Configure and create an endpoint - Amazon SageMaker AI
Services or capabilities described in Amazon Web Services documentation might vary by Region. To see the differences applicable to the China Regions, see Getting Started with Amazon Web Services in China (PDF).

Configure and create an endpoint

Create a new endpoint configuration to fit your model, and use this configuration to create the endpoint. You can use the model container validated in the pre-check step to create an endpoint and enable the SageMaker Clarify online explainability feature.

Use the sagemaker_client object to create an endpoint using the CreateEndpointConfig API. Set the member ClarifyExplainerConfig inside the ExplainerConfig parameter as follows:

sagemaker_client.create_endpoint_config( EndpointConfigName='name-of-your-endpoint-config', ExplainerConfig={ 'ClarifyExplainerConfig': { 'EnableExplanations': '`true`', 'InferenceConfig': { ... }, 'ShapConfig': { ... } }, }, ProductionVariants=[{ 'VariantName': 'AllTraffic', 'ModelName': 'name-of-your-model', 'InitialInstanceCount': 1, 'InstanceType': 'ml.m5.xlarge', }] ... ) sagemaker_client.create_endpoint( EndpointName='name-of-your-endpoint', EndpointConfigName='name-of-your-endpoint-config' )

The first call to the sagemaker_client object creates a new endpoint configuration with the explainability feature enabled. The second call uses the endpoint configuration to launch the endpoint.

Note

You can also host multiple models in one container behind a SageMaker AI real-time inference multi-model endpoint and configure online explainability with SageMaker Clarify.