Examples
The following example creates a table named SALES in the Amazon Redshift external schema named
spectrum
. The data is in tab-delimited text files. The TABLE PROPERTIES
clause sets the numRows property to 170,000 rows.
Depending on the identity you use to run CREATE EXTERNAL TABLE, there may be IAM permissions that you have to configure. As a best practice, we recommend attaching permissions policies to an IAM role and then assigning it to users and groups as needed. For more information, see Identity and access management in Amazon Redshift.
create external table spectrum.sales( salesid integer, listid integer, sellerid integer, buyerid integer, eventid integer, saledate date, qtysold smallint, pricepaid decimal(8,2), commission decimal(8,2), saletime timestamp) row format delimited fields terminated by '\t' stored as textfile location 's3://redshift-downloads/tickit/spectrum/sales/' table properties ('numRows'='170000');
The following example creates a table that uses the JsonSerDe to reference data in JSON format.
create external table spectrum.cloudtrail_json ( event_version int, event_id bigint, event_time timestamp, event_type varchar(10), awsregion varchar(20), event_name varchar(max), event_source varchar(max), requesttime timestamp, useragent varchar(max), recipientaccountid bigint) row format serde 'org.openx.data.jsonserde.JsonSerDe' with serdeproperties ( 'dots.in.keys' = 'true', 'mapping.requesttime' = 'requesttimestamp' ) location 's3://amzn-s3-demo-bucket/json/cloudtrail';
The following CREATE EXTERNAL TABLE AS example creates a nonpartitioned external table. Then it writes the result of the SELECT query as Apache Parquet to the target Amazon S3 location.
CREATE EXTERNAL TABLE spectrum.lineitem STORED AS parquet LOCATION 'S3://amzn-s3-demo-bucket/cetas/lineitem/' AS SELECT * FROM local_lineitem;
The following example creates a partitioned external table and includes the partition columns in the SELECT query.
CREATE EXTERNAL TABLE spectrum.partitioned_lineitem PARTITIONED BY (l_shipdate, l_shipmode) STORED AS parquet LOCATION 'S3://amzn-s3-demo-bucket/cetas/partitioned_lineitem/' AS SELECT l_orderkey, l_shipmode, l_shipdate, l_partkey FROM local_table;
For a list of existing databases in the external data catalog, query the SVV_EXTERNAL_DATABASES system view.
select eskind,databasename,esoptions from svv_external_databases order by databasename;
eskind | databasename | esoptions -------+--------------+---------------------------------------------------------------------------------- 1 | default | {"REGION":"us-west-2","IAM_ROLE":"arn:aws:iam::123456789012:role/mySpectrumRole"} 1 | sampledb | {"REGION":"us-west-2","IAM_ROLE":"arn:aws:iam::123456789012:role/mySpectrumRole"} 1 | spectrumdb | {"REGION":"us-west-2","IAM_ROLE":"arn:aws:iam::123456789012:role/mySpectrumRole"}
To view details of external tables, query the SVV_EXTERNAL_TABLES and SVV_EXTERNAL_COLUMNS system views.
The following example queries the SVV_EXTERNAL_TABLES view.
select schemaname, tablename, location from svv_external_tables;
schemaname | tablename | location -----------+----------------------+-------------------------------------------------------- spectrum | sales | s3://redshift-downloads/tickit/spectrum/sales spectrum | sales_part | s3://redshift-downloads/tickit/spectrum/sales_partition
The following example queries the SVV_EXTERNAL_COLUMNS view.
select * from svv_external_columns where schemaname like 'spectrum%' and tablename ='sales';
schemaname | tablename | columnname | external_type | columnnum | part_key -----------+-----------+------------+---------------+-----------+--------- spectrum | sales | salesid | int | 1 | 0 spectrum | sales | listid | int | 2 | 0 spectrum | sales | sellerid | int | 3 | 0 spectrum | sales | buyerid | int | 4 | 0 spectrum | sales | eventid | int | 5 | 0 spectrum | sales | saledate | date | 6 | 0 spectrum | sales | qtysold | smallint | 7 | 0 spectrum | sales | pricepaid | decimal(8,2) | 8 | 0 spectrum | sales | commission | decimal(8,2) | 9 | 0 spectrum | sales | saletime | timestamp | 10 | 0
To view table partitions, use the following query.
select schemaname, tablename, values, location from svv_external_partitions where tablename = 'sales_part';
schemaname | tablename | values | location -----------+------------+----------------+------------------------------------------------------------------------- spectrum | sales_part | ["2008-01-01"] | s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-01 spectrum | sales_part | ["2008-02-01"] | s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-02 spectrum | sales_part | ["2008-03-01"] | s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-03 spectrum | sales_part | ["2008-04-01"] | s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-04 spectrum | sales_part | ["2008-05-01"] | s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-05 spectrum | sales_part | ["2008-06-01"] | s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-06 spectrum | sales_part | ["2008-07-01"] | s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-07 spectrum | sales_part | ["2008-08-01"] | s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-08 spectrum | sales_part | ["2008-09-01"] | s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-09 spectrum | sales_part | ["2008-10-01"] | s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-10 spectrum | sales_part | ["2008-11-01"] | s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-11 spectrum | sales_part | ["2008-12-01"] | s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-12
The following example returns the total size of related data files for an external table.
select distinct "$path", "$size" from spectrum.sales_part; $path | $size --------------------------------------------------------------------------+------- s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-01/ | 1616 s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-02/ | 1444 s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-02/ | 1444
Partitioning examples
To create an external table partitioned by date, run the following command.
create external table spectrum.sales_part( salesid integer, listid integer, sellerid integer, buyerid integer, eventid integer, dateid smallint, qtysold smallint, pricepaid decimal(8,2), commission decimal(8,2), saletime timestamp) partitioned by (saledate date) row format delimited fields terminated by '|' stored as textfile location 's3://redshift-downloads/tickit/spectrum/sales_partition/' table properties ('numRows'='170000');
To add the partitions, run the following ALTER TABLE commands.
alter table spectrum.sales_part add if not exists partition (saledate='2008-01-01') location 's3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-01/'; alter table spectrum.sales_part add if not exists partition (saledate='2008-02-01') location 's3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-02/'; alter table spectrum.sales_part add if not exists partition (saledate='2008-03-01') location 's3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-03/'; alter table spectrum.sales_part add if not exists partition (saledate='2008-04-01') location 's3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-04/'; alter table spectrum.sales_part add if not exists partition (saledate='2008-05-01') location 's3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-05/'; alter table spectrum.sales_part add if not exists partition (saledate='2008-06-01') location 's3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-06/'; alter table spectrum.sales_part add if not exists partition (saledate='2008-07-01') location 's3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-07/'; alter table spectrum.sales_part add if not exists partition (saledate='2008-08-01') location 's3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-08/'; alter table spectrum.sales_part add if not exists partition (saledate='2008-09-01') location 's3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-09/'; alter table spectrum.sales_part add if not exists partition (saledate='2008-10-01') location 's3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-10/'; alter table spectrum.sales_part add if not exists partition (saledate='2008-11-01') location 's3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-11/'; alter table spectrum.sales_part add if not exists partition (saledate='2008-12-01') location 's3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-12/';
To select data from the partitioned table, run the following query.
select top 10 spectrum.sales_part.eventid, sum(spectrum.sales_part.pricepaid) from spectrum.sales_part, event where spectrum.sales_part.eventid = event.eventid and spectrum.sales_part.pricepaid > 30 and saledate = '2008-12-01' group by spectrum.sales_part.eventid order by 2 desc;
eventid | sum --------+--------- 914 | 36173.00 5478 | 27303.00 5061 | 26383.00 4406 | 26252.00 5324 | 24015.00 1829 | 23911.00 3601 | 23616.00 3665 | 23214.00 6069 | 22869.00 5638 | 22551.00
To view external table partitions, query the SVV_EXTERNAL_PARTITIONS system view.
select schemaname, tablename, values, location from svv_external_partitions where tablename = 'sales_part';
schemaname | tablename | values | location -----------+------------+----------------+-------------------------------------------------- spectrum | sales_part | ["2008-01-01"] | s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-01 spectrum | sales_part | ["2008-02-01"] | s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-02 spectrum | sales_part | ["2008-03-01"] | s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-03 spectrum | sales_part | ["2008-04-01"] | s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-04 spectrum | sales_part | ["2008-05-01"] | s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-05 spectrum | sales_part | ["2008-06-01"] | s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-06 spectrum | sales_part | ["2008-07-01"] | s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-07 spectrum | sales_part | ["2008-08-01"] | s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-08 spectrum | sales_part | ["2008-09-01"] | s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-09 spectrum | sales_part | ["2008-10-01"] | s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-10 spectrum | sales_part | ["2008-11-01"] | s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-11 spectrum | sales_part | ["2008-12-01"] | s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-12
Row format examples
The following shows an example of specifying the ROW FORMAT SERDE parameters for data files stored in AVRO format.
create external table spectrum.sales(salesid int, listid int, sellerid int, buyerid int, eventid int, dateid int, qtysold int, pricepaid decimal(8,2), comment VARCHAR(255)) ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.avro.AvroSerDe' WITH SERDEPROPERTIES ('avro.schema.literal'='{\"namespace\": \"dory.sample\",\"name\": \"dory_avro\",\"type\": \"record\", \"fields\": [{\"name\":\"salesid\", \"type\":\"int\"}, {\"name\":\"listid\", \"type\":\"int\"}, {\"name\":\"sellerid\", \"type\":\"int\"}, {\"name\":\"buyerid\", \"type\":\"int\"}, {\"name\":\"eventid\",\"type\":\"int\"}, {\"name\":\"dateid\",\"type\":\"int\"}, {\"name\":\"qtysold\",\"type\":\"int\"}, {\"name\":\"pricepaid\", \"type\": {\"type\": \"bytes\", \"logicalType\": \"decimal\", \"precision\": 8, \"scale\": 2}}, {\"name\":\"comment\",\"type\":\"string\"}]}') STORED AS AVRO location 's3://amzn-s3-demo-bucket/avro/sales' ;
The following shows an example of specifying the ROW FORMAT SERDE parameters using RegEx.
create external table spectrum.types( cbigint bigint, cbigint_null bigint, cint int, cint_null int) row format serde 'org.apache.hadoop.hive.serde2.RegexSerDe' with serdeproperties ('input.regex'='([^\\x01]+)\\x01([^\\x01]+)\\x01([^\\x01]+)\\x01([^\\x01]+)') stored as textfile location 's3://amzn-s3-demo-bucket/regex/types';
The following shows an example of specifying the ROW FORMAT SERDE parameters using Grok.
create external table spectrum.grok_log( timestamp varchar(255), pid varchar(255), loglevel varchar(255), progname varchar(255), message varchar(255)) row format serde 'com.amazonaws.glue.serde.GrokSerDe' with serdeproperties ('input.format'='[DFEWI], \\[%{TIMESTAMP_ISO8601:timestamp} #%{POSINT:pid:int}\\] *(?<loglevel>:DEBUG|FATAL|ERROR|WARN|INFO) -- +%{DATA:progname}: %{GREEDYDATA:message}') stored as textfile location 's3://DOC-EXAMPLE-BUCKET/grok/logs';
The following shows an example of defining an Amazon S3 server access log in an S3 bucket. You can use Redshift Spectrum to query Amazon S3 access logs.
CREATE EXTERNAL TABLE spectrum.mybucket_s3_logs( bucketowner varchar(255), bucket varchar(255), requestdatetime varchar(2000), remoteip varchar(255), requester varchar(255), requested varchar(255), operation varchar(255), key varchar(255), requesturi_operation varchar(255), requesturi_key varchar(255), requesturi_httpprotoversion varchar(255), httpstatus varchar(255), errorcode varchar(255), bytessent bigint, objectsize bigint, totaltime varchar(255), turnaroundtime varchar(255), referrer varchar(255), useragent varchar(255), versionid varchar(255) ) ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.RegexSerDe' WITH SERDEPROPERTIES ( 'input.regex' = '([^ ]*) ([^ ]*) \\[(.*?)\\] ([^ ]*) ([^ ]*) ([^ ]*) ([^ ]*) ([^ ]*) \"([^ ]*)\\s*([^ ]*)\\s*([^ ]*)\" (- |[^ ]*) ([^ ]*) ([^ ]*) ([^ ]*) ([^ ]*) ([^ ]*) ([^ ]*) (\"[^\"]*\") ([^ ]*).*$') LOCATION 's3://amzn-s3-demo-bucket/s3logs’;
The following shows an example of specifying the ROW FORMAT SERDE parameters for ION format data.
CREATE EXTERNAL TABLE
tbl_name
(columns
) ROW FORMAT SERDE 'com.amazon.ionhiveserde.IonHiveSerDe' STORED AS INPUTFORMAT 'com.amazon.ionhiveserde.formats.IonInputFormat' OUTPUTFORMAT 'com.amazon.ionhiveserde.formats.IonOutputFormat' LOCATION 's3://amzn-s3-demo-bucket/prefix
'
Data handling examples
The following examples access the file: spi_global_rankings.csvspi_global_rankings.csv
file to an Amazon S3 bucket to try these examples.
The following example creates the external schema schema_spectrum_uddh
and database spectrum_db_uddh
. For aws-account-id
, enter your Amazon account ID and for role-name
enter your Redshift Spectrum role name.
create external schema schema_spectrum_uddh from data catalog database 'spectrum_db_uddh' iam_role 'arn:aws:iam::
aws-account-id
:role/role-name
' create external database if not exists;
The following example creates the external table soccer_league
in the external schema schema_spectrum_uddh
.
CREATE EXTERNAL TABLE schema_spectrum_uddh.soccer_league ( league_rank smallint, prev_rank smallint, club_name varchar(15), league_name varchar(20), league_off decimal(6,2), league_def decimal(6,2), league_spi decimal(6,2), league_nspi integer ) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' LINES TERMINATED BY '\n\l' stored as textfile LOCATION 's3://spectrum-uddh/league/' table properties ('skip.header.line.count'='1');
Check the number of rows in the soccer_league
table.
select count(*) from schema_spectrum_uddh.soccer_league;
The numbers of rows displays.
count 645
The following query displays the top 10 clubs.
Because club Barcelona
has an invalid character in the string, a NULL is displayed for the name.
select league_rank,club_name,league_name,league_nspi from schema_spectrum_uddh.soccer_league where league_rank between 1 and 10;
league_rank club_name league_name league_nspi 1 Manchester City Barclays Premier Lea 34595 2 Bayern Munich German Bundesliga 34151 3 Liverpool Barclays Premier Lea 33223 4 Chelsea Barclays Premier Lea 32808 5 Ajax Dutch Eredivisie 32790 6 Atletico Madrid Spanish Primera Divi 31517 7 Real Madrid Spanish Primera Divi 31469 8 NULL Spanish Primera Divi 31321 9 RB Leipzig German Bundesliga 31014 10 Paris Saint-Ger French Ligue 1 30929
The following example alters the soccer_league
table to specify the
invalid_char_handling
, replacement_char
, and
data_cleansing_enabled
external table properties to insert a question
mark (?) as a substitute for unexpected characters.
alter table schema_spectrum_uddh.soccer_league set table properties ('invalid_char_handling'='REPLACE','replacement_char'='?','data_cleansing_enabled'='true');
The following example queries the table soccer_league
for teams with a rank from 1 to 10.
select league_rank,club_name,league_name,league_nspi from schema_spectrum_uddh.soccer_league where league_rank between 1 and 10;
Because the table properties were altered, the results show the top 10 clubs, with the question mark (?) replacement character in the eighth row
for club Barcelona
.
league_rank club_name league_name league_nspi 1 Manchester City Barclays Premier Lea 34595 2 Bayern Munich German Bundesliga 34151 3 Liverpool Barclays Premier Lea 33223 4 Chelsea Barclays Premier Lea 32808 5 Ajax Dutch Eredivisie 32790 6 Atletico Madrid Spanish Primera Divi 31517 7 Real Madrid Spanish Primera Divi 31469 8 Barcel?na Spanish Primera Divi 31321 9 RB Leipzig German Bundesliga 31014 10 Paris Saint-Ger French Ligue 1 30929
The following example alters the soccer_league
table to specify the invalid_char_handling
external table properties to drop rows with unexpected characters.
alter table schema_spectrum_uddh.soccer_league set table properties ('invalid_char_handling'='DROP_ROW','data_cleansing_enabled'='true');
The following example queries the table soccer_league
for teams with a rank from 1 to 10.
select league_rank,club_name,league_name,league_nspi from schema_spectrum_uddh.soccer_league where league_rank between 1 and 10;
The results display the top clubs, not including the eighth row for club Barcelona
.
league_rank club_name league_name league_nspi 1 Manchester City Barclays Premier Lea 34595 2 Bayern Munich German Bundesliga 34151 3 Liverpool Barclays Premier Lea 33223 4 Chelsea Barclays Premier Lea 32808 5 Ajax Dutch Eredivisie 32790 6 Atletico Madrid Spanish Primera Divi 31517 7 Real Madrid Spanish Primera Divi 31469 9 RB Leipzig German Bundesliga 31014 10 Paris Saint-Ger French Ligue 1 30929