated.

File: ca_config.txt

{
 "KeyAlgorithm":"RSA_2048",
 "SigningAlgorithm":"SHA256WITHRSA",
 "Subject":{
 "Country":"US",
 "Organization":"Example Corp",
 "OrganizationalUnit":"Sales",
 "State":"WA",
 "Locality":"Seattle",
 "CommonName":"www.example.com"
 }
}

Example 1: Create a CA with OCSP enabled

In this example, the revocation file enables default OCSP support, which uses the Amazon Private
CA responder to check certificate status.

CLI examples Version latest 225

https://docs.amazonaws.cn/cli/latest/reference/cli-configure-files.html

Amazon Private Certificate Authority User Guide

File: revoke_config.txt for OCSP

{
 "OcspConfiguration":{
 "Enabled":true
 }
}

Command

$ aws acm-pca create-certificate-authority \
 --certificate-authority-configuration file://ca_config.txt \
 --revocation-configuration file://revoke_config.txt \
 --certificate-authority-type "ROOT" \
 --idempotency-token 01234567 \
 --tags Key=Name,Value=MyPCA

If successful, this command outputs the Amazon Resource Name (ARN) of the new CA.

{
 "CertificateAuthorityArn":"arn:aws:acm-pca:region:account:
 certificate-authority/CA_ID"
}

Command

$ aws acm-pca create-certificate-authority \
 --certificate-authority-configuration file://ca_config.txt \
 --revocation-configuration file://revoke_config.txt \
 --certificate-authority-type "ROOT" \
 --idempotency-token 01234567 \
 --tags Key=Name,Value=MyPCA-2

If successful, this command outputs the Amazon Resource Name (ARN) of the CA.

{
 "CertificateAuthorityArn":"arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566"
}

Use the following command to inspect the configuration of your CA.

CLI examples Version latest 226

Amazon Private Certificate Authority User Guide

$ aws acm-pca describe-certificate-authority \
 --certificate-authority-arn "arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566" \
 --output json

This description should contain the following section.

"RevocationConfiguration": {
 ...
 "OcspConfiguration": {
 "Enabled": true
 }
 ...
}

Example 2: Create a CA with OCSP and a custom CNAME enabled

In this example, the revocation file enables customized OCSP support. The OcspCustomCname
parameter takes a fully qualified domain name (FQDN) as its value.

When you provide an FQDN in this field, Amazon Private CA inserts the FQDN into the Authority
Information Access extension of each issued certificate in place of the default URL for the Amazon
OCSP responder. When an endpoint receives a certificate containing the custom FQDN, it queries
that address for an OCSP response. For this mechanism to work, you need to take two additional
actions:

• Use a proxy server to forward traffic that arrives at your custom FQDN to the Amazon OCSP
responder.

• Add a corresponding CNAME record to your DNS database.

Tip

For more information about implementing a complete OCSP solution using a custom
CNAME, see Customize OCSP URL for Amazon Private CA.

For example, here is a CNAME record for customized OCSP as it would appear in Amazon Route 53.

CLI examples Version latest 227

Amazon Private Certificate Authority User Guide

Record name Type Routing policy Differentiator Value/Route
traffic to

alternati
ve.example.com

CNAME Simple - proxy.exa
mple.com

Note

The value of the CNAME must not include a protocol prefix such as "http://" or "https://".

File: revoke_config.txt for OCSP

{
 "OcspConfiguration":{
 "Enabled":true,
 "OcspCustomCname":"alternative.example.com"
 }
}

Command

$ aws acm-pca create-certificate-authority \
 --certificate-authority-configuration file://ca_config.txt \
 --revocation-configuration file://revoke_config.txt \
 --certificate-authority-type "ROOT" \
 --idempotency-token 01234567 \
 --tags Key=Name,Value=MyPCA-3

If successful, this command outputs the Amazon Resource Name (ARN) of the CA.

{
 "CertificateAuthorityArn":"arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566"
}

Use the following command to inspect the configuration of your CA.

$ aws acm-pca describe-certificate-authority \

CLI examples Version latest 228

Amazon Private Certificate Authority User Guide

 --certificate-authority-arn "arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566" \
 --output json

This description should contain the following section.

"RevocationConfiguration": {
 ...
 "OcspConfiguration": {
 "Enabled": true,
 "OcspCustomCname": "alternative.example.com"
 }
 ...
}

Example 3: Create a CA with an attached CRL

In this example, the revocation configuration defines CRL parameters.

File: revoke_config.txt

{
 "CrlConfiguration":{
 "Enabled":true,
 "ExpirationInDays":7,
 "S3BucketName":"amzn-s3-demo-bucket"
 }
}

Command

$ aws acm-pca create-certificate-authority \
 --certificate-authority-configuration file://ca_config.txt \
 --revocation-configuration file://revoke_config.txt \
 --certificate-authority-type "ROOT" \
 --idempotency-token 01234567 \
 --tags Key=Name,Value=MyPCA-1

If successful, this command outputs the Amazon Resource Name (ARN) of the CA.

{

CLI examples Version latest 229

Amazon Private Certificate Authority User Guide

 "CertificateAuthorityArn":"arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566"
}

Use the following command to inspect the configuration of your CA.

$ aws acm-pca describe-certificate-authority \
 --certificate-authority-arn "arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566" \
 --output json

This description should contain the following section.

"RevocationConfiguration": {
 ...
 "CrlConfiguration": {
 "Enabled": true,
 "ExpirationInDays": 7,
 "S3BucketName": "amzn-s3-demo-bucket"
 },
 ...
}

Example 4: Create a CA with an attached CRL and a custom CNAME enabled

In this example, the revocation configuration defines CRL parameters that include a custom
CNAME.

File: revoke_config.txt

{
 "CrlConfiguration":{
 "Enabled":true,
 "ExpirationInDays":7,
 "CustomCname": "alternative.example.com",
 "S3BucketName":"amzn-s3-demo-bucket"
 }
}

Command

$ aws acm-pca create-certificate-authority \

CLI examples Version latest 230

Amazon Private Certificate Authority User Guide

 --certificate-authority-configuration file://ca_config.txt \
 --revocation-configuration file://revoke_config.txt \
 --certificate-authority-type "ROOT" \
 --idempotency-token 01234567 \
 --tags Key=Name,Value=MyPCA-1

If successful, this command outputs the Amazon Resource Name (ARN) of the CA.

{
 "CertificateAuthorityArn":"arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566"
}

Use the following command to inspect the configuration of your CA.

$ aws acm-pca describe-certificate-authority \
 --certificate-authority-arn "arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566" \
 --output json

This description should contain the following section.

"RevocationConfiguration": {
 ...
 "CrlConfiguration": {
 "Enabled": true,
 "ExpirationInDays": 7,
 "CustomCname": "alternative.example.com",
 "S3BucketName": "amzn-s3-demo-bucket",
 ...
 }
}

Example 5: Create a CA and specify the usage mode

In this example, the CA usage mode is specified when creating a CA. If unspecified, the usage
mode parameter defaults to GENERAL_PURPOSE. In this example, the parameter is set to
SHORT_LIVED_CERTIFICATE, which means that the CA will issue certificates with a maximum
validity period of seven days. In situations where it is inconvenient to configure revocation, a
short-lived certificate that has been compromised quickly expires as part of normal operations.
Consequently, this example CA lacks a revocation mechanism.

CLI examples Version latest 231

Amazon Private Certificate Authority User Guide

Note

Amazon Private CA does not perform validity checks on root CA certificates.

$ aws acm-pca create-certificate-authority \
 --certificate-authority-configuration file://ca_config.txt \
 --certificate-authority-type "ROOT" \
 --usage-mode SHORT_LIVED_CERTIFICATE \
 --tags Key=usageMode,Value=SHORT_LIVED_CERTIFICATE

Use the describe-certificate-authority command in the Amazon CLI to display details about the
resulting CA, as shown in the following command:

$ aws acm-pca describe-certificate-authority \
 --certificate-authority-arn arn:aws:acm:region:account:certificate-
authority/CA_ID

{
 "CertificateAuthority":{
 "Arn":"arn:aws:acm-pca:region:account:certificate-authority/CA_ID",
 "CreatedAt":"2022-09-30T09:53:42.769000-07:00",
 "LastStateChangeAt":"2022-09-30T09:53:43.784000-07:00",
 "Type":"ROOT",
 "UsageMode":"SHORT_LIVED_CERTIFICATE",
 "Serial":"serial_number",
 "Status":"PENDING_CERTIFICATE",
 "CertificateAuthorityConfiguration":{
 "KeyAlgorithm":"RSA_2048",
 "SigningAlgorithm":"SHA256WITHRSA",
 "Subject":{
 "Country":"US",
 "Organization":"Example Corp",
 "OrganizationalUnit":"Sales",
 "State":"WA",
 "Locality":"Seattle",
 "CommonName":"www.example.com"
 }
 },
 "RevocationConfiguration":{
 "CrlConfiguration":{

CLI examples Version latest 232

https://docs.amazonaws.cn/cli/latest/reference/acm-pca/describe-certificate-authority.html

Amazon Private Certificate Authority User Guide

 "Enabled":false
 },
 "OcspConfiguration":{
 "Enabled":false
 }
 },
 ...

Example 6: Create a CA for Active Directory login

You can create a private CA suitable for use in the Enterprise NTAuth store of Microsoft Active
Directory (AD), where it can issue card-logon or domain-controller certificates. For information
about importing a CA certificate into AD, see How to import third-party certification authority (CA)
certificates into the Enterprise NTAuth store.

The Microsoft certutil tool can be used to publish CA certificates in AD by invoking the -dspublish
option. A certificate published to AD with certutil is trusted across the entire forest. Using group
policy, you can also limit trust to a subset of the entire forest, for example, a single domain or a
group of computers in a domain. For logon to work, the issuing CA must also be published in the
NTAuth store. For more information, see Distribute Certificates to Client Computers by Using Group
Policy.

This example uses the following ca_config_AD.txt configuration file.

File: ca_config_AD.txt

{
 "KeyAlgorithm":"RSA_2048",
 "SigningAlgorithm":"SHA256WITHRSA",
 "Subject":{
 "CustomAttributes":[
 {
 "ObjectIdentifier":"2.5.4.3",
 "Value":"root CA"
 },
 {
 "ObjectIdentifier":"0.9.2342.19200300.100.1.25",
 "Value":"example"
 },
 {
 "ObjectIdentifier":"0.9.2342.19200300.100.1.25",
 "Value":"com"

CLI examples Version latest 233

https://learn.microsoft.com/en-us/troubleshoot/windows-server/windows-security/import-third-party-ca-to-enterprise-ntauth-store
https://learn.microsoft.com/en-us/troubleshoot/windows-server/windows-security/import-third-party-ca-to-enterprise-ntauth-store
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/certutil
https://learn.microsoft.com/en-us/windows-server/identity/ad-fs/deployment/distribute-certificates-to-client-computers-by-using-group-policy
https://learn.microsoft.com/en-us/windows-server/identity/ad-fs/deployment/distribute-certificates-to-client-computers-by-using-group-policy

Amazon Private Certificate Authority User Guide

 }
]
 }
}

Command

$ aws acm-pca create-certificate-authority \
 --certificate-authority-configuration file://ca_config_AD.txt \
 --certificate-authority-type "ROOT" \
 --tags Key=application,Value=ActiveDirectory

If successful, this command outputs the Amazon Resource Name (ARN) of the CA.

{
 "CertificateAuthorityArn":"arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566"
 }

Use the following command to inspect the configuration of your CA.

$ aws acm-pca describe-certificate-authority \
 --certificate-authority-arn "arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566" \
 --output json

This description should contain the following section.

...

"Subject":{
 "CustomAttributes":[
 {
 "ObjectIdentifier":"2.5.4.3",
 "Value":"root CA"
 },
 {
 "ObjectIdentifier":"0.9.2342.19200300.100.1.25",
 "Value":"example"
 },
 {

CLI examples Version latest 234

Amazon Private Certificate Authority User Guide

 "ObjectIdentifier":"0.9.2342.19200300.100.1.25",
 "Value":"com"
 }
]
}
...

Example 7: Create a Matter CA with an attached CRL and the CDP extension
omitted from issued certificates

You can create a private CA suitable for issuing certificates for the Matter smart home standard. In
this example, the CA configuration in ca_config_PAA.txt defines a Matter Product Attestation
Authority (PAA) with the Vendor ID (VID) set to FFF1.

File: ca_config_PAA.txt

{
 "KeyAlgorithm":"EC_prime256v1",
 "SigningAlgorithm":"SHA256WITHECDSA",
 "Subject":{
 "Country":"US",
 "Organization":"Example Corp",
 "OrganizationalUnit":"SmartHome",
 "State":"WA",
 "Locality":"Seattle",
 "CommonName":"Example Corp Matter PAA",
 "CustomAttributes":[
 {
 "ObjectIdentifier":"1.3.6.1.4.1.37244.2.1",
 "Value":"FFF1"
 }
]
 }
}

The revocation configuration enables CRLs, and configures the CA to omit the default CDP URL
from any issued certificates.

File: revoke_config.txt

{
 "CrlConfiguration":{

CLI examples Version latest 235

Amazon Private Certificate Authority User Guide

 "Enabled":true,
 "ExpirationInDays":7,
 "S3BucketName":"amzn-s3-demo-bucket",
 "CrlDistributionPointExtensionConfiguration":{
 "OmitExtension":true
 }
 }
}

Command

$ aws acm-pca create-certificate-authority \
 --certificate-authority-configuration file://ca_config_PAA.txt \
 --revocation-configuration file://revoke_config.txt \
 --certificate-authority-type "ROOT" \
 --idempotency-token 01234567 \
 --tags Key=Name,Value=MyPCA-1

If successful, this command outputs the Amazon Resource Name (ARN) of the CA.

{
 "CertificateAuthorityArn":"arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566"
}

Use the following command to inspect the configuration of your CA.

$ aws acm-pca describe-certificate-authority \
 --certificate-authority-arn "arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566" \
 --output json

This description should contain the following section.

"RevocationConfiguration": {
 ...
 "CrlConfiguration": {
 "Enabled": true,
 "ExpirationInDays": 7,
 "S3BucketName": "amzn-s3-demo-bucket",
 "CrlDistributionPointExtensionConfiguration":{
 "OmitExtension":true

CLI examples Version latest 236

Amazon Private Certificate Authority User Guide

 }
 },
 ...
}
...

Installing the CA certificate

Complete the following procedures to create and install your private CA certificate. Your CA will
then be ready to use.

Amazon Private CA supports three scenarios for installing a CA certificate:

• Installing a certificate for a root CA hosted by Amazon Private CA

• Installing a subordinate CA certificate whose parent authority is hosted by Amazon Private CA

• Installing a subordinate CA certificate whose parent authority is externally hosted

The following sections describe procedures for each scenario. The console procedures begin on the
console page Private CAs.

Compatible signing algorithms

Signing algorithm support for CA certificates depends on the signing algorithm of the parent CA
and on the Amazon Web Services Region. The following constraints apply to both console and
Amazon CLI operations.

• A parent CA with the RSA signing algorithm can issue certificates with the following algorithms:

• SHA256 RSA

• SHA384 RSA

• SHA512 RSA

• In a legacy Amazon Web Services Region, a parent CA with the EDCSA signing algorithm can
issue certificates with the following algorithms:

• SHA256 ECDSA

• SHA384 ECDSA

• SHA512 ECDSA

Legacy Amazon Web Services Regions include:

Install CA certificate Version latest 237

Amazon Private Certificate Authority User Guide

Region name Geographical location

eu-north-1 Europe (Stockholm)

me-south-1 Middle East (Bahrain)

ap-south-1 Asia Pacific (Mumbai)

eu-west-3 Europe (Paris)

us-east-2 US East (Ohio)

af-south-1 Africa (Cape Town)

eu-west-1 Europe (Ireland)

eu-central-1 Europe (Frankfurt)

sa-east-1 South America (São Paulo)

ap-east-1 Asia Pacific (Hong Kong)

us-east-1 US East (N. Virginia)

ap-northeast-2 Asia Pacific (Seoul)

eu-west-2 Europe (London)

ap-northeast-1 Asia Pacific (Tokyo)

Compatible signing algorithms Version latest 238

Amazon Private Certificate Authority User Guide

Region name Geographical location

us-gov-east-1 Amazon GovCloud (US-East)

us-gov-west-1 Amazon GovCloud (US-West)

us-west-2 US West (Oregon)

us-west-1 US West (N. California)

ap-southeast-1 Asia Pacific (Singapore)

ap-southeast-2 Asia Pacific (Sydney)

• In a non-legacy Amazon Web Services Region, the following rules apply for EDCSA:

• A parent CA with the EC_prime256v1 signing algorithm can issue certificates with ECDSA
P256.

• A parent CA with the EC_secp384r1 signing algorithm can issue certificates with ECDSA P384.

• In every Amazon Web Services Region, the following rules apply for EDCSA:

• A parent CA with the EC_secp521r1 signing algorithm can issue certificates with ECDSA P521.

Install a root CA certificate

You can install a root CA certificate from the Amazon Web Services Management Console or the
Amazon CLI.

To create and install a certificate for your private root CA (console)

1. (Optional) If you are not already on the CA's details page, open the Amazon Private CA console
at https://console.amazonaws.cn/acm-pca/home. On the Private certificate authorities page,
choose a root CA with status Pending certificate or Active.

2. Choose Actions, Install CA certificate to open the Install root CA certificate page.

Install a root CA certificate Version latest 239

https://console.amazonaws.cn/acm-pca/home

Amazon Private Certificate Authority User Guide

3. Under Specify the root CA certificate parameters, specify the following certificate
parameters:

• Validity — Specifies the expiration date and time for the CA certificate. The Amazon Private
CA default validity period for a root CA certificate is 10 years.

• Signature algorithm — Specifies the signing algorithm to use when the root CA issues new
certificates. Available options vary according to the Amazon Web Services Region where you
are creating the CA. For more information, see Compatible signing algorithms, Supported
cryptographic algorithms in Amazon Private Certificate Authority, and SigningAlgorithm in
CertificateAuthorityConfiguration.

• SHA256 RSA

• SHA384 RSA

• SHA512 RSA

Review your settings for correctness, then choose Confirm and install. Amazon Private CA
exports a CSR for your CA, generates a certificate using a root CA certificate template, and
self-signs the certificate. Amazon Private CA then imports the self-signed root CA certificate.

4. The details page for the CA displays the status of the installation (success or failure) at the top.
If the installation was successful, the newly completed root CA displays a status of Active in
the General pane.

To create and install a certificate for your private root CA (Amazon CLI)

1. Generate a certificate signing request (CSR).

$ aws acm-pca get-certificate-authority-csr \
 --certificate-authority-arn arn:aws:acm-pca:us-
east-1:111122223333:certificate-authority/11223344-1234-1122-2233-112233445566 \
 --output text \
 --region region > ca.csr

The resulting file ca.csr, a PEM file encoded in base64 format, has the following appearance.

-----BEGIN CERTIFICATE REQUEST-----
MIIC1DCCAbwCAQAwbTELMAkGA1UEBhMCVVMxFTATBgNVBAoMDEV4YW1wbGUgQ29y
cDEOMAwGA1UECwwFU2FsZXMxCzAJBgNVBAgMAldBMRgwFgYDVQQDDA93d3cuZXhh
bXBsZS5jb20xEDAOBgNVBAcMB1NlYXR0bGUwggEiMA0GCSqGSIb3DQEBAQUAA4IB

Install a root CA certificate Version latest 240

https://docs.amazonaws.cn/privateca/latest/APIReference/API_CertificateAuthorityConfiguration.html#API_CertificateAuthorityConfiguration_Contents

Amazon Private Certificate Authority User Guide

DwAwggEKAoIBAQDD+7eQChWUO2m6pHslI7AVSFkWvbQofKIHvbvy7wm8VO9/BuI7
LE/jrnd1jGoyI7jaMHKXPtEP3uNlCzv+oEza07OjgjqPZVehtA6a3/3vdQ1qCoD2
rXpv6VIzcq2onx2X7m+Zixwn2oY1l1ELXP7I5g0GmUStymq+pY5VARPy3vTRMjgC
JEiz8w7VvC15uIsHFAWa2/NvKyndQMPaCNft238wesV5s2cXOUS173jghIShg99o
ymf0TRUgvAGQMCXvsW07MrP5VDmBU7k/AZ9ExsUfMe2OB++fhfQWr2N7/lpC4+DP
qJTfXTEexLfRTLeLuGEaJL+c6fMyG+Yk53tZAgMBAAGgIjAgBgkqhkiG9w0BCQ4x
EzARMA8GA1UdEwEB/wQFMAMBAf8wDQYJKoZIhvcNAQELBQADggEBAA7xxLVI5s1B
qmXMMT44y1DZtQx3RDPanMNGLGO1TmLtyqqnUH49Tla+2p7nrl0tojUf/3PaZ52F
QN09SrFk8qtYSKnMGd5PZL0A+NFsNW+w4BAQNKlg9m617YEsnkztbfKRloaJNYoA
HZaRvbA0lMQ/tU2PKZR2vnao444Ugm0O/t3jx5rj817b31hQcHHQ0lQuXV2kyTrM
ohWeLf2fL+K0xJ9ZgXD4KYnY0zarpreA5RBeO5xs3Ms+oGWc13qQfMBx33vrrz2m
dw5iKjg71uuUUmtDV6ewwGa/VO5hNinYAfogdu5aGuVbnTFT3n45B8WHz2+9r0dn
bA7xUel1SuQ=
-----END CERTIFICATE REQUEST-----

You can use OpenSSL to view and verify the contents of the CSR.

openssl req -text -noout -verify -in ca.csr

This yields output similar to the following.

verify OK
Certificate Request:
 Data:
 Version: 0 (0x0)
 Subject: C=US, O=Example Corp, OU=Sales, ST=WA, CN=www.example.com,
 L=Seattle
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 Public-Key: (2048 bit)
 Modulus:
 00:c3:fb:b7:90:0a:15:94:3b:69:ba:a4:7b:25:23:
 b0:15:48:59:16:bd:b4:28:7c:a2:07:bd:bb:f2:ef:
 09:bc:54:ef:7f:06:e2:3b:2c:4f:e3:ae:77:75:8c:
 6a:32:23:b8:da:30:72:97:3e:d1:0f:de:e3:65:0b:
 3b:fe:a0:4c:da:d3:b3:a3:82:3a:8f:65:57:a1:b4:
 0e:9a:df:fd:ef:75:0d:6a:0a:80:f6:ad:7a:6f:e9:
 52:33:72:ad:a8:9f:1d:97:ee:6f:99:8b:1c:27:da:
 86:35:97:51:0b:5c:fe:c8:e6:0d:06:99:44:ad:ca:
 6a:be:a5:8e:55:01:13:f2:de:f4:d1:32:38:02:24:
 48:b3:f3:0e:d5:bc:2d:79:b8:8b:07:14:05:9a:db:
 f3:6f:2b:29:dd:40:c3:da:08:d7:ed:db:7f:30:7a:

Install a root CA certificate Version latest 241

https://www.openssl.org/

Amazon Private Certificate Authority User Guide

 c5:79:b3:67:17:39:44:b5:ef:78:e0:84:84:a1:83:
 df:68:ca:67:f4:4d:15:20:bc:01:90:30:25:ef:b1:
 6d:3b:32:b3:f9:54:39:81:53:b9:3f:01:9f:44:c6:
 c5:1f:31:ed:8e:07:ef:9f:85:f4:16:af:63:7b:fe:
 5a:42:e3:e0:cf:a8:94:df:5d:31:1e:c4:b7:d1:4c:
 b7:8b:b8:61:1a:24:bf:9c:e9:f3:32:1b:e6:24:e7:
 7b:59
 Exponent: 65537 (0x10001)
 Attributes:
 Requested Extensions:
 X509v3 Basic Constraints: critical
 CA:TRUE
 Signature Algorithm: sha256WithRSAEncryption
 0e:f1:c4:b5:48:e6:cd:41:aa:65:cc:31:3e:38:cb:50:d9:b5:
 0c:77:44:33:da:9c:c3:46:2c:63:b5:4e:62:ed:ca:aa:a7:50:
 7e:3d:4e:56:be:da:9e:e7:ae:5d:2d:a2:35:1f:ff:73:da:67:
 9d:85:40:dd:3d:4a:b1:64:f2:ab:58:48:a9:cc:19:de:4f:64:
 bd:00:f8:d1:6c:35:6f:b0:e0:10:10:34:a9:60:f6:6e:b5:ed:
 81:2c:9e:4c:ed:6d:f2:91:96:86:89:35:8a:00:1d:96:91:bd:
 b0:34:94:c4:3f:b5:4d:8f:29:94:76:be:76:a8:e3:8e:14:82:
 6d:0e:fe:dd:e3:c7:9a:e3:f3:5e:db:df:58:50:70:71:d0:d2:
 54:2e:5d:5d:a4:c9:3a:cc:a2:15:9e:2d:fd:9f:2f:e2:b4:c4:
 9f:59:81:70:f8:29:89:d8:d3:36:ab:a6:b7:80:e5:10:5e:3b:
 9c:6c:dc:cb:3e:a0:65:9c:d7:7a:90:7c:c0:71:df:7b:eb:af:
 3d:a6:77:0e:62:2a:38:3b:d6:eb:94:52:6b:43:57:a7:b0:c0:
 66:bf:54:ee:61:36:29:d8:01:fa:20:76:ee:5a:1a:e5:5b:9d:
 31:53:de:7e:39:07:c5:87:cf:6f:bd:af:47:67:6c:0e:f1:51:
 e9:75:4a:e4

2. Using the CSR from the previous step as the argument for the --csr parameter, issue the root
certificate.

Note

If you are using Amazon CLI version 1.6.3 or later, use the prefix fileb:// when
specifying the required input file. This ensures that Amazon Private CA parses the
Base64-encoded data correctly.

$ aws acm-pca issue-certificate \
 --certificate-authority-arn arn:aws:acm-pca:region:account:certificate-
authority/CA_ID \

Install a root CA certificate Version latest 242

Amazon Private Certificate Authority User Guide

 --csr file://ca.csr \
 --signing-algorithm SHA256WITHRSA \
 --template-arn arn:aws:acm-pca:::template/RootCACertificate/V1 \
 --validity Value=365,Type=DAYS

3. Retrieve the root certificate.

$ aws acm-pca get-certificate \
 --certificate-authority-arn arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566 \
 --certificate-arn arn:aws:acm-pca:region:account:certificate-authority/CA_ID/
certificate/certificate_ID \
 --output text > cert.pem

The resulting file cert.pem, a PEM file encoded in base64 format, has the following
appearance.

-----BEGIN CERTIFICATE-----
MIIDpzCCAo+gAwIBAgIRAIIuOarlQETlUQEOZJGZYdIwDQYJKoZIhvcNAQELBQAw
bTELMAkGA1UEBhMCVVMxFTATBgNVBAoMDEV4YW1wbGUgQ29ycDEOMAwGA1UECwwF
U2FsZXMxCzAJBgNVBAgMAldBMRgwFgYDVQQDDA93d3cuZXhhbXBsZS5jb20xEDAO
BgNVBAcMB1NlYXR0bGUwHhcNMjEwMzA4MTU0NjI3WhcNMjIwMzA4MTY0NjI3WjBt
MQswCQYDVQQGEwJVUzEVMBMGA1UECgwMRXhhbXBsZSBDb3JwMQ4wDAYDVQQLDAVT
YWxlczELMAkGA1UECAwCV0ExGDAWBgNVBAMMD3d3dy5leGFtcGxlLmNvbTEQMA4G
A1UEBwwHU2VhdHRsZTCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAMP7
t5AKFZQ7abqkeyUjsBVIWRa9tCh8oge9u/LvCbxU738G4jssT+Oud3WMajIjuNow
cpc+0Q/e42ULO/6gTNrTs6OCOo9lV6G0Dprf/e91DWoKgPatem/pUjNyraifHZfu
b5mLHCfahjWXUQtc/sjmDQaZRK3Kar6ljlUBE/Le9NEyOAIkSLPzDtW8LXm4iwcU
BZrb828rKd1Aw9oI1+3bfzB6xXmzZxc5RLXveOCEhKGD32jKZ/RNFSC8AZAwJe+x
bTsys/lUOYFTuT8Bn0TGxR8x7Y4H75+F9BavY3v+WkLj4M+olN9dMR7Et9FMt4u4
YRokv5zp8zIb5iTne1kCAwEAAaNCMEAwDwYDVR0TAQH/BAUwAwEB/zAdBgNVHQ4E
FgQUaW3+r328uTLokog2TklmoBK+yt4wDgYDVR0PAQH/BAQDAgGGMA0GCSqGSIb3
DQEBCwUAA4IBAQAXjd/7UZ8RDE+PLWSDNGQdLemOBTcawF+tK+PzA4Evlmn9VuNc
g+x3oZvVZSDQBANUz0b9oPeo54aE38dW1zQm2qfTab8822aqeWMLyJ1dMsAgqYX2
t9+u6w3NzRCw8Pvz18V69+dFE5AeXmNP0Z5/gdz8H/NSpctjlzopbScRZKCSlPid
Rf3ZOPm9QP92YpWyYDkfAU04xdDo1vR0MYjKPkl4LjRqSU/tcCJnPMbJiwq+bWpX
2WJoEBXB/p15Kn6JxjI0ze2SnSI48JZ8it4fvxrhOo0VoLNIuCuNXJOwU17Rdl1W
YJidaq7je6k18AdgPA0Kh8y1XtfUH3fTaVw4
-----END CERTIFICATE-----

You can use OpenSSL to view and verify the contents of the certificate.

Install a root CA certificate Version latest 243

https://www.openssl.org/

Amazon Private Certificate Authority User Guide

openssl x509 -in cert.pem -text -noout

This yields output similar to the following.

Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number:
 82:2e:39:aa:e5:40:44:e5:51:01:0e:64:91:99:61:d2
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: C=US, O=Example Corp, OU=Sales, ST=WA, CN=www.example.com,
 L=Seattle
 Validity
 Not Before: Mar 8 15:46:27 2021 GMT
 Not After : Mar 8 16:46:27 2022 GMT
 Subject: C=US, O=Example Corp, OU=Sales, ST=WA, CN=www.example.com,
 L=Seattle
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 Public-Key: (2048 bit)
 Modulus:
 00:c3:fb:b7:90:0a:15:94:3b:69:ba:a4:7b:25:23:
 b0:15:48:59:16:bd:b4:28:7c:a2:07:bd:bb:f2:ef:
 09:bc:54:ef:7f:06:e2:3b:2c:4f:e3:ae:77:75:8c:
 6a:32:23:b8:da:30:72:97:3e:d1:0f:de:e3:65:0b:
 3b:fe:a0:4c:da:d3:b3:a3:82:3a:8f:65:57:a1:b4:
 0e:9a:df:fd:ef:75:0d:6a:0a:80:f6:ad:7a:6f:e9:
 52:33:72:ad:a8:9f:1d:97:ee:6f:99:8b:1c:27:da:
 86:35:97:51:0b:5c:fe:c8:e6:0d:06:99:44:ad:ca:
 6a:be:a5:8e:55:01:13:f2:de:f4:d1:32:38:02:24:
 48:b3:f3:0e:d5:bc:2d:79:b8:8b:07:14:05:9a:db:
 f3:6f:2b:29:dd:40:c3:da:08:d7:ed:db:7f:30:7a:
 c5:79:b3:67:17:39:44:b5:ef:78:e0:84:84:a1:83:
 df:68:ca:67:f4:4d:15:20:bc:01:90:30:25:ef:b1:
 6d:3b:32:b3:f9:54:39:81:53:b9:3f:01:9f:44:c6:
 c5:1f:31:ed:8e:07:ef:9f:85:f4:16:af:63:7b:fe:
 5a:42:e3:e0:cf:a8:94:df:5d:31:1e:c4:b7:d1:4c:
 b7:8b:b8:61:1a:24:bf:9c:e9:f3:32:1b:e6:24:e7:
 7b:59
 Exponent: 65537 (0x10001)
 X509v3 extensions:
 X509v3 Basic Constraints: critical

Install a root CA certificate Version latest 244

Amazon Private Certificate Authority User Guide

 CA:TRUE
 X509v3 Subject Key Identifier:
 69:6D:FE:AF:7D:BC:B9:32:E8:92:88:36:4E:49:66:A0:12:BE:CA:DE
 X509v3 Key Usage: critical
 Digital Signature, Certificate Sign, CRL Sign
 Signature Algorithm: sha256WithRSAEncryption
 17:8d:df:fb:51:9f:11:0c:4f:8f:2d:64:83:34:64:1d:2d:e9:
 8e:05:37:1a:c0:5f:ad:2b:e3:f3:03:81:2f:96:69:fd:56:e3:
 5c:83:ec:77:a1:9b:d5:65:20:d0:04:03:54:cf:46:fd:a0:f7:
 a8:e7:86:84:df:c7:56:d7:34:26:da:a7:d3:69:bf:3c:db:66:
 aa:79:63:0b:c8:9d:5d:32:c0:20:a9:85:f6:b7:df:ae:eb:0d:
 cd:cd:10:b0:f0:fb:f3:d7:c5:7a:f7:e7:45:13:90:1e:5e:63:
 4f:d1:9e:7f:81:dc:fc:1f:f3:52:a5:cb:63:97:3a:29:6d:27:
 11:64:a0:92:94:f8:9d:45:fd:d9:38:f9:bd:40:ff:76:62:95:
 b2:60:39:1f:01:4d:38:c5:d0:e8:d6:f4:74:31:88:ca:3e:49:
 78:2e:34:6a:49:4f:ed:70:22:67:3c:c6:c9:8b:0a:be:6d:6a:
 57:d9:62:68:10:15:c1:fe:9d:79:2a:7e:89:c6:32:34:cd:ed:
 92:9d:22:38:f0:96:7c:8a:de:1f:bf:1a:e1:3a:8d:15:a0:b3:
 48:b8:2b:8d:5c:93:b0:53:5e:d1:76:5d:56:60:98:9d:6a:ae:
 e3:7b:a9:35:f0:07:60:3c:0d:0a:87:cc:b5:5e:d7:d4:1f:77:
 d3:69:5c:38

4. Import the root CA certificate to install it on the CA.

Note

If you are using Amazon CLI version 1.6.3 or later, use the prefix fileb:// when
specifying the required input file. This ensures that Amazon Private CA parses the
Base64-encoded data correctly.

$ aws acm-pca import-certificate-authority-certificate \
 --certificate-authority-arn arn:aws:acm-pca:region:account:certificate-
authority/CA_ID \
 --certificate file://cert.pem

Inspect the new status of the CA.

$ aws acm-pca describe-certificate-authority \
 --certificate-authority-arn arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566 \

Install a root CA certificate Version latest 245

Amazon Private Certificate Authority User Guide

 --output json

The status now appears as ACTIVE.

{
 "CertificateAuthority": {
 "Arn": "arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566",
 "CreatedAt": "2021-03-05T14:24:12.867000-08:00",
 "LastStateChangeAt": "2021-03-08T12:37:14.235000-08:00",
 "Type": "ROOT",
 "Serial": "serial_number",
 "Status": "ACTIVE",
 "NotBefore": "2021-03-08T07:46:27-08:00",
 "NotAfter": "2022-03-08T08:46:27-08:00",
 "CertificateAuthorityConfiguration": {
 "KeyAlgorithm": "RSA_2048",
 "SigningAlgorithm": "SHA256WITHRSA",
 "Subject": {
 "Country": "US",
 "Organization": "Example Corp",
 "OrganizationalUnit": "Sales",
 "State": "WA",
 "CommonName": "www.example.com",
 "Locality": "Seattle"
 }
 },
 "RevocationConfiguration": {
 "CrlConfiguration": {
 "Enabled": true,
 "ExpirationInDays": 7,
 "CustomCname": "alternative.example.com",
 "S3BucketName": "amzn-s3-demo-bucket"
 },
 "OcspConfiguration": {
 "Enabled": false
 }
 }
 }
}

Install a root CA certificate Version latest 246

Amazon Private Certificate Authority User Guide

Install a subordinate CA certificate hosted by Amazon Private CA

You can use the Amazon Web Services Management Console to create and install a certificate for
your Amazon Private CA hosted subordinate CA.

To create and install a certificate for your Amazon Private CA hosted subordinate CA

1. (Optional) If you are not already on the CA's details page, open the Amazon Private CA console
at https://console.amazonaws.cn/acm-pca/home. On the Private certificate authorities page,
choose a subordinate CA with status Pending certificate or Active.

2. Choose Actions, Install CA Certificate to open the Install subordinate CA certificate page.

3. On the Install subordinate CA certificate page, under Select CA type, choose Amazon Private
CA to install a certificate that is managed by Amazon Private CA.

4. Under Select parent CA, choose a CA from the Parent private CA list. The list is filtered to
display CAs that meet the following criteria:

• You have permission to use the CA.

• The CA would not be signing itself.

• The CA is in state ACTIVE.

• The CA mode is GENERAL_PURPOSE.

5. Under Specify the subordinate CA certificate parameters, specify the following certificate
parameters:

• Validity — Specifies the expiration date and time for the CA certificate.

• Signature algorithm — Specifies the signing algorithm to use when the root CA issues new
certificates. Options are:

• SHA256 RSA

• SHA384 RSA

• SHA512 RSA

• Path length — The number of trust layers that the subordinate CA can add when signing
new certificates. A path length of zero (the default) means that only end-entity certificates,
and not CA certificates, can be created. A path length of one or more means that the
subordinate CA may issue certificates to create additional CAs subordinate to it.

Install a subordinate CA certificate hosted by Amazon Private CA Version latest 247

https://console.amazonaws.cn/acm-pca/home

Amazon Private Certificate Authority User Guide

• Template ARN — Displays the ARN of the configuration template for this CA certificate. The
template changes if you change the specified Path length. If you create a certificate using
the CLI issue-certificate command or API IssueCertificate action, you must specify the ARN
manually. For information about available CA certificate templates, see Use Amazon Private
CA certificate templates.

6. Review your settings for correctness, then choose Confirm and install. Amazon Private CA
exports a CSR, generates a certificate using a subordinate CA certificate template, and signs
the certificate it with the selected parent CA. Amazon Private CA then imports the signed
subordinate CA certificate.

7. The details page for the CA displays the status of the installation (success or failure) at the
top. If the installation was successful, the newly completed subordinate CA displays a status of
Active in the General pane.

Install a subordinate CA certificate signed by an external parent CA

After you create a subordinate private CA as described in Create a private CA in Amazon Private
CA, you have the option of activating it by installing a CA certificate signed by an external signing
authority. Signing your subordinate CA certificate with an external CA requires that you first set up
an external trust services provider as your signing authority, or arrange for the use of a third-party
provider.

Note

Procedures for creating or obtaining an external trust services provider are outside the
scope of this guide.

After you have created a subordinate CA and you have access to an external signing authority,
complete the following tasks:

1. Obtain a certificate signing request (CSR) from Amazon Private CA.

2. Submit the CSR to your external signing authority and obtain a signed CA certificate along with
any chain certificates.

3. Import the CA certificate and chain into Amazon Private CA to activate your subordinate CA.

For detailed procedures, see Use externally signed private CA certificates .

Install a subordinate CA certificate signed by an external parent CA Version latest 248

https://docs.amazonaws.cn/cli/latest/reference/acm-pca/issue-certificate.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_IssueCertificate.html

Amazon Private Certificate Authority User Guide

Control access to the private CA

Any user with the necessary permissions on a private CA from Amazon Private CA can use that CA
to sign other certificates. The CA owner can issue certificates or delegate the required permissions
for issuing certificates to an Amazon Identity and Access Management (IAM) user that resides in
the same Amazon Web Services account. A user that resides in a different Amazon account can also
issue certificates if authorized by the CA owner through a resource-based policy.

Authorized users, whether single-account or cross-account, can use Amazon Private CA or Amazon
Certificate Manager resources when issuing certificates. Certificates that are issued from the
Amazon Private CA IssueCertificate API or issue-certificate CLI command are unmanaged. Such
certificates require manual installation on target devices and manual renewal when they expire.
Certificates issued from the ACM console, the ACM RequestCertificate API, or the request-certificate
CLI command are managed. Such certificates can easily be installed in services that are integrated
with ACM. If the CA administrator permits it and the issuer's account has a service-linked role in
place for ACM, managed certificates are renewed automatically when they expire.

Topics

• Create single-account permissions for an IAM user

• Attach a policy for cross-account access

Create single-account permissions for an IAM user

When the CA administrator (that is, the owner of the CA) and the certificate issuer reside in a single
Amazon account, a best practice is to separate the issuer and administrator roles by creating an
Amazon Identity and Access Management (IAM) user with limited permissions. For information
about using IAM with Amazon Private CA, along with example permissions, see Identity and Access
Management (IAM) for Amazon Private Certificate Authority.

Single-account case 1: Issuing an unmanaged certificate

In this case, the account owner creates a private CA and then creates an IAM user with permission
to issue certificates signed by the private CA. The IAM user issues a certificate by calling the
Amazon Private CA IssueCertificate API.

Control access Version latest 249

https://docs.amazonaws.cn/privateca/latest/APIReference/API_IssueCertificate.html
https://docs.amazonaws.cn/cli/latest/reference/acm-pca/issue-certificate.html
https://docs.amazonaws.cn/acm/latest/APIReference/API_RequestCertificate.html
https://docs.amazonaws.cn/cli/latest/reference/acm/request-certificate.html
https://docs.amazonaws.cn/acm/latest/userguide/acm-slr.html

Amazon Private Certificate Authority User Guide

Certificates issued in this manner are unmanaged, which means that an administrator must
export them and install them on devices where they are intended to be used. They also must
be manually renewed when they expire. Issuing a certificate using this API requires a certificate
signing request (CSR) and key pair that is generated outside of Amazon Private CA by OpenSSL or a
similar program. For more information, see the IssueCertificate documentation.

Single-account case 2: Issuing a managed certificate through ACM

This second case involves API operations from both ACM and PCA. The account owner creates a
private CA and IAM user as before. The account owner then grants permission to the ACM service
principal to renew automatically any certificates that are signed by this CA. The IAM user again
issues the certificate, but this time by calling the ACM RequestCertificate API, which handles
CSR and key generation. When the certificate expires, ACM automates the renewal workflow.

The account owner has the option of granting renewal permission through the management
console during or after CA creation or using the PCA CreatePermission API. The managed
certificates created from this workflow are available for use on with Amazon services that are
integrated with ACM.

The following section contains procedures for granting renewal permissions.

Assign certificate renewal permissions to ACM

With managed renewal in Amazon Certificate Manager (ACM), you can automate the certificate
renewal process for both public and private certificates. In order for ACM to automatically renew
the certificates generated by a private CA, the ACM service principal must be given all possible

Create single-account permissions for an IAM user Version latest 250

https://www.openssl.org/
https://docs.amazonaws.cn/privateca/latest/APIReference/API_IssueCertificate.html
https://docs.amazonaws.cn/acm/latest/userguide/managed-renewal.html

Amazon Private Certificate Authority User Guide

permissions by the CA itself. If these renewal permissions are not present for ACM, the CA's owner
(or an authorized representative) must manually reissue each private certificate when it expires.

Important

These procedures for assigning renewal permissions apply only when the CA owner and
the certificate issuer reside in the same Amazon account. For cross-account scenarios, see
Attach a policy for cross-account access.

Renewal permissions can be delegated during private CA creation or altered anytime after as long
as the CA is in the ACTIVE state.

You can manage private CA permissions from the Amazon Private CA Console, the Amazon
Command Line Interface (Amazon CLI), or the Amazon Private CA API:

To assign private CA permissions to ACM (console)

1. Sign in to your Amazon account and open the Amazon Private CA console at https://
console.amazonaws.cn/acm-pca/home.

2. On the Private certificate authorities page, choose your private CA from the list.

3. Choose Actions, Configure CA permissions.

4. Select Authorize ACM access to renew certificates requested by this account.

5. Choose Save.

To manage ACM permissions in Amazon Private CA (Amazon CLI)

Use the create-permission command to assign permissions to ACM. You must assign the necessary
permissions (IssueCertificate, GetCertificate, and ListPermissions) in order for ACM
to automatically renew your certificates.

$ aws acm-pca create-permission \
 --certificate-authority-arn arn:aws:acm-pca:region:account:certificate-
authority/CA_ID \
 --actions IssueCertificate GetCertificate ListPermissions \
 --principal acm.amazonaws.com

Use the list-permissions command to list the permissions delegated by a CA.

Create single-account permissions for an IAM user Version latest 251

https://console.amazonaws.cn/acm-pca
https://docs.amazonaws.cn/cli/latest/reference/
https://docs.amazonaws.cn/cli/latest/reference/
https://docs.amazonaws.cn/privateca/latest/APIReference/
https://console.amazonaws.cn/acm-pca/home
https://console.amazonaws.cn/acm-pca/home
https://docs.amazonaws.cn/cli/latest/reference/acm-pca/create-permission.html
https://docs.amazonaws.cn/cli/latest/reference/acm-pca/list-permissions.html

Amazon Private Certificate Authority User Guide

$ aws acm-pca list-permissions \
 --certificate-authority-arn arn:aws:acm-pca:region:account:certificate-
authority/CA_ID

Use the delete-permission command to revoke permissions assigned by a CA to an Amazon service
principal.

$ aws acm-pca delete-permission \
 --certificate-authority-arn arn:aws:acm-pca:region:account:certificate-
authority/CA_ID \
 --principal acm.amazonaws.com

Attach a policy for cross-account access

When the CA administrator and the certificate issuer reside in different Amazon accounts, the CA
administrator must share CA access. This is accomplished by attaching a resource-based policy to
the CA. The policy grants issuance permissions to a specific principal, which can be an Amazon
account owner, an IAM user, an Amazon Organizations ID, or an organizational unit ID.

A CA administrator can attach and manage policies in the following ways:

• In the management console, using Amazon Resource Access Manager (RAM), which is a standard
method for sharing Amazon resources across accounts. When you share a CA resource in Amazon
RAM with a principal in another account, the required resource-based policy is attached to the CA
automatically. For more information about RAM, see the Amazon RAM User Guide.

Note

You can easily open the RAM console by choosing a CA and then choosing Actions,
Manage resource shares.

• Programmatically, using the PCA APIs PutPolicy, GetPolicy, and DeletePolicy.

• Manually, using the PCA commands put-policy, get-policy, and delete-policy in the Amazon CLI.

Only the console method requires RAM access.

Cross-account case 1: Issuing a managed certificate from the console

Attach a policy for cross-account access Version latest 252

https://docs.amazonaws.cn/cli/latest/reference/acm-pca/delete-permission.html
https://docs.amazonaws.cn/ram/latest/userguide/
https://docs.amazonaws.cn/privateca/latest/APIReference/API_PutPolicy.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_GetPolicy.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_DeletePolicy.html
https://docs.amazonaws.cn/cli/latest/reference/acm-pca/put-policy.html
https://docs.amazonaws.cn/cli/latest/reference/acm-pca/get-policy.html
https://docs.amazonaws.cn/cli/latest/reference/acm-pca/delete-policy.html

Amazon Private Certificate Authority User Guide

In this case, the CA administrator uses Amazon Resource Access Manager (Amazon RAM) to
share CA access with another Amazon account, which allows that account to issue managed ACM
certificates. The diagram shows that Amazon RAM can share the CA directly with the account, or
indirectly through an Amazon Organizations ID in which the account is a member.

After RAM shares a resource through Amazon Organizations, the recipient principal must accept
the resource for it to take effect. The recipient can configure Amazon Organizations to accept
offered shares automatically.

Note

The recipient account is responsible for configuring autorenewal in ACM. Typically, on the
first occasion a shared CA is used, ACM installs a service-linked role that permits it to make
unattended certificate calls on Amazon Private CA. If this fails (usually due to a missing
permission), certificates from the CA are not renewed automatically. Only the ACM user can
resolve the problem, not the CA administrator. For more information, see Using a Service
Linked Role (SLR) with ACM.

Cross-account case 2: Issuing managed and unmanaged certificates using the API or CLI

This second case demonstrates the sharing and issuance options that are possible using the
Amazon Certificate Manager and Amazon Private CA API. All of these operations can also be carried
out using the corresponding Amazon CLI commands.

Attach a policy for cross-account access Version latest 253

https://docs.amazonaws.cn/acm/latest/userguide/acm-slr.html
https://docs.amazonaws.cn/acm/latest/userguide/acm-slr.html

Amazon Private Certificate Authority User Guide

Because the API operations are being used directly in this example, the certificate issuer has a
choice of two API operations to issue a certificate. The PCA API action IssueCertificate results
in an unmanaged certificate that will not be automatically renewed and must be exported and
manually installed. The ACM API action RequestCertificate results in a managed certificate that can
be easily installed on ACM integrated services and renews automatically.

Note

The recipient account is responsible for configuring auto-renewal in ACM. Typically, on the
first occasion a shared CA is used, ACM installs a service-linked role that allows it to make
unattended certificate calls on Amazon Private CA. If this fails (usually due to a missing
permission), certificates from the CA will not renew automatically, and only the ACM user
can resolve the problem, not the CA administrator. For more information, see Using a
Service Linked Role (SLR) with ACM.

List private CAs

You can use the Amazon Private CA console or Amazon CLI to list private CAs that you own or have
access to.

To list available CAs using the console

1. Sign in to your Amazon account and open the Amazon Private CA console at https://
console.amazonaws.cn/acm-pca/home.

List private CAs Version latest 254

https://docs.amazonaws.cn/acm/latest/APIReference/API_RequestCertificate.html
https://docs.amazonaws.cn/acm/latest/userguide/acm-slr.html
https://docs.amazonaws.cn/acm/latest/userguide/acm-slr.html
https://console.amazonaws.cn/acm-pca/home
https://console.amazonaws.cn/acm-pca/home

Amazon Private Certificate Authority User Guide

2. Review the information in the Private certificate authorities list. You can navigate through
multiple pages of CAs using the page numbers at upper-right. Each CA occupies a row with
some or all of the following columns displayed for each one:

• Subject – Summary of distinguished name information for the CA.

• Id – 32-byte hexadecimal unique identifier of the CA.

• Status – CA status. Possible values are Creating, Pending certificate, Active, Deleted, Disabled,
Expired, and Failed.

• Type – The type of CA. Possible values are Root and Subordinate.

• Mode – The mode of the CA. Possible values are General-purpose (issues certificates that can
be configured with any expiration date) and Short-lived certificate (issues certificates with a
maximum validity period of seven days). A short validity period can substitute in some cases for a
revocation mechanism. The default is General-purpose.

• Owner – The Amazon account that owns the CA. This may be your account or an account that
has delegated CA management permissions to you.

• Key algorithm – The public key algorithm supported by the CA. Possible values are RSA_2048,
RSA_3072, RSA_4096, EC_prime256v1, EC_secp384r1, and EC_secp521r1.

• Signing algorithm – The algorithm that the CA uses to sign certificate requests. (Not to be
confused with the SigningAlgorithm parameter used to sign certificates when they are
issued.) Possible values are SHA256WITHECDSA, SHA384WITHECDSA, SHA512WITHECDSA,
SHA256WITHRSA, SHA384WITHRSA, and SHA512WITHRSA.

Note

You can customize the columns that you want to display, as well as other settings, by
choosing the settings icon in the upper-right corner of the console.

To list available CAs using the Amazon CLI

Use the list-certificate-authorities command to list available CAs as shown in the following
example:

$ aws acm-pca list-certificate-authorities --max-items 10

List private CAs Version latest 255

https://docs.amazonaws.cn/cli/latest/reference/acm-pca/list-certificate-authorities.html

Amazon Private Certificate Authority User Guide

The command returns information similar to the following:

{
 "CertificateAuthorities":[
 {
 "Arn":"arn:aws:acm-pca:region:account:certificate-authority/CA_ID",
 "CreatedAt":"2022-05-02T11:59:02.022000-07:00",
 "LastStateChangeAt":"2022-05-02T11:59:18.498000-07:00",
 "Type":"ROOT",
 "Serial":"serial_number",
 "Status":"ACTIVE",
 "NotBefore":"2022-05-02T10:59:17-07:00",
 "NotAfter":"2032-05-02T11:59:17-07:00",
 "CertificateAuthorityConfiguration":{
 "KeyAlgorithm":"RSA_2048",
 "SigningAlgorithm":"SHA256WITHRSA",
 "Subject":{
 "Organization":"testing_com"
 }
 },
 "RevocationConfiguration":{
 "CrlConfiguration":{
 "Enabled":false
 }
 }
 }
 ...
]
}

View a private CA

You can use the ACM console or the Amazon CLI to view detailed metadata about a private CA and
change several of the values as needed. For detailed information about updating CAs, see Update a
private CA in Amazon Private Certificate Authority.

To view CA details in the console

1. Sign in to your Amazon account and open the Amazon Private CA console at https://
console.amazonaws.cn/acm-pca/home.

View a private CA Version latest 256

https://console.amazonaws.cn/acm-pca/home
https://console.amazonaws.cn/acm-pca/home

Amazon Private Certificate Authority User Guide

2. Review the Private certificate authorities list. You can navigate through multiple pages of CAs
using the page numbers at upper-right.

3. To show detailed metadata for a listed CA, choose the radio button by the CA that you want to
inspect. This opens a details pane with the following tabbed views:

• Subject tab– Information about the distinguished name for the CA. For more information,
see Subject distinguished name. The fields displayed include:

• Subject – Summary of provided name information fields

• Organization (O) – For example, a company name

• Organization Unit (OU) – For example, a division within a company

• Country name (C) – A two-letter country code

• State or province name – Full name of a state or province

• Locality name – The name of a city

• Common Name (CN) – A human-readable string to identify the CA.

• CA certificate tab – Information about the validity of the CA certificate

• Valid until – The date and time until the CA certificate is valid

• Expires in – The number of days until expiration

• Revocation configuration tab – Your current selections for certificate revocation options.
Choose Edit to update.

• Certificate Revocation List (CRL) distribution – Status of Enabled or Disabled

• Online Certificate Status Protocol (OCSP) – Status of Enabled or Disabled

• Permissions tab – Your current selection of certificate renewal permisisons for this CA
through Amazon Certificate Manager (ACM). Choose Edit to update.

• ACM authorization for renewals – Status of authorized or unauthorized

• Tags tab – Your current assignment of customizable labels for this CA. Choose the Manage
tags to update.

• Resource shares tab – Your current assignment of resource shares for this CA through
Amazon Resource Access Manager (RAM). Choose Manage resource shares to update.

• Name – Name of the resource share

• Status – status of the resource share

4. Choose the ID field of the CA that you want to inspect to open the General pane. The CA's
32-byte hexadecimal unique identifier appears at the top. The pane provides the following
additional information:

View a private CA Version latest 257

Amazon Private Certificate Authority User Guide

• Status – CA status. Possible values are Creating, Pending certificate, Active, Deleted,
Disabled, Expired, and Failed.

• ARN – The Amazon Resource Name for the CA.

• Owner – The Amazon account that owns the CA. This may be your account (Self) or an
account that has delegated CA management permissions to you.

• CA type – The type of CA. Possible values are Root and Subordinate.

• Created at – The date and time when the CA was created.

• Expiration date – The date and time when the CA certificate expires.

• Mode – The mode of the CA. Possible values are General-purpose (certificates that can
be configured with any expiration date) and Short-lived certificate (certificates with a
maximum validity period of seven days). A short validity period can substitute in some cases
for a revocation mechanism. The default is General-purpose.

• Key algorithm – The public key algorithm supported by the CA. Possible values are RSA
2048, RSA 3072, RSA 4096, ECDSA P256, ECDSA P384, and ECDSA P521.

• Signing algorithm – The algorithm that the CA uses to sign certificate requests. (Not to be
confused with the SigningAlgorithm parameter used to sign certificates when they are
issued.) Possible values are SHA256 ECDSA, SHA384 ECDSA, SHA512 ECDSA, SHA256 RSA,
SHA384 RSA, and SHA512 RSA

• Key storage security standard – Level of Federal Information Processing Standards (FIPS)
conformance. You can choose from these values: FIPS 140-2 level 2 or higher, FIPS 140-2
level 3 or higher, and CCPC Level 1 or higher. This parameter varies by Amazon Region.

Note

Starting January 26, 2023, Amazon Private CA protects all CA private keys in non-
China regions using hardware security modules (HSMs) that comply with FIPS PUB
140-2 Level 3.

To view and modify CA details using the Amazon CLI

Use the describe-certificate-authority command in the Amazon CLI to display details about a CA,
as shown in the following command:

View a private CA Version latest 258

https://docs.amazonaws.cn/general/latest/gr/aws-arns-and-namespaces.html
https://docs.amazonaws.cn/cli/latest/reference/acm-pca/describe-certificate-authority.html

Amazon Private Certificate Authority User Guide

$ aws acm-pca describe-certificate-authority --certificate-authority-arn
 arn:aws:acm:region:account:certificate-authority/CA_ID

The command returns information similar to the following:

{
 "CertificateAuthority":{
 "Arn":"arn:aws:acm:region:account:certificate-authority/CA_ID",
 "CreatedAt":"2022-05-02T11:59:02.022000-07:00",
 "LastStateChangeAt":"2022-05-02T11:59:18.498000-07:00",
 "Type":"ROOT",
 "Serial":"serial_number",
 "Status":"ACTIVE",
 "NotBefore":"2022-05-02T10:59:17-07:00",
 "NotAfter":"2031-05-02T11:59:17-07:00",
 "CertificateAuthorityConfiguration":{
 "KeyAlgorithm":"RSA_2048",
 "SigningAlgorithm":"SHA256WITHRSA",
 "Subject":{
 "Organization":"testing_com"
 }
 },
 "RevocationConfiguration":{
 "CrlConfiguration":{
 "Enabled":false
 }
 }
 }
}

For information about updating a private CA from the command line, see Updating a CA (CLI).

Add tags for your private CA

Tags are words or phrases that act as metadata for identifying and organizing Amazon resources.
Each tag consists of a key and a value. You can use the Amazon Private CA console, Amazon
Command Line Interface (Amazon CLI), or the PCA API to add, view, or remove tags for private CAs.

You can add or remove custom tags for your private CA at any time. For example, you could tag
private CAs with key-value pairs like Environment=Prod or Environment=Beta to identify
which environment the CA is intended for. For more information, see Create a Private CA.

Add tags Version latest 259

Amazon Private Certificate Authority User Guide

Note

To attach tags to a private CA during the creation procedure, a CA administrator must
first associate an inline IAM policy with the CreateCertificateAuthority action and
explicitly allow tagging. For more information, see Tag-on-create: Attaching tags to a CA at
the time of creation.

Other Amazon resources also support tagging. You can assign the same tag to different
resources to indicate that those resources are related. For example, you can assign a tag such as
Website=example.com to your CA, the Elastic Load Balancing load balancer, and other related
resources. For more information on tagging Amazon resources, see Tagging your Amazon EC2
Resources in the Amazon EC2 User Guide.

The following basic restrictions apply to Amazon Private CA tags:

• The maximum number of tags per private CA is 50.

• The maximum length of a tag key is 128 characters.

• The maximum length of a tag value is 256 characters.

• The tag key and value can contain the following characters: A-Z, a-z, and .:+=@_%-(hyphen).

• Tag keys and values are case-sensitive.

• The aws: and rds: prefixes are reserved for Amazon use; you cannot add, edit, or delete tags
whose key begins with aws: or rds:. Default tags that begin with aws: and rds: do not count
against your tags-per-resource quota.

• If you plan to use your tagging schema across multiple services and resources, remember
that other services might have different restrictions for allowed characters. Refer to the
documentation for that service.

• Amazon Private CA tags are not available for use in the Resource Groups and Tag Editor in the
Amazon Web Services Management Console.

You can tag a private CA from the Amazon Private CA Console, the Amazon Command Line
Interface (Amazon CLI), or the Amazon Private CA API.

Add tags Version latest 260

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html
https://docs.aws.amazon.com/ec2/index.html#lang/en_us
http://www.amazonaws.cn/blogs/aws/resource-groups-and-tagging/
https://console.amazonaws.cn/acm-pca
https://docs.amazonaws.cn/cli/latest/reference/
https://docs.amazonaws.cn/cli/latest/reference/
https://docs.amazonaws.cn/privateca/latest/APIReference/

Amazon Private Certificate Authority User Guide

To tag a private CA (console)

1. Sign in to your Amazon account and open the Amazon Private CA console at https://
console.amazonaws.cn/acm-pca/home.

2. On the Private certificate authorities page, choose your private CA from the list.

3. In the details area below the list, choose the Tags tab. A list of existing tags is displayed.

4. Choose Manage tags.

5. Choose Add new tag.

6. Type a key and value pair.

7. Choose Save.

To tag a private CA (Amazon CLI)

Use the tag-certificate-authority command to add tags to your private CA.

$ aws acm-pca tag-certificate-authority \
 --certificate-authority-arn arn:aws:acm-pca:region:account:certificate-
authority/CA_ID \
 --tags Key=Admin,Value=Alice

Use the list-tags command to list the tags for a private CA.

$ aws acm-pca list-tags \
 --certificate-authority-arn arn:aws:acm-pca:region:account:certificate-
authority/CA_ID \
 --max-results 10

Use the untag-certificate-authority command to remove tags from a private CA.

$ aws acm-pca untag-certificate-authority \
 --certificate-authority-arn arn:aws:acm-pca:aregion:account:certificate-
authority/CA_ID \
 --tags Key=Purpose,Value=Website

Add tags Version latest 261

https://console.amazonaws.cn/acm-pca/home
https://console.amazonaws.cn/acm-pca/home
https://docs.amazonaws.cn/cli/latest/reference/acm-pca/tag-certificate-authority.html
https://docs.amazonaws.cn/cli/latest/reference/acm-pca/list-tags.html
https://docs.amazonaws.cn/cli/latest/reference/acm-pca/untag-certificate-authority.html

Amazon Private Certificate Authority User Guide

Understand Amazon Private CA CA status

The status of a CA that is managed by Amazon Private CA results from a user action or, in some
cases, from a service action. For example, a CA status changes when it expires. The status options
available to CA administrators vary depending on the current status of the CA.

Amazon Private CA can report the following status values. The table shows the CA capabilities
available in each state.

Note

For all status values except DELETED and FAILED, you are billed for the CA.

Status Issue
certifica
tes

Validate
certs
with
OCSP

Generate
CRLs

Generate
audits

You can
update the
CA cert

Certifica
tes
can be
revoked

You
are
billed
for the
CA

CREATING – The CA is
being created.

No No No No No No Yes

PENDING_C
ERTIFICATE – The
CA has been created
and needs a certifica
te to be operational.*

No No No No No No Yes

ACTIVE Yes Yes Yes Yes Yes Yes Yes

DISABLED – You have
manually disabled
the CA.

No Yes Yes Yes No Yes Yes

EXPIRED – The
CA certificate has
 expired.**

No No No No Yes No Yes

CA status Version latest 262

Amazon Private Certificate Authority User Guide

Status Issue
certifica
tes

Validate
certs
with
OCSP

Generate
CRLs

Generate
audits

You can
update the
CA cert

Certifica
tes
can be
revoked

You
are
billed
for the
CA

FAILED The CreateCertificateAuthority action failed. This
can occur because of a network outage, backend Amazon
failure, or other errors. A failed CA cannot be recovered.
Delete the CA and create a new one.

No

DELETED Your CA is within the restoration period, which can have
a length of 7-30 days. After this period, it is permanently
deleted.

•
If you call the RestoreCertificateAuthority API
on a CA with DELETED status and an expired certificate,
the CA will be set to EXPIRED.

•
For more information about deleting a CA, see Delete your
private CA.

No

To complete activation, you need to generate a CSR, get a signed CA certificate from a CA, and
import the certificate into Amazon Private CA. The CSR can be submitted either to your new CA
(for self-signing), or to an on-premises root or subordinate CA. For more information, see Installing
the CA certificate.

You cannot directly change the status of an expired CA. If you import a new certificate for the
CA, Amazon Private CA resets the status to ACTIVE unless it was set to DISABLED before the
certificate expired.

Additional considerations about expired CA certificates:

• CA certificates are not automatically renewed. For information about automating renewal
through Amazon Certificate Manager, see Assign certificate renewal permissions to ACM.

CA status Version latest 263

Amazon Private Certificate Authority User Guide

• If you attempt to issue a new certificate with an expired CA, the IssueCertificate API returns
InvalidStateException. An expired root CA must self-sign a new root CA certificate before it
can issue new subordinate certificates.

• The ListCertificateAuthorities and DescribeCertificateAuthority APIs return a
status of EXPIRED if the CA certificate is expired, regardless of whether the CA status is set to
ACTIVE or DISABLED. However, if the expired CA has been set to DELETED, the status returned
is DELETED.

• The UpdateCertificateAuthority API cannot update the status of an expired CA.

• The RevokeCertificate API cannot be used to revoke any expired certificate, including a CA
certificate.

Relation between CA status and CA lifecycle

The following diagram illustrates the CA lifecycle as an interaction of management actions with CA
status.

Diagram key

Managemen
t action

CA status Action
results in
a state
change

New state
enables
new action

Relation between CA status and CA lifecycle Version latest 264

Amazon Private Certificate Authority User Guide

At the top of the diagram, management actions are applied through the Amazon Private CA
console, CLI, or API. The actions take the CA through creation, activation, expiration and renewal.
The CA status changes in response (as shown by the solid lines) to manual actions or automated
updates. In most cases, a new status leads to a new possible action (shown by a dotted line) that
the CA administrator can apply. The lower-right inset shows the possible status values permitting
delete and restore actions.

Update a private CA in Amazon Private Certificate Authority

You can update the status of a private CA or change its revocation configuration after creating it.
This topic provides details about CA status and the CA lifecycle, along with examples of console
and CLI updates to CAs.

Update a CA (console)

The following procedures show how to update existing CA configurations using the Amazon Web
Services Management Console.

Update CA status (console)

In this example, the status of an enabled CA is changed to disabled.

To update the status of a CA

1. Sign in to your Amazon account and open the Amazon Private CA console at https://
console.amazonaws.cn/acm-pca/home

2. On the Private certificate authorities page, choose a private CA that is currently active from
the list.

3. On the Actions menu, choose Disable to disable the private CA.

Updating a CA's revocation configuration (console)

You can update the revocation configuration for your private CA, for example, by adding or
removing either OCSP or CRL support, or by modifying their settings.

Update a CA Version latest 265

https://console.amazonaws.cn/acm-pca/home
https://console.amazonaws.cn/acm-pca/home

Amazon Private Certificate Authority User Guide

Note

Changes to the revocation configuration of a CA do not affect certificates that were already
issued. For managed revocation to work, older certificates must be re-issued.

For OCSP, you change the following settings:

• Enable or disable OCSP.

• Enable or disable a custom OCSP fully qualified domain name (FQDN).

• Change the FQDN.

For a CRL, you can change any of the following settings:

• The CRL type (complete or partitioned)

• Whether the private CA generates a certificate revocation list (CRL)

• The number of days before a CRL expires. Note that Amazon Private CA begins trying to
regenerate the CRL at ½ the number of days you specify.

• The name of the Amazon S3 bucket where your CRL is saved.

• An alias to hide the name of your Amazon S3 bucket from public view.

Important

Changing any of the preceding parameters can have negative effects. Examples include
disabling CRL generation, changing the validity period, or changing the S3 bucket after
you have placed your private CA in production. Such changes can break existing certificates
that depend on the CRL and the current CRL configuration. Changing the alias can be done
safely as long as the old alias remains linked to the correct bucket.

To update the revocation settings

1. Sign in to your Amazon account and open the Amazon Private CA console at https://
console.amazonaws.cn/acm-pca/home.

2. On the Private certificate authorities page, choose a private CA from the list. This opens the
details panel for the CA.

Update a CA (console) Version latest 266

https://console.amazonaws.cn/acm-pca/home
https://console.amazonaws.cn/acm-pca/home

Amazon Private Certificate Authority User Guide

3. Choose the Revocation configuration tab, then choose Edit.

4. Under Certificate revocation options, two options are displayed:

• Activate CRL distribution

• Turn on OCSP

You can configure either, neither, or both of these revocation mechanisms for your CA.
Although optional, managed revocation is recommended as a best practice. Before completing
this step, see Plan your Amazon Private CA certificate revocation method for information
about the advantages of each method, the preliminary setup that may be required, and
additional revocation features.

To configure a CRL

1. Select Activate CRL distribution.

2. To create an Amazon S3 bucket for your CRL entries, select Create a new S3 bucket. Provide a
unique bucket name. (You do not need to include the path to the bucket.) Otherwise, leave this
option unselected and choose an existing bucket from the S3 bucket name list.

If you create a new bucket, Amazon Private CA creates and attaches the required access policy
to it. If you decide to use an existing bucket, you must attach an access policy it before you can
begin generating CRLs. Use one of the policy patterns described in Access policies for CRLs in
Amazon S3 . For information about attaching a policy, see Adding a bucket policy by using the
Amazon S3 console.

Note

When you are using the Amazon Private CA console, an attempt to create a CA fails if
both of the following conditions apply:

• You are enforcing Block Public Access settings on your Amazon S3 bucket or account.

• You asked Amazon Private CA to create an Amazon S3 bucket automatically.

In this situation, the console attempts, by default, to create a publicly accessible
bucket, and Amazon S3 rejects this action. Check your Amazon S3 settings if this
occurs. For more information, see Blocking public access to your Amazon S3 storage.

Update a CA (console) Version latest 267

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/add-bucket-policy.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/add-bucket-policy.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/access-control-block-public-access.html

Amazon Private Certificate Authority User Guide

3. Expand Advanced for additional configuration options.

• Choose Enable partitioning to enable partitioning of CRLs. If you don't enable partitioning,
your CA is subject to the maximum number of revoked certificates, shown on the Amazon
Private Certificate Authority quotas. For more information about partitioned CRLs, see CRL
types.

• Add a Custom CRL Name to create an alias for your Amazon S3 bucket. This name is
contained in certificates issued by the CA in the “CRL Distribution Points" extension that is
defined by RFC 5280. To use CRLs over IPv6, set this to your bucket's dualstack S3 endpoint
as described in Using CRLs over IPv6.

• Add a Custom path to create a DNS alias for the file path in your Amazon S3 bucket.

• Type the Validity in days your CRL will remain valid. The default value is 7 days. For online
CRLs, a validity period of 2-7 days is common. Amazon Private CA tries to regenerate the
CRL at the midpoint of the specified period.

4. Choose Save changes when done.

To configure OCSP

1. On the Certificate revocation page, choose Turn on OCSP.

2. (Optional) In the Custom OCSP endpoint field, provide a fully qualified domain name (FQDN)
for your OCSP endpoint. To use OCSP over IPv6, set this field to a dualstack endpoint as
described in Using OCSP over IPv6.

When you provide an FQDN in this field, Amazon Private CA inserts the FQDN into the
Authority Information Access extension of each issued certificate in place of the default URL for
the Amazon OCSP responder. When an endpoint receives a certificate containing the custom
FQDN, it queries that address for an OCSP response. For this mechanism to work, you need to
take two additional actions:

• Use a proxy server to forward traffic that arrives at your custom FQDN to the Amazon OCSP
responder.

• Add a corresponding CNAME record to your DNS database.

Update a CA (console) Version latest 268

https://docs.amazonaws.cn/general/latest/gr/pca.html#limits_pca
https://docs.amazonaws.cn/general/latest/gr/pca.html#limits_pca

Amazon Private Certificate Authority User Guide

Tip

For more information about implementing a complete OCSP solution using a custom
CNAME, see Customize OCSP URL for Amazon Private CA.

For example, here is a CNAME record for customized OCSP as it would appear in Amazon
Route 53.

Record name Type Routing policy Differentiator Value/Route
traffic to

alternati
ve.example.com

CNAME Simple - proxy.exa
mple.com

Note

The value of the CNAME must not include a protocol prefix such as "http://" or
"https://".

3. Choose Save changes when done.

Updating a CA (CLI)

The following procedures show how to update the status and revocation configuration of an
existing CA using the Amazon CLI.

Note

Changes to the revocation configuration of a CA do not affect certificates that were already
issued. For managed revocation to work, older certificates must be re-issued.

To update the status of your private CA (Amazon CLI)

Updating a CA (CLI) Version latest 269

Amazon Private Certificate Authority User Guide

Use the update-certificate-authority command.

This is useful when you have an existing CA with status DISABLED that you want to set to ACTIVE.
To begin, confirm the initial status of the CA with the following command.

$ aws acm-pca describe-certificate-authority \
 --certificate-authority-arn "arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566" \
 --output json

This results in output similar to the following.

{
 "CertificateAuthority": {
 "Arn": "arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566",
 "CreatedAt": "2021-03-05T14:24:12.867000-08:00",
 "LastStateChangeAt": "2021-03-08T13:17:40.221000-08:00",
 "Type": "ROOT",
 "Serial": "serial_number",
 "Status": "DISABLED",
 "NotBefore": "2021-03-08T07:46:27-08:00",
 "NotAfter": "2022-03-08T08:46:27-08:00",
 "CertificateAuthorityConfiguration": {
 "KeyAlgorithm": "RSA_2048",
 "SigningAlgorithm": "SHA256WITHRSA",
 "Subject": {
 "Country": "US",
 "Organization": "Example Corp",
 "OrganizationalUnit": "Sales",
 "State": "WA",
 "CommonName": "www.example.com",
 "Locality": "Seattle"
 }
 },
 "RevocationConfiguration": {
 "CrlConfiguration": {
 "Enabled": true,
 "ExpirationInDays": 7,
 "CustomCname": "alternative.example.com",
 "S3BucketName": "amzn-s3-demo-bucket"
 },
 "OcspConfiguration": {

Updating a CA (CLI) Version latest 270

https://docs.amazonaws.cn/cli/latest/reference/acm-pca/update-certificate-authority.html

Amazon Private Certificate Authority User Guide

 "Enabled": false
 }
 }
 }
}

The following command sets the status of the private CA to ACTIVE. This is possible only if a valid
certificate is installed on the CA.

$ aws acm-pca update-certificate-authority \
 --certificate-authority-arn arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566 \
 --status "ACTIVE"

Inspect the new status of the CA.

$ aws acm-pca describe-certificate-authority \
 --certificate-authority-arn "arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566" \
 --output json

The status now appears as ACTIVE.

{
 "CertificateAuthority": {
 "Arn": "arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566",
 "CreatedAt": "2021-03-05T14:24:12.867000-08:00",
 "LastStateChangeAt": "2021-03-08T13:23:09.352000-08:00",
 "Type": "ROOT",
 "Serial": "serial_number",
 "Status": "ACTIVE",
 "NotBefore": "2021-03-08T07:46:27-08:00",
 "NotAfter": "2022-03-08T08:46:27-08:00",
 "CertificateAuthorityConfiguration": {
 "KeyAlgorithm": "RSA_2048",
 "SigningAlgorithm": "SHA256WITHRSA",
 "Subject": {
 "Country": "US",
 "Organization": "Example Corp",
 "OrganizationalUnit": "Sales",
 "State": "WA",

Updating a CA (CLI) Version latest 271

Amazon Private Certificate Authority User Guide

 "CommonName": "www.example.com",
 "Locality": "Seattle"
 }
 },
 "RevocationConfiguration": {
 "CrlConfiguration": {
 "Enabled": true,
 "ExpirationInDays": 7,
 "CustomCname": "alternative.example.com",
 "S3BucketName": "amzn-s3-demo-bucket"
 },
 "OcspConfiguration": {
 "Enabled": false
 }
 }
 }
}

In some cases, you might have an active CA with no revocation mechanism configured. If you want
to begin using a certificate revocation list (CRL), use the following procedure.

To add a CRL to an existing CA (Amazon CLI)

1. Use the following command to inspect the current status of the CA.

$ aws acm-pca describe-certificate-authority
 --certificate-authority-arn arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566
 --output json

The output confirms that the CA has status ACTIVE but is not configured to use a CRL.

{
 "CertificateAuthority": {
 "Arn": "arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566",
 "CreatedAt": "2021-03-08T14:36:26.449000-08:00",
 "LastStateChangeAt": "2021-03-08T14:50:52.224000-08:00",
 "Type": "ROOT",
 "Serial": "serial_number",
 "Status": "ACTIVE",
 "NotBefore": "2021-03-08T13:46:50-08:00",

Updating a CA (CLI) Version latest 272

Amazon Private Certificate Authority User Guide

 "NotAfter": "2022-03-08T14:46:50-08:00",
 "CertificateAuthorityConfiguration": {
 "KeyAlgorithm": "RSA_2048",
 "SigningAlgorithm": "SHA256WITHRSA",
 "Subject": {
 "Country": "US",
 "Organization": "Example Corp",
 "OrganizationalUnit": "Sales",
 "State": "WA",
 "CommonName": "www.example.com",
 "Locality": "Seattle"
 }
 },
 "RevocationConfiguration": {
 "CrlConfiguration": {
 "Enabled": false
 },
 "OcspConfiguration": {
 "Enabled": false
 }
 }
 }
}

2. Create and save a file with a name such as revoke_config.txt to define your CRL
configuration parameters.

{
 "CrlConfiguration":{
 "Enabled": true,
 "ExpirationInDays": 7,
 "S3BucketName": "amzn-s3-demo-bucket"
 }
}

Note

When updating a Matter device attestation CA to enable CRLs, you must configure it
to omit the CDP extension from the issued certificates to help conform to the current
Matter standard. To do this, define your CRL configuration parameters as illustrated
below:

Updating a CA (CLI) Version latest 273

Amazon Private Certificate Authority User Guide

{
 "CrlConfiguration":{
 "Enabled": true,
 "ExpirationInDays": 7,
 "S3BucketName": "amzn-s3-demo-bucket"
 "CrlDistributionPointExtensionConfiguration":{
 "OmitExtension": true
 }
 }
}

3. Use the update-certificate-authority command and the revocation configuration file to update
the CA.

$ aws acm-pca update-certificate-authority \
 --certificate-authority-arn arn:aws:acm-pca:us-
east-1:111122223333:certificate-authority/11223344-1234-1122-2233-112233445566 \
 --revocation-configuration file://revoke_config.txt

4. Again inspect the status of the CA.

$ aws acm-pca describe-certificate-authority
 --certificate-authority-arn arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566
 --output json

The output confirms that CA is now configured to use a CRL.

{
 "CertificateAuthority": {
 "Arn": "arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566",
 "CreatedAt": "2021-03-08T14:36:26.449000-08:00",
 "LastStateChangeAt": "2021-03-08T14:50:52.224000-08:00",
 "Type": "ROOT",
 "Serial": "serial_number",
 "Status": "ACTIVE",
 "NotBefore": "2021-03-08T13:46:50-08:00",
 "NotAfter": "2022-03-08T14:46:50-08:00",
 "CertificateAuthorityConfiguration": {

Updating a CA (CLI) Version latest 274

https://docs.amazonaws.cn/cli/latest/reference/acm-pca/update-certificate-authority.html

Amazon Private Certificate Authority User Guide

 "KeyAlgorithm": "RSA_2048",
 "SigningAlgorithm": "SHA256WITHRSA",
 "Subject": {
 "Country": "US",
 "Organization": "Example Corp",
 "OrganizationalUnit": "Sales",
 "State": "WA",
 "CommonName": "www.example.com",
 "Locality": "Seattle"
 }
 },
 "RevocationConfiguration": {
 "CrlConfiguration": {
 "Enabled": true,
 "ExpirationInDays": 7,
 "S3BucketName": "amzn-s3-demo-bucket",
 },
 "OcspConfiguration": {
 "Enabled": false
 }
 }
 }
}

In some cases, you might want to add OCSP revocation support instead of enabling a CRL as in
the previous procedure. In that case, use the following steps.

To add OCSP support to an existing CA (Amazon CLI)

1. Create and save a file with a name such as revoke_config.txt to define your OCSP
parameters.

{
 "OcspConfiguration":{
 "Enabled":true
 }
}

2. Use the update-certificate-authority command and the revocation configuration file to update
the CA.

Updating a CA (CLI) Version latest 275

https://docs.amazonaws.cn/cli/latest/reference/acm-pca/update-certificate-authority.html

Amazon Private Certificate Authority User Guide

$ aws acm-pca update-certificate-authority \
 --certificate-authority-arn arn:aws:acm-pca:us-
east-1:111122223333:certificate-authority/11223344-1234-1122-2233-112233445566 \
 --revocation-configuration file://revoke_config.txt

3. Again inspect the status of the CA.

$ aws acm-pca describe-certificate-authority
 --certificate-authority-arnarn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566
 --output json

The output confirms that CA is now configured to use OCSP.

{
 "CertificateAuthority": {
 "Arn": "arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566",
 "CreatedAt": "2021-03-08T14:36:26.449000-08:00",
 "LastStateChangeAt": "2021-03-08T14:50:52.224000-08:00",
 "Type": "ROOT",
 "Serial": "serial_number",
 "Status": "ACTIVE",
 "NotBefore": "2021-03-08T13:46:50-08:00",
 "NotAfter": "2022-03-08T14:46:50-08:00",
 "CertificateAuthorityConfiguration": {
 "KeyAlgorithm": "RSA_2048",
 "SigningAlgorithm": "SHA256WITHRSA",
 "Subject": {
 "Country": "US",
 "Organization": "Example Corp",
 "OrganizationalUnit": "Sales",
 "State": "WA",
 "CommonName": "www.example.com",
 "Locality": "Seattle"
 }
 },
 "RevocationConfiguration": {
 "CrlConfiguration": {
 "Enabled": false
 },
 "OcspConfiguration": {

Updating a CA (CLI) Version latest 276

Amazon Private Certificate Authority User Guide

 "Enabled": true
 }
 }
 }
}

Note

You can also configure both CRL and OCSP support on a CA.

Delete your private CA

You can delete a private CA from the Amazon Web Services Management Console or Amazon CLI
permanently. You might want to delete one, for example, to replace it with a new CA that has a
new private key. In order to delete a CA safely, follow these steps:

1. Create the replacement CA.

2. Once the new private CA is in production, disable the old one but do not immediately delete it.

3. Keep the old CA disabled until all of the certificates issued by it have expired.

4. Delete the old CA.

Amazon Private CA does not check that all of the issued certificates have expired before it
processes a delete request. You can generate an audit report to determine which certificates have
expired. While the CA is disabled, you can revoke certificates, but you cannot issue new ones.

If you must delete a private CA before all the certificates it has issued have expired, we recommend
that you also revoke the CA certificate. The CA certificate will be listed in the CRL of the parent CA,
and the private CA will be untrusted by clients.

Important

A private CA can be deleted if it is in the PENDING_CERTIFICATE, CREATING, EXPIRED,
DISABLED, or FAILED state. In order to delete a CA in the ACTIVE state, you must first
disable it, or else the delete request results in an exception. If you are deleting a private CA
in the PENDING_CERTIFICATE or DISABLED state, you can set the length of its restoration

Delete a CA Version latest 277

Amazon Private Certificate Authority User Guide

period from 7-30 days, with 30 being the default. During this period, status is set to
DELETED and the CA is restorable. A private CA that is deleted while in the CREATING
or FAILED state has no assigned restoration period and cannot be restored. For more
information, see Restore a private CA.
You are not charged for a private CA after it has been deleted. However, if a deleted CA
is restored, you are charged for the time between deletion and restoration. For more
information, see Pricing for Amazon Private Certificate Authority.

To delete a private CA (console)

1. Sign in to your Amazon account and open the Amazon Private CA console at https://
console.amazonaws.cn/acm-pca/home.

2. On the Private certificate authorities page, choose your private CA from the list.

3. If your CA is in the ACTIVE state, you must first disable it. On the Actions menu, choose
Disable. When prompted, choose I understand the risk, continue.

4. For a CA that is not in the ACTIVE state, choose Actions, Delete.

5. If your CA is in the DISABLED, EXPIRED, or PENDING_CERTIFICATE state, the Delete CA
page lets you specify a restoration period of 7-30 days. If your private CA is not in one of these
states, it cannot be restored later and deletion is permanent.

6. Choose Delete.

7. If you are certain that you want to delete the private CA, choose Permanently delete
when prompted. The status of the private CA changes to DELETED. However, you can
restore the private CA before the end of the restoration period. To check the restoration
period of a private CA in the DELETED state, call the DescribeCerticateAuthority or
ListCertificateAuthorities API operation.

To delete a private CA (Amazon CLI)

Use the delete-certificate-authority command to delete a private CA.

$ aws acm-pca delete-certificate-authority \
 --certificate-authority-arn arn:aws:acm-pca:region:account:certificate-
authority/CA_ID \
 --permanent-deletion-time-in-days 16

Delete a CA Version latest 278

https://console.amazonaws.cn/acm-pca/home
https://console.amazonaws.cn/acm-pca/home
https://docs.amazonaws.cn/privateca/latest/APIReference/API_DescribeCertificateAuthority.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_ListCertificateAuthorities.html
https://docs.amazonaws.cn/cli/latest/reference/acm-pca/delete-certificate-authority.html

Amazon Private Certificate Authority User Guide

Restore a private CA

You can restore a private CA that has been deleted as long as the CA remains within the restoration
period that you specified upon deletion. The restoration period is from 7-30 days. At the end of
that period, the private CA is permanently deleted. For more information, see Delete your private
CA. You cannot restore a private CA that has been permanently deleted.

Note

You are not charged for a private CA after it has been deleted. However, if a deleted CA
is restored, you are charged for the time between deletion and restoration. For more
information, see Pricing for Amazon Private Certificate Authority.

Restoring a private CA (console)

You can use the Amazon Web Services Management Console to restore a private CA.

To restore a private CA (console)

1. Sign in to your Amazon account and open the Amazon Private CA console at https://
console.amazonaws.cn/acm-pca/home.

2. On the Private certificate authorities page, choose your deleted private CA from the list.

3. On the Actions menu, choose Restore.

4. On the Restore CA page, choose Restore again.

5. If successful, the status of the private CA is set to its pre-deletion state. Choose Actions,
Enable, and Enable again to change its status to ACTIVE. If the private CA was in the
PENDING_CERTIFICATE state at the time of deletion, you must import a CA certificate into
the private CA before you can activate it.

Restore a private CA (Amazon CLI)

Use the restore-certificate-authority command to restore a deleted private CA that is in the
DELETED state. The following steps discuss the entire process required to delete, restore, and then
reactivate a private CA.

Restore a CA Version latest 279

https://console.amazonaws.cn/acm-pca/home
https://console.amazonaws.cn/acm-pca/home
https://docs.amazonaws.cn/cli/latest/reference/acm-pca/restore-certificate-authority.html

Amazon Private Certificate Authority User Guide

To delete, restore, and reactivate a private CA (Amazon CLI)

1. Delete the private CA.

Run the delete-certificate-authority command to delete the private CA. If the private CA's
status is DISABLED or PENDING_CERTIFICATE, you can set the --permanent-deletion-
time-in-days parameter to specify the private CA's restoration period from 7 -30 days. If
you do not specify a restoration period, the default is 30 days. If successful, this command sets
the status of the private CA to DELETED.

Note

To be restorable, the private CA's status at the time of deletion must be DISABLED or
PENDING_CERTIFICATE.

$ aws acm-pca delete-certificate-authority \
 --certificate-authority-arn arn:aws:acm-pca:region:account:certificate-
authority/CA_ID \
 --permanent-deletion-time-in-days 16

2. Restore the private CA.

Run the restore-certificate-authority command to restore the private CA. You must run the
command before the restoration period that you set with the delete-certificate-authority
command expires. If successful, the command sets the status of the private CA to its pre-
deletion status.

$ aws acm-pca restore-certificate-authority \
 --certificate-authority-arn arn:aws:acm-pca:region:account:certificate-
authority/CA_ID

3. Make the private CA ACTIVE.

Run the update-certificate-authority command to change the status of the private CA to
ACTIVE.

$ aws acm-pca update-certificate-authority \
 --certificate-authority-arn arn:aws:acm-pca:region:account:certificate-
authority/CA_ID \

Restore a private CA (Amazon CLI) Version latest 280

https://docs.amazonaws.cn/cli/latest/reference/acm-pca/delete-certificate-authority.html
https://docs.amazonaws.cn/cli/latest/reference/acm-pca/restore-certificate-authority.html
https://docs.amazonaws.cn/cli/latest/reference/acm-pca/update-certificate-authority.html

Amazon Private Certificate Authority User Guide

 --status ACTIVE

Use externally signed private CA certificates

If your private CA hierarchy's root of trust must be a CA outside of Amazon Private CA, you can
create and self-sign your own root CA. Alternatively, you can obtain a private CA certificate that is
signed by an external private CA operated by your organization. Whatever its source, you can use
this externally obtained CA to sign a private subordinate CA certificate that Amazon Private CA
manages.

Note

Procedures for creating or obtaining an external trust services provider are outside the
scope of this guide.

Using an external parent CA with Amazon Private CA permits you to enforce CA name constraints
as defined in the Name Constraints section of RFC 5280. Name constraints provide a way for CA
administrators to restrict subject names in certificates.

If you plan to sign a private subordinate CA certificate with an external CA, there are three tasks to
complete before you have a working CA in Amazon Private CA:

1. Generate a certificate signing request (CSR).

2. Submit the CSR to your external signing authority and return with a signed certificate and
certificate chain.

3. Install a signed certificate in Amazon Private CA.

The following procedures describe how to complete these tasks using either the Amazon Web
Services Management Console or the Amazon CLI.

To obtain and install an externally signed CA certificate (console)

1. (Optional) If you are not already on the CA's details page, open the Amazon Private CA console
at https://console.amazonaws.cn/acm-pca/home. On the Private certificate authorities page,
choose a subordinate CA with status Pending certificate, Active, Disabled, or Expired.

Externally signed CA certificates Version latest 281

https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.1.10
https://console.amazonaws.cn/acm-pca/home

Amazon Private Certificate Authority User Guide

2. Choose Actions, Install CA Certificate to open the Install subordinate CA certificate page.

3. On the Install subordinate CA certificate page, under Select CA type, choose External private
CA.

4. Under CSR for this CA, the console displays the Base64-encoded ASCII text of the CSR. You can
copy the text using the Copy button or you can choose Export CSR to a file and save it locally.

Note

The exact format of the CSR text must be preserved when copying and pasting.

5. If you cannot immediately perform the offline steps to obtain a signed certificate from your
external signing authority, you can close the page and return to it once you possess a signed
certificate and a certificate chain.

Otherwise, if you are ready, do either of the following:

• Paste the Base64-encoded ASCII text of your certificate body and of your certificate chain
into their respective text boxes.

• Choose Upload to load the certificate body and certificate chain from local files into their
respective text boxes.

6. Choose Confirm and install.

To obtain and install an externally signed CA certificate (CLI)

1. Use the get-certificate-authority-csr command to retrieve the certificate signing request (CSR)
for your private CA. If you want to send the CSR to your display, use the --output text
option to eliminate CR/LF characters from the end of each line. To send the CSR to a file, use
the redirect option (>) followed by a file name.

$ aws acm-pca get-certificate-authority-csr \
--certificate-authority-arn arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566 \
--output text

After saving a CSR as a local file, you can inspect it by using the following OpenSSL command:

Externally signed CA certificates Version latest 282

https://docs.amazonaws.cn/cli/latest/reference/acm-pca/get-certificate-authority-csr.html
https://www.openssl.org/

Amazon Private Certificate Authority User Guide

openssl req -in path_to_CSR_file -text -noout

This command generates output similar to the following. Notice that the CA extension is TRUE,
indicating that the CSR is for a CA certificate.

Certificate Request:
Data:
Version: 0 (0x0)
Subject: O=ExampleCompany, OU=Corporate Office, CN=Example CA 1
Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 Public-Key: (2048 bit)
 Modulus:
 00:d4:23:51:b3:dd:01:09:01:0b:4c:59:e4:ea:81:
 1d:7f:48:36:ef:2a:e9:45:82:ec:95:1d:c6:d7:c9:
 7f:19:06:73:c5:cd:63:43:14:eb:c8:03:82:f8:7b:
 c7:89:e6:8d:03:eb:b6:76:58:70:f2:cb:c3:4c:67:
 ea:50:fd:b9:17:84:b8:60:2c:64:9d:2e:d5:7d:da:
 46:56:38:34:a9:0d:57:77:85:f1:6f:b8:ce:73:eb:
 f7:62:a7:8e:e6:35:f5:df:0c:f7:3b:f5:7f:bd:f4:
 38:0b:95:50:2c:be:7d:bf:d9:ad:91:c3:81:29:23:
 b2:5e:a6:83:79:53:f3:06:12:20:7e:a8:fa:18:d6:
 a8:f3:a3:89:a5:a3:6a:76:da:d0:97:e5:13:bc:84:
 a6:5c:d6:54:1a:f0:80:16:dd:4e:79:7b:ff:6d:39:
 b5:67:56:cb:02:6b:14:c3:17:06:0e:7d:fb:d2:7e:
 1c:b8:7d:1d:83:13:59:b2:76:75:5e:d1:e3:23:6d:
 8a:5e:f5:85:ca:d7:e9:a3:f1:9b:42:9f:ed:8a:3c:
 14:4d:1f:fc:95:2b:51:6c:de:8f:ee:02:8c:0c:b6:
 3e:2d:68:e5:f8:86:3f:4f:52:ec:a6:f0:01:c4:7d:
 68:f3:09:ae:b9:97:d6:fc:e4:de:58:58:37:09:9a:
 f6:27
 Exponent: 65537 (0x10001)
Attributes:
Requested Extensions:
 X509v3 Basic Constraints:
 CA:TRUE
Signature Algorithm: sha256WithRSAEncryption
 c5:64:0e:6c:cf:11:03:0b:b7:b8:9e:48:e1:04:45:a0:7f:cc:
 a7:fd:e9:4d:c9:00:26:c5:6e:d0:7e:69:7a:fb:17:1f:f3:5d:
 ac:f3:65:0a:96:5a:47:3c:c1:ee:45:84:46:e3:e6:05:73:0c:
 ce:c9:a0:5e:af:55:bb:89:46:21:92:7b:10:96:92:1b:e6:75:
 de:02:13:2d:98:72:47:bd:b1:13:1a:3d:bb:71:ae:62:86:1a:

Externally signed CA certificates Version latest 283

Amazon Private Certificate Authority User Guide

 ee:ae:4e:f4:29:2e:d6:fc:70:06:ac:ca:cf:bb:ee:63:68:14:
 8e:b2:8f:e3:8d:e8:8f:e0:33:74:d6:cf:e2:e9:41:ad:b6:47:
 f8:2e:7d:0a:82:af:c6:d8:53:c2:88:a0:32:05:09:e0:04:8f:
 79:1c:ac:0d:d4:77:8e:a6:b2:5f:07:f8:1b:e3:98:d4:12:3d:
 28:32:82:b5:50:92:a4:b2:4c:28:fc:d2:73:75:75:ff:10:33:
 2c:c0:67:4b:de:fd:e6:69:1c:a8:bb:e8:31:93:07:35:69:b7:
 d6:53:37:53:d5:07:dd:54:35:74:50:50:f9:99:7d:38:b7:b6:
 7f:bd:6c:b8:e4:2a:38:e5:04:00:a8:a3:d9:e5:06:38:e0:38:
 4c:ca:a9:3c:37:6d:ba:58:38:11:9c:30:08:93:a5:62:00:18:
 d1:83:66:40

2. Submit the CSR to your external signing authority and obtain files containing the Base64 PEM-
encoded signed certificate and certificate chain.

3. Use the import-certificate-authority-certificate command to import the private CA certificate
file and the chain file into Amazon Private CA.

$ aws acm-pca import-certificate-authority-certificate \
--certificate-authority-arn arn:aws:acm-pca:region:account:\
certificate-authority/12345678-1234-1234-1234-123456789012 \
--certificate file://C:\example_ca_cert.pem \
--certificate-chain file://C:\example_ca_cert_chain.pem

Externally signed CA certificates Version latest 284

https://docs.amazonaws.cn/cli/latest/reference/acm-pca/import-certificate-authority-certificate.html

Amazon Private Certificate Authority User Guide

Issue and manage certificates in Amazon Private CA

After you have created and activated a private certificate authority (CA) and configured access
to it, you or your authorized users can issue and manage certificates. If you have not yet set up
Amazon Identity and Access Management (IAM) policies for the CA, you can learn more about
configuring them in the Identity and Access Management section of this guide. For information
about configuring CA access in single-account and cross-account scenarios, see Control access to
the private CA.

Topics

• Issue private end-entity certificates

• Retrieve a private certificate

• List private certificates

• Export a private certificate and its secret key

• Revoke a private certificate

• Automate export of a renewed certificate

• Use Amazon Private CA certificate templates

Issue private end-entity certificates

With a private CA in place, you can request private end-entity certificates from either Amazon
Certificate Manager (ACM) or Amazon Private CA. The capabilities of both services are compared in
the following table.

Capability ACM Amazon Private CA

Issue end-entity certificates ✓ (using RequestCertificate or
the console)

✓ (using IssueCertificate)

Association with load
balancers and internet-facing
Amazon services

✓ Not supported

Managed certificate renewal ✓ Indirectly supported through
ACM

Issue private end-entity certificates Version latest 285

https://docs.amazonaws.cn/privateca/latest/userguide/security-iam.html
https://docs.amazonaws.cn/acm/latest/APIReference/API_RequestCertificate.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_IssueCertificate.html
https://docs.amazonaws.cn/acm/latest/userguide/managed-renewal.html

Amazon Private Certificate Authority User Guide

Capability ACM Amazon Private CA

Console support ✓ Not supported

API support ✓ ✓

CLI support ✓ ✓

When Amazon Private CA creates a certificate, it follows a template that specifies the certificate
type and path length. If no template ARN is supplied to the API or CLI statement creating the
certificate, the EndEntityCertificate/V1 template is applied by default. For more information about
available certificate templates, see Use Amazon Private CA certificate templates.

While ACM certificates are designed around public trust, Amazon Private CA serves the needs of
your private PKI. Consequently, you can configure certificates using the Amazon Private CA API and
CLI in ways not permitted by ACM. These include the following:

• Creating a certificate with any Subject name.

• Using any of the supported private key algorithms and key lengths.

• Using any of the supported signing algorithms.

• Specifying any validity period for your private CA and private certificates.

After creating a private TLS certificate using Amazon Private CA, you can import it into ACM and
use it with a supported Amazon service.

Note

Certificates created with the procedure below, using the issue-certificate command, or
with the IssueCertificate API action, cannot be directly exported for use outside Amazon.
However, you can use your private CA to sign certificates issued through ACM, and those
certificates can be exported along with their secret keys. For more information, see
Requesting a private certificate and Exporting a private certificate in the ACM User Guide.

Issue private end-entity certificates Version latest 286

https://docs.amazonaws.cn/privateca/latest/userguide/supported-algorithms.html
https://docs.amazonaws.cn/privateca/latest/userguide/supported-algorithms.html
PcaCreateCa.html
PcaIssueCert.html
https://docs.amazonaws.cn/acm/latest/userguide/import-certificate-api-cli.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_IssueCertificate.html
https://docs.amazonaws.cn/acm/latest/userguide/gs-acm-request-private.html
https://docs.amazonaws.cn/acm/latest/userguide/export-private.html

Amazon Private Certificate Authority User Guide

Issue a standard certificate (Amazon CLI)

You can use the Amazon Private CA CLI command issue-certificate or the API action IssueCertificate
to request an end-entity certificate. This command requires the Amazon Resource Name (ARN) of
the private CA that you want to use to issue the certificate. You must also generate a certificate
signing request (CSR) using a program such as OpenSSL.

If you use the Amazon Private CA API or Amazon CLI to issue a private certificate, the certificate is
unmanaged, meaning that you cannot use the ACM console, ACM CLI, or ACM API to view or export
it, and the certificate is not automatically renewed. However, you can use the PCA get-certificate
command to retrieve the certificate details, and if you own the CA, you can create an audit report.

Considerations when creating certificates

• In compliance with RFC 5280, the length of the domain name (technically, the Common Name)
that you provide cannot exceed 64 octets (characters), including periods. To add a longer domain
name, specify it in the Subject Alternative Name field, which supports names up to 253 octets in
length.

• If you are using Amazon CLI version 1.6.3 or later, use the prefix fileb:// when specifying
base64-encoded input files such as CSRs. This ensures that Amazon Private CA parses the data
correctly.

The following OpenSSL command generates a CSR and a private key for a certificate:

$ openssl req -out csr.pem -new -newkey rsa:2048 -nodes -keyout private-key.pem

You can inspect the content of the CSR as follows:

$ openssl req -in csr.pem -text -noout

The resulting output should resemble the following abbreviated example:

Certificate Request:
 Data:
 Version: 0 (0x0)
 Subject: C=US, O=Big Org, CN=example.com
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption

Issue a standard certificate (Amazon CLI) Version latest 287

https://docs.amazonaws.cn/cli/latest/reference/acm-pca/issue-certificate.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_IssueCertificate.html
https://www.openssl.org/
https://docs.amazonaws.cn/cli/latest/reference/acm-pca/get-certificate.html
https://datatracker.ietf.org/doc/html/rfc5280

Amazon Private Certificate Authority User Guide

 Public-Key: (2048 bit)
 Modulus:
 00:ca:85:f4:3a:b7:5f:e2:66:be:fc:d8:97:65:3d:
 a4:3d:30:c6:02:0a:9e:1c:ca:bb:15:63:ca:22:81:
 00:e1:a9:c0:69:64:75:57:56:53:a1:99:ee:e1:cd:
 ...
 aa:38:73:ff:3d:b7:00:74:82:8e:4a:5d:da:5f:79:
 5a:89:52:e7:de:68:95:e0:16:9b:47:2d:57:49:2d:
 9b:41:53:e2:7f:e1:bd:95:bf:eb:b3:a3:72:d6:a4:
 d3:63
 Exponent: 65537 (0x10001)
 Attributes:
 a0:00
 Signature Algorithm: sha256WithRSAEncryption
 74:18:26:72:33:be:ef:ae:1d:1e:ff:15:e5:28:db:c1:e0:80:
 42:2c:82:5a:34:aa:1a:70:df:fa:4f:19:e2:5a:0e:33:38:af:
 21:aa:14:b4:85:35:9c:dd:73:98:1c:b7:ce:f3:ff:43:aa:11:

 3c:b2:62:94:ad:94:11:55:c2:43:e0:5f:3b:39:d3:a6:4b:47:
 09:6b:9d:6b:9b:95:15:10:25:be:8b:5c:cc:f1:ff:7b:26:6b:
 fa:81:df:e4:92:e5:3c:e5:7f:0e:d8:d9:6f:c5:a6:67:fb:2b:
 0b:53:e5:22

The following command creates a certificate. Because no template is specified, a base end-entity
certificate is issued by default.

$ aws acm-pca issue-certificate \
 --certificate-authority-arn arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566 \
 --csr fileb://csr.pem \
 --signing-algorithm "SHA256WITHRSA" \
 --validity Value=365,Type="DAYS"

The ARN of the issued certificate is returned:

{
 "CertificateArn":"arn:aws:acm-pca:region:account:certificate-authority/CA_ID/
certificate/certificate_ID"
}

Issue a standard certificate (Amazon CLI) Version latest 288

Amazon Private Certificate Authority User Guide

Note

Amazon Private CA immediately returns an ARN with a serial number when it receives the
issue-certificate command. However, certificate processing happens asynchronously and
can still fail. If this happens, a get-certificate command using the new ARN will also fail.

Issue a certificate with a custom subject name using an APIPassthrough
template

In this example, a certificate is issued containing customized subject name elements. In addition to
supplying a CSR like the one in Issue a standard certificate (Amazon CLI), you pass two additional
arguments to the issue-certificate command: the ARN of an APIPassthrough template, and a
JSON configuration file that specifies the custom attributes and their object identifiers (OIDs). You
cannot use StandardAttributes in conjunction with CustomAttributes. however, you can
pass standard OIDs as part of CustomAttributes. The default subject name OIDs are listed in the
following table (information from RFC 4519 and Global OID reference database):

Subject name Abbreviation Object ID

countryName c 2.5.4.6

commonName cn 2.5.4.3

dnQualifier [distinguished
name qualifier]

2.5.4.46

generationQualifier 2.5.4.44

givenName 2.5.4.42

initials 2.5.4.43

locality l 2.5.4.7

organizationName o 2.5.4.10

organizationalUnitName ou 2.5.4.11

Issue a certificate with a custom subject name using an APIPassthrough template Version latest 289

https://www.rfc-editor.org/rfc/rfc4519
https://oidref.com

Amazon Private Certificate Authority User Guide

Subject name Abbreviation Object ID

pseudonym 2.5.4.65

serialNumber 2.5.4.5

st [state] 2.5.4.8

surname sn 2.5.4.4

title 2.5.4.12

domainComponent dc 0.9.2342.19200300.100.1.25

userid 0.9.2342.19200300.100.1.1

The sample configuration file api_passthrough_config.txt contains the following code:

{
 "Subject": {
 "CustomAttributes": [
 {
 "ObjectIdentifier": "2.5.4.6",
 "Value": "US"
 },
 {
 "ObjectIdentifier": "1.3.6.1.4.1.37244.1.1",
 "Value": "BCDABCDA12341234"
 },
 {
 "ObjectIdentifier": "1.3.6.1.4.1.37244.1.5",
 "Value": "CDABCDAB12341234"
 }
]
 }
}

Use the following command to issue the certificate:

$ aws acm-pca issue-certificate \
 --validity Type=DAYS,Value=10

Issue a certificate with a custom subject name using an APIPassthrough template Version latest 290

Amazon Private Certificate Authority User Guide

 --signing-algorithm "SHA256WITHRSA" \
 --csr fileb://csr.pem \
 --api-passthrough file://api_passthrough_config.txt \
 --template-arn arn:aws:acm-pca:::template/
BlankEndEntityCertificate_APIPassthrough/V1 \
 --certificate-authority-arn arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566

The ARN of the issued certificate is returned:

{
 "CertificateArn":"arn:aws:acm-pca:region:account:certificate-authority/CA_ID/
certificate/certificate_ID"
}

Retrieve the certificate locally as follows:

$ aws acm-pca get-certificate \
 --certificate-authority-arn arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566 \
 --certificate-arn arn:aws:acm-pca:region:account:certificate-authority/CA_ID/
certificate/certificate_ID | \
 jq -r .'Certificate' > cert.pem

You can inspect the certificate's contents using OpenSSL:

$ openssl x509 -in cert.pem -text -noout

Note

It is also possible to create a private CA that passes custom attributes to each certificate it
issues.

Issue a certificate with custom extensions using an APIPassthrough
template

In this example, a certificate is issued that contains customized extensions. For this you need to
pass three arguments to the issue-certificate command: the ARN of an APIPassthrough template,

Issue a certificate with custom extensions using an APIPassthrough template Version latest 291

Amazon Private Certificate Authority User Guide

and a JSON configuration file that specifies the custom extensions, and a CSR like the one shown in
Issue a standard certificate (Amazon CLI).

The sample configuration file api_passthrough_config.txt contains the following code:

{
 "Extensions": {
 "CustomExtensions": [
 {
 "ObjectIdentifier": "2.5.29.30",
 "Value": "MBWgEzARgg8ucGVybWl0dGVkLnRlc3Q=",
 "Critical": true
 }
]
 }
}

The customized certificate is issued as follows:

$ aws acm-pca issue-certificate \
 --validity Type=DAYS,Value=10
 --signing-algorithm "SHA256WITHRSA" \
 --csr fileb://csr.pem \
 --api-passthrough file://api_passthrough_config.txt \
 --template-arn arn:aws:acm-pca:::template/EndEntityCertificate_APIPassthrough/V1
 \
 --certificate-authority-arn arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566

The ARN of the issued certificate is returned:

{
 "CertificateArn":"arn:aws:acm-pca:region:account:certificate-authority/CA_ID/
certificate/certificate_ID"
}

Retrieve the certificate locally as follows:

$ aws acm-pca get-certificate \
 --certificate-authority-arn arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566 \

Issue a certificate with custom extensions using an APIPassthrough template Version latest 292

Amazon Private Certificate Authority User Guide

 --certificate-arn arn:aws:acm-pca:region:account:certificate-authority/CA_ID/
certificate/certificate_ID | \
 jq -r .'Certificate' > cert.pem

You can inspect the certificate's contents using OpenSSL:

$ openssl x509 -in cert.pem -text -noout

Retrieve a private certificate

You can use the Amazon Private CA API and Amazon CLI to issue a private certificate. If you do, you
can use the Amazon CLI or Amazon Private CA API to retrieve that certificate. If you used ACM to
create your private CA and to request certificates, you must use ACM to export the certificate and
the encrypted private key. For more information, see Exporting a private certificate.

To retrieve an end-entity certificate

Use the get-certificate Amazon CLI command to retrieve a private end-entity certificate. You can
also use the GetCertificate API operation. We recommend formatting the output with jq, a sed-like
parser.

Note

If you want to revoke a certificate, you can use the get-certificate command to retrieve the
serial number in hexadecimal format. You can also create an audit report to retrieve the hex
serial number. For more information, see Use audit reports with your private CA.

$ aws acm-pca get-certificate \
 --certificate-arn arn:aws:acm-pca:region:account:certificate-authority/CA_ID/
certificate/certificate_ID \
 --certificate-authority-arn arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566 | \
 jq -r '.Certificate, .CertificateChain'

This command outputs the certificate and certificate chain in the following standard format.

-----BEGIN CERTIFICATE-----
...base64-encoded certificate...

Retrieve a private certificate Version latest 293

https://docs.amazonaws.cn/acm/latest/userguide/export-private.html
https://docs.amazonaws.cn/cli/latest/reference/acm-pca/get-certificate.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_GetCertificate.html
https://stedolan.github.io/jq/

Amazon Private Certificate Authority User Guide

-----END CERTIFICATE----
-----BEGIN CERTIFICATE-----
...base64-encoded certificate...
-----END CERTIFICATE----
-----BEGIN CERTIFICATE-----
...base64-encoded certificate...
-----END CERTIFICATE----

To retrieve a CA certificate

You can use the Amazon Private CA API and Amazon CLI to retrieve the certificate authority (CA)
certificate for your private CA. Run the get-certificate-authority-certificate command. You can also
call the GetCertificateAuthorityCertificate operation. We recommend formatting the output with
jq, a sed-like parser.

$ aws acm-pca get-certificate-authority-certificate \
 --certificate-authority-arn arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566 \
 | jq -r '.Certificate'

This command outputs the CA certificate in the following standard format.

-----BEGIN CERTIFICATE-----
...base64-encoded certificate...
-----END CERTIFICATE----

List private certificates

To list your private certificates, generate an audit report, retrieve it from its S3 bucket, and parse
the report contents as needed. For information about creating Amazon Private CA audit reports,
see Use audit reports with your private CA. For information about retrieving an object from an S3
bucket, see Downloading an object in the Amazon Simple Storage Service User Guide.

The following examples illustrate approaches to creating audit reports and parsing them for useful
data. Results are formatted in JSON, and data is filtered using jq, a sed-like parser.

1. Create an audit report.

The following command generates an audit report for a specified CA.

$ aws acm-pca create-certificate-authority-audit-report \

List private certificates Version latest 294

https://docs.amazonaws.cn/cli/latest/reference/acm-pca/get-certificate-authority-certificate.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_GetCertificateAuthorityCertificate.html
https://stedolan.github.io/jq/
https://docs.amazonaws.cn/AmazonS3/latest/userguide/download-objects.html
https://stedolan.github.io/jq/

Amazon Private Certificate Authority User Guide

 --region region \
 --certificate-authority-arn arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566 \
 --s3-bucket-name bucket_name \
 --audit-report-response-format JSON

When successful, the command returns the ID and location of the new audit report.

{
 "AuditReportId":"audit_report_ID",
 "S3Key":"audit-report/CA_ID/audit_report_ID.json"
}

2. Retrieve and format an audit report.

This command retrieves an audit report, displays its contents in standard output, and filters the
results to show only certificates issued on or after 2020-12-01.

$ aws s3api get-object \
 --region region \
 --bucket bucket_name \
 --key audit-report/CA_ID/audit_report_ID.json \
 /dev/stdout | jq '.[] | select(.issuedAt >= "2020-12-01")'

The returned items resemble the following:

{
 "awsAccountId":"account",
 "certificateArn":"arn:aws:acm-pca:region:account:certificate-authority/CA_ID/
certificate/certificate_ID",
 "serial":"serial_number",
 "subject":"CN=pca.alpha.root2.leaf5",
 "notBefore":"2020-12-21T21:28:09+0000",
 "notAfter":"9999-12-31T23:59:59+0000",
 "issuedAt":"2020-12-21T22:28:09+0000",
 "templateArn":"arn:aws:acm-pca:::template/EndEntityCertificate/V1"
}

3. Save an audit report locally.

If you want to perform multiple queries, it is convenient to save an audit report to a local file.

List private certificates Version latest 295

Amazon Private Certificate Authority User Guide

$ aws s3api get-object \
 --region region \
 --bucket bucket_name \
 --key audit-report/CA_ID/audit_report_ID.json > my_local_audit_report.json

The same filter as before yields the same output:

$ cat my_local_audit_report.json | jq '.[] | select(.issuedAt >= "2020-12-01")'
{
 "awsAccountId":"account",
 "certificateArn":"arn:aws:acm-pca:region:account:certificate-authority/CA_ID/
certificate/certificate_ID",
 "serial":"serial_number",
 "subject":"CN=pca.alpha.root2.leaf5",
 "notBefore":"2020-12-21T21:28:09+0000",
 "notAfter":"9999-12-31T23:59:59+0000",
 "issuedAt":"2020-12-21T22:28:09+0000",
 "templateArn":"arn:aws:acm-pca:::template/EndEntityCertificate/V1"
}

4. Query within a date range

You can query for certificates issued within a date range as follows:

$ cat my_local_audit_report.json | jq '.[] | select(.issuedAt >= "2020-11-01"
 and .issuedAt <= "2020-11-10")'

The filtered content is displayed in standard output:

{
 "awsAccountId": "account",
 "certificateArn": "arn:aws:acm-pca:region:account:certificate-authority/CA_ID/
certificate/certificate_ID",
 "serial": "serial_number",
 "subject": "CN=pca.alpha.root2.leaf1",
 "notBefore": "2020-11-06T19:18:21+0000",
 "notAfter": "9999-12-31T23:59:59+0000",
 "issuedAt": "2020-11-06T20:18:22+0000",
 "templateArn": "arn:aws:acm-pca:::template/EndEntityCertificate/V1"
}
{

List private certificates Version latest 296

Amazon Private Certificate Authority User Guide

 "awsAccountId": "account",
 "certificateArn": "arn:aws:acm-pca:region:account:certificate-authority/CA_ID/
certificate/certificate_ID",
 "serial": "serial_number",
 "subject": "CN=pca.alpha.root2.rsa2048sha256",
 "notBefore": "2020-11-06T19:15:46+0000",
 "notAfter": "9999-12-31T23:59:59+0000",
 "issuedAt": "2020-11-06T20:15:46+0000",
 "templateArn": "arn:aws:acm-pca:::template/RootCACertificate/V1"
}
{
 "awsAccountId": "account",
 "certificateArn": "arn:aws:acm-pca:region:account:certificate-authority/CA_ID/
certificate/certificate_ID",
 "serial": "serial_number",
 "subject": "CN=pca.alpha.root2.leaf2",
 "notBefore": "2020-11-06T20:04:39+0000",
 "notAfter": "9999-12-31T23:59:59+0000",
 "issuedAt": "2020-11-06T21:04:39+0000",
 "templateArn": "arn:aws:acm-pca:::template/EndEntityCertificate/V1"
}

5. Search for certificates following a specified template.

The following command filters the report content using a template ARN:

$ cat my_local_audit_report.json | jq '.[] | select(.templateArn == "arn:aws:acm-
pca:::template/RootCACertificate/V1")'

The output displays matching certificate records:

{
 "awsAccountId": "account",
 "certificateArn": "arn:aws:acm-pca:region:account:certificate-authority/CA_ID/
certificate/certificate_ID",
 "serial": "serial_number",
 "subject": "CN=pca.alpha.root2.rsa2048sha256",
 "notBefore": "2020-11-06T19:15:46+0000",
 "notAfter": "9999-12-31T23:59:59+0000",
 "issuedAt": "2020-11-06T20:15:46+0000",
 "templateArn": "arn:aws:acm-pca:::template/RootCACertificate/V1"
}

List private certificates Version latest 297

Amazon Private Certificate Authority User Guide

6. Filter for revoked certificates

To find all revoked certificates, use the following command:

$ cat my_local_audit_report.json | jq '.[] | select(.revokedAt != null)'

A revoked certificate is displayed as follows:

{
 "awsAccountId": "account",
 "certificateArn": "arn:aws:acm-pca:region:account:certificate-authority/CA_ID/
certificate/certificate_ID",
 "serial": "serial_number",
 "subject": "CN=pca.alpha.root2.leaf2",
 "notBefore": "2020-11-06T20:04:39+0000",
 "notAfter": "9999-12-31T23:59:59+0000",
 "issuedAt": "2020-11-06T21:04:39+0000",
 "revokedAt": "2021-05-27T18:57:32+0000",
 "revocationReason": "UNSPECIFIED",
 "templateArn": "arn:aws:acm-pca:::template/EndEntityCertificate/V1"
}

7. Filter using a regular expression.

The following command searches for subject names that contain the string "leaf":

$ cat my_local_audit_report.json | jq '.[] | select(.subject|test("leaf"))'

Matching certificate records are returned as follows:

{
 "awsAccountId": "account",
 "certificateArn": "arn:aws:acm-pca:region:account:certificate-authority/CA_ID/
certificate/certificate_ID",
 "serial": "serial_number",
 "subject": "CN=pca.alpha.roo2.leaf4",
 "notBefore": "2020-11-16T18:17:10+0000",
 "notAfter": "9999-12-31T23:59:59+0000",
 "issuedAt": "2020-11-16T19:17:12+0000",
 "templateArn": "arn:aws:acm-pca:::template/EndEntityCertificate/V1"
}
{

List private certificates Version latest 298

Amazon Private Certificate Authority User Guide

 "awsAccountId": "account",
 "certificateArn": "arn:aws:acm-pca:region:account:certificate-authority/CA_ID/
certificate/certificate_ID",
 "serial": "serial_number",
 "subject": "CN=pca.alpha.root2.leaf5",
 "notBefore": "2020-12-21T21:28:09+0000",
 "notAfter": "9999-12-31T23:59:59+0000",
 "issuedAt": "2020-12-21T22:28:09+0000",
 "templateArn": "arn:aws:acm-pca:::template/EndEntityCertificate/V1"
}
{
 "awsAccountId": "account",
 "certificateArn": "arn:aws:acm-pca:region:account:certificate-authority/CA_ID/
certificate/certificate_ID",
 "serial": "serial_number",
 "subject": "CN=pca.alpha.root2.leaf1",
 "notBefore": "2020-11-06T19:18:21+0000",
 "notAfter": "9999-12-31T23:59:59+0000",
 "issuedAt": "2020-11-06T20:18:22+0000",
 "templateArn": "arn:aws:acm-pca:::template/EndEntityCertificate/V1"
}

Export a private certificate and its secret key

Amazon Private CA cannot directly export a private certificate that it has signed and issued.
However, you can use Amazon Certificate Manager to export such a certificate along with its
encrypted secret key. The certificate is then completely portable for deployment anywhere in your
private PKI. For more information, see Exporting a private certificate in the Amazon Certificate
Manager User Guide.

As an added benefit, Amazon Certificate Manager provides managed renewal for private
certificates that were issued using the ACM console, the RequestCertificate action of the
ACM API, or the request-certificate command in the ACM section of the Amazon CLI. For more
information about renewals, see Renewing certificates in a private PKI.

Revoke a private certificate

You can revoke an Amazon Private CA certificate using the revoke-certificate Amazon CLI command
or the RevokeCertificate API action. A certificate may need to be revoked before its scheduled
expiration if, for example, its secret key is compromised or its associated domain becomes invalid.

Export a certificate Version latest 299

https://docs.amazonaws.cn/acm/latest/userguide/export-private.html
https://docs.amazonaws.cn/acm/latest/userguide/renew-private-cert.html
https://docs.amazonaws.cn/cli/latest/reference/acm-pca/revoke-certificate.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_RevokeCertificate.html

Amazon Private Certificate Authority User Guide

For revocation to be effective, the client using the certificate needs a way to check revocation
status whenever it attempts to build a secure network connection.

Amazon Private CA provides two fully managed mechanisms to support revocation status checking:
Online Certificate Status Protocol (OCSP) and certificate revocation lists (CRLs). With OCSP, the
client queries an authoritative revocation database that returns a status in real-time. With a CRL,
the client checks the certificate against a list of revoked certificates that it periodically downloads
and stores. Clients refuse to accept certificates that have been revoked.

Both OCSP and CRLs depend on validation information embedded in certificates. For this reason,
an issuing CA must be configured to support either or both of these mechanisms prior to issuance.
For information about selecting and implementing managed revocation through Amazon Private
CA, see Plan your Amazon Private CA certificate revocation method.

Revoked certificates are always recorded in Amazon Private CA audit reports.

Note

For cross-account callers, a share with the
AWSRAMRevokeCertificateCertificateAuthority
permission is required. Revocation permissions are not included in
AWSRAMDefaultPermissionCertificateAuthority. To enable revocation by cross-
account issuers, the CA administrator must create two RAM shares, both pointing at the
same CA:

1. A share with the AWSRAMRevokeCertificateCertificateAuthority permission.

2. A share with the AWSRAMDefaultPermissionCertificateAuthority permission.

To revoke a certificate

Use the RevokeCertificate API action or revoke-certificate command to revoke a private PKI
certificate. The serial number must be in hexadecimal format. You can retrieve the serial number
by calling the get-certificate command. The revoke-certificate command does not return a
response.

$ aws acm-pca revoke-certificate \
 --certificate-authority-arn arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566 \

Revoke a private certificate Version latest 300

https://docs.amazonaws.cn/privateca/latest/APIReference/API_RevokeCertificate.html
https://docs.amazonaws.cn/cli/latest/reference/acm-pca/revoke-certificate.html
https://docs.amazonaws.cn/cli/latest/reference/acm-pca/get-certificate.html

Amazon Private Certificate Authority User Guide

 --certificate-serial serial_number \
 --revocation-reason "KEY_COMPROMISE"

Revoked certificates and OCSP

OCSP responses may take up to 60 minutes to reflect the new status when you revoke a certificate.
In general, OCSP tends to support faster distribution of revocation information because, unlike
CRLs which can be cached by clients for days, OCSP responses are typically not cached by clients.

Revoked certificates in a CRL

A CRL is typically updated approximately 30 minutes after a certificate is revoked. If for any reason
a CRL update fails, Amazon Private CA makes further attempts every 15 minutes.

With Amazon CloudWatch, you can create alarms for the metrics CRLGenerated and
MisconfiguredCRLBucket. For more information, see Supported CloudWatch Metrics. For more
information about creating and configuring CRLs, see Set up a CRL for Amazon Private CA.

The following example shows a revoked certificate in a certificate revocation list (CRL).

Certificate Revocation List (CRL):
 Version 2 (0x1)
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: /C=US/ST=WA/L=Seattle/O=Examples LLC/OU=Corporate Office/
CN=www.example.com
 Last Update: Jan 10 19:28:47 2018 GMT
 Next Update: Jan 8 20:28:47 2028 GMT
 CRL extensions:
 X509v3 Authority key identifier:
 keyid:3B:F0:04:6B:51:54:1F:C9:AE:4A:C0:2F:11:E6:13:85:D8:84:74:67

 X509v3 CRL Number:
 1515616127629
Revoked Certificates:
 Serial Number: B17B6F9AE9309C51D5573BCA78764C23
 Revocation Date: Jan 9 17:19:17 2018 GMT
 CRL entry extensions:
 X509v3 CRL Reason Code:
 Key Compromise
 Signature Algorithm: sha256WithRSAEncryption
 21:2f:86:46:6e:0a:9c:0d:85:f6:b6:b6:db:50:ce:32:d4:76:
 99:3e:df:ec:6f:c7:3b:7e:a3:6b:66:a7:b2:83:e8:3b:53:42:

Revoked certificates and OCSP Version latest 301

https://docs.amazonaws.cn/privateca/latest/userguide/PcaCloudWatch.html

Amazon Private Certificate Authority User Guide

 f0:7a:bc:ba:0f:81:4d:9b:71:ee:14:c3:db:ad:a0:91:c4:9f:
 98:f1:4a:69:9a:3f:e3:61:36:cf:93:0a:1b:7d:f7:8d:53:1f:
 2e:f8:bd:3c:7d:72:91:4c:36:38:06:bf:f9:c7:d1:47:6e:8e:
 54:eb:87:02:33:14:10:7f:b2:81:65:a1:62:f5:fb:e1:79:d5:
 1d:4c:0e:95:0d:84:31:f8:5d:59:5d:f9:2b:6f:e4:e6:60:8b:
 58:7d:b2:a9:70:fd:72:4f:e7:5b:e4:06:fc:e7:23:e7:08:28:
 f7:06:09:2a:a1:73:31:ec:1c:32:f8:dc:03:ea:33:a8:8e:d9:
 d4:78:c1:90:4c:08:ca:ba:ec:55:c3:00:f4:2e:03:b2:dd:8a:
 43:13:fd:c8:31:c9:cd:8d:b3:5e:06:c6:cc:15:41:12:5d:51:
 a2:84:61:16:a0:cf:f5:38:10:da:a5:3b:69:7f:9c:b0:aa:29:
 5f:fc:42:68:b8:fb:88:19:af:d9:ef:76:19:db:24:1f:eb:87:
 65:b2:05:44:86:21:e0:b4:11:5c:db:f6:a2:f9:7c:a6:16:85:
 0e:81:b2:76

Revoked certificates in an audit report

All certificates, including revoked certificates, are included in the audit report for a private CA. The
following example shows an audit report with one issued and one revoked certificate. For more
information, see Use audit reports with your private CA.

[
 {
 "awsAccountId":"account",
 "certificateArn":"arn:aws:acm-pca:region:account:certificate-authority/CA_ID/
certificate/certificate_ID",
 "serial":"serial_number",

 "Subject":"1.2.840.113549.1.9.1=#161173616c6573406578616d706c652e636f6d,CN=www.example1.com,OU=Sales,O=Example
 Company,L=Seattle,ST=Washington,C=US",
 "notBefore":"2018-02-26T18:39:57+0000",
 "notAfter":"2019-02-26T19:39:57+0000",
 "issuedAt":"2018-02-26T19:39:58+0000",
 "revokedAt":"2018-02-26T20:00:36+0000",
 "revocationReason":"KEY_COMPROMISE"
 },
 {
 "awsAccountId":"account",
 "certificateArn":"arn:aws:acm-pca:region:account:certificate-authority/CA_ID/
certificate/certificate_ID",
 "serial":"serial_number",

 "Subject":"1.2.840.113549.1.9.1=#161970726f64407777772e70616c6f75736573616c65732e636f6d,CN=www.example3.com.com,OU=Sales,O=Example
 Company,L=Seattle,ST=Washington,C=US",

Revoked certificates in an audit report Version latest 302

Amazon Private Certificate Authority User Guide

 "notBefore":"2018-01-22T20:10:49+0000",
 "notAfter":"2019-01-17T21:10:49+0000",
 "issuedAt":"2018-01-22T21:10:49+0000"
 }
]

Automate export of a renewed certificate

When you use Amazon Private CA to create a CA, you can import that CA into Amazon Certificate
Manager and let ACM manage certificate issuance and renewal. If a certificate being renewed is
associated with an integrated service, the service seamlessly applies the new certificate. However,
if the certificate was originally exported for use elsewhere in your PKI environment (for example, in
an on-premises server or appliance), you need to export it again after renewal.

For a sample solution that automates the ACM export process using Amazon EventBridge and
Amazon Lambda, see Automating export of renewed certificates.

Use Amazon Private CA certificate templates

Amazon Private CA uses configuration templates to issue both CA certificates and end-entity
certificates. When you issue a CA certificate from the PCA console, the appropriate root or
subordinate CA certificate template is applied automatically.

If you use the CLI or API to issue a certificate, you can supply a template ARN as a parameter to
the IssueCertificate action. If you provide no ARN, then the EndEntityCertificate/
V1 template is applied by default. For more information, see the IssueCertificate API and issue-
certificate command documentation.

Note

Amazon Certificate Manager (ACM) users with cross-account shared access to a private
CA can issue managed certificates that are signed by the CA. Cross-account issuers are
constrained by a resource-based policy and have access only to the following end-entity
certificate templates:

• EndEntityCertificate/V1

• EndEntityClientAuthCertificate/V1

• EndEntityServerAuthCertificate/V1

Automate export Version latest 303

https://docs.amazonaws.cn/acm/latest/userguide/acm-services.html
https://docs.amazonaws.cn/acm/latest/userguide/export-private.html
https://docs.amazonaws.cn/acm/latest/userguide/renew-private-cert.html#automating-export
https://docs.amazonaws.cn/privateca/latest/APIReference/API_IssueCertificate.html
https://docs.amazonaws.cn/cli/latest/reference/acm-pca/issue-certificate.html
https://docs.amazonaws.cn/cli/latest/reference/acm-pca/issue-certificate.html

Amazon Private Certificate Authority User Guide

• BlankEndEntityCertificate_APIPassthrough/V1

• BlankEndEntityCertificate_APICSRPassthrough/V1

• SubordinateCACertificate_PathLen0/V1

For more information, see Resource-based policies.

Topics

• Amazon Private CA template varieties

• Amazon Private CA template order of operations

• Amazon Private CA template definitions

Amazon Private CA template varieties

Amazon Private CA supports four varieties of template.

• Base templates

Pre-defined templates in which no passthrough parameters are allowed.

• CSRPassthrough templates

Templates that extend their corresponding base template versions by allowing CSR passthrough.
Extensions in the CSR that is used to issue the certificate are copied over to the issued certificate.
In cases where the CSR contains extension values that conflict with the template definition,
the template definition will always have the higher priority. For more details about priority, see
Amazon Private CA template order of operations.

• APIPassthrough templates

Templates that extend their corresponding base template versions by allowing API passthrough.
Dynamic values that are known to the administrator or other intermediate systems may not
be known by the entity requesting the certificate, may be impossible to define in a template,
and may not be available in the CSR. The CA administrator, however, can retrieve additional
information from another data source, such as an Active Directory, to complete the request. For
example, if a machine doesn't know what organization unit it belongs to, the administrator can
look up the information in Active Directory and add it to the certificate request by including the
information in a JSON structure.

Template varieties Version latest 304

Amazon Private Certificate Authority User Guide

Values in the ApiPassthrough parameter of the IssueCertificate action are copied over
to the issued certificate. In cases where the ApiPassthrough parameter contains information
that conflicts with the template definition, the template definition will always have the higher
priority. For more details about priority, see Amazon Private CA template order of operations.

• APICSRPassthrough templates

Templates that extend their corresponding base template versions by allowing both API and CSR
passthrough. Extensions in the CSR used to issue the certificate are copied over to the issued
certificate, and values in the ApiPassthrough parameter of the IssueCertificate action
are also copied over . In cases where the template definition, API passthrough values, and CSR
passthrough extensions exhibit a conflict, the template definition has highest priority, followed
by the API passthrough values, followed by the CSR passthrough extensions. For more details
about priority, see Amazon Private CA template order of operations.

The tables below list all of the template types supported by Amazon Private CA with links to their
definitions.

Note

For information about template ARNs in GovCloud regions, see Amazon Private Certificate
Authority in the Amazon GovCloud (US) User Guide.

Base templates

Template Name Template ARN Certificate Type

CodeSigningCertificate/V1 arn:aws:acm-pca:::
template/CodeSigni
ngCertificate/V1

Code signing

EndEntityCertificate/V1 arn:aws:acm-pca:::
template/EndEntity
Certificate/V1

End-entity

EndEntityClientAuthCertificate/
V1

arn:aws:acm-pca:::
template/EndEntity

End-entity

Template varieties Version latest 305

https://docs.amazonaws.cn/govcloud-us/latest/UserGuide/using-govcloud-arns.html#using-govcloud-arn-syntax-acmpca
https://docs.amazonaws.cn/govcloud-us/latest/UserGuide/using-govcloud-arns.html#using-govcloud-arn-syntax-acmpca

Amazon Private Certificate Authority User Guide

Template Name Template ARN Certificate Type

ClientAuthCertificate/
V1

EndEntityServerAuthCertificate/
V1

arn:aws:acm-pca:::
template/EndEntity
ServerAuthCertificate/
V1

End-entity

OCSPSigningCertificate/V1 arn:aws:acm-pca:::
template/OCSPSigni
ngCertificate/V1

OCSP signing

RootCACertificate/V1 arn:aws:acm-pca:::
template/RootCACer
tificate/V1

CA

SubordinateCACertificate_Pa
thLen0/V1

arn:aws:acm-pca:::
template/Subordina
teCACertificate_Pa
thLen0/V1

CA

SubordinateCACertificate_Pa
thLen1/V1

arn:aws:acm-pca:::
template/Subordina
teCACertificate_Pa
thLen1/V1

CA

SubordinateCACertificate_Pa
thLen2/V1

arn:aws:acm-pca:::
template/Subordina
teCACertificate_Pa
thLen2/V1

CA

SubordinateCACertificate_Pa
thLen3/V1

arn:aws:acm-pca:::
template/Subordina
teCACertificate_Pa
thLen3/V1

CA

Template varieties Version latest 306

Amazon Private Certificate Authority User Guide

CSRPassthrough templates

Template Name Template ARN Certificate Type

BlankEndEntityCertificate_C
SRPassthrough/V1

arn:aws:acm-pca:::
template/BlankEndE
ntityCertificate_C
SRPassthrough/V1

End-entity

BlankEndEntityCertificate_C
riticalBasicConstraints_CSR
Passthrough/V1

arn:aws:acm-pca:::
template/BlankEndE
ntityCertificate_C
riticalBasicConstr
aints_CSRPassthrough/
V1

End-entity

BlankSubordinateCACertifica
te_PathLen0_CSRPassthrough/V1

arn:aws:acm-pca:::
template/BlankSubo
rdinateCACertifica
te_PathLen0_CSRPas
sthrough/V1

CA

BlankSubordinateCACertifica
te_PathLen1_CSRPassthrough/V1

arn:aws:acm-pca:::
template/BlankSubo
rdinateCACertifica
te_PathLen1_CSRPas
sthrough/V1

CA

BlankSubordinateCACertifica
te_PathLen2_CSRPassthrough/V1

arn:aws:acm-pca:::
template/BlankSubo
rdinateCACertifica
te_PathLen2_CSRPas
sthrough/V1

CA

BlankSubordinateCACertifica
te_PathLen3_CSRPassthrough/V1

arn:aws:acm-pca:::
template/BlankSubo
rdinateCACertifica

CA

Template varieties Version latest 307

Amazon Private Certificate Authority User Guide

Template Name Template ARN Certificate Type

te_PathLen3_CSRPas
sthrough/V1

CodeSigningCertificate_CSRP
assthrough/V1

arn:aws:acm-pca:::
template/CodeSigni
ngCertificate_CSRP
assthrough/V1

Code signing

EndEntityCertificate_CSRPas
sthrough/V1

arn:aws:acm-pca:::
template/EndEntity
Certificate_CSRPas
sthrough/V1

End-entity

EndEntityClientAuthCertific
ate_CSRPassthrough/V1

arn:aws:acm-pca:::
template/EndEntity
ClientAuthCertific
ate_CSRPassthrough/V1

End-entity

EndEntityServerAuthCertific
ate_CSRPassthrough/V1

arn:aws:acm-pca:::
template/EndEntity
ServerAuthCertific
ate_CSRPassthrough/V1

End-entity

OCSPSigningCertificate_CSRP
assthrough/V1

arn:aws:acm-pca:::
template/OCSPSigni
ngCertificate_CSRP
assthrough/V1

OCSP signing

SubordinateCACertificate_Pa
thLen0_CSRPassthrough/V1

arn:aws:acm-pca:::
template/Subordina
teCACertificate_Pa
thLen0_CSRPassthrough/
V1

CA

Template varieties Version latest 308

Amazon Private Certificate Authority User Guide

Template Name Template ARN Certificate Type

SubordinateCACertificate_Pa
thLen1_CSRPassthrough/V1

arn:aws:acm-pca:::
template/Subordina
teCACertificate_Pa
thLen1_CSRPassthrough/
V1

CA

SubordinateCACertificate_Pa
thLen2_CSRPassthrough/V1

arn:aws:acm-pca:::
template/Subordina
teCACertificate_Pa
thLen2_CSRPassthrough/
V1

CA

SubordinateCACertificate_Pa
thLen3_CSRPassthrough/V1

arn:aws:acm-pca:::
template/Subordina
teCACertificate_Pa
thLen3_CSRPassthrough/
V1

CA

APIPassthrough templates

Template Name Template ARN Certificate Type

BlankEndEntityCertificate_A
PIPassthrough/V1

arn:aws:acm-pca:::
template/BlankEndE
ntityCertificate_A
PIPassthrough/V1

End-entity

BlankEndEntityCertificate_C
riticalBasicConstraints_API
Passthrough/V1

arn:aws:acm-pca:::
template/BlankEndE
ntityCertificate_C
riticalBasicConstr
aints_APIPassthrough/
V1

End-entity

Template varieties Version latest 309

Amazon Private Certificate Authority User Guide

Template Name Template ARN Certificate Type

CodeSigningCertificate_APIP
assthrough/V1

arn:aws:acm-pca:::
template/CodeSigni
ngCertificate_APIP
assthrough/V1

Code signing

EndEntityCertificate_APIPas
sthrough/V1

arn:aws:acm-pca:::
template/EndEntity
Certificate_APIPas
sthrough/V1

End-entity

EndEntityClientAuthCertific
ate_APIPassthrough/V1

arn:aws:acm-pca:::
template/EndEntity
ClientAuthCertific
ate_APIPassthrough/V1

End-entity

EndEntityServerAuthCertific
ate_APIPassthrough/V1

arn:aws:acm-pca:::
template/EndEntity
ServerAuthCertific
ate_APIPassthrough/V1

End-entity

OCSPSigningCertificate_APIP
assthrough/V1

arn:aws:acm-pca:::
template/OCSPSigni
ngCertificate_APIP
assthrough/V1

OCSP signing

RootCACertificate_APIPassth
rough/V1

arn:aws:acm-pca:::
template/RootCACer
tificate_APIPassth
rough/V1

CA

BlankRootCACertificate_APIP
assthrough/V1

arn:aws:acm-pca:::
template/BlankRoot
CACertificate_APIP
assthrough/V1

CA

Template varieties Version latest 310

Amazon Private Certificate Authority User Guide

Template Name Template ARN Certificate Type

BlankRootCACertificate_Path
Len0_APIPassthrough/V1

arn:aws:acm-pca:::
template/BlankRoot
CACertificate_Path
Len0_APIPassthrough/V1

CA

BlankRootCACertificate_Path
Len1_APIPassthrough/V1

arn:aws:acm-pca:::
template/BlankRoot
CACertificate_Path
Len1_APIPassthrough/V1

CA

BlankRootCACertificate_Path
Len2_APIPassthrough/V1

arn:aws:acm-pca:::
template/BlankRoot
CACertificate_Path
Len2_APIPassthrough/V1

CA

BlankRootCACertificate_Path
Len3_APIPassthrough/V1

arn:aws:acm-pca:::
template/BlankRoot
CACertificate_Path
Len3_APIPassthrough/V1

CA

SubordinateCACertificate_Pa
thLen0_APIPassthrough/V1

arn:aws:acm-pca:::
template/Subordina
teCACertificate_Pa
thLen0_APIPassthrough/
V1

CA

BlankSubordinateCACertifica
te_PathLen0_APIPassthrough/V1

arn:aws:acm-pca:::
template/BlankSubo
rdinateCACertifica
te_PathLen0_APIPas
sthrough/V1

CA

Template varieties Version latest 311

Amazon Private Certificate Authority User Guide

Template Name Template ARN Certificate Type

SubordinateCACertificate_Pa
thLen1_APIPassthrough/V1

arn:aws:acm-pca:::
template/Subordina
teCACertificate_Pa
thLen1_APIPassthrough/
V1

CA

BlankSubordinateCACertifica
te_PathLen1_APIPassthrough/V1

arn:aws:acm-pca:::
template/BlankSubo
rdinateCACertifica
te_PathLen1_APIPas
sthrough/V1

CA

SubordinateCACertificate_Pa
thLen2_APIPassthrough/V1

arn:aws:acm-pca:::
template/Subordina
teCACertificate_Pa
thLen2_APIPassthrough/
V1

CA

BlankSubordinateCACertifica
te_PathLen2_APIPassthrough/V1

arn:aws:acm-pca:::
template/BlankSubo
rdinateCACertifica
te_PathLen2_APIPas
sthrough/V1

CA

SubordinateCACertificate_Pa
thLen3_APIPassthrough/V1

arn:aws:acm-pca:::
template/Subordina
teCACertificate_Pa
thLen3_APIPassthrough/
V1

CA

BlankSubordinateCACertifica
te_PathLen3_APIPassthrough/V1

arn:aws:acm-pca:::
template/BlankSubo
rdinateCACertifica
te_PathLen3_APIPas
sthrough/V1

CA

Template varieties Version latest 312

Amazon Private Certificate Authority User Guide

APICSRPassthrough templates

Template Name Template ARN Certificate Type

BlankEndEntityCertificate_A
PICSRPassthrough/V1

arn:aws:acm-pca:::
template/BlankEndE
ntityCertificate_A
PICSRPassthrough/V1

End-entity

BlankEndEntityCertificate_C
riticalBasicConstraints_API
CSRPassthrough/V1

arn:aws:acm-pca:::
template/BlankEndE
ntityCertificate_C
riticalBasicConstr
aints_APICSRPassth
rough/V1

End-entity

CodeSigningCertificate_APIC
SRPassthrough/V1

arn:aws:acm-pca:::
template/CodeSigni
ngCertificate_APIC
SRPassthrough/V1

Code signing

EndEntityCertificate_APICSR
Passthrough/V1

arn:aws:acm-pca:::
template/EndEntity
Certificate_APICSR
Passthrough/V1

End-entity

EndEntityClientAuthCertific
ate_APICSRPassthrough/V1

arn:aws:acm-pca:::
template/EndEntity
ClientAuthCertific
ate_APICSRPassthrough/
V1

End-entity

EndEntityServerAuthCertific
ate_APICSRPassthrough/V1

arn:aws:acm-pca:::
template/EndEntity
ServerAuthCertific

End-entity

Template varieties Version latest 313

Amazon Private Certificate Authority User Guide

Template Name Template ARN Certificate Type

ate_APICSRPassthrough/
V1

OCSPSigningCertificate_APIC
SRPassthrough/V1

arn:aws:acm-pca:::
template/OCSPSigni
ngCertificate_APIC
SRPassthrough/V1

OCSP signing

SubordinateCACertificate_Pa
thLen0_APICSRPassthrough/V1

arn:aws:acm-pca:::
template/Subordina
teCACertificate_Pa
thLen0_APICSRPasst
hrough/V1

CA

BlankSubordinateCACertifica
te_PathLen0_APICSRPassthrou
gh/V1

arn:aws:acm-pca:::
template/BlankSubo
rdinateCACertifica
te_PathLen0_APICSR
Passthrough/V1

CA

SubordinateCACertificate_Pa
thLen1_APICSRPassthrough/V1

arn:aws:acm-pca:::
template/Subordina
teCACertificate_Pa
thLen1_APICSRPasst
hrough/V1

CA

BlankSubordinateCACertifica
te_PathLen1_APICSRPassthrou
gh/V1

arn:aws:acm-pca:::
template/BlankSubo
rdinateCACertifica
te_PathLen1_APICSR
Passthrough/V1

CA

Template varieties Version latest 314

Amazon Private Certificate Authority User Guide

Template Name Template ARN Certificate Type

SubordinateCACertificate_Pa
thLen2_APICSRPassthrough/Pa
thLen3_APIPassthroughV1

arn:aws:acm-pca:::
template/Subordina
teCACertificate_Pa
thLen2_APICSRPasst
hrough/V1

CA

BlankSubordinateCACertifica
te_PathLen2_APICSRPassthrou
gh/V1

arn:aws:acm-pca:::
template/BlankSubo
rdinateCACertifica
te_PathLen2_APICSR
Passthrough/V1

CA

SubordinateCACertificate_Pa
thLen3_APICSRPassthrough/V1

arn:aws:acm-pca:::
template/Subordina
teCACertificate_Pa
thLen3_APICSRPasst
hrough/V1

CA

BlankSubordinateCACertifica
te_PathLen3_APICSRPassthrou
gh/V1

arn:aws:acm-pca:::
template/BlankSubo
rdinateCACertifica
te_PathLen3_APICSR
Passthrough/V1

CA

Amazon Private CA template order of operations

Information contained in an issued certificate can come from four sources: the template definition,
API passthrough, CSR passthrough, and the CA configuration.

API passthrough values are only respected when you use an API passthrough or APICSR
passthrough template. CSR passthrough is only respected when you use a CSRPassthrough or
APICSR passthrough template. When these sources of information are in conflict, a general rule
usually applies: For each extension value, the template definition has highest priority, followed by
API passthrough values, followed by CSR passthrough extensions.

Template order of operations Version latest 315

Amazon Private Certificate Authority User Guide

Examples

1. The template definition for EndEntityClientAuthCertificate_APIPassthrough defines the
ExtendedKeyUsage extension with a value of "TLS web server authentication, TLS web client
authentication". If ExtendedKeyUsage is defined in the CSR or in the IssueCertificate
ApiPassthrough parameter, the ApiPassthrough value for ExtendedKeyUsage will be
ignored because the template definition takes priority, and the CSR value for ExtendedKeyUsage
value will be ignored because the template is not a CSR passthrough variety.

Note

The template definition nonetheless copies over other values from the CSR, such as
Subject and Subject Alternative Name. These values are still taken from the CSR even
though the template is not a CSR passthrough variety, because the template definition
always takes highest priority.

2. The template definition for EndEntityClientAuthCertificate_APICSRPassthrough defines the
Subject Alternative Name (SAN) extension as being copied from the API or CSR. If the SAN
extension is defined in the CSR and provided in the IssueCertificate ApiPassthrough
parameter, the API passthrough value will take priority because API passthrough values take
priority over CSR passthrough values.

Amazon Private CA template definitions

The following sections provide configuration details about supported Amazon Private CA
certificate templates.

BlankEndEntityCertificate_APIPassthrough/V1 definition

With blank end-entity certificate templates, you can issue end-entity certificates with only X.509
Basic constraints present. This is the simplest end-entity certificate that Amazon Private CA can
issue, but it can be customized using the API structure. The Basic constraints extension defines
whether or not the certificate is a CA certificate. A blank end-entity certificate template enforces a
value of FALSE for Basic constraints to ensure that an end-entity certificate is issued and not a CA
certificate.

You can use blank passthrough templates to issue smart card certificates that require specific
values for Key usage (KU) and Extended key usage (EKU). For example, Extended key usage may

Template definitions Version latest 316

Amazon Private Certificate Authority User Guide

require Client Authentication and Smart Card Logon, and Key usage may require Digital Signature,
Non Repudiation, and Key Encipherment. Unlike other passthrough templates, blank end-entity
certificate templates allow the configuration of KU and EKU extensions, where KU can be any of
the nine supported values (digitalSignature, nonRepudiation, keyEncipherment, dataEncipherment,
keyAgreement, keyCertSign, cRLSign, encipherOnly, and decipherOnly) and EKU can be any of
the supported values (serverAuth, clientAuth, codesigning, emailProtection, timestamping, and
OCSPSigning) plus custom extensions.

BlankEndEntityCertificate_APIPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from API or CSR]

Subject [Passthrough from API or CSR]

Basic constraints CA:FALSE

Authority key identifier [SKI from CA certificate]

Subject key identifier [Derived from CSR]

CRL distribution points* [Passthrough from CA configuration]

* CRL distribution points are included in the template only if the CA is configured with CRL
generation enabled.

BlankEndEntityCertificate_APICSRPassthrough/V1 definition

For general information about blank templates, see BlankEndEntityCertificate_APIPassthrough/V1
definition.

BlankEndEntityCertificate_APICSRPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from API or CSR]

Subject [Passthrough from API or CSR]

Basic constraints CA:FALSE

Template definitions Version latest 317

Amazon Private Certificate Authority User Guide

X509v3 Parameter Value

Authority key identifier [SKI from CA certificate]

Subject key identifier [Derived from CSR]

CRL distribution points* [Passthrough from CA configuration or CSR]

* CRL distribution points are included in the template only if the CA is configured with CRL
generation enabled.

BlankEndEntityCertificate_CriticalBasicConstraints_APICSRPassthrough/V1
definition

For general information about blank templates, see BlankEndEntityCertificate_APIPassthrough/V1
definition.

BlankEndEntityCertificate_CriticalBasicConstraints_APICSRPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from API or CSR]

Subject [Passthrough from API or CSR]

Basic constraints Critical, CA:FALSE

Authority key identifier [SKI from CA certificate]

Subject key identifier [Derived from CSR]

CRL distribution points* [Passthrough from CA configuration, API, or
CSR]

* CRL distribution points are included in the template only if the CA is configured with CRL
generation enabled.

Template definitions Version latest 318

Amazon Private Certificate Authority User Guide

BlankEndEntityCertificate_CriticalBasicConstraints_APIPassthrough/V1 definition

For general information about blank templates, see BlankEndEntityCertificate_APIPassthrough/V1
definition.

BlankEndEntityCertificate_CriticalBasicConstraints_APIPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from API or CSR]

Subject [Passthrough from API or CSR]

Basic constraints Critical, CA:FALSE

Authority key identifier [SKI from CA certificate]

Subject key identifier [Derived from CSR]

CRL distribution points* [Passthrough from CA configuration or API]

* CRL distribution points are included in the template only if the CA is configured with CRL
generation enabled.

BlankEndEntityCertificate_CriticalBasicConstraints_CSRPassthrough/V1 definition

For general information about blank templates, see BlankEndEntityCertificate_APIPassthrough/V1
definition.

BlankEndEntityCertificate_CriticalBasicConstraints_CSRPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from API or CSR]

Subject [Passthrough from API or CSR]

Basic constraints Critical, CA:FALSE

Authority key identifier [SKI from CA certificate]

Subject key identifier [Derived from CSR]

Template definitions Version latest 319

Amazon Private Certificate Authority User Guide

X509v3 Parameter Value

CRL distribution points* [Passthrough from CA configuration or CSR]

* CRL distribution points are included in the template only if the CA is configured with CRL
generation enabled.

BlankEndEntityCertificate_CSRPassthrough/V1 definition

For general information about blank templates, see BlankEndEntityCertificate_APIPassthrough/V1
definition.

BlankEndEntityCertificate_CSRPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from CSR]

Subject [Passthrough from CSR]

Basic constraints CA:FALSE

Authority key identifier [SKI from CA certificate]

Subject key identifier [Derived from CSR]

CRL distribution points* [Passthrough from CA configuration or CSR]

* CRL distribution points are included in the template only if the CA is configured with CRL
generation enabled.

BlankSubordinateCACertificate_PathLen0_CSRPassthrough/V1 definition

For general information about blank templates, see BlankEndEntityCertificate_APIPassthrough/V1
definition.

Template definitions Version latest 320

Amazon Private Certificate Authority User Guide

BlankSubordinateCACertificate_PathLen0_CSRPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from CSR]

Subject [Passthrough from CSR]

Basic constraints Critical, CA:TRUE, pathlen: 0

Authority key identifier [SKI from CA Certificate]

Subject key identifier [Derived from CSR]

CRL distribution points* [Passthrough from CA configuration or CSR]

* CRL distribution points are included in the template only if the CA is configured with CRL
generation enabled.

BlankSubordinateCACertificate_PathLen0_APICSRPassthrough/V1 definition

For general information about blank templates, see BlankEndEntityCertificate_APIPassthrough/V1
definition.

BlankSubordinateCACertificate_PathLen0_APICSRPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from API or CSR]

Subject [Passthrough from API or CSR]

Basic constraints Critical, CA:TRUE, pathlen: 0

Authority key identifier [SKI from CA Certificate]

Subject key identifier [Derived from CSR]

CRL distribution points* [Passthrough from CA configuration or CSR]

Template definitions Version latest 321

Amazon Private Certificate Authority User Guide

* CRL distribution points are included in the template only if the CA is configured with CRL
generation enabled.

BlankSubordinateCACertificate_PathLen0_APIPassthrough/V1 definition

For general information about blank templates, see BlankEndEntityCertificate_APIPassthrough/V1
definition.

BlankSubordinateCACertificate_PathLen0_APIPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from API or CSR]

Subject [Passthrough from API or CSR]

Basic constraints Critical, CA:TRUE, pathlen: 0

Authority key identifier [SKI from CA Certificate]

Subject key identifier [Derived from CSR]

CRL distribution points* [Passthrough from CA configuration]

BlankSubordinateCACertificate_PathLen1_APIPassthrough/V1 definition

For general information about blank templates, see BlankEndEntityCertificate_APIPassthrough/V1
definition.

BlankSubordinateCACertificate_PathLen1_APIPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from API or CSR]

Subject [Passthrough from API or CSR]

Basic constraints Critical, CA:TRUE, pathlen: 1

Authority key identifier [SKI from CA Certificate]

Subject key identifier [Derived from CSR]

Template definitions Version latest 322

Amazon Private Certificate Authority User Guide

X509v3 Parameter Value

CRL distribution points* [Passthrough from CA configuration]

* CRL distribution points are included in the template only if the CA is configured with CRL
generation enabled.

BlankSubordinateCACertificate_PathLen1_CSRPassthrough/V1 definition

For general information about blank templates, see BlankEndEntityCertificate_APIPassthrough/V1
definition.

BlankSubordinateCACertificate_PathLen1_CSRPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from CSR]

Subject [Passthrough from CSR]

Basic constraints Critical, CA:TRUE, pathlen: 1

Authority key identifier [SKI from CA Certificate]

Subject key identifier [Derived from CSR]

CRL distribution points* [Passthrough from CA configuration or CSR]

* CRL distribution points are included in the template only if the CA is configured with CRL
generation enabled.

BlankSubordinateCACertificate_PathLen1_APICSRPassthrough/V1 definition

For general information about blank templates, see BlankEndEntityCertificate_APIPassthrough/V1
definition.

Template definitions Version latest 323

Amazon Private Certificate Authority User Guide

BlankSubordinateCACertificate_PathLen1_APICSRPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from API or CSR]

Subject [Passthrough from API or CSR]

Basic constraints Critical, CA:TRUE, pathlen: 1

Authority key identifier [SKI from CA Certificate]

Subject key identifier [Derived from CSR]

CRL distribution points* [Passthrough from CA configuration or CSR]

* CRL distribution points are included in the template only if the CA is configured with CRL
generation enabled.

BlankSubordinateCACertificate_PathLen2_APIPassthrough/V1 definition

For general information about blank templates, see BlankEndEntityCertificate_APIPassthrough/V1
definition.

BlankSubordinateCACertificate_PathLen2_APIPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from API or CSR]

Subject [Passthrough from API or CSR]

Basic constraints Critical, CA:TRUE, pathlen: 2

Authority key identifier [SKI from CA Certificate]

Subject key identifier [Derived from CSR]

CRL distribution points* [Passthrough from CA configuration]

Template definitions Version latest 324

Amazon Private Certificate Authority User Guide

* CRL distribution points are included in the template only if the CA is configured with CRL
generation enabled.

BlankSubordinateCACertificate_PathLen2_CSRPassthrough/V1 definition

For general information about blank templates, see BlankEndEntityCertificate_APIPassthrough/V1
definition.

BlankSubordinateCACertificate_PathLen2_CSRPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from CSR]

Subject [Passthrough from CSR]

Basic constraints Critical, CA:TRUE, pathlen: 2

Authority key identifier [SKI from CA Certificate]

Subject key identifier [Derived from CSR]

CRL distribution points* [Passthrough from CA configuration or CSR]

* CRL distribution points are included in the template only if the CA is configured with CRL
generation enabled.

BlankSubordinateCACertificate_PathLen2_APICSRPassthrough/V1 definition

For general information about blank templates, see BlankEndEntityCertificate_APIPassthrough/V1
definition.

BlankSubordinateCACertificate_PathLen2_APICSRPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from API or CSR]

Subject [Passthrough from API or CSR]

Basic constraints Critical, CA:TRUE, pathlen: 2

Template definitions Version latest 325

Amazon Private Certificate Authority User Guide

X509v3 Parameter Value

Authority key identifier [SKI from CA Certificate]

Subject key identifier [Derived from CSR]

CRL distribution points* [Passthrough from CA configuration or CSR]

* CRL distribution points are included in the template only if the CA is configured with CRL
generation enabled.

BlankSubordinateCACertificate_PathLen3_APIPassthrough/V1 definition

For general information about blank templates, see BlankEndEntityCertificate_APIPassthrough/V1
definition.

BlankSubordinateCACertificate_PathLen3_APIPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from API or CSR]

Subject [Passthrough from API or CSR]

Basic constraints Critical, CA:TRUE, pathlen: 3

Authority key identifier [SKI from CA Certificate]

Subject key identifier [Derived from CSR]

CRL distribution points* [Passthrough from CA configuration]

* CRL distribution points are included in the template only if the CA is configured with CRL
generation enabled.

BlankSubordinateCACertificate_PathLen3_CSRPassthrough/V1 definition

For general information about blank templates, see BlankEndEntityCertificate_APIPassthrough/V1
definition.

Template definitions Version latest 326

Amazon Private Certificate Authority User Guide

BlankSubordinateCACertificate_PathLen3_CSRPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from CSR]

Subject [Passthrough from CSR]

Basic constraints Critical, CA:TRUE, pathlen: 3

Authority key identifier [SKI from CA Certificate]

Subject key identifier [Derived from CSR]

CRL distribution points* [Passthrough from CA configuration or CSR]

* CRL distribution points are included in the template only if the CA is configured with CRL
generation enabled.

BlankSubordinateCACertificate_PathLen3_APICSRPassthrough/V1 definition

For general information about blank templates, see BlankEndEntityCertificate_APIPassthrough/V1
definition.

BlankSubordinateCACertificate_PathLen3_APICSRPassthrough

X509v3 Parameter Value

Subject alternative name [Passthrough from API or CSR]

Subject [Passthrough from API or CSR]

Basic constraints Critical, CA:TRUE, pathlen: 3

Authority key identifier [SKI from CA Certificate]

Subject key identifier [Derived from CSR]

CRL distribution points* [Passthrough from CA configuration or CSR]

Template definitions Version latest 327

Amazon Private Certificate Authority User Guide

* CRL distribution points are included in the template only if the CA is configured with CRL
generation enabled.

CodeSigningCertificate/V1 definition

This template is used to create certificates for code signing. You can use code-signing
certificates from Amazon Private CA with any code-signing solution that is based on a private CA
infrastructure. For example, customers using Code Signing for Amazon IoT can generate a code-
signing certificate with Amazon Private CA and import it to Amazon Certificate Manager. For more
information, see What Is Code Signing for Amazon IoT? and Obtain and Import a Code Signing
Certificate.

CodeSigningCertificate/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from CSR]

Subject [Passthrough from CSR]

Basic constraints CA:FALSE

Authority key identifier [SKI from CA Certificate]

Subject key identifier [Derived from CSR]

Key usage Critical, digital signature

Extended key usage Critical, code signing

CRL distribution points* [Passthrough from CA configuration]

*CRL distribution points are included in the template only if the CA is configured with CRL
generation enabled.

CodeSigningCertificate_APICSRPassthrough/V1 definition

This template extends CodeSigningCertificate/V1 to support API and CSR passthrough values.

Template definitions Version latest 328

https://docs.aws.amazon.com/signer/latest/developerguide/Welcome.html
https://docs.amazonaws.cn/signer/latest/developerguide/obtain-cert.html
https://docs.amazonaws.cn/signer/latest/developerguide/obtain-cert.html

Amazon Private Certificate Authority User Guide

CodeSigningCertificate_APICSRPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from API or CSR]

Subject [Passthrough from API or CSR]

Basic constraints CA:FALSE

Authority key identifier [SKI from CA Certificate]

Subject key identifier [Derived from CSR]

Key usage Critical, digital signature

Extended key usage Critical, code signing

CRL distribution points* [Passthrough from CA configuration or CSR]

* CRL distribution points are included in the template only if the CA is configured with CRL
generation enabled.

CodeSigningCertificate_APIPassthrough/V1 definition

This template is identical to the CodeSigningCertificate template with one difference: In this
template, Amazon Private CA passes additional extensions through the API to the certificate if the
extensions are not specified in the template. Extensions specified in the template always override
extensions in the API.

CodeSigningCertificate_APIPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from API or CSR]

Subject [Passthrough from API or CSR]

Basic constraints CA:FALSE

Authority key identifier [SKI from CA Certificate]

Template definitions Version latest 329

Amazon Private Certificate Authority User Guide

X509v3 Parameter Value

Subject key identifier [Derived from CSR]

Key usage Critical, digital signature

Extended key usage Critical, code signing

CRL distribution points* [Passthrough from CA configuration]

* CRL distribution points are included in the template only if the CA is configured with CRL
generation enabled.

CodeSigningCertificate_CSRPassthrough/V1 definition

This template is identical to the CodeSigningCertificate template with one difference: In this
template, Amazon Private CA passes additional extensions from the certificate signing request
(CSR) into the certificate if the extensions are not specified in the template. Extensions specified in
the template always override extensions in the CSR.

CodeSigningCertificate_CSRPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from CSR]

Subject [Passthrough from CSR]

Basic constraints CA:FALSE

Authority key identifier [SKI from CA Certificate]

Subject key identifier [Derived from CSR]

Key usage Critical, digital signature

Extended key usage Critical, code signing

CRL distribution points* [Passthrough from CA configuration or CSR]

Template definitions Version latest 330

Amazon Private Certificate Authority User Guide

*CRL distribution points are included in the template only if the CA is configured with CRL
generation enabled.

EndEntityCertificate/V1 definition

This template is used to create certificates for end entities such as operating systems or web
servers.

EndEntityCertificate/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from CSR]

Subject [Passthrough from CSR]

Basic constraints CA:FALSE

Authority key identifier [SKI from CA certificate]

Subject key identifier [Derived from CSR]

Key usage Critical, digital signature, key encipherment

Extended key usage TLS web server authentication, TLS web client
authentication

CRL distribution points* [Passthrough from CA configuration]

*CRL distribution points are included in the template only if the CA is configured with CRL
generation enabled.

EndEntityCertificate_APICSRPassthrough/V1 definition

This template extends EndEntityCertificate/V1 to support API and CSR passthrough values.

EndEntityCertificate_APICSRPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from API or CSR]

Template definitions Version latest 331

Amazon Private Certificate Authority User Guide

X509v3 Parameter Value

Subject [Passthrough from API or CSR]

Basic constraints CA:FALSE

Authority key identifier [SKI from CA certificate]

Subject key identifier [Derived from CSR]

Key usage Critical, digital signature, key encipherment

Extended key usage TLS web server authentication, TLS web client
authentication

CRL distribution points* [Passthrough from CA configuration or CSR]

* CRL distribution points are included in the template only if the CA is configured with CRL
generation enabled.

EndEntityCertificate_APIPassthrough/V1 definition

This template is identical to the EndEntityCertificate template with one difference: In this
template, Amazon Private CA passes additional extensions through the API to the certificate if the
extensions are not specified in the template. Extensions specified in the template always override
extensions in the API.

EndEntityCertificate_APIPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from API or CSR]

Subject [Passthrough from API or CSR]

Basic constraints CA:FALSE

Authority key identifier [SKI from CA certificate]

Subject key identifier [Derived from CSR]

Template definitions Version latest 332

Amazon Private Certificate Authority User Guide

X509v3 Parameter Value

Key usage Critical, digital signature, key encipherment

Extended key usage TLS web server authentication, TLS web client
authentication

CRL distribution points* [Passthrough from CA configuration]

* CRL distribution points are included in the template only if the CA is configured with CRL
generation enabled.

EndEntityCertificate_CSRPassthrough/V1 definition

This template is identical to the EndEntityCertificate template with one difference: In this
template, Amazon Private CA passes additional extensions from the certificate signing request
(CSR) into the certificate if the extensions are not specified in the template. Extensions specified in
the template always override extensions in the CSR.

EndEntityCertificate_CSRPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from CSR]

Subject [Passthrough from CSR]

Basic constraints CA:FALSE

Authority key identifier [SKI from CA certificate]

Subject key identifier [Derived from CSR]

Key usage Critical, digital signature, key encipherment

Extended key usage TLS web server authentication, TLS web client
authentication

CRL distribution points* [Passthrough from CA configuration or CSR]

Template definitions Version latest 333

Amazon Private Certificate Authority User Guide

*CRL distribution points are included in the template only if the CA is configured with CRL
generation enabled.

EndEntityClientAuthCertificate/V1 definition

This template differs from the EndEntityCertificate only in the Extended key usage value,
which restricts it to TLS web client authentication.

EndEntityClientAuthCertificate/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from CSR]

Subject [Passthrough from CSR]

Basic constraints CA:FALSE

Authority key identifier [SKI from CA certificate]

Subject key identifier [Derived from CSR]

Key usage Critical, digital signature, key encipherment

Extended key usage TLS web client authentication

CRL distribution points* [Passthrough from CA configuration or CSR]

*CRL distribution points are included in the template only if the CA is configured with CRL
generation enabled.

EndEntityClientAuthCertificate_APICSRPassthrough/V1 definition

This template extends EndEntityClientAuthCertificate/V1 to support API and CSR passthrough
values.

EndEntityClientAuthCertificate_APICSRPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from API or CSR]

Template definitions Version latest 334

Amazon Private Certificate Authority User Guide

X509v3 Parameter Value

Subject [Passthrough from API or CSR]

Basic constraints CA:FALSE

Authority key identifier [SKI from CA certificate]

Subject key identifier [Derived from CSR]

Key usage Critical, digital signature, key encipherment

Extended key usage TLS web client authentication

CRL distribution points* [Passthrough from CA configuration or CSR]

* CRL distribution points are included in the template only if the CA is configured with CRL
generation enabled.

EndEntityClientAuthCertificate_APIPassthrough/V1 definition

This template is identical to the EndEntityClientAuthCertificate template with one
difference. In this template, Amazon Private CA passes additional extensions through the API
into the certificate if the extensions are not specified in the template. Extensions specified in the
template always override extensions in the API.

EndEntityClientAuthCertificate_APIPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from API or CSR]

Subject [Passthrough from API or CSR]

Basic constraints CA:FALSE

Authority key identifier [SKI from CA certificate]

Subject key identifier [Derived from CSR]

Key usage Critical, digital signature, key encipherment

Template definitions Version latest 335

Amazon Private Certificate Authority User Guide

X509v3 Parameter Value

Extended key usage TLS web client authentication

CRL distribution points* [Passthrough from CA configuration]

* CRL distribution points are included in the template only if the CA is configured with CRL
generation enabled.

EndEntityClientAuthCertificate_CSRPassthrough/V1 definition

This template is identical to the EndEntityClientAuthCertificate template with one
difference. In this template, Amazon Private CA passes additional extensions from the certificate
signing request (CSR) into the certificate if the extensions are not specified in the template.
Extensions specified in the template always override extensions in the CSR.

EndEntityClientAuthCertificate_CSRPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from CSR]

Subject [Passthrough from CSR]

Basic constraints CA:FALSE

Authority key identifier [SKI from CA certificate]

Subject key identifier [Derived from CSR]

Key usage Critical, digital signature, key encipherment

Extended key usage TLS web client authentication

CRL distribution points* [Passthrough from CA configuration or CSR]

*CRL distribution points are included in the template only if the CA is configured with CRL
generation enabled.

Template definitions Version latest 336

Amazon Private Certificate Authority User Guide

EndEntityServerAuthCertificate/V1 definition

This template differs from the EndEntityCertificate only in the Extended key usage value,
which restricts it to TLS web server authentication.

EndEntityServerAuthCertificate/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from CSR]

Subject [Passthrough from CSR]

Basic constraints CA:FALSE

Authority key identifier [SKI from CA certificate]

Subject key identifier [Derived from CSR]

Key usage Critical, digital signature, key encipherment

Extended key usage TLS web server authentication

CRL distribution points* [Passthrough from CA configuration]

*CRL distribution points are included in the template only if the CA is configured with CRL
generation enabled.

EndEntityServerAuthCertificate_APICSRPassthrough/V1 definition

This template extends EndEntityServerAuthCertificate/V1 to support API and CSR passthrough
values.

EndEntityServerAuthCertificate_APICSRPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from API or CSR]

Subject [Passthrough from API or CSR]

Basic constraints CA:FALSE

Template definitions Version latest 337

Amazon Private Certificate Authority User Guide

X509v3 Parameter Value

Authority key identifier [SKI from CA certificate]

Subject key identifier [Derived from CSR]

Key usage Critical, digital signature, key encipherment

Extended key usage TLS web server authentication

CRL distribution points* [Passthrough from CA configuration or CSR]

* CRL distribution points are included in the template only if the CA is configured with CRL
generation enabled.

EndEntityServerAuthCertificate_APIPassthrough/V1 definition

This template is identical to the EndEntityServerAuthCertificate template with one
difference. In this template, Amazon Private CA passes additional extensions through the API
into the certificate if the extensions are not specified in the template. Extensions specified in the
template always override extensions in the API.

EndEntityServerAuthCertificate_APIPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from API or CSR]

Subject [Passthrough from API or CSR]

Basic constraints CA:FALSE

Authority key identifier [SKI from CA certificate]

Subject key identifier [Derived from CSR]

Key usage Critical, digital signature, key encipherment

Extended key usage TLS web server authentication

CRL distribution points* [Passthrough from CA configuration]

Template definitions Version latest 338

Amazon Private Certificate Authority User Guide

* CRL distribution points are included in the template only if the CA is configured with CRL
generation enabled.

EndEntityServerAuthCertificate_CSRPassthrough/V1 definition

This template is identical to the EndEntityServerAuthCertificate template with one
difference. In this template, Amazon Private CA passes additional extensions from the certificate
signing request (CSR) into the certificate if the extensions are not specified in the template.
Extensions specified in the template always override extensions in the CSR.

EndEntityServerAuthCertificate_CSRPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from CSR]

Subject [Passthrough from CSR]

Basic constraints CA:FALSE

Authority key identifier [SKI from CA certificate]

Subject key identifier [Derived from CSR]

Key usage Critical, digital signature, key encipherment

Extended key usage TLS web server authentication

CRL distribution points* [Passthrough from CA configuration or CSR]

*CRL distribution points are included in the template only if the CA is configured with CRL
generation enabled.

OCSPSigningCertificate/V1 definition

This template is used to create certificates for signing OCSP responses. The template is identical
to the CodeSigningCertificate template, except that the Extended key usage value specifies
OCSP signing instead of code signing.

Template definitions Version latest 339

Amazon Private Certificate Authority User Guide

OCSPSigningCertificate/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from CSR]

Subject [Passthrough from CSR]

Basic constraints CA:FALSE

Authority key identifier [SKI from CA certificate]

Subject key identifier [Derived from CSR]

Key usage Critical, digital signature

Extended key usage Critical, OCSP signing

CRL distribution points* [Passthrough from CA configuration]

*CRL distribution points are included in the template only if the CA is configured with CRL
generation enabled.

OCSPSigningCertificate_APICSRPassthrough/V1 definition

This template extends the OCSPSigningCertificate/V1 to support API and CSR passthrough values.

OCSPSigningCertificate_APICSRPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from API or CSR]

Subject [Passthrough from API or CSR]

Basic constraints CA:FALSE

Authority key identifier [SKI from CA certificate]

Subject key identifier [Derived from CSR]

Key usage Critical, digital signature

Template definitions Version latest 340

Amazon Private Certificate Authority User Guide

X509v3 Parameter Value

Extended key usage Critical, OCSP signing

CRL distribution points* [Passthrough from CA configuration or CSR]

* CRL distribution points are included in the template only if the CA is configured with CRL
generation enabled.

OCSPSigningCertificate_APIPassthrough/V1 definition

This template is identical to the OCSPSigningCertificate template with one difference. In
this template, Amazon Private CA passes additional extensions through the API into the certificate
if the extensions are not specified in the template. Extensions specified in the template always
override extensions in the API.

OCSPSigningCertificate_APIPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from API or CSR]

Subject [Passthrough from API or CSR]

Basic constraints CA:FALSE

Authority key identifier [SKI from CA certificate]

Subject key identifier [Derived from CSR]

Key usage Critical, digital signature

Extended key usage Critical, OCSP signing

CRL distribution points* [Passthrough from CA configuration]

* CRL distribution points are included in the template only if the CA is configured with CRL
generation enabled.

Template definitions Version latest 341

Amazon Private Certificate Authority User Guide

OCSPSigningCertificate_CSRPassthrough/V1 definition

This template is identical to the OCSPSigningCertificate template with one difference. In this
template, Amazon Private CA passes additional extensions from the certificate signing request
(CSR) into the certificate if the extensions are not specified in the template. Extensions specified in
the template always override extensions in the CSR.

OCSPSigningCertificate_CSRPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from CSR]

Subject [Passthrough from CSR]

Basic constraints CA:FALSE

Authority key identifier [SKI from CA certificate]

Subject key identifier [Derived from CSR]

Key usage Critical, digital signature

Extended key usage Critical, OCSP signing

CRL distribution points* [Passthrough from CA configuration or CSR]

*CRL distribution points are included in the template only if the CA is configured with CRL
generation enabled.

RootCACertificate/V1 definition

This template is used to issue self-signed root CA certificates. CA certificates include a critical basic
constraints extension with the CA field set to TRUE to designate that the certificate can be used
to issue CA certificates. The template does not specify a path length (pathLenConstraint) because
this could inhibit future expansion of the hierarchy. Extended key usage is excluded to prevent use
of the CA certificate as a TLS client or server certificate. No CRL information is specified because a
self-signed certificate cannot be revoked.

Template definitions Version latest 342

Amazon Private Certificate Authority User Guide

RootCACertificate/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from CSR]

Subject [Passthrough from CSR]

Basic constraints Critical, CA:TRUE

Subject key identifier [Derived from CSR]

Key usage Critical, digital signature, keyCertSign, CRL
sign

CRL distribution points N/A

RootCACertificate_APIPassthrough/V1 definition

This template extends RootCACertificate/V1 to support API passthrough values.

RootCACertificate_APIPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from API or CSR]

Subject [Passthrough from API or CSR]

Basic constraints Critical, CA:TRUE

Authority key identifier [Passthrough from API]

Subject key identifier [Derived from CSR]

Key usage Critical, digital signature, keyCertSign, CRL
sign

CRL distribution points* N/A

Template definitions Version latest 343

Amazon Private Certificate Authority User Guide

BlankRootCACertificate_APIPassthrough/V1 definition

With blank root certificate templates, you can issue root certificates with only X.509 basic
constraints present. This is the simplest root certificate that Amazon Private CA can issue, but it can
be customized using the API structure. The basic constraints extension defines whether or not the
certificate is a CA certificate. A blank root certificate template enforces a value of TRUE for basic
constraints to ensure that a root CA certificate is issued.

You can use blank passthrough root templates to issue root certificates that require specific
values for key usage (KU). For example, key usage might require keyCertSign and cRLSign,
but not digitalSignature. Unlike the other non-blank root passthrough certificate template,
blank root certificate templates allow the configuration of the KU extension, where KU can be
any of the nine supported values (digitalSignature, nonRepudiation, keyEncipherment,
dataEncipherment, keyAgreement, keyCertSign, cRLSign, encipherOnly, and
decipherOnly).

BlankRootCACertificate_APIPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from API or CSR]

Subject [Passthrough from API or CSR]

Basic constraints Critical, CA:TRUE

Subject key identifier [Derived from CSR]

BlankRootCACertificate_PathLen0_APIPassthrough/V1 definition

For general information about blank root CA templates, see ???.

BlankRootCACertificate_PathLen0_APIPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from API or CSR]

Subject [Passthrough from API or CSR]

Basic constraints Critical, CA:TRUE, pathlen: 0

Template definitions Version latest 344

Amazon Private Certificate Authority User Guide

X509v3 Parameter Value

Subject key identifier [Derived from CSR]

BlankRootCACertificate_PathLen1_APIPassthrough/V1 definition

For general information about blank root CA templates, see ???.

BlankRootCACertificate_PathLen1_APIPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from API or CSR]

Subject [Passthrough from API or CSR]

Basic constraints Critical, CA:TRUE, pathlen: 1

Subject key identifier [Derived from CSR]

BlankRootCACertificate_PathLen2_APIPassthrough/V1 definition

For general information about blank root CA templates, see ???.

BlankRootCACertificate_PathLen2_APIPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from API or CSR]

Subject [Passthrough from API or CSR]

Basic constraints Critical, CA:TRUE, pathlen: 2

Subject key identifier [Derived from CSR]

BlankRootCACertificate_PathLen3_APIPassthrough/V1 definition

For general information about blank root CA templates, see ???.

Template definitions Version latest 345

Amazon Private Certificate Authority User Guide

BlankRootCACertificate_PathLen3_APIPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from API or CSR]

Subject [Passthrough from API or CSR]

Basic constraints Critical, CA:TRUE, pathlen: 3

Subject key identifier [Derived from CSR]

SubordinateCACertificate_PathLen0/V1 definition

This template is used to issue subordinate CA certificates with a path length of 0. CA certificates
include a critical basic constraints extension with the CA field set to TRUE to designate that the
certificate can be used to issue CA certificates. Extended key usage is not included, which prevents
the CA certificate from being used as a TLS client or server certificate.

For more information about certification paths, see Setting Length Constraints on the Certification
Path.

SubordinateCACertificate_PathLen0/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from CSR]

Subject [Passthrough from CSR]

Basic constraints Critical, CA:TRUE, pathlen: 0

Authority key identifier [SKI from CA Certificate]

Subject key identifier [Derived from CSR]

Key usage Critical, digital signature, keyCertSign , CRL
sign

CRL distribution points* [Passthrough from CA configuration]

Template definitions Version latest 346

https://docs.amazonaws.cn/privateca/latest/userguide/ca-hierarchy.html#length-constraints
https://docs.amazonaws.cn/privateca/latest/userguide/ca-hierarchy.html#length-constraints

Amazon Private Certificate Authority User Guide

*CRL distribution points are included in certificates that are issued with this template only if the CA
is configured with CRL generation enabled.

SubordinateCACertificate_PathLen0_APICSRPassthrough/V1 definition

This template extends SubordinateCACertificate_PathLen0/V1 to support API and CSR
passthrough values.

SubordinateCACertificate_PathLen0_APICSRPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from API or CSR]

Subject [Passthrough from API or CSR]

Basic constraints Critical, CA:TRUE, pathlen: 0

Authority key identifier [SKI from CA Certificate]

Subject key identifier [Derived from CSR]

Key usage Critical, digital signature, keyCertSign , CRL
sign

CRL distribution points* [Passthrough from CA configuration or CSR]

* CRL distribution points are included in the template only if the CA is configured with CRL
generation enabled.

SubordinateCACertificate_PathLen0_APIPassthrough/V1 definition

This template extends SubordinateCACertificate_PathLen0/V1 to support API passthrough values.

SubordinateCACertificate_PathLen0_APIPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from API or CSR]

Subject [Passthrough from API or CSR]

Template definitions Version latest 347

Amazon Private Certificate Authority User Guide

X509v3 Parameter Value

Basic constraints Critical, CA:TRUE, pathlen: 0

Authority key identifier [SKI from CA Certificate]

Subject key identifier [Derived from CSR]

Key usage Critical, digital signature, keyCertSign , CRL
sign

CRL distribution points* [Passthrough from CA configuration]

* CRL distribution points are included in the template only if the CA is configured with CRL
generation enabled.

SubordinateCACertificate_PathLen0_CSRPassthrough/V1 definition

This template is identical to the SubordinateCACertificate_PathLen0 template with one
difference: In this template, Amazon Private CA passes additional extensions from the certificate
signing request (CSR) into the certificate if the extensions are not specified in the template.
Extensions specified in the template always override extensions in the CSR.

Note

A CSR that contains custom additional extensions must be created outside of Amazon
Private CA.

SubordinateCACertificate_PathLen0_CSRPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from CSR]

Subject [Passthrough from CSR]

Basic constraints Critical, CA:TRUE, pathlen: 0

Authority key identifier [SKI from CA Certificate]

Template definitions Version latest 348

Amazon Private Certificate Authority User Guide

X509v3 Parameter Value

Subject key identifier [Derived from CSR]

Key usage Critical, digital signature, keyCertSign , CRL
sign

CRL distribution points* [Passthrough from CA configuration or CSR]

*CRL distribution points are included in certificates issued with this template only if the CA is
configured with CRL generation enabled.

SubordinateCACertificate_PathLen1/V1 definition

This template is used to issue subordinate CA certificates with a path length of 1. CA certificates
include a critical Basic constraints extension with the CA field set to TRUE to designate that the
certificate can be used to issue CA certificates. Extended key usage is not included, which prevents
the CA certificate from being used as a TLS client or server certificate.

For more information about certification paths, see Setting Length Constraints on the Certification
Path.

SubordinateCACertificate_PathLen1/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from CSR]

Subject [Passthrough from CSR]

Basic constraints Critical, CA:TRUE, pathlen: 1

Authority key identifier [SKI from CA Certificate]

Subject key identifier [Derived from CSR]

Key usage Critical, digital signature, keyCertSign , CRL
sign

CRL distribution points* [Passthrough from CA configuration]

Template definitions Version latest 349

https://docs.amazonaws.cn/privateca/latest/userguide/ca-hierarchy.html#length-constraints
https://docs.amazonaws.cn/privateca/latest/userguide/ca-hierarchy.html#length-constraints

Amazon Private Certificate Authority User Guide

*CRL distribution points are included in certificates issued with this template only if the CA is
configured with CRL generation enabled.

SubordinateCACertificate_PathLen1_APICSRPassthrough/V1 definition

This template extends SubordinateCACertificate_PathLen1/V1 to support API and CSR
passthrough values.

SubordinateCACertificate_PathLen1_APICSRPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from API or CSR]

Subject [Passthrough from API or CSR]

Basic constraints Critical, CA:TRUE, pathlen: 1

Authority key identifier [SKI from CA Certificate]

Subject key identifier [Derived from CSR]

Key usage Critical, digital signature, keyCertSign , CRL
sign

CRL distribution points* [Passthrough from CA configuration or CSR]

* CRL distribution points are included in the template only if the CA is configured with CRL
generation enabled.

SubordinateCACertificate_PathLen1_APIPassthrough/V1 definition

This template extends SubordinateCACertificate_PathLen0/V1 to support API passthrough values.

SubordinateCACertificate_PathLen1_APIPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from API or CSR]

Subject [Passthrough from API or CSR]

Template definitions Version latest 350

Amazon Private Certificate Authority User Guide

X509v3 Parameter Value

Basic constraints Critical, CA:TRUE, pathlen: 1

Authority key identifier [SKI from CA Certificate]

Subject key identifier [Derived from CSR]

Key usage Critical, digital signature, keyCertSign , CRL
sign

CRL distribution points* [Passthrough from CA configuration]

* CRL distribution points are included in the template only if the CA is configured with CRL
generation enabled.

SubordinateCACertificate_PathLen1_CSRPassthrough/V1 definition

This template is identical to the SubordinateCACertificate_PathLen1 template with one
difference: In this template, Amazon Private CA passes additional extensions from the certificate
signing request (CSR) into the certificate if the extensions are not specified in the template.
Extensions specified in the template always override extensions in the CSR.

Note

A CSR that contains custom additional extensions must be created outside of Amazon
Private CA.

SubordinateCACertificate_PathLen1_CSRPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from CSR]

Subject [Passthrough from CSR]

Basic constraints Critical, CA:TRUE, pathlen: 1

Authority key identifier [SKI from CA Certificate]

Template definitions Version latest 351

Amazon Private Certificate Authority User Guide

X509v3 Parameter Value

Subject key identifier [Derived from CSR]

Key usage Critical, digital signature, keyCertSign , CRL
sign

CRL distribution points* [Passthrough from CA configuration or CSR]

*CRL distribution points are included in certificates issued with this template only if the CA is
configured with CRL generation enabled.

SubordinateCACertificate_PathLen2/V1 definition

This template is used to issue subordinate CA certificates with a path length of 2. CA certificates
include a critical Basic constraints extension with the CA field set to TRUE to designate that the
certificate can be used to issue CA certificates. Extended key usage is not included, which prevents
the CA certificate from being used as a TLS client or server certificate.

For more information about certification paths, see Setting Length Constraints on the Certification
Path.

SubordinateCACertificate_PathLen2/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from CSR]

Subject [Passthrough from CSR]

Basic constraints Critical, CA:TRUE, pathlen: 2

Authority key identifier [SKI from CA Certificate]

Subject key identifier [Derived from CSR]

Key usage Critical, digital signature, keyCertSign , CRL
sign

CRL distribution points* [Passthrough from CA configuration]

Template definitions Version latest 352

https://docs.amazonaws.cn/privateca/latest/userguide/ca-hierarchy.html#length-constraints
https://docs.amazonaws.cn/privateca/latest/userguide/ca-hierarchy.html#length-constraints

Amazon Private Certificate Authority User Guide

*CRL distribution points are included in certificates issued with this template only if the CA is
configured with CRL generation enabled.

SubordinateCACertificate_PathLen2_APICSRPassthrough/V1 definition

This template extends SubordinateCACertificate_PathLen2/V1 to support API and CSR
passthrough values.

SubordinateCACertificate_PathLen2_APICSRPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from API or CSR]

Subject [Passthrough from API or CSR]

Basic constraints Critical, CA:TRUE, pathlen: 2

Authority key identifier [SKI from CA Certificate]

Subject key identifier [Derived from CSR]

Key usage Critical, digital signature, keyCertSign , CRL
sign

CRL distribution points* [Passthrough from CA configuration or CSR]

* CRL distribution points are included in the template only if the CA is configured with CRL
generation enabled.

SubordinateCACertificate_PathLen2_APIPassthrough/V1 definition

This template extends SubordinateCACertificate_PathLen2/V1 to support API passthrough values.

SubordinateCACertificate_PathLen2_APIPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from API or CSR]

Subject [Passthrough from API or CSR]

Template definitions Version latest 353

Amazon Private Certificate Authority User Guide

X509v3 Parameter Value

Basic constraints Critical, CA:TRUE, pathlen: 2

Authority key identifier [SKI from CA Certificate]

Subject key identifier [Derived from CSR]

Key usage Critical, digital signature, keyCertSign , CRL
sign

CRL distribution points* [Passthrough from CA configuration]

* CRL distribution points are included in the template only if the CA is configured with CRL
generation enabled.

SubordinateCACertificate_PathLen2_CSRPassthrough/V1 definition

This template is identical to the SubordinateCACertificate_PathLen2 template with one
difference: In this template, Amazon Private CA passes additional extensions from the certificate
signing request (CSR) into the certificate if the extensions are not specified in the template.
Extensions specified in the template always override extensions in the CSR.

Note

A CSR that contains custom additional extensions must be created outside of Amazon
Private CA.

SubordinateCACertificate_PathLen2_CSRPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from CSR]

Subject [Passthrough from CSR]

Basic constraints Critical, CA:TRUE, pathlen: 2

Authority key identifier [SKI from CA Certificate]

Template definitions Version latest 354

Amazon Private Certificate Authority User Guide

X509v3 Parameter Value

Subject key identifier [Derived from CSR]

Key usage Critical, digital signature, keyCertSign , CRL
sign

CRL distribution points* [Passthrough from CA configuration or CSR]

*CRL distribution points are included in certificates issued with this template only if the CA is
configured with CRL generation enabled.

SubordinateCACertificate_PathLen3/V1 definition

This template is used to issue subordinate CA certificates with a path length of 3. CA certificates
include a critical Basic constraints extension with the CA field set to TRUE to designate that the
certificate can be used to issue CA certificates. Extended key usage is not included, which prevents
the CA certificate from being used as a TLS client or server certificate.

For more information about certification paths, see Setting Length Constraints on the Certification
Path.

SubordinateCACertificate_PathLen3/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from CSR]

Subject [Passthrough from CSR]

Basic constraints Critical, CA:TRUE, pathlen: 3

Authority key identifier [SKI from CA Certificate]

Subject key identifier [Derived from CSR]

Key usage Critical, digital signature, keyCertSign , CRL
sign

CRL distribution points* [Passthrough from CA configuration]

Template definitions Version latest 355

https://docs.amazonaws.cn/privateca/latest/userguide/ca-hierarchy.html#length-constraints
https://docs.amazonaws.cn/privateca/latest/userguide/ca-hierarchy.html#length-constraints

Amazon Private Certificate Authority User Guide

*CRL distribution points are included in certificates issued with this template only if the CA is
configured with CRL generation enabled.

SubordinateCACertificate_PathLen3_APICSRPassthrough/V1 definition

This template extends SubordinateCACertificate_PathLen3/V1 to support API and CSR
passthrough values.

SubordinateCACertificate_PathLen3_APICSRPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from API or CSR]

Subject [Passthrough from API or CSR]

Basic constraints Critical, CA:TRUE, pathlen: 3

Authority key identifier [SKI from CA Certificate]

Subject key identifier [Derived from CSR]

Key usage Critical, digital signature, keyCertSign , CRL
sign

CRL distribution points* [Passthrough from CA configuration or CSR]

* CRL distribution points are included in the template only if the CA is configured with CRL
generation enabled.

SubordinateCACertificate_PathLen3_APIPassthrough/V1 definition

This template extends SubordinateCACertificate_PathLen3/V1 to support API passthrough values.

SubordinateCACertificate_PathLen3_APIPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from API or CSR]

Subject [Passthrough from API or CSR]

Template definitions Version latest 356

Amazon Private Certificate Authority User Guide

X509v3 Parameter Value

Basic constraints Critical, CA:TRUE, pathlen: 3

Authority key identifier [SKI from CA Certificate]

Subject key identifier [Derived from CSR]

Key usage Critical, digital signature, keyCertSign , CRL
sign

CRL distribution points* [Passthrough from CA configuration]

* CRL distribution points are included in the template only if the CA is configured with CRL
generation enabled.

SubordinateCACertificate_PathLen3_CSRPassthrough/V1 definition

This template is identical to the SubordinateCACertificate_PathLen3 template with one
difference: In this template, Amazon Private CA passes additional extensions from the certificate
signing request (CSR) into the certificate if the extensions are not specified in the template.
Extensions specified in the template always override extensions in the CSR.

Note

A CSR that contains custom additional extensions must be created outside of Amazon
Private CA.

SubordinateCACertificate_PathLen3_CSRPassthrough/V1

X509v3 Parameter Value

Subject alternative name [Passthrough from CSR]

Subject [Passthrough from CSR]

Basic constraints Critical, CA:TRUE, pathlen: 3

Authority key identifier [SKI from CA Certificate]

Template definitions Version latest 357

Amazon Private Certificate Authority User Guide

X509v3 Parameter Value

Subject key identifier [Derived from CSR]

Key usage Critical, digital signature, keyCertSign , CRL
sign

CRL distribution points* [Passthrough from CA configuration or CSR]

*CRL distribution points are included in certificates issued with this template only if the CA is
configured with CRL generation enabled.

Template definitions Version latest 358

Amazon Private Certificate Authority User Guide

Security in Amazon Private Certificate Authority

Cloud security at Amazon is the highest priority. As an Amazon customer, you benefit from data
centers and network architectures that are built to meet the requirements of the most security-
sensitive organizations.

Security is a shared responsibility between Amazon and you. The shared responsibility model
describes this as security of the cloud and security in the cloud:

• Security of the cloud – Amazon is responsible for protecting the infrastructure that runs
Amazon services in the Amazon Cloud. Amazon also provides you with services that you can use
securely. Third-party auditors regularly test and verify the effectiveness of our security as part
of the Amazon Compliance Programs. To learn about the compliance programs that apply to
Amazon Private Certificate Authority, see Amazon Web Services services in Scope by Compliance
Program.

• Security in the cloud – Your responsibility is determined by the Amazon service that you use.
You are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using Amazon Private CA. The following topics show you how to configure Amazon Private CA
to meet your security and compliance objectives. You also learn how to use other Amazon Web
Services services that help you to monitor and secure your Amazon Private CA resources.

Topics

• Identity and Access Management (IAM) for Amazon Private Certificate Authority

• Security best practices for Cross-account access to private CAs

• Data protection in Amazon Private Certificate Authority

• Compliance validation for Amazon Private Certificate Authority

• Infrastructure security in Amazon Private Certificate Authority

• Amazon Private Certificate Authority Customer CP/CPS Framework

Version latest 359

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/

Amazon Private Certificate Authority User Guide

Identity and Access Management (IAM) for Amazon Private
Certificate Authority

Access to Amazon Private CA requires credentials that Amazon can use to authenticate your
requests. The following topics provide details on how you can use Amazon Identity and Access
Management (IAM) to help secure your private certificate authorities (CAs) by controlling who can
access them.

In Amazon Private CA, the primary resource that you work with is a certificate authority (CA). Every
private CA that you own or control is identified by an Amazon Resource Name (ARN), which has the
following form.

arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566

A resource owner is the principal entity of the Amazon account in which an Amazon resource is
created. The following examples illustrate how this works.

• If you use the credentials of your Amazon Web Services account root user to create a private CA,
your Amazon account owns the CA.

Important

• We do not advise using an Amazon Web Services account root user to create CAs.

• We strongly recommend the use of multi-factor authentication (MFA) any time you
access Amazon Private CA.

• If you create an IAM user in your Amazon account, you can grant that user permission to create a
private CA. However, the account to which that user belongs owns the CA.

• If you create an IAM role in your Amazon account and grant it permission to create a private
CA, anyone who can assume the role can create the CA. However, the account to which the role
belongs will own the private CA.

A permissions policy describes who has access to what. The following discussion explains the
available options for creating permissions policies.

IAM Version latest 360

https://docs.amazonaws.cn/IAM/latest/UserGuide/introduction.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/introduction.html

Amazon Private Certificate Authority User Guide

Note

This documentation discusses using IAM in the context of Amazon Private CA. It doesn't
provide detailed information about the IAM service. For complete IAM documentation, see
the IAM User Guide. For information about IAM policy syntax and descriptions, see Amazon
IAM Policy Reference.

Amazon Private CA API operations and permissions

When you set up access control and permissions policies that you plan to attach to an IAM identity
(identity-based policies), use the following table as a reference. The first column in the table lists
each Amazon Private CA API operation. You specify actions in a policy's Action element. The
remaining columns provide the additional information.

Amazon Private CA API
operations

Required permissions Resources

CreateCertificateAuthority acm-pca:CreateCert
ificateAuthority

acm-pca:TagCertifi
cateAuthority (Only
required when creating a CA
with tags.)

arn:aws:acm-pca: us-
east-1 :111122223
333 :certificate-
authority/ 11223344-
1234-1122-2233-112
233445566

CreateCertificateAuthorityA
uditReport

acm-pca:CreateCert
ificateAuthorityAu
ditReport

arn:aws:acm-pca: us-
east-1 :111122223
333 :certificate-
authority/ 11223344-
1234-1122-2233-112
233445566

CreatePermission acm-pca:CreatePerm
ission

arn:aws:acm-pca: us-
east-1 :111122223
333 :certificate-
authority/ 11223344-

API permissions Version latest 361

https://docs.amazonaws.cn/IAM/latest/UserGuide/introduction.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_CreateCertificateAuthority.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_CreateCertificateAuthorityAuditReport.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_CreateCertificateAuthorityAuditReport.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_CreatePermission.html

Amazon Private Certificate Authority User Guide

Amazon Private CA API
operations

Required permissions Resources

1234-1122-2233-112
233445566

DeleteCertificateAuthority acm-pca:DeleteCert
ificateAuthority

arn:aws:acm-pca: us-
east-1 :111122223
333 :certificate-
authority/ 11223344-
1234-1122-2233-112
233445566

DeletePermission acm-pca:DeletePerm
ission

arn:aws:acm-pca: us-
east-1 :111122223
333 :certificate-
authority/ 11223344-
1234-1122-2233-112
233445566

DeletePolicy acm-pca:DeletePolicy arn:aws:acm-pca: us-
east-1 :111122223
333 :certificate-
authority/ 11223344-
1234-1122-2233-112
233445566

DescribeCertificateAuthority acm-pca:DescribeCe
rtificateAuthority

arn:aws:acm-pca: us-
east-1 :111122223
333 :certificate-
authority/ 11223344-
1234-1122-2233-112
233445566

API permissions Version latest 362

https://docs.amazonaws.cn/privateca/latest/APIReference/API_DeleteCertificateAuthority.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_DeletePermission.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_DeletePolicy.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_DescribeCertificateAuthority.html

Amazon Private Certificate Authority User Guide

Amazon Private CA API
operations

Required permissions Resources

DescribeCertificateAuthorit
yAuditReport

acm-pca:DescribeCe
rtificateAuthority
AuditReport

arn:aws:acm-pca: us-
east-1 :111122223
333 :certificate-
authority/ 11223344-
1234-1122-2233-112
233445566

GetCertificate acm-pca:GetCertifi
cate

arn:aws:acm-pca: us-
east-1 :111122223
333 :certificate-
authority/ 11223344-
1234-1122-2233-112
233445566

GetCertificateAuthorityCert
ificate

acm-pca:GetCertifi
cateAuthorityCerti
ficate

arn:aws:acm-pca: us-
east-1 :111122223
333 :certificate-
authority/ 11223344-
1234-1122-2233-112
233445566

GetCertificateAuthorityCsr acm-pca:GetCertifi
cateAuthorityCsr

arn:aws:acm-pca: us-
east-1 :111122223
333 :certificate-
authority/ 11223344-
1234-1122-2233-112
233445566

GetPolicy acm-pca:GetPolicy arn:aws:acm-pca: us-
east-1 :111122223
333 :certificate-
authority/ 11223344-
1234-1122-2233-112
233445566

API permissions Version latest 363

https://docs.amazonaws.cn/privateca/latest/APIReference/API_DescribeCertificateAuthorityAuditReport.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_DescribeCertificateAuthorityAuditReport.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_GetCertificate.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_GetCertificateAuthorityCertificate.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_GetCertificateAuthorityCertificate.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_GetCertificateAuthorityCsr.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_GetPolicy.html

Amazon Private Certificate Authority User Guide

Amazon Private CA API
operations

Required permissions Resources

ImportCertificateAuthorityC
ertificate

acm-pca:ImportCert
ificateAuthorityCe
rtificate

arn:aws:acm-pca: us-
east-1 :111122223
333 :certificate-
authority/ 11223344-
1234-1122-2233-112
233445566

IssueCertificate acm-pca:IssueCerti
ficate

arn:aws:acm-pca: us-
east-1 :111122223
333 :certificate-
authority/ 11223344-
1234-1122-2233-112
233445566

ListCertificateAuthorities acm-pca:ListCertif
icateAuthorities

N/A

ListPermissions acm-pca:ListPermis
sions

arn:aws:acm-pca: us-
east-1 :111122223
333 :certificate-
authority/ 11223344-
1234-1122-2233-112
233445566

ListTags acm-pca:ListTags N/A

PutPolicy acm-pca:PutPolicy arn:aws:acm-pca: us-
east-1 :111122223
333 :certificate-
authority/ 11223344-
1234-1122-2233-112
233445566

API permissions Version latest 364

https://docs.amazonaws.cn/privateca/latest/APIReference/API_ImportCertificateAuthorityCertificate.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_ImportCertificateAuthorityCertificate.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_IssueCertificate.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_ListCertificateAuthorities.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_ListPermissions.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_ListTags.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_PutPolicy.html

Amazon Private Certificate Authority User Guide

Amazon Private CA API
operations

Required permissions Resources

RevokeCertificate acm-pca:RevokeCert
ificate

arn:aws:acm-pca: us-
east-1 :111122223
333 :certificate-
authority/ 11223344-
1234-1122-2233-112
233445566

TagCertificateAuthority acm-pca:TagCertifi
cateAuthority

arn:aws:acm-pca: us-
east-1 :111122223
333 :certificate-
authority/ 11223344-
1234-1122-2233-112
233445566

UntagCertificateAuthority acm-pca:UntagCerti
ficateAuthority

arn:aws:acm-pca: us-
east-1 :111122223
333 :certificate-
authority/ 11223344-
1234-1122-2233-112
233445566

UpdateCertificateAuthority acm-pca:UpdateCert
ificateAuthority

arn:aws:acm-pca: us-
east-1 :111122223
333 :certificate-
authority/ 11223344-
1234-1122-2233-112
233445566

To provide access, add permissions to your users, groups, or roles:

• Users managed in IAM through an identity provider:

Create a role for identity federation. Follow the instructions in Create a role for a third-party
identity provider (federation) in the IAM User Guide.

API permissions Version latest 365

https://docs.amazonaws.cn/privateca/latest/APIReference/API_RevokeCertificate.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_TagCertificateAuthority.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_UntagCertificateAuthority.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_UpdateCertificateAuthority.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-idp.html

Amazon Private Certificate Authority User Guide

• IAM users:

• Create a role that your user can assume. Follow the instructions in Create a role for an IAM user
in the IAM User Guide.

• (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow the
instructions in Adding permissions to a user (console) in the IAM User Guide.

Amazon managed policies

Amazon Private CA includes a set of predefined Amazon managed policies for Amazon Private
CA administrators, users, and auditors. Understanding these policies can help you implement
Customer managed policies.

Choose any of the policies listed below to see details and sample policy code.

AWSPrivateCAFullAccess

Grants unrestricted administrative control.

For a JSON listing of the policy details, see AWSPrivateCAFullAccess.

AWSPrivateCAReadOnly

Grants access limited to read-only API operations.

For a JSON listing of the policy details, see AWSPrivateCAReadOnly.

AWSPrivateCAPrivilegedUser

Grants ability to issue and revoke CA certificates. This policy has no other administrative
capabilities and no ability to issue end-entity certificates. Permissions are mutually exclusive with
the User policy.

For a JSON listing of the policy details, see AWSPrivateCAPrivilegedUser.

AWSPrivateCAUser

Grant ability to issue and revoke end-entity certificates. This policy has no administrative
capabilities and no ability to issue CA certificates. Permissions are mutually exclusive with the
PrivilegedUser policy.

For a JSON listing of the policy details, see AWSPrivateCAUser.

Amazon managed policies Version latest 366

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSPrivateCAFullAccess.html
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSPrivateCAReadOnly.html
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSPrivateCAPrivilegedUser.html
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSPrivateCAUser.html

Amazon Private Certificate Authority User Guide

AWSPrivateCAAuditor

Grant access to read-only API operations and permission to generate a CA audit report.

For a JSON listing of the policy details, see AWSPrivateCAAuditor.

AWSPrivateCAConnectorForKubernetesPolicy

Grants essential permissions for the Amazon Private CA Connector for Kubernetes.

For a JSON listing of the policy details, see AWSPrivateCAConnectorForKubernetesPolicy.

Updates to Amazon managed policies for Amazon Private CA

In the following table, view details about updates to Amazon managed policies for Amazon Private
CA since the service began tracking these changes. For automatic alerts about all changes to
Amazon Private CA, subscribe to the RSS feed on the Document History page.

Managed policy changes

Change Description Date

New Policy: AmazonPri
vateCAConnectorFor
KubernetesPolicy

New managed policy
introduced for use with
Amazon Private CA Connector
for Kubernetes.

May 19, 2025

AmazonPrivateCAPri
vilegedUser and AmazonPri
vateCAUser - Updated policy

Replaced StringLike with
ArnLike, and StringNot
Like with ArnNotLike .

Updated template arn
to include wild cards
arn:aws:acm-pca:::
template to arn:aws:a
cm-pca:*:*:template .

January 22, 2025

New policy names:

• AmazonPrivateCAFul
lAccess

Policy name prefixes were
changed from AmazonCer
tificateManagerPri

February 13, 2023

Amazon managed policies Version latest 367

https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSPrivateCAAuditor.html
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSPrivateCAConnectorForKubernetesPolicy.html

Amazon Private Certificate Authority User Guide

Change Description Date

• AmazonPrivateCARea
dOnly

• AmazonPrivateCAPri
vilegedUser

• AmazonPrivateCAAud
itor

• AmazonPrivateCAUser

vateCA to AmazonPri
vateCA .

Functionality remains
unchanged.

Customer managed policies

As a best practice, don't use your Amazon Web Services account root user to interact with Amazon,
including Amazon Private CA. Instead use Amazon Identity and Access Management (IAM) to create
an IAM user, IAM role, or federated user. Create an administrator group and add yourself to it. Then
log in as an administrator. Add additional users to the group as needed.

Another best practice is to create a customer managed IAM policy that you can assign to users.
Customer managed policies are standalone identity-based policies that you create and which you
can attach to multiple users, groups, or roles in your Amazon account. Such a policy restricts users
to performing only the Amazon Private CA actions that you specify.

The following example customer-managed policy allows a user to create a CA audit report. This
is an example only. You can choose any Amazon Private CA operations that you want. For more
examples, see Inline policies.

To create a customer managed policy

1. Sign in to the IAM console using the credentials of an Amazon administrator.

2. In the navigation pane of the console, choose Policies.

3. Choose Create policy.

4. Choose the JSON tab.

5. Copy the following policy and paste it into the editor.

{
 "Version":"2012-10-17",

Customer managed policies Version latest 368

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_manage.html

Amazon Private Certificate Authority User Guide

 "Statement":[
 {
 "Effect":"Allow",
 "Action":"acm-pca:CreateCertificateAuthorityAuditReport",
 "Resource":"*"
 }
]
}

6. Choose Review policy.

7. For Name, type PcaListPolicy.

8. (Optional) Type a description.

9. Choose Create policy.

An administrator can attach the policy to any IAM user to limit what Amazon Private CA actions
the user can perform. For ways to apply a permissions policy, see Changing Permissions for an IAM
User in the IAM User Guide.

Inline policies

Inline policies are policies that you create and manage and embed directly into a user, group, or
role. The following policy examples show how to assign permissions to perform Amazon Private CA
actions. For general information about inline policies, see Working with Inline Policies in the IAM
User Guide. You can use the Amazon Web Services Management Console, the Amazon Command
Line Interface (Amazon CLI), or the IAM API to create and embed inline policies.

Important

We strongly recommend the use of multi-factor authentication (MFA) any time you access
Amazon Private CA.

Topics

• Listing private CAs

• Retrieving a private CA certificate

• Importing a private CA certificate

• Deleting a private CA

Inline policies Version latest 369

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users_change-permissions.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users_change-permissions.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#inline-policies
https://docs.amazonaws.cn/IAM/latest/UserGuide/
https://docs.amazonaws.cn/IAM/latest/UserGuide/

Amazon Private Certificate Authority User Guide

• Tag-on-create: Attaching tags to a CA at the time of creation

• Tag-on-create: Restricted tagging

• Controlling access to Private CA using tags

• Read-only access to Amazon Private CA

• Full access to Amazon Private CA

• Administrator access to all Amazon resources

Listing private CAs

The following policy allows a user to list all of the private CAs in an account.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":"acm-pca:ListCertificateAuthorities",
 "Resource":"*"
 }
]
}

Retrieving a private CA certificate

The following policy allows a user to retrieve a specific private CA certificate.

{
 "Version":"2012-10-17",
 "Statement":{
 "Effect":"Allow",
 "Action":"acm-pca:GetCertificateAuthorityCertificate",
 "Resource":"arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566"
 }
}

Importing a private CA certificate

The following policy allows a user to import a private CA certificate.

Inline policies Version latest 370

Amazon Private Certificate Authority User Guide

{
 "Version":"2012-10-17",
 "Statement":{
 "Effect":"Allow",
 "Action":"acm-pca:ImportCertificateAuthorityCertificate",
 "Resource":"arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566"
 }
}

Deleting a private CA

The following policy allows a user to delete a specific private CA.

{
 "Version":"2012-10-17",
 "Statement":{
 "Effect":"Allow",
 "Action":"acm-pca:DeleteCertificateAuthority",
 "Resource":"arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566"
 }
}

Tag-on-create: Attaching tags to a CA at the time of creation

The following policy allows a user to apply tags during CA creation.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "acm-pca:CreateCertificateAuthority",
 "acm-pca:TagCertificateAuthority"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

Inline policies Version latest 371

Amazon Private Certificate Authority User Guide

Tag-on-create: Restricted tagging

The following tag-on-create policy prevents use of the key-value pair Environment=Prod during CA
creation. Tagging with other key-value pairs is allowed.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":"acm-pca:*",
 "Resource":"*"
 },
 {
 "Effect":"Deny",
 "Action":"acm-pca:TagCertificateAuthority",
 "Resource":"*",
 "Condition":{
 "StringEquals":{
 "aws:ResourceTag/Environment":[
 "Prod"
]
 }
 }
 }
]
}

Controlling access to Private CA using tags

The following policy allows access only to CAs with the key-value pair Environment=PreProd. It also
requires that new CAs include this tag.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "acm-pca:*"
],
 "Resource":"*",
 "Condition":{

Inline policies Version latest 372

Amazon Private Certificate Authority User Guide

 "StringEquals":{
 "aws:ResourceTag/Environment":[
 "PreProd"
]
 }
 }
 }
]
}

Read-only access to Amazon Private CA

The following policy allows a user to describe and list private certificate authorities and to retrieve
the private CA certificate and certificate chain.

{
 "Version":"2012-10-17",
 "Statement":{
 "Effect":"Allow",
 "Action":[
 "acm-pca:DescribeCertificateAuthority",
 "acm-pca:DescribeCertificateAuthorityAuditReport",
 "acm-pca:ListCertificateAuthorities",
 "acm-pca:ListTags",
 "acm-pca:GetCertificateAuthorityCertificate",
 "acm-pca:GetCertificateAuthorityCsr",
 "acm-pca:GetCertificate"
],
 "Resource":"*"
 }
}

Full access to Amazon Private CA

The following policy allows a user to perform any Amazon Private CA action.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "acm-pca:*"

Inline policies Version latest 373

Amazon Private Certificate Authority User Guide

],
 "Resource":"*"
 }
]
}

Administrator access to all Amazon resources

The following policy allows a user to perform any action on any Amazon resource.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":"*",
 "Resource":"*"
 }
]
}

Security best practices for Cross-account access to private CAs

An Amazon Private CA administrator can share a CA with principals (users, roles, etc.) in another
Amazon Web Services account. When a share has been received and accepted, the principal can
use the CA to issue end-entity certificates using Amazon Private CA or Amazon Certificate Manager
resources. The principal can use the CA to issue subordinate CA certificates using Amazon Private
CA.

Important

Charges associated with a certificate issued in a cross-account scenario are billed to the
Amazon account that issues the certificate.

To share access to a CA, Amazon Private CA administrators can choose either of the following
methods:

• Use Amazon Resource Access Manager (RAM) to share the CA as a resource with a principal in
another account or with Amazon Organizations. RAM is a standard method for sharing Amazon

Cross-account access Version latest 374

Amazon Private Certificate Authority User Guide

resources across accounts. For more information about RAM, see the Amazon RAM User Guide.
For more information about Amazon Organizations, see the Amazon Organizations User Guide.

• Use the Amazon Private CA API or CLI to attach a resource-based policy to a CA, thereby granting
access to a principal in another account. For more information, see Resource-based policies.

The Control access to the private CA section of this guide provides workflows for granting access to
CAs in both single-account and cross-account scenarios.

Resource-based policies

Resource-based policies are permissions policies that you create and manually attach to a resource
(in this case, a private CA) rather than to a user identity or role. Or, instead of creating your own
policies, you can use Amazon managed policies for Amazon Private CA. Using Amazon RAM to
apply a resource-based policy, an Amazon Private CA administrator can share access to a CA with
a user in a different Amazon account directly or through Amazon Organizations. Alternatively, an
Amazon Private CA administrator can use the PCA APIs PutPolicy, GetPolicy, and DeletePolicy, or
the corresponding Amazon CLI commands put-policy, get-policy, and delete-policy, to apply and
manage resource-based policies.

For general information about resource-based policies, see Identity-Based Policies and Resource-
Based Policies and Controlling Access Using Policies.

To view the list of Amazon managed resource-based policies for Amazon Private CA, navigate to
the Managed permissions library in the Amazon Resource Access Manager console, and search for
CertificateAuthority. As with any policy, before you apply it, we recommend applying the policy in
a test environment to ensure that it meets your requirements.

Amazon Certificate Manager (ACM) users with cross-account shared access to a private CA can
issue managed certificates that are signed by the CA. Cross-account issuers are constrained by a
resource-based policy and have access only to the following end-entity certificate templates:

• EndEntityCertificate/V1

• EndEntityClientAuthCertificate/V1

• EndEntityServerAuthCertificate/V1

• BlankEndEntityCertificate_APIPassthrough/V1

• BlankEndEntityCertificate_APICSRPassthrough/V1

• SubordinateCACertificate_PathLen0/V1

Resource-based policies Version latest 375

https://docs.amazonaws.cn/ram/latest/userguide/
https://docs.amazonaws.cn/organizations/latest/userguide/
https://docs.amazonaws.cn/privateca/latest/APIReference/API_PutPolicy.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_GetPolicy.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_DeletePolicy.html
https://docs.amazonaws.cn/cli/latest/reference/acm-pca/put-policy.html
https://docs.amazonaws.cn/cli/latest/reference/acm-pca/get-policy.html
https://docs.amazonaws.cn/cli/latest/reference/acm-pca/delete-policy.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_identity-vs-resource.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_identity-vs-resource.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_controlling.html
https://console.amazonaws.cn/ram/home#Permissions:

Amazon Private Certificate Authority User Guide

Policy examples

This section provides example cross-account policies for various needs. In all cases, the following
command pattern is used to apply a policy:

$ aws acm-pca put-policy \
 --region region \
 --resource-arn arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566 \
 --policy file:///[path]/policyN.json

In addition to specifying the ARN of a CA, the administrator provides an Amazon account ID or an
Amazon Organizations ID that will be granted access to the CA. The JSON of each of the following
polices is formatted as a file for readability, but can also be supplied as an inline CLI arguments.

Note

The structure of the JSON resource-based polices shown below must be followed
precisely. Only the ID fields for the principals (the Amazon account number or the Amazon
Organizations ID) and the CA ARNs can be configured by customers.

1. File: policy1.json – Sharing access to a CA with a user in a different account

Replace 555555555555 with the Amazon account ID that's sharing the CA.

For the resource ARN, replace the following with your own values:

• aws - The Amazon partition. For example, aws, aws-us-gov, aws-cn, etc.

• us-east-1 - The Amazon Region that the resource is available in, such as us-west-1.

• 111122223333 - The Amazon account ID of the resource owner.

• 11223344-1234-1122-2233-112233445566 - The resource ID of the certificate authority.

 {
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"ExampleStatementID",
 "Effect":"Allow",

Resource-based policies Version latest 376

Amazon Private Certificate Authority User Guide

 "Principal":{

 "AWS":"555555555555"

 },
 "Action":[
 "acm-pca:DescribeCertificateAuthority",
 "acm-pca:GetCertificate",
 "acm-pca:GetCertificateAuthorityCertificate",
 "acm-pca:ListPermissions",
 "acm-pca:ListTags"

],

 "Resource":"arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566"
 },
 {
 "Sid":"ExampleStatementID2",
 "Effect":"Allow",
 "Principal":{
 "AWS":"555555555555"
 },
 "Action":[
 "acm-pca:IssueCertificate"
],
 "Resource":"arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566",
 "Condition":{
 "StringEquals":{
 "acm-pca:TemplateArn":"arn:aws:acm-pca:::template/
EndEntityCertificate/V1"
 }
 }
 }
]
}

2. File: policy2.json – Sharing access to a CA through Amazon Organizations

Replace o-a1b2c3d4z5 with the Amazon Organizations ID.

For the resource ARN, replace the following with your own values:

Resource-based policies Version latest 377

Amazon Private Certificate Authority User Guide

• aws - The Amazon partition. For example, aws, aws-us-gov, aws-cn, etc.

• us-east-1 - The Amazon Region that the resource is available in, such as us-west-1.

• 111122223333 - The Amazon account ID of the resource owner.

• 11223344-1234-1122-2233-112233445566 - The resource ID of the certificate authority.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"ExampleStatementID3",
 "Effect":"Allow",
 "Principal":"*",
 "Action":"acm-pca:IssueCertificate",
 "Resource":"arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566",
 "Condition":{
 "StringEquals":{
 "acm-pca:TemplateArn":"arn:aws:acm-pca:::template/
EndEntityCertificate/V1",
 "aws:PrincipalOrgID":"o-a1b2c3d4z5"
 },
 "StringNotEquals":{
 "aws:PrincipalAccount":"111122223333"
 }
 }
 },
 {
 "Sid":"ExampleStatementID4",
 "Effect":"Allow",
 "Principal":"*",
 "Action":[
 "acm-pca:DescribeCertificateAuthority",
 "acm-pca:GetCertificate",
 "acm-pca:GetCertificateAuthorityCertificate",
 "acm-pca:ListPermissions",
 "acm-pca:ListTags"
],
 "Resource":"arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566",
 "Condition":{
 "StringEquals":{
 "aws:PrincipalOrgID":"o-a1b2c3d4z5"

Resource-based policies Version latest 378

Amazon Private Certificate Authority User Guide

 },
 "StringNotEquals":{
 "aws:PrincipalAccount":"111122223333"
 }
 }
]
}

Data protection in Amazon Private Certificate Authority

The Amazon shared responsibility model applies to data protection in Amazon Private
Certificate Authority. As described in this model, Amazon is responsible for protecting the global
infrastructure that runs all of the Amazon Web Services Cloud. You are responsible for maintaining
control over your content that is hosted on this infrastructure. You are also responsible for the
security configuration and management tasks for the Amazon Web Services services that you use.
For more information about data privacy, see the Data Privacy FAQ.

For data protection purposes, we recommend that you protect Amazon Web Services account
credentials and set up individual users with Amazon IAM Identity Center or Amazon Identity and
Access Management (IAM). That way, each user is given only the permissions necessary to fulfill
their job duties. We also recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with Amazon resources. We require TLS 1.2 and recommend TLS
1.3.

• Set up API and user activity logging with Amazon CloudTrail. For information about using
CloudTrail trails to capture Amazon activities, see Working with CloudTrail trails in the Amazon
CloudTrail User Guide.

• Use Amazon encryption solutions, along with all default security controls within Amazon Web
Services services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-3 validated cryptographic modules when accessing Amazon through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-3.

Data protection Version latest 379

https://aws.amazon.com/compliance/shared-responsibility-model/
https://www.amazonaws.cn/compliance/data-privacy-faq/
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-trails.html
https://www.amazonaws.cn/compliance/fips/

Amazon Private Certificate Authority User Guide

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with Amazon Private CA or other Amazon Web Services services using the console,
API, Amazon CLI, or Amazon SDKs. Any data that you enter into tags or free-form text fields used
for names may be used for billing or diagnostic logs. If you provide a URL to an external server, we
strongly recommend that you do not include credentials information in the URL to validate your
request to that server.

Storage and security compliance of Amazon Private CA private keys

The private keys for private CAs are stored in Amazon managed hardware security modules (HSMs).
The HSMs comply with FIPS PUB 140-2 Level 3 Security Requirements for Cryptographic Modules.

Data encryption in Amazon Private CA Connector for Active Directory

Amazon Private CA Connector for AD stores customer configuration data regarding connectors,
templates, directory registrations, service principal names, and template group access control
entries. This data is encrypted in transit and at rest. Information about certificates issued through
Connector for AD can be discovered using the GetCertificate action in the Amazon Private CA API.
No information regarding the certificates issued, or regarding the client or machine requesting a
certificate, is stored by Amazon.

Compliance validation for Amazon Private Certificate Authority

Third-party auditors assess the security and compliance of Amazon Private Certificate Authority
as part of multiple Amazon compliance programs. These include SOC, PCI, FedRAMP, HIPAA, and
others.

For a list of Amazon services in scope of specific compliance programs, see Amazon Web Services
services in Scope by Compliance Program. For general information, see Amazon Compliance
Programs.

You can download third-party audit reports using Amazon Artifact. For more information, see
Downloading Reports in Amazon Artifact.

Your compliance responsibility when using Amazon Private CA is determined by the sensitivity of
your data, your company's compliance objectives, and applicable laws and regulations. Amazon
provides the following resources to help with compliance:

Storage and security compliance of Amazon Private CA private keys Version latest 380

https://docs.amazonaws.cn/privateca/latest/APIReference/API_GetCertificate.html
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html

Amazon Private Certificate Authority User Guide

• For organizations that are required to encrypt their Amazon S3 buckets, the following topics
describe how to configure encryption to accommodate Amazon Private CA assets:

• Encrypting Your Audit Reports

• Encrypting Your CRLs

• Security and Compliance Quick Start GuidesSecurity and Compliance Quick Start Guides —
These deployment guides discuss architectural considerations and provide steps for deploying
security- and compliance-focused baseline environments on Amazon.

• Architecting for HIPAA Security and Compliance Whitepaper — This whitepaper describes how
companies can use Amazon to create HIPAA-compliant applications.

• Amazon Compliance Resources — This collection of workbooks and guides might apply to your
industry and location.

• Evaluating Resources with Rules in the Amazon Config Developer Guide — The Amazon Config
service assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

• Amazon Security Hub — This Amazon service provides a comprehensive view of your security
state within Amazon that helps you check your compliance with security industry standards and
best practices.

Use audit reports with your private CA

You can create an audit report to list all of the certificates that your private CA has issued or
revoked. The report is saved in a new or existing S3 bucket that you specify on input.

For information about adding encryption protection to your audit reports, see Encrypting your
audit reports .

The audit report file has the following path and file name. The ARN for an Amazon S3 bucket is
the value for amzn-s3-demo-bucket. CA_ID is the unique identifier of an issuing CA. UUID is the
unique identifier of an audit report.

amzn-s3-demo-bucket/audit-report/CA_ID/UUID.[json|csv]

You can generate a new report every 30 minutes and download it from your bucket. The following
example shows a CSV-separated report.

awsAccountId,requestedByServicePrincipal,certificateArn,serial,subject,notBefore,notAfter,issuedAt,revokedAt,revocationReason,templateArn

Create an audit report Version latest 381

https://docs.amazonaws.cn/privateca/latest/userguide/PcaAuditReport.html#audit-report-encryption
https://docs.amazonaws.cn/privateca/latest/userguide/crl-planning.html#crl-encryption
https://www.amazonaws.cn/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://docs.amazonaws.cn/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/architecting-hipaa-security-and-compliance-on-aws.html
https://aws.amazon.com/compliance/resources/
https://docs.amazonaws.cn/config/latest/developerguide/evaluate-config.html
https://docs.amazonaws.cn/securityhub/latest/userguide/what-is-securityhub.html

Amazon Private Certificate Authority User Guide

123456789012,,arn:aws:acm-pca:region:account:certificate-authority/CA_ID/
certificate/
certificate_ID,00:11:22:33:44:55:66:77:88:99:aa:bb:cc:dd:ee:ff,"2.5.4.5=#012345678901,2.5.4.44=#0a1b3c4d,2.5.4.65=#0a1b3c4e5f6a,2.5.4.43=#0a1b3c4d5e,2.5.4.42=#0123456789abcdef0123456789abcdef0123,2.5.4.4=#0123456789abcdef01234567,2.5.4.12=#0a1b3c4d5e,2.5.4.46=#0123456789ab,CN=www.example1.com,OU=Sales,O=Example
 Company,L=Seattle,ST=Washington,C=US",2020-03-02T21:43:57+0000,2020-04-07T22:43:57+0000,2020-03-02T22:43:58+0000,,UNSPECIFIED,arn:aws:acm-
pca:::template/EndEntityCertificate/V1
123456789012,acm.amazonaws.com,arn:aws:acm-pca:region:account:certificate-
authority/CA_ID/
certificate/
certificate_ID,ff:ee:dd:cc:bb:aa:99:88:77:66:55:44:33:22:11:00,"2.5.4.5=#012345678901,2.5.4.44=#0a1b3c4d,2.5.4.65=#0a1b3c4d5e6f,2.5.4.43=#0a1b3c4d5e,2.5.4.42=#0123456789abcdef0123456789abcdef0123,2.5.4.4=#0123456789abcdef01234567,2.5.4.12=#0a1b3c4d5e,2.5.4.46=#0123456789ab,CN=www.example1.com,OU=Sales,O=Example
 Company,L=Seattle,ST=Washington,C=US",2020-03-02T20:53:39+0000,2020-04-07T21:53:39+0000,2020-03-02T21:53:40+0000,,,arn:aws:acm-
pca:::template/EndEntityCertificate/V1

The following example shows a JSON-formatted report.

[
 {
 "awsAccountId":"123456789012",
 "certificateArn":"arn:aws:acm-pca:region:account:certificate-authority/CA_ID/
certificate/certificate_ID",
 "serial":"00:11:22:33:44:55:66:77:88:99:aa:bb:cc:dd:ee:ff",

 "subject":"2.5.4.5=#012345678901,2.5.4.44=#0a1b3c4d,2.5.4.65=#0a1b3c4d5e6f,2.5.4.43=#0a1b3c4d5e,2.5.4.42=#0123456789abcdef0123456789abcdef0123,2.5.4.4=#0123456789abcdef01234567,2.5.4.12=#0a1b3c4d5e,2.5.4.46=#0123456789ab,CN=www.example1.com,OU=Sales,O=Example
 Company,L=Seattle,ST=Washington,C=US",
 "notBefore":"2020-02-26T18:39:57+0000",
 "notAfter":"2021-02-26T19:39:57+0000",
 "issuedAt":"2020-02-26T19:39:58+0000",
 "revokedAt":"2020-02-26T20:00:36+0000",
 "revocationReason":"UNSPECIFIED",
 "templateArn":"arn:aws:acm-pca:::template/EndEntityCertificate/V1"
 },
 {
 "awsAccountId":"123456789012",
 "requestedByServicePrincipal":"acm.amazonaws.com",
 "certificateArn":"arn:aws:acm-pca:region:account:certificate-authority/CA_ID/
certificate/certificate_ID",
 "serial":"ff:ee:dd:cc:bb:aa:99:88:77:66:55:44:33:22:11:00",

 "subject":"2.5.4.5=#012345678901,2.5.4.44=#0a1b3c4d,2.5.4.65=#0a1b3c4d5e6f,2.5.4.43=#0a1b3c4d5e,2.5.4.42=#0123456789abcdef0123456789abcdef0123,2.5.4.4=#0123456789abcdef01234567,2.5.4.12=#0a1b3c4d5e,2.5.4.46=#0123456789ab,CN=www.example1.com,OU=Sales,O=Example
 Company,L=Seattle,ST=Washington,C=US",
 "notBefore":"2020-01-22T20:10:49+0000",
 "notAfter":"2021-01-17T21:10:49+0000",
 "issuedAt":"2020-01-22T21:10:49+0000",
 "templateArn":"arn:aws:acm-pca:::template/EndEntityCertificate/V1"

Create an audit report Version latest 382

Amazon Private Certificate Authority User Guide

 }
]

Note

When Amazon Certificate Manager renews a certificate, the private CA audit report
populates the requestedByServicePrincipal field with acm.amazonaws.com. This
indicates that the Amazon Certificate Manager service called the IssueCertificate
action of the Amazon Private CA API on behalf of a customer to renew the certificate.

Prepare an Amazon S3 bucket for audit reports

Important

Amazon Private CA doesn't support the use of Amazon S3 Object Lock. If you enable Object
Lock on your bucket, Amazon Private CA isn't able to write audit reports to the bucket.

To store your audit reports, you need to prepare an Amazon S3 bucket. For more information, see
How Do I Create an S3 bucket?

Your S3 bucket must be secured by a permissions policy that allows Amazon Private CA to
access and write to the S3 bucket that you specify. Authorized users and service principals
require Put permission to allow Amazon Private CA to place objects in the bucket, and Get
permission to retrieve them. We recommend that you apply the policy shown below, which
restricts access to both an Amazon account and the ARN of a private CA. Alternatively, you can
use the aws:SourceOrgID condition key to constrain access to a specific organization in Amazon
Organizations. For more information about bucket policies, see Bucket policies for Amazon Simple
Storage Service.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Principal":{
 "Service":"acm-pca.amazonaws.com"
 },

Create an audit report Version latest 383

https://docs.amazonaws.cn/AmazonS3/latest/userguide/object-lock.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/create-bucket.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceorgid
https://docs.amazonaws.cn/AmazonS3/latest/userguide/bucket-policies.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/bucket-policies.html

Amazon Private Certificate Authority User Guide

 "Action":[
 "s3:PutObject",
 "s3:PutObjectAcl",
 "s3:GetBucketAcl",
 "s3:GetBucketLocation"
],
 "Resource":[
 "arn:aws:s3:::amzn-s3-demo-bucket/*",
 "arn:aws:s3:::amzn-s3-demo-bucket1"
],
 "Condition":{
 "StringEquals":{
 "aws:SourceAccount":"111122223333",
 "aws:SourceArn":"arn:partition:acm-pca:region:111122223333:certificate-
authority/CA_ID"
 }
 }
 }
]
}

Create an audit report

You can create an audit report from either the console or the Amazon CLI.

To create an audit report (console)

1. Sign in to your Amazon account and open the Amazon Private CA console at https://
console.amazonaws.cn/acm-pca/home.

2. On the Private certificate authories page, choose your private CA from the list.

3. From the Actions menu, choose Generate audit report.

4. Under Audit report destination, for Create a new S3 bucket?, choose Yes and type a unique
bucket name, or choose No and choose an existing bucket from the list.

If you choose Yes, Amazon Private CA creates and attaches the default policy to your bucket.
The default policy includes an aws:SourceAccount condition key, which limits access to a
specific Amazon account. If you wish to further constrain access, you can add other condition
keys to the policy such as in the preceding example.

Create an audit report Version latest 384

https://console.amazonaws.cn/acm-pca/home
https://console.amazonaws.cn/acm-pca/home

Amazon Private Certificate Authority User Guide

If you choose No, you must attach a policy to your bucket before you can generate an audit
report. Use the policy pattern described in Prepare an Amazon S3 bucket for audit reports. For
information about attaching a policy, see Adding a bucket policy using the Amazon S3 console.

5. Under Output format, choose JSON for JavaScript Object Notation or CSV for comma-
separated values.

6. Choose Generate audit report.

To create an audit report (Amazon CLI)

1. If you do not already have an S3 bucket to use, create one.

2. Attach a policy to your bucket. Use the policy pattern described in Prepare an Amazon S3
bucket for audit reports. For information about attaching a policy, see Adding a bucket policy
using the Amazon S3 console

3. Use the create-certificate-authority-audit-report command to create the audit report and to
place it in the prepared S3 bucket.

$ aws acm-pca create-certificate-authority-audit-report \
--certificate-authority-arn arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566 \
--s3-bucket-name amzn-s3-demo-bucket \
--audit-report-response-format JSON

Retrieve an audit report

To retrieve an audit report for inspection, use the Amazon S3 console, API, CLI, or SDK. For more
information, see Downloading an object in the Amazon Simple Storage Service User Guide.

Encrypting your audit reports

You can optionally configure encryption on the Amazon S3 bucket containing your audit reports.
Amazon Private CA supports two encryption modes for assets in S3:

• Automatic server-side encryption with Amazon S3-managed AES-256 keys.

• Customer managed encryption using Amazon Key Management Service and an Amazon KMS key
configured to your specifications.

Create an audit report Version latest 385

https://docs.amazonaws.cn/AmazonS3/latest/userguide/add-bucket-policy.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/create-bucket.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/add-bucket-policy.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/add-bucket-policy.html
https://docs.amazonaws.cn/cli/latest/reference/acm-pca/create-certificate-authority-audit-report.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/download-objects.html

Amazon Private Certificate Authority User Guide

Note

Amazon Private CA does not support using default KMS keys generated automatically by
S3.

The following procedures describe how to set up each of the encryption options.

To configure automatic encryption

Complete the following steps to enable S3 server-side encryption.

1. Open the Amazon S3 console at https://console.amazonaws.cn/s3/.

2. In the Buckets table, choose the bucket that will hold your Amazon Private CA assets.

3. On the page for your bucket, choose the Properties tab.

4. Choose the Default encryption card.

5. Choose Enable.

6. Choose Amazon S3 key (SSE-S3).

7. Choose Save Changes.

To configure custom encryption

Complete the following steps to enable encryption using a custom key.

1. Open the Amazon S3 console at https://console.amazonaws.cn/s3/.

2. In the Buckets table, choose the bucket that will hold your Amazon Private CA assets.

3. On the page for your bucket, choose the Properties tab.

4. Choose the Default encryption card.

5. Choose Enable.

6. Choose Amazon Key Management Service key (SSE-KMS).

7. Choose either Choose from your Amazon KMS keys or Enter Amazon KMS key ARN.

8. Choose Save Changes.

9. (Optional) If you do not have an KMS key already, create one using the following Amazon CLI
create-key command:

Create an audit report Version latest 386

https://console.amazonaws.cn/s3/
https://console.amazonaws.cn/s3/
https://docs.amazonaws.cn/cli/latest/reference/kms/create-key.html

Amazon Private Certificate Authority User Guide

$ aws kms create-key

The output contains the key ID and Amazon Resource Name (ARN) of the KMS key. The
following is an example output:

{
 "KeyMetadata": {
 "KeyId": "01234567-89ab-cdef-0123-456789abcdef",
 "Description": "",
 "Enabled": true,
 "KeyUsage": "ENCRYPT_DECRYPT",
 "KeyState": "Enabled",
 "CreationDate": 1478910250.94,
 "Arn": "arn:aws:kms:us-west-2:123456789012:key/01234567-89ab-
cdef-0123-456789abcdef",
 "AWSAccountId": "123456789012"
 }
}

10. Using the following steps, you give the Amazon Private CA service principal permission to use
the KMS key. By default, all KMS keys are private; only the resource owner can use a KMS key
to encrypt and decrypt data. However, the resource owner can grant permissions to access
the KMS key to other users and resources. The service principal must be in the same Region as
where the KMS key is stored.

a. First, save the default policy for your KMS key as policy.json using the following get-
key-policy command:

$ aws kms get-key-policy --key-id key-id --policy-name default --output text
 > ./policy.json

b. Open the policy.json file in a text editor. Select one of the following policy statements
and add it to the existing policy.

If your Amazon S3 bucket key is enabled, use the following statement:

{
 "Sid":"Allow ACM-PCA use of the key",
 "Effect":"Allow",
 "Principal":{

Create an audit report Version latest 387

https://docs.amazonaws.cn/cli/latest/reference/kms/get-key-policy.html
https://docs.amazonaws.cn/cli/latest/reference/kms/get-key-policy.html

Amazon Private Certificate Authority User Guide

 "Service":"acm-pca.amazonaws.com"
 },
 "Action":[
 "kms:GenerateDataKey",
 "kms:Decrypt"
],
 "Resource":"*",
 "Condition":{
 "StringLike":{
 "kms:EncryptionContext:aws:s3:arn":"arn:aws:s3:::bucket-name"
 }
 }
}

If your Amazon S3 bucket key is disabled, use the following statement:

{
 "Sid":"Allow ACM-PCA use of the key",
 "Effect":"Allow",
 "Principal":{
 "Service":"acm-pca.amazonaws.com"
 },
 "Action":[
 "kms:GenerateDataKey",
 "kms:Decrypt"
],
 "Resource":"*",
 "Condition":{
 "StringLike":{
 "kms:EncryptionContext:aws:s3:arn":[
 "arn:aws:s3:::bucket-name/acm-pca-permission-test-key",
 "arn:aws:s3:::bucket-name/acm-pca-permission-test-key-private",
 "arn:aws:s3:::bucket-name/audit-report/*",
 "arn:aws:s3:::bucket-name/crl/*"
]
 }
 }
}

c. Finally, apply the updated policy using the following put-key-policy command:

Create an audit report Version latest 388

https://docs.amazonaws.cn/cli/latest/reference/kms/put-key-policy.html

Amazon Private Certificate Authority User Guide

$ aws kms put-key-policy --key-id key_id --policy-name default --policy file://
policy.json

Infrastructure security in Amazon Private Certificate Authority

As a managed service, Amazon Private Certificate Authority is protected by Amazon global network
security. For information about Amazon security services and how Amazon protects infrastructure,
see Amazon Cloud Security. To design your Amazon environment using the best practices for
infrastructure security, see Infrastructure Protection in Security Pillar Amazon Well‐Architected
Framework.

You use Amazon published API calls to access Amazon Private CA through the network. Clients
must support the following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the Amazon Security Token Service (Amazon STS)
to generate temporary security credentials to sign requests.

Amazon Private CA VPC endpoints (Amazon PrivateLink)

You can create a private connection between your VPC and Amazon Private CA by configuring an
interface VPC endpoint. Interface endpoints are powered by Amazon PrivateLink, a technology
for privately accessing Amazon Private CA API operations. Amazon PrivateLink routes all network
traffic between your VPC and Amazon Private CA through the Amazon network, avoiding exposure
on the open internet. Each VPC endpoint is represented by one or more elastic network interfaces
with private IP addresses in your VPC subnets.

The interface VPC endpoint connects your VPC directly to Amazon Private CA without an internet
gateway, NAT device, VPN connection, or Amazon Direct Connect connection. The instances in your
VPC don't need public IP addresses to communicate with the Amazon Private CA API.

Infrastructure security Version latest 389

https://www.amazonaws.cn/security/
https://docs.amazonaws.cn/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.amazonaws.cn/STS/latest/APIReference/welcome.html
https://docs.amazonaws.cn/whitepapers/latest/aws-vpc-connectivity-options/aws-privatelink.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/using-eni.html

Amazon Private Certificate Authority User Guide

To use Amazon Private CA through your VPC, you must connect from an instance that is inside the
VPC. Alternatively, you can connect your private network to your VPC by using an Amazon Virtual
Private Network (Amazon VPN) or Amazon Direct Connect. For information about Amazon VPN, see
VPN Connections in the Amazon VPC User Guide. For information about Amazon Direct Connect,
see Creating a Connection in the Amazon Direct Connect User Guide.

Amazon Private CA does not require the use of Amazon PrivateLink, but we recommend it as an
additional layer of security. For more information about Amazon PrivateLink and VPC endpoints,
see Accessing Services Through Amazon PrivateLink.

Considerations for Amazon Private CA VPC endpoints

Before you set up interface VPC endpoints for Amazon Private CA, be aware of the following
considerations:

• Amazon Private CA might not support VPC endpoints in some Availability Zones. When you
create a VPC endpoint, first check support in the management console. Unsupported Availability
Zones are marked "Service not supported in this Availability Zone."

• VPC endpoints do not support cross-Region requests. Ensure that you create your endpoint in
the same Region where you plan to issue your API calls to Amazon Private CA.

• VPC endpoints only support Amazon provided DNS through Amazon Route 53. If you want to
use your own DNS, you can use conditional DNS forwarding. For more information, see DHCP
Options Sets in the Amazon VPC User Guide.

• The security group attached to the VPC endpoint must allow incoming connections on port 443
from the private subnet of the VPC.

• Amazon Certificate Manager does not support VPC endpoints.

• FIPS endpoints (and their Regions) do not support VPC endpoints.

Amazon Private CA API currently supports VPC endpoints in the following Amazon Web Services
Regions:

• US East (Ohio)

• US East (N. Virginia)

• US West (N. California)

• US West (Oregon)

VPC Endpoints (Amazon PrivateLink) Version latest 390

https://docs.amazonaws.cn/vpc/latest/userguide/vpn-connections.html
https://docs.amazonaws.cn/directconnect/latest/UserGuide/dedicated_connection.html#create-connection
https://docs.amazonaws.cn/vpc/latest/userguide/privatelink-access-aws-services.html
https://docs.amazonaws.cn/vpc/latest/userguide/VPC_DHCP_Options.html
https://docs.amazonaws.cn/vpc/latest/userguide/VPC_DHCP_Options.html

Amazon Private Certificate Authority User Guide

• Africa (Cape Town)

• Asia Pacific (Hong Kong)

• Asia Pacific (Hyderabad)

• Asia Pacific (Jakarta)

• Asia Pacific (Melbourne)

• Asia Pacific (Mumbai)

• Asia Pacific (Osaka)

• Asia Pacific (Seoul)

• Asia Pacific (Singapore)

• Asia Pacific (Sydney)

• Asia Pacific (Tokyo)

• Canada (Central)

• Canada West (Calgary)

• Europe (Frankfurt)

• Europe (Ireland)

• Europe (London)

• Europe (Milan)

• Europe (Paris)

• Europe (Spain)

• Europe (Stockholm)

• Europe (Zurich)

• Israel (Tel Aviv)

• Middle East (Bahrain)

• Middle East (UAE)

• South America (São Paulo)

Creating the VPC endpoints for Amazon Private CA

You can create a VPC endpoint for the Amazon Private CA service using either the VPC console
at https://console.amazonaws.cn/vpc/ or the Amazon Command Line Interface. For more
information, see the Creating an Interface Endpoint procedure in the Amazon VPC User Guide.
Amazon Private CA supports making calls to all of its API operations inside your VPC.

VPC Endpoints (Amazon PrivateLink) Version latest 391

https://console.amazonaws.cn/vpc/
https://docs.amazonaws.cn/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint

Amazon Private Certificate Authority User Guide

If you have enabled private DNS host names for the endpoint, then the default Amazon Private CA
endpoint now resolves to your VPC endpoint. For a comprehensive list of default service endpoints,
see Service Endpoints and Quotas.

If you have not enabled private DNS host names, Amazon VPC provides a DNS endpoint name that
you can use in the following format:

vpc-endpoint-id.acm-pca.region.vpce.amazonaws.com

Note

The value region represents the Region identifier for an Amazon Region supported by
Amazon Private CA, such as us-east-2 for the US East (Ohio) Region. For a list of Amazon
Private CA, see Amazon Certificate Manager Private Certificate Authority Endpoints and
Quotas.

For more information, see Amazon Private CA VPC endpoints (Amazon PrivateLink) in the Amazon
VPC User Guide.

Create a VPC endpoint policy for Amazon Private CA

You can create a policy for Amazon VPC endpoints for Amazon Private CA to specify the following:

• The principal that can perform actions

• The actions that can be performed

• The resources on which actions can be performed

For more information, see Controlling Access to Services with VPC Endpoints in the Amazon VPC
Guide.

Example – VPC endpoint policy for Amazon Private CA actions

When attached to an endpoint, the following policy grants access for all principals to the Amazon
Private CA actions IssueCertificate, DescribeCertificateAuthority, GetCertificate,
GetCertificateAuthorityCertificate, ListPermissions, and ListTags. The resource in
each stanza is a private CA. The first stanza authorizes the creation of end-entity certificates using
the specified private CA and certificate template. If you don't want to control the template being

VPC Endpoints (Amazon PrivateLink) Version latest 392

https://docs.amazonaws.cn/general/latest/gr/aws-service-information.html
https://docs.amazonaws.cn/general/latest/gr/pca.html
https://docs.amazonaws.cn/general/latest/gr/pca.html
https://docs.amazonaws.cn/vpc/latest/userguide/vpc-endpoints.html
https://docs.amazonaws.cn/vpc/latest/userguide/vpc-endpoints-access.html

Amazon Private Certificate Authority User Guide

used, the Condition section is not needed. However, removing this allows all principals to create
CA certificates as well as end-entity certificates.

{
 "Statement":[
 {
 "Principal":"*",
 "Effect":"Allow",
 "Action":[
 "acm-pca:IssueCertificate"
],
 "Resource":[
 "arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566"
],
 "Condition":{
 "StringEquals":{
 "acm-pca:TemplateArn":"arn:aws:acm-pca:::template/
EndEntityCertificate/V1"
 }
 }
 },
 {
 "Principal":"*",
 "Effect":"Allow",
 "Action":[
 "acm-pca:DescribeCertificateAuthority",
 "acm-pca:GetCertificate",
 "acm-pca:GetCertificateAuthorityCertificate",
 "acm-pca:ListPermissions",
 "acm-pca:ListTags"
],
 "Resource":[
 "arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566"
]
 }
]
 }

VPC Endpoints (Amazon PrivateLink) Version latest 393

Amazon Private Certificate Authority User Guide

Dual-stack endpoint support

Amazon Private Certificate Authority provides a dual-stack public endpoint that supports both IPv4
and IPv6 clients. A dual-stack endpoint enables clients to communicate with Amazon Private CA
using either IPv4 or IPv6 addresses. Amazon Private CA for Active Directory and Amazon Private CA
Connector for SCEP also support dual-stack endpoints.

The Amazon Private CA dual-stack public endpoint at https://acm-pca.your-
region.api.aws supports both IPv4 and IPv6 clients. Amazon Private CA is also privately
accessible over IPv4 and IPv6 from your virtual private cloud (VPC) using Amazon PrivateLink.
For more information about creating private interface VPC endpoints for Amazon Private CA, see
Amazon Private CA VPC endpoints (Amazon PrivateLink).

For more information, see the following resources:

• IP addressing for your VPCs and subnets

• IPv6 support for your VPC

Using IPv6 addresses in IAM and Amazon Private CA

Before trying to access Amazon Private Certificate Authority over IPv6, ensure any IAM policies
containing IP address restrictions are updated to include IPv6 address ranges. IP based policies that
are not updated to handle IPv6 addresses may result in clients incorrectly losing or gaining access
when they start using IPv6. To learn more about Amazon Private CA and dual-stack support, see
Dual-stack endpoint support.

Important

These statements do not allow any actions. Use these statements in combination with
other statements that allow specific actions.

The following statement explicitly denies access to all Amazon Private CA permissions for requests
originating from the 192.0.2.* range of IPv4 addresses. Any IP addresses outside of this range
are not explicitly denied Amazon Private CA permissions. Since all IPv6 addresses are outside of the
denied range, this statement does not explicitly deny Amazon Private CA permissions for any IPv6
addresses.

Dual-stack endpoint support Version latest 394

https://docs.amazonaws.cn/vpc/latest/userguide/vpc-ip-addressing.html
https://docs.amazonaws.cn/vpc/latest/userguide/vpc-migrate-ipv6.html

Amazon Private Certificate Authority User Guide

{
 "Sid": "DenyPrivateCAPermissions",
 "Effect": "Deny",
 "Action": [
 "acm-pca:*"
],
 "Resource": "*",
 "Condition": {
 "NotIpAddress": {
 "aws:SourceIp": [
 "192.0.2.0/24"
]
 }
 }
}

You can modify the Condition element to deny both IPv4 (192.0.2.0/24) and IPv6
(2001:db8::/32) address ranges as shown in the following example:

{
 "Sid": "DenyPrivateCAPermissions",
 "Effect": "Deny",
 "Action": [
 "acm-pca:*"
],
 "Resource": "*",
 "Condition": {
 "NotIpAddress": {
 "aws:SourceIp": [
 "192.0.2.0/24",
 "2001:db8::/32"
]
 }
 }
}

Using IPv6 addresses in IAM and Amazon Private CA Version latest 395

Amazon Private Certificate Authority User Guide

Amazon Private Certificate Authority Customer CP/CPS
Framework

Amazon Private Certificate Authority provides infrastructure services that enable you to create
certificate authority (CA) hierarchies, including root and subordinate CAs, without the investment
and maintenance costs of operating an on-premise CA. When you use Amazon Private CA to
create your CA hierarchies, there is a shared responsibility between you and Amazon Private CA.
The shared responsibility model can help relieve your operational burden as Amazon operates,
manages and controls the physical security of the facilities in which the service operates. You
assume responsibility and management of the certificate authority (including creation and deletion
of CA resources; distributing trust anchors; PKI hierarchy creation; certification policies and
practices; configuration for allowing or denying CA sharing across Amazon Web Services accounts;
policies for template usage; auditing; access controls, including separation of duties; and other
CA configuration and policies). You should carefully consider the services you choose as your
responsibilities vary depending on the services used, the integration of those services into your
IT environment, and applicable laws and regulations. For more information, see the Amazon Web
Services Cloud Security Shared Responsibility Model.

Creating a certificate policy (CP) or certification practice statement (CPS) for your private certificate
authority is a critical part of managing your public key infrastructure (PKI). A CP defines all the
requirements/rules for your PKI and the CPS explains how you meet the CP requirements. You are
responsible for creating a CP and CPS as the certificate authority of your PKI. Amazon Private CA
provides you with Amazon control and compliance documentation, such as the Amazon System
and Organization Controls (SOC) 2 Report, you can use to help create your CP and CPS and to
perform your control evaluation and verification procedures as required. Amazon SOC Reports
are independent third-party examination reports that demonstrate how Amazon achieves key
compliance controls and objectives. The purpose of the reports is to help you and your auditors
understand the Amazon controls established to support operations and compliance.

This document presents a framework that aligns to RFC 3647 to assist you with writing your CP
and CPS and identifies the shared responsibility between you and Amazon Private CA. Sections of
the CP/CPS requirements where Amazon Private CA has a compliance responsibility is identified
with "Shared" or "Amazon Private Certificate Authority" and corresponding "Supplemental
Information" is provided to help you understand how Amazon Private CA meets the associated
CP/CPS requirement. For example, Requirement 5 (4.5.1) is an Amazon Private CA responsibility
and you can find the corresponding control language in Section D.6 of the Amazon SOC 2 Report

CP/CPS Version latest 396

https://www.amazonaws.cn/compliance/shared-responsibility-model
https://www.amazonaws.cn/compliance/shared-responsibility-model
https://aws.amazon.com/compliance/soc-faqs/
https://aws.amazon.com/compliance/soc-faqs/
https://datatracker.ietf.org/doc/html/rfc3647

Amazon Private Certificate Authority User Guide

to help complete your CP/CPS. For more information on Amazon SOC Reports and how you can
request access to SOC Reports, please visit our SOC FAQs page.

CP/CPS Requirements and Responsibilities

CP/CPS Requirement Responsibility Supplemental Information

1. Introduction (All) You You are responsible for
documenting the overview,
document name and identific
ation, PKI participants,
certificate usage, policy
administration, and definitio
ns and acronyms related to
your PKI.

2. Publication and Repository
Responsibilities (All)

You You are responsible for
documenting the definitions
related to your PKI.

3. Identification and
Authentication (All)

You You are responsible for
documenting the procedure
s used to authenticate
the identity and/or other
attributes of an end-user
certificate applicant to a CA
or Registration Authority (RA)
prior to certificate issuance.

4. Certificate Life-Cycle
Operational Requireme
nts (4.4.1 — 4.4.6, 4.4.9 —
4.4.11)

Shared You are responsible for
specifying requirements
imposed upon issuing CA,
subject CAs, RAs, subscribe
rs, or other participants with
respect to the life-cycle of a
certificate.

CP/CPS Requirements and Responsibilities Version latest 397

https://aws.amazon.com/compliance/soc-faqs/

Amazon Private Certificate Authority User Guide

CP/CPS Requirement Responsibility Supplemental Information

Amazon Private CA provides
you with two fully managed
mechanisms to help support
revocation status checking:
Online Certificate Status
Protocol (OCSP) and certifica
te revocation lists (CRLs)
to help you meet 4.4.9 and
4.4.10.

4. Certificate Life-Cycle
Operational Requirements
(4.4.7, 4.4.8, 4.4.12)

N/A Amazon Private CA does not
support Certificate Re-key,
Certificate Modification, or
Key Escrow and Recovery.

CP/CPS Requirements and Responsibilities Version latest 398

Amazon Private Certificate Authority User Guide

CP/CPS Requirement Responsibility Supplemental Information

5. Facility, Management, and
Operational Controls (4.5.1)

Amazon Private CA You inherit access controls
that help you meet the
requirements in this section
that are within the scope of
the Amazon Private CA SOC
2 Type 2 Report (see Section
D.6 Physical Security and
Environmental Protection).

Note

You are responsib
le for the physical
security and data
classification of CA
data exported or
transferred out of the
Amazon environme
nt but not for the
physical security of
CA data stored on
Amazon.

5. Facility, Management, and
Operational Controls (4.5.2)

Shared You are responsible for
satisfying the requireme
nts in this section specific
to defining trusted roles for
the operations of your PKI
environment.

Amazon Private CA maintains
trusted roles specific to
physical access of cryptogra
phic modules.

CP/CPS Requirements and Responsibilities Version latest 399

Amazon Private Certificate Authority User Guide

CP/CPS Requirement Responsibility Supplemental Information

5. Facility, Management, and
Operational Controls (4.5.3)

Shared You are responsible for
satisfying the requirements
in this section specific to
background check, training,
and disciplinary actions
procedures for your trusted
persons.

You inherit controls related
to background checks,
training, and disciplinary
action procedures for Amazon
employees that are within the
scope of the Amazon Private
CA SOC 2 Type 2 Report
(see Section A. Policies, A.1
Control Environment, B.
Communications, and D.1
Security Organization and D.2
Employee User Access).

CP/CPS Requirements and Responsibilities Version latest 400

Amazon Private Certificate Authority User Guide

CP/CPS Requirement Responsibility Supplemental Information

5. Facility, Management, and
Operational Controls (4.5.4)

Shared You are responsible for
enabling, configuring
retention, and protectin
g CloudTrail and audit
reporting logs and CloudWatc
h alerts. Additionally, you
are responsible for creating
log processing procedures
and performing vulnerabi
lity assessments of your
use of the Amazon Private
CA service that satisfy the
requirements in this section.

You inherit controls related
to availability of your
logs, physical access/site
security, CA/RA configura
tion management, security of
Amazon infrastructure logs,
and vulnerability assessmen
ts of Amazon infrastructure
that are within the scope of
the Amazon Private CA SOC
2 Type 2 Report (see Section
A.1 Control Environme
nt, Section C.1 Service
Commitments, D.2 Employee
User Access, D.3 Logical
Security, D.6 Physical Security
and Environmental Protectio
n, D.7 Change Management,
D.8 Data Integrity, Availabil

CP/CPS Requirements and Responsibilities Version latest 401

Amazon Private Certificate Authority User Guide

CP/CPS Requirement Responsibility Supplemental Information

ity, and Redundancy, and E.1
Monitoring Activities).

5. Facility, Management, and
Operational Controls (4.5.5)

Shared You are responsible for
configuring backup and
retention periods that satisfy
the requirements in this
section.

You inherit controls related
to availability of your logs
(when you configure) that
are within the scope of the
Amazon Private CA SOC 2
Type 2 Report (see D.8 Data
Integrity, Availability, and
Redundancy).

5. Facility, Management, and
Operational Controls (4.5.6)

N/A Amazon Private CA does not
support Key Changeover.

CP/CPS Requirements and Responsibilities Version latest 402

Amazon Private Certificate Authority User Guide

CP/CPS Requirement Responsibility Supplemental Information

5. Facility, Management, and
Operational Controls (4.5.7)

Shared You are responsible for
implementing incident
and compromise handling
procedures specific to your
use of Amazon Private CA
that satisfy the requirements
in this section.

You inherit incident,
compromise handling
procedures, business continuit
y, and disaster recovery
procedures specific to
physical site housing and
infrastructure operation
s that help you meet the
requirements in this section
that are within the scope of
the Amazon Private CA SOC 2
Type 2 Privacy Report (see D.8
Data Integrity, Availability,
and Redundancy and Section
D.10 Privacy).

5. Facility, Management, and
Operational Controls (4.5.8)

You You are required to document
requirements relating to
procedures for termination
and termination of a CA or
RA, including the identity of
the custodian of CA and RA
archival records.

CP/CPS Requirements and Responsibilities Version latest 403

Amazon Private Certificate Authority User Guide

CP/CPS Requirement Responsibility Supplemental Information

6. Technical Controls (4.6.1) Shared You are responsible for
documenting the key
generation and installation
needs for your PKI.

Amazon Private CA provides
you with cryptographic
modules that are FIPS 140-3
level 3 certified for CA key
generation.

6. Technical Controls (4.6.2) Shared You are responsible for
documenting private key
protection and cryptogra
phic module engineering
controls such as cryptogra
phic standard requirements
and multi-person controls.

Amazon Private CA provides
you with cryptographic
modules that are FIPS 140-3
level 3 certified for CA key
generation and two-party
physical access controls to
HSMs.

6. Technical Controls (4.6.3) You You are responsible for
documenting other aspects
of key pair management such
as archival of your public key
and operational period of
certificates.

CP/CPS Requirements and Responsibilities Version latest 404

Amazon Private Certificate Authority User Guide

CP/CPS Requirement Responsibility Supplemental Information

6. Technical Controls (4.6.4) N/A Amazon Amazon Private CA
HSMs are always online and
have no notion of "activation
data".

Note

You are responsib
le for implementing
user access controls
to your Private CA to
appropriately restrict
the ability create CA's
and issue certificates.

6. Technical Controls (4.6.5) Shared You are responsible for
documenting computer
security controls for your use
of your Private CA.

You inherit controls related
to logical access of Amazon
employees, network and
computer security controls of
the Amazon infrastructure,
and password parameter
controls of Amazon employee
accounts that are within the
scope of the Amazon Private
CA SOC 2 Type 2 Report (see
Section D.2 Employee User
Access, D.3 Logical Security,
and D.6 Physical Security and
Environmental Protection).

CP/CPS Requirements and Responsibilities Version latest 405

Amazon Private Certificate Authority User Guide

CP/CPS Requirement Responsibility Supplemental Information

6. Technical Controls (4.6.6) Shared You are responsible for
documenting security
management controls related
to your use of your Private
CA.

You inherit controls related to
system development controls
of the Amazon Private CA
service that are within the
scope of the Amazon Private
CA SOC 2 Type 2 Report
(see Section D.7 Change
Management).

6. Technical Controls (4.6.7) Shared You are responsible for
documenting network
security controls for your use
of Private CA if applicable to
your PKI environment.

You inherit controls related
to network security controls
of the Amazon infrastructure
that are within the scope of
the Amazon Private CA SOC
2 Type 2 Report (see Section
C.1 Service Commitments,
D.3 Logical Security, and E.1
Monitoring Activities).

6. Technical Controls (4.6.8) Amazon Private CA Amazon Private CA uses
trusted time sources to
timestamp CA data.

CP/CPS Requirements and Responsibilities Version latest 406

Amazon Private Certificate Authority User Guide

CP/CPS Requirement Responsibility Supplemental Information

7. Certificate, CRL, and OCSP
Profiles (All)

Shared You are responsible for
documenting profile
requirements and certificate
input that meet the needs of
your PKI environment.

Amazon Private CA provides
you with profile templates
to help meet your profile
requirements.

8. Compliance Audit and
Other Assessment (All)

Shared You are responsible for
documenting compliance
audit and other assessments.

Amazon Private CA provides
you with a SOC 2 Report to
help you and your auditors
understand the Amazon
controls established to
support operations and
compliance.

9. Other Business and Legal
Matters

You You are responsible for
documenting general
business and legal matters
that cover your Private CA.

CP/CPS Requirements and Responsibilities Version latest 407

Amazon Private Certificate Authority User Guide

Monitor Amazon Private CA resources

Monitoring is an important part of maintaining the reliability, availability, and performance of
Amazon Private CA and your other Amazon solutions. Amazon provides the following monitoring
tools to watch Amazon Private CA, report when something is wrong, and take automatic actions
when appropriate:

• Amazon CloudWatch monitors your Amazon resources and the applications you run on Amazon
in real time. You can collect and track metrics, create customized dashboards, and set alarms
that notify you or take actions when a specified metric reaches a threshold that you specify.
For example, you can have CloudWatch track CPU usage or other metrics of your Amazon EC2
instances and automatically launch new instances when needed. For more information, see the
Amazon CloudWatch User Guide.

• Amazon CloudWatch Logs enables you to monitor, store, and access your log files from Amazon
EC2 instances, CloudTrail, and other sources. CloudWatch Logs can monitor information in the
log files and notify you when certain thresholds are met. You can also archive your log data in
highly durable storage. For more information, see the Amazon CloudWatch Logs User Guide.

• Amazon CloudTrail captures API calls and related events made by or on behalf of your Amazon
Web Services account and delivers the log files to an Amazon S3 bucket that you specify. You
can identify which users and accounts called Amazon, the source IP address from which the calls
were made, and when the calls occurred. For more information, see the Amazon CloudTrail User
Guide.

• Amazon EventBridge is a serverless event bus service that makes it easy to connect your
applications with data from a variety of sources. EventBridge delivers a stream of real-time
data from your own applications, Software-as-a-Service (SaaS) applications, and Amazon
services and routes that data to targets such as Lambda. This enables you to monitor events that
happen in services, and build event-driven architectures. For more information, see the Amazon
EventBridge User Guide.

The following topics describe Amazon cloud-monitoring tools available for use with Amazon
Private CA.

Version latest 408

https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/
https://docs.amazonaws.cn/AmazonCloudWatch/latest/logs/
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/
https://docs.amazonaws.cn/eventbridge/latest/userguide/
https://docs.amazonaws.cn/eventbridge/latest/userguide/

Amazon Private Certificate Authority User Guide

Amazon Private CA CloudWatch metrics

Amazon CloudWatch is a monitoring service for Amazon resources. You can use CloudWatch to
collect and track metrics, set alarms, and automatically react to changes in your Amazon resources.
CloudWatch metrics are published at least once.

Amazon Private CA supports the following CloudWatch metrics.

Metric Description

CRLGenerated A certificate revocation list (CRL) was
generated. This metric applies only to a
private CA.

MisconfiguredCRLBucket The S3 bucket specified for the CRL is not
correctly configured. Check the bucket policy.
This metric applies only to a private CA.

Time The time in milliseconds between an issuance
request and the completion (or failure) of
issuance. This metric applies only to the
IssueCertificate operation.

Success A certificate was successfully issued. This
metric applies only to the IssueCertificate
operation.

Failure An operation failed. This metric applies only to
the IssueCertificate operation.

For more information about CloudWatch metrics, see the following topics:

• Using Amazon CloudWatch Metrics

• Creating Amazon CloudWatch Alarms

Amazon Private CA CloudWatch metrics Version latest 409

https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/working_with_metrics.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html

Amazon Private Certificate Authority User Guide

Monitor Amazon Private CA with CloudWatch Events

You can use Amazon CloudWatch Events to automate your Amazon services and respond
automatically to system events such as application availability issues or resource changes. Events
from Amazon services are delivered to CloudWatch Events in near-real time. You can write simple
rules to indicate which events are of interest to you and the automated actions to take when an
event matches a rule. CloudWatch Events are published at least once. For more information, see
Creating a CloudWatch Events Rule That Triggers on an Event.

CloudWatch Events are turned into actions using Amazon EventBridge. With EventBridge, you can
use events to trigger targets including Amazon Lambda functions, Amazon Batch jobs, Amazon
SNS topics, and many others. For more information, see What Is Amazon EventBridge?

Success or failure when creating a private CA

These events are triggered by the CreateCertificateAuthority operation.

Success

On success, the operation returns the ARN of the new CA.

{
 "version":"0",
 "id":"event_ID",
 "detail-type":"ACM Private CA Creation",
 "source":"aws.acm-pca",
 "account":"account",
 "time":"2019-11-04T19:14:56Z",
 "region":"region",
 "resources":[
 "arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566"
],
 "detail":{
 "result":"success"
 }
}

Failure

On failure, the operation returns an ARN for the CA. Using the ARN, you can call
DescribeCertificateAuthority to determine the status of the CA.

Monitor Amazon Private CA with CloudWatch Events Version latest 410

https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/Create-CloudWatch-Events-Rule.html
https://docs.amazonaws.cn/eventbridge/latest/userguide/what-is-amazon-eventbridge.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_CreateCertificateAuthority.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_DescribeCertificateAuthority.html

Amazon Private Certificate Authority User Guide

{
 "version":"0",
 "id":"event_ID",
 "detail-type":"ACM Private CA Creation",
 "source":"aws.acm-pca",
 "account":"account",
 "time":"2019-11-04T19:14:56Z",
 "region":"region",
 "resources":[
 "arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566"
],
 "detail":{
 "result":"failure"
 }
}

Success or failure when issuing a certificate

These events are triggered by the IssueCertificate operation.

Success

On success, the operation returns the ARNs of the CA and of the new certificate.

{
 "version":"0",
 "id":"event_ID",
 "detail-type":"ACM Private CA Certificate Issuance",
 "source":"aws.acm-pca",
 "account":"account",
 "time":"2019-11-04T19:57:46Z",
 "region":"region",
 "resources":[
 "arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566",
 "arn:aws:acm-pca:region:account:certificate-authority/CA_ID/
certificate/certificate_ID"
],
 "detail":{
 "result":"success"
 }

Success or failure when issuing a certificate Version latest 411

https://docs.amazonaws.cn/privateca/latest/APIReference/API_IssueCertificate.html

Amazon Private Certificate Authority User Guide

}

Failure

On failure, the operation returns a certificate ARN and the ARN of the CA. With the certificate ARN,
you can call GetCertificate to view the reason for the failure.

{
 "version":"0",
 "id":"event_ID",
 "detail-type":"ACM Private CA Certificate Issuance",
 "source":"aws.acm-pca",
 "account":"account",
 "time":"2019-11-04T19:57:46Z",
 "region":"region",
 "resources":[
 "arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566",
 "arn:aws:acm-pca:region:account:certificate-authority/CA_ID/
certificate/certificate_ID"
],
 "detail":{
 "result":"failure"
 }
}

Success when revoking a certificate

This event is triggered by the RevokeCertificate operation.

No event is sent if the revocation fails or if the certificate has already been revoked.

Success

On success, the operation returns the ARNs of the CA and of the revoked certificate.

{
 "version":"0",
 "id":"event_ID",
 "detail-type":"ACM Private CA Certificate Revocation",
 "source":"aws.acm-pca",
 "account":"account",

Success when revoking a certificate Version latest 412

https://docs.amazonaws.cn/acm/latest/APIReference/API_GetCertificate.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_RevokeCertificate.html

Amazon Private Certificate Authority User Guide

 "time":"2019-11-05T20:25:19Z",
 "region":"region",
 "resources":[
 "arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566",
 "arn:aws:acm-pca:region:account:certificate-authority/CA_ID/
certificate/certificate_ID"
],
 "detail":{
 "result":"success"
 }
}

Success or failure when generating a CRL

These events are triggered by the RevokeCertificate operation, which should result in the creation
of a certificate revocation list (CRL).

Success

On success, the operation returns the ARN of the CA associated with the CRL.

{
 "version":"0",
 "id":"event_ID",
 "detail-type":"ACM Private CA CRL Generation",
 "source":"aws.acm-pca",
 "account":"account",
 "time":"2019-11-04T21:07:08Z",
 "region":"region",
 "resources":[
 "arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566"
],
 "detail":{
 "result":"success"
 }
}

Failure 1 – CRL could not be saved to Amazon S3 because of a permission error

Check your Amazon S3 bucket permissions if this error occurs.

Success or failure when generating a CRL Version latest 413

https://docs.amazonaws.cn/privateca/latest/APIReference/API_RevokeCertificate.html

Amazon Private Certificate Authority User Guide

{
 "version":"0",
 "id":"event_ID",
 "detail-type":"ACM Private CA CRL Generation",
 "source":"aws.acm-pca",
 "account":"account",
 "time":"2019-11-07T23:01:25Z",
 "region":"region",
 "resources":[
 "arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566"
],
 "detail":{
 "result":"failure",
 "reason":"Failed to write CRL to S3. Check your S3 bucket permissions."
 }
}

Failure 2 – CRL could not be saved to Amazon S3 because of an internal error

Retry the operation if this error occurs.

{
 "version":"0",
 "id":"event_ID",
 "detail-type":"ACM Private CA CRL Generation",
 "source":"aws.acm-pca",
 "account":"account",
 "time":"2019-11-07T23:01:25Z",
 "region":"region",
 "resources":[
 "arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566"
],
 "detail":{
 "result":"failure",
 "reason":"Failed to write CRL to S3. Internal failure."
 }
}

Failure 3 – Amazon Private CA failed to create a CRL

To troubleshoot this error, check your CloudWatch metrics.

Success or failure when generating a CRL Version latest 414

https://docs.amazonaws.cn/privateca/latest/APIReference/PcaCloudWatch.html

Amazon Private Certificate Authority User Guide

{
 "version":"0",
 "id":"event_ID",
 "detail-type":"ACM Private CA CRL Generation",
 "source":"aws.acm-pca",
 "account":"account",
 "time":"2019-11-07T23:01:25Z",
 "region":"region",
 "resources":[
 "arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566"
],
 "detail":{
 "result":"failure",
 "reason":"Failed to generate CRL. Internal failure."
 }
}

Success or failure when creating a CA audit report

These events are triggered by the CreateCertificateAuthorityAuditReport operation.

Success

On success, the operation returns the ARN of the CA and the ID of the audit report.

{
 "version":"0",
 "id":"event_ID",
 "detail-type":"ACM Private CA Audit Report Generation",
 "source":"aws.acm-pca",
 "account":"account",
 "time":"2019-11-04T21:54:20Z",
 "region":"region",
 "resources":[
 "arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566",
 "audit_report_ID"
],
 "detail":{
 "result":"success"
 }

Success or failure when creating a CA audit report Version latest 415

https://docs.amazonaws.cn/privateca/latest/APIReference/API_CreateCertificateAuthorityAuditReport.html

Amazon Private Certificate Authority User Guide

}

Failure

An audit report can fail when Amazon Private CA lacks PUT permissions on your Amazon S3 bucket,
when encryption is enabled on the bucket, or for other reasons.

{
 "version":"0",
 "id":"event_ID",
 "detail-type":"ACM Private CA Audit Report Generation",
 "source":"aws.acm-pca",
 "account":"account",
 "time":"2019-11-04T21:54:20Z",
 "region":"region",
 "resources":[
 "arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566",
 "audit_report_ID"
],
 "detail":{
 "result":"failure"
 }
}

Logging Amazon Private Certificate Authority API calls using
Amazon CloudTrail

Amazon Private Certificate Authority is integrated with Amazon CloudTrail, a service that provides
a record of actions taken by a user, role, or an Amazon service in Amazon Private CA. CloudTrail
captures API calls and signing operations for Amazon Private CA as events. The calls captured
include calls from the Amazon Private CA console and code calls to the Amazon Private CA API
operations. If you create a trail, you can enable continuous delivery of CloudTrail events to an
Amazon S3 bucket, including events for Amazon Private CA. If you don't configure a trail, you can
still view the most recent events in the CloudTrail console in Event history. Using the information
collected by CloudTrail, you can determine the request that was made to Amazon Private CA,
the IP address from which the request was made, who made the request, when it was made, and
additional details.

To learn more about CloudTrail, see the Amazon CloudTrail User Guide.

CloudTrail logs Version latest 416

https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-user-guide.html

Amazon Private Certificate Authority User Guide

Amazon Private CA information in CloudTrail

CloudTrail is enabled on your Amazon Web Services account when you create the account. When
activity occurs in Amazon Private CA, that activity is recorded in a CloudTrail event along with other
Amazon service events in Event history. You can view, search, and download recent events in your
Amazon Web Services account. For more information, see Viewing events with CloudTrail Event
history.

For an ongoing record of events in your Amazon Web Services account, including events for
Amazon Private CA, create a trail. A trail enables CloudTrail to deliver log files to an Amazon S3
bucket. By default, when you create a trail in the console, the trail applies to all Amazon Web
Services Regions. The trail logs events from all Regions in the Amazon partition and delivers the
log files to the Amazon S3 bucket that you specify. Additionally, you can configure other Amazon
services to further analyze and act upon the event data collected in CloudTrail logs. For more
information, see the following:

• Overview for creating a trail

• CloudTrail supported services and integrations

• Configuring Amazon SNS notifications for CloudTrail

• Receiving CloudTrail log files from multiple regions and Receiving CloudTrail log files from
multiple accounts

All Amazon Private CA actions are logged by CloudTrail and are documented in the Amazon Private
CA API reference. For example, calls to the ImportCACertificate, IssueCertificate and
CreateAuditReport actions generate entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or Amazon Identity and Access Management (IAM) user
credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another Amazon service.

For more information, see the CloudTrail userIdentity element.

Amazon Private CA information in CloudTrail Version latest 417

https://docs.amazonaws.cn/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/configure-sns-notifications-for-cloudtrail.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.amazonaws.cn/privateca/latest/APIReference/Welcome.html
https://docs.amazonaws.cn/privateca/latest/APIReference/Welcome.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

Amazon Private Certificate Authority User Guide

Amazon Private CA management events

Amazon Private CA integrates with CloudTrail to record API actions made by a user, a role, or an
Amazon service in Amazon Private CA. You can use CloudTrail to monitor Amazon Private CA API
requests in real time and store logs in Amazon Simple Storage Service, Amazon CloudWatch Logs,
and Amazon CloudWatch Events. Amazon Private CA supports logging the following actions and
operations as events in CloudTrail log files:

• CreateCertificateAuthority

• CreateCertificateAuthorityAuditReport

• CreatePermission

• DeleteCertificateAuthority

• DeletePermission

• DeletePolicy

• DescribeCertificateAuthority

• DescribeCertificateAuthorityReport

• GetCertificate

• GetCertificateAuthorityCertificate

• GetCertificateAuthorityCsr

• GetPolicy

• ImportCertificateAuthorityCertificate

• IssueCertificate

• ListCertificateAuthorities

• ListPermissions

• ListTags

• PutPolicy

• RestoreCertificateAuthority

• RevokeCertificate

• TagCertificateAuthority

• UntagCertificateAuthority

• UpdateCertificateAuthority

• GenerateOCSPResponse - Triggered when Amazon Private CA generates a OCSP response.

Amazon Private CA management events Version latest 418

https://docs.amazonaws.cn/privateca/latest/APIReference/API_CreateCertificateAuthority.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_CreateCertificateAuthorityAuditReport.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_CreatePermission.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_DeleteCertificateAuthority.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_DeletePermission.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_DeletePolicy.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_DescribeCertificateAuthority.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_DescribeCertificateAuthorityReport.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_GetCertificate.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_GetCertificateAuthorityCertificate.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_GetCertificateAuthorityCsr.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_API_GetPolicy.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_ImportCertificateAuthorityCertificate.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_IssueCertificate.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_ListCertificateAuthorities.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_ListPermissions.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_ListTags.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_PutPolicy.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_RestoreCertificateAuthority.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_RevokeCertificate.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_TagCertificateAuthority.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_UntagCertificateAuthority.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_UpdateCertificateAuthority.html

Amazon Private Certificate Authority User Guide

• SignCertificate - Generated when your client calls IssueCertificate.

• SignOCSPResponse - Generated when Amazon Private CA signs an OCSP response.

• GenerateCRL - Generated when Amazon Private CA generates a certificate revocation list (CRL).

• SignCACSR - Generated when Amazon Private CA signs a certificate authority (CA) certificate
signing request (CSR).

• SignCRL - Generated when Amazon Private CA signs a CRL.

Example Amazon Private CA events

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the
public API calls, so they don't appear in any specific order.

The following are examples of Amazon Private CA CloudTrail events.

Example 1: Management event, IssueCertificate

The following example shows a CloudTrail log entry that demonstrates the IssueCertificate
action.

{
 "version":"0",
 "id":"event_ID",
 "detail-type":"ACM Private CA Certificate Issuance",
 "source":"aws.acm-pca",
 "account":"account",
 "time":"2019-11-04T19:57:46Z",
 "region":"region",
 "resources":[
 "arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566",
 "arn:aws:acm-pca:region:account:certificate-authority/CA_ID/
certificate/certificate_ID"
],
 "detail":{
 "result":"success"
 }

Example Amazon Private CA events Version latest 419

https://docs.amazonaws.cn/privateca/latest/APIReference/API_IssueCertificate.html

Amazon Private Certificate Authority User Guide

}

Example 2: Management event, ImportCertificateAuthorityCertificate

The following example shows a CloudTrail log entry that demonstrates the
ImportCertificateAuthorityCertificate action.

{
 "eventVersion":"1.05",
 "userIdentity":{
 "type":"IAMUser",
 "principalId":"account",
 "arn":"arn:aws:iam::account:user/name",
 "accountId":"account",
 "accessKeyId":"key_ID"
 },
 "eventTime":"2018-01-26T21:53:28Z",
 "eventSource":"acm-pca.amazonaws.com",
 "eventName":"ImportCertificateAuthorityCertificate",
 "awsRegion":"region",
 "sourceIPAddress":"IP_address",
 "userAgent":"agent",
 "requestParameters":{
 "certificateAuthorityArn":"arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566",
 "certificate":{
 "hb":[
 45,
 45,
 ...10
],
 "offset":0,
 "isReadOnly":false,
 "bigEndian":true,
 "nativeByteOrder":false,
 "mark":-1,
 "position":1257,
 "limit":1257,
 "capacity":1257,
 "address":0
 },
 "certificateChain":{
 "hb":[

Example Amazon Private CA events Version latest 420

Amazon Private Certificate Authority User Guide

 45,
 45,
 ...10
],
 "offset":0,
 "isReadOnly":false,
 "bigEndian":true,
 "nativeByteOrder":false,
 "mark":-1,
 "position":1139,
 "limit":1139,
 "capacity":1139,
 "address":0
 }
 },
 "responseElements":null,
 "requestID":"request_ID",
 "eventID":"event_ID",
 "eventType":"AwsApiCall",
 "recipientAccountId":"account"
}

Example Amazon Private CA events Version latest 421

Amazon Private Certificate Authority User Guide

Troubleshoot issues with Amazon Private Certificate
Authority

Consult the following topics if you have problems using Amazon Private Certificate Authority.

Topics

• Troubleshoot Amazon Private CA certificate revocation issues

• Troubleshoot Amazon Private Certificate Authority exception messages

• Troubleshoot Amazon Private CA Matter-compliant certificate errors

Troubleshoot Amazon Private CA certificate revocation issues

OCSP response latency

OCSP responsiveness may be slower if the caller is geographically distant from a regional edge
cache or from the Region of the issuing CA. For more information about regional edge cache
availability, see Global Edge Network. We recommend issuing certificates in a Region near where
they will be used.

Amazon S3 bucket creation failure for CRLs

Your private CA may fail to create a destination Amazon S3 bucket for your CRL if Amazon S3
Block public access (bucket settings) are enforced on your account. Check your Amazon S3
settings if this occurs. For more information, see Using Amazon S3 Block Public Access.

Revocation of self-signed certificates

You can't revoke a self-signed CA certificate. To functionally revoke the certificate, delete the CA.

Troubleshoot Amazon Private Certificate Authority exception
messages

An Amazon Private CA command might fail for several reasons. For information on each exception
and recommendations for resolving them, see the table below.

Certificate revocation issues Version latest 422

http://www.amazonaws.cn/cloudfront/details#Global_Edge_Network
https://docs.amazonaws.cn/AmazonS3/latest/userguide/access-control-block-public-access.html

Amazon Private Certificate Authority User Guide

Amazon Private CA Exceptions

Exception Returned by
Amazon Private CA

Description Remediation

AccessDeniedExcept
ion

The permissions required
to use the given command
have not been delegated by
a private CA to the calling
account.

For information on delegatin
g permissions in Amazon
Private CA, see Assign
certificate renewal permissio
ns to ACM.

InvalidArgsException A certificate creation or
renewal request was made
with invalid parameters.

Check the command's
individual documentation to
make sure that your input
parameters are valid. If you
are creating a new certificate,
make sure that the requested
signing algorithm can be used
with the CA's key type.

InvalidStateExcept
ion

The associated private CA
cannot renew the certifica
te because it is not in the
ACTIVE state.

Attempt to restore the
private CA. If the private CA
is outside of its restoration
period, the CA cannot be
restored and the certificate
cannot be renewed.

LimitExceededExcep
tion

Each certificate authority (CA)
has a quota of certificates
that it can issue. The private
CA that is associated with
the designated certificate
has reached its quota. For
more information, see Service
Quotas in the Amazon Web
Services General Reference
Guide.

Contact the Amazon Web
Services Support Center to
 request a quota increase.

Exception messages Version latest 423

https://docs.amazonaws.cn/general/latest/gr/pca.html#limits_pca
https://docs.amazonaws.cn/general/latest/gr/pca.html#limits_pca
http://www.amazonaws.cn/support-plans/
http://www.amazonaws.cn/support-plans/

Amazon Private Certificate Authority User Guide

Exception Returned by
Amazon Private CA

Description Remediation

MalformedCSRExcept
ion

The certificate signing request
(CSR) that was submitted to
 Amazon Private CA cannot be
verified or validated.

Confirm that your CSR was
properly generated and
configured.

OtherException An internal error has caused
the request to fail.

Attempt to run the command
again. If the problem persists,
contact the Amazon Web
Services Support Center.

RequestFailedExcep
tion

A networking problem in your
Amazon environment caused
the request to fail.

Retry the request. If the
failure persists, check your
Amazon VPC (VPC) con
figuration.

ResourceNotFoundEx
ception

The private CA that issued the
certificate was deleted and
no longer exists.

Request a new certificate
from another active CA.

Exception messages Version latest 424

http://www.amazonaws.cn/support-plans/
http://www.amazonaws.cn/support-plans/
https://docs.amazonaws.cn/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.amazonaws.cn/vpc/latest/userguide/what-is-amazon-vpc.html

Amazon Private Certificate Authority User Guide

Exception Returned by
Amazon Private CA

Description Remediation

ThrottlingException A requested API action failed
because it exceeded a quota.

Confirm that you are not
issuing more calls than
allowed by Amazon Private
CA.

A ThrottlingException
error may also occur because
 you have encountered a
transient condition rather
than from an exceeded
quota. If you encounter the
error and you have not been
 making calls in excess of the
quota, try your request again.

If you are running up against
a quota, you may be able
to request an increase. For
more information, see Service
Quotas in the Amazon Web
Services General Reference
Guide.

ValidationException The request's input parameter
s were incorrectly formatted
, or the validity period of the
root certificate ends before
the validity period of the
requested certificate.

Check the syntax requireme
nts of the command's input
parameters as well as the
validity period of your CA's
root certificate. For inform
ation about changing the
validity period, see Update a
private CA in Amazon Private
Certificate Authority.

Exception messages Version latest 425

https://docs.amazonaws.cn/general/latest/gr/pca.html#limits_pca
https://docs.amazonaws.cn/general/latest/gr/pca.html#limits_pca

Amazon Private Certificate Authority User Guide

Troubleshoot Amazon Private CA Matter-compliant certificate
errors

The Matter connectivity standard specifies certificate configurations that improve the security and
consistency of internet of things (IoT) devices. Java samples for creating Matter-compliant root CA,
intermediate CA, and end-entity certificates can be found at Use Amazon Private CA to implement
Matter certificates.

To assist with troubleshooting, the Matter developers provide a certificate verification tool called
chip-cert. Errors that the tool reports are listed in the following table with remediations.

Error
code

Meaning Remediation

0x0000030
5

BasicConstraints ,
KeyUsage, and Extension
KeyUsage extensions
must be marked critical.

Ensure that you have selected the correct template for your use case.

0x0000005
0

The authority key identifier
extension must be present.

Amazon Private CA does not set the authority key identifier extension
on root certificates. You must generate a Base64-encoded Autho
rityKeyIdentifier value using the CSR and then pass it through a
 CustomExtension. For more information, see Activate a Root CA for
Node Operational Certificates (NOC). and Activate a Product Attestati
on Authority (PAA).

0x0000004
E

Certificate is expired. Ensure that the certificate you use is unexpired.

0x0000001
4

Certificate chain validation
failure.

This error may be encountered if you attempt to create a Matter-
compliant end-entity certificate without using the provided Java
examples, which use the Amazon Private CA API to pass a properly
configured KeyUsage.

By default, Amazon Private CA generates nine-bit KeyUsage extension
 values, with the ninth bit resulting in an extra byte. Matter ign
ores the extra byte during format conversions, causing chain-valid
ation failures. However, a CustomExtension in the APIPassth

Matter-compliant certificate errors Version latest 426

https://github.com/project-chip/connectedhomeip
https://github.com/project-chip/connectedhomeip/tree/master/src/tools/chip-cert
https://docs.amazonaws.cn/privateca/latest/APIReference/API_CustomExtension.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_CustomExtension.html

Amazon Private Certificate Authority User Guide

Error
code

Meaning Remediation

rough template can be used to set the exact number of bytes in
the KeyUsage value. For an example, see Create a Node Operational
Certificate (NOC).

If you modify the sample code or use an alternative X.509 utility such
as OpenSSL, you need to perform manual verification in order to avoid
chain validation errors.

To verify that conversions are lossless

1.
Use openssl to verify that a certificate a node (end-entity) certifica
te contains a valid chain. In this exanple, rcac.pem is the root
CA certificate, icac.pem is the intermediate CA certificate, and
 noc.pem is the node certificate.

openssl verify -verbose -CAfile <(cat rcac.pem icac.pem)
 noc.pem

2.
Use chip-cert to convert the PEM-formatted node certificate to
TLV (tag, length, value) format and back again.

./chip-cert convert-cert noc.pem noc.chip -c

./chip-cert convert-cert noc.chip noc_converted.pem -p

The files noc.pem and noc_converted.pem should be exactly
the same as confirmed by a string comparison tool.

Matter-compliant certificate errors Version latest 427

https://github.com/project-chip/connectedhomeip/tree/master/src/tools/chip-cert

Amazon Private Certificate Authority User Guide

Secure Kubernetes with Amazon Private CA

Note

Amazon EKS supports Amazon Private CA Connector for Kubernetes as an EKS Add-on. This
simplifies installation and configuration of the connector. See Amazon add-ons for more
information.

Kubernetes containers and applications use digital certificates to provide secure authentication
and encryption over TLS. A widely adopted solution for TLS certificate life-cycle management in
Kubernetes is cert-manager, an add-on to Kubernetes that requests certificates, distributes them to
Kubernetes containers, and automates certificate renewal.

Amazon Private CA provides an open-source plug-in to cert-manager, aws-privateca-issuer, for
cert-manager users who want to set up a CA without storing private keys in the cluster. Users with
regulatory requirements for controlling access to and auditing their CA operations can use this
solution to improve auditability and support compliance. You can use the Amazon Private CA Issuer
plugin with Amazon Elastic Kubernetes Service (Amazon EKS), a self-managed Kubernetes on
Amazon, or in on-premises Kubernetes. You can use the plug-in with x86 and ARM architecture.

The diagram below shows some of the options available for using TLS in an Amazon EKS cluster.
This example cluster, containing various resources, is situated behind a load balancer. The numbers
identify possible end-points for TLS-secured communications, including the external load balancer,
the ingress controller, an individual pod within a service, and a pair of pods communicating
securely with each other.

Version latest 428

https://docs.aws.amazon.com/eks/latest/userguide/workloads-add-ons-available-eks.html#add-ons-aws-privateca-connector
https://cert-manager.io/docs/
https://github.com/cert-manager/aws-privateca-issuer

Amazon Private Certificate Authority User Guide

1. Termination at the load balancer.

Elastic Load Balancing (ELB) is an Amazon Certificate Manager integrated service, which means
that you can provision ACM with a private CA, sign a certificate with it, and install it using using
the ELB console. This solution provides encrypted communication between a remote client
and the load balancer. Data is passed unencrypted to the EKS cluster. Alternatively, you could
provide a private certificate to a non-Amazon load balancer to terminate TLS.

2. Termination at the Kubernetes ingress controller.

The ingress controller resides inside the EKS cluster as a native load balancer and router. If you
have installed both cert-manager and aws-privateca-issuer, and provisioned the cluster with

Version latest 429

Amazon Private Certificate Authority User Guide

a private CA, Kubernetes can install a signed TLS certificate on the controller, allowing it to
serve as the cluster's end-point for external communications. Communications between the load
balancer and the ingress controller are encrypted, and after ingress, data passes unencrypted to
the cluster's resources.

3. Termination at a pod.

Each pod is a group of one or more containers that shares storage and network resources. If you
have installed both cert-manager and aws-privateca-issuer, and provisioned the cluster with a
private CA, Kubernetes can install a signed TLS certificates on pods as needed. A TLS connection
terminating at a pod is unavailable by default to other pods in the cluster.

4. Secure communications between pods.

You can also provision multiple pods with certificates that allow them to communicate with one
another. The following scenarios are possible:

• Provisioning with Kubernetes-generated, self-signed certificates. This secures communications
between pods, but self-signed certificates do not satisfy HIPAA or FIPS requirements.

• Provisioning with certificates signed by a private CA. As in numbers 2 and 3 above, this
requires installing both cert-manager and aws-privateca-issuer, and provision the cluster
with a private CA. Kubernetes can then install signed TLS certificates on the pods as needed.

Cross-account use of the cert-manager

Administrators with cross-account access to a CA can use cert-manager to provision a Kubernetes
cluster. For more information, see Security best practices for Cross-account access to private CAs.

Note

Only certain Amazon Private CA certificate templates can be used in cross-account
scenarios. See the section called “Supported certificate templates ” for a list of available
templates.

Supported certificate templates

The following table lists Amazon Private CA templates that can be used with cert-manager to
provision a Kubernetes cluster.

Cross-account use of the cert-manager Version latest 430

Amazon Private Certificate Authority User Guide

Templates supported for Kubernetes Support for cross-account use

BlankEndEntityCertificate_CSRPassthrough/
V1 definition

CodeSigningCertificate/V1 definition

EndEntityCertificate/V1 definition ✓

EndEntityClientAuthCertificate/V1 definition ✓

EndEntityServerAuthCertificate/V1 definition ✓

OCSPSigningCertificate/V1 definition

Example solutions

The following integration solutions show how to configure access to Amazon Private CA on an
Amazon EKS cluster.

• TLS-enabled Kubernetes clusters with Amazon Private CA and Amazon EKS

• Setting up end-to-end TLS encryption on Amazon EKS with the new Amazon Load Balancer
Controller

Example solutions Version latest 431

https://go.aws/3ifFNEJ
http://www.amazonaws.cn/blogs/containers/setting-up-end-to-end-tls-encryption-on-amazon-eks-with-the-new-aws-load-balancer-controller/
http://www.amazonaws.cn/blogs/containers/setting-up-end-to-end-tls-encryption-on-amazon-eks-with-the-new-aws-load-balancer-controller/

Amazon Private Certificate Authority User Guide

Amazon Private CA Connector for Active Directory

Amazon Private CA can issue and manage certificates required by Amazon Managed Microsoft
AD. Using the Amazon Private CA Connector for Active Directory (Connector for AD), you can
replace on-premises enterprise or other third-party CAs with a managed private CA that you own,
providing certificate enrollment to users, groups, and machines that are managed by your AD.

You can use the Connector for AD with Amazon Managed Microsoft AD to eliminate on-premises
infrastructure by migrating your AD and public key infrastructure to the cloud. For customers
looking to use Amazon Private CA with their on-premises AD, this feature also integrates with
Amazon Managed Microsoft AD Connector.

Topics

• Are You a First-Time Connector for AD User?

• Set up Connector for AD

• Get started with Amazon Private CA Connector for Active Directory

• Amazon Private CA connectors for Active Directory

• Troubleshoot issues with Amazon Private CA Connector for Active Directory

Are You a First-Time Connector for AD User?

If you are a first-time user of Connector for AD, we recommend that you begin by reading the
following sections:

• What is Amazon Private CA?

• What is Amazon Directory Service?

Access Connector for AD

You can access Connector for AD through the console, Amazon CLI, and APIs. You can get access
to the connector in the console from the Amazon Private CA console, from your Amazon Directory
Service console, or by searching for Connector for AD in the Amazon Web Services Management
Console search bar.

Are You a First-Time Connector for AD User? Version latest 432

https://docs.amazonaws.cn/directoryservice/latest/admin-guide/what_is.html

Amazon Private Certificate Authority User Guide

Pricing

Connector for AD is offered as a feature of Amazon Private CA at no additional cost. You only pay
for the private certificate authorities and the certificates you issue through them.

For the latest Amazon Private CA pricing information, see Amazon Private Certificate Authority
Pricing. You can also use the Amazon pricing calculator to estimate costs.

Set up Connector for AD

The steps in this section are prerequisites to using Connector for AD. It assumes that you've already
created an Amazon account. After you complete the steps on this page, you can get started with
creating a connector for AD.

Step 1: Create a private CA using Amazon Private CA

Set up a private certificate authority (CA) for issuing certificates to your directory objects. For more
information, see Certificate authorities in Amazon Private CA.

The private CA must be in the Active state to create a Connector for AD. The private CA's subject
name must include a common name. Connector creation will fail if you try to create a connector
using a private CA without a common name.

Step 2: Set up an Active Directory

In addition to a private CA, you need an active directory in a virtual private cloud (VPC). Connector
for AD supports the following directory types offered by Amazon Directory Service:

• Amazon Managed Microsoft Active Directory: With Amazon Directory Service you can run
Microsoft Active Directory (AD) as a managed service. Amazon Directory Service for Microsoft
Active Directory also referred to as Amazon Managed Microsoft AD, is powered by Windows
Server 2019. With Amazon Managed Microsoft AD, you can run directory-aware workloads in the
Amazon Web Services Cloud, including Microsoft Sharepoint and custom .Net and SQL Server-
based applications.

• Active Directory Connector: AD Connector is a directory gateway that can redirect directory
requests to your on-premises Microsoft Active Directory, without caching any information in the
cloud. AD Connector supports connecting to a domain hosted on Amazon EC2

Pricing Version latest 433

http://www.amazonaws.cn/private-ca/pricing/
http://www.amazonaws.cn/private-ca/pricing/
https://calculator.aws/#/createCalculator/certificateManager
https://docs.amazonaws.cn/directoryservice/latest/admin-guide/directory_microsoft_ad
https://docs.amazonaws.cn/directoryservice/latest/admin-guide/directory_ad_connector

Amazon Private Certificate Authority User Guide

Note

Enrolling domain controllers is not supported when using the Connector for AD with
Amazon Managed Microsoft AD.

(Active Directory Connector only) Step 3: Delegate permissions to
service account

Note

If you are using Amazon Managed Microsoft AD the additional permissions are delegated
automatically when you authorize the Connector for AD service with your directory. You
can skip this prerequisite step.

When using the Directory Service AD Connector, you need to delegate additional permissions to
the service account. Set access-control list (ACL) on the service account to allow the ability:

• Add and remove a Service Principal Name (SPN) to itself

• Create and update certification authorities in the following containers:

#containers
CN=Public Key Services,CN=Services,CN=Configuration
CN=AIA,CN=Public Key Services,CN=Services,CN=Configuration
CN=Certification Authorities,CN=Public Key Services,CN=Services,CN=Configuration

• Create and update a NTAuthCertificates Certification Authority (CA) object. Note: if the
NTAuthCertificates CA object exists then you must delegate permissions for it. If the object does
not exist then you must delegate the ability to create child objects on the Public Key Services
container.

#objects
CN=NTAuthCertificates,CN=Public Key Services,CN=Services,CN=Configuration

(Active Directory Connector only) Step 3: Delegate permissions to service account Version latest 434

Amazon Private Certificate Authority User Guide

The PowerShell script available in the official Connector for Active Directory repository can be used
to delegate the additional permissions required for the Directory Service AD Connector service
account.

This script creates the NTAuthCertificates certification authority object.

For the latest version of the script and usage details, refer to the README in the GitHub repository.

Step 4: Create IAM Policy

To create a connector for AD, you need an IAM policy that allows you to create connector resources,
share your private CA with the Connector for AD service, and authorize the Connector for AD
service with your directory.

This is an example a user managed policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "pca-connector-ad:*",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "acm-pca:DescribeCertificateAuthority",
 "acm-pca:GetCertificate",
 "acm-pca:GetCertificateAuthorityCertificate",
 "acm-pca:ListCertificateAuthorities",
 "acm-pca:ListTags",
 "acm-pca:PutPolicy"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "acm-pca:IssueCertificate",
 "Resource": "*",
 "Condition": {
 "StringLike": {

Step 4: Create IAM Policy Version latest 435

https://github.com/aws-samples/sample-aws-privateca-connector-for-active-directory
https://github.com/aws-samples/sample-aws-privateca-connector-for-active-directory

Amazon Private Certificate Authority User Guide

 "acm-pca:TemplateArn": "arn:aws:acm-pca:::template/
BlankEndEntityCertificate_APIPassthrough/V*"
 },
 "ForAnyValue:StringEquals": {
 "aws:CalledVia": "pca-connector-ad.amazonaws.com"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "ds:AuthorizeApplication",
 "ds:DescribeDirectories",
 "ds:ListTagsForResource",
 "ds:UnauthorizeApplication",
 "ds:UpdateAuthorizedApplication"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:CreateVpcEndpoint",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeSubnets",
 "ec2:DescribeVpcEndpoints",
 "ec2:DescribeVpcs",
 "ec2:DeleteVpcEndpoints"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeTags",
 "ec2:DeleteTags",
 "ec2:CreateTags"
],
 "Resource": "arn:*:ec2:*:*:vpc-endpoint/*"
 }
]
}

Step 4: Create IAM Policy Version latest 436

Amazon Private Certificate Authority User Guide

Connector for AD requires additional Amazon RAM permissions, for both console and command
line use.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "ram:CreateResourceShare",
 "Resource": "*",
 "Condition": {
 "StringEqualsIfExists": {
 "ram:Principal": "pca-connector-ad.amazonaws.com",
 "ram:RequestedResourceType": "acm-pca:CertificateAuthority"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "ram:GetResourcePolicies",
 "ram:GetResourceShareAssociations",
 "ram:GetResourceShares",
 "ram:ListPrincipals",
 "ram:ListResources",
 "ram:ListResourceSharePermissions",
 "ram:ListResourceTypes"
],
 "Resource": "*"
 }
]
}

Step 5: Share your private CA with Connector for AD

You will need to share your private CA with the connectors service by using Amazon Resource
Access Manager service principal sharing.

When you create a connector in the Amazon console, the resource share is automatically created
for you.

Step 5: Share your private CA with Connector for AD Version latest 437

Amazon Private Certificate Authority User Guide

When you create a resource share using the Amazon CLI, you will use the Amazon RAM create-
resource-share command.

The following command creates a resource share:

$ aws ram create-resource-share \
 --region us-east-1 \
 --name MyPcaConnectorAdResourceShare \
 --permission-arns arn:aws:ram::aws:permission/
AWSRAMBlankEndEntityCertificateAPIPassthroughIssuanceCertificateAuthority \
 --resource-arns arn:aws:acm-pca:region:account:certificate-authority/CA_ID \
 --principals pca-connector-ad.amazonaws.com \
 --sources account

The service principal that calls CreateConnector has certificate issuance permissions on the PCA. To
prevent service principals that use Connector for AD from having general access to your Amazon
Private CA resources, restrict their permissions using CalledVia.

Step 6: Create directory registration

You authorize the Connector for AD service with your directory so the connector can communicate
with your directory. To authorize the Connector for AD service, you create a directory registration.
For more information on creating a directory registration, see Manage directory registrations

Step 7: Configure security groups

Communication between your VPC and the Connector for AD connector is through Amazon
PrivateLink, which requires a security group(s) with inbound rules that open port 443 TCP on your
VPC. You will be asked for this security group when you create a connector. You can specify the
source as custom and select your VPC's CIDR block. You can choose to restrict this further (i.e. IP,
CIDR, and security group ID).

Step 8: Configure network access for directory objects

Directory objects require public internet access to validate Online Certificate Status Protocol
(OCSP) and certificate revocation lists (CRLs) from the following domains:

*.windowsupdate.com

Step 6: Create directory registration Version latest 438

Amazon Private Certificate Authority User Guide

*.amazontrust.com

Minimum required access rules:

• Required for OCSP and CRL communication:

TCP 80: (HTTP) to 0.0.0.0/0

• Required for Connector for AD:

TCP 443: (HTTPS) to 0.0.0.0/0

• Required for Active Directory:

TCP 88: (Kerberos) to Domain Controller IP range
TCP/UDP 389/636: (LDAP/LDAPS) to Domain Controller IP range, depending on Domain
 Controller configuration
TCP/UDP 53: (DNS) to 0.0.0.0/0

If the devices do not have public internet access, certificate issuance will fail intermittently with the
error code WS_E_OPERATION_TIMED_OUT.

Note

If you are configuring a security group for an Amazon EC2 instance, it does not have to be
the same one in Step 7.

Get started with Amazon Private CA Connector for Active
Directory

With Amazon Private CA Connector for Active Directory, you can issue certificates from your
private CA to your Active Directory objects for authentication and encryption. When you create a
connector, Amazon Private Certificate Authority creates an endpoint for you in your VPC for your
directory objects to request certificates.

To issue certificates, you create a connector and AD-compatible templates for the connector. When
you create a template, you can set enrollment permissions for your AD groups.

Get started Version latest 439

Amazon Private Certificate Authority User Guide

Topics

• Before you begin

• Step 1: Create a connector

• Step 2: Configure Microsoft Active Directory policies

• Step 3: Create a template

• Step 4: Configure Microsoft group permissions

Before you begin

The following tutorial guides you through the process of creating a connector for AD and a
connector template. To follow this tutorial, you must first fulfill the prerequisites listed in the
section.

Step 1: Create a connector

To create a connector, see Creating a connector for Active Directory.

Step 2: Configure Microsoft Active Directory policies

Connector for AD is unable to view or manage the customer's group policy object (GPO)
configuration. The GPO controls the routing of AD requests to the customer's Amazon Private CA
or to other authentication or certificate vending servers. An invalid GPO configuration may result in
your requests being routed incorrectly. It is up to customers to configure and test the Connector for
AD configuration.

Group Policies are associated with a Connector, and you may choose to create multiple Connectors
for a single AD. It is up to you to manage the access control to each connector if its group policy
configurations are different.

The security of the data plane calls depends on Kerberos and your VPC configuration. Anyone
with access to the VPC can make data plane calls as long as they are authenticated to the
corresponding AD. This exists outside of the boundary of AWSAuth and managing authorization
and authentication is up to you, the customer.

In Active Directory, follow the below steps to create a GPO that points to the URI generated when
you created a connector. This step is required to use Connector for AD from the console or the
command-line.

Before you begin Version latest 440

Amazon Private Certificate Authority User Guide

Configure GPOs.

1. Open Server Manager on the DC

2. Go to Tools and choose Group Policy Management in the upper right corner of the console.

3. Go to Forest > Domains. Select your domain name and right click on your domain. Select
Create a GPO in this domain, and link it here … and enter PCA GPO for the name.

4. The newly created GPO will now be listed under your domain name.

5. Choose PCA GPO and select Edit. If a dialog box opens with the alert message This is a link
and that changes will be globally propagated, acknowledge the message to continue. The
Group Policy Management Editor should open.

6. In the Group Policy Management Editor, go to Computer Configuration > Policies >
Windows Settings > Security Settings > Public Key Policies (choose the folder).

7. Go to object type and choose Certificate Services Client - Certificate Enrollment Policy

8. In the options, change Configuration Model to Enabled.

9. Confirm that Active Directory Enrollment Policy is checked and Enabled. Choose Add.

10. The Certificate Enrollment Policy Server window should open.

11. Enter the certificate enrollment policy server endpoint that was generated when you created
your connector in the Enter enrollment server policy URI field.

12. Leave the Authentication Type as Windows integrated.

13. Choose Validate. After validation succeeds, select Add. The dialog box closes.

14. Go back to Certificate Services Client - Certificate Enrollment Policy and check the box
beside the newly created connector to ensure that the connector is the default enrollment
policy

15. Choose Active Directory Enrollment Policy and select Remove.

16. In the confirmation dialog box, choose Yes to delete the LDAP-based authentication.

17. Choose Apply and OK on the Certificate Services Client > Certificate Enrollment Policy
window and close it.

18. Go to the Public Key Policies folder and choose Certificate Services Client - Auto-
Enrollment.

19. Change the Configuration Model option to Enabled.

20. Confirm that Renew expired certificates and Update Certificates are both checked. Leave the
other settings as they are.

Step 2: Configure Microsoft Active Directory policies Version latest 441

Amazon Private Certificate Authority User Guide

21. Choose Apply, then OK, and close the dialogue box.

Configure the Public Key Policies for user configuration next. Go to User Configuration > Policies >
Windows Settings > Security Settings > Public Key Policies. Follow the procedures outlined from
step 6 to step 21 to configure the Public Key Policies for user configuration.

Once you've finished configuring GPOs and Public Key Policies, objects in the domain will request
certificates from Amazon Private CA Connector for AD and get certificates issued by Amazon
Private CA.

Step 3: Create a template

To create a template, see Create a connector template.

Step 4: Configure Microsoft group permissions

To configure Microsoft group permissions, see Manage Connector for AD template access control
entries.

Amazon Private CA connectors for Active Directory

The procedures in this section describe how to create Active Directory (AD) connectors, configure
templates, and integrate with Amazon Private CA and Active Directory. You can perform these
operations from the Amazon Private CA Connector for AD console, by using the Connector for AD
section of the Amazon CLI, or by using the Amazon Private CA Connector for AD API.

Note

Although Amazon Private CA Connector for AD is closely integrated with Amazon Private
CA, the two services have separate APIs. For more information, see the Amazon Private
Certificate Authority API Reference and the Amazon Private CA Connector for Active
Directory API Reference.

Creating a connector for Active Directory

Use the following procedures to create a connector using the console, command line, or API for
Amazon Private CA Connector for Active Directory.

Step 3: Create a template Version latest 442

https://docs.amazonaws.cn/privateca/latest/APIReference/
https://docs.amazonaws.cn/privateca/latest/APIReference/
https://docs.amazonaws.cn/pca-connector-ad/latest/APIReference/
https://docs.amazonaws.cn/pca-connector-ad/latest/APIReference/

Amazon Private Certificate Authority User Guide

Console

To create a connector using the console

Sign in to your Amazon account and open the Amazon Private CA Connector for Active
Directory console at https://console.amazonaws.cn/pca-connector-ad/home .

1. On the first-time service landing page or the Connectors for Active Directory page, choose
Create connector.

2. On the Create Private CA Connector for Active Directory page, provide information in the
Active Directory section.

• Under Select your Active Directory type, choose one of the two available types:

• Amazon Directory Service for Microsoft Active Directory – Specifies an Active
Directory managed by Amazon Directory Service.

• On-premises Active Directory with Amazon AD Connector– Uses AD Connector to
access an Active Directory that you host on-premises.

• Under Select your directory, choose your directory from the list.

Alternatively, you can choose Create directory, which opens the Amazon Directory
Service console in a new window. When you finish creating a new directory, return to
the Amazon Private CA Connector for Active Directory console and refresh the list of
directories. Your new directory should be available for selection.

Note

When creating a directory, note that Connector for AD supports only the
following directory types offered in the Amazon Directory Service console:

• Amazon Managed Microsoft AD

• AD Connector

• Under Select security groups for VPC endpoint, choose a security group from the list.

Alternatively, you can choose Create security group, which opens the Amazon EC2
console to the Create security group page in a new window. When you finish creating a
security group, return to the Amazon Private CA Connector for Active Directory console
and refresh the list of security groups. Your new security group should be available for
selection.

Create connector Version latest 443

https://console.amazonaws.cn/pca-connector-ad/home

Amazon Private Certificate Authority User Guide

3. In the IP address type section, choose from the following options:

• IPv4 - Enables IPv4 connectivity to the service. Choose this option only if all subnets
hosting your directory have IPv4 address ranges.

• Dualstack - Enables both IPv4 and IPv6 connectivity to the service. Choose this option
only if all subnets hosting your directory have both IPv4 and IPv6 address ranges.

4. In the Private certificate authority section, choose a private CA from the list.

Alternatively, you can choose Create Private CA, which opens the Amazon Private CA
console to the Private certificate authorities page in a new window. When you finish
creating a CA, return to the Amazon Private CA Connector for Active Directory console and
refresh the list of CAs. Your new CA should be available for selection.

5. In the Tags – optional pane, you can apply and remove metadata on your AD resource.
Tags are key-value string pairs where the key must be unique to the resource and the value
is optional. The pane displays any existing tags for the resource in a table. The following
actions are supported.

• Choose Manage tags to open the Manage tags page.

• Choose Add new tag to create a tag. Fill in the Key field and, optionally, the Value field.
Choose Save changes to apply the tag.

• Choose the Remove button next to a tag to mark it for deletion, and choose Save
changes to confirm.

6. After providing the required information and reviewing your choices, choose Create
connector. This opens the Connectors for Active Directory details page where can view
the progress of your connector as it is created.

After the process of creating a connector completes, assign it a service principal name.

API

To create a connector using the API

To create a connector for Active Directory with the API, use the CreateConnector action in the
Amazon Private CA Connector for Active Directory API.

CLI

To create a connector using the Amazon CLI

Create connector Version latest 444

https://docs.amazonaws.cn/pca-connector-ad/latest/APIReference/API_CreateConnector.html

Amazon Private Certificate Authority User Guide

To create a connector for Active Directory with the CLI, use the create-connector command in
the Amazon Private CA Connector for Active Directory section of the Amazon CLI.

Create a connector template

A template is a list of configurations for how the certificate should look once issued, and how the
client should handle the certificates. The following procedures explain how to create a template.

Console

To create a template using the console

1. Sign in to your Amazon account and open the Amazon Private CA Connector for Active
Directory console at https://console.amazonaws.cn/pca-connector-ad/home .

2. Choose a connector from the Connectors for Active Directory list and then choose View
details.

3. On the details page for the connector, find the Templates section and then choose Create
template.

4. On the Create template page, in the Template creation method section, choose one of
the method options.

• Start from a predefined template (default) – Choose from a list of predefined templates
for AD applications:

• Code Signing

• Computer

• Domain Controller Authentication

• EFS Recovery Agent

• Enrollment Agent

• Enrollment Agent (Computer)

• IPSec

• Kerberos Authentication

• RAS and IAS Server

• Smartcard Logon

• Trust List Signing

• User Signature

Create template Version latest 445

https://docs.amazonaws.cn/cli/latest/reference/pca-connector-ad/create-connector.html
https://console.amazonaws.cn/pca-connector-ad/home

Amazon Private Certificate Authority User Guide

• Workstation Authentication

• Start from an existing template that you created – Choose from a list of custom
templates that you previously created.

• Start from a blank template – Choose this option to begin creating a completely new
template.

5. In the Certificate settings section, define the following settings for certificates based on
this template.

• Certificate type – Specify whether to create User or Computer certificates.

• Auto-enrollment – Choose whether to activate auto-enrollment for certificates based on
this template.

• Validity period – Specify a certificate validity period as an integer value of hours, days,
weeks, months, or years. The minimum value is 2 hours.

• Renewal period – Specify a certificate renewal period as an integer value of hours, days,
weeks, months, or years. The renewal period must be no more than 75% of the validity
period.

• Subject name – Choose one or more options to be included in the subject name based on
information contained in Active Directory.

Note

At least one subject name or subject alternative name option must be specified.

• Common name

• DNS as common name

• Directory path

• Email

• Subject alternative name – Choose one or more options to be included in the subject
alternative name based on information contained in Active Directory.

Note

At least one subject name or subject alternative name option must be specified.

Create template Version latest 446

Amazon Private Certificate Authority User Guide

• Directory GUID

• DNS name

• Domain DNS

• Email

• Service principal name (SPN)

• User principal name (UPN)

6. In the Certificate request handling and enrollment options section, specify the purpose
of certificates based on the template, choosing one of the following options.

• Signature

• Encryption

• Signature and encryption

• Signature and smartcard logon

Next, choose which of the following features to activate. Options vary depending on the
certificate purpose.

• Delete invalid certificates (do not archive)

• Include symmetric algorithms

• Exportable private key

Finally, choose a certificate enrollment option. Options vary depending on the certificate
purpose.

• No user input required

• Prompt user during enrollment

• Prompt user during enrollment and require user input

7. In the Application policies section, choose all of the application policies that apply. The
available policies are listed across several pages. Some policies may be preselected because
of previous settings.

8. In the Custom application policies section, you can add custom OIDs to the template, and
specify whether application policy extensions are critical.

Create template Version latest 447

Amazon Private Certificate Authority User Guide

9. In the Cryptography settings section, choose the following categories of cryptography
settings for certificates based on this template.

10. In the Groups and permissions section, you can view the templates existing groups and
permissions for enrollment, or you can choose the Add new groups and permissions
button to add a new ones. The button opens a form requiring the following information:

• Display name

• Security identifier (SID)

• Enroll, with options ALLOW | DENY | NOT SET

• Auto-enroll, with options ALLOW | DENY | NOT SET

11. In the Supersede templates section, you can notify Active Directory that the current
template supersedes one or more templates created in AD. Apply the superseding template
by choosing Add template from Active Directory to supersede and specifying the
common name of the superseding template.

12. In the Tags – optional pane, you can apply and remove metadata on your AD resource.
Tags are key-value string pairs where the key must be unique to the resource and the value
is optional. The pane displays any existing tags for the resource in a table. The following
actions are supported.

• Choose Manage tags to open the Manage tags page.

• Choose Add new tag to create a tag. Fill in the Key field and, optionally, the Value field.
Choose Save changes to apply the tag.

• Choose the Remove button next to a tag to mark it for deletion, and choose Save
changes to confirm.

13. After providing the required information and reviewing your choices, choose Create
template. This opens Template details, where you can review the new template's settings,
edit or delete the template, manage groups and permissions, manage superseded
templates, manage tags, and set automatic re-enrollment for certificate holders.

API

To create a connector template using the API

Use the CreateTemplate action in the Amazon Private CA Connector for Active Directory API.

Create template Version latest 448

https://docs.amazonaws.cn/pca-connector-ad/latest/APIReference/API_CreateTemplate.html

Amazon Private Certificate Authority User Guide

CLI

To create a connector template using the Amazon CLI

Use the create-template command in the Amazon Private CA Connector for Active Directory
section of the Amazon CLI.

Update a template for Active Directory

Use the following procedures to update a template using the console, command line, or API for
Amazon Private CA Connector for Active Directory.

Console

To update a template using the console

Sign in to your Amazon account and open the Amazon Private CA Connector for Active
Directory console at https://console.amazonaws.cn/pca-connector-ad/home .

1. On the list of your Connectors for Active Directory, select the connector whose template
that you'd like to update. Choose Edit to view and modify the connector's templates.

2. In your connector's template details page, choose Edit. Follow the prompts to make your
updates. When you're done editing an area, choose Save to save your changes.

API

To update a template using the API

To update a template for Active Directory with the API, use the UpdateTemplate action in the
Amazon Private CA Connector for Active Directory API.

CLI

To update a template using the Amazon CLI

To update a connector for Active Directory with the CLI, use the update-template command in
the Amazon Private CA Connector for Active Directory section of the Amazon CLI.

Update template Version latest 449

https://docs.amazonaws.cn/cli/latest/reference/pca-connector-ad/create-template.html
https://console.amazonaws.cn/pca-connector-ad/home
https://docs.amazonaws.cn/pca-connector-ad/latest/APIReference/API_UpdateTemplate.html
https://docs.amazonaws.cn/cli/latest/reference/pca-connector-ad/update-template.html

Amazon Private Certificate Authority User Guide

How Connector for Active Directory propagates your template changes

Amazon Private CA applies template to your policy when your client refreshes the policy cache,
which is every eight hours. This includes changes to template group access control entries. When
your client refreshes the cache, it queries the connector for available templates. In the case of
auto-enrollment refresh, the client issues certificates that match either or both of the following
conditions:

• The certificate is within the renewal period.

• The certificate isn't present on the client device.

For manual refresh, the client will query the connector, and you must set the template to issue.

If you're debugging, you can manually clear the policy cache to immediately see the template
changes. To do so, run the following Powershell command on your client.

certutil -f -user -policyserver * -policycache delete

List connectors for Active Directory

You can use the Amazon Private CA Connector for Active Directory console or Amazon CLI to list
the connectors that you own.

Console

To list your connectors using the console

1. Sign in to your Amazon account and open the Amazon Private CA Connector for Active
Directory console at https://console.amazonaws.cn/pca-connector-ad/home .

2. Review the information in the Connectors for Active Directory list. You can navigate
through multiple pages of connectors using the page numbers at upper-right. Each
connector occupies a row displaying the following columns of information by default.

• Connector ID – The unique ID of the connector.

• Directory name – The Active Directory resource associated with the connector.

• Connector status – Connector status. Possible values are: Creating | Active | Deleting |
Failed.

List connectors Version latest 450

https://console.amazonaws.cn/pca-connector-ad/home

Amazon Private Certificate Authority User Guide

• Service principal name status – Status of the service principal name (SPN) associated with
the connector. Possible values are: Creating | Active | Deleting | Failed.

• Directory registration status – Registration status of the associate director. Possible values
are:Creating | Active | Deleting | Failed.

• Created at – Time stamp at the connector's creation.

By choosing the gear icon in the upper-right corner of the console, you can customize the
number of connectors shown on a page using the Page size preference.

API

To list your connectors using the API

Use the ListConnectors action in the Amazon Private CA Connector for Active Directory API.

CLI

To list your connectors using the Amazon CLI

Use the list-connectors command to list your connectors.

List connector templates

You can use the Amazon Private CA Connector for Active Directory console or Amazon CLI to list
templates for connectors that you own. Connector templates are based on Amazon Private CA
BlankEndEntityCertificate_APIPassthrough/V1 templates.

Console

To list your templates using the console

1. Sign in to your Amazon account and open the Amazon Private CA Connector for Active
Directory console at https://console.amazonaws.cn/pca-connector-ad/home .

2. Choose a connector from the Connectors for Active Directory list and then choose View
details.

3. On the connector details page, review the information in the Templates section. You can
navigate through multiple pages of templates using the page numbers at upper-right. Each
template occupies a row displaying the following columns of information.

List templates Version latest 451

https://docs.amazonaws.cn/pca-connector-ad/latest/APIReference/API_ListConnectors.html
https://docs.amazonaws.cn/cli/latest/reference/pca-connector-ad/list-connectors.html
https://docs.amazonaws.cn/privateca/latest/userguide/UsingTemplates.html#BlankEndEntityCertificate_APIPassthrough
https://docs.amazonaws.cn/privateca/latest/userguide/UsingTemplates.html#BlankEndEntityCertificate_APIPassthrough
https://console.amazonaws.cn/pca-connector-ad/home

Amazon Private Certificate Authority User Guide

• Template name – The human-readable name of the template.

• Template status – Status of the template. Possible values are: Active | Deleting.

• Template ID – The unique identifier of the template.

API

To list your connectors using the API

Use the ListTemplates action in the Amazon Private CA Connector for Active Directory API to
list templates for the specified connector.

CLI

To list your connectors using the Amazon CLI

Use the list-templates command to list templates for the specified connector.

View connector details

Use the following procedures to view the configuration details of a connector in the console,
command line, or API for Amazon Private CA Connector for Active Directory.

Console

To view details for a connector using the console

1. Sign in to your Amazon account and open the Amazon Private CA Connector for Active
Directory console at https://console.amazonaws.cn/pca-connector-ad/home .

2. Choose a connector from the Connectors for Active Directory list and then choose View
details.

3. On the connector details page, review the information in the Connector details, pane,
which includes the following:

• Connector ID

• Connector status

• Additional status details

• Connector ARN

• Certificate enrollment policy server endpoint

View connector Version latest 452

https://docs.amazonaws.cn/pca-connector-ad/latest/APIReference/API_ListTemplates.html
https://docs.amazonaws.cn/cli/latest/reference/pca-connector-ad/list-templates.html
https://console.amazonaws.cn/pca-connector-ad/home

Amazon Private Certificate Authority User Guide

• Directory name

• Directory ID

• Amazon Private CA subject

• Amazon Private CA status

• IP address type

• VPC endpoint and security groups

4. In the Templates pane, you can create or manage templates associated with the connector.

5. From the Service principal name (SPN) pane, you can view the service principle name
associated with the connector.

6. From the Directory Registration pane, you can view or change the directory registration
associated with the connector.

7. From the Tags — optional pane, you can create or manage tags associated with the
connector.

API

To list your connectors using the API

Use the GetConnector action in the Amazon Private CA Connector for Active Directory API.

CLI

To list your connectors using the Amazon CLI

Use the get-connector command in the Amazon Private CA Connector for Active Directory
section of the Amazon CLI.

View connector template details

Use the following procedures to view the configuration details of a connector template using the
console, command line, or API for Amazon Private CA Connector for Active Directory

Console

To view details for a connector template using the console

1. Sign in to your Amazon account and open the Amazon Private CA Connector for Active
Directory console at https://console.amazonaws.cn/pca-connector-ad/home .

View template Version latest 453

https://docs.amazonaws.cn/pca-connector-ad/latest/APIReference/API_GetConnector.html
https://docs.amazonaws.cn/cli/latest/reference/pca-connector-ad/get-connector.html
https://console.amazonaws.cn/pca-connector-ad/home

Amazon Private Certificate Authority User Guide

2. Choose a connector from the Connectors for Active Directory list and then choose View
details.

3. On the connector details page, review the information in the Templates section, and select
the template that you wish to inspect. Then choose View details.

4. On the details page, the Template details pane displays the following information about
the template:

• Template name

• Template ID

• Template status

• Template schema version

• Template version

• Template ARN

• Certificate type

• Auto-enrollment turned on

• Validity period

• Renewal period

• Subject name requirements

• Subject alternative name requirements

• Certificate request and enrollment settings

• Cryptography provider category

• Key algorithm

• Minimum key size (bits)

• Hash algorithm

• Cryptography providers

• Key usage extension settings

From this pane, you can also perform the following actions using the Edit, Delete, and
Actions buttons.

• Edit

• DeleteView template Version latest 454

Amazon Private Certificate Authority User Guide

• Manage groups and permissions – For more information, see Configure groups and
permissions.

• Manage superseded templates – For more information, see Review and create.

• Manage tags – For more information, see Tagging Connector for AD resources.

• Re-enroll all certificate holders – This setting allows the major version of a template to
be increased automatically. All members of Active Directory groups that are allowed to
enroll with a template will receive a new certificate issued using that template. For more
information, see the UpdateTemplate API.

5. The lower pane displays a row of tabs allowing changes to the configuration of the
template.

• Groups and permissions – View and manage permissions for Active Directory groups to
enroll certificates using this template. For more information, see Configure groups and
permissions

• Application policies – View and manage template application policies. For more
information, see Assign application policies.

• Superseded templates – View and manage superseded templates. For more information,
see Review and create.

• Tagoptional – View and manage tagging on this template. For more information, see
Tagging Connector for AD resources.

API

To list your connectors using the API

Use the GetTemplate action in the Amazon Private CA Connector for Active Directory API.

CLI

To list your connectors using the Amazon CLI

Use the get-template command in the Amazon Private CA Connector for Active Directory
section of the Amazon CLI.

View template Version latest 455

create-ad-template.html#create-ad-template-console-12
create-ad-template.html#create-ad-template-console-12
create-ad-template.html#create-ad-template-console-15
https://docs.amazonaws.cn/pca-connector-ad/latest/APIReference/API_UpdateTemplate.html
create-ad-template.html#create-ad-template-console-12
create-ad-template.html#create-ad-template-console-12
create-ad-template.html#create-ad-template-console-9
create-ad-template.html#create-ad-template-console-15
https://docs.amazonaws.cn/pca-connector-ad/latest/APIReference/API_GetTemplate.html
https://docs.amazonaws.cn/cli/latest/reference/pca-connector-ad/get-template.html

Amazon Private Certificate Authority User Guide

Manage directory registrations

Console

To manage directory registrations using the console

Directory registrations for connectors can be managed from the top level of the Amazon Private
CA Connector for Active Directory console. This topic walks through the available management
options.

1. Sign in to your Amazon account and open the Amazon Private CA Connector for Active
Directory console at https://console.amazonaws.cn/pca-connector-ad/home .

2. In the left navigation area, choose Directory registrations.

3. The Directory registrations page displays a table of registered directories with the
following fields:

• Directory ID – The unique ID of the directory

• Directory name – The directory domain site name

• Directory type

• Registered – The status of the registration. Supported values are CREATING | ACTIVE |
DELETING | FAILED.

• Directory status – The status of the directory

Use can use Register directory to create a new registration.

4. You can select one of the listed registrations in order to manage it. This enables the View
registration details and Deregister directory buttons. The View registration details
button opens the details page for the registration.

5. The Directory registration details pane displays the following information:

• Directory domain site name

• Directory ID – The unique ID of the directory. Choosing the link takes you to the Amazon
Directory Service console.

• Directory type

• Status – Status of the directory

• Directory registration ARN – The Amazon resource name of the directory registration
Directory registrations Version latest 456

https://console.amazonaws.cn/pca-connector-ad/home

Amazon Private Certificate Authority User Guide

• Additional status information

6. In the Connectors and service principal name (SPNs) pane, you can manage SPNs for the
connector. For more information, see View connector details.

7. In the Tags – optional pane, you can apply and remove metadata on your AD resource.
Tags are key-value string pairs where the key must be unique to the resource and the value
is optional. The pane displays any existing tags for the resource in a table. The following
actions are supported.

• Choose Manage tags to open the Manage tags page.

• Choose Add new tag to create a tag. Fill in the Key field and, optionally, the Value field.
Choose Save changes to apply the tag.

• Choose the Remove button next to a tag to mark it for deletion, and choose Save
changes to confirm.

API

To manage directory registrations using the API

Create: CreateDirectoryRegistration action in the Amazon Private CA Connector for Active
Directory API.

Retrieve: GetDirectoryRegistration action in the Amazon Private CA Connector for Active
Directory API.

List: ListDirectoryRegistrations action in the Amazon Private CA Connector for Active Directory
API.

Delete: DeleteDirectoryRegistration action in the Amazon Private CA Connector for Active
Directory API.

CLI

To manage directory registrations using the CLI

Create: Use the create-directory-registration command in the Amazon Private CA Connector for
Active Directory section of the Amazon CLI.

Retrieve: get-directory-registration command in the Amazon Private CA Connector for Active
Directory section of the Amazon CLI.

Directory registrations Version latest 457

ad-spn.html
https://docs.amazonaws.cn/pca-connector-ad/latest/APIReference/API_CreateDirectoryRegistration.html
https://docs.amazonaws.cn/pca-connector-ad/latest/APIReference/API_GetDirectoryRegistration.html
https://docs.amazonaws.cn/pca-connector-ad/latest/APIReference/API_ListDirectoryRegistrations.html
https://docs.amazonaws.cn/pca-connector-ad/latest/APIReference/API_DeleteDirectoryRegistration.html
https://docs.amazonaws.cn/cli/latest/reference/pca-connector-ad/create-directory-registration.html
https://docs.amazonaws.cn/cli/latest/reference/pca-connector-ad/get-directory-registratio.html

Amazon Private Certificate Authority User Guide

List: list-directory-registrations command in the Amazon Private CA Connector for Active
Directory section of the Amazon CLI.

Delete: delete-directory-registration command in the Amazon Private CA Connector for Active
Directory section of the Amazon CLI.

Manage Connector for AD template access control entries

An access control entry grants controls which Active Directory groups can or cannot enroll
certificates for a specific Connector for AD template. When you can create or manage groups
and permissions in Connector for AD, you must provide the Security identifier (SID) of the group
object from Active Directory. You can obtain the SID using the following PowerShell command.
For information about SIDs, see How security identifiers work in the Microsoft Directory Domain
Services documentation.

 $ Get-ADGroup -Identity "my_active_directory_group_name"

The following procedures illustrate how to create and manage Connector for AD template access
group entries.

Console

To manage template group permissions using the console

You can manage groups and permissions for an existing template can be managed from a
template's details page. For more information, see View connector template details.

Set permissions on which groups can or cannot enroll certificates for the specific template.
You provide the security identifier (SID) of the group. Then you set the enroll and auto-enroll
permissions for the group. For auto-enrollment, both enroll and auto-enroll must be set to
"Allow."

API

To manage template group permissions using the API

Create: CreateTemplateGroupAccessControlEntry action in the Amazon Private CA Connector
for Active Directory API.

Template access control entries Version latest 458

https://docs.amazonaws.cn/cli/latest/reference/pca-connector-ad/list-directory-registratios.html
https://docs.amazonaws.cn/cli/latest/reference/pca-connector-ad/delete-directory-registratio.html
https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/manage/understand-security-identifiers
https://docs.amazonaws.cn/privateca/latest/userguide/view-ad-template.html
https://docs.amazonaws.cn/pca-connector-ad/latest/APIReference/API_CreateTemplateGroupAccessControlEntry.html

Amazon Private Certificate Authority User Guide

Update: UpdateTemplateGroupAccessControlEntry action in the Amazon Private CA Connector
for Active Directory API.

Retrieve: GetTemplateGroupAccessControlEntry action in the Amazon Private CA Connector for
Active Directory API.

List: ListTemplateGroupAccessControlEntries action in the Amazon Private CA Connector for
Active Directory API.

Delete: DeleteTemplateGroupAccessControlEntry action in the Amazon Private CA Connector
for Active Directory API.

CLI

To manage template group permissions using the CLI

Create: create-template-group-access-control-entry command in the Amazon Private CA
Connector for Active Directory section of the Amazon CLI.

Update: update-template-group-access-control-entry command in the Amazon Private CA
Connector for Active Directory section of the Amazon CLI.

Retrieve: get-template-group-access-control-entry command in the Amazon Private CA
Connector for Active Directory section of the Amazon CLI.

List: list-template-group-access-control-entries command in the Amazon Private CA Connector
for Active Directory section of the Amazon CLI.

Delete: delete-template-group-access-control-entries command in the Amazon Private CA
Connector for Active Directory section of the Amazon CLI.

Configuring the service principal name

Learn how to configure the service principal name for the connector.

Console

To manage manage service principal names using the console

The service principal name (SPN) of an existing AD connector can be managed from the
details page of the connector. For more information, see Managing directory registration View
connector details

Service principal name Version latest 459

https://docs.amazonaws.cn/pca-connector-ad/latest/APIReference/API_UpdateTemplateGroupAccessControlEntry.html
https://docs.amazonaws.cn/pca-connector-ad/latest/APIReference/API_GetTemplateGroupAccessControlEntry.html
https://docs.amazonaws.cn/pca-connector-ad/latest/APIReference/API_ListTemplateGroupAccessControlEntries.html
https://docs.amazonaws.cn/pca-connector-ad/latest/APIReference/API_DeleteTemplateGroupAccessControlEntry.html
https://docs.amazonaws.cn/cli/latest/reference/pca-connector-ad/create-template-group-access-control-entry.html
https://docs.amazonaws.cn/cli/latest/reference/pca-connector-ad/update-template-group-access-control-entry.html
https://docs.amazonaws.cn/cli/latest/reference/pca-connector-ad/get-template-group-access-control-entry.html
https://docs.amazonaws.cn/cli/latest/reference/pca-connector-ad/list-template-group-access-control-entries.html
https://docs.amazonaws.cn/cli/latest/reference/pca-connector-ad/delete-template-group-access-control-entries.html
view-connector-for-ad.html
view-connector-for-ad.html

Amazon Private Certificate Authority User Guide

API

To manage service principal names using the API

Create: CreateServicePrincipalName action in the Amazon Private CA Connector for Active
Directory API.

Retrieve: GetServicePrincipalName action in the Amazon Private CA Connector for Active
Directory API.

List: ListServicePrincipalNames action in the Amazon Private CA Connector for Active Directory
API.

Delete: DeleteServicePrincipalName action in the Amazon Private CA Connector for Active
Directory API.

CLI

To manage service principal names using the CLI

Create: create-service-principal-name command in the Amazon Private CA Connector for Active
Directory section of the Amazon CLI.

Retrieve: get-service-principal-name command in the Amazon Private CA Connector for Active
Directory section of the Amazon CLI.

List: list-service-principal-names command in the Amazon Private CA Connector for Active
Directory section of the Amazon CLI.

Delete: delete-service-principal-name command in the Amazon Private CA Connector for
Active Directory section of the Amazon CLI.

Tagging Connector for AD resources

You can apply tags to your connectors, templates, and directory registrations. Tagging adds
metadata to a resource that can assist with organization and management.

Console

To manage resource tagging using the console

Tagging of existing resources is managed on the details page for the resource. For more
information, see the following procedures:

Tags Version latest 460

https://docs.amazonaws.cn/pca-connector-ad/latest/APIReference/API_CreateServicePrincipalName.html
https://docs.amazonaws.cn/pca-connector-ad/latest/APIReference/API_GetServicePrincipalName.html
https://docs.amazonaws.cn/pca-connector-ad/latest/APIReference/API_ListServicePrincipalNames.html
https://docs.amazonaws.cn/pca-connector-ad/latest/APIReference/API_DeleteServicePrincipalName.html
https://docs.amazonaws.cn/cli/latest/reference/pca-connector-ad/create-service-principal-name.html
https://docs.amazonaws.cn/cli/latest/reference/pca-connector-ad/get-service-principal-name.html
https://docs.amazonaws.cn/cli/latest/reference/pca-connector-ad/list-service-principal-names.html
https://docs.amazonaws.cn/cli/latest/reference/pca-connector-ad/delete-service-principal-name.html

Amazon Private Certificate Authority User Guide

• View connector template details

• Managing directory registrations

API

To manage resource tagging using the API

Tag: TagResource action in the Amazon Private CA Connector for Active Directory API.

List tags: ListTagsForResource action in the Amazon Private CA Connector for Active Directory
API.

Untag: UntagResource action in the Amazon Private CA Connector for Active Directory API.

Important - It is acceptable to use tags to label objects containing confidential data. However,
the tags themselves shouldn't contain any personally identifiable information (PII), sensitive, or
confidential information.

CLI

To manage resource tagging using the CLI

Tag: tag-resource command in the Amazon Private CA Connector for Active Directory section of
the Amazon CLI.

List tags: list-tags-for-resource command in the Amazon Private CA Connector for Active
Directory section of the Amazon CLI.

Untag: untag-resource command in the Amazon Private CA Connector for Active Directory
section of the Amazon CLI.

Troubleshoot issues with Amazon Private CA Connector for
Active Directory

Use the information here to help you diagnose and fix Amazon Private Certificate Authority
Connector for AD issues.

Topics

• Troubleshoot Connector for AD error codes

• Troubleshoot Connector for AD connector creation failures

Troubleshoot Connector for Active Directory Version latest 461

view-template.html
directory-registration.html
https://docs.amazonaws.cn/pca-connector-ad/latest/APIReference/API_TagResource.html
https://docs.amazonaws.cn/pca-connector-ad/latest/APIReference/API_ListTagsForResource.html
https://docs.amazonaws.cn/pca-connector-ad/latest/APIReference/API_UntagResource.html
https://docs.amazonaws.cn/cli/latest/reference/pca-connector-ad/tag-resource.html
https://docs.amazonaws.cn/cli/latest/reference/pca-connector-ad/list-tags-for-resource.html
https://docs.amazonaws.cn/cli/latest/reference/pca-connector-ad/untag-resource.html

Amazon Private Certificate Authority User Guide

• Troubleshoot Connector for AD SPN creation failure

• Troubleshoot Connector for AD template update issues

Troubleshoot Connector for AD error codes

Connector for AD sends error messages for several reasons. For information on each error and
recommendations about resolving them, see the following table. You can receive these errors by
subscribing to Amazon EventBridge Scheduler events (event source: aws.pca-connector-ad) or
by using manual enrollment in Windows.

Error code Root cause Remediation

0x8FFFA000 Kerberos authentication failed. Make sure that your directory is
reachable and the client is either
a user or computer. If you're using
auto-enrollment, then fix your
Amazon resource service principal.
If you're using the Active Directory
UI to get a cert, run gpupdate
/force .

0x8FFFA001 The SOAP message must contain an
action header.

Add an action header.

0x8FFFA002 The connector does not have access
to the private CA it is connected to.

Share your private CA with the
connector by creating an Amazon
 Resource Access Manager (RAM) to
share between your private CA and
the Connector for AD service.

0x8FFFA003 The private CA for this connector is
not active.

Move the private CA to Active state.
If your private CA is in the pending
certificate state, then install the CA
 certificate.

Connector for AD error codes Version latest 462

Amazon Private Certificate Authority User Guide

Error code Root cause Remediation

0x8FFFA004 The private CA for this connector
does not exist.

Move your certificate authority
to the Active state if it is in the
Deleted state. If your private CA is
permanently deleted then create a
new connector with a different CA.

0x8FFFA005 The template specified the
directoryGuid attribute for
the certificate subject or the subject
alternate name, but the attribute
was not found in the AD object for
the requester.

Active Directory did not generate
a directoryGuid for your
directory. Troubleshoot in Active
Directory.

0x8FFFA006 The template specified the
dnsHostName attribute for the
certificate subject or the subject
alternate name, but the attribute
was not found in the AD object for
the requester.

Add the dnsHostName attribute to
your AD object.

0x8FFFA007 The template specified the email
attribute to be included in the
certificate subject or the subject
alternate name, but the attribute
was not found in the AD object for
the requester.

Add the email attribute to your AD
object

Connector for AD error codes Version latest 463

Amazon Private Certificate Authority User Guide

Error code Root cause Remediation

0x8FFFA008 The SOAP message must have an
action header of either http://
schemas.microsoft.com/
windows/pki/2009/01/enrol
lmentpolicy/IPolicy/
GetPolicies or http://sc
hemas.microsoft.com/
windows/pki/2009/01/enrol
lment/RST/wstep .

Update the action header to use one
of the specified values.

0x8FFFA009 The BinarySecurityToken must
be encoded in http://do
cs.oasis-open.org/
wss/2004/01/oasis-
200401-wss-wssecurity-
secext-1.0.xsd#base64bi
nary .

Update the binary security token
type.

0x8FFFA00A The BinarySecurityToken is invalid. Check that the CSR is generated
correctly.

0x8FFFA00B The BinarySecurityToken must have
a value type of either http://
docs.oasis-open.org/
wss/2004/01/oasis-
200401-wss-wssecurity-
secext-1.0.xsd#PKCS7
 or http://schemas.mic
rosoft.com/windows
/pki/2009/01/enrol
lment#PKCS10 .

Update the binary security token
value type to a valid value.

Connector for AD error codes Version latest 464

Amazon Private Certificate Authority User Guide

Error code Root cause Remediation

0x8FFFA00C The BinarySecurityToken contained
invalid CMS.

The Base64 is valid but the
cryptographic message syntax
(CMS) is invalid. Review the CMS
syntax.

0x8FFFA00D The BinarySecurityToken contained
an invalid CSR.

Check that the CSR was generated
correctly.

0x8FFFA00E The private CA was unable to issue
a certificate using the specific
template.

Review the validation exception
from Amazon Private CA. You can
view the validation exception in
Amazon EventBridge or Amazon
CloudTrail.

0x8FFFA00F The SOAP message must have
a request type of http://do
cs.oasis-open.org/ws-sx/
ws-trust/200512/Issue .

Set the request type to http://do
cs.oasis-open.org/ws-sx/
ws-trust/200512/Issue .

0x8FFFA010 The SOAP message must have
a to header of either the conne
ctor's CertificateEnrollm
entPolicyServerEndpoint
field or the URI field in the XCEP
response.

Set the header of the request
security token to either the
 CertificateEnrollm
entPolicyServerEndpoint
field or the URI field in the XCEP
response.

0x8FFFA011 The SOAP message must have only
one action header.

Review the SOAP message header of
the request security token and set
the header correctly.

Connector for AD error codes Version latest 465

Amazon Private Certificate Authority User Guide

Error code Root cause Remediation

0x8FFFA012 The SOAP message must have only
one messageId header.

Review the SOAP message header of
the request security token and set
the header correctly.

0x8FFFA013 The SOAP message must have only
one to header.

Review the SOAP message header of
the request security token and set
the header correctly.

0x8FFFA014 The requester does not have access
to the requested template.

Allow the requester's group to enroll
using the requested template by
creating an Access Control Entry.

0x8FFFA015 Either the CertificateTemplat
eInformation or the
 CertificateTemplateName
extension must be present in the
BinarySecurityToken.

Add the security extension to your
CSR.

0x8FFFA016 The requested template was not
found for the given connector.

Templates are child resources
to each connector. Create the
 template for the connector using
 createTemplate .

0x8FFFA017 The request was denied due to
request throttling.

Slow down the rate of requests.

0x8FFFA018 The SOAP message must contain a
to header.

Review the header of the SOAP
message.

Connector for AD error codes Version latest 466

Amazon Private Certificate Authority User Guide

Error code Root cause Remediation

0x8FFFA019 Could not process the SOAP
message due to an unrecognized
 header.

Review the header of the SOAP
message.

0x8FFFA01A The template specified the UPN
attribute to be included in the
 certificate subject or the subject
alternate name, but the attribute
was not found in the AD object for
the requester.

Add an UPN to the Active Directory
object.

Troubleshoot Connector for AD connector creation failures

Connector for AD connector creation can fail for various reasons. When connector creation fails,
you'll receive the failure reason in the API response. If you're using the console, then the failure
reason is displayed in the Connector details page under the Additional status details field within
in the Connector details container. The following table describes failure reasons and recommended
steps for resolution.

Failure status Description Remediation

CA_CERTIFICATE_REG
ISTRATION_FAILED

Connector for AD is unable
to import CA certificates into
your directory.

Review the Prerequisites
page and check that your
service account has the right
permissions. After delegatin
g the correct permissions
to your service account,
delete the failed connector
and create a new one. For
information about delegatin
g permissions, see Delegate
privileges to your service

Connector creation failure Version latest 467

https://docs.amazonaws.cn/directoryservice/latest/admin-guide/ad_connector_getting_started.html#connect_delegate_privileges
https://docs.amazonaws.cn/directoryservice/latest/admin-guide/ad_connector_getting_started.html#connect_delegate_privileges

Amazon Private Certificate Authority User Guide

Failure status Description Remediation

account in the Amazon
Directory Service Administr
ation Guide.

DIRECTORY_ACCESS_D
ENIED

Connector for AD unable to
access your directory. You must grant Connector for

AD access to your directory
. Review the Step 4: Create
IAM Policy section to make
sure that you the IAM policy
associated with your Amazon
account enables you to access
and describe directories. After
granting the correct permissio
ns to your Amazon role,
delete the failed connector
and create a new one.

If using Connector for AD
with an Amazon Directory
Service AD Connector, make
sure that the AD Connector
service account's password
isn't expired and is valid.
For information about AD
Connector service accounts,
see Getting started with
AD Connector in the AD
Connector Administration
Guide.

INTERNAL_FAILURE Connector for AD experienced
an internal failure. Try again later. Delete the

failed connector and create a
new one.

Connector creation failure Version latest 468

https://docs.amazonaws.cn/directoryservice/latest/admin-guide/ad_connector_getting_started.html#connect_delegate_privileges
https://docs.amazonaws.cn/directoryservice/latest/admin-guide/ad_connector_getting_started.html
https://docs.amazonaws.cn/directoryservice/latest/admin-guide/ad_connector_getting_started.html

Amazon Private Certificate Authority User Guide

Failure status Description Remediation

INSUFFICIENT_FREE_
ADDRESSES

The VPC subnet must have at
least one available private IP
address.

Ensure that there is an
available private IP address in
the subnet. Delete the failed
connector and create a new
one.

INVALID_SUBNET_IP_
PROTOCOL

Connector for AD is unable
to create the endpoint on
your VPC because the subnets
associated with your directory
do not support the specified
IP address type.

Ensure the VPC and subnets
that host your directory
support your chosen IP
address type. For more
information, see IP address
types. Delete the failed
connector and create a new
one with the supported IP
address type.

Connector creation failure Version latest 469

https://docs.amazonaws.cn/vpc/latest/privatelink/privatelink-access-aws-services.html#aws-service-ip-address-type
https://docs.amazonaws.cn/vpc/latest/privatelink/privatelink-access-aws-services.html#aws-service-ip-address-type

Amazon Private Certificate Authority User Guide

Failure status Description Remediation

PRIVATECA_ACCESS_D
ENIED

Connector for AD is unable to
access your private CA. Review the Prerequisites

page and check that you have
the permissions to create a
connector. For information,
see Step 4: Create IAM Policy.

If you're creating a connector
through Amazon CLI or API,
review the Prerequisites
page and check that you
have shared the private CA
with Connector for AD using
Amazon Resource Access
Manager.

After checking and fixing IAM
permissions and Amazon RAM
resource sharing, delete the
failed connector and create a
new one.

PRIVATECA_RESOURCE
_NOT_FOUND

Connector for AD can't find
the specified private CA. Make sure that you specify

the correct private CA
Amazon Resource Name
(ARN), then delete the failed
connector and create a new
one using your intended
private CA ARN.

Connector creation failure Version latest 470

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference-arns.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference-arns.html

Amazon Private Certificate Authority User Guide

Failure status Description Remediation

SECURITY_GROUP_NOT
_IN_VPC

The security group isn't in the
VPC that hosts your directory. Use a security group that is

in the VPC that hosts your
directory. For more informati
on, see Step 7: Configure
security groups. Delete the
failed connector and create a
new one with a security group
that is in the VPC.

VPC_ACCESS_DENIED Connector for AD can't access
the Amazon VPC that hosts
your directory.

Check your IAM permissions.
Delete the failed connector
and create a new one. For
an example IAM policy that
includes access permissions,
see Step 4: Create IAM Policy

VPC_ENDPOINT_LIMIT
_EXCEEDED

Connector for AD can't create
an endpoint in your Amazon
VPC. You have reached the
limit of VPC endpoints that
you can create for your
account.

Delete Amazon VPC
endpoints, or request a
limit increase. Once you've
done one of the two steps,
delete the failed connector
and create a new one. For
information about quotas, see
Amazon Virtual Private Cloud
Service quotas.

VPC_RESOURCE_NOT_F
OUND

Connector for AD can't find
the specified VPC. Make sure that you specified

the correct VPC and that the
VPC exists. Then delete the
failed connector and create
a new one using the correct
VPC ID.

Connector creation failure Version latest 471

https://docs.amazonaws.cn/vpc/latest/userguide/amazon-vpc-limits.html
https://docs.amazonaws.cn/vpc/latest/userguide/amazon-vpc-limits.html

Amazon Private Certificate Authority User Guide

Troubleshoot Connector for AD SPN creation failure

Service principal name (SPN) creation can fail for various reasons. When SPN creation fails you'll
receive the failure reason in the API response. If you're using the console, then the failure reason
is displayed in the Connector details page under the Additional status details field within the
Service principal name (SPN) container. The following table describes failure reasons and
recommended steps for resolution.

Failure status Description Remediation

DIRECTORY_ACCESS_D
ENIED

Connector for AD can't access
your directory. Grant Connector for AD

access to your directory. For
an example IAM policy that
includes permissions that
grant directory access, see
Step 4: Create IAM Policy.

DIRECTORY_NOT_REAC
HABLE

Connector for AD can't access
your directory. Check the network between

Amazon and your directory
, and try creating an SPN
again.

DIRECTORY_RESOURCE
_NOT_FOUND

Connector for AD can't find
the specified directory. Make sure you specify the

correct directory ID, then
delete the failed connector
and create a new one using
your intended directory ID.

INTERNAL_FAILURE Connector for AD experienced
an internal failure. Try again later.

SPN_EXISTS_ON_DIFF
ERENT_AD_OBJECT

The service principal name
(SPN) exists on a different
Active Directory object.

Delete the SPN from the
Active Directory object, and
try creating the SPN again.

SPN creation failure Version latest 472

Amazon Private Certificate Authority User Guide

Failure status Description Remediation

SPN_LIMIT_EXCEEDED Connector for AD can't create
the SPN because you've
reached the limit of SPNs
per directory. The maximum
number of SPNs per directory
is 10.

Delete one or more SPNs
from your account, and try
creating the SPN again.

Troubleshoot Connector for AD template update issues

If you made changes to your template or group access control entry, but you don't see the changes,
this might be due to policy caching. Amazon Private CA applies template to your policy when your
client refreshes the policy cache, which is every eight hours. When your client refreshes the cache,
it queries the connector for available templates. In the case of auto-enrollment refresh, the client
issues certificates that match either or both of the following conditions:

• The certificate is within the renewal period.

• The certificate isn't present on the client device.

For manual refresh, the client will query the connector, and you must set the template to issue.

If you're debugging, you can manually clear the policy cache to immediately see the template
changes. To do so, run the following Powershell command on your client.

certutil -f -user -policyserver * -policycache delete

Template update issues Version latest 473

Amazon Private Certificate Authority User Guide

Amazon Private CA Connector for SCEP

Connector for Simple Certificate Enrollment Protocol (SCEP) links Amazon Private Certificate
Authority to your SCEP-enabled mobile devices and networking equipment. With Connector for
SCEP, you can use Amazon Private CA to issue certificates and enroll your SCEP devices. Connector
for SCEP is available to use with popular mobile device management (MDM) systems and is
designed to work with clients or endpoints that supports SCEP.

Topics

• Features

• How to get started with Connector for SCEP

• Related services

• Access Connector for SCEP

• Pricing

• Connector for SCEP concepts

• Understand Connector for SCEP considerations and limitations

• Set up Connector for SCEP

• Get started with Connector for SCEP

• Configure your MDM system for Connector for SCEP

• Monitor Connector for SCEP

• Troubleshoot Amazon Private Certificate Authority Connector for SCEP issues

Features

Support for SCEP protocol - SCEP is a widely-adopted protocol for getting digital identity
certificates from a certificate authority (CA) and distributing them to mobile devices and
networking gear. You can use Connector for SCEP to help you enroll your endpoints using SCEP.

Mobile device enrollment - You can use Connector for SCEP with popular MDM systems including
Microsoft Intune and Jamf Pro.

Issue certificates at scale - After you configure your SCEP-enabled devices to request certificates
through the connector's SCEP endpoint, your clients can automatically request certificates from
Amazon Private CA.

Features Version latest 474

Amazon Private Certificate Authority User Guide

How to get started with Connector for SCEP

To get started, launch the guided wizard from the Connector for SCEP management console
which helps you create a connector and designate the private CA to use with the connector.
After completing these steps, Connector for SCEP provides an endpoint and other configuration
parameters that you can enter into your MDM systems or networking equipment. After configuring
your MDM systems or networking equipment, your clients will automatically request certificates
from Amazon Private CA. To learn more about how to get started with Connector for SCEP, see Get
started with Connector for SCEP.

Related services

Connector for SCEP is related to the following Amazon services.

• Amazon Private Certificate Authority - Amazon Private CA provides you a highly-available
private CA service without the upfront investment and ongoing maintenance costs of operating
your own private CA.

• Amazon Private CA Connector for Active Directory - Connector for AD links your Active
Directory (AD) to Amazon Private CA. The connector brokers the exchange of certificates from
Amazon Private CA to users and machines managed by your AD.

Access Connector for SCEP

You can create, access, and manage your Connector for SCEP connectors using any of the following
interfaces:

• Amazon Web Services Management Console - Provides a web interface that you can use to
access Connector for SCEP. See Connector for SCEP management console.

• Amazon Command Line Interface - Provides commands for a broad set of Amazon services,
including Connector for SCEP. The Amazon CLI is supported on Windows, macOS, and Linux. For
more information, see Amazon Command Line Interface.

• Amazon SDKs - Provide language-specific APIs and take care of many of the connection
details, such as calculating signatures, handling request retries, and error handling. For more
information, see Amazon Command Line Interface.

• Connector for SCEP API - Provides low-level API actions that you call using HTTPS requests.
Using the Connector for SCEP API is the most direct way to access the service. However,

How to get started with Connector for SCEP Version latest 475

https://console.amazonaws.cn/pca-connector-scep/home
https://console.amazonaws.cn/pca-connector-scep/home
https://aws.amazon.com/cli/
https://aws.amazon.com/developer/tools/#SDKs

Amazon Private Certificate Authority User Guide

the Connector for SCEP API requires that your application handle low-level details such
as generating the hash to sign the request, and error handling. For more information, see
Connector for SCEP API reference.

Pricing

Connector for SCEP is offered as a feature of Amazon Private CA at no additional cost. You only
pay for Amazon Private Certificate Authority operations and certificates used to create and update
connectors.

For the latest Amazon Private CA pricing information, see Amazon Private Certificate Authority
Pricing. You can also use the Amazon pricing calculator to estimate costs.

Connector for SCEP concepts

Connector for SCEP is an add-on feature for Amazon Private Certificate Authority.

The following are the key concepts for Connector for SCEP:

Certificate Signing Request (CSR)

The required information provided to a CA in order to have a digital certificate issued. This
information contains a public key as well as an identity.

Challenge password

The SCEP protocol uses challenge passwords to authenticate a request before issuing a
certificate from a CA. Connector for SCEP handles SCEP challenge passwords based on the
connector type. For more information, see Configure your MDM system for Connector for SCEP.

Certificate revocation

Certificate revocation is the process of revoking an issued certificate before its expiration date.
You can revoke the private CA certificate associated to a connector by calling RevokeCertificate
in the API, Amazon SDK, Amazon Command Line Interface, or Amazon CloudFormation.

Connector for SCEP

A connector for SCEP links Amazon Private CA to your SCEP-enabled devices.

Pricing Version latest 476

https://docs.amazonaws.cn/pca-connector-scep/latest/APIReference/Welcome.html
http://www.amazonaws.cn/private-ca/pricing/
http://www.amazonaws.cn/private-ca/pricing/
https://calculator.aws/#/createCalculator/certificateManager
https://docs.amazonaws.cn/privateca/latest/APIReference/API_RevokeCertificate.html

Amazon Private Certificate Authority User Guide

Mobile Device Management

Mobile Device Management (MDM) allows IT administrators to control, secure, and enforce
policies on smartphones, tablets, and other endpoints or devices. Many MDM systems provide
built-in integrations for SCEP-based certificate enrollment.

SCEP

SCEP is a standardized protocol (RFC 8894) to automatically distribute certificates. The protocol
provides an endpoint for devices to request certificates from a CA. SCEP uses challenge
passwords to authorize certificate issuance to devices. SCEP is commonly applied for mobile
device management (MDM) systems and networking equipment. MDM solutions allow IT
administrators to control, secure and enforce policies on smartphones, tablets and other
entities like Apple workstations. Most MDM solutions support SCEP, such as Microsoft Intune,
Apple MDM, and Jamf Pro. Most networking equipment, such as routers, load balancers, Wi-Fi
hubs, VPN devices and firewalls, use SCEP for automated certificate enrollment.

SCEP profile

A SCEP profile contains configuration parameters that are used to define the certificate profile.
This includes certificate validity period, key size, SCEP configuration name, the challenge
password, number of failed attempt retries and retry interval, and other information relevant to
the issuance of certificates. MDM systems and certificate management platforms typically send
the SCEP profile to the client that will request a certificate for authentication.

Understand Connector for SCEP considerations and limitations

Keep in mind the following considerations and limitations when using Connector for SCEP.

Considerations

CA operating modes

You can only use Connector for SCEP with private CAs that use a general-purpose operating mode.
Connector for SCEP defaults to issuing certificates with a validity period of one year. A private
CA using a short-lived certificate mode doesn't support issuing certificates with a validity period
greater than seven days. For information about operating modes, see Understand Amazon Private
CA CA modes.

Challenge passwords

Considerations and limitations Version latest 477

https://datatracker.ietf.org/doc/html/rfc8894

Amazon Private Certificate Authority User Guide

• Distribute your challenge passwords very carefully and share only with highly trusted individuals
and clients. A single challenge password can be used to issue any certificate, with any subject and
SANs, which poses a security risk.

• If using a general-purpose connector, we recommend that you manually rotate your challenge
passwords frequently.

Conformance to RFC 8894

Connector for SCEP deviates from the RFC 8894 protocol by providing HTTPS endpoints instead of
HTTP endpoints.

CSRs

• If a certificate signing request (CSR) that is sent to Connector for SCEP doesn't include the
Extended Key Usage (EKU) extension, we'll set the EKU value to clientAuthentication. For
information, see 4.2.1.12. Extended Key Usage in RFC 5280.

• We support ValidityPeriod and ValidityPeriodUnits custom attributes in CSRs.
If your CSR doesn't include a ValidityPeriod, we issue a certificate that has a one year
validity period. Keep in mind that you might not be able to set these attributes in your MDM
system. But if you can set them, we support them. For information about these attributes, see
szENROLLMENT_NAME_VALUE_PAIR.

Endpoint sharing

Distribute a connector's endpoints to trusted parties only. Treat the endpoints as secret because
anyone who can find your unique fully-qualified domain name and path can retrieve your CA
certificate.

Limitations

The following limitations apply to Connector for SCEP.

Dynamic challenge passwords

You can only create static challenge passwords with general-purpose connectors. To use dynamic
passwords with a general-purpose connector, you must build your own rotation mechanism that
employs the connector's static passwords. Connector for SCEP for Microsoft Intune connector types
offer support for dynamic passwords, which you manage using Microsoft Intune.

Limitations Version latest 478

https://www.rfc-editor.org/rfc/rfc8894.html
https://www.rfc-editor.org/rfc/rfc5280#section-4.2.1.12:~:text=MAX)%0A%0A4.2.1.12.-,Extended%20Key%20Usage,-This%20extension%20indicates
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-wcce/92f07a54-2889-45e3-afd0-94b60daa80ec

Amazon Private Certificate Authority User Guide

HTTP

Connector for SCEP supports HTTPS only, and creates redirects for HTTP calls. If your system is
reliant on HTTP, make sure that it can accommodate the HTTP redirects that Connector for SCEP
provides.

Shared private CAs

You can only use Connector for SCEP with private CAs of which you are the owner.

Set up Connector for SCEP

The procedures in this section help you get started with Connector for SCEP. It assumes that you've
already created an Amazon account. After you complete the steps on this page, you can proceed
with creating a connector for SCEP.

Topics

• Step 1: Create an Amazon Identity and Access Management policy

• Step 2: Create a private CA

• Step 3: Create a resource share using Amazon Resource Access Manager

Step 1: Create an Amazon Identity and Access Management policy

To create a connector for SCEP, you need to create an IAM policy that grants Connector for SCEP
the ability to create and manage resources needed by the connector, and to issue certificates on
your behalf. For more information about IAM see What is IAM? in the IAM User Guide.

The following example is a customer managed policy that you can use for Connector for SCEP.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "pca-connector-scep:*",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [

Set up Version latest 479

https://docs.amazonaws.cn/IAM/latest/UserGuide/introduction.html

Amazon Private Certificate Authority User Guide

 "acm-pca:DescribeCertificateAuthority",
 "acm-pca:GetCertificate",
 "acm-pca:GetCertificateAuthorityCertificate",
 "acm-pca:ListCertificateAuthorities",
 "acm-pca:ListTags",
 "acm-pca:PutPolicy"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "acm-pca:IssueCertificate",
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "acm-pca:TemplateArn": "arn:aws:acm-pca:::template/
BlankEndEntityCertificate_APICSRPassthrough/V*"
 },
 "ForAnyValue:StringEquals": {
 "aws:CalledVia": "pca-connector-scep.amazonaws.com"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "ram:CreateResourceShare",
 "ram:GetResourcePolicies",
 "ram:GetResourceShareAssociations",
 "ram:GetResourceShares",
 "ram:ListPrincipals",
 "ram:ListResources",
 "ram:ListResourceSharePermissions",
 "ram:ListResourceTypes"
],
 "Resource": "*"
 }
]
}

Step 1: Create an Amazon Identity and Access Management policy Version latest 480

Amazon Private Certificate Authority User Guide

Step 2: Create a private CA

To use Connector for SCEP you need to associate a private CA from Amazon Private Certificate
Authority to the connector. We recommend that you use a private CA that's only for the connector,
due to inherent security vulnerabilities that are present in the SCEP protocol.

The private CA must meet the following requirements:

• It must be in an active state and use the general-purpose operating mode.

• You must own the private CA. You can't use a private CA that was shared with you through cross-
account sharing.

Be aware of the following considerations when configuring your private CA to use with Connector
for SCEP:

• DNS name constrains – Consider using DNS name constraints as a way to control which domains
are allowed or prohibited in the certificates issued for your SCEP devices. For more information,
see How to enforce DNS name constraints in Amazon Private Certificate Authority.

• Revocation – Enable OCSP or CRLs on your private CA to allow for revocation. For more
information, see Plan your Amazon Private CA certificate revocation method.

• PII – We advise that you do not add personally identifiable information (PII) or other confidential
or sensitive information in your CA certificates. In the event of a security exploit, this helps to
limit exposure of sensitive information.

• Store root certificates in trust stores – Store your root CA certificates in your device trust stores,
so that you can verify certificates and the return values of GetCertificateAuthorityCertificate. For
information about trust stores as they relate to Amazon Private CA, see Root CA .

For information about how to create a private CA, see Create a private CA in Amazon Private CA.

Step 3: Create a resource share using Amazon Resource Access Manager

If you're using Connector for SCEP programmatically using the Amazon Command Line Interface,
Amazon SDK, or Connector for SCEP API, you need to share your private CA with Connector for
SCEP by using Amazon Resource Access Manager service principal sharing. This gives Connector for
SCEP shared access to your private CA. When you create a connector in the Amazon console, we
automatically create the resource share for you. For information about resource sharing, see Create
a resource share in the Amazon RAM User Guide.

Step 2: Create a private CA Version latest 481

https://amazonaws-china.com/blogs/security/how-to-enforce-dns-name-constraints-in-aws-private-ca/
https://docs.amazonaws.cn/privateca/latest/APIReference/API_GetCertificateAuthorityCertificate.html
https://docs.amazonaws.cn/ram/latest/userguide/getting-started-sharing.html#getting-started-sharing-create
https://docs.amazonaws.cn/ram/latest/userguide/getting-started-sharing.html#getting-started-sharing-create

Amazon Private Certificate Authority User Guide

To create a resource share using the Amazon CLI, you can use the Amazon RAM create-resource-
share command. The following command creates a resource share. Specify the ARN of the private
CA that you want to share as the value of resource-arns.

$ aws ram create-resource-share \
--region us-east-1 \
--name MyPcaConnectorScepResourceShare \
--permission-arns arn:aws:ram::aws:permission/
AWSRAMBlankEndEntityCertificateAPICSRPassthroughIssuanceCertificateAuthority \
--resource-arns arn:aws:acm-pca:Region:account:certificate-authority/CA_ID \
--principals pca-connector-scep.amazonaws.com \
--sources account

The service principal that calls CreateConnector has certificate issuance permissions on the
private CA. To prevent service principals that use Connector for SCEP from having general access to
your Amazon Private CA resources, restrict their permissions using CalledVia.

Get started with Connector for SCEP

With Amazon Private Certificate Authority Connector for SCEP, you can issue certificates from
your private CA to SCEP-enabled devices and mobile device management (MDM) systems. When
you create a connector, Amazon Private Certificate Authority creates a public SCEP URL for you to
request certificates, and also provides you with information that you can use to integrate into your
MDM systems.

To issue certificates, you must create an Amazon Private Certificate Authority private CA, create a
connector, and then configure your SCEP-enabled MDM systems and devices to request certificates
from the connector.

Topics

• Before you begin

• Step 1: Create a connector

• Step 2: Copy connector details into your MDM system

Before you begin

The following tutorial guides you through the process of creating a connector for SCEP.

Get started Version latest 482

Amazon Private Certificate Authority User Guide

To follow this tutorial, you'll need a private CA and a SCEP-enabled device. You also must first
fulfill the prerequisites listed in the Set up Connector for SCEP section.

The following procedure guides you how to create a connector using the Amazon console.

Tasks

• Step 1: Create a connector

• Step 2: Copy connector details into your MDM system

Step 1: Create a connector

You'll create either a connector for general-purpose use or Connector for SCEP for Microsoft
Intune. General-purpose connectors are designed for use with SCEP-enabled endpoints, and you
manage the SCEP challenge passwords. Connector for SCEP for Microsoft Intune are for use with
Microsoft Intune, and you manage the challenge passwords using Microsoft Intune.

General-purpose

To create a connector for general-purpose use

Sign in to your Amazon account and open the Connector for SCEP console at https://
console.amazonaws.cn/pca-connector-scep/home .

1. Choose Create connector.

2. In the Create connector page, optionally give the connector a friendly name in the Name
tag field. The name will be displayed in your list of connectors. If you wish, you can add
more tags to the connector by selecting Add more tags. A tag is a label that you assign to
an Amazon resource. Each tag consists of a key and an optional value. You can use tags to
search and filter your resources or track your Amazon costs.

3. Under Connector type, choose General-purpose.

4. Under Private CA, choose the private CA to use with this connector. Or, create a new one
by selecting Create private CA. Due to the inherent vulnerabilities in the SCEP protocol, we
recommend using a private CA that's dedicated to this connector. If you created a new CA,
when you finish creating it in Amazon Private CA, return to the Connector for SCEP console
and refresh the list of private CAs. Your new private CA should be available for selection.

5. Under Challenge password select Automatically generate challenge password. We’ll
generate a static challenge password for you when we create this connector.

Step 1: Create a connector Version latest 483

https://console.amazonaws.cn/pca-connector-scep/home
https://console.amazonaws.cn/pca-connector-scep/home

Amazon Private Certificate Authority User Guide

6. Select Create connector.

Microsoft Intune

To create Connector for SCEP for Microsoft Intune

Sign in to your Amazon account and open the Connector for SCEP console at https://
console.amazonaws.cn/pca-connector-scep/home .

1. Choose Create connector.

2. On the Create connector page, optionally give the connector a friendly name in the Name
tag field. The name will be displayed in your list of connectors. If you wish, you can add
more tags to the connector by selecting Add more tags. A tag is a label that you assign to
an Amazon resource. Each tag consists of a key and an optional value. You can use tags to
search and filter your resources or track your Amazon costs.

3. Under Connector type, choose Microsoft Intune.

a. For Application (client) ID, enter the application (client) ID from your Microsoft Entra
ID app registration. For information about using Microsoft Intune with Connector for
SCEP, see Configure your MDM system for Connector for SCEP.

b. For Directory (tenant) ID or primary domain, enter either the directory (tenant) ID or
primary domain from your Microsoft Entra ID app registration.

4. Under Private CA, choose the private CA to use with this connector. Or, create a new one
by selecting Create private CA. Due to the inherent vulnerabilities in the SCEP protocol, we
recommend using a private CA that's dedicated to this connector. If you created a new CA,
when you finish creating it in Amazon Private CA, return to the Connector for SCEP console
and refresh the list of private CAs. Your new private CA should be available for selection.

5. Select Create connector.

Step 2: Copy connector details into your MDM system

After you create your connector, you'll need to copy the following details from the connector into
your MDM system. To view a connector's details using the console, select the connector from the
list on the Connectors for SCEP console page.

• Public SCEP URL - This is the connector's endpoint where your SCEP clients will request
certificates from. Take care to only provide this endpoint to trusted entities.

Step 2: Copy connector details into your MDM system Version latest 484

https://console.amazonaws.cn/pca-connector-scep/home
https://console.amazonaws.cn/pca-connector-scep/home
https://console.amazonaws.cn/pca-connector-scep/home#/connectors

Amazon Private Certificate Authority User Guide

• (General-purpose) Challenge password - Under Challenge passwords, select the password
that you automatically generated in the preceding procedure and then select View password
to view the password. To create an additional password, select Create password. Take care
to distribute passwords carefully and to only highly trusted individuals and clients. A single
challenge password can be used to issue any certificate, with any subject and SANs, and so
should be handled with care.

• (Microsoft Intune) Open ID values - If you're integrating with Microsoft Intune, you must copy
the Open ID issuer, Open ID subject, and Open ID audience into your Microsoft Entra app
registration's OpenID Connect (OIDC) credential. For more information, see Configure your MDM
system for Connector for SCEP.

Configure your MDM system for Connector for SCEP

Simple Certificate Enrollment Protocol (SCEP) is a standard protocol used for certificate enrollment
and renewal. Connector for SCEP is a RFC 8894-based SCEP server that automatically issues
certificates from Amazon Private Certificate Authority to your SCEP clients. When you create a
connector, Connector for SCEP provides an HTTPS endpoint for SCEP clients to request certificates
from. The clients authenticate using a challenge password that's included as part of their certificate
signing request (CSR) to the service. You can use Connector for SCEP with popular mobile device
management (MDM) systems, including Microsoft Intune and Jamf Pro, to enroll mobile devices. It's
designed to work with any client or endpoint that supports SCEP.

Connector for SCEP offers two types of connectors—general-purpose and Connector for SCEP for
Microsoft Intune. The following sections describe how they work, and how to configure your MDM
system to use them.

General-purpose connector

A general-purpose connector is designed to work with mobile device endpoints that support
SCEP, except for Microsoft Intune, which has a dedicated connector. With general-purpose
connectors, you manage the SCEP challenge passwords. The following diagram uses a mobile
device management (MDM) system as an example, but the same functionality applies to analagous
SCEP-enabled systems or devices.

Configure your MDM system Version latest 485

https://www.rfc-editor.org/rfc/rfc8894.html

Amazon Private Certificate Authority User Guide

1. The MDM system (or analogous device or system) sends a SCEP profile to the mobile client.
A SCEP profile contains configuration parameters that define the certificate profile, such as
certificate validity period, challenge password, and other information relevant to the issuance of
certificates.

2. The mobile client requests a certificate and also sends a certificate signing request (CSR) that
includes a challenge password.

3. Connector for SCEP validates the challenge password. If it's valid, then the service requests a
certificate from Amazon Private CA on behalf of the mobile client.

4. Amazon Private CA issues the certificate and sends it to Connector for SCEP.

5. Connector for SCEP sends the issued certificate to the mobile client.

Amazon Private CA Connector for SCEP for Microsoft Intune

Amazon Private CA Connector for SCEP for Microsoft Intune is designed for use with Microsoft
Intune. With the Connector for SCEP for Microsoft Intune connector type, you'll use Microsoft
Intune to manage your SCEP challenge passwords. For more information about using Connector for
SCEP with Microsoft Intune, see Configure Microsoft Intune for Connector for SCEP.

To use Connector for SCEP with Microsoft Intune, you must enable specific functionalities using
the Microsoft Intune API, and possess a valid Microsoft Intune license. You should also review the
Microsoft Intune® App Protection Policies.

Amazon Private CA Connector for SCEP for Microsoft Intune Version latest 486

https://learn.microsoft.com/en-us/mem/intune/apps/app-protection-policy

Amazon Private Certificate Authority User Guide

1. Microsoft Intune sends a SCEP profile to the mobile client. The profile contains an encrypted
challenge password that the mobile client places into the CSR.

2. The mobile client requests a certificate and sends the CSR to Connector for SCEP.

3. Connector for SCEP sends the CSR to Microsoft Intune for authorization.

4. Microsoft Intune decrypts the challenge password in the CSR. If it's valid, Microsoft Intune sends
approval to Connector for SCEP to issue the certificate to the mobile client.

5. Connector for SCEP requests a certificate from Amazon Private CA on behalf of the mobile
client.

6. Amazon Private CA issues the certificate and sends it to Connector for SCEP.

7. Connector for SCEP sends the issued certificate to the mobile client.

Topics

• Configure Jamf Pro for Connector for SCEP

• Configure Microsoft Intune for Connector for SCEP

Configure Jamf Pro for Connector for SCEP

You can use Amazon Private CA as an external certificate authority (CA) with the Jamf Pro mobile
device management (MDM) system. This guide provides instructions on how to configure Jamf Pro
after you create a general-purpose connector.

Configure Jamf Pro Version latest 487

Amazon Private Certificate Authority User Guide

Configure Jamf Pro for Connector for SCEP

This guide provides instructions on how to configure Jamf Pro for use with Connector for SCEP.
After you successfully configure Jamf Pro and Connector for SCEP, you'll be able to issue Amazon
Private CA certificates to your managed devices.

Jamf Pro requirements

Your implementation of Jamf Pro must meet the following requirements.

• You must enable the Enable certificate-based authentication setting in Jamf Pro. You can find
details on this setting on the Jamf Pro Security Settings page in the Jamf Pro documentation.

Step 1: (Optional - recommended) Obtain your private CA's fingerprint

A fingerprint is a unique identifier for your private CA that can be used to verify the identity of your
CA when establishing trust with other systems or applications. Incorporating a certificate authority
(CA) fingerprint allows managed devices to authenticate the CA they are connecting to and request
certificates solely from the anticipated CA. We recommend using a CA fingerprint with Jamf Pro.

To generate a fingerprint for your private CA

1. Obtain the private CA certificate from either Amazon Private CA console or by using the
GetCertificateAuthorityCertificate. Save it as ca.pem file.

2. Install the OpenSSL Command Line Utilities.

3. In OpenSSL, run the following command to generate the fingerprint:

openssl x509 -in ca.pem -sha256 -fingerprint

Step 2: Configure Amazon Private CA as an external CA in Jamf Pro

After you create a connector for SCEP, you must set Amazon Private CA as an external certificate
authority (CA) in Jamf Pro. You can set Amazon Private CA as a global, external CA. Alternatively,
you can use a Jamf Pro configuration profile to issue different certificates from Amazon Private
CA for different use cases, such as issuing certificates to a subset of devices in your organization.
Guidance on implementing Jamf Pro configuration profiles is beyond the scope of this document.

Configure Jamf Pro Version latest 488

https://learn.jamf.com/en-US/bundle/jamf-pro-documentation-current/page/Security_Settings.html
https://docs.amazonaws.cn/privateca/latest/APIReference/API_GetCertificateAuthorityCertificate.html
https://wiki.openssl.org/index.php/Command_Line_Utilities

Amazon Private Certificate Authority User Guide

To configure Amazon Private CA as an external certificate authority (CA) in Jamf Pro

1. In the Jamf Pro console, go to the PKI certificates settings page by going to Settings > Global
> PKI certificates.

2. Select the Management Certificate Template tab.

3. Select External CA.

4. Select Edit.

5. (Optional) Select Enable Jamf Pro as SCEP Proxy for configuration profiles. You can use
Jamf Pro configuration profiles to issue different certificates tailored to specific use-cases.
For guidance on how to use configuration profiles in Jamf Pro, see Enabling Jamf Pro as SCEP
Proxy for Configuration Profiles in the Jamf Pro documentation.

6. Select Use a SCEP-enabled external CA for computer and mobile device enrollment.

7. (Optional) Select Use Jamf Pro as SCEP Proxy for computer and mobile device enrollment. If
you experience profile installation failures, see Troubleshoot profile installation failures.

8. Copy and paste the Connector for SCEP public SCEP URL from the connector's details to
the URL field in Jamf Pro. To view a connector's details, choose the connector from the
Connectors for SCEP list. Alternatively, you can get the URL by calling GetConnector and copy
the Endpoint value from the response.

9. (Optional) Enter the name of the instance in the Name field. For example, you can name it
Amazon Private CA.

10. Select Static for the challenge type.

11. Copy a challenge password from your connector, and paste it into the Challenge field.
A connector can have multiple challenge passwords. To view your connector's challenge
passwords, navigate to your connector's details page in the Amazon console and select the
View password button. Alternatively, you can get a connector's challenge password(s) by
calling GetChallengePassword and copy a Password value from the response. For information
about using challenge passwords, see Understand Connector for SCEP considerations and
limitations.

12. Paste the challenge password into the Verify Challenge field.

13. Choose a Key Size. We recommend a key size of 2048 or higher.

14. (Optional) Select Use as digital signature. Select this for authentication purposes to grant
devices secure access to resources like Wi-Fi and VPN.

15. (Optional) Select Use for key encipherment.

Configure Jamf Pro Version latest 489

https://learn.jamf.com/en-US/bundle/technical-paper-scep-proxy-current/page/Enabling_as_SCEP_Proxy_for_Configuration_Profiles.html#ariaid-title2
https://learn.jamf.com/en-US/bundle/technical-paper-scep-proxy-current/page/Enabling_as_SCEP_Proxy_for_Configuration_Profiles.html#ariaid-title2
https://console.amazonaws.cn/pca-connector-scep/home#/connectors
https://docs.amazonaws.cn/pca-connector-scep/latest/APIReference/API_GetConnector.html
https://docs.amazonaws.cn/pca-connector-scep/latest/APIReference/API_GetChallengePassword.html

Amazon Private Certificate Authority User Guide

16. (Optional - recommended) Enter a hex string in the Fingerprint field. We recommend that you
add a CA fingerprint to allow managed devices to verify the CA, and only request certificates
from the CA. For instructions on how to generate a fingerprint for your private CA, see Step 1:
(Optional - recommended) Obtain your private CA's fingerprint.

17. Select Save.

Step 3: Set up a configuration profile signing certificate

To use Jamf Pro with Connector for SCEP, you must provide the signing and CA certificates for the
private CA that's associated with your connector. You can do this by uploading a profile signing
certificate keystore to Jamf Pro that contains both certificates.

Here are the steps to create a certificate keystore and upload it into Jamf Pro:

• Generate a certificate signing request (CSR) using your internal processes.

• Get the CSR signed by the private CA associated with your connector.

• Create a profile signing certificate keystore that contains both the profile signing and CA
certificates.

• Upload the certificate keystore to Jamf Pro.

By following these steps, you can make sure that your devices can validate and authenticate the
configuration profile signed by your private CA, enabling the use of Connector for SCEP with Jamf
Pro.

1. The following example uses OpenSSL and Amazon Certificate Manager, but you can generate a
certificate signing request using your preferred method.

Amazon Certificate Manager console

To create a profile signing certificate using the ACM console

1. Use ACM to request a private PKI certificate. Include the following:

• Type - Use the same private CA type that's serving as the SCEP certificate authority
for your MDM system.

• In the Certificate authority details section, select the Certificate authority menu
and choose the private CA that serves as the CA for Jamf Pro.

Configure Jamf Pro Version latest 490

Amazon Private Certificate Authority User Guide

• Domain name - Provide a domain name to be embedded into the certificate. You
can use a fully qualified domain name (FQDN), such as www.example.com, or a bare
or apex domain name such as example.com (which excludes www.).

2. Use ACM to export the private certificate you created in the preceding step. Choose
Export a file for the certificate, certificate chain, and encrypted key. Keep the
Passphrase handy because you'll need it in the next step.

3. In a terminal, run the following command in a folder containing the exported files to
write the PKCS#12 bundle into the output.p12 file encoded by the passphrase you
created in the previous step.

openssl pkcs12 -export \
 -in "Exported Certificate.txt" \
 -certfile "Certificate Chain.txt" \
 -inkey "Exported Certificate Private Key.txt" \
 -name example \
 -out output.p12 \
 -passin pass:your-passphrase \
 -passout pass:your-passphrase

Amazon Certificate Manager CLI

To create a profile signing certificate using the ACM CLI

• The following command shows how to create a certificate in ACM, and then export the
files as a PKCS#12 bundle.

PCA=<Enter your Private CA ARN>

CERTIFICATE=$(aws acm request-certificate \
 --certificate-authority-arn $PCA \
 --domain-name <any valid domain name, such as test.name> \
 | jq -r '.CertificateArn')

while [[$(aws acm describe-certificate \
 --certificate-arn $CERTIFICATE \
 | jq -r '.Certificate.Status') != "ISSUED"]] do sleep 1; done

aws acm export-certificate \
 --certificate-arn $CERTIFICATE \

Configure Jamf Pro Version latest 491

https://docs.amazonaws.cn/acm/latest/userguide/export-private.html

Amazon Private Certificate Authority User Guide

 --passphrase password | jq -r '.Certificate' > Certificate.pem
aws acm export-certificate \
 --certificate-arn $CERTIFICATE \
 --passphrase password | jq -r '.CertificateChain' > CertificateChain.pem
aws acm export-certificate \
 --certificate-arn $CERTIFICATE \
 --passphrase password | jq -r '.PrivateKey' > PrivateKey.pem

openssl pkcs12 -export \
 -in "Certificate.pem" \
 -certfile "CertificateChain.pem" \
 -inkey "PrivateKey.pem" \
 -name example \
 -out output.p12 \
 -passin pass:passphrase \
 -passout pass:passphrase

OpenSSL CLI

To create a profile signing certificate using OpenSSL CLI

1. Using OpenSSL, generate a private key by running the following command.

openssl genrsa -out local.key 2048

2. Generate a certificate signing request (CSR):

openssl req -new -key local.key -sha512 -out local.csr -
subj "/CN=MySigningCertificate/O=MyOrganization" -addext
 keyUsage=critical,digitalSignature,nonRepudiation

3. Using the Amazon CLI, issue the signing certificate using the CSR you generated in
the previous step. Run the following command, and note the certificate ARN in the
response.

aws acm-pca issue-certificate --certificate-authority-arn <SAME CA AS
 USED ABOVE, SO IT’S TRUSTED> --csr fileb://local.csr --signing-algorithm
 SHA512WITHRSA --validity Value=365,Type=DAYS

4. Get the signing certificate by running the following command. Specify the certificate
ARN from the previous step.

Configure Jamf Pro Version latest 492

Amazon Private Certificate Authority User Guide

aws acm-pca get-certificate --certificate-authority-arn <SAME CA AS USED
 ABOVE, SO IT’S TRUSTED> --certificate-arn <ARN OF NEW CERTIFICATE> | jq -r
 '.Certificate' >local.crt

5. Get the CA certificate by running the following command.

aws acm-pca get-certificate-authority-certificate --certificate-authority-
arn <SAME CA AS USED ABOVE, SO IT’S TRUSTED> | jq -r '.Certificate' > ca.crt

6. Using OpenSSL, output the signing certificate keystore in p12 format. Use the CRT files
that you generated in steps four and five.

openssl pkcs12 -export -in local.crt -inkey local.key -certfile ca.crt -name
 "CA Chain" -out local.p12

7. When prompted, enter an export password. This password is your keystore password to
provide to Jamf Pro.

2. In Jamf Pro, navigate to the Management Certificate Template and go to the External CA
pane.

3. At the bottom of the External CA pane, select Change Signing and CA Certificates.

4. Follow the onscreen instructions to upload the signing and CA certificates for the external CA.

Step 4: (Optional) Install certificate during user-initiated enrollment

To establish trust between your client devices and your private CA, you must ensure your devices
trust the certificates issued by Jamf Pro. You can use Jamf Pro's User-Initiated Enrollment Settings
to automatically install your Amazon Private CA's CA certificate on the client devices when they
request a certificate during the enrolllment process.

Troubleshoot profile installation failures

If you're experiencing profile installation failures after enabling Use Jamf Pro as SCEP Proxy for
computer and mobile device enrollment, consult your device logs and try the following.

Configure Jamf Pro Version latest 493

https://learn.jamf.com/en-US/bundle/jamf-pro-documentation-current/page/User-Initiated_Enrollment_Settings.html#:~:text=In%20Jamf%20Pro%2C%20click%20Settings,to%20be%20used%20during%20enrollment.

Amazon Private Certificate Authority User Guide

Device log error message Mitigation

Profile installation failed.
Unable to obtain certificate from
SCEP server at "<your-jamf-endpoi
nt>.jamfcloud.com". <MDM-SCEP
:15001>

If you receive this error message while trying
to enroll, retry the enrollment. It can take
several tries before enrollment succeeds.

Profile installation failed.
Unable to obtain certificate from
SCEP server at "<your-jamf-
endpoint>.jamfcloud.com". <MDM-
SCEP:14006>

Your challenge password might be misconfig
ured. Verify that the challenge password in
Jamf Pro matches your connector’s challenge
password.

Configure Microsoft Intune for Connector for SCEP

You can use Amazon Private CA as an external certificate authority (CA) with the Microsoft Intune
mobile device management (MDM) system. This guide provides instructions on how to configure
Microsoft Intune after you create a Connector for SCEP for Microsoft Intune.

Prerequisites

Before you create a Connector for SCEP for Microsoft Intune, you must complete the following
prerequisites.

• Create an Entra ID.

• Create a Microsoft Intune Tenant.

• Create an App Registration in your Microsoft Entra ID. See Update an app's requested
permissions in Microsoft Entra ID in the Microsoft Entra documentation for information about
how to manage application-level permissions for your App Registration. The App Registration
must have the following permissions:

• Under Intune set scep_challenge_provider.

• For Microsoft Graph set Application.Read.All and User.Read.

• You must grant the application in your App Registration admin consent. For information, see
Grant tenant-wide admin consent to an application in the Microsoft Entra documentation.

Configure Microsoft Intune Version latest 494

https://learn.microsoft.com/en-us/entra/identity/enterprise-apps/grant-admin-consent?pivots=portal#grant-admin-consent-in-app-registrations-pane
https://learn.microsoft.com/en-us/entra/identity/enterprise-apps/grant-admin-consent?pivots=portal#grant-admin-consent-in-app-registrations-pane
https://learn.microsoft.com/en-us/entra/identity/enterprise-apps/grant-admin-consent?pivots=portal

Amazon Private Certificate Authority User Guide

Tip

When you create the App Registration, take note of the Application (client) ID and
Directory (tenant) ID or primary domain. When you create your Connector for SCEP
for Microsoft Intune, you'll enter these values. For information about how to get these
values, see Create a Microsoft Entra application and service principal that can access
resources in the Microsoft Entra documentation.

Step 1: Grant Amazon Private CA permission to use your Microsoft Entra ID
Application

After you create a Connector for SCEP for Microsoft Intune, you must create a federated credential
under the Microsoft App Registration so that Connector for SCEP can communicate with Microsoft
Intune.

To configure Amazon Private CA as an external CA in Microsoft Intune

1. In the Microsoft Entra ID console, navigate to the App registrations.

2. Choose the application that you created to use with Connector for SCEP. The application
(client) ID of the application you click must match the ID you specified when you created the
connector.

3. Select Certificates & secrets from the Managed drop-down menu.

4. Select the Federated credentials tab.

5. Select Add a credential.

6. From the Federated credential scenario drop down menu, choose Other issuer.

7. Copy and paste the OpenID issuer value from your Connector for SCEP for Microsoft Intune
details into the Issuer field. To view a connector's details, choose the connector from the
Connectors for SCEP list in the Amazon console. Alternatively, you can get the URL by calling
GetConnector and then copy the Issuer value from the response.

8. For Type, select Explicit subject identifier.

9. Copy and paste OpenID subject value from your connector into the Value field. You can view
the OpenID issuer value in the connector details page in the Amazon console. Alternatively,
you can get the URL by calling GetConnector and then copy the Audience value from the
response.

Configure Microsoft Intune Version latest 495

https://learn.microsoft.com/en-us/entra/identity-platform/howto-create-service-principal-portal
https://learn.microsoft.com/en-us/entra/identity-platform/howto-create-service-principal-portal
https://console.amazonaws.cn/pca-connector-scep/home#/connectors
https://docs.amazonaws.cn/pca-connector-scep/latest/APIReference/API_GetConnector.html
https://docs.amazonaws.cn/pca-connector-scep/latest/APIReference/API_GetConnector.html

Amazon Private Certificate Authority User Guide

10. (Optional) Enter the name of the instance in the Name field. For example, you can name it
Amazon Private CA.

11. (Optional) Enter a description into the Description field.

12. Copy and paste the OpenID Audience value from your Connector for SCEP for Microsoft
Intune details into the Audience field. To view a connector's details, choose the connector
from the Connectors for SCEP list in the Amazon console. Alternatively, you can get the URL by
calling GetConnector and then copy the Subject value from the response.

13. Select Add.

Step 2: Set up a Microsoft Intune configuration profile

After you give Amazon Private CA the permission to call Microsoft Intune, you must use Microsoft
Intune to create a Microsoft Intune configuration profile that instructs devices to reach out to
Connector for SCEP for certificate issuance.

1. Create a trusted certificate configuration profile. You must upload the root CA certificate of
the chain that you're using with Connector for SCEP into Microsoft Intune to establish trust.
For information on how to create a trusted certificate configuration profile, see Trusted root
certificate profiles for Microsoft Intune in the Microsoft Intune documentation.

2. Create a SCEP certificate configuration profile that points your devices to the connector
when they require a new certificate. The configuration profile's Profile type should be SCEP
Certificate. For the configuration profile's root certificate, make sure that you use the trusted
certificate that you created in the previous step.

For SCEP Server URLs, copy and paste the Public SCEP URL from your connector's details
into the SCEP Server URLs field. To view a connector's details, choose the connector from the
Connectors for SCEP list. Alternatively, you can get the URL by calling ListConnectors, and then
copy the Endpoint value from the response. For guidance on creating configuration profiles
in Microsoft Intune, see Create and assign SCEP certificate profiles in Microsoft Intune in the
Microsoft Intune documentation.

Note

For non-mac OS and iOS devices, if you don't set a validity period in the configuration
profile, Connector for SCEP issues a certificate with a validity of one year. If you don't
set an Extended Key Usage (EKU) value in the configuration profile, Connector for
SCEP issues a certificate with the EKU set with Client Authentication (Object

Configure Microsoft Intune Version latest 496

https://console.amazonaws.cn/pca-connector-scep/home#/connectors
https://docs.amazonaws.cn/pca-connector-scep/latest/APIReference/API_GetConnector.html
https://learn.microsoft.com/en-us/mem/intune/protect/certificates-trusted-root
https://learn.microsoft.com/en-us/mem/intune/protect/certificates-trusted-root
https://console.amazonaws.cn/pca-connector-scep/home#/connectors
https://docs.amazonaws.cn/pca-connector-scep/latest/APIReference/API_ListConnectors.html
https://learn.microsoft.com/en-us/mem/intune/protect/certificates-profile-scep

Amazon Private Certificate Authority User Guide

Identifier: 1.3.6.1.5.5.7.3.2). For macOS or iOS devices, Microsoft Intune
doesn't respect ExtendedKeyUsage or Validity parameters in your configuration
profiles. For these devices, Connector for SCEP issues a certificate with a one-year
validity period to these devices through client authentication.

Step 3: Verify the connection to Connector for SCEP

After you've created a Microsoft Intune configuration profile that points to the Connector for SCEP
endpoint, confirm that an enrolled device can request a certificate. To confirm, make sure that
there aren't any policy assignment failures. To confirm, in the Intune portal navigate to Devices >
Manage Devices > Configuration and verify that there's nothing listed under Configuration Policy
Assignment Failures. If there is, confirm your set up with the information from the preceding
procedures. If your set up is correct and there still are failures, then consult Collect available data
from mobile device.

For information about device enrollment, see What is device enrollment? in the Microsoft Intune
documentation.

Monitor Connector for SCEP

Monitoring is an important part of maintaining the reliability, availability, and performance of
Connector for SCEP and your other Amazon solutions. Amazon provides the following monitoring
tools to watch Connector for SCEP, report when something is wrong, and take automatic actions
when appropriate:

• Amazon CloudTrail captures API calls and related events made by or on behalf of your Amazon
Web Services account and delivers the log files to an Amazon S3 bucket that you specify. You can
identify which users and accounts called Amazon APIs, the source IP address from which the calls
were made, and when the calls occurred.

If you monitor CloudTrail data events, the logs contain the list of all recent requests from client
devices. Data events come with identifying client device information such as IP address, the type
of operation performed, and the error code and detailed message if the operation results in a
failed status. For more information, see the Amazon CloudTrail User Guide.

• Amazon EventBridge is a serverless event bus service that makes it easy to connect your
applications with data from a variety of sources. EventBridge delivers a stream of real-time data

Monitor Version latest 497

https://learn.microsoft.com/en-us/mem/intune/fundamentals/help-desk-operators#collect-available-data-from-mobile-device
https://learn.microsoft.com/en-us/mem/intune/fundamentals/help-desk-operators#collect-available-data-from-mobile-device
https://learn.microsoft.com/en-us/mem/intune/user-help/use-managed-devices-to-get-work-done
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/

Amazon Private Certificate Authority User Guide

from your own applications, Software-as-a-Service (SaaS) applications, and Amazon services and
routes that data to targets such as Lambda and CloudWatch Logs. This enables you to monitor
events that happen in services, and build event-driven architectures. For more information, see
the Amazon EventBridge User Guide.

Topics

• Automate Connector for SCEP using EventBridge

• Log Connector for SCEP API calls using Amazon CloudTrail

Automate Connector for SCEP using EventBridge

You can use Amazon EventBridge to automate your Amazon services and respond automatically
to system events such as application availability issues or resource changes. Events from Amazon
services are delivered to EventBridge in near-real time. You can write simple rules to indicate which
events are of interest to you and the automated actions to take when an event matches a rule.
EventBridge are published at least once. For more information, see Creating rules that react to
events in EventBridge.

CloudWatch Events are turned into actions using EventBridge. With EventBridge, you can use
events to trigger targets. For more information, see What Is Amazon EventBridge?

Connector for SCEP event types

Certificate Issuance Succeeded

Connector for SCEP sends a Certificate Issuance Succeeded event to EventBridge when we
issue a certificate in response to a PkiOperationPost request.

The following is example data for the event.

{
 "version": "0",
 "id": "event_ID",
 "detail-type": "Certificate Issuance Succeeded",
 "source": "aws.pca-connector-scep",
 "account": "account",
 "time": "2024-09-12T19:14:56Z",
 "region": "region",

Automate using EventBridge Version latest 498

https://docs.amazonaws.cn/eventbridge/latest/userguide/
https://docs.amazonaws.cn/eventbridge/latest/userguide/eb-cwe-now-eb.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/Create-CloudWatch-Events-Rule.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/Create-CloudWatch-Events-Rule.html
https://docs.amazonaws.cn/eventbridge/latest/userguide/what-is-amazon-eventbridge.html

Amazon Private Certificate Authority User Guide

 "resources":[
 "arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566",
 "arn:aws:pca-connector-scep:us-
east-1:111122223333:connector/11223344-1234-1122-2233-112233445566"
],
 "detail": {
 "result": "success",
 "requestType": "PkiOperationPost",
 "certificateArn": "arn:aws:acm-pca:region:account:certificate-authority/CA_ID/
certificate/certificate_ID"
 }
}

Certificate Issuance Failed

Connector for SCEP sends a Certificate Issuance Failed event to EventBridge when we are
unable to issue a certificate in response to a PkiOperationPost request.

The following is example data for the event.

{
 "version": "0",
 "id": "event_ID",
 "detail-type": "Certificate Issuance Failed",
 "source": "aws.pca-connector-scep",
 "account": "account",
 "time": "2024-09-12T19:14:56Z",
 "region": "region",
 "resources":[
 "arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566",
 "arn:aws:pca-connector-scep:us-
east-1:111122223333:connector/11223344-1234-1122-2233-112233445566"
],
 "detail": {
 "result": "failure",
 "requestType": "PkiOperationPost",
 "reason": "The certificate authority is not active."
 }
}

Automate using EventBridge Version latest 499

Amazon Private Certificate Authority User Guide

Certificate Authority Certificate Retrieval Succeeded

Connector for SCEP sends a Certificate Authority Certificate Retrieval Succeeded
event to EventBridge when we receive a GetCACert request and successfully retrieve the
connector's private CA certificate.

The following is example data for the event.

{
 "version": "0",
 "id": "event_ID",
 "detail-type": "Certificate Authority Certificate Retrieval Succeeded",
 "source": "aws.pca-connector-scep",
 "account": "account",
 "time": "2024-09-12T19:14:56Z",
 "region": "region",
 "resources":[
 "arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566",
 "arn:aws:pca-connector-scep:us-
east-1:111122223333:connector/11223344-1234-1122-2233-112233445566"
],
 "detail": {
 "result": "success",
 "requestType": "GetCACert"
 }
}

Certificate Authority Certificate Retrieval Failed

Connector for SCEP sends a Certificate Authority Certificate Retrieval Failed
event to EventBridge when we receive a GetCACert request and aren't able to retrieve the
connector's private CA certificate. The event includes the reason for the failure.

The following is example data for the event.

{
 "version": "0",
 "id": "event_ID",
 "detail-type": "Certificate Authority Certificate Retrieval Failed",
 "source": "aws.pca-connector-scep",
 "account": "account",

Automate using EventBridge Version latest 500

Amazon Private Certificate Authority User Guide

 "time": "2024-09-12T19:14:56Z",
 "region": "region",
 "resources":[
 "arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566",
 "arn:aws:pca-connector-scep:us-
east-1:111122223333:connector/11223344-1234-1122-2233-112233445566"
],
 "detail": {
 "result": "failure",
 "requestType": "GetCACert",
 "reason": "The certificate authority certificate validity must be at least one
 year from today."
 }
}

Certificate Authority Certificate Retrieval Succeeded

Connector for SCEP sends a Certificate Authority Certificate Retrieval Succeeded
event to EventBridge when we receive a GetCACert request and successfully retrieve the
connector's private CA certificate.

The following is example data for the event.

{
 "version": "0",
 "id": "event_ID",
 "detail-type": "Certificate Authority Certificate Retrieval Succeeded",
 "source": "aws.pca-connector-scep",
 "account": "account",
 "time": "2024-09-12T19:14:56Z",
 "region": "region",
 "resources":[
 "arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566",
 "arn:aws:pca-connector-scep:us-
east-1:111122223333:connector/11223344-1234-1122-2233-112233445566"
],
 "detail": {
 "result": "success",
 "requestType": "GetCACert"
 }
}

Automate using EventBridge Version latest 501

Amazon Private Certificate Authority User Guide

Certificate Authority Capabilities Retrieval Succeeded

Connector for SCEP sends a Certificate Authority Capabilities Retrieval
Succeeded event to EventBridge when we receive a SCEP GetCACaps request and successfully
retrieve the CA's capabilities.

The following is example data for the event.

Certificate Authority Capabilities Retrieval Failed

Connector for SCEP sends a Certificate Authority Capabilities Retrieval Failed
event to EventBridge when we receive a SCEP GetCACaps request and can't retrieve the CA's
capabilities. We include the reason for failure in the event.

The following is example data for the event.

{
 "resources":
 [
 "arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566",
 "arn:aws:pca-connector-scep:us-
east-1:111122223333:connector11223344-1234-1122-2233-112233445566"
],
 "detailType":"Certificate Authority Capabilities Retrieval Failed",
 "detail": {
 "result":"failure",
 "requestType":"GetCACaps",
 "reason":"The request was denied due to request throttling."
 },
 "source":"aws.pca-connector-scep","accountId":"111122223333"
 }

Unsupported Operation Invoked

Unsupported Operation Invoked

Connector for SCEP sends an Unsupported Operation Invoked event to EventBridge if the
operation sent to the connector endpoint is unsupported or unknown.

{

Automate using EventBridge Version latest 502

Amazon Private Certificate Authority User Guide

 "version": "0",
 "id": "event_ID",
 "detail-type": "Unsupported Operation Invoked",
 "source": "aws.pca-connector-scep",
 "account": "account",
 "time": "2024-09-12T19:14:56Z",
 "region": "region",
 "resources":[
 "arn:aws:acm-pca:us-east-1:111122223333:certificate-
authority/11223344-1234-1122-2233-112233445566",
 "arn:aws:pca-connector-scep:us-
east-1:111122223333:connector/11223344-1234-1122-2233-112233445566"
],
 "detail": {}
}

Create an EventBridge rule

In EventBridge, you can create rules that responds to events recorded by CloudTrail. To create
a rule that includes all events logged by Connector for SCEP, set the source to aws.pca-
connector-scep. For more information about rules, see Create a rule in Amazon EventBridge.

Log Connector for SCEP API calls using Amazon CloudTrail

Connector for Simple Certificate Enrollment Protocol (SCEP) is integrated with Amazon CloudTrail,
a service that provides a record of actions taken by a user, role, client, or an Amazon service.
CloudTrail captures all API calls for Connector for SCEP as events. The calls captured include calls
from the Connector for SCEP console and code calls to the Connector for SCEP API operations.
If you create a trail, you can enable continuous delivery of CloudTrail events to an Amazon S3
bucket, including events for Connector for SCEP. If you don't configure a trail, you can still view the
most recent events in the CloudTrail console in Event history. Using the information collected by
CloudTrail, you can determine the request that was made to Connector for SCEP, the IP address
from which the request was made, who made the request, when it was made, and additional
details.

To learn more about CloudTrail, see the Amazon CloudTrail User Guide.

Connector for SCEP information in CloudTrail

CloudTrail is enabled on your Amazon Web Services account when you create the account. When
activity occurs in Connector for SCEP, that activity is recorded in a CloudTrail event along with

CloudTrail logs Version latest 503

https://docs.amazonaws.cn/eventbridge/latest/userguide/eb-get-started.html#eb-gs-create-rule
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-user-guide.html

Amazon Private Certificate Authority User Guide

other Amazon service events in Event history. You can view, search, and download recent events
in your Amazon Web Services account. For more information, see Viewing events with CloudTrail
Event history.

For an ongoing record of events in your Amazon Web Services account, including events for
Connector for SCEP, create a trail. A trail enables CloudTrail to deliver log files to an Amazon S3
bucket. By default, when you create a trail in the console, the trail applies to all Amazon Web
Services Regions. The trail logs events from all Regions in the Amazon partition and delivers the
log files to the Amazon S3 bucket that you specify. Additionally, you can configure other Amazon
services to further analyze and act upon the event data collected in CloudTrail logs. For more
information, see the following:

• Overview for creating a trail

• CloudTrail supported services and integrations

• Configuring Amazon SNS notifications for CloudTrail

• Receiving CloudTrail log files from multiple regions and Receiving CloudTrail log files from
multiple accounts

All Connector for SCEP actions are logged by CloudTrail and are documented in the Connector
for SCEP API reference. For example, calls to the CreateConnector, GetConnector and
CreateChallenge actions generate entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or Amazon Identity and Access Management (IAM) user
credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another Amazon service.

• Whether the request was made by a SCEP client device.

For more information, see the CloudTrail userIdentity element.

Connector for SCEP management events

Connector for SCEP integrates with CloudTrail to record API actions made by a user, a role, or an
Amazon service in Connector for SCEP. You can use CloudTrail to monitor Connector for SCEP API

CloudTrail logs Version latest 504

https://docs.amazonaws.cn/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/configure-sns-notifications-for-cloudtrail.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.amazonaws.cn/pca-connector-scep/latest/APIReference/Welcome.html
https://docs.amazonaws.cn/pca-connector-scep/latest/APIReference/Welcome.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

Amazon Private Certificate Authority User Guide

requests in real time and store logs in Amazon Simple Storage Service, Amazon CloudWatch Logs,
and Amazon CloudWatch Events. Connector for SCEP supports logging the following actions as
events in CloudTrail log files:

• CreateChallenge

• CreateConnector

• GetConnector

• GetChallengeMetadata

• GetChallengePassword

• DeleteConnector

• DeleteChallenge

Connector for SCEP data events in CloudTrail

Data events provide information about the resource operations performed on or in a resource for
example, when your client sends a SCEP GetCACaps message to a connector endpoint. These are
also known as data plane operations. Data events are often high-volume activities. By default,
CloudTrail doesn’t log any data events, and the CloudTrail Event history doesn't record them.

Additional charges apply for data events. For more information about CloudTrail pricing, see
Amazon CloudTrail Pricing.

You can log data events for the AWS::PCAConnectorSCEP::Connector resource type by using
the CloudTrail console, Amazon CLI, or CloudTrail API operations. For more information about how
to log data events, see Logging data events with the Amazon Web Services Management Console
and Logging data events with the Amazon Command Line Interface in the Amazon CloudTrail User
Guide.

The following table lists the Connector for SCEP resource type for which you can log data events.
The Data event type (console) column shows the value to choose from the Data event type
list on the CloudTrail console. The resources.type value column shows the resources.type
value, which you would specify when configuring advanced event selectors using the Amazon
CLI or CloudTrail APIs. The Data APIs logged to CloudTrail column shows the API calls logged to
CloudTrail for the resource type.

CloudTrail logs Version latest 505

https://docs.amazonaws.cn/pca-connector-scep/latest/APIReference/API_CreateChallenge.html
https://docs.amazonaws.cn/pca-connector-scep/latest/APIReference/API_CreateConnector.html
https://docs.amazonaws.cn/pca-connector-scep/latest/APIReference/API_GetConnector.html
https://docs.amazonaws.cn/pca-connector-scep/latest/APIReference/API_GetChallengeMetadata.html
https://docs.amazonaws.cn/pca-connector-scep/latest/APIReference/API_GetChallengePassword.html
https://docs.amazonaws.cn/pca-connector-scep/latest/APIReference/API_DeleteConnector.html
https://docs.amazonaws.cn/pca-connector-scep/latest/APIReference/API_DeleteChallenge.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#logging-data-events
https://www.amazonaws.cn/cloudtrail/pricing/
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#logging-data-events-console
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#creating-data-event-selectors-with-the-AWS-CLI

Amazon Private Certificate Authority User Guide

Data event type (console) resources.type value Data APIs logged to
CloudTrail

Connector AWS::PCAConnectorS
CEP::Connector

• PKIOperationGet -
Generated if an HTTP GET
SCEP request containing a
PKCSReq message is made
to the dataplane endpoint
of a connector, and the
operation of that message
is set to PKIOperation .

• PKIOperationPost -
Generated if an HTTP POST
SCEP request containing a
PKCSReq message is made
to the dataplane endpoint
of a connector, and the
operation of that message
is set to PKIOperation .

• GetCACaps - Generated
if a SCEP request containin
g a GetCACaps message
is made to the dataplane
endpoint of a connector.

• GetCACert - Generated
if a SCEP request containin
g a GetCACert message
is made to the dataplane
endpoint of a connector.

You can configure advanced event selectors to filter on the eventName, readOnly, and
resources.ARN fields to log only those events that are important to you. The following example
is the JSON view of a data event configuration that logs events for a specific function only. For
more information about these fields, see AdvancedFieldSelector in the Amazon CloudTrail API
Reference.

CloudTrail logs Version latest 506

https://docs.amazonaws.cn/awscloudtrail/latest/APIReference/API_AdvancedFieldSelector.html

Amazon Private Certificate Authority User Guide

[
 {
 "name": "connector-scep-events",
 "fieldSelectors": [
 {
 "field": "eventCategory",
 "equals": [
 "Data"
]
 },
 {
 "field": "resources.type",
 "equals": [
 "AWS::PCAConnectorSCEP::Connector"
]
 },
 {
 "field": "resources.ARN",
 "equals": [
 "arn:aws:pca-connector-scep:US West (N.
 California):111122223333:connector/11223344-1122-2233-3344-cae95a00d2a7"
]
 }
]
 }
]

Example entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the
public API calls, so they don't appear in any specific order.

Example 1: Management event, CreateConnector

The following example shows a CloudTrail log entry that demonstrates the CreateConnector
action.

{
 "eventVersion": "1.09",

CloudTrail logs Version latest 507

Amazon Private Certificate Authority User Guide

 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AABB1122CCDD4455HHJJ1:11cc33nn2a97724dc48a89071111111111",
 "arn": "arn:aws:sts::111122223333:assumed-role/Admin",
 "accountId": "111122223333",
 "accessKeyId": "ASIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AABB1122CCDD4455HHJJ1",
 "arn": "arn:aws:iam::111122223333:role/Admin",
 "accountId": "111122223333",
 "userName": "my-user-name"
 },
 "attributes": {
 "creationDate": "2024-08-16T17:46:41Z",
 "mfaAuthenticated": "false"
 }
 }
 },
 "eventTime": "2024-08-16T17:48:07Z",
 "eventSource": "pca-connector-scep.amazonaws.com",
 "eventName": "CreateConnector",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "10.0.0.0",
 "userAgent": "Python/3.11.8 Darwin/22.6.0 exe/x86_64",
 "requestParameters": {
 "ClientToken": "11223344-2222-3333-4444-666555444555",
 "CertificateAuthorityArn": "arn:aws:acm-pca:us-
east-1:111122223333:certificate-authority/a1b2c3d4-5678-90ab-cdef-EXAMPLE22222"
 },
 "responseElements": {
 "ConnectorArn": "arn:aws:pca-connector-scep:us-east-1:111122223333:connector/
a1b2c3d4-5678-90ab-cdef-EXAMPLE11111"
 },
 "requestID": "a1b2c3d4-5678-90ab-cdef-EXAMPLEaaaaa",
 "eventID": "a1b2c3d4-5678-90ab-cdef-EXAMPLEbbbbb",
 "readOnly": false,
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management"
 }

CloudTrail logs Version latest 508

Amazon Private Certificate Authority User Guide

Example 2: Management event, CreateChallenge

The following example shows a CloudTrail log entry that demonstrates the CreateChallenge
action.

{
 "eventVersion": "1.09",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AABB1122CCDD4455HHJJ1:11cc33nn2a97724dc48a89071111111111",
 "arn": "arn:aws:sts::111122223333:assumed-role/Admin",
 "accountId": "111122223333",
 "accessKeyId": "ASIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AABB1122CCDD4455HHJJ1",
 "arn": "arn:aws:iam::111122223333:role/Admin",
 "accountId": "111122223333",
 "userName": "user-name"
 },
 "attributes": {
 "creationDate": "2024-08-16T17:46:41Z",
 "mfaAuthenticated": "false"
 }
 }
 },
 "eventTime": "2024-08-16T17:47:52Z",
 "eventSource": "pca-connector-scep.amazonaws.com",
 "eventName": "CreateChallenge",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "10.0.0.0",
 "userAgent": "Python/3.11.8 Darwin/22.6.0 exe/x86_64",
 "requestParameters": {
 "ConnectorArn": "arn:aws:pca-connector-scep:us-east-1:111122223333:connector/
a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
 "ClientToken": "11223344-2222-3333-4444-666555444555"
 },
 "responseElements": {
 "Challenge": {
 "Arn": "arn:aws:pca-connector-scep:us-
east-1:111122223333:connector/9cac40bc-acba-412e-9a24-f255ef2fe79a/a1b2c3d4-5678-90ab-
cdef-EXAMPLE22222",

CloudTrail logs Version latest 509

Amazon Private Certificate Authority User Guide

 "ConnectorArn": "arn:aws:pca-connector-scep:us-
east-1:111122223333:connector/a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
 "CreatedAt": 1723830472.942,
 "Password": "***",
 "UpdatedAt": 1723830472.942
 }
 },
 "requestID": "a1b2c3d4-5678-90ab-cdef-EXAMPLEaaaaa",
 "eventID": "a1b2c3d4-5678-90ab-cdef-EXAMPLEbbbbb",
 "readOnly": false,
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management"
 }

Example 3: Management event, GetChallengePassword

The following example shows a CloudTrail log entry that demonstrates the
GetChallengePassword action.

{
 "eventVersion": "1.09",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AABB1122CCDD4455HHJJ1:11cc33nn2a97724dc48a89071111111111",
 "arn": "arn:aws:sts::111122223333:assumed-role/Admin",
 "accountId": "111122223333",
 "accessKeyId": "ASIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AABB1122CCDD4455HHJJ1",
 "arn": "arn:aws:iam::111122223333:role/Admin",
 "accountId": "905418114790",
 "userName": "111122223333"
 },
 "attributes": {
 "creationDate": "2024-08-16T17:55:01Z",
 "mfaAuthenticated": "false"
 }
 },
 "invokedBy": "signin.amazonaws.com"

CloudTrail logs Version latest 510

Amazon Private Certificate Authority User Guide

 },
 "eventTime": "2024-08-16T17:55:54Z",
 "eventSource": "pca-connector-scep.amazonaws.com",
 "eventName": "GetChallengePassword",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "10.0.0.0",
 "userAgent": "Python/3.11.8 Darwin/22.6.0 exe/x86_64",
 "requestParameters": {
 "ChallengeArn": "arn:aws:pca-connector-scep:us-east-1:111122223333:challenge/
a1b2c3d4-5678-90ab-cdef-EXAMPLE33333"
 },
 "responseElements": null,
 "requestID": "a1b2c3d4-5678-90ab-cdef-EXAMPLEaaaaa",
 "eventID": "a1b2c3d4-5678-90ab-cdef-EXAMPLEbbbbb",
 "readOnly": true,
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management"
 }

Example 4: Data event, PkiOperationPost

The following example shows a CloudTrail log entry that demonstrates a failed
PkiOperationPost call. The log includes an error code and error message with an explanation of
the failure.

{
 "eventVersion": "1.10",
 "userIdentity": {
 "type": "FederatedUser",
 "principalId": "111122223333",
 "accountId": "111122223333"
 },
 "eventTime": "2024-08-16T17:40:09Z",
 "eventSource": "pca-connector-scep.amazonaws.com",
 "eventName": "PkiOperationPost",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "10.0.0.0",
 "userAgent": "Python/3.11.8 Darwin/22.6.0 exe/x86_64",
 "errorCode": "BadRequestException",

CloudTrail logs Version latest 511

Amazon Private Certificate Authority User Guide

 "errorMessage": "The certificate authority is not in a valid state for issuing
 certificates (Service: AcmPca, Status Code: 400, Request ID: a1b2c3d4-5678-90ab-cdef-
EXAMPLE55555)",
 "requestParameters": null,
 "responseElements": null,
 "requestID": "a1b2c3d4-5678-90ab-cdef-EXAMPLEaaaaa",
 "eventID": "a1b2c3d4-5678-90ab-cdef-EXAMPLEbbbbb",
 "readOnly": false,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::PCAConnectorSCEP::Connector",
 "ARN": "arn:aws:pca-connector-scep:us-east-1:111122223333:connector/
a1b2c3d4-5678-90ab-cdef-EXAMPLE33333"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": false,
 "recipientAccountId": "905418114790",
 "eventCategory": "Data",
 "tlsDetails": {
 "clientProvidedHostHeader": "111122223333-a1b2c3d4-5678-90ab-cdef-
EXAMPLE33333.enroll.pca-connector-scep.us-east-1.api.aws"
 }
 }

Troubleshoot Amazon Private Certificate Authority Connector
for SCEP issues

You might need to troubleshoot issues related to your Connector for SCEP implementation. This
chapter provides detailed information about the HTTP and client errors sent by the service.

Topics

• Troubleshoot HTTP errors from Connector for SCEP

• Troubleshoot Connector for SCEP client errors

Troubleshoot Version latest 512

Amazon Private Certificate Authority User Guide

Troubleshoot HTTP errors from Connector for SCEP

When your client triggers a Connector for SCEP dataplane API action and it results in an error,
Connector for SCEP sends a HTTP response code to the requesting client with information about
the error.

In addition to the service responses provided directly to your clients, you can use the monitoring
tools described in the Monitor Connector for SCEP section to view and debug errors resulting in an
HTTP error.

The following are error messages returned by the service to SCEP clients, the potential causes, and
the steps you can take to resolve the issues.

HTTP 400 Bad Request

An HTTP 400 response code means that Connector for SCEP can't process the request due to an
apparent client error, such as missing or invalid data in the request. If the error results from a SCEP-
protocol specific error, Connector for SCEP includes the SCEP response as a binary in the message.
Connector for SCEP APIs can return 400 responses for any of the following reasons.

Response
header
(x-
amzn-E
rrorType)

Error message (x-
amzn-ErrorMessage)

Root cause Remediation Includes
SCEP
response?

LimitExce
ededExcep
tion

Certificate authority
issuance limit
exceeded.

The private certifica
te authority (CA)
associated with
the connector has
exceeded its quota
for the number of
certificates it can
issue.

A SCEP connector can
only be connected
to one private
CA through its
lifetime. If you have
exhausted the limits
of your private CA,
either create a new
connector or request
a quota increase.
For more informati

No

HTTP errors Version latest 513

Amazon Private Certificate Authority User Guide

Response
header
(x-
amzn-E
rrorType)

Error message (x-
amzn-ErrorMessage)

Root cause Remediation Includes
SCEP
response?

on about private CA
quotas, see Amazon
Private Certificate
Authority quotas.

Validatio
nExceptio
n

The request must
contain base64.

Connector for SCEP
can't process the
HTTP GET request
because the body
isn't valid Base64.

If possible, configure
your clients to use
HTTP POST messages
instead of HTTP
GET messages. If
you must use HTTP
GET, the messages
must use the Base64
format. If your clients
are incompatible with
these requirements,
contact Amazon Web
Services Support for
assistance.

No

Validatio
nExceptio
n

The certificate
authority is not
active.

The private CA
associated with the
connector is inactive.

Reactivate the private
CA. For information,
see Update a private
CA in Amazon Private
Certificate Authority.

No

HTTP errors Version latest 514

https://docs.amazonaws.cn/general/latest/gr/pca.html#limits_pca
https://docs.amazonaws.cn/general/latest/gr/pca.html#limits_pca
https://docs.amazonaws.cn/general/latest/gr/pca.html#limits_pca
https://aws.amazon.com/contact-us/
https://aws.amazon.com/contact-us/

Amazon Private Certificate Authority User Guide

Response
header
(x-
amzn-E
rrorType)

Error message (x-
amzn-ErrorMessage)

Root cause Remediation Includes
SCEP
response?

Validatio
nExceptio
n

The certificate
authority certificate
validity must be at
least one year from
today.

The private CA
associated with the
general-purpose
connector must have
a validity period of
one year from today.

Reissue the certificate
with a validity period
greater than one
year from today. For
information about
managing certifica
tes, see Manage the
private CA lifecycle .

No

Validatio
nExceptio
n

The certificate
included in the
request is expired.

The transient certifica
te generated by
the client device on
each transaction was
expired on reception
by the service.

It's most likely that
your client devices
don't have their time
settings properly
configured, and
they're creating
certificates with dates
behind the real time.
If you can't resolve
this issue, contact
Amazon Web Services
Support for assistanc
e.

No

HTTP errors Version latest 515

https://aws.amazon.com/contact-us/
https://aws.amazon.com/contact-us/

Amazon Private Certificate Authority User Guide

Response
header
(x-
amzn-E
rrorType)

Error message (x-
amzn-ErrorMessage)

Root cause Remediation Includes
SCEP
response?

Validatio
nExceptio
n

The request contains
invalid Cryptographic
Message Syntax.

The service was
unable to decode
the SCEP request
message.

Check if your SCEP
messages conform
to the Cryptogra
phic Message Syntax
defined in SCEP RFC
8894. If you can't
resolve this issue,
contact Amazon Web
Services Support for
assistance.

No

Validatio
nExceptio
n

The connector is not
active.

The connector's
status is not active.

You can find a
connector's status
in the console or in
the Status field in
the API. A connector
's status can be
creating, active,
deleting, or failed. If
the status is creating,
try your request later.
If the status is failed,
view the status
reason to troublesh
oot the issue, and
then create a new
connector.

No

HTTP errors Version latest 516

https://www.rfc-editor.org/rfc/rfc8894.html
https://www.rfc-editor.org/rfc/rfc8894.html
https://aws.amazon.com/contact-us/
https://aws.amazon.com/contact-us/
https://docs.amazonaws.cn/pca-connector-scep/latest/APIReference/API_Connector.html#:~:text=Required%3A%20No-,StatusReason,-Information%20about%20why

Amazon Private Certificate Authority User Guide

Response
header
(x-
amzn-E
rrorType)

Error message (x-
amzn-ErrorMessage)

Root cause Remediation Includes
SCEP
response?

Validatio
nExceptio
n

There must be a valid
certificate included in
the request.

The transient certifica
te included in the
request message
from the client was
either missing or
invalid.

SCEP-compatible
clients must provide
a self-signed certifica
te to authenticate
themselves. If your
client is unable to
provide the required
self-signed certifica
te, contact Amazon
Web Services Support
for assistance.

No

Validatio
nExceptio
n

The request URI is
invalid.

Connector for SCEP
can't parse the
request because the
URI path or query
of the request are
invalid.

Administrators
should verify the
configuration settings
of the client devices,
which are typically
managed through
a Mobile Device
Management (MDM)
system. For more
information, see Step
2: Copy connector
details into your
MDM system.

No

HTTP errors Version latest 517

https://aws.amazon.com/contact-us/
https://aws.amazon.com/contact-us/

Amazon Private Certificate Authority User Guide

Response
header
(x-
amzn-E
rrorType)

Error message (x-
amzn-ErrorMessage)

Root cause Remediation Includes
SCEP
response?

Validatio
nExceptio
n

Exactly one host
header is required in
the request.

The client did not
provide a valid
HTTP Host header
in the request,
which is required for
the request to be
processed.

The HTTP host
header is required to
distinguish requests
coming to different
connectors. If your
client is unable to
provide the required
HTTP host header,
contact Amazon Web
Services Support for
assistance.

No

Validatio
nExceptio
n

The request could not
be decoded. Please
send a valid SCEP
request.

The service couldn't
decode and process
the Cryptographic
Message Syntax
(CMS) request that
your client sent.

If your clients are
having trouble with
our implementation
of SCEP, note the
request ID (x-amzn-
requestid) from
the response and
contact Amazon Web
Services Support.

No

HTTP errors Version latest 518

https://aws.amazon.com/contact-us/
https://aws.amazon.com/contact-us/
https://aws.amazon.com/contact-us/
https://aws.amazon.com/contact-us/

Amazon Private Certificate Authority User Guide

Response
header
(x-
amzn-E
rrorType)

Error message (x-
amzn-ErrorMessage)

Root cause Remediation Includes
SCEP
response?

Validatio
nExceptio
n

The response could
not be encoded with
values derived from
the request. Please
send a valid SCEP
request.

The service wasn't
able to encode the
SCEP response.

This issue usually
occurs when the
service is unable to
use the provided
requestor certificate
to properly encode
the SCEP response
message. This can
happen, for example,
if the requestor
certificate has an
Elliptic Curve Digital
Signature Algorithm
(ECDSA) key, which
Connector for SCEP
doesn't support.

If you encounter
this problem, first
configure your MDM
or SCEP client to use
RSA. If you still can't
resolve the issue,
note the request
ID (x-amzn-re
questid) from the
response and contact
Amazon Web Services
Support for assistanc
e.

No

HTTP errors Version latest 519

https://aws.amazon.com/contact-us/
https://aws.amazon.com/contact-us/

Amazon Private Certificate Authority User Guide

Response
header
(x-
amzn-E
rrorType)

Error message (x-
amzn-ErrorMessage)

Root cause Remediation Includes
SCEP
response?

Validatio
nExceptio
n

Unsupported
algorithm: <OID>

The request was
either signed or
encrypted by
an unsupported
cryptographic
algorithm.

Our service doesn't
support certain
outdated and
weak cryptogra
phic algorithms.
This information
is communicated
to clients through
the GetCACaps
request. However,
some clients may not
use this method to
check the supported
algorithms.

If your clients appear
to be incompatible
with the cryptogra
phic algorithms
supported by our
service, contact
Amazon Web Services
Support for assistanc
e.

No

HTTP errors Version latest 520

https://aws.amazon.com/contact-us/
https://aws.amazon.com/contact-us/

Amazon Private Certificate Authority User Guide

Response
header
(x-
amzn-E
rrorType)

Error message (x-
amzn-ErrorMessage)

Root cause Remediation Includes
SCEP
response?

Validatio
nExceptio
n

Unsupported
PkiOperation
messageType.

The request message
contained an invalid
PkiOperation
message type
and could not be
processed by the
service.

Our service supports
only a subset of
the SCEP protocol
message types
defined in RFC
8894. Specifically,
we recognize and
process the following
message types:
CertRep, PKCSReq,
GetCert, GetCRL, and
CertPoll.

We communica
te the supported
message types to
clients through the
GetCACaps method.
Unfortunately, some
clients may not be
utilizing this method
and could be non-
compliant with our
service's capabilities.

If your clients appear
to be incompati
ble with the SCEP
message types
supported by our

No

HTTP errors Version latest 521

Amazon Private Certificate Authority User Guide

Response
header
(x-
amzn-E
rrorType)

Error message (x-
amzn-ErrorMessage)

Root cause Remediation Includes
SCEP
response?

service, contact
Amazon Web Services
Support.

BadReques
tExceptio
n

The challenge
password is invalid.

The challenge
password provided by
the client was invalid
for the contacted
service endpoint
and its associate
d connector. The
challenge password
is a required security
measure defined in
the SCEP protocol to
ensure only authorize
d clients can access
the service.

Make sure that your
client is providing
the correct challenge
password in its
request. You can
find in the connector
details in the console
or through the
GetChallengePasswo
rd API. For more
information, see Step
2: Copy connector
details into your
MDM system.

Yes

HTTP errors Version latest 522

https://aws.amazon.com/contact-us/
https://aws.amazon.com/contact-us/
https://docs.amazonaws.cn/pca-connector-scep/latest/APIReference/API_GetChallengePassword.html
https://docs.amazonaws.cn/pca-connector-scep/latest/APIReference/API_GetChallengePassword.html

Amazon Private Certificate Authority User Guide

Response
header
(x-
amzn-E
rrorType)

Error message (x-
amzn-ErrorMessage)

Root cause Remediation Includes
SCEP
response?

BadReques
tExceptio
n

Exactly one challenge
password is required
in the certificate
signing request.

The client provided
either zero or
multiple challenge
passwords in its
request.

Make sure that your
client is providing
one challenge
password in its
request. You can find
challenge passwords
in the connector's
details in the console
or through the
GetChallengePasswo
rd API. For more
information, see Step
2: Copy connector
details into your
MDM system.

Yes

BadReques
tExceptio
n

The connector does
not have access to
Azure.

Connector for
Microsoft Intune
authorizes client
requests through
Microsoft Intune.
This requires that you
grant permission for
Connector for SCEP
to access your Azure
resources.

Configure the
permissions detailed
in Step 1: Grant
Amazon Private CA
permission to use
your Microsoft Entra
ID Application.

Yes

HTTP errors Version latest 523

https://docs.amazonaws.cn/pca-connector-scep/latest/APIReference/API_GetChallengePassword.html
https://docs.amazonaws.cn/pca-connector-scep/latest/APIReference/API_GetChallengePassword.html

Amazon Private Certificate Authority User Guide

Response
header
(x-
amzn-E
rrorType)

Error message (x-
amzn-ErrorMessage)

Root cause Remediation Includes
SCEP
response?

BadReques
tExceptio
n

The Azure application
does not have access
to perform <action>.

Connector for
Microsoft Intune
authorizes client
requests through
Microsoft Intune.
This requires that you
grant permission for
Connector for SCEP
to access your Azure
resources.

Configure the
permissions detailed
in Step 1: Grant
Amazon Private CA
permission to use
your Microsoft Entra
ID Application.

Yes

BadReques
tExceptio
n

The Azure application
was not found.

Connector for
Microsoft Intune
authorizes client
requests through
Microsoft Intune. This
error indicates that
you don't have an
App Registration in
your Microsoft Entra
ID, or your connector
's Intune details are
misconfigured.

Follow the guidance
in the Configure
Microsoft Intune for
Connector for SCEP
topic.

Yes

HTTP errors Version latest 524

Amazon Private Certificate Authority User Guide

Response
header
(x-
amzn-E
rrorType)

Error message (x-
amzn-ErrorMessage)

Root cause Remediation Includes
SCEP
response?

BadReques
tExceptio
n

Intune certificate
signing request
validation failed.
Reason: <reason>

Connector for
Microsoft Intune
authorizes client
requests through
Microsoft Intune.
This error message
indicates that the
Intune validation
process has failed,
and the correspon
ding Intune error
code is provided.

Follow the guidance
in the Configure
Microsoft Intune for
Connector for SCEP
topic. If your problem
persists, contact
Microsoft Support.

Yes

HTTP errors Version latest 525

Amazon Private Certificate Authority User Guide

Response
header
(x-
amzn-E
rrorType)

Error message (x-
amzn-ErrorMessage)

Root cause Remediation Includes
SCEP
response?

BadReques
tExceptio
n

Unsupported
PkiOperation
messageType:
<message type>.

The request message
contained an invalid
message type
and could not be
processed by the
service.

Our service supports
only a subset of
the SCEP protocol
message types
defined in RFC
8894. Specifically,
we recognize and
process the following
message types:
CertRep, PKCSReq,
GetCert, GetCRL, and
CertPoll.

We communica
te the supported
message types to
clients through the
GetCACaps method.
Unfortunately, some
clients may not be
utilizing this method
and could be non-
compliant with our
service's capabilities.

If your clients appear
to be incompati
ble with the SCEP
message types
supported by our
service, contact

Yes

HTTP errors Version latest 526

Amazon Private Certificate Authority User Guide

Response
header
(x-
amzn-E
rrorType)

Error message (x-
amzn-ErrorMessage)

Root cause Remediation Includes
SCEP
response?

Amazon Web Services
Support.

BadReques
tExceptio
n

Key algorithm
or length is not
supported.

The service does not
support the provided
public key included in
the certificate signing
request.

Our service only
supports standard
RSA keys up to
16,384 bits, and
ECDSA keys up to 521
bits. If your clients
require the use of a
currently unsupport
ed algorithm, please
contact Amazon Web
Services Support for
assistance.

Yes

HTTP 401 Unauthorized

A 401 Unauthorized response status code indicates that the client request hasn't been completed
because it lacks valid authentication credentials for the requested resource.

Response
header
(x-
amzn-E
rrorType)

Error message (x-
amzn-ErrorMessage)

Root cause Remediation Includes
SCEP
response?

AccessDen
iedExcept
ion

The connector does
not have access

Connector for SCEP
doesn't have access

Share your private CA
with the Connector
for SCEP using

No

HTTP errors Version latest 527

https://aws.amazon.com/contact-us/
https://aws.amazon.com/contact-us/
https://aws.amazon.com/contact-us/
https://aws.amazon.com/contact-us/

Amazon Private Certificate Authority User Guide

Response
header
(x-
amzn-E
rrorType)

Error message (x-
amzn-ErrorMessage)

Root cause Remediation Includes
SCEP
response?

to the certificate
authority.

to the connector's
associated private CA.

Amazon Resource
Access Manager.

AccountDo
esNotExis
tExceptio
n

The Amazon account
does not exist.

The Connector for
SCEP resource no
longer exists.

The account owning
the target resource
has been deleted.
If this was done by
mistake, contact
Amazon Web Services
Support within the
90-day post-closure
period.

No

HTTP 404 Not Found

An HTTP 404 response code usually means that the resource you were looking for couldn't be
found.

Response
header
(x-
amzn-E
rrorType

Error message (x-
amzn-ErrorMessage)

Root cause Remediation Includes
SCEP
response?

ResourceN
otFoundEx
ception

The certificate
authority does not
exist.

The connector's
associated private CA
has been deleted.

There is a grace
period during which
a private Certificate
Authority (CA) can be
restored if it has been
deleted by mistake.

No

HTTP errors Version latest 528

https://aws.amazon.com/contact-us/
https://aws.amazon.com/contact-us/

Amazon Private Certificate Authority User Guide

Response
header
(x-
amzn-E
rrorType

Error message (x-
amzn-ErrorMessage)

Root cause Remediation Includes
SCEP
response?

For more informati
on, see Restore a
private CA.

ResourceN
otFoundEx
ception

A connector with
endpoint <URL>
doesn't exist.

The client device
has attempted to
connect to a URL that
doesn't belong to any
existing connectors.

Make sure that your
client is providing
the correct endpoint
for the connector.
To view a connector
's Endpoint, call
the GetConnector
API or view it in the
connector's details
page in the console.

No

HTTP 409 Conflict

An HTTP 409 Conflict response signals that a private CA associated with a connector has changed
since the request was initiated.

Response
header
(x-
amzn-E
rrorType)

Error message (x-
amzn-ErrorMessage)

Root cause Remediation Includes
SCEP
response?

ConflictE
xception

The connector has
changed since the
request was initiated.

The private CA
associated with the
connector has been
updated, triggerin

Try your request
again in a few
minutes. If the
problem doesn't

No

HTTP errors Version latest 529

https://docs.amazonaws.cn/pca-connector-scep/latest/APIReference/API_GetConnector.html

Amazon Private Certificate Authority User Guide

Response
header
(x-
amzn-E
rrorType)

Error message (x-
amzn-ErrorMessage)

Root cause Remediation Includes
SCEP
response?

g a rotation of the
connector's internal
certificate used for
communication with
client devices via
SCEP.

This certificate
rotation may result
in temporary issues
during the update
period, as the new
certificate is being
deployed. However,
this error should be
resolved automatic
ally in a timely
manner.

resolve, contact
Amazon Web Services
Support for assistanc
e.

HTTP 429 Too Many Requests

Connector for SCEP has account-level quotas, per Region. If you exceed the limit of requests to a
connector, your requests will be denied with an HTTP 429 error. If you need to increase your quota,
see Amazon Private Certificate Authority endpoints and quotas.

Response
header
(x-
amzn-E
rrorType)

Error message (x-
amzn-ErrorMessage)

Root cause Remediation Includes
SCEP
response?

HTTP errors Version latest 530

https://aws.amazon.com/contact-us/
https://aws.amazon.com/contact-us/
https://docs.amazonaws.cn/general/latest/gr/pca.html

Amazon Private Certificate Authority User Guide

Response
header
(x-
amzn-E
rrorType)

Error message (x-
amzn-ErrorMessage)

Root cause Remediation Includes
SCEP
response?

Throttlin
gExceptio
n

The request was
denied due to request
throttling.

Too many requests
have been issued
to this Connector
, triggering some
requests to be
denied.

This certificate
rotation may result
in temporary issues
during the update
period, as the new
certificate is being
deployed. However,
this error should be
resolved automatic
ally in a timely
manner.

If you exceed the
limit of requests to
a connector, your
requests will be
denied. If you need to
increase your quota,
see Connector for
SCEP endpoints and
quotas.

No

Troubleshoot Connector for SCEP client errors

Use the following guidance to troubleshoot client errors related to Connector for SCEP.

Message
example

Root cause Solution

ECDSA keys are
not supported

The connector is connected to a
private CA that uses an ECDSA key
instead of RSA. While this service
supports ECDSA keys, not all client

Consider using an RSA-encrypted
private CA instead of ECDSA. If you
create a private CA that uses RSA,
you'll need to also create a new

Client errors Version latest 531

https://docs.amazonaws.cn/general/latest/gr/pca.html
https://docs.amazonaws.cn/general/latest/gr/pca.html
https://docs.amazonaws.cn/general/latest/gr/pca.html

Amazon Private Certificate Authority User Guide

Message
example

Root cause Solution

devices may be compatible with this
algorithm.

connector. A connector can only be
tied to one private CA through its
lifespan.

Encryption or
signing certifica
te is not present

According to RFC 8894, a SCEP
service returns intermediate CA
certificates to the client. These
certificates are used by the client to
perform encryption and signature
validation operations as part of the
SCEP protocol.

Connector for SCEP uses the same
certificate for both encryption and
signature validation purposes, which
is a common approach. However,
some clients may expect to have two
separate certificates instead.

If you are unable to use compatibl
e clients, contact Amazon Web
Services Support for assistance.

Client errors Version latest 532

https://aws.amazon.com/contact-us/
https://aws.amazon.com/contact-us/

Amazon Private Certificate Authority User Guide

Amazon Private CA service quotas

Amazon Private CA assigns quotas to your allowed number of certificates and certificate
authorities. Request rates for API actions are also subject to quotas. Amazon Private CA quotas are
specific to an Amazon account and Region.

Amazon Private CA throttles API requests at different rates depending on the API operation.
Throttling means that Amazon Private CA rejects an otherwise valid request because the request
exceeds the operation's quota for the number of requests per second. When a request is throttled,
Amazon Private CA returns a ThrottlingException error. Amazon Private CA does not guarantee a
minimum request rate for APIs.

To see what quotas can be adjusted, see the Amazon Private CA quotas table in the Amazon Web
Services General Reference.

You can view your current quotas and request quota increases using Amazon Service Quotas.

To see an up-to-date list of your Amazon Private CA quotas

1. Log into your Amazon account.

2. Open the Service Quotas console at https://console.amazonaws.cn/servicequotas/.

3. In the Services list, choose Amazon Certificate Manager Private Certificate Authority (ACM
PCA). Each quota in the Service quotas list shows your currently applied quota value, the
default quota value, and whether or not the quota is adjustable. Choose the name of a quota
for more information about it.

To request a quota increase

1. In the Service quotas list, choose the radio button for an adjustable quota.

2. Choose the Request quota increase button.

3. Complete and submit the Request quota increase form.

Amazon Private CA is integrated with Amazon Certificate Manager. You can use the ACM console,
Amazon CLI, or ACM API to request private certificates from an existing private CA. These private
PKI certificates, which are managed by ACM, are subject both to PCA quotas and to the quotas that
ACM places on public and imported certificates. For more information about ACM requirements,
see Request a Private Certificate and Quotas in the Amazon Certificate Manager User Guide.

Version latest 533

https://docs.amazonaws.cn/privateca/latest/APIReference/CommonErrors.html
https://docs.amazonaws.cn/general/latest/gr/pca.html#limits_pca
https://console.amazonaws.cn/servicequotas/
https://docs.amazonaws.cn/acm/latest/userguide/gs-acm-request-private.html
https://docs.amazonaws.cn/acm/latest/userguide/acm-limits.html

Amazon Private Certificate Authority User Guide

Document History

The following table describes significant changes to this documentation since January 2018. In
addition to major changes listed here, we also update the documentation frequently to improve
the descriptions and examples, and to address the feedback that you send to us. To be notified
about significant changes, use the link in the upper right corner to subscribe to the RSS feed.

Change Description Date

Dual-stack support Amazon Private Certificate
Authority supports dual-stac
k.

June 23, 2025

Child domain support for
Connector for AD is now
generally available

You can now set up Connector
for AD with your child
domain.

June 2, 2025

New managed policy:
AWSPrivateCAConnec
toForKubernetesPol
icy

New managed policy
introduced for use with
Amazon Private CA Connector
for Kubernetes.

May 19, 2025

Updated AWSPrivat
eCAPrivilegedUser
and AWSPrivateCAUser
managed policies

Replaced StringLike with
ArnLike in AWSPrivat
eCAUser and AWSPrivat
eCAPrivilegedUser .
Updated template ARN to
include wild cards arn:aws:a
cm-pca:::template
to arn:aws:acm-pca:*:
*:template .

January 22, 2025

Connector for SCEP is now
generally available

Connector for SCEP is now
generally available.

September 16, 2024

New troubleshooting topic Added a new topic that
helps you to troubleshoot
issues related to updating

July 31, 2024

Version latest 534

https://docs.amazonaws.cn/privateca/latest/userguide/connector-for-ad-getting-started-prerequisites.html
https://docs.amazonaws.cn/privateca/latest/userguide/connector-for-ad-getting-started-prerequisites.html
https://docs.amazonaws.cn/privateca/latest/userguide/connector-for-ad-getting-started-prerequisites.html

Amazon Private Certificate Authority User Guide

your Connector for Active
Directory templates.

Added how to update
Connector for AD templates

Added a procedure describin
g how to update a Connector
for AD template, and how
Amazon Private CA propagate
s those updates.

July 31, 2024

Added constraint for audit
reports

Amazon Private CA doesn't
support the use of Amazon S3
Object Lock with buckets used
for audit reports.

July 3, 2024

Now supports SM2 for China
Region

Amazon Private CA now
supports the SM2 signing
algorithm, for China Region
only.

June 27, 2024

Amazon Private CA now
supports Connector for SCEP
(Preview)

Use Connector for SCEP to
link Amazon Private CA to
your SCEP-enabled clients
and devices.

June 11, 2024

New connector troublesh
ooting guidance

Added new sections on
troubleshooting connector
and SPN creation failures.

April 4, 2024

Adding CDP extension for
Matter

Adds support for the Certifica
te Revocation List Distribut
ion Point (CDP) extension for
Matter.

January 25, 2024

Amazon Private CA API
support for mDL

Added API support for
creating certificates that
conform to the ISO/IEC
standard for mobile driving
license (mDL).

January 16, 2024

Version latest 535

https://www.iso.org/standard/69084.html
https://www.iso.org/standard/69084.html
https://www.iso.org/standard/69084.html

Amazon Private Certificate Authority User Guide

Amazon Private CA Connector
for Active Directory

User guide, API, and CLI
support for Connector for AD.
For more information, see the
Connector for AD documenta
tion.

August 24, 2023

Changing security policy
names to match new service
name

Adoption of new names
for Amazon managed
IAM policies that specify
standard permissions on
Amazon Private CA. For more
information, see Amazon
managed policies.

February 13, 2023

Adding change tracker for
Amazon managed policies

Documentation added to
track changes to Amazon
managed IAM policies that
specify standard permissio
ns on Amazon Private CA.
For more information, see
Updates to Amazon managed
policies for Amazon Private
CA.

November 11, 2022

API and CLI support for CAs
that issue short-lived certifica
tes

With the introduction of CA
usage modes, a CA can be
configured to issue either
general-purpose or exclusive
ly short-lived certificates.
For more information, see
Certificate authority modes.

October 24, 2022

Version latest 536

https://docs.amazonaws.cn/privateca/latest/userguide/connector-for-ad.html
https://docs.amazonaws.cn/privateca/latest/userguide/auth-AwsManagedPolicies.html
https://docs.amazonaws.cn/privateca/latest/userguide/auth-AwsManagedPolicies.html
https://docs.amazonaws.cn/privateca/latest/userguide/auth-AwsManagedPolicies.html#managed-policy-updates
https://docs.amazonaws.cn/privateca/latest/userguide/auth-AwsManagedPolicies.html#managed-policy-updates
https://docs.amazonaws.cn/privateca/latest/userguide/auth-AwsManagedPolicies.html#managed-policy-updates
https://docs.amazonaws.cn/privateca/latest/userguide/short-lived-certificates.html

Amazon Private Certificate Authority User Guide

Service rebranding and
console update

The service is renamed to
Amazon Private Certificate
Authority (Amazon Private
CA). The Amazon Private
CA console gets usability
improvements including
integrated help panels that
link to complete documenta
tion.

September 27, 2022

Matter-compliant certificate
support

Three new certificate
templates add support
for Matter-compliant CA
and end-entity certificates.
For more information, see
Understanding certificate
templates.

July 20, 2022

New region support Endpoint added for Asia
Pacific (Jakarta). For a
complete list of Amazon
Private CA endpoints, see
ACM Private Certificate
Authority Endpoints and
Quotas.

May 4, 2022

Support for Custom Attribute
s and Extensions

Use the CustomAttribute
object to configure customize
d CAs and certificates, and the
CustomExtension object to
configure customized certifica
tes.

March 16, 2022

Support for Managed OCSP See Setting up a certifica
te revocation method for
revocation options including
OCSP.

August 18, 2021

Version latest 537

https://docs.amazonaws.cn/privateca/latest/userguide/UsingTemplates.html
https://docs.amazonaws.cn/privateca/latest/userguide/UsingTemplates.html
https://docs.amazonaws.cn/general/latest/gr/pca.html
https://docs.amazonaws.cn/general/latest/gr/pca.html
https://docs.amazonaws.cn/general/latest/gr/pca.html
https://docs.amazonaws.cn/privateca/latest/userguide/JavaApi-CustomAttributes.html
https://docs.amazonaws.cn/privateca/latest/userguide/JavaApi-CustomAttributes.html
https://docs.amazonaws.cn/privateca/latest/userguide/JavaApi-CustomExtensions.html
https://docs.amazonaws.cn/privateca/latest/userguide/revocation-setup.html
https://docs.amazonaws.cn/privateca/latest/userguide/revocation-setup.html

Amazon Private Certificate Authority User Guide

Support for S3 Block Public
Access feature for CRLs

See Enabling the S3 Block
Public Access feature.

May 27, 2021

New and updated Java
implementation examples

See Using the ACM Private CA
API (Java Examples).

September 9, 2020

New region support Endpoints added for Africa
(Cape Town) and Europe
(Milan). For a complete list of
Amazon Private CA endpoints
, see Amazon Certificate
Manager Private Certifica
te Authority Endpoints and
Quotas.

August 27, 2020

Cross-account private CA
access supported

Amazon Certificate Manager
users can be authorized to
issue certificates using private
CAs that they do not own. For
more information, see Cross-
Account Access to Private CAs.

August 17, 2020

VPC endpoints (PrivateLink)
support

Added support for use of
VPC endpoints (AmazonPr
ivateLink) for enhanced
network security. For more
information, see ACM Private
CA VPC Endpoints (Amazon
PrivateLink).

March 26, 2020

Dedicated security section
added

Security documentation for
Amazon has been consolida
ted into a dedicated security
section. For information
about security, see Security in
Amazon Certificate Manager
Private Certificate Authority.

March 26, 2020

Version latest 538

https://docs.amazonaws.cn/privateca/latest/userguide/PcaCreateCa.html#s3-bpa
https://docs.amazonaws.cn/privateca/latest/userguide/PcaCreateCa.html#s3-bpa
https://docs.amazonaws.cn/privateca/latest/userguide/PcaApiIntro.html
https://docs.amazonaws.cn/privateca/latest/userguide/PcaApiIntro.html
https://docs.amazonaws.cn/general/latest/gr/pca.html
https://docs.amazonaws.cn/general/latest/gr/pca.html
https://docs.amazonaws.cn/general/latest/gr/pca.html
https://docs.amazonaws.cn/general/latest/gr/pca.html
https://docs.amazonaws.cn/privateca/latest/userguide/pca-resource-sharing.html
https://docs.amazonaws.cn/privateca/latest/userguide/pca-resource-sharing.html
https://docs.amazonaws.cn/privateca/latest/userguide/vpc-endpoints.html
https://docs.amazonaws.cn/privateca/latest/userguide/vpc-endpoints.html
https://docs.amazonaws.cn/privateca/latest/userguide/vpc-endpoints.html
https://docs.amazonaws.cn/privateca/latest/userguide/security.html
https://docs.amazonaws.cn/privateca/latest/userguide/security.html
https://docs.amazonaws.cn/privateca/latest/userguide/security.html

Amazon Private Certificate Authority User Guide

Template ARN added to audit
reports.

For more information, see
Creating an Audit Report for
Your Private CA.

March 6, 2020

CloudFormation support Support added for Amazon
CloudFormation. For more
information, see ACMPCA
Resource Type Reference in
the Amazon CloudFormation
User Guide.

January 22, 2020

CloudWatch Events integrati
on

Integration with CloudWatc
h Events for asynchronous
events, including CA creation,
 certificate issuance, and CRL
creation. For more informati
on, see Using CloudWatch
Events.

December 23, 2019

FIPS endpoints FIPS endpoints added for
Amazon GovCloud (US-East)
and Amazon GovCloud (US-
West). For a complete list of
Amazon Private CA endpoints
, see Amazon Certificate
Manager Private Certifica
te Authority Endpoints and
Quotas.

December 13, 2019

Version latest 539

https://docs.amazonaws.cn/privateca/latest/userguide/PcaAuditReport.html
https://docs.amazonaws.cn/privateca/latest/userguide/PcaAuditReport.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/AWS_ACMPCA.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/AWS_ACMPCA.html
https://docs.amazonaws.cn/privateca/latest/userguide/CloudWatchEvents.html
https://docs.amazonaws.cn/privateca/latest/userguide/CloudWatchEvents.html
https://docs.amazonaws.cn/general/latest/gr/pca.html
https://docs.amazonaws.cn/general/latest/gr/pca.html
https://docs.amazonaws.cn/general/latest/gr/pca.html
https://docs.amazonaws.cn/general/latest/gr/pca.html

Amazon Private Certificate Authority User Guide

Tag-based permissions Tag-based permissions
supported using the new APIs
TagResource , UntagReso
urce , and ListTagsF
orResource . For general
information about tag-based
controls, see Controlling
Access to and for IAM Users
and Roles Using IAM Resource
Tags.

November 5, 2019

Name constraints enforceme
nt

Added support for enforcing
subject name constraints
on imported CA certificates.
For more information, see
Enforcing Name Constraints
on a Private CA.

October 28, 2019

New certificate templates New certificate templates
added, including templates
for code signing with Amazon
Signer. For more information,
see Using Templates.

October 1, 2019

Planning your CA New section added on
planning your PKI using
Amazon Private CA. For
more information, see
Planning Your ACM Private CA
Deployment.

September 30, 2019

Version latest 540

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_iam-tags.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_iam-tags.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_iam-tags.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_iam-tags.html
https://docs.amazonaws.cn/privateca/latest/userguide/name_constraints.html
https://docs.amazonaws.cn/privateca/latest/userguide/name_constraints.html
https://docs.amazonaws.cn/privateca/latest/userguide/UsingTemplates.html
https://docs.amazonaws.cn/privateca/latest/userguide/PcaPlanning.html
https://docs.amazonaws.cn/privateca/latest/userguide/PcaPlanning.html

Amazon Private Certificate Authority User Guide

Added region support Added region support for the
Amazon Asia Pacific (Hong
Kong) Region. For a complete
list of supported regions, see
Amazon Certificate Manager
Private Certificate Authority
Endpoints and Quotas.

July 24, 2019

Added complete private CA
hierarchy support

Support for creating and
hosting root CAs removes
need for an external parent.

June 20, 2019

Added region support Added region support for the
Amazon GovCloud (US-West
and US-East) Regions. For a
complete list of supported
regions, see Amazon Certifica
te Manager Private Certifica
te Authority Endpoints and
Quotas.

May 8, 2019

Added region support Added region support for
the Amazon Asia Pacific
(Mumbai and Seoul), US West
(N. California), and EU (Paris
and Stockholm) Regions. For
a complete list of supported
 regions, see Amazon Certifica
te Manager Private Certifica
te Authority Endpoints and
Quotas.

April 4, 2019

Version latest 541

https://docs.amazonaws.cn/general/latest/gr/pca.html
https://docs.amazonaws.cn/general/latest/gr/pca.html
https://docs.amazonaws.cn/general/latest/gr/pca.html
https://docs.amazonaws.cn/general/latest/gr/pca.html
https://docs.amazonaws.cn/general/latest/gr/pca.html
https://docs.amazonaws.cn/general/latest/gr/pca.html
https://docs.amazonaws.cn/general/latest/gr/pca.html
https://docs.amazonaws.cn/general/latest/gr/pca.html
https://docs.amazonaws.cn/general/latest/gr/pca.html
https://docs.amazonaws.cn/general/latest/gr/pca.html
https://docs.amazonaws.cn/general/latest/gr/pca.html

Amazon Private Certificate Authority User Guide

Testing certificate renewal
workflow

Customers can now manually
test the configuration of
their ACM managed renewal
workflow. For more informati
on, see Testing ACM's
Managed Renewal Configura
tion.

March 14, 2019

Added region support Added region support for
the Amazon EU (London)
Region. For a complete list
of supported regions, see
Amazon Certificate Manager
Private Certificate Authority
Endpoints and Quotas.

August 1, 2018

Restore deleted CAs Private CA restore allows
customers to restore certifica
te authorities (CAs) for up to
30 days after they have been
deleted. For more informati
on, see Restoring Your Private
CA.

June 20, 2018

Earlier Updates

The following table describes the documentation release history of Amazon Private Certificate
Authority before June 2018.

Change Description Date

New guide This release introduces
Amazon Private Certificate
Authority.

April 04, 2018

Earlier Updates Version latest 542

https://docs.amazonaws.cn/acm/latest/userguide/manual-renewal.html
https://docs.amazonaws.cn/acm/latest/userguide/manual-renewal.html
https://docs.amazonaws.cn/acm/latest/userguide/manual-renewal.html
https://docs.amazonaws.cn/general/latest/gr/pca.html
https://docs.amazonaws.cn/general/latest/gr/pca.html
https://docs.amazonaws.cn/general/latest/gr/pca.html
https://docs.amazonaws.cn/privateca/latest/userguide/PCARestoreCA.html
https://docs.amazonaws.cn/privateca/latest/userguide/PCARestoreCA.html

	Amazon Private Certificate Authority
	Table of Contents
	What is Amazon Private CA?
	Regional availability for Amazon Private Certificate Authority
	Services integrated with Amazon Private Certificate Authority
	Supported cryptographic algorithms in Amazon Private Certificate Authority
	RFC 5280 compliance in Amazon Private Certificate Authority
	Pricing for Amazon Private Certificate Authority
	Terms and concepts for Amazon Private CA
	Trust
	TLS server certificates
	Certificate signature
	Certificate authority
	Root CA
	CA certificate
	Root CA certificate
	End-entity certificate
	Self-signed certificates
	Private certificate
	Certificate path
	Path length constraint

	What is the best certificate service for my needs?
	Amazon Private CA best practices
	Documenting CA structure and policies
	Minimize use of the root CA if possible
	Give the root CA its own Amazon Web Services account
	Separate administrator and issuer roles
	Implement managed revocation of certificates
	Turn on Amazon CloudTrail
	Rotate the CA private key
	Delete unused CAs
	Block public access to your CRLs
	Amazon EKS application best practices

	Use Amazon Private CA with the Amazon SDK for Java
	Amazon Private CA API examples
	Create and activate a root CA programmatically
	Create and activate a subordinate CA programmatically
	CreateCertificateAuthority
	Using CreateCertificateAuthority to support Active Directory
	CreateCertificateAuthorityAuditReport
	CreatePermission
	DeleteCertificateAuthority
	DeletePermission
	DeletePolicy
	DescribeCertificateAuthority
	DescribeCertificateAuthorityAuditReport
	GetCertificate
	GetCertificateAuthorityCertificate
	GetCertificateAuthorityCsr
	GetPolicy
	ImportCertificateAuthorityCertificate
	IssueCertificate
	ListCertificateAuthorities
	ListPermissions
	ListTags
	PutPolicy
	RestoreCertificateAuthority
	RevokeCertificate
	TagCertificateAuthorities
	UntagCertificateAuthority
	UpdateCertificateAuthority
	Create CAs and certificates with custom subject names
	Create CA with CustomAttribute
	Issue a certificate with CustomAttribute

	Create certificates with custom extensions
	Activate a subordinate CA with the NameConstraints extension
	Issue a certificate with the QC statement extension

	Use Amazon Private CA to implement Matter certificates
	Activate a Product Attestation Authority (PAA)
	Activate an Product Attestation Intermediate (PAI)
	Create a Device Attestation Certificate (DAC)
	Activate a Root CA for Node Operational Certificates (NOC).
	Activate a Subordinate CA for Node Operational Certificates (NOC)
	Create a Node Operational Certificate (NOC)

	Use Amazon Private CA to implement mDL certificates
	Activate an issuing authority certificate authority (IACA) certificate
	Create a document signer certificate

	Architect your solution for Amazon Private CA
	Design a CA hierarchy
	Validate end-entity certificates
	Plan the structure of a CA hierarchy
	Example of a private PKI for a manufacturer

	Set length constraints on the certification path
	Manage path length with templates
	Automate CA hierarchy setup with Amazon CloudFormation

	Manage the private CA lifecycle
	Choose validity periods
	Manage CA succession
	Replace an old CA
	Reissue an old CA

	Revoke a CA

	Plan your Amazon Private CA certificate revocation method
	General requirements for revocation configurations
	Set up a CRL for Amazon Private CA
	CRL types
	CRL structure
	Access policies for CRLs in Amazon S3
	Enable S3 Block Public Access (BPA) with CloudFront
	Set up CloudFront for BPA
	Set up your CA for BPA

	Determining the CRL Distribution Point (CDP) URI
	

	Customize OCSP URL for Amazon Private CA
	Using OCSP over IPv6

	Understand Amazon Private CA CA modes
	General-purpose (default)
	Short-lived certificate

	Plan for resilience in Amazon Private CA
	Redundancy and disaster recovery

	Certificate authorities in Amazon Private CA
	Set up to use Amazon Private CA
	Sign up for an Amazon Web Services account
	Secure IAM users
	Install the Amazon Command Line Interface

	Create a private CA in Amazon Private CA
	CLI examples for creating a private CA
	Example 1: Create a CA with OCSP enabled
	Example 2: Create a CA with OCSP and a custom CNAME enabled
	Example 3: Create a CA with an attached CRL
	Example 4: Create a CA with an attached CRL and a custom CNAME enabled
	Example 5: Create a CA and specify the usage mode
	Example 6: Create a CA for Active Directory login
	Example 7: Create a Matter CA with an attached CRL and the CDP extension omitted from issued certificates

	Installing the CA certificate
	Compatible signing algorithms
	Install a root CA certificate
	Install a subordinate CA certificate hosted by Amazon Private CA
	Install a subordinate CA certificate signed by an external parent CA

	Control access to the private CA
	Create single-account permissions for an IAM user
	Assign certificate renewal permissions to ACM

	Attach a policy for cross-account access

	List private CAs
	View a private CA
	Add tags for your private CA
	Understand Amazon Private CA CA status
	Relation between CA status and CA lifecycle

	Update a private CA in Amazon Private Certificate Authority
	Update a CA (console)
	Update CA status (console)
	Updating a CA's revocation configuration (console)
	To configure a CRL
	To configure OCSP

	Updating a CA (CLI)

	Delete your private CA
	Restore a private CA
	Restoring a private CA (console)
	Restore a private CA (Amazon CLI)

	Use externally signed private CA certificates

	Issue and manage certificates in Amazon Private CA
	Issue private end-entity certificates
	Issue a standard certificate (Amazon CLI)
	Issue a certificate with a custom subject name using an APIPassthrough template
	Issue a certificate with custom extensions using an APIPassthrough template

	Retrieve a private certificate
	List private certificates
	Export a private certificate and its secret key
	Revoke a private certificate
	Revoked certificates and OCSP
	Revoked certificates in a CRL
	Revoked certificates in an audit report

	Automate export of a renewed certificate
	Use Amazon Private CA certificate templates
	Amazon Private CA template varieties
	Amazon Private CA template order of operations
	Amazon Private CA template definitions
	BlankEndEntityCertificate_APIPassthrough/V1 definition
	BlankEndEntityCertificate_APICSRPassthrough/V1 definition
	BlankEndEntityCertificate_CriticalBasicConstraints_APICSRPassthrough/V1 definition
	BlankEndEntityCertificate_CriticalBasicConstraints_APIPassthrough/V1 definition
	BlankEndEntityCertificate_CriticalBasicConstraints_CSRPassthrough/V1 definition
	BlankEndEntityCertificate_CSRPassthrough/V1 definition
	BlankSubordinateCACertificate_PathLen0_CSRPassthrough/V1 definition
	BlankSubordinateCACertificate_PathLen0_APICSRPassthrough/V1 definition
	BlankSubordinateCACertificate_PathLen0_APIPassthrough/V1 definition
	BlankSubordinateCACertificate_PathLen1_APIPassthrough/V1 definition
	BlankSubordinateCACertificate_PathLen1_CSRPassthrough/V1 definition
	BlankSubordinateCACertificate_PathLen1_APICSRPassthrough/V1 definition
	BlankSubordinateCACertificate_PathLen2_APIPassthrough/V1 definition
	BlankSubordinateCACertificate_PathLen2_CSRPassthrough/V1 definition
	BlankSubordinateCACertificate_PathLen2_APICSRPassthrough/V1 definition
	BlankSubordinateCACertificate_PathLen3_APIPassthrough/V1 definition
	BlankSubordinateCACertificate_PathLen3_CSRPassthrough/V1 definition
	BlankSubordinateCACertificate_PathLen3_APICSRPassthrough/V1 definition
	CodeSigningCertificate/V1 definition
	CodeSigningCertificate_APICSRPassthrough/V1 definition
	CodeSigningCertificate_APIPassthrough/V1 definition
	CodeSigningCertificate_CSRPassthrough/V1 definition
	EndEntityCertificate/V1 definition
	EndEntityCertificate_APICSRPassthrough/V1 definition
	EndEntityCertificate_APIPassthrough/V1 definition
	EndEntityCertificate_CSRPassthrough/V1 definition
	EndEntityClientAuthCertificate/V1 definition
	EndEntityClientAuthCertificate_APICSRPassthrough/V1 definition
	EndEntityClientAuthCertificate_APIPassthrough/V1 definition
	EndEntityClientAuthCertificate_CSRPassthrough/V1 definition
	EndEntityServerAuthCertificate/V1 definition
	EndEntityServerAuthCertificate_APICSRPassthrough/V1 definition
	EndEntityServerAuthCertificate_APIPassthrough/V1 definition
	EndEntityServerAuthCertificate_CSRPassthrough/V1 definition
	OCSPSigningCertificate/V1 definition
	OCSPSigningCertificate_APICSRPassthrough/V1 definition
	OCSPSigningCertificate_APIPassthrough/V1 definition
	OCSPSigningCertificate_CSRPassthrough/V1 definition
	RootCACertificate/V1 definition
	RootCACertificate_APIPassthrough/V1 definition
	BlankRootCACertificate_APIPassthrough/V1 definition
	BlankRootCACertificate_PathLen0_APIPassthrough/V1 definition
	BlankRootCACertificate_PathLen1_APIPassthrough/V1 definition
	BlankRootCACertificate_PathLen2_APIPassthrough/V1 definition
	BlankRootCACertificate_PathLen3_APIPassthrough/V1 definition
	SubordinateCACertificate_PathLen0/V1 definition
	SubordinateCACertificate_PathLen0_APICSRPassthrough/V1 definition
	SubordinateCACertificate_PathLen0_APIPassthrough/V1 definition
	SubordinateCACertificate_PathLen0_CSRPassthrough/V1 definition
	SubordinateCACertificate_PathLen1/V1 definition
	SubordinateCACertificate_PathLen1_APICSRPassthrough/V1 definition
	SubordinateCACertificate_PathLen1_APIPassthrough/V1 definition
	SubordinateCACertificate_PathLen1_CSRPassthrough/V1 definition
	SubordinateCACertificate_PathLen2/V1 definition
	SubordinateCACertificate_PathLen2_APICSRPassthrough/V1 definition
	SubordinateCACertificate_PathLen2_APIPassthrough/V1 definition
	SubordinateCACertificate_PathLen2_CSRPassthrough/V1 definition
	SubordinateCACertificate_PathLen3/V1 definition
	SubordinateCACertificate_PathLen3_APICSRPassthrough/V1 definition
	SubordinateCACertificate_PathLen3_APIPassthrough/V1 definition
	SubordinateCACertificate_PathLen3_CSRPassthrough/V1 definition

	Security in Amazon Private Certificate Authority
	Identity and Access Management (IAM) for Amazon Private Certificate Authority
	Amazon Private CA API operations and permissions
	Amazon managed policies
	AWSPrivateCAFullAccess
	AWSPrivateCAReadOnly
	AWSPrivateCAPrivilegedUser
	AWSPrivateCAUser
	AWSPrivateCAAuditor
	AWSPrivateCAConnectorForKubernetesPolicy
	Updates to Amazon managed policies for Amazon Private CA

	Customer managed policies
	Inline policies
	Listing private CAs
	Retrieving a private CA certificate
	Importing a private CA certificate
	Deleting a private CA
	Tag-on-create: Attaching tags to a CA at the time of creation
	Tag-on-create: Restricted tagging
	Controlling access to Private CA using tags
	Read-only access to Amazon Private CA
	Full access to Amazon Private CA
	Administrator access to all Amazon resources

	Security best practices for Cross-account access to private CAs
	Resource-based policies
	Policy examples

	Data protection in Amazon Private Certificate Authority
	Storage and security compliance of Amazon Private CA private keys
	Data encryption in Amazon Private CA Connector for Active Directory

	Compliance validation for Amazon Private Certificate Authority
	Use audit reports with your private CA
	Prepare an Amazon S3 bucket for audit reports
	Create an audit report
	Retrieve an audit report
	Encrypting your audit reports

	Infrastructure security in Amazon Private Certificate Authority
	Amazon Private CA VPC endpoints (Amazon PrivateLink)
	Considerations for Amazon Private CA VPC endpoints
	
	Creating the VPC endpoints for Amazon Private CA
	Create a VPC endpoint policy for Amazon Private CA

	Dual-stack endpoint support
	Using IPv6 addresses in IAM and Amazon Private CA

	Amazon Private Certificate Authority Customer CP/CPS Framework
	CP/CPS Requirements and Responsibilities

	Monitor Amazon Private CA resources
	Amazon Private CA CloudWatch metrics
	

	Monitor Amazon Private CA with CloudWatch Events
	Success or failure when creating a private CA
	Success or failure when issuing a certificate
	Success when revoking a certificate
	Success or failure when generating a CRL
	Success or failure when creating a CA audit report

	Logging Amazon Private Certificate Authority API calls using Amazon CloudTrail
	Amazon Private CA information in CloudTrail
	Amazon Private CA management events
	Example Amazon Private CA events

	Troubleshoot issues with Amazon Private Certificate Authority
	Troubleshoot Amazon Private CA certificate revocation issues
	OCSP response latency
	Amazon S3 bucket creation failure for CRLs
	Revocation of self-signed certificates

	Troubleshoot Amazon Private Certificate Authority exception messages
	Troubleshoot Amazon Private CA Matter-compliant certificate errors

	Secure Kubernetes with Amazon Private CA
	Cross-account use of the cert-manager
	Supported certificate templates
	Example solutions

	Amazon Private CA Connector for Active Directory
	Are You a First-Time Connector for AD User?
	Access Connector for AD
	Pricing

	Set up Connector for AD
	Step 1: Create a private CA using Amazon Private CA
	Step 2: Set up an Active Directory
	(Active Directory Connector only) Step 3: Delegate permissions to service account
	Step 4: Create IAM Policy
	Step 5: Share your private CA with Connector for AD
	Step 6: Create directory registration
	Step 7: Configure security groups
	Step 8: Configure network access for directory objects

	Get started with Amazon Private CA Connector for Active Directory
	Before you begin
	Step 1: Create a connector
	Step 2: Configure Microsoft Active Directory policies
	Step 3: Create a template
	Step 4: Configure Microsoft group permissions

	Amazon Private CA connectors for Active Directory
	Creating a connector for Active Directory
	Create a connector template
	Update a template for Active Directory
	How Connector for Active Directory propagates your template changes

	List connectors for Active Directory
	List connector templates
	View connector details
	View connector template details
	Manage directory registrations
	Manage Connector for AD template access control entries
	Configuring the service principal name
	Tagging Connector for AD resources

	Troubleshoot issues with Amazon Private CA Connector for Active Directory
	Troubleshoot Connector for AD error codes
	Troubleshoot Connector for AD connector creation failures
	Troubleshoot Connector for AD SPN creation failure
	Troubleshoot Connector for AD template update issues

	Amazon Private CA Connector for SCEP
	Features
	How to get started with Connector for SCEP
	Related services
	Access Connector for SCEP
	Pricing
	Connector for SCEP concepts
	Understand Connector for SCEP considerations and limitations
	Considerations
	Limitations

	Set up Connector for SCEP
	Step 1: Create an Amazon Identity and Access Management policy
	Step 2: Create a private CA
	Step 3: Create a resource share using Amazon Resource Access Manager

	Get started with Connector for SCEP
	Before you begin
	Step 1: Create a connector
	Step 2: Copy connector details into your MDM system

	Configure your MDM system for Connector for SCEP
	General-purpose connector
	Amazon Private CA Connector for SCEP for Microsoft Intune
	Configure Jamf Pro for Connector for SCEP
	Configure Jamf Pro for Connector for SCEP
	Jamf Pro requirements
	Step 1: (Optional - recommended) Obtain your private CA's fingerprint
	Step 2: Configure Amazon Private CA as an external CA in Jamf Pro
	Step 3: Set up a configuration profile signing certificate
	Step 4: (Optional) Install certificate during user-initiated enrollment
	Troubleshoot profile installation failures

	Configure Microsoft Intune for Connector for SCEP
	Prerequisites
	Step 1: Grant Amazon Private CA permission to use your Microsoft Entra ID Application
	Step 2: Set up a Microsoft Intune configuration profile
	Step 3: Verify the connection to Connector for SCEP

	Monitor Connector for SCEP
	Automate Connector for SCEP using EventBridge
	Connector for SCEP event types
	Certificate Issuance Succeeded
	Certificate Issuance Failed
	Certificate Authority Certificate Retrieval Succeeded
	Certificate Authority Certificate Retrieval Failed
	Certificate Authority Certificate Retrieval Succeeded
	Certificate Authority Capabilities Retrieval Succeeded
	Certificate Authority Capabilities Retrieval Failed
	Unsupported Operation Invoked

	Create an EventBridge rule

	Log Connector for SCEP API calls using Amazon CloudTrail
	Connector for SCEP information in CloudTrail
	Connector for SCEP management events
	Connector for SCEP data events in CloudTrail
	Example entries

	Troubleshoot Amazon Private Certificate Authority Connector for SCEP issues
	Troubleshoot HTTP errors from Connector for SCEP
	HTTP 400 Bad Request
	HTTP 401 Unauthorized
	HTTP 404 Not Found
	HTTP 409 Conflict
	HTTP 429 Too Many Requests

	Troubleshoot Connector for SCEP client errors

	Amazon Private CA service quotas
	Document History
	Earlier Updates

