Passing SQL statements to an Amazon Redshift data warehouse - Amazon Redshift
Services or capabilities described in Amazon Web Services documentation might vary by Region. To see the differences applicable to the China Regions, see Getting Started with Amazon Web Services in China (PDF).

Passing SQL statements to an Amazon Redshift data warehouse

The examples in this page cover different ways to pass a SQL statement to your data warehouse

Run a SQL statement

To run a SQL statement, use the aws redshift-data execute-statement Amazon CLI command.

The following Amazon CLI command runs a SQL statement against a cluster and returns an identifier to fetch the results. This example uses the Amazon Secrets Manager authentication method.

aws redshift-data execute-statement --secret arn:aws:secretsmanager:us-west-2:123456789012:secret:myuser-secret-hKgPWn --cluster-identifier mycluster-test --sql "select * from stl_query limit 1" --database dev

The following is an example of the response.

{ "ClusterIdentifier": "mycluster-test", "CreatedAt": 1598323175.823, "Database": "dev", "Id": "c016234e-5c6c-4bc5-bb16-2c5b8ff61814", "SecretArn": "arn:aws:secretsmanager:us-west-2:123456789012:secret:myuser-secret-hKgPWn" }

The following Amazon CLI command runs a SQL statement against a cluster and returns an identifier to fetch the results. This example uses the temporary credentials authentication method.

aws redshift-data execute-statement --db-user myuser --cluster-identifier mycluster-test --database dev --sql "select * from stl_query limit 1"

The following is an example of the response.

{ "ClusterIdentifier": "mycluster-test", "CreatedAt": 1598306924.632, "Database": "dev", "DbUser": "myuser", "Id": "d9b6c0c9-0747-4bf4-b142-e8883122f766" }

The following Amazon CLI command runs a SQL statement against a serverless workgroup and returns an identifier to fetch the results. This example uses the temporary credentials authentication method.

aws redshift-data execute-statement --database dev --workgroup-name myworkgroup --sql "select 1;"

The following is an example of the response.

{ "CreatedAt": "2022-02-11T06:25:28.748000+00:00", "Database": "dev", "DbUser": "IAMR:RoleName", "Id": "89dd91f5-2d43-43d3-8461-f33aa093c41e", "WorkgroupName": "myworkgroup" }

The following Amazon CLI command runs a SQL statement against a cluster and returns an identifier to fetch the results. This example uses the Amazon Secrets Manager authentication method and an idempotency token.

aws redshift-data execute-statement --secret arn:aws:secretsmanager:us-west-2:123456789012:secret:myuser-secret-hKgPWn --cluster-identifier mycluster-test --sql "select * from stl_query limit 1" --database dev --client-token b855dced-259b-444c-bc7b-d3e8e33f94g1

The following is an example of the response.

{ "ClusterIdentifier": "mycluster-test", "CreatedAt": 1598323175.823, "Database": "dev", "Id": "c016234e-5c6c-4bc5-bb16-2c5b8ff61814", "SecretArn": "arn:aws:secretsmanager:us-west-2:123456789012:secret:myuser-secret-hKgPWn" }

Run a SQL statement with parameters

To run a SQL statement, use the aws redshift-data execute-statement Amazon CLI command.

The following Amazon CLI command runs a SQL statement against a cluster and returns an identifier to fetch the results. This example uses the Amazon Secrets Manager authentication method. The SQL text has named parameter distance. In this case, the distance used in the predicate is 5. In a SELECT statement, named parameters for column names can only be used in the predicate. Values for named parameters for the SQL statement are specified in the parameters option.

aws redshift-data execute-statement --secret arn:aws:secretsmanager:us-west-2:123456789012:secret:myuser-secret-hKgPWn --cluster-identifier mycluster-test --sql "SELECT ratecode FROM demo_table WHERE trip_distance > :distance" --parameters "[{\"name\": \"distance\", \"value\": \"5\"}]" --database dev

The following is an example of the response.

{ "ClusterIdentifier": "mycluster-test", "CreatedAt": 1598323175.823, "Database": "dev", "Id": "c016234e-5c6c-4bc5-bb16-2c5b8ff61814", "SecretArn": "arn:aws:secretsmanager:us-west-2:123456789012:secret:myuser-secret-hKgPWn" }

The following example uses the EVENT table from the sample database. For more information, see EVENT table in the Amazon Redshift Database Developer Guide.

If you don't already have the EVENT table in your database, you can create one using the Data API as follows:

aws redshift-data execute-statement --database dev --cluster-id mycluster-test --db-user awsuser --sql "create table event( eventid integer not null distkey, venueid smallint not null, catid smallint not null, dateid smallint not null sortkey, eventname varchar(200), starttime timestamp)"

The following command inserts one row into the EVENT table.

aws redshift-data execute-statement --database dev --cluster-id mycluster-test --db-user awsuser --sql "insert into event values(:eventid, :venueid::smallint, :catid, :dateid, :eventname, :starttime)" --parameters "[{\"name\": \"eventid\", \"value\": \"1\"}, {\"name\": \"venueid\", \"value\": \"1\"}, {\"name\": \"catid\", \"value\": \"1\"}, {\"name\": \"dateid\", \"value\": \"1\"}, {\"name\": \"eventname\", \"value\": \"event 1\"}, {\"name\": \"starttime\", \"value\": \"2022-02-22\"}]"

The following command inserts a second row into the EVENT table. This example demonstrates the following:

  • The parameter named id is used four times in the SQL text.

  • Implicit type conversion is applied automatically when inserting parameter starttime.

  • The venueid column is type cast to SMALLINT data type.

  • Character strings that represent the DATE data type are implicitly converted into the TIMESTAMP data type.

  • Comments can be used within SQL text.

aws redshift-data execute-statement --database dev --cluster-id mycluster-test --db-user awsuser --sql "insert into event values(:id, :id::smallint, :id, :id, :eventname, :starttime) /*this is comment, and it won't apply parameterization for :id, :eventname or :starttime here*/" --parameters "[{\"name\": \"eventname\", \"value\": \"event 2\"}, {\"name\": \"starttime\", \"value\": \"2022-02-22\"}, {\"name\": \"id\", \"value\": \"2\"}]"

The following shows the two inserted rows:

eventid | venueid | catid | dateid | eventname | starttime ---------+---------+-------+--------+-----------+--------------------- 1 | 1 | 1 | 1 | event 1 | 2022-02-22 00:00:00 2 | 2 | 2 | 2 | event 2 | 2022-02-22 00:00:00

The following command uses a named parameter in a WHERE clause to retrieve the row where eventid is 1.

aws redshift-data execute-statement --database dev --cluster-id mycluster-test --db-user awsuser --sql "select * from event where eventid=:id" --parameters "[{\"name\": \"id\", \"value\": \"1\"}]"

Run the following command to get the SQL results of the previous SQL statement:

aws redshift-data get-statement-result --id 7529ad05-b905-4d71-9ec6-8b333836eb5a

Provides the following results:

{ "Records": [ [ { "longValue": 1 }, { "longValue": 1 }, { "longValue": 1 }, { "longValue": 1 }, { "stringValue": "event 1" }, { "stringValue": "2022-02-22 00:00:00.0" } ] ], "ColumnMetadata": [ { "isCaseSensitive": false, "isCurrency": false, "isSigned": true, "label": "eventid", "length": 0, "name": "eventid", "nullable": 0, "precision": 10, "scale": 0, "schemaName": "public", "tableName": "event", "typeName": "int4" }, { "isCaseSensitive": false, "isCurrency": false, "isSigned": true, "label": "venueid", "length": 0, "name": "venueid", "nullable": 0, "precision": 5, "scale": 0, "schemaName": "public", "tableName": "event", "typeName": "int2" }, { "isCaseSensitive": false, "isCurrency": false, "isSigned": true, "label": "catid", "length": 0, "name": "catid", "nullable": 0, "precision": 5, "scale": 0, "schemaName": "public", "tableName": "event", "typeName": "int2" }, { "isCaseSensitive": false, "isCurrency": false, "isSigned": true, "label": "dateid", "length": 0, "name": "dateid", "nullable": 0, "precision": 5, "scale": 0, "schemaName": "public", "tableName": "event", "typeName": "int2" }, { "isCaseSensitive": true, "isCurrency": false, "isSigned": false, "label": "eventname", "length": 0, "name": "eventname", "nullable": 1, "precision": 200, "scale": 0, "schemaName": "public", "tableName": "event", "typeName": "varchar" }, { "isCaseSensitive": false, "isCurrency": false, "isSigned": false, "label": "starttime", "length": 0, "name": "starttime", "nullable": 1, "precision": 29, "scale": 6, "schemaName": "public", "tableName": "event", "typeName": "timestamp" } ], "TotalNumRows": 1 }

Run multiple SQL statements

To run multiple SQL statements with one command, use the aws redshift-data batch-execute-statement Amazon CLI command.

The following Amazon CLI command runs three SQL statements against a cluster and returns an identifier to fetch the results. This example uses the temporary credentials authentication method.

aws redshift-data batch-execute-statement --db-user myuser --cluster-identifier mycluster-test --database dev --sqls "set timezone to BST" "select * from mytable" "select * from another_table"

The following is an example of the response.

{ "ClusterIdentifier": "mycluster-test", "CreatedAt": 1598306924.632, "Database": "dev", "DbUser": "myuser", "Id": "d9b6c0c9-0747-4bf4-b142-e8883122f766" }