Configure tensor collections
using the CollectionConfig API
Use the CollectionConfig API operation to configure tensor
collections. Debugger provides pre-built tensor collections that cover a variety of
regular expressions (regex) of parameters if using Debugger-supported deep learning
frameworks and machine learning algorithms. As shown in the following example code,
add the built-in tensor collections you want to debug.
from sagemaker.debugger import CollectionConfig collection_configs=[ CollectionConfig(name="weights"), CollectionConfig(name="gradients") ]
The preceding collections set up the Debugger hook to save the tensors every 500
steps based on the default "save_interval" value.
For a full list of available Debugger built-in collections, see Debugger Built-in Collections
If you want to customize the built-in collections, such as changing the save
intervals and tensor regex, use the following CollectionConfig template
to adjust parameters.
from sagemaker.debugger import CollectionConfig collection_configs=[ CollectionConfig( name="tensor_collection", parameters={ "key_1": "value_1", "key_2": "value_2", ... "key_n": "value_n" } ) ]
For more information about available parameter keys, see CollectionConfig
from sagemaker.debugger import CollectionConfig collection_configs=[ CollectionConfig( name="losses", parameters={ "train.save_interval": "100", "eval.save_interval": "10" } ) ]
Tip
This tensor collection configuration object can be used for both DebuggerHookConfig and Rule API operations.