Docker Registry Paths and Example Code for Amazon GovCloud (US-East) (us-gov-east-1) - ECR Paths
Services or capabilities described in Amazon Web Services documentation might vary by Region. To see the differences applicable to the China Regions, see Getting Started with Amazon Web Services in China (PDF).

Docker Registry Paths and Example Code for Amazon GovCloud (US-East) (us-gov-east-1)

The following topics list parameters for each of the algorithms and deep learning containers that are provided by Amazon SageMaker AI in this Amazon Web Services Region.

AutoGluon (algorithm)

The following SageMaker AI Python SDK example shows how to retrieve a specific registry path.

from sagemaker import image_uris image_uris.retrieve(framework='autogluon',region='us-gov-east-1',image_scope='inference',version='0.4')
Registry path Version Job types (image scope)
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/autogluon-training:<tag> 1.3.0 training
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/autogluon-inference:<tag> 1.3.0 inference
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/autogluon-training:<tag> 1.2.0 training
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/autogluon-inference:<tag> 1.2.0 inference
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/autogluon-training:<tag> 1.1.1 training
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/autogluon-inference:<tag> 1.1.1 inference
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/autogluon-training:<tag> 1.1.0 training
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/autogluon-inference:<tag> 1.1.0 inference
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/autogluon-training:<tag> 1.0.0 training
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/autogluon-inference:<tag> 1.0.0 inference
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/autogluon-training:<tag> 0.8.2 training
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/autogluon-inference:<tag> 0.8.2 inference
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/autogluon-training:<tag> 0.7.0 training
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/autogluon-inference:<tag> 0.7.0 inference
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/autogluon-training:<tag> 0.6.2 training
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/autogluon-inference:<tag> 0.6.2 inference
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/autogluon-training:<tag> 0.6.1 training
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/autogluon-inference:<tag> 0.6.1 inference
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/autogluon-training:<tag> 0.5.2 training
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/autogluon-inference:<tag> 0.5.2 inference
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/autogluon-training:<tag> 0.4.3 training
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/autogluon-inference:<tag> 0.4.3 inference
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/autogluon-training:<tag> 0.4.2 training
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/autogluon-inference:<tag> 0.4.2 inference
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/autogluon-training:<tag> 0.4.0 training
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/autogluon-inference:<tag> 0.4.0 inference
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/autogluon-training:<tag> 0.3.2 training
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/autogluon-inference:<tag> 0.3.2 inference
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/autogluon-training:<tag> 0.3.1 training
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/autogluon-inference:<tag> 0.3.1 inference

BlazingText (algorithm)

The following SageMaker AI Python SDK example shows how to retrieve a specific registry path.

from sagemaker import image_uris image_uris.retrieve(framework='blazingtext',region='us-gov-east-1')
Registry path Version Job types (image scope)
237065988967.dkr.ecr.us-gov-east-1.amazonaws.com/blazingtext:<tag> 1 inference, training

DJL DeepSpeed (algorithm)

The following SageMaker AI Python SDK example shows how to retrieve a specific registry path.

from sagemaker import image_uris image_uris.retrieve(framework='djl-deepspeed', region='us-west-2',py_version='py3',image_scope='inference')
Registry path Version Job types (image scope)
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/djl-inference:0.27.0-deepspeed0.12.6-cu121-<tag> 0.27.0 inference
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/djl-inference:0.26.0-deepspeed0.12.6-cu121-<tag> 0.26.0 inference
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/djl-inference:0.25.0-deepspeed0.11.0-cu118-<tag> 0.25.0 inference
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/djl-inference:0.24.0-deepspeed0.10.0-cu118-<tag> 0.24.0 inference
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/djl-inference:0.23.0-deepspeed0.9.5-cu118-<tag> 0.23.0 inference
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/djl-inference:0.22.1-deepspeed0.9.2-cu118-<tag> 0.22.1 inference
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/djl-inference:0.21.0-deepspeed0.8.3-cu117-<tag> 0.21.0 inference
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/djl-inference:0.20.0-deepspeed0.7.5-cu116-<tag> 0.20.0 inference
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/djl-inference:0.19.0-deepspeed0.7.3-cu113-<tag> 0.19.0 inference

DeepAR Forecasting (algorithm)

The following SageMaker AI Python SDK example shows how to retrieve a specific registry path.

from sagemaker import image_uris image_uris.retrieve(framework='forecasting-deepar',region='us-gov-east-1')
Registry path Version Job types (image scope)
237065988967.dkr.ecr.us-gov-east-1.amazonaws.com/forecasting-deepar:<tag> 1 inference, training

Factorization Machines (algorithm)

The following SageMaker AI Python SDK example shows how to retrieve a specific registry path.

from sagemaker import image_uris image_uris.retrieve(framework='factorization-machines',region='us-gov-east-1')
Registry path Version Job types (image scope)
237065988967.dkr.ecr.us-gov-east-1.amazonaws.com/factorization-machines:<tag> 1 inference, training

Hugging Face (algorithm)

The following SageMaker AI Python SDK example shows how to retrieve a specific registry path.

from sagemaker import image_uris image_uris.retrieve(framework='huggingface',region='us-gov-east-1',version='4.4.2',image_scope='training',base_framework_version='tensorflow2.4.1')
Registry path Version Job types (image scope)
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/huggingface-pytorch-training:<tag> 4.49.0 training
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/huggingface-pytorch-inference:<tag> 4.49.0 inference
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/huggingface-pytorch-training:<tag> 4.48.0 training
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/huggingface-pytorch-inference:<tag> 4.48.0 inference
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/huggingface-pytorch-training:<tag> 4.46.1 training
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/huggingface-pytorch-inference:<tag> 4.37.0 inference
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/huggingface-pytorch-training:<tag> 4.36.0 training
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/huggingface-pytorch-training:<tag> 4.28.1 training
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/huggingface-pytorch-inference:<tag> 4.28.1 inference
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/huggingface-pytorch-training:<tag> 4.26.0 training
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/huggingface-pytorch-inference:<tag> 4.26.0 inference
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/huggingface-tensorflow-inference:<tag> 4.26.0 inference
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/huggingface-pytorch-training:<tag> 4.17.0 training
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/huggingface-tensorflow-training:<tag> 4.17.0 training
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/huggingface-pytorch-inference:<tag> 4.17.0 inference
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/huggingface-tensorflow-inference:<tag> 4.17.0 inference
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/huggingface-pytorch-training:<tag> 4.12.3 training
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/huggingface-tensorflow-training:<tag> 4.12.3 training
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/huggingface-pytorch-inference:<tag> 4.12.3 inference
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/huggingface-tensorflow-inference:<tag> 4.12.3 inference
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/huggingface-pytorch-training:<tag> 4.11.0 training
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/huggingface-tensorflow-training:<tag> 4.11.0 training
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/huggingface-pytorch-inference:<tag> 4.11.0 inference
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/huggingface-tensorflow-inference:<tag> 4.11.0 inference
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/huggingface-pytorch-training:<tag> 4.10.2 training
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/huggingface-pytorch-training:<tag> 4.10.2 training
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/huggingface-tensorflow-training:<tag> 4.10.2 training
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/huggingface-tensorflow-training:<tag> 4.10.2 training
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/huggingface-pytorch-inference:<tag> 4.10.2 inference
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/huggingface-pytorch-inference:<tag> 4.10.2 inference
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/huggingface-tensorflow-inference:<tag> 4.10.2 inference
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/huggingface-tensorflow-inference:<tag> 4.10.2 inference
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/huggingface-pytorch-training:<tag> 4.6.1 training
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/huggingface-pytorch-training:<tag> 4.6.1 training
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/huggingface-pytorch-training:<tag> 4.6.1 training
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/huggingface-tensorflow-training:<tag> 4.6.1 training
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/huggingface-pytorch-inference:<tag> 4.6.1 inference
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/huggingface-tensorflow-inference:<tag> 4.6.1 inference
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/huggingface-pytorch-training:<tag> 4.5.0 training
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/huggingface-tensorflow-training:<tag> 4.5.0 training
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/huggingface-pytorch-training:<tag> 4.4.2 training
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/huggingface-tensorflow-training:<tag> 4.4.2 training

IP Insights (algorithm)

The following SageMaker AI Python SDK example shows how to retrieve a specific registry path.

from sagemaker import image_uris image_uris.retrieve(framework='ipinsights',region='us-gov-east-1')
Registry path Version Job types (image scope)
237065988967.dkr.ecr.us-gov-east-1.amazonaws.com/ipinsights:<tag> 1 inference, training

Image classification (algorithm)

The following SageMaker AI Python SDK example shows how to retrieve a specific registry path.

from sagemaker import image_uris image_uris.retrieve(framework='image-classification',region='us-gov-east-1')
Registry path Version Job types (image scope)
237065988967.dkr.ecr.us-gov-east-1.amazonaws.com/image-classification:<tag> 1 inference, training

Inferentia MXNet (DLC)

The following SageMaker AI Python SDK example shows how to retrieve a specific registry path.

from sagemaker import image_uris image_uris.retrieve(framework='inferentia-mxnet',region='us-gov-east-1',version='1.5.1',instance_type='ml.inf1.6xlarge')
Registry path Version Job types (image scope) Processor types Python versions
227234621604.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-neo-mxnet:<tag> 1.8 inference inf py3
227234621604.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-neo-mxnet:<tag> 1.5.1 inference inf py3

Inferentia PyTorch (DLC)

The following SageMaker AI Python SDK example shows how to retrieve a specific registry path.

from sagemaker import image_uris image_uris.retrieve(framework='inferentia-pytorch',region='us-gov-east-1',version='1.9',py_version='py3')
Registry path Version Job types (image scope) Processor types Python versions
227234621604.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-neo-pytorch:<tag> 1.9 inference inf py3
227234621604.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-neo-pytorch:<tag> 1.8 inference inf py3
227234621604.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-neo-pytorch:<tag> 1.7 inference inf py3

K-Means (algorithm)

The following SageMaker AI Python SDK example shows how to retrieve a specific registry path.

from sagemaker import image_uris image_uris.retrieve(framework='kmeans',region='us-gov-east-1')
Registry path Version Job types (image scope)
237065988967.dkr.ecr.us-gov-east-1.amazonaws.com/kmeans:<tag> 1 inference, training

KNN (algorithm)

The following SageMaker AI Python SDK example shows how to retrieve a specific registry path.

from sagemaker import image_uris image_uris.retrieve(framework='knn',region='us-gov-east-1')
Registry path Version Job types (image scope)
237065988967.dkr.ecr.us-gov-east-1.amazonaws.com/knn:<tag> 1 inference, training

Linear Learner (algorithm)

The following SageMaker AI Python SDK example shows how to retrieve a specific registry path.

from sagemaker import image_uris image_uris.retrieve(framework='linear-learner',region='us-gov-east-1')
Registry path Version Job types (image scope)
237065988967.dkr.ecr.us-gov-east-1.amazonaws.com/linear-learner:<tag> 1 inference, training

MXNet (DLC)

The following SageMaker AI Python SDK example shows how to retrieve a specific registry path.

from sagemaker import image_uris image_uris.retrieve(framework='mxnet',region='us-gov-east-1',version='1.4.1',py_version='py3',image_scope='inference', instance_type='ml.c5.4xlarge')
Registry path Version Job types (image scope) Processor types Python versions
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/mxnet-training:<tag> 1.9.0 training CPU, GPU py38
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/mxnet-inference:<tag> 1.9.0 inference CPU, GPU py38
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/mxnet-training:<tag> 1.8.0 training CPU, GPU py37
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/mxnet-inference:<tag> 1.8.0 inference CPU, GPU py37
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/mxnet-training:<tag> 1.7.0 training CPU, GPU py3
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/mxnet-inference:<tag> 1.7.0 inference CPU, GPU py3
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/mxnet-inference-eia:<tag> 1.7.0 eia CPU py3
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/mxnet-training:<tag> 1.6.0 training CPU, GPU py2, py3
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/mxnet-inference:<tag> 1.6.0 inference CPU, GPU py2, py3
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/mxnet-inference-eia:<tag> 1.5.1 eia CPU py2, py3
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/mxnet-training:<tag> 1.4.1 training CPU, GPU py3
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/mxnet-inference:<tag> 1.4.1 inference CPU, GPU py3
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/mxnet-inference-eia:<tag> 1.4.1 eia CPU py2, py3

NTM (algorithm)

The following SageMaker AI Python SDK example shows how to retrieve a specific registry path.

from sagemaker import image_uris image_uris.retrieve(framework='ntm',region='us-gov-east-1')
Registry path Version Job types (image scope)
237065988967.dkr.ecr.us-gov-east-1.amazonaws.com/ntm:<tag> 1 inference, training

Neo Image Classification (algorithm)

The following SageMaker AI Python SDK example shows how to retrieve a specific registry path.

from sagemaker import image_uris image_uris.retrieve(framework='image-classification-neo',region='us-gov-east-1')
Registry path Version Job types (image scope)
227234621604.dkr.ecr.us-gov-east-1.amazonaws.com/image-classification-neo:<tag> latest inference

Neo MXNet (DLC)

The following SageMaker AI Python SDK example shows how to retrieve a specific registry path.

from sagemaker import image_uris image_uris.retrieve(framework='neo-mxnet',region='us-gov-east-1',version='1.8',py_version='py3',image_scope='inference', instance_type='ml.c5.4xlarge')
Registry path Version Job types (image scope) Processor types Python versions
227234621604.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-inference-mxnet:<tag> 1.8 inference CPU, GPU py3

Neo PyTorch (DLC)

The following SageMaker AI Python SDK example shows how to retrieve a specific registry path.

from sagemaker import image_uris image_uris.retrieve(framework='neo-pytorch',region='us-gov-east-1',version='1.6',image_scope='inference',instance_type='ml.c5.4xlarge')
Registry path Version Job types (image scope) Processor types Python versions
227234621604.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-inference-pytorch:<tag> 2.0 inference CPU, GPU py3
227234621604.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-inference-pytorch:<tag> 1.13 inference CPU, GPU py3
227234621604.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-inference-pytorch:<tag> 1.12 inference CPU, GPU py3
227234621604.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-inference-pytorch:<tag> 1.8 inference CPU, GPU py3
227234621604.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-inference-pytorch:<tag> 1.7 inference CPU, GPU py3
227234621604.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-inference-pytorch:<tag> 1.6 inference CPU, GPU py3
227234621604.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-inference-pytorch:<tag> 1.5 inference CPU, GPU py3
227234621604.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-inference-pytorch:<tag> 1.4 inference CPU, GPU py3

Neo Tensorflow (DLC)

The following SageMaker AI Python SDK example shows how to retrieve a specific registry path.

from sagemaker import image_uris image_uris.retrieve(framework='neo-tensorflow',region='us-gov-east-1',version='1.15.3',py_version='py3',instance_type='ml.c5.4xlarge')
Registry path Version Job types (image scope) Processor types Python versions
227234621604.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-inference-tensorflow:<tag> 2.9.2 inference CPU, GPU py3
227234621604.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-inference-tensorflow:<tag> 1.15.3 inference CPU, GPU py3

Neo XGBoost (algorithm)

The following SageMaker AI Python SDK example shows how to retrieve a specific registry path.

from sagemaker import image_uris image_uris.retrieve(framework='xgboost-neo',region='us-gov-east-1')
Registry path Version Job types (image scope)
227234621604.dkr.ecr.us-gov-east-1.amazonaws.com/xgboost-neo:<tag> latest inference

Object Detection (algorithm)

The following SageMaker AI Python SDK example shows how to retrieve a specific registry path.

from sagemaker import image_uris image_uris.retrieve(framework='object-detection',region='us-gov-east-1')
Registry path Version Job types (image scope)
237065988967.dkr.ecr.us-gov-east-1.amazonaws.com/object-detection:<tag> 1 inference, training

Object2Vec (algorithm)

The following SageMaker AI Python SDK example shows how to retrieve a specific registry path.

from sagemaker import image_uris image_uris.retrieve(framework='object2vec',region='us-gov-east-1')
Registry path Version Job types (image scope)
237065988967.dkr.ecr.us-gov-east-1.amazonaws.com/object2vec:<tag> 1 inference, training

PCA (algorithm)

The following SageMaker AI Python SDK example shows how to retrieve a specific registry path.

from sagemaker import image_uris image_uris.retrieve(framework='pca',region='us-gov-east-1')
Registry path Version Job types (image scope)
237065988967.dkr.ecr.us-gov-east-1.amazonaws.com/pca:<tag> 1 inference, training

PyTorch (DLC)

For information about the supported and unsupported PyTorch versions, see the Framework Support Policy Table in the Amazon Deep Learning Containers Developer Guide.

The following SageMaker AI Python SDK example shows how to retrieve a specific registry path.

from sagemaker import image_uris image_uris.retrieve(framework='pytorch',region='us-gov-east-1',version='1.8.0',py_version='py3',image_scope='inference', instance_type='ml.c5.4xlarge')
Registry path Version Job types (image scope) Processor types Python versions
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-training:<tag> 2.7.1 training CPU, GPU py312
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-inference:<tag> 2.6.0 inference CPU, GPU py312
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-training:<tag> 2.6.0 training CPU, GPU py312
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-inference:<tag> 2.5.1 inference CPU, GPU py311
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-training:<tag> 2.5.1 training CPU, GPU py311
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-inference:<tag> 2.4.0 inference CPU, GPU py311
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-inference-graviton:<tag> 2.4.0 inference_graviton CPU py311
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-training:<tag> 2.4.0 training CPU, GPU py311
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-inference:<tag> 2.3.0 inference CPU, GPU py311
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-inference-graviton:<tag> 2.3.0 inference_graviton CPU py311
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-training:<tag> 2.3.0 training CPU, GPU py311
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-inference-graviton:<tag> 2.2.1 inference_graviton CPU py310
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-inference:<tag> 2.2.0 inference CPU, GPU py310
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-training:<tag> 2.2.0 training CPU, GPU py310
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-inference:<tag> 2.1.0 inference CPU, GPU py310
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-inference-graviton:<tag> 2.1.0 inference_graviton CPU py310
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-training:<tag> 2.1.0 training CPU, GPU py310
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-inference:<tag> 2.0.1 inference CPU, GPU py310
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-inference-graviton:<tag> 2.0.1 inference_graviton CPU py310
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-training:<tag> 2.0.1 training CPU, GPU py310
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-inference:<tag> 2.0.0 inference CPU, GPU py310
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-inference-graviton:<tag> 2.0.0 inference_graviton CPU py310
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-training:<tag> 2.0.0 training CPU, GPU py310
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-inference:<tag> 1.13.1 inference CPU, GPU py39
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-training:<tag> 1.13.1 training CPU, GPU py39
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-inference:<tag> 1.12.1 inference CPU, GPU py38
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-inference-graviton:<tag> 1.12.1 inference_graviton CPU py38
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-training:<tag> 1.12.1 training CPU, GPU py38
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-inference:<tag> 1.12.0 inference CPU, GPU py38
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-training:<tag> 1.12.0 training CPU, GPU py38
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-inference:<tag> 1.11.0 inference CPU, GPU py38
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-training:<tag> 1.11.0 training CPU, GPU py38
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-inference:<tag> 1.10.2 inference CPU, GPU py38
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-training:<tag> 1.10.2 training CPU, GPU py38
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-inference:<tag> 1.10.0 inference CPU, GPU py38
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-training:<tag> 1.10.0 training CPU, GPU py38
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-inference:<tag> 1.9.1 inference CPU, GPU py38
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-training:<tag> 1.9.1 training CPU, GPU py38
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-inference:<tag> 1.9.0 inference CPU, GPU py38
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-training:<tag> 1.9.0 training CPU, GPU py38
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-inference:<tag> 1.8.1 inference CPU, GPU py3, py36
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-training:<tag> 1.8.1 training CPU, GPU py3, py36
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-inference:<tag> 1.8.0 inference CPU, GPU py3, py36
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-training:<tag> 1.8.0 training CPU, GPU py3, py36
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-inference:<tag> 1.7.1 inference CPU, GPU py3, py36
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-training:<tag> 1.7.1 training CPU, GPU py3, py36
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-inference:<tag> 1.6.0 inference CPU, GPU py3, py36
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-training:<tag> 1.6.0 training CPU, GPU py3, py36
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-inference:<tag> 1.5.0 inference CPU, GPU py3, py36
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-training:<tag> 1.5.0 training CPU, GPU py3, py36
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-inference:<tag> 1.4.0 inference CPU, GPU py3, py36
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-training:<tag> 1.4.0 training CPU, GPU py2, py3, py36
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-inference:<tag> 1.3.1 inference CPU, GPU py2, py3
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-training:<tag> 1.3.1 training CPU, GPU py2, py3
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-inference:<tag> 1.2.0 inference CPU, GPU py2, py3
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/pytorch-training:<tag> 1.2.0 training CPU, GPU py2, py3

Random Cut Forest (algorithm)

The following SageMaker AI Python SDK example shows how to retrieve a specific registry path.

from sagemaker import image_uris image_uris.retrieve(framework='randomcutforest',region='us-gov-east-1')
Registry path Version Job types (image scope)
237065988967.dkr.ecr.us-gov-east-1.amazonaws.com/randomcutforest:<tag> 1 inference, training

Scikit-learn (algorithm)

The following SageMaker AI Python SDK example shows how to retrieve a specific registry path.

from sagemaker import image_uris image_uris.retrieve(framework='sklearn',region='us-gov-east-1',version='0.23-1',image_scope='inference')
Registry path Version Package version Job types (image scope)
237065988967.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-scikit-learn:<tag> 1.2-1 1.2.1 inference
237065988967.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-scikit-learn:<tag> 1.2-1 1.2.1 training
237065988967.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-scikit-learn:<tag> 1.0-1 1.0.2 inference
237065988967.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-scikit-learn:<tag> 1.0-1 1.0.2 training
237065988967.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-scikit-learn:<tag> 1.0-1 1.0.2 inference_graviton
237065988967.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-scikit-learn:<tag> 0.23-1 0.23.2 inference
237065988967.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-scikit-learn:<tag> 0.23-1 0.23.2 training
237065988967.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-scikit-learn:<tag> 0.20.0 0.20.0 inference
237065988967.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-scikit-learn:<tag> 0.20.0 0.20.0 training

Semantic Segmentation (algorithm)

The following SageMaker AI Python SDK example shows how to retrieve a specific registry path.

from sagemaker import image_uris image_uris.retrieve(framework='semantic-segmentation',region='us-gov-east-1')
Registry path Version Job types (image scope)
237065988967.dkr.ecr.us-gov-east-1.amazonaws.com/semantic-segmentation:<tag> 1 inference, training

Seq2Seq (algorithm)

The following SageMaker AI Python SDK example shows how to retrieve a specific registry path.

from sagemaker import image_uris image_uris.retrieve(framework='seq2seq',region='us-gov-east-1')
Registry path Version Job types (image scope)
237065988967.dkr.ecr.us-gov-east-1.amazonaws.com/seq2seq:<tag> 1 inference, training

Spark (algorithm)

The following SageMaker AI Python SDK example shows how to retrieve a specific registry path.

from sagemaker import image_uris image_uris.retrieve(framework='spark',region='us-gov-east-1',version='3.0',image_scope='processing')
Registry path Version Job types (image scope)
260923028637.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-spark-processing:<tag> 3.3 processing
260923028637.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-spark-processing:<tag> 3.2 processing
260923028637.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-spark-processing:<tag> 3.1 processing
260923028637.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-spark-processing:<tag> 3.0 processing
260923028637.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-spark-processing:<tag> 2.4 processing

Tensorflow (DLC)

For information about the supported and unsupported TensorFlow versions, see the Framework Support Policy Table in the Amazon Deep Learning Containers Developer Guide.

The following SageMaker AI Python SDK example shows how to retrieve a specific registry path.

from sagemaker import image_uris image_uris.retrieve(framework='tensorflow',region='us-gov-east-1',version='1.12.0',image_scope='inference',instance_type='ml.c5.4xlarge')
Registry path Version Job types (image scope) Processor types Python versions
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference:<tag> 2.19.0 inference CPU, GPU -
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-training:<tag> 2.19.0 training CPU, GPU py312
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference:<tag> 2.18.0 inference CPU, GPU -
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-training:<tag> 2.18.0 training CPU, GPU py310
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-training:<tag> 2.16.2 training CPU, GPU py310
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference:<tag> 2.16.1 inference CPU, GPU -
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference-graviton:<tag> 2.16.1 inference_graviton CPU py310
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference:<tag> 2.14.1 inference CPU, GPU -
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference-graviton:<tag> 2.14.1 inference_graviton CPU py310
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-training:<tag> 2.14.1 training CPU, GPU py310
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference:<tag> 2.13.0 inference CPU, GPU -
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference-graviton:<tag> 2.13.0 inference_graviton CPU py310
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-training:<tag> 2.13.0 training CPU, GPU py310
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference:<tag> 2.12.1 inference CPU, GPU -
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference-graviton:<tag> 2.12.1 inference_graviton CPU py310
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-training:<tag> 2.12.0 training CPU, GPU py310
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference:<tag> 2.11.1 inference CPU, GPU -
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference:<tag> 2.11.0 inference CPU, GPU -
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-training:<tag> 2.11.0 training CPU, GPU py39
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference:<tag> 2.10.1 inference CPU, GPU -
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-training:<tag> 2.10.1 training CPU, GPU py39
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference:<tag> 2.10.0 inference CPU, GPU -
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference:<tag> 2.9.3 inference CPU, GPU -
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference:<tag> 2.9.2 inference CPU, GPU -
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-training:<tag> 2.9.2 training CPU, GPU py39
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference-graviton:<tag> 2.9.1 inference_graviton CPU py38
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference:<tag> 2.8.4 inference CPU, GPU -
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference:<tag> 2.8.0 inference CPU, GPU -
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-training:<tag> 2.8.0 training CPU, GPU py39
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-training:<tag> 2.7.1 training CPU, GPU py38
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference:<tag> 2.7.0 inference CPU, GPU -
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference:<tag> 2.6.3 inference CPU, GPU -
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-training:<tag> 2.6.3 training CPU, GPU py38
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-training:<tag> 2.6.2 training CPU, GPU py38
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference:<tag> 2.6.0 inference CPU, GPU -
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-training:<tag> 2.6.0 training CPU, GPU py38
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference:<tag> 2.5.1 inference CPU, GPU -
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-training:<tag> 2.5.1 training CPU, GPU py37
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-training:<tag> 2.5.0 training CPU, GPU py37
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference:<tag> 2.4.3 inference CPU, GPU -
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-training:<tag> 2.4.3 training CPU, GPU py37
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference:<tag> 2.4.1 inference CPU, GPU -
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-training:<tag> 2.4.1 training CPU, GPU py37
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference:<tag> 2.3.2 inference CPU, GPU -
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-training:<tag> 2.3.2 training CPU, GPU py37
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference:<tag> 2.3.1 inference CPU, GPU -
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-training:<tag> 2.3.1 training CPU, GPU py37
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference-eia:<tag> 2.3.0 eia CPU -
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference:<tag> 2.3.0 inference CPU, GPU -
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-training:<tag> 2.3.0 training CPU, GPU py37
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference:<tag> 2.2.2 inference CPU, GPU -
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-training:<tag> 2.2.2 training CPU, GPU py37
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference:<tag> 2.2.1 inference CPU, GPU -
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-training:<tag> 2.2.1 training CPU, GPU py37
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference:<tag> 2.2.0 inference CPU, GPU -
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-training:<tag> 2.2.0 training CPU, GPU py37
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference:<tag> 2.1.3 inference CPU, GPU -
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-training:<tag> 2.1.3 training CPU, GPU py3, py36
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference:<tag> 2.1.2 inference CPU, GPU -
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-training:<tag> 2.1.2 training CPU, GPU py3, py36
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference:<tag> 2.1.1 inference CPU, GPU -
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-training:<tag> 2.1.1 training CPU, GPU py2, py3
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference:<tag> 2.1.0 inference CPU, GPU -
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-training:<tag> 2.1.0 training CPU, GPU py2, py3
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference:<tag> 2.0.4 inference CPU, GPU -
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-training:<tag> 2.0.4 training CPU, GPU py3, py36
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference:<tag> 2.0.3 inference CPU, GPU -
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-training:<tag> 2.0.3 training CPU, GPU py3, py36
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference:<tag> 2.0.2 inference CPU, GPU -
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-training:<tag> 2.0.2 training CPU, GPU py2, py3
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference:<tag> 2.0.1 inference CPU, GPU -
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-training:<tag> 2.0.1 training CPU, GPU py2, py3
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference-eia:<tag> 2.0.0 eia CPU -
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference:<tag> 2.0.0 inference CPU, GPU -
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-training:<tag> 2.0.0 training CPU, GPU py2, py3
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference:<tag> 1.15.5 inference CPU, GPU -
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-training:<tag> 1.15.5 training CPU, GPU py3, py36, py37
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference:<tag> 1.15.4 inference CPU, GPU -
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-training:<tag> 1.15.4 training CPU, GPU py3, py36, py37
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference:<tag> 1.15.3 inference CPU, GPU -
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-training:<tag> 1.15.3 training CPU, GPU py2, py3, py37
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference:<tag> 1.15.2 inference CPU, GPU -
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-training:<tag> 1.15.2 training CPU, GPU py2, py3, py37
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference-eia:<tag> 1.15.0 eia CPU -
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference:<tag> 1.15.0 inference CPU, GPU -
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-training:<tag> 1.15.0 training CPU, GPU py2, py3
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference-eia:<tag> 1.14.0 eia CPU -
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference:<tag> 1.14.0 inference CPU, GPU -
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-training:<tag> 1.14.0 training CPU, GPU py2, py3
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-training:<tag> 1.13.1 training CPU, GPU py3
446045086412.dkr.ecr.us-gov-east-1.amazonaws.com/tensorflow-inference:<tag> 1.13.0 inference CPU, GPU -

Tensorflow Inferentia (DLC)

The following SageMaker AI Python SDK example shows how to retrieve a specific registry path.

from sagemaker import image_uris image_uris.retrieve(framework='inferentia-tensorflow',region='us-gov-east-1',version='1.15.0',instance_type='ml.inf1.6xlarge')
Registry path Version Job types (image scope) Processor types Python versions
227234621604.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-neo-tensorflow:<tag> 2.5.2 inference inf py3
227234621604.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-neo-tensorflow:<tag> 1.15.0 inference inf py3

XGBoost (algorithm)

The following SageMaker AI Python SDK example shows how to retrieve a specific registry path.

from sagemaker import image_uris image_uris.retrieve(framework='xgboost',region='us-gov-east-1',version='1.5-1')
Registry path Version Package version Job types (image scope)
237065988967.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-xgboost:<tag> 1.7-1 1.7.4 inference
237065988967.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-xgboost:<tag> 1.7-1 1.7.4 training
237065988967.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-xgboost:<tag> 1.5-1 1.5.2 inference
237065988967.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-xgboost:<tag> 1.5-1 1.5.2 training
237065988967.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-xgboost:<tag> 1.5-1 1.5.2 inference_graviton
237065988967.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-xgboost:<tag> 1.3-1 1.3.3 inference
237065988967.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-xgboost:<tag> 1.3-1 1.3.3 training
237065988967.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-xgboost:<tag> 1.3-1 1.3.3 inference_graviton
237065988967.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-xgboost:<tag> 1.2-2 1.2.0 inference
237065988967.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-xgboost:<tag> 1.2-2 1.2.0 training
237065988967.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-xgboost:<tag> 1.2-1 1.2.0 inference
237065988967.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-xgboost:<tag> 1.2-1 1.2.0 training
237065988967.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-xgboost:<tag> 1.0-1 1.0.0 inference
237065988967.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-xgboost:<tag> 1.0-1 1.0.0 training
237065988967.dkr.ecr.us-gov-east-1.amazonaws.com/xgboost:<tag> 1 0.72 inference
237065988967.dkr.ecr.us-gov-east-1.amazonaws.com/xgboost:<tag> 1 0.72 training
237065988967.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-xgboost:<tag> 0.90-2 0.90 inference
237065988967.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-xgboost:<tag> 0.90-2 0.90 training
237065988967.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-xgboost:<tag> 0.90-1 0.90 inference
237065988967.dkr.ecr.us-gov-east-1.amazonaws.com/sagemaker-xgboost:<tag> 0.90-1 0.90 training