Configure settings for basic profiling of system resource utilization - Amazon SageMaker AI
Services or capabilities described in Amazon Web Services documentation might vary by Region. To see the differences applicable to the China Regions, see Getting Started with Amazon Web Services in China (PDF).

Configure settings for basic profiling of system resource utilization

To adjust the time interval for collecting the utilization metrics, use the ProfilerConfig API operation to create a parameter object while constructing a SageMaker AI framework or generic estimator depending on your preference.

Note

By default, for all SageMaker training jobs, Debugger collects resource utilization metrics from Amazon EC2 instances every 500 milliseconds for system monitoring, without any Debugger-specific parameters specified in SageMaker AI estimators.

Debugger saves the system metrics in the default S3 bucket. The format of the default S3 bucket URI is s3://sagemaker-<region>-<12digit_account_id>/<training-job-name>/profiler-output/.

The following code example shows how to set up the profiler_config parameter with a system monitoring time interval of 1000 milliseconds.

from sagemaker.debugger import ProfilerConfig profiler_config=ProfilerConfig( system_monitor_interval_millis=1000 )
  • system_monitor_interval_millis (int) – Specify the monitoring intervals in milliseconds to record system metrics. Available values are 100, 200, 500, 1000 (1 second), 5000 (5 seconds), and 60000 (1 minute) milliseconds. The default value is 500 milliseconds.

To see the progress of system monitoring, see Open the Amazon SageMaker Debugger Insights dashboard.