I 58 =%
Developer Guide for SDK v2

Amazon SDK for JavaScript

Amazon SDK for JavaScript Developer Guide for SDK v2

Amazon SDK for JavaScript: Developer Guide for SDK v2

Amazon SDK for JavaScript Developer Guide for SDK v2

Table of Contents

... ix
What Is the Amazon SDK for JAvaSCript?iiiiiiiiiiiiinneensiiiiiiciiiiineeesssssssssssssssssssssssssssssssssssssss 1
Maintenance and support for SDK mMajor VEISIONSccceceeererieneeeeecctecrestesteceeee e eesessessessessenas 1
USIiNG the SDK With NOGE.JS ..ecueeeeeeeeeeeee ettt ettt sa et et e st e st e b e s e sassnennens 2
Using the SDK with AmMazon AMPLITY ...ttt st st a e naan 2
Using the SDK With WED BrOWSEIS ...ttt e e s s st stesaesse s ss e e nennan 2
COMMION USE CASES ..ttt sttt et e st esse st e st s s e st e st e sessbe s st e sseebeestessessesatesseensasnsensasas 3
ADOUL the EXAMPLES ..ottt ettt ettt et e s e s e e e e e et e st e st e st e sbasbesseesa e s esaenaensansansn 3
Getting Started ... iiiiiiiiiiiiiiieiiieieeiiittseeessesissssseettttessnsnssss 4
Getting Started iN @ BroWSEr SCIPL ...ttt ettt te s e e s et e b e stesaesba e snennens 4
TRE SCENAMIO ettt ettt sttt sa e st s st et et s et et e e be st esaebesbesassassassenasansesassans 4
Step 1: Create an Amazon Cognito Identity POOL ..ot 5
Step 2: Add a Policy to the Created IAM ROLE ...ttt nens 6
Step 3: Create the HTML PAge ...ttt ve et e st et saestesse e e s e s s e saeaanaans 7
Step 4: Write the BroWSEr SCIPLcv ittt e et st tesae s e s e s e e e e e e a e aa s 8
Step 5: RUN the SAMIPLE ..ottt st e e e a e sae st e b e ae s ae s nennens 9

FULL SAMIPLE ettt te e te st e e s e e e et et et et e st e st e sse s s e e e e ssesa e st ensasaassassassessaensensansans 10
POSSIDlE ENNANCEMENTS ..ottt ettt et sse st et s a et s s et e e s e s e s s e ssanes 11
Getting STArted iN NOGE.JS ..ottt st e te st e e e e e e e e e e e saestessasaessessnenaannans 12
TRE SCENAMIO ettt ettt et st s s s et st s b et et e e sae st e e sse st e e ssassensenessansanaes 12
Prer@qUISITE TASKS ..ccvcieieiecieiecteeeeeee ettt ste et esteete e e e e s e e s e st e st e st e s b assaesaesassaensestansansansassassesseenaenean 12
Step 1: Install the SDK and DePeNdENCIESceeeeieierienieeeeereeeeee ettt saesaesae s 13
Step 2: Configure Your Cred@ntialscccceceeeiieieieciececeseeeeeete ettt ste e e e aesa e st aanas 13
Step 3: Create the Package JSON for the Project ...t 14
Step 4: Write the NOAE.[S COAE ...ttt e e et ae st e stesae s e s e s saennennns 15
Step 5: RUN the SAMIPLE ...ttt st e b e e e e e e s e s e e e aenbanaans 16
Setting Up the SDK for JAVaSCIIPtiiiiiiiiiiiiiiennnniniiiiiieiiiiiesasses 17
PrEIEGQUISITES .ottt ettt e st e st e s st e s te s aeestesss e e st e s saeessaessae s ssassseessaesssessssessseesssessseesseennses 17
Setting Up an Amazon Node.js ENVIFONMENTccviiiieiiecieeceeeeeeeetete et 17
WeDb BroWSers SUPPOITEAocuiieeieieectetetetestectee e e eetestesteste s e s e s e e s esaesaessessassessasssssesssessansansans 18
INSTALLING ThE SDK ...ttt e e a e st et e st e esse e e e se e e esae s atessassasseesaenaanaans 19
INSTALlNG USING BOWET ..ttt s et et e st st et e s s e e e e e e et et e sbesaassesnaesnanes 20
LOQAAING ThE SDK ...ttt te e st e s e e et et et e st e s b e s be s b e s se e e e st et etensasasassesssansensansansn 20

UpGrading From VEISION T ...ttt testesteste s e e e e e e e et et e saa s e saassassassnesne s enaansanes 21

Amazon SDK for JavaScript Developer Guide for SDK v2

Automatic Conversion of Base64 and Timestamp Types on Input/Outputccccveevevenennen. 21
Moved response.data.Requestld to response.requestidcooveieiececeneceniececceeee e 22
EXposed Wrapper ELEMENTS ...ttt sttt e e e stesaesae st e s ae e e saea e aesaennan 23
Dropped CLIENT ProPertiescceceeiiececeeeetetetestestee et ae e steste s e s e e e e s e s e st essestassessassaesessnennan 28
Configuring the SDK for JAVaSCriPtcuueciiiiiiiiiiiiiinnnnennniiiiiiiieiiiiessasssssssssssssscsssssssssssssssssssses 29
Using the Global Configuration ODjJECE ...t 29
Setting GLlobal ConfiGUIAtioN ...ttt s e et aes 30
Setting ConNfigUration PEI SEIVICE ...ttt ettt ste st te s e e sa et et ae s 32
Immutable Configuration Data ...ttt sae b aens 32
Setting the AMAZON REGION ...ttt st te s e s e e e e se et e st e te st e s bassaesessaenaenaensanean 32
IN @ ClIeNt Class CONSEIUCLON ..couiviiieiieteerestetrertest ettt ettt se e st et s e ssesae e ssassestesassassensns 33
Using the Global Configuration ODBJECE ... 33
Using an ENVIroNmMeNnt Variable ...ttt ettt saesaesae e a e nns 33
UsiNg @ Shared CONTig File ..ottt ettt ae s e s e e et aa s 33
Order of Precedence for Setting the ReGION ..o 34
Specifying CuStomM ENAPOINTSooieeeeeecee ettt ettt sae e s e st sae s s 34
ENdpoint String FOIMAL ..ottt ettt ste st e s te s e e e e e e st et e st e sae s e s sessaesnennannans 34
Endpoints for the ap-northeast-3 REGION ..o 35
ENdpoints fOor ME@AIaCONVENt ...ttt e st stesae e e ra e e e e s et e aassans 35
SDK authentication With AMAzZOon ...ttt se st s e sae e s e ssesae e esens 35
Start an Amazon access POrtal SESSIONcccciceeieiiieeeteerese et e stesteste s e e e e e e e e e e saessensens 37
More authentication INFOrMAtION ...t ees 37
SEHHING CreENTIALS ...ttt e st e s te st e e e e e e e e et et et e aessessessaeseennannan 38
Best Practices fOr Cradentials ...ttt ettt sae e ssesae e s e seen 38
Setting Credentials iN NOAE.|S ...ttt e st e st s e e e e aanaan 39
Setting Credentials in @ WED BrOWSETccuicieeieeiereeeeeeeeeectetecte e ssesseeseeaessessessessessessassessssssenean 44
LOCKING APL VEISIONS ...eveveieteeteeeeeetetete e stestesteete e e e aesaesaesaestassessessaesassaessasesessasassasssssssnsensansensansanes 54
GELLING AP VEISIONSeiieiieeeteciect et certee it st e s seessatesaesssaessaessaeasssesssaesssessseasssessssesssessseesssesssaesnses 54
NOAE.jS CONSIAEIATIONS ...ttt ettt e s te st e e e e e e e e s et e saesaessesse e e esae s ensansansansansans 55
Using BUilt-IN NOE.JS MOAULESooueeeeeeee ettt ste st aea e a e st aaenas 55
USING NPM PACKAGES ...ttt ettt stesteste s e s te e s e e sa e ste st et e tasaassessa e s e s enaassansansans 55
Configuring MaXSOCKEtS iIN NOGE.JScouicieeieeieciceeececteretete ettt e saesaesse e e e e aesaennans 56
Reusing Connections with Keep-Alive in NOAE.[Sccoeriecieciiceeeececee ettt 57
Configuring ProXi€s fOr NOGE.|S ...ccueeuieiiieieeeececeeee ettt aesae st et ae s e se e e nnan 58
Registering Certificate BUNdLles in NOE.|S ..c.coueeuiieieieieeeeeeeceeetee et sae e 59
Browser Script CONSIAEIatioNS ..ottt e e et st e st e sae b e s se e e e e e nnennan 59

Amazon SDK for JavaScript Developer Guide for SDK v2

BUilding the SDK fOr BrOWSELSccueoiieiieeeeeieietestesteseee e esetestestessessessessssssessesaessessessessasssenssnsans 60
Cross-Origin Resource Sharing (CORS) ..ottt saesaesae e e e s ae e saa s 63
BUNAUING With WEDPACK ...ttt te e e e e st st st et ae s s e neaennans 67
INSTALLING WEDPACK ...ttt e e et et st e sae s s s e e e s aeaesnantans 67
CONFIGUIING WEDPACK ...vouvetiiieieeeetetetetetee ettt stestestestestesse e e e s e s e sae st e stessasaassasseesnensansensansanes 68
RUNNING WEDPACK ...ttt ettt tesaeste s e e e e s e e et e ste st e sassessaensensansensansansans 69
Using the Webpack BUNALE ..ottt st stesaesae s e e s s e e aesaennans 70
IMPOrting INAIVIAUAL SEIVICES ..ottt ettt ettt e te st e e e e e s e e s e e e aessanaans 70
BUNAUING FOr NOGE.JS .ttt ettt teste s e e e e s e st e st e b et e s se s e e e e e esaesaenaansannan 71
WOrKing With SEIVICEScueeeeiiiiiiiiiiiiinnnennnniiiiiiiiceiiieeesss 73
Creating and Calling Service ODJECLS ...ttt te e e a st saesae e 74
ReqUIriNg INAIVIAUAL SEIVICES ..ottt ere et e st s tesaesae e e e e e aesaesaansans 75
Creating SErvice ODJECES ...ttt te e e e st et s ae st e s ae e e e e e e naanes 76
Locking the API Version of @ Service ObjJECtcuoivieiicieieeeceeee ettt saesaenens 77
Specifying Service Object PAaramELErs ... ettt e s sa et aesaasaens 77
Logging Amazon SDK for JAavaScript Calls ...ttt ae s 78
USING @ THIrd-Party LOGQEN ...ttt testeste s e s e s e e e e s eaessasaessassessassnennannans 78
Calling Services ASYCHIONOUSLY ..ottt ettt sre s e e s e e e e et e saesaesae s e ssnennens 79
Managing ASYChronNOUS CallS ...ttt ae st be e re e e e e anan 79
UsiNg @ Callback FUNCLION ..c.uieeeeeeeeee ettt e et et esaesae s se e s a e aesaaaans 80
Using a Request Object EVENt LISTENEN ...ttt et 82
USING QSYNC/AWAIT ..ttt et et et e st et e st e e s e e e e e et et e stessasseeseennensansansanean 87
USING PrOMUSES ...eiieiiiitieieecitietersreestesseeestessseesseesssesssaesssesssaesssessssesssessssesssessssessseesssessseesssessssesaessseens 88
Using the RESPONSE ODJECT ...ttt e ettt ae s s nenenans 90
Accessing Data Returned in the ReSponse ObjJECtcceeieeeeeeeceeeeeeeteece e 91
Paging Through ReturNed Data ...ttt e et et sae st e e ae e aennan 91
Accessing Error Information from a Response Object ... 92
Accessing the Originating Request ODbJect ...t 92
WOTrKIiNG WIth JSON ...ttt et et teste st e et e e e et et e st e saessassessaesaensentessansansans 93
JSON as Service Object PAramELErs ... cieeeecececteretestesese e tesaestesaesse s e e s e s e e e saesasans 94
ReturnNing Data @S JSON ...ttt ssre et e s aessve e s ae s sae e s aesssa e s b essaeessasssaesssassneans 94
RETIIES ...ttt et s e st s st s b st e st s b e st e e st s b e et e st e b e et e st s besat e seebe et enean 95
Exponential backoff based retry behaVior ... 95
SDK for JavaScript Code EXamPLesccceeeeciiiiiieiiniinennnnnnnssisssccensesssasss 929
Amazon CloudWatch EXQMPLESc.ooveieeieeececee ettt e e et stestesae s e se e s e s s e s et e saesaanes 99
Creating Alarms in AMazon CloUAWAAtCh ...ttt aens 100

Amazon SDK for JavaScript Developer Guide for SDK v2

Using Alarm Actions in Amazon CloudWatch ... 104
Getting Metrics from Amazon ClLoudWatch ... 108
Sending Events to Amazon CloudWatch EVENLS ...ttt 111
Using Subscription Filters in Amazon CloudWatch LOgscoeveeieiiciecieceeeeceeeeeeeeveve e 116
Amazon DyNamoDB EXQMIPLES ...ttt ste st a ettt et esse s s s s e aea e s e s nes 121
Creating and Using Tables in DYNamODB ...ttt ae s s saeeaas 122
Reading and Writing A Single Item in DynamoDB ...t 127
Reading and Writing Items in Batch in DynamoDBccoieecieeeeecee et 130
Querying and Scanning @ DynamoDB Table ...t 134
Using the DynamoDB Document CLENT ..ottt a et et sae e 137
AMAZON EC2 EXQMIPLES ..ottt tete st tesse e e e e s see st e stesaessasse s e e s ena et asaastessassassnsssensansansans 143
Creating an AmMAzon EC2 INSTANCEiiviiiiiiereecteecteete st eereesveesressseessaessaeessaessssesssasssnesssesnnas 144
Managing AmMAzon EC2 INSTANCEScociiviiiiieiieeeesteeteestesstesseessseestesssessssessssesssesssessssessssessnasns 147
Working with AmMAazon EC2 KEY PilSccccuecieiiriecieneceeeeeeeetete e sae e stessesse e s essessessessessassessenes 153
Using Regions and Availability Zones with Amazon EC2ooieieiecieceecececeeeeeeeeeeee e 156
Working with Security Groups in AMAzon EC2 ...ttt aesae e sseesens 158
Using Elastic IP Addresses in AMAzon EC2 ... eeeeneeeeeceereeecee e stessee e eeesesaessesaessasens 163
MediaCoNVErt EXAMPLEScoveeeeeeeeececteteecteeee ettt stesteste st e e e e e et e e e ae st e st e sessassassae e e e ensansensansan 167
Creating and Managing JODS ...ttt te et ettt s ae s aennens 167
USING JOD TEMPLALES ..ttt sttt e s et sa e ae st ae s e e a e e e e e teaanes 174
AMAZON [AM EXQIMPLESoovieieieeietetectectetestee e et eeee st et e saestestesse s e e e s s e s esaessessassassassessssssensansansansansans 183
MaANAGING TAM USEIS ...ttt st e s ste e st estesssaesssessseasssessssesssassssasssesssaesssessseesssessssennses 183
WOrking With TAM POLICIES ...ecuveeeieeeeeeetetetecestee ettt teste s e e e s s s et e st e se s e sa e e e e e nennan 188
ManNAGiNG [AM ACCESS KEYSuviiriieieictinieectestesstessteesreesssessseessseesseesssessssesssesssaesssessssesssessssessssssses 194
Working with IAM Server CertifiCates ... 199
Managing |AM ACCOUNT ALI@SESc.eecveciieieeieceeeeeeteee et ste e e et e saestestesse s e e e e e e s e b e ssessansanns 203
AmMazon KiNESiS EXAMIPLE ..ttt e et et e b e s aesae s e s e e s e e e s e e e aansanes 207
Capturing Web Page Scroll Progress with Amazon Kinesisccceceeveevievieceecenesieneseeeeseenens 207
AMAZON S3 EXAMPLES ..ottt te e e e e et et e st e s se et e s se e e e e s e e s e sta st e sassessasseesasnsenaanes 214
Amazon S3 Browser EXAMPLES ...ttt e e a et et e saesae s se e n s 215
AmaAazon S3 NOE.JS EXAMPLEScceeueeieeeeeteteeee ettt steste e e e e e sa e sae st e saessesse e e e e e nennanes 243
AMAZON SES EXAMIPLES ..ottt ettt te s te e se e s e s e st et e st e s sa s e saesa e e e e esaatansenean 264
MaNAGING [AENLITIES ...cuveeeeeeeeeeee ettt s et e e et st esae st e saessesseesae e e s enesansans 265
Working with EMail TEMPLALES ...ttt sttt s a e aenee 270
Sending Email Using AMAzon SES ...ttt te et eve e e s e e s stestesse s e s e e s e e e saennan 276
USING 1P AAIreSS FILLEIS ...oueeeeteeeeeeeeeetete ettt ettt teste st e e e e se et a e b et e saesaassessnennennens 282

Vi

Amazon SDK for JavaScript Developer Guide for SDK v2

USING RECEIPT RULES ...ttt te ettt et e st e s te s s s et et et e s ta s e sassessnennan 286
AMAZON SNS EXAMPLES ...voririieeeeeeeetetecteetecte et e e e e et e saestestestesse s e s e e s essessesaessessassansassassasssensensensans 292
MaANAGING TOPICS weeuiiriiiiiieieeeterteeetee st estesste s raesste e st esssesssaessessseasssesssaesssessstesssesssaessssesseesssesssaesnses 292
Publishing Messages t0 @ TOPIC c...ccececeeieeeecececteetete e e et et stesaesae s e e e e e s sn e aesaesaannan 298
Managing SUDSCHIPLIONSoovieeeceeeee ettt e e a et et et e st e s e e seesa e e e aenaesanes 300
SENAING SMS MESSAGESeovieieeeieretecteeese st eee e et estestestestessessessesseessessesessansessassassesssssssssensasansans 306
AMAzon SQS EXAMIPLES ..ottt tete et e e e et et e s se st e s sa e e e e e s et e saasbassassesseeneanaensansanes 313
Using Queues in AMAZON SQS ...ttt e sstes e s e essse s st esssessssesssessssasssessssesssesssaans 313
Sending and Receiving Messages in AMazon SQS ... eeeeieiereeecestese e sresaeseens 318
Managing Visibility Timeout in AMAzon SQS ...t se e e e e aeaens 321
Enabling Long Polling in AMAzon SQS ...ttt e e re s st ste e s e aeaens 324
Using Dead Letter Queues in AMAzon SQS ...t sre e e e e e saesaesaesaens 327
TUROKHIALS ceeerrrriiiiiiiiiiiiiiiitiiiiiiiiieniecss 330
Tutorial: Setting Up Node.js on an Amazon EC2 INStANCEccceeeeeeeeieeecieceececeeeeeeseee e saesaenas 330
PrErEQUISITES .ottt ettt s e st e s ae s s e e st e s st e s b e s saessae e st essseesssesssaesssassseesssessseennnes 330
PIOCEAUIE ..ttt sttt sttt et et e e st et s et e st e e s s e b et s sasae st e st ssasbastesassantesaesersansenssanes 330
Creating an AmMazon Maching IMAgE ...ttt s seens 332
RELALEA RESOUICES ...ttt sttt st st et e e st e e s et et e e s s et e e ssessessesassansenesas 332

APl Reference and Changelogcuiuueeeeeeeciiiiiieiiiinnnneennnesssiseseeninsss 333
SDK Changelog 0N GItHUD ...ttt sttt aesae s s e e a e a e ae s nan 333
MiIGrate 0 V3 ...iiiiiiiiiiiiieeeniiiieieeinitenassssssssssssssseess 334
SECUNITY ceiiiiiiieeennniiiieiienitineneesssssssssssseessesss 335
DAta PrOTECLION ...ttt ae st e e s ae s s e e s sae e s e e s aeessaessaaessnesssassssassaesssasssaanns 335
Identity and Access ManNAgEIMENTcceceeiiiiieietetectecte e ee et sa et estestesaeste s e e e e e e s e s e aensessessanes 336
AUAIENCE ..ttt sttt et s b et st s b et et s b et e e s s et et s sa b et e st ssa s e st esessansesessansensenanns 337
Authenticating With identities ...ttt ens 337
Managing access USING POLICIES ...coiceeieiiecieeecececeeeete et ste et te e e e e e e e s e e e stestessessesse e e esnennennan 338

How Amazon Web Services services work With TAMcccoevinininvnenirreneseesenee e 340
Troubleshooting Amazon identity and @CCESSuoiieiecieceeeeeeee e 340
ComMPLANCE Valid@tion ...ttt te e e e e s et e saeste s b e e sa e e e seennenaaneans 342
RESILIEICE .ttt ettt et ettt s s b et et s s et et e e b et esa s s et e st ssassastesesanseneess 343
INFrAaStrUCTUIE SECUIILY ..ottt sttt st e st et e s e e e e e e s et e stesaassessesanesaanaans 343
Enforcing @ minimum Version Of TLS ...ttt ste st e s a e e nan 344
Verify and enforce TLS iN NOGE.|S ..coviieeeeececeeeeeetetetetee ettt re e e e a et sa v s 344
Verify and enforce TLS in @ browser SCript ..ottt 347
AdditioNal RESOUICESccuueereeeeeeneseeessssssnsssnssnssessmemssmmettttttimttestesss 349

vii

Amazon SDK for JavaScript Developer Guide for SDK v2

Amazon SDKs and Tools Reference GUIAEcuceverieirenieririneseereeesesteste ettt ssesaeseenens 349
JAVASCIIPT SDK FOFUM ettt st et see s re e s sae s s e e s sae s st e s sae e st e s ssesssaesssaesssasssasssaesanes 349
JavaScript SDK and Developer Guide on GitHUD ..ot 349
JAVASCIIPT SDK ON GIEEEE ..ttt ettt et st e sae s re s sa e s sae e s e e s seesaessaaessnassnaanns 349
(0T oYal 1Ty 1 L= 31l o 1T o oV UPUT R 350
DOCUMIENT HISTOIY oottt ettt s st s ae s se e st e s ssa e s s ae s sae e saessaaesssesssaesssasssaenssassneens 350
EQrliEr UPAtES ...ttt ettt et et et e st e st e st e e s e e s e e et e b et e st assassaesaennensensansansans 351

viii

Amazon SDK for JavaScript Developer Guide for SDK v2

The Amazon SDK for JavaScript v2 has reached end-of-support. We recommend that you migrate
to Amazon SDK for JavaScript v3. For additional details and information on how to migrate, please

refer to this announcement.

https://docs.amazonaws.cn//sdk-for-javascript/v3/developer-guide/
https://amazonaws-china.com/blogs//developer/announcing-end-of-support-for-aws-sdk-for-javascript-v2/

Amazon SDK for JavaScript Developer Guide for SDK v2

What Is the Amazon SDK for JavaScript?

The Amazon SDK for JavaScript provides a JavaScript APl for Amazon services. You can use the
JavaScript API to build libraries or applications for Node.js or the browser.

nede ||||
i Amazon 53 Amazon EC2
Mode.js on seners [|
amazon
Wb SrACeS
JE Identity & Access Amazon SOS Other services

Management (LAM)

Amazon SDK
B for JavaScript

"

Browser scripts Amazon Amazon
CloudWateh DynamoDB
JavaScript environments Amazon Web Services

Not all services are immediately available in the SDK. To find out which services are currently
supported by the Amazon SDK for JavaScript, see https://github.com/aws/aws-sdk-js/blob/
master/SERVICES.md. For information about the SDK for JavaScript on GitHub, see Additional
Resources.

Maintenance and support for SDK major versions

For information about maintenance and support for SDK major versions and their underlying
dependencies, see the following in the Amazon SDKs and Tools Reference Guide:

« Amazon SDKs and tools maintenance policy

« Amazon SDKs and tools version support matrix

Maintenance and support for SDK major versions 1

https://nodejs.org/en/
https://github.com/aws/aws-sdk-js/blob/master/SERVICES.md
https://github.com/aws/aws-sdk-js/blob/master/SERVICES.md
https://docs.amazonaws.cn/sdkref/latest/guide/overview.html
https://docs.amazonaws.cn/sdkref/latest/guide/maint-policy.html
https://docs.amazonaws.cn/sdkref/latest/guide/version-support-matrix.html

Amazon SDK for JavaScript Developer Guide for SDK v2

Using the SDK with Node.js

Node.js is a cross-platform runtime for running server-side JavaScript applications. You can set
up Node.js on an Amazon EC2 instance to run on a server. You can also use Node.js to write on-
demand Amazon Lambda functions.

Using the SDK for Node.js differs from the way in which you use it for JavaScript in a web
browser. The difference comes from the way in which you load the SDK and in how you obtain the
credentials needed to access specific web services. When use of particular APIs differs between
Node.js and the browser, those differences will be called out.

Using the SDK with Amazon Amplify

For browser-based web, mobile, and hybrid apps, you can also use the Amazon Amplify Library on

GitHub, which extends the SDK for JavaScript, providing a declarative interface.

® Note

Frameworks such as Amazon Amplify might not offer the same browser support as the SDK
for JavaScript. Check a framework's documentation for details.

Using the SDK with Web Browsers

All major web browsers support execution of JavaScript. JavaScript code that is running in a web
browser is often called client-side JavaScript.

Using the SDK for JavaScript in a web browser differs from the way in which you use it for
Node.js. The difference comes from the way in which you load the SDK and in how you obtain the
credentials needed to access specific web services. When use of particular APIs differs between
Node.js and the browser, those differences will be called out.

For a list of browsers that are supported by the Amazon SDK for JavaScript, see Web Browsers
Supported.

Using the SDK with Node.js 2

https://github.com/aws/aws-amplify
https://github.com/aws/aws-amplify

Amazon SDK for JavaScript Developer Guide for SDK v2

Common Use Cases

Using the SDK for JavaScript in browser scripts makes it possible to realize a number of compelling
use cases. Here are several ideas for things you can build in a browser application by using the SDK
for JavaScript to access various web services.

 Build a custom console to Amazon services in which you access and combine features across
Regions and services to best meet your organizational or project needs.

« Use Amazon Cognito Identity to enable authenticated user access to your browser applications
and websites, including use of third-party authentication from Facebook and others.

« Use Amazon Kinesis to process click streams or other marketing data in real time.

« Use Amazon DynamoDB for serverless data persistence such as individual user preferences for
website visitors or application users.

» Use Amazon Lambda to encapsulate proprietary logic that you can invoke from browser scripts
without downloading and revealing your intellectual property to users.

About the Examples

You can browse the SDK for JavaScript examples in the Amazon Code Example Library.

Common Use Cases 3

https://docs.aws.amazon.com/code-library/latest/ug/javascript_2_code_examples.html

Amazon SDK for JavaScript Developer Guide for SDK v2

Getting Started with the Amazon SDK for JavaScript

The Amazon SDK for JavaScript provides access to web services in either browser scripts or
Node.js. This section has two getting started exercises that show you how to work with the SDK for
JavaScript in each of these JavaScript environments.

Topics

» Getting Started in a Browser Script

» Getting Started in Node.js

Getting Started in a Browser Script

J5

This browser script example shows you:

« How to access Amazon services from a browser script using Amazon Cognito Identity.
« How to turn text into synthesized speech using Amazon Polly.

» How to use a presigner object to create a presigned URL.

The Scenario

Amazon Polly is a cloud service that converts text into lifelike speech. You can use Amazon Polly to
develop applications that increase engagement and accessibility. Amazon Polly supports multiple
languages and includes a variety of lifelike voices. For more information about Amazon Polly, see
the Amazon Polly Developer Guide.

The example shows how to set up and run a simple browser script that takes text you enter, sends
that text to Amazon Polly, and then returns the URL of the synthesized audio of the text for you
to play. The browser script uses Amazon Cognito Identity to provide credentials needed to access
Amazon services. You will see the basic patterns for loading and using the SDK for JavaScript in
browser scripts.

Getting Started in a Browser Script 4

https://docs.amazonaws.cn/polly/latest/dg/

Amazon SDK for JavaScript Developer Guide for SDK v2

® Note

Playback of the synthesized speech in this example depends on running in a browser that
supports HTML 5 audio.

Amazon Cognito

—~
a5 ™~ unauthenticated identities LAM role
request . ~
- i E
~ response y

e ™~ presigned URL to audio stream
Browser script Amazon SDE
for JavaScript

Amazon Polly

The browser script uses the SDK for JavaScript to synthesize text by using these APIs:

« AWS.CognitoIdentityCredentials constructor

« AWS.Polly.Presigner constructor

e getSynthesizeSpeechUrl

Step 1: Create an Amazon Cognito Identity Pool

In this exercise, you create and use an Amazon Cognito identity pool to provide unauthenticated
access to your browser script for the Amazon Polly service. Creating an identity pool also creates
two IAM roles, one to support users authenticated by an identity provider and the other to support
unauthenticated guest users.

In this exercise, we will only work with the unauthenticated user role to keep the task focused. You
can integrate support for an identity provider and authenticated users later. For more information
about adding a Amazon Cognito identity pool, see Tutorial: Creating an identity pool in the Amazon

Cognito Developer Guide.

Step 1: Create an Amazon Cognito Identity Pool 5

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/CognitoIdentityCredentials.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/Polly/Presigner.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/Polly/Presigner.html#getSynthesizeSpeechUrl-property
https://docs.amazonaws.cn/cognito/latest/developerguide/tutorial-create-identity-pool.html

Amazon SDK for JavaScript Developer Guide for SDK v2

To create an Amazon Cognito identity pool

1. Signin to the Amazon Web Services Management Console and open the Amazon Cognito
console at https://console.amazonaws.cn/cognito/.

2. In the left navigation pane, choose Identity pools.

3. Choose Create identity pool.

4. In Configure identity pool trust, choose Guest access for user authentication.

5. In Configure permissions, choose Create a new IAM role and enter a name (for example,
getStartedRole) in the IAM role name.

6. In Configure properties, enter a name (for example, getStartedPool) in Identity pool name.

7. In Review and create, confirm the selections that you made for your new identity pool. Select
Edit to return to the wizard and change any settings. When you're done, select Create identity
pool.

8. Note the Identity pool ID and the Region of the newly created Amazon Cognito identity
pool. You need these values to replace IDENTITY_POOL_ID and REGION in Step 4: Write the
Browser Script.

After you create your Amazon Cognito identity pool, you're ready to add permissions for Amazon
Polly that are needed by your browser script.

Step 2: Add a Policy to the Created IAM Role

To enable browser script access to Amazon Polly for speech synthesis, use the unauthenticated IAM
role created for your Amazon Cognito identity pool. This requires you to add an IAM policy to the
role. For more information about modifying IAM roles, see Modifying a role permissions policy in
the IAM User Guide.

To add an Amazon Polly policy to the IAM role associated with unauthenticated users

1. Signin to the Amazon Web Services Management Console and open the IAM console at
https://console.amazonaws.cn/iam/.

2. In the left navigation pane, choose Roles.

3. Choose the name of the role that you want to modify (for example, getStartedRole), and then
choose the Permissions tab.

4. Choose Add permissions and then choose Attach policies.

Step 2: Add a Policy to the Created IAM Role 6

https://console.amazonaws.cn/cognito/
https://docs.amazonaws.cn/IAM/latest/UserGuide/roles-managingrole-editing-console.html#roles-modify_permissions-policy
https://console.amazonaws.cn/iam/

Amazon SDK for JavaScript Developer Guide for SDK v2

5. In the Add permissions page for this role, find and then select the check box for
AmazonPollyReadOnly.

(® Note

You can use this process to enable access to any Amazon service.

6. Choose Add permissions.

After you create your Amazon Cognito identity pool and add permissions for Amazon Polly to your
IAM role for unauthenticated users, you are ready to build the webpage and browser script.

Step 3: Create the HTML Page

The sample app consists of a single HTML page that contains the user interface and browser script.
To begin, create an HTML document and copy the following contents into it. The page includes an

input field and button, an <audio> element to play the synthesized speech, and a <p> element to
display messages. (Note that the full example is shown at the bottom of this page.)

For more information on the <audio> element, see audio.

<IDOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Amazon SDK for JavaScript - Browser Getting Started Application</title>
</head>

<body>
<div id="textToSynth">
<input autofocus size="23" type="text" id="textEntry" value="It's very good to
meet you."/>
<button class="btn default" onClick="speakText()">Synthesize</button>
<p id="result">Enter text above then click Synthesize</p>
</div>
<audio id="audioPlayback" controls>
<source id="audioSource" type="audio/mp3" src="">
</audio>
<!-- (script elements go here) -->
</body>
</html>

Step 3: Create the HTML Page 7

https://www.w3schools.com/tags/tag_audio.asp

Amazon SDK for JavaScript Developer Guide for SDK v2

Save the HTML file, naming it polly.html. After you have created the user interface for the
application, you're ready to add the browser script code that runs the application.

Step 4: Write the Browser Script

The first thing to do when creating the browser script is to include the SDK for JavaScript

by adding a <script> element after the <audio> element in the page. To find the current
SDK_VERSION_NUMBER, see the APl Reference for the SDK for JavaScript at Amazon SDK for
JavaScript API Reference Guide.

<script src="https://sdk.amazonaws.com/js/aws-sdk-SDK_VERSION_NUMBER.min.js"></script>

Then add a new <script type="text/javascript"> element after the SDK entry. You'll add
the browser script to this element. Set the Amazon Region and credentials for the SDK. Next, create
a function named speakText () that will be invoked as an event handler by the button.

To synthesize speech with Amazon Polly, you must provide a variety of parameters including the
sound format of the output, the sampling rate, the ID of the voice to use, and the text to play back.
When you initially create the parameters, set the Text: parameter to an empty string; the Text:
parameter will be set to the value you retrieve from the <input> element in the webpage. Replace
IDENTITY_POOL_ID and REGION in the following code with values noted in Step 1: Create an
Amazon Cognito Identity Pool.

<script type="text/javascript">

// Initialize the Amazon Cognito credentials provider

AWS.config.region = 'REGION';

AWS.config.credentials = new AWS.CognitoIdentityCredentials({IdentityPoolId:
"IDENTITY_POOL_ID'});

// Function invoked by button click
function speakText() {
// Create the JSON parameters for getSynthesizeSpeechUrl
var speechParams = {
OutputFormat: "mp3",
SampleRate: "16000",
Text: "",
TextType: "text",
VoiceIld: "Matthew"
};

Step 4: Write the Browser Script 8

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/

Amazon SDK for JavaScript Developer Guide for SDK v2

speechParams.Text = document.getElementById("textEntry").value;

Amazon Polly returns synthesized speech as an audio stream. The easiest way to play that audio in
a browser is to have Amazon Polly make the audio available at a presigned URL you can then set as
the sxc attribute of the <audio> element in the webpage.

Create a new AWS.Polly service object. Then create the AWS.Polly.Presigner object you'll use
to create the presigned URL from which the synthesized speech audio can be retrieved. You must
pass the speech parameters that you defined as well as the AWS . Polly service object that you
created to the AWS.Polly.Presigner constructor.

After you create the presigner object, call the getSynthesizeSpeechUrl method of that object,
passing the speech parameters. If successful, this method returns the URL of the synthesized
speech, which you then assign to the <audio> element for playback.

// Create the Polly service object and presigner object
var polly = new AWS.Polly({apiVersion: '2016-06-10'3});
var signer = new AWS.Polly.Presigner(speechParams, polly)

// Create presigned URL of synthesized speech file
signer.getSynthesizeSpeechUrl(speechParams, function(error, url) {
if (error) {
document.getElementById('result').innerHTML = error;
} else {
document.getElementById('audioSource').src = url;
document.getElementById('audioPlayback').load();
document.getElementById('result').innerHTML = "Speech ready to play.";
}
3
}

</script>

Step 5: Run the Sample

To run the sample app, load polly.html into a web browser. This is what the browser
presentation should resemble.

Step 5: Run the Sample 9

Amazon SDK for JavaScript Developer Guide for SDK v2

It's very good to meet you. Synthesize

Enter text above then click Synthesize

b @ s =00:00

Enter a phrase you want turned to speech in the input box, then choose Synthesize. When the
audio is ready to play, a message appears. Use the audio player controls to hear the synthesized
speech.

Full Sample

Here is the full HTML page with the browser script. It's also available here on GitHub.

<IDOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>AWS SDK for JavaScript - Browser Getting Started Application</title>
</head>

<body>
<div id="textToSynth">
<input autofocus size="23" type="text" id="textEntry" value="It's very good to
meet you."/>
<button class="btn default" onClick="speakText()">Synthesize</button>
<p id="result">Enter text above then click Synthesize</p>
</div>
<audio id="audioPlayback" controls>
<source id="audioSource" type="audio/mp3" src="">
</audio>
<script src="https://sdk.amazonaws.com/js/aws-sdk-2.410.0.min.js"></script>
<script type="text/javascript">

// Initialize the Amazon Cognito credentials provider

AWS.config.region = 'REGION';

AWS.config.credentials = new AWS.CognitoIdentityCredentials({IdentityPoolId:
"IDENTITY_POOL_ID'});

// Function invoked by button click
function speakText() {

Full Sample 10

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code//browserstart/polly.html

Amazon SDK for JavaScript Developer Guide for SDK v2

// Create the JSON parameters for getSynthesizeSpeechUrl
var speechParams = {
QutputFormat: "mp3",
SampleRate: "16000",
Text: "",
TextType: "text",
Voiceld: "Matthew"
i
speechParams.Text = document.getElementById("textEntry").value;

// Create the Polly service object and presigner object
var polly = new AWS.Polly({apiVersion: '2016-06-10'});
var signer = new AWS.Polly.Presigner(speechParams, polly)

// Create presigned URL of synthesized speech file
signer.getSynthesizeSpeechUrl(speechParams, function(error, url) {
if (error) {
document.getElementById('result').innerHTML = error;
} else {
document.getElementById('audioSource').src = url;
document.getElementById('audioPlayback').load();
document.getElementById('result').innerHTML = "Speech ready to play.";
}
18
}
</script>
</body>
</html>

Possible Enhancements

Here are variations on this application you can use to further explore using the SDK for JavaScript
in a browser script.

» Experiment with other sound output formats.

« Add the option to select any of the various voices provided by Amazon Polly.

« Integrate an identity provider like Facebook or Amazon to use with the authenticated IAM role.

Possible Enhancements

11

Amazon SDK for JavaScript Developer Guide for SDK v2

Getting Started in Node.js

nade

This Node.js code example shows:

« How to create the package. json manifest for your project.
« How to install and include the modules that your project uses.

» How to create an Amazon Simple Storage Service (Amazon S3) service object from the AWS.S3
client class.

« How to create an Amazon S3 bucket and upload an object to that bucket.

The Scenario

The example shows how to set up and run a simple Node.js module that creates an Amazon S3
bucket, then adds a text object to it.

Because bucket names in Amazon S3 must be globally unique, this example includes a third-party
Node.js module that generates a unique ID value that you can incorporate into the bucket name.
This additional module is named uuid.

Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

» Create a working directory for developing your Node.js module. Name this directory
awsnodesample. Note that the directory must be created in a location that can be updated by
applications. For example, in Windows, do not create the directory under "C:\Program Files".

« Install Node.js. For more information, see the Node.js website. You can find downloads of the
current and LTS versions of Node.js for a variety of operating systems at https://nodejs.org/en/

download/current/.

Contents

» Step 1: Install the SDK and Dependencies

Getting Started in Node.js 12

https://nodejs.org
https://nodejs.org/en/download/current/
https://nodejs.org/en/download/current/

Amazon SDK for JavaScript Developer Guide for SDK v2

» Step 2: Configure Your Credentials

o Step 3: Create the Package JSON for the Project

o Step 4: Write the Node.js Code

» Step 5: Run the Sample

Step 1: Install the SDK and Dependencies

You install the SDK for JavaScript package using npm (the Node.js package manager).

From the awsnodesample directory in the package, type the following at the command line.

npm install aws-sdk

This command installs the SDK for JavaScript in your project, and updates package. json to list
the SDK as a project dependency. You can find information about this package by searching for
"aws-sdk" on the npm website.

Next, install the uuid module to the project by typing the following at the command line, which
installs the module and updates package. json. For more information about uuid, see the
module's page at https://www.npmjs.com/package/uuid.

npm install uuid

These packages and their associated code are installed in the node_modules subdirectory of your
project.

For more information on installing Node.js packages, see Downloading and installing packages

locally and Creating Node.js Modules on the npm (Node.js package manager) website. For

information about downloading and installing the Amazon SDK for JavaScript, see Installing the
SDK for JavaScript.

Step 2: Configure Your Credentials

You need to provide credentials to Amazon so that only your account and its resources are
accessed by the SDK. For more information about obtaining your account credentials, see SDK
authentication with Amazon.

Step 1: Install the SDK and Dependencies 13

https://www.npmjs.com
https://www.npmjs.com
https://www.npmjs.com/package/uuid
https://docs.npmjs.com/getting-started/installing-npm-packages-locally
https://docs.npmjs.com/getting-started/installing-npm-packages-locally
https://docs.npmjs.com/getting-started/creating-node-modules
https://www.npmjs.com

Amazon SDK for JavaScript Developer Guide for SDK v2

To hold this information, we recommend you create a shared credentials file. To learn how, see
Loading Credentials in Node.js from the Shared Credentials File. Your credentials file should

resemble the following example.

[default]
aws_access_key_id = YOUR_ACCESS_KEY_ID
aws_secret_access_key = YOUR_SECRET_ACCESS_KEY

You can determine whether you have set your credentials correctly by executing the following code
with Node.js:

var AWS = require("aws-sdk");

AWS.config.getCredentials(function(err) {
if (err) console.log(err.stack);
// credentials not loaded
else {
console.log("Access key:", AWS.config.credentials.accessKeyId);
}
18

Similarly, if you have set your region correctly in your config file, you can display that value by
setting the AWS_SDK_LOAD_CONFIG environment variable to any value and using the following
code:

var AWS = require("aws-sdk");

console.log("Region: ", AWS.config.region);

Step 3: Create the Package JSON for the Project

After you create the awsnodesample project directory, you create and add a package. json file
for holding the metadata for your Node.js project. For details about using package.jsonina
Node.js project, see Creating a package.json file.

In the project directory, create a new file named package. json. Then add this JSON to the file.

{
"dependencies": {3},
"name": "aws-nodejs-sample",

Step 3: Create the Package JSON for the Project 14

https://docs.npmjs.com/creating-a-package-json-file

Amazon SDK for JavaScript Developer Guide for SDK v2

"description": "A simple Node.js application illustrating usage of the SDK for
JavaScript.",

"version": "1.0.1",

"main": "sample.js",

"devDependencies": {3},

"scripts": {

"test": "echo \"Error: no test specified\" && exit 1"

.

"author": "NAME",

"license": "ISC"

Save the file. As you install the modules you need, the dependencies portion of the file will be
completed. You can find a JSON file that shows an example of these dependencies here on GitHub.

Step 4: Write the Node.js Code

Create a new file named sample. js to contain the example code. Begin by adding the require
function calls to include the SDK for JavaScript and uuid modules so that they are available for
you to use.

Build a unique bucket name that is used to create an Amazon S3 bucket by appending a unique ID
value to a recognizable prefix, in this case 'node-sdk-sample-". You generate the unique ID by
calling the uuid module. Then create a name for the Key parameter used to upload an object to
the bucket.

Create a promise object to call the createBucket method of the AWS.S3 service object. On a
successful response, create the parameters needed to upload text to the newly created bucket.
Using another promise, call the putObject method to upload the text object to the bucket.

// Load the SDK and UUID
var AWS = require("aws-sdk");
var uuid = require("uuid");

// Create unique bucket name

var bucketName = "node-sdk-sample-" + uuid.v4();
// Create name for uploaded object key

var keyName = "hello_world.txt";

// Create a promise on S3 service object
var bucketPromise = new AWS.S3({ apiVersion: "2006-03-01" })

Step 4: Write the Node.js Code 15

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/nodegetstarted/example_package.json

Amazon SDK for JavaScript

Developer Guide for SDK v2

.createBucket({ Bucket: bucketName })
.promise();

// Handle promise fulfilled/rejected states
bucketPromise
.then(function (data) {
// Create params for putObject call
var objectParams = {
Bucket: bucketName,
Key: keyName,
Body: "Hello World!",
i
// Create object upload promise
var uploadPromise = new AWS.S3({ apiVersion: "2006-03-01" })
.putObject(objectParams)
.promise();
uploadPromise.then(function (data) {
console.log(
"Successfully uploaded data to " + bucketName + "/" + keyName
I
1);
1)
.catch(function (err) {
console.error(err, err.stack);

1)

This sample code can be found here on GitHub.

Step 5: Run the Sample

Type the following command to run the sample.

node sample.js

If the upload is successful, you'll see a confirmation message at the command line. You can also

find the bucket and the uploaded text object in the Amazon S3 console.

Step 5: Run the Sample

16

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/nodegetstarted/sample.js
https://console.amazonaws.cn/s3/

Amazon SDK for JavaScript Developer Guide for SDK v2

Setting Up the SDK for JavaScript

The topics in this section explain how to install the SDK for JavaScript for use in web browsers and
with Node.js. It also shows how to load the SDK so you can access the web services supported by
the SDK.

(@ Note

React Native developers should use Amazon Amplify to create new projects on Amazon.
See the aws-sdk-react-native archive for details.

Topics

« Prerequisites
« Installing the SDK for JavaScript

» Loading the SDK for JavaScript

» Upgrading the SDK for JavaScript from Version 1

Prerequisites

Before you use the Amazon SDK for JavaScript, determine whether your code needs to run in
Node.js or web browsers. After that, do the following:

» For Node.js, install Node.js on your servers if it is not already installed.

» For web browsers, identify the browser versions you need to support.

Topics

» Setting Up an Amazon Node.js Environment

» Web Browsers Supported

Setting Up an Amazon Node.js Environment

To set up an Amazon Node.js environment in which you can run your application, use any of the
following methods:

Prerequisites 17

https://github.com/amazon-archives/aws-sdk-react-native

Amazon SDK for JavaScript Developer Guide for SDK v2

Choose an Amazon Machine Image (AMI) with Node.js pre-installed and create an Amazon EC2
instance using that AMI. When creating your Amazon EC2 instance, choose your AMI from the
Amazon Web Services Marketplace. Search the Amazon Web Services Marketplace for Node.js
and choose an AMI option that includes a version of Node.js (32-bit or 64-bit) pre-installed.

Create an Amazon EC2 instance and install Node.js on it. For more information about how to
install Node.js on an Amazon Linux instance, see Tutorial: Setting Up Node.js on an Amazon EC2

Instance.

Create a serverless environment using Amazon Lambda to run Node.js as a Lambda function.
For more information about using Node.js within a Lambda function, see Programming Model
(Node.js) in the Amazon Lambda Developer Guide.

Deploy your Node.js application to Amazon Elastic Beanstalk. For more information on using
Node.js with Elastic Beanstalk, see Deploying Node.js Applications to Amazon Elastic Beanstalk in

the Amazon Elastic Beanstalk Developer Guide.

Web Browsers Supported

The SDK for JavaScript supports all modern web browsers, including these minimum versions:

Browser Version
Google Chrome 28.0+
Mozilla Firefox 26.0+
Opera 17.0+
Microsoft Edge 25.10+
Windows Internet Explorer N/A
Apple Safari 5+
Android Browser 4.3+

Web Browsers Supported 18

https://docs.amazonaws.cn/lambda/latest/dg/programming-model.html
https://docs.amazonaws.cn/lambda/latest/dg/programming-model.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/create_deploy_nodejs.html

Amazon SDK for JavaScript Developer Guide for SDK v2

® Note

Frameworks such as Amazon Amplify might not offer the same browser support as the SDK
for JavaScript. Check a framework's documentation for details.

Installing the SDK for JavaScript

Whether and how you install the Amazon SDK for JavaScript depends whether the code executes in
Node.js modules or browser scripts.

Not all services are immediately available in the SDK. To find out which services are currently
supported by the Amazon SDK for JavaScript, see https://github.com/aws/aws-sdk-js/blob/
master/SERVICES.md

Node

The preferred way to install the Amazon SDK for JavaScript for Node.js is to use npm, the
Node.js package manager. To do so, type this at the command line.

npm install aws-sdk

In the event you see this error message:

npm WARN deprecated node-uuid@l.4.8: Use uuid module instead

Type these commands at the command line:

npm uninstall --save node-uuid
npm install --save uuid

Browser

You don't have to install the SDK to use it in browser scripts. You can load the hosted SDK
package directly from Amazon Web Services with a script in your HTML pages. The hosted SDK
package supports the subset of Amazon services that enforce cross-origin resource sharing
(CORS). For more information, see Loading the SDK for JavaScript.

You can create a custom build of the SDK in which you select the specific web services
and versions that you want to use. You then download your custom SDK package for local

Installing the SDK 19

https://github.com/aws/aws-sdk-js/blob/master/SERVICES.md
https://github.com/aws/aws-sdk-js/blob/master/SERVICES.md
https://www.npmjs.com/
https://www.npmjs.com/

Amazon SDK for JavaScript Developer Guide for SDK v2

development and host it for your application to use. For more information about creating a
custom build of the SDK, see Building the SDK for Browsers.

You can download minified and non-minified distributable versions of the current Amazon SDK
for JavaScript from GitHub at:

https://github.com/aws/aws-sdk-js/tree/master/dist

Installing Using Bower

Bower is a package manager for the web. After you install Bower, you can use it to install the SDK.
To install the SDK using Bower, type the following into a terminal window:

bower install aws-sdk-js

Loading the SDK for JavaScript

How you load the SDK for JavaScript depends on whether you are loading it to run in a web
browser or in Node.js.

Not all services are immediately available in the SDK. To find out which services are currently
supported by the Amazon SDK for JavaScript, see https://github.com/aws/aws-sdk-js/blob/
master/SERVICES.md

Node.js

After you install the SDK, you can load the Amazon package in your node application using
require.

var AWS = require('aws-sdk');

React Native

To use the SDK in a React Native project, first install the SDK using npm:

npm install aws-sdk

In your application, reference the React Native compatible version of the SDK with the following
code:

Installing Using Bower 20

https://github.com/aws/aws-sdk-js/tree/master/dist
https://bower.io
https://github.com/aws/aws-sdk-js/blob/master/SERVICES.md
https://github.com/aws/aws-sdk-js/blob/master/SERVICES.md

Amazon SDK for JavaScript Developer Guide for SDK v2

var AWS = require('aws-sdk/dist/aws-sdk-react-native');

Browser

The quickest way to get started with the SDK is to load the hosted SDK package directly
from Amazon Web Services. To do this, add a <script> element to your HTML pages in the
following form:

<script src="https://sdk.amazonaws.com/js/aws-sdk-SDK_VERSION_NUMBER.min.js"></
script>

To find the current SDK_VERSION_NUMBER, see the APl Reference for the SDK for JavaScript at
Amazon SDK for JavaScript APl Reference Guide.

After the SDK loads in your page, the SDK is available from the global variable AWS (or
window.AWS).

If you bundle your code and module dependencies using browserify, you load the SDK using
require, just as you do in Node.js.

Upgrading the SDK for JavaScript from Version 1
The following notes help you upgrade the SDK for JavaScript from version 1 to version 2.

Automatic Conversion of Base64 and Timestamp Types on Input/
Output

The SDK now automatically encodes and decodes base64-encoded values, as well as timestamp
values, on the user's behalf. This change affects any operation where base64 or timestamp values
were sent by a request or returned in a response that allows for base64-encoded values.

User code that previously converted base64 is no longer required. Values encoded as base64 are
now returned as buffer objects from server responses and can also be passed as buffer input. For
example, the following version 1 SQS. sendMessage parameters:

var params = {
MessageBody: 'Some Message',
MessageAttributes: {
attrName: {

Upgrading From Version 1 21

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/
http://browserify.org

Amazon SDK for JavaScript Developer Guide for SDK v2

DataType: 'Binary',
BinaryValue: new Buffer('example text').toString('base64')

};
Can be rewritten as follows.

var params = {
MessageBody: 'Some Message',
MessageAttributes: {
attrName: {
DataType: 'Binary',
BinaryValue: 'example text'

};
Here is how the message is read.

sqs.receiveMessage(params, function(err, data) {
// buf is <Buffer 65 78 61 6d 70 6¢c 65 20 74 65 78 74>
var buf = data.Messages[0@].MessageAttributes.attrName.BinaryValue;
console.log(buf.toString()); // "example text"

)i

Moved response.data.Requestld to response.requestid

The SDK now stores request IDs for all services in a consistent place on the response object,
rather than inside the response.data property. This improves consistency across services
that expose request IDs in different ways. This is also a breaking change that renames the
response.data.RequestId property to response.requestId (this.requestIdinside a
callback function).

In your code, change the following:

svc.operation(params, function (err, data) {
console.log('Request ID:', data.RequestId);

1)

To the following:

Moved response.data.Requestld to response.requestid 22

Amazon SDK for JavaScript Developer Guide for SDK v2

svc.operation(params, function () {
console.log('Request ID:', this.requestId);
1);

Exposed Wrapper Elements

If you use AWS.ElastiCache, AWS.RDS, or AWS.Redshift, you must access the response
through the top-level output property in the response for some operations.

For example, the RDS.describeEngineDefaultParameters method used to return the
following.

{ Parameters: [...] }

It now returns the following.

{ EngineDefaults: { Parameters: [... 1 } }

The list of affected operations for each service are shown in the following table.

Client Class Operations

AWS.ElastiCache authorizeCacheSecurityGroup
Ingress
createCacheCluster

createCacheParameterGroup
createCacheSecurityGroup
createCacheSubnetGroup
createReplicationGroup
deleteCacheCluster
deleteReplicationGroup

describeEngineDefaultParameters

Exposed Wrapper Elements 23

Amazon SDK for JavaScript

Developer Guide for SDK v2

Client Class

Operations

modifyCacheCluster
modifyCacheSubnetGroup
modifyReplicationGroup

purchaseReservedCacheNodesO
ffering

rebootCacheCluster

revokeCacheSecurityGroupIngress

Exposed Wrapper Elements

24

Amazon SDK for JavaScript

Developer Guide for SDK v2

Client Class

AWS .RDS

Operations

addSourceldentifierToSubscr
iption

authorizeDBSecurityGroupIngress
copyDBSnapshot createDBInstance
createDBInstanceReadReplica
createDBParameterGroup
createDBSecurityGroup
createDBSnapshot
createDBSubnetGroup
createEventSubscription
createOptionGroup
deleteDBInstance
deleteDBSnapshot
deleteEventSubscription
describeEngineDefaultParameters
modifyDBInstance
modifyDBSubnetGroup
modifyEventSubscription
modifyOptionGroup

promoteReadReplica

Exposed Wrapper Elements

25

Amazon SDK for JavaScript Developer Guide for SDK v2

Client Class Operations

purchaseReservedDBInstances
Offering

rebootDBInstance

removeSourceldentifierFromS
ubscription

restoreDBInstanceFromDBSnapshot
restoreDBInstanceToPointInTime

revokeDBSecurityGroupIngress

Exposed Wrapper Elements 26

Amazon SDK for JavaScript

Developer Guide for SDK v2

Client Class

AWS .Redshift

Operations

authorizeClusterSecurityGro
upIngress

authorizeSnapshotAccess
copyClusterSnapshot
createCluster
createClusterParameterGroup
createClusterSecurityGroup
createClusterSnapshot
createClusterSubnetGroup
createEventSubscription
createHsmClientCertificate
createHsmConfiguration
deleteCluster
deleteClusterSnapshot
describeDefaultClusterParameters
disableSnapshotCopy
enableSnapshotCopy
modifyCluster
modifyClusterSubnetGroup

modifyEventSubscription

Exposed Wrapper Elements

27

Amazon SDK for JavaScript Developer Guide for SDK v2

Client Class Operations

modifySnapshotCopyRetention
Period

purchaseReservedNodeOffering
rebootCluster
restoreFromClusterSnapshot

revokeClusterSecurityGroupl
ngress

revokeSnapshotAccess

rotateEncryptionKey

Dropped Client Properties

The .Client and .client properties have been removed from service objects. If you use the
.Client property on a service class or a .client property on a service object instance, remove
these properties from your code.

The following code used with version 1 of the SDK for JavaScript:

var sts = new AWS.STS.Client();

// or
var sts = new AWS.STS();

sts.client.operation(...);

Should be changed to the following code.

var sts = new AWS.STS();
sts.operation(...)

Dropped Client Properties 28

Amazon SDK for JavaScript

Developer Guide for SDK v2

Configuring the SDK for JavaScript

Before you use the SDK for JavaScript to invoke web services using the API, you must configure the
SDK. At a minimum, you must configure these settings:

« The Region in which you will request services.

» The credentials that authorize your access to SDK resources.

In addition to these settings, you may also have to configure permissions for your Amazon
resources. For example, you can limit access to an Amazon S3 bucket or restrict an Amazon

DynamoDB table for read-only access.

The Amazon SDKs and Tools Reference Guide also contains settings, features, and other
foundational concepts common among many of the Amazon SDKs.

The topics in this section describe various ways to configure the SDK for JavaScript for Node.js and

JavaScript running in a web browser.

Topics

Using the Global Configuration Object

Setting the Amazon Region

Specifying Custom Endpoints

SDK authentication with Amazon

Setting Credentials

Locking API Versions

Node.js Considerations

Browser Script Considerations

Bundling Applications with Webpack

Using the Global Configuration Object

There are two ways to configure the SDK:

Set the global configuration using AWS. Config.

Using the Global Configuration Object

29

https://docs.amazonaws.cn/sdkref/latest/guide/

Amazon SDK for JavaScript

Developer Guide for SDK v2

» Pass extra configuration information to a service object.

Setting global configuration with AWS . Config is often easier to get started, but service-level
configuration can provide more control over individual services. The global configuration specified
by AWS . Config provides default settings for service objects that you create subsequently,

simplifying their configuration. However, you can update the configuration of individual service

objects when your needs vary from the global configuration.

Setting Global Configuration

After you load the aws-sdk package in your code you can use the AWS global variable to access

the SDK's classes and interact with individual services. The SDK includes a global configuration

object, AWS.Config, that you can use to specify the SDK configuration settings required by your

application.

Configure the SDK by setting AWS . Config properties according to your application needs. The
following table summarizes AWS . Config properties commonly used to set the configuration of

the SDK.

Configuration Options

credentials

region

maxRetries

logger

update

Description

Required. Specifies the credentials used to
determine access to services and resources.

Required. Specifies the Region in which
requests for services are made.

Optional. Specifies the maximum number of
times a given request is retried.

Optional. Specifies a logger object to which
debugging information is written.

Optional. Updates the current configuration
with new values.

For more information about the configuration object, see Class: AWS.Config inthe API

Reference.

Setting Global Configuration

30

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/Config.html

Amazon SDK for JavaScript Developer Guide for SDK v2

Global Configuration Examples

You must set the Region and the credentials in AWS.Config. You can set these properties as part
of the AWS . Config constructor, as shown in the following browser script example:

var myCredentials = new
AWS.CognitoIdentityCredentials({IdentityPoolId:'IDENTITY_POOL_ID'});
var myConfig = new AWS.Config({

credentials: myCredentials, region: 'us-west-2'

1)

You can also set these properties after creating AWS . Config using the update method, as shown
in the following example that updates the Region:

myConfig = new AWS.Config();
myConfig.update({region: 'us-east-1'});

You can get your default credentials by calling the static getCredentials method of
AWS . config:

var AWS = require("aws-sdk");

AWS.config.getCredentials(function(err) {
if (err) console.log(err.stack);
// credentials not loaded
else {
console.log("Access key:", AWS.config.credentials.accessKeyId);
}
)8

Similarly, if you have set your region correctly in your config file, you get that value by setting the
AWS_SDK_LOAD_CONFIG environment variable is set to any value and calling the static region
property of AWS. config:

var AWS = require("aws-sdk");

console.log("Region: ", AWS.config.region);

Setting Global Configuration 31

Amazon SDK for JavaScript Developer Guide for SDK v2

Setting Configuration Per Service

Each service that you use in the SDK for JavaScript is accessed through a service object that is part
of the API for that service. For example, to access the Amazon S3 service you create the Amazon
S3 service object. You can specify configuration settings that are specific to a service as part of
the constructor for that service object. When you set configuration values on a service object, the
constructor takes all of the configuration values used by AWS . Config, including credentials.

For example, if you need to access Amazon EC2 objects in multiple Regions, create an Amazon
EC2 service object for each Region and then set the Region configuration of each service object
accordingly.

var ec2_regionA = new AWS.EC2({region: 'ap-southeast-2', maxRetries: 15, apiVersion:
'2014-10-01"'3%});

var ec2_regionB = new AWS.EC2({region: 'us-east-1', maxRetries: 15, apiVersion:
'2014-10-01"'3%});

You can also set configuration values specific to a service when configuring the SDK with
AWS . Config. The global configuration object supports many service-specific configuration
options. For more information about service-specific configuration, see Class: AWS.Configin

the Amazon SDK for JavaScript APl Reference.

Immutable Configuration Data

Global configuration changes apply to requests for all newly created service objects. Newly
created service objects are configured with the current global configuration data first and then any
local configuration options. Updates you make to the global AWS . config object don't apply to
previously created service objects.

Existing service objects must be manually updated with new configuration data or you must create
and use a new service object that has the new configuration data. The following example creates a
new Amazon S3 service object with new configuration data:

s3 = new AWS.S3(s3.config);

Setting the Amazon Region

A Region is a named set of Amazon resources in the same geographical area. An example of
a Region is us-east-1, which is the US East (N. Virginia) Region. You specify a Region when

Setting Configuration Per Service 32

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/Config.html

Amazon SDK for JavaScript Developer Guide for SDK v2

configuring the SDK for JavaScript so that the SDK accesses the resources in that Region. Some
services are available only in specific Regions.

The SDK for JavaScript doesn't select a Region by default. However, you can set the Region using
an environment variable, a shared config file, or the global configuration object.

In a Client Class Constructor

When you instantiate a service object, you can specify the Region for that resource as part of the
client class constructor, as shown here.

var s3 = new AWS.S3({apiVersion: '2006-03-01', region: 'us-east-1'});

Using the Global Configuration Object

To set the Region in your JavaScript code, update the AWS.Config global configuration object as
shown here.

AWS.config.update({region: 'us-east-1'});

For more information about current Regions and available services in each Region, see Amazon
Regions and Endpoints in the Amazon Web Services General Reference.

Using an Environment Variable

You can set the Region using the AWS_REGION environment variable. If you define this variable, the
SDK for JavaScript reads it and uses it.

Using a Shared Config File

Much like the shared credentials file lets you store credentials for use by the SDK, you can keep
your Region and other configuration settings in a shared file named config that is used by SDKs.
If the AWS_SDK_LOAD_CONFIG environment variable has been set to any value, the SDK for
JavaScript automatically searches for a config file when it loads. Where you save the config file
depends on your operating system:

 Linux, macOS, or Unix users: ~/.aws/config

« Windows users: C:\Users\USER_NAME\.aws\config

In a Client Class Constructor 33

https://docs.amazonaws.cn/general/latest/gr/rande.html
https://docs.amazonaws.cn/general/latest/gr/rande.html

Amazon SDK for JavaScript Developer Guide for SDK v2

If you don't already have a shared config file, you can create one in the designated directory. In
the following example, the config file sets both the Region and the output format.

[default]
region=us-east-1
output=json

For more information about using shared config and credentials files, see Loading Credentials
in Node.js from the Shared Credentials File or Configuration and Credential Files in the Amazon
Command Line Interface User Guide.

Order of Precedence for Setting the Region

The order of precedence for Region setting is as follows:

If a Region is passed to a client class constructor, that Region is used. If not, then...

If a Region is set on the global configuration object, that Region is used. If not, then...
o If the AWS_REGION environment variable is a truthy value, that Region is used. If not, then...
« If the AMAZON_REGION environment variable is a truthy value, that Region is used. If not, then...

 If the AWS_SDK_LOAD_CONFIG environment variable is set to any value and
the shared credentials file (~/.aws/credentials or the path indicated by
AWS_SHARED_CREDENTIALS_FILE) contains a Region for the configured profile, that Region is
used. If not, then...

 If the AWS_SDK_LOAD_CONFIG environment variable is set to any value and the config file
(~/.aws/config or the path indicated by AWS_CONFIG_FILE) contains a Region for the
configured profile, that Region is used.

Specifying Custom Endpoints

Calls to APl methods in the SDK for JavaScript are made to service endpoint URIs. By default,
these endpoints are built from the Region you have configured for your code. However, there are
situations in which you need to specify a custom endpoint for your API calls.

Endpoint String Format

Endpoint values should be a string in the format:

Order of Precedence for Setting the Region 34

https://docs.amazonaws.cn/cli/latest/userguide/cli-config-files.html
https://developer.mozilla.org/en-US/docs/Glossary/Truthy

Amazon SDK for JavaScript Developer Guide for SDK v2

https://{service}.{region}.amazonaws.com

Endpoints for the ap-northeast-3 Region

The ap-northeast-3 Region in Japan is not returned by Region enumeration APIs, such as
EC2.describeRegions. To define endpoints for this Region, follow the format described
previously. So the Amazon EC2 endpoint for this Region would be

ec2.ap-northeast-3.amazonaws.com

Endpoints for MediaConvert

You need to create a custom endpoint to use with MediaConvert. Each customer account is
assigned its own endpoint, which you must use. Here is an example of how to use a custom
endpoint with MediaConvert.

// Create MediaConvert service object using custom endpoint
var mcClient = new AWS.MediaConvert({endpoint: 'https://abcdl234.mediaconvert.us-
west-1.amazonaws.com'});

var getJobParams = {Id: 'job_ID'};
mcClient.getJob(getJobParams, function(err, data)) {
if (err) console.log(err, err.stack); // an error occurred

else console.log(data); // successful response

};

To get your account APl endpoint, see MediaConvert.describeEndpoints in the API

Reference.

Make sure you specify the same Region in your code as the Region in the custom endpoint URI. A
mismatch between the Region setting and the custom endpoint URI can cause API calls to fail.

For more information on MediaConvert, see the AWS .MediaConvert class in the APl Reference or
the AWS Elemental MediaConvert User Guide .

SDK authentication with Amazon

You must establish how your code authenticates with Amazon when developing with Amazon Web
Services services. You can configure programmatic access to Amazon resources in different ways
depending on the environment and the Amazon access available to you.

Endpoints for the ap-northeast-3 Region 35

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/EC2.html#describeRegions-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/MediaConvert.html#describeEndpoints-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/MediaConvert.html
https://docs.amazonaws.cn/mediaconvert/latest/ug/

Amazon SDK for JavaScript Developer Guide for SDK v2

To choose your method of authentication and configure it for the SDK, see Authentication and
access in the Amazon SDKs and Tools Reference Guide.

We recommend that new users who are developing locally and are not given a method of
authentication by their employer should set up Amazon IAM Identity Center. This method includes
installing the Amazon CLI for ease of configuration and for regularly signing in to the Amazon
access portal. If you choose this method, your environment should contain the following elements
after you complete the procedure for IAM Identity Center authentication in the Amazon SDKs and

Tools Reference Guide:

« The Amazon CLI, which you use to start an Amazon access portal session before you run your
application.

« A shared Amazonconfig file having a [default] profile with a set of configuration values that
can be referenced from the SDK. To find the location of this file, see Location of the shared files
in the Amazon SDKs and Tools Reference Guide.

e The shared config file sets the region setting. This sets the default Amazon Web Services
Region that the SDK uses for Amazon requests. This Region is used for SDK service requests that
aren't specified with a Region to use.

» The SDK uses the profile's SSO token provider configuration to acquire credentials before

sending requests to Amazon. The sso_role_name value, which is an IAM role connected to an
IAM Identity Center permission set, allows access to the Amazon Web Services services used in
your application.

The following sample config file shows a default profile set up with SSO token provider
configuration. The profile's sso_session setting refers to the named sso-session section.

The sso-session section contains settings to initiate an Amazon access portal session.

[default]

sso_session = my-sso
sso_account_id = 111122223333
sso_role_name = SampleRole
region = us-east-1

output = json

[sso-session my-sso]

sso_region = us-east-1

sso_start_url = https://provided-domain.awsapps.com/start
sso_registration_scopes = sso:account:access

SDK authentication with Amazon 36

https://docs.amazonaws.cn/sdkref/latest/guide/access.html
https://docs.amazonaws.cn/sdkref/latest/guide/access.html
https://docs.amazonaws.cn/sdkref/latest/guide/access-sso.html
https://docs.amazonaws.cn/sdkref/latest/guide/file-format.html
https://docs.amazonaws.cn/sdkref/latest/guide/file-location.html
https://docs.amazonaws.cn/sdkref/latest/guide/feature-region.html
https://docs.amazonaws.cn/sdkref/latest/guide/feature-sso-credentials.html#feature-sso-credentials-profile
https://docs.amazonaws.cn/sdkref/latest/guide/file-format.html#section-session

Amazon SDK for JavaScript Developer Guide for SDK v2

The SDK for JavaScript does not need additional packages (such as SSO and SSO0IDC) to be added
to your application to use IAM Identity Center authentication.

Start an Amazon access portal session

Before running an application that accesses Amazon Web Services services, you need an active
Amazon access portal session for the SDK to use IAM Identity Center authentication to resolve
credentials. Depending on your configured session lengths, your access will eventually expire and
the SDK will encounter an authentication error. To sign in to the Amazon access portal, run the
following command in the Amazon CLI.

aws sso login

If you followed the guidance and have a default profile setup, you do not need to call the
command with a --profile option. If your SSO token provider configuration is using a named
profile, the command is aws sso login --profile named-profile.

To optionally test if you already have an active session, run the following Amazon CLI command.

aws sts get-caller-identity

If your session is active, the response to this command reports the IAM Identity Center account and
permission set configured in the shared config file.

® Note

If you already have an active Amazon access portal session and run aws sso login, you
will not be required to provide credentials.

The sign-in process might prompt you to allow the Amazon CLI access to your data.
Because the Amazon CLlI is built on top of the SDK for Python, permission messages might
contain variations of the botocore name.

More authentication information

Human users, also known as human identities, are the people, administrators, developers,
operators, and consumers of your applications. They must have an identity to access your Amazon
environments and applications. Human users that are members of your organization - that means
you, the developer - are known as workforce identities.

Start an Amazon access portal session 37

Amazon SDK for JavaScript Developer Guide for SDK v2

Use temporary credentials when accessing Amazon. You can use an identity provider for your
human users to provide federated access to Amazon accounts by assuming roles, which provide
temporary credentials. For centralized access management, we recommend that you use Amazon
IAM Identity Center (IAM Identity Center) to manage access to your accounts and permissions
within those accounts. For more alternatives, see the following:

« To learn more about best practices, see Security best practices in IAM in the /AM User Guide.

» To create short-term Amazon credentials, see Temporary Security Credentials in the IAM User
Guide.

» To learn about other SDK for JavaScript credential providers, see Standardized credential
providers in the Amazon SDKs and Tools Reference Guide.

Setting Credentials

Amazon uses credentials to identify who is calling services and whether access to the requested
resources is allowed.

Whether running in a web browser or in a Node.js server, your JavaScript code must obtain valid
credentials before it can access services through the API. Credentials can be set globally on the
configuration object, using AWS . Config, or per service, by passing credentials directly to a service
object.

There are several ways to set credentials that differ between Node.js and JavaScript in web
browsers. The topics in this section describe how to set credentials in Node.js or web browsers. In
each case, the options are presented in recommended order.

Best Practices for Credentials

Properly setting credentials ensures that your application or browser script can access the services
and resources needed while minimizing exposure to security issues that may impact mission critical
applications or compromise sensitive data.

An important principle to apply when setting credentials is to always grant the least privilege
required for your task. It's more secure to provide minimal permissions on your resources and add
further permissions as needed, rather than provide permissions that exceed the least privilege
and, as a result, be required to fix security issues you might discover later. For example, unless you
have a need to read and write individual resources, such as objects in an Amazon S3 bucket or a
DynamoDB table, set those permissions to read only.

Setting Credentials 38

https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.amazonaws.cn/sdkref/latest/guide/standardized-credentials.html
https://docs.amazonaws.cn/sdkref/latest/guide/standardized-credentials.html

Amazon SDK for JavaScript Developer Guide for SDK v2

For more information on granting the least privilege, see the Grant Least Privilege section of the
Best Practices topic in the IAM User Guide.

/A Warning

While it is possible to do so, we recommend you not hard code credentials inside an
application or browser script. Hard coding credentials poses a risk of exposing sensitive
information.

For more information about how to manage your access keys, see Best Practices for Managing

Amazon Access Keys in the Amazon Web Services General Reference.

Topics

« Setting Credentials in Node.js

» Setting Credentials in a Web Browser

Setting Credentials in Node.js

There are several ways in Node.js to supply your credentials to the SDK. Some of these are more
secure and others afford greater convenience while developing an application. When obtaining
credentials in Node.js, be careful about relying on more than one source such as an environment
variable and a JSON file you load. You can change the permissions under which your code runs
without realizing the change has happened.

Here are the ways you can supply your credentials in order of recommendation:

1. Loaded from Amazon Identity and Access Management (IAM) roles for Amazon EC2
2. Loaded from the shared credentials file (~/.aws/credentials)

3. Loaded from environment variables

4. Loaded from a JSON file on disk

5. Other credential-provider classes provided by the JavaScript SDK

If more than one credential source is available to the SDK, the default precedence of selection is as
follows:

1. Credentials that are explicitly set through the service-client constructor

Setting Credentials in Node.js 39

https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://docs.amazonaws.cn/general/latest/gr/aws-access-keys-best-practices.html
https://docs.amazonaws.cn/general/latest/gr/aws-access-keys-best-practices.html

Amazon SDK for JavaScript Developer Guide for SDK v2

2. Environment variables

3. The shared credentials file

4. Credentials loaded from the ECS credentials provider (if applicable)
5

. Credentials that are obtained by using a credential process specified in the shared Amazon
config file or the shared credentials file. For more information, see the section called

“Credentials using a Configured Credential Process".

6. Credentials loaded from Amazon IAM using the credentials provider of the Amazon EC2 instance
(if configured in the instance metadata)

For more information, see Class: AWS.Credentials and Class:

AWS.CredentialProviderChain in the API reference.

/A Warning

While it is possible to do so, we do not recommend hard-coding your Amazon credentials
in your application. Hard-coding credentials poses a risk of exposing your access key ID and
secret access key.

The topics in this section describe how to load credentials into Node.js.

Topics

» Loading Credentials in Node.js from IAM roles for Amazon EC2

» Loading Credentials for a Node.js Lambda Function

» Loading Credentials in Node.js from the Shared Credentials File

» Loading Credentials in Node.js from Environment Variables

» Loading Credentials in Node.js from a JSON File

» Loading Credentials in Node.js using a Configured Credential Process

Loading Credentials in Node.js from IAM roles for Amazon EC2

If you run your Node.js application on an Amazon EC2 instance, you can leverage IAM roles for
Amazon EC2 to automatically provide credentials to the instance. If you configure your instance to
use IAM roles, the SDK automatically selects the IAM credentials for your application, eliminating
the need to manually provide credentials.

Setting Credentials in Node.js 40

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/Credentials.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/CredentialProviderChain.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/CredentialProviderChain.html

Amazon SDK for JavaScript Developer Guide for SDK v2

For more information on adding IAM roles to an Amazon EC2 instance, see Using IAM roles for

Amazon EC2 instances in the Amazon SDKs and Tools Reference Guide.

Loading Credentials for a Node.js Lambda Function

When you create an Amazon Lambda function, you must create a special IAM role that has
permission to execute the function. This role is called the execution role. When you set up a Lambda
function, you must specify the IAM role you created as the corresponding execution role.

The execution role provides the Lambda function with the credentials it needs to run and to invoke
other web services. As a result, you do not need to provide credentials to the Node.js code you
write within a Lambda function.

For more information about creating a Lambda execution role, see Manage Permissions: Using an

IAM Role (Execution Role) in the Amazon Lambda Developer Guide.

Loading Credentials in Node.js from the Shared Credentials File

You can keep your Amazon credentials data in a shared file used by SDKs and the command line
interface. When the SDK for JavaScript loads, it automatically searches the shared credentials
file, which is named "credentials". Where you keep the shared credentials file depends on your
operating system:

e The shared credentials file on Linux, Unix, and macOS: ~/.aws/credentials

e The shared credentials file on Windows: C:\Users\USER_NAME\ . aws\credentials

If you do not already have a shared credentials file, see SDK authentication with Amazon. Once you
follow those instructions, you should see text similar to the following in the credentials file, where
<YOUR_ACCESS_KEY_ID> is your access key ID and <YOUR_SECRET_ACCESS_KEY> is your secret
access key:

[default]
aws_access_key_id = <YOUR_ACCESS_KEY_ID>
aws_secret_access_key = <YOUR_SECRET_ACCESS_KEY>

For an example showing this file being used, see Getting Started in Node.js.

The [default] section heading specifies a default profile and associated values for credentials.
You can create additional profiles in the same shared configuration file, each with its own

Setting Credentials in Node.js 41

https://docs.amazonaws.cn/sdkref/latest/guide/access-iam-roles-for-ec2.html
https://docs.amazonaws.cn/sdkref/latest/guide/access-iam-roles-for-ec2.html
https://docs.amazonaws.cn/lambda/latest/dg/intro-permission-model.html#lambda-intro-execution-role
https://docs.amazonaws.cn/lambda/latest/dg/intro-permission-model.html#lambda-intro-execution-role

Amazon SDK for JavaScript Developer Guide for SDK v2

credential information. The following example shows a configuration file with the default profile
and two additional profiles:

[default] ; default profile
aws_access_key_id = <DEFAULT_ACCESS_KEY_ID>
aws_secret_access_key = <DEFAULT_SECRET_ACCESS_KEY>

[personal-account] ; personal account profile
aws_access_key_id = <PERSONAL_ACCESS_KEY_ID>
aws_secret_access_key = <PERSONAL_SECRET_ACCESS_KEY>

[work-account] ; work account profile
aws_access_key_id = <WORK_ACCESS_KEY_ID>
aws_secret_access_key = <WORK_SECRET_ACCESS_KEY>

By default, the SDK checks the AWS_PROFILE environment variable to determine which profile
to use. If the AWS_PROFILE variable is not set in your environment, the SDK uses the credentials
for the [default] profile. To use one of the alternate profiles, set or change the value of the
AWS_PROFILE environment variable. For example, given the configuration file shown above, to
use the credentials from the work account, set the AWS_PROFILE environment variable to work-
account (as appropriate for your operating system).

(@ Note

When setting environment variables, be sure to take appropriate actions afterwards
(according to the needs of your operating system) to make the variables available in the
shell or command environment.

After setting the environment variable (if needed), you can run a JavaScript file that uses the SDK,
such as for example, a file named script. js.

$ node script.js

You can also explicitly select the profile used by the SDK, either by setting
process.env.AWS_PROFILE before loading the SDK, or by selecting the credential provider as
shown in the following example:

var credentials = new AWS.SharedIniFileCredentials({profile: 'work-account'});

Setting Credentials in Node.js 42

Amazon SDK for JavaScript Developer Guide for SDK v2

AWS.config.credentials = credentials;

Loading Credentials in Node.js from Environment Variables

The SDK automatically detects Amazon credentials set as variables in your environment and
uses them for SDK requests, eliminating the need to manage credentials in your application. The
environment variables that you set to provide your credentials are:

o AWS_ACCESS_KEY_ID

o AWS_SECRET_ACCESS_KEY

o AWS_SESSION_TOKEN

For more details on setting environment variables, see Environment variables support in the
Amazon SDKs and Tools Reference Guide.

Loading Credentials in Node.js from a JSON File

You can load configuration and credentials from a JSON document on disk using
AWS.config.loadFromPath. The path specified is relative to the current working directory of
your process. For example, to load credentials from a 'config. json' file with the following
content:

{ "accessKeyId": <YOUR_ACCESS_KEY_ID>, "secretAccessKey": <YOUR_SECRET_ACCESS_KEY>,
"region": "us-east-1" }

Then use the following code:

var AWS = require("aws-sdk");
AWS.config.loadFromPath('./config.json');

(@ Note

Loading configuration data from a JSON document resets all existing configuration data.
Add additional configuration data after using this technique. Loading credentials from a
JSON document is not supported in browser scripts.

Setting Credentials in Node.js 43

https://docs.amazonaws.cn/sdkref/latest/guide/environment-variables.html

Amazon SDK for JavaScript Developer Guide for SDK v2

Loading Credentials in Node.js using a Configured Credential Process

You can source credentials by using a method that isn't built into the SDK. To do this, specify

a credential process in the shared Amazon config file or the shared credentials file. If the
AWS_SDK_LOAD_CONFIG environment variable is set to any value, the SDK will prefer the process
specified in the config file over the process specified in the credentials file (if any).

For details about specifying a credential process in the shared Amazon config file or the shared
credentials file, see the Amazon CLI Command Reference, specifically the information about
Sourcing Credentials From External Processes.

For information about using the AWS_SDK_LOAD_CONFIG environment variable, see the section
called “Using a Shared Config File" in this document.

Setting Credentials in a Web Browser

There are several ways to supply your credentials to the SDK from browser scripts. Some of these
are more secure and others afford greater convenience while developing a script. Here are the ways
you can supply your credentials in order of recommendation:

1. Using Amazon Cognito Identity to authenticate users and supply credentials

2. Using web federated identity

3. Hard coded in the script

/A Warning

We do not recommend hard coding your Amazon credentials in your scripts. Hard coding
credentials poses a risk of exposing your access key ID and secret access key.

Topics

» Using Amazon Cognito Identity to Authenticate Users

» Using Web Federated Identity to Authenticate Users

« Web Federated Identity Examples

Setting Credentials in a Web Browser 44

https://docs.amazonaws.cn/cli/latest/topic/config-vars.html#sourcing-credentials-from-external-processes

Amazon SDK for JavaScript Developer Guide for SDK v2

Using Amazon Cognito Identity to Authenticate Users

The recommended way to obtain Amazon credentials for your browser scripts is to use the Amazon
Cognito Identity credentials object, AWS.CognitoIdentityCredentials. Amazon Cognito
enables authentication of users through third-party identity providers.

To use Amazon Cognito Identity, you must first create an identity pool in the Amazon Cognito
console. An identity pool represents the group of identities that your application provides to your
users. The identities given to users uniquely identify each user account. Amazon Cognito identities
are not credentials. They are exchanged for credentials using web identity federation support in
Amazon Security Token Service (Amazon STS).

Amazon Cognito helps you manage the abstraction of identities across multiple identity providers
with the AWS.CognitoIdentityCredentials object. The identity that is loaded is then
exchanged for credentials in Amazon STS.

Configuring the Amazon Cognito Identity Credentials Object

If you have not yet created one, create an identity pool to use with your browser scripts in the
Amazon Cognito console before you configure AWS.CognitoIdentityCredentials. Create and
associate both authenticated and unauthenticated IAM roles for your identity pool.

Unauthenticated users do not have their identity verified, making this role appropriate for

guest users of your app or in cases when it doesn't matter if users have their identities verified.
Authenticated users log in to your application through a third-party identity provider that verifies
their identities. Make sure you scope the permissions of resources appropriately so you don't grant
access to them from unauthenticated users.

After you configure an identity pool with identity providers attached, you can use
AWS.CognitoIdentityCredentials to authenticate users. To configure your application
credentials to use AWS.CognitoIdentityCredentials, set the credentials property of
either AWS . Config or a per-service configuration. The following example uses AWS.Config:

AWS.config.credentials = new AWS.CognitoIdentityCredentials({
IdentityPoolld: 'us-east-1:1699ebc@-7900-4099-b910-2df94f52a030",
Logins: { // optional tokens, used for authenticated login

'graph.facebook.com': 'FBTOKEN',
'www.amazon.com': 'AMAZONTOKEN',
'accounts.google.com': 'GOOGLETOKEN'

Setting Credentials in a Web Browser 45

https://console.amazonaws.cn/cognito

Amazon SDK for JavaScript Developer Guide for SDK v2

1)

The optional Logins property is a map of identity provider names to the identity tokens for those
providers. How you get the token from your identity provider depends on the provider you use. For
example, if Facebook is one of your identity providers, you might use the FB.1login function from
the Facebook SDK to get an identity provider token:

FB.login(function (response) {
if (response.authResponse) { // logged in
AWS.config.credentials = new AWS.CognitoIdentityCredentials({
IdentityPoolld: 'us-east-1:1699ebc@-7900-4099-b910-2df94f52a030",

Logins: {
'graph.facebook.com': response.authResponse.accessToken
}
1)

s3 = new AWS.S3; // we can now create our service object

console.log('You are now logged in.');
} else {
console.log('There was a problem logging you in.');
}
1)

Switching Unauthenticated Users to Authenticated Users

Amazon Cognito supports both authenticated and unauthenticated users. Unauthenticated users
receive access to your resources even if they aren't logged in with any of your identity providers.
This degree of access is useful to display content to users prior to logging in. Each unauthenticated
user has a unique identity in Amazon Cognito even though they have not been individually logged
in and authenticated.

Initially Unauthenticated User

Users typically start with the unauthenticated role, for which you set the credentials property of
your configuration object without a Logins property. In this case, your default configuration might
look like the following:

// set the default config object
var creds = new AWS.CognitoIdentityCredentials({

Setting Credentials in a Web Browser 46

https://developers.facebook.com/docs/facebook-login/web

Amazon SDK for JavaScript Developer Guide for SDK v2

IdentityPoollId: 'us-east-1:1699ebc0-7900-4099-b910-2df94f52a030'
1)

AWS.config.credentials = creds;

Switch to Authenticated User

When an unauthenticated user logs in to an identity provider and you have a token, you can switch
the user from unauthenticated to authenticated by calling a custom function that updates the
credentials object and adds the Logins token:

// Called when an identity provider has a token for a logged in user
function userLoggedIn(providerName, token) {
creds.params.Logins = creds.params.Logins || {};
creds.params.Logins[providerName] = token;

// Expire credentials to refresh them on the next request
creds.expired = true;

}

You can also Create CognitoIdentityCredentials object. If you do, you must reset the
credentials properties of existing service objects you created. Service objects read from the global
configuration only on object initialization.

For more information about the CognitoIdentityCredentials object, see
AWS.CognitoIdentityCredentials in the Amazon SDK for JavaScript APl Reference.

Using Web Federated Identity to Authenticate Users

You can directly configure individual identity providers to access Amazon resources using web
identity federation. Amazon currently supports authenticating users using web identity federation
through several identity providers:

» Login with Amazon

» Facebook Login

» Google Sign-in

You must first register your application with the providers that your application supports. Next,
create an IAM role and set up permissions for it. The 1AM role you create is then used to grant the
permissions you configured for it through the respective identity provider. For example, you can

Setting Credentials in a Web Browser 47

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/CognitoIdentityCredentials.html
https://login.amazon.com
https://www.facebook.com/about/login
https://developers.google.com/identity/

Amazon SDK for JavaScript Developer Guide for SDK v2

set up a role that allows users who logged in through Facebook to have read access to a specific
Amazon S3 bucket you control.

After you have both an IAM role with configured privileges and an application registered with your
chosen identity providers, you can set up the SDK to get credentials for the IAM role using helper
code, as follows:

AWS.config.credentials = new AWS.WebIdentityCredentials({
RoleArn: 'arn:aws:iam::<AWS_ACCOUNT_ID>/:role/<WEB_IDENTITY_ROLE_NAME>"',
ProviderId: 'graph.facebook.com|www.amazon.com', // this is null for Google
WebIdentityToken: ACCESS_TOKEN

1)

The value in the ProviderId parameter depends on the specified identity provider. The value in
the WebIdentityToken parameter is the access token retrieved from a successful login with the
identity provider. For more information on how to configure and retrieve access tokens for each
identity provider, see the documentation for the identity provider.

Step 1: Registering with Identity Providers

To begin, register an application with the identity providers you choose to support. You will be
asked to provide information that identifies your application and possibly its author. This ensures
that the identity providers know who is receiving their user information. In each case, the identity
provider will issue an application ID that you use to configure user roles.

Step 2: Creating an 1AM Role for an Identity Provider

After you obtain the application ID from an identity provider, go to the IAM console at https://
console.amazonaws.cn/iam/ to create a new IAM role.

To create an IAM role for an identity provider

1. Go to the Roles section of the console and then choose Create New Role.

2. Type a name for the new role that helps you keep track of its use, such as
facebookIdentity, and then choose Next Step.

In Select Role Type, choose Role for Identity Provider Access.
4. For Grant access to web identity providers, choose Select.

From the Identity Provider list, choose the identity provider that you want to use for this IAM
role.

Setting Credentials in a Web Browser 48

https://console.amazonaws.cn/iam/
https://console.amazonaws.cn/iam/

Amazon SDK for JavaScript Developer Guide for SDK v2

Identity Provider Facaebook

Application ID

Add Conditions (optiandal)

6. Type the application ID provided by the identity provider in Application ID and then choose
Next Step.

7. Configure permissions for the resources you want to expose, allowing access to specific
operations on specific resources. For more information about IAM permissions, see Overview
of Amazon IAM Permissions in the IJAM User Guide. Review and, if needed, customize the role's
trust relationship, and then choose Next Step.

8. Attach additional policies you need and then choose Next Step. For more information about
IAM policies, see Overview of IAM Policies in the IAM User Guide.

9. Review the new role and then choose Create Role.

You can provide other constraints to the role, such as scoping it to specific user IDs. If the role
grants write permissions to your resources, make sure you correctly scope the role to users with the
correct privileges, otherwise any user with an Amazon, Facebook, or Google identity will be able to
modify resources in your application.

For more information on using web identity federation in IAM, see About Web Identity Federation
in the JAM User Guide.

Step 3: Obtaining a Provider Access Token After Login

Set up the login action for your application by using the identity provider's SDK. You can download
and install a JavaScript SDK from the identity provider that enables user login, using either OAuth
or OpenlID. For information on how to download and set up the SDK code in your application, see
the SDK documentation for your identity provider:

» Login with Amazon

» Facebook Login

» Google Sign-in

Setting Credentials in a Web Browser 49

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_permissions.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_permissions.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_providers_oidc.html
https://login.amazon.com/website
https://developers.facebook.com/docs/javascript
https://developers.google.com/identity/

Amazon SDK for JavaScript Developer Guide for SDK v2

Step 4: Obtaining Temporary Credentials

After your application, roles, and resource permissions are configured, add the code to your
application to obtain temporary credentials. These credentials are provided through the Amazon
Security Token Service using web identity federation. Users log in to the identity provider, which
returns an access token. Set up the AWS .WebIdentityCredentials object using the ARN for the
IAM role you created for this identity provider:

AWS.config.credentials = new AWS.WebIdentityCredentials({
RoleArn: 'arn:aws:iam: :<AWS_ACCOUNT_ID>:role/<WEB_IDENTITY_ROLE_NAME>",
ProviderId: 'graph.facebook.com|www.amazon.com', // Omit this for Google
WebIdentityToken: ACCESS_TOKEN // Access token from identity provider
});

Service objects that are created subsequently will have the proper credentials. Objects created
before setting the AWS.config.credentials property won't have the current credentials.

You can also create AWS .WebIdentityCredentials before retrieving the access token. This
allows you to create service objects that depend on credentials before loading the access token. To
do this, create the credentials object without the WebIdentityToken parameter:

AWS.config.credentials = new AWS.WebIdentityCredentials({
RoleArn: 'arn:aws:iam: :<AWS_ACCOUNT_ID>:role/<WEB_IDENTITY_ROLE_NAME>',
ProviderId: 'graph.facebook.com|www.amazon.com' // Omit this for Google

1)

// Create a service object
var s3 = new AWS.S3;

Then set WebIdentityToken in the callback from the identity provider SDK that contains the
access token:

AWS.config.credentials.params.WebIdentityToken = accessToken;

Web Federated Identity Examples

Here are a few examples of using web federated identity to obtain credentials in browser
JavaScript. These examples must be run from an http:// or https:// host scheme to ensure the
identity provider can redirect to your application.

Setting Credentials in a Web Browser 50

Amazon SDK for JavaScript Developer Guide for SDK v2

Login with Amazon Example

The following code shows how to use Login with Amazon as an identity provider.

<img border="0" alt="Login with Amazon"
src="https://images-na.ssl-images-amazon.com/images/G/01/1wa/
btnLWA_gold_156x32.png"
width="156" height="32" />

<div id="amazon-root"></div>
<script type="text/javascript">
var s3 = null;
var clientId = 'amznl.application-oa2-client.1234567890abcdef'; // client ID
var roleArn = 'arn:aws:iam: :<AWS_ACCOUNT_ID>:role/<WEB_IDENTITY_ROLE_NAME>"';

window.onAmazonLoginReady = function() {
amazon.Login.setClientId(clientId); // set client ID

document.getElementById('login').onclick = function() {
amazon.Login.authorize({scope: 'profile'}, function(response) {
if (!response.error) { // logged in
AWS.config.credentials = new AWS.WebIdentityCredentials({
RoleArn: roleArn,
ProviderId: 'www.amazon.com',
WebIdentityToken: response.access_token

1);
s3 = new AWS.S3();

console.log('You are now logged in.');

} else {
console.log('There was a problem logging you in.');
}
18
};
I
(function(d) {
var a = d.createElement('script'); a.type = 'text/javascript';
a.async = true; a.id = 'amazon-login-sdk';

a.src = 'https://api-cdn.amazon.com/sdk/loginl.js"';
d.getElementById('amazon-root').appendChild(a);
}) (document);

Setting Credentials in a Web Browser 51

Amazon SDK for JavaScript Developer Guide for SDK v2

</script>

Facebook Login Example

The following code shows how to use Facebook Login as an identity provider:

<button id="login">Login</button>

<div id="fb-root"></div>

<script type="text/javascript">

var s3 = null;

var appld = '1234567890'; // Facebook app ID

var roleArn = 'arn:aws:iam: :<AWS_ACCOUNT_ID>:role/<WEB_IDENTITY_ROLE_NAME>"';

window.fbAsyncInit = function() {
// init the FB JS SDK
FB.init({appId: appId});

document.getElementById('login').onclick = function() {
FB.login(function (response) {
if (response.authResponse) { // logged in
AWS.config.credentials = new AWS.WebIdentityCredentials({
RoleArn: roleArn,
ProviderId: 'graph.facebook.com',
WebIdentityToken: response.authResponse.accessToken

1);
s3 = new AWS.S3;

console.log('You are now logged in.');
} else {
console.log('There was a problem logging you in.');
}
18
};
};

// Load the FB JS SDK asynchronously
(function(d, s, id){
var js, fjs = d.getElementsByTagName(s)[0@];
if (d.getElementById(id)) {return;}
js = d.createElement(s); js.id = id;
js.src = "//connect.facebook.net/en_US/all.js";
fjs.parentNode.insertBefore(js, fjs);
}(document, 'script', 'facebook-jssdk'));

Setting Credentials in a Web Browser 52

Amazon SDK for JavaScript Developer Guide for SDK v2

</script>

Google+ Sign-in Example

The following code shows how to use Google+ Sign-in as an identity provider. The access token
used for web identity federation from Google is stored in response.id_token instead of
access_token like other identity providers.

<span
id="login"
class="g-signin"
data-height="short"
data-callback="loginToGoogle"
data-cookiepolicy="single_host_origin"
data-requestvisibleactions="http://schemas.google.com/AddActivity"
data-scope="https://www.googleapis.com/auth/plus.login">

<script type="text/javascript">
var s3 = null;
var clientID = '1234567890.apps.googleusercontent.com'; // Google client ID
var roleArn = 'arn:aws:iam: :<AWS_ACCOUNT_ID>:role/<WEB_IDENTITY_ROLE_NAME>"';

document.getElementById('login').setAttribute('data-clientid', clientID);
function loginToGoogle(response) {
if (!response.error) {
AWS.config.credentials = new AWS.WebIdentityCredentials({
RoleArn: roleArn, WebIdentityToken: response.id_token

1)
s3 = new AWS.S3();

console.log('You are now logged in.');

} else {
console.log('There was a problem logging you in.');
}
}
(function() {
var po = document.createElement('script'); po.type = 'text/javascript'; po.async =
true;

po.src = 'https://apis.google.com/js/client:plusone.js’;
var s = document.getElementsByTagName('script')[@]; s.parentNode.insertBefore(po,

s);

Setting Credentials in a Web Browser 53

Amazon SDK for JavaScript Developer Guide for SDK v2

HO;

</script>

Locking API Versions

Amazon services have API version numbers to keep track of APl compatibility. API versions in
Amazon services are identified by a YYYY-mm-dd formatted date string. For example, the current
API version for Amazon S3 is 2006-03-01.

We recommend locking the API version for a service if you rely on it in production code. This can
isolate your applications from service changes resulting from updates to the SDK. If you don't
specify an API version when creating service objects, the SDK uses the latest API version by default.
This could cause your application to reference an updated API with changes that negatively impact
your application.

To lock the API version that you use for a service, pass the apiVersion parameter when
constructing the service object. In the following example, a newly created AWS . DynamoDB service
object is locked to the 2011-12-@5 API version:

var dynamodb = new AWS.DynamoDB({apiVersion: '2011-12-05'});

You can globally configure a set of service API versions by specifying the apiVersions
parameter in AWS.Config. For example, to set specific versions of the DynamoDB and Amazon
EC2 APIs along with the current Amazon Redshift API, set apiVersions as follows:

AWS.config.apiVersions = {
dynamodb: '2011-12-05',
ec2: '2013-02-01',
redshift: 'latest'

};

Getting API Versions

To get the API version for a service, see the Locking the API Version section on the service's
reference page, such as https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html for

Amazon S3.

Locking API Versions 54

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html

Amazon SDK for JavaScript Developer Guide for SDK v2

Node.js Considerations

Although Node.js code is JavaScript, using the Amazon SDK for JavaScript in Node.js can differ
from using the SDK in browser scripts. Some APl methods work in Node.js but not in browser
scripts, as well as the other way around. And successfully using some APIs depends on your
familiarity with common Node.js coding patterns, such as importing and using other Node.js
modules like the File System (fs) module.

Using Built-In Node.js Modules

Node.js provides a collection of built-in modules you can use without installing them. To use these
modules, create an object with the require method to specify the module name. For example, to
include the built-in HTTP module, use the following.

var http = require('http');

Invoke methods of the module as if they are methods of that object. For example, here is code that
reads an HTML file.

// include File System module
var fs = require('fs');
// Invoke readFile method
fs.readFile('index.html', function(err, data) {
if (err) {
throw err;
} else {
// Successful file read
}
});

For a complete list of all built-in modules that Node.js provides, see Node.js v6.11.1
Documentation on the Node.js website.

Using NPM Packages

In addition to the built-in modules, you can also include and incorporate third-party code from
npm, the Node.js package manager. This is a repository of open source Node.js packages and a
command-line interface for installing those packages. For more information about npm and a list

Node.js Considerations 55

https://nodejs.org/api/modules.html
https://nodejs.org/api/modules.html

Amazon SDK for JavaScript Developer Guide for SDK v2

of currently available packages, see https://www.npmjs.com. You can also learn about additional
Node.js packages you can use here on GitHub.

One example of an npm package you can use with the Amazon SDK for JavaScript is browserify.
For details, see Building the SDK as a Dependency with Browserify. Another example is webpack.

For details, see Bundling Applications with Webpack.

Topics

Configuring maxSockets in Node.js

Reusing Connections with Keep-Alive in Node.js

Configuring Proxies for Node.js

Registering Certificate Bundles in Node.js

Configuring maxSockets in Node.js

In Node.js, you can set the maximum number of connections per origin. If maxSockets is set, the
low-level HTTP client queues requests and assigns them to sockets as they become available.

This lets you set an upper bound on the number of concurrent requests to a given origin at a time.
Lowering this value can reduce the number of throttling or timeout errors received. However, it can
also increase memory usage because requests are queued until a socket becomes available.

The following example shows how to set maxSockets for all service objects you create. This
example allows up to 25 concurrent connections to each service endpoint.

var AWS = require('aws-sdk');

var https = require('https');

var agent = new https.Agent({
maxSockets: 25

1)

AWS.config.update({
httpOptions:{
agent: agent
}
1)

The same can be done per service.

Configuring maxSockets in Node.js 56

https://www.npmjs.com
https://github.com/sindresorhus/awesome-nodejs

Amazon SDK for JavaScript Developer Guide for SDK v2

var AWS = require('aws-sdk');

var https = require('https');

var agent = new https.Agent({
maxSockets: 25

1)

var dynamodb = new AWS.DynamoDB({
apiVersion: '2012-08-10'
httpOptions:{
agent: agent
}
1)

When using the default of https, the SDK takes the maxSockets value from the globalAgent.
If the maxSockets value is not defined or is Infinity, the SDK assumes a maxSockets value of
50.

For more information about setting maxSockets in Node.js, see the Node.js online documentation.

Reusing Connections with Keep-Alive in Node.js

By default, the default Node.js HTTP/HTTPS agent creates a new TCP connection for every new
request. To avoid the cost of establishing a new connection, you can reuse an existing connection.

For short-lived operations, such as DynamoDB queries, the latency overhead of setting up a TCP
connection might be greater than the operation itself. Additionally, since DynamoDB encryption at

rest is integrated with Amazon KMS, you may experience latencies from the database having to re-
establish new Amazon KMS cache entries for each operation.

The easiest way to configure SDK for JavaScript to reuse TCP connections is to set the
AWS_NODEJS_CONNECTION_REUSE_ENABLED environment variable to 1. This feature was added
in the 2.463.0 release.

Alternatively, you can set the keepAlive property of an HTTP or HTTPS agent set to true, as
shown in the following example.

const AWS = require('aws-sdk');

// http or https

const http = require('http');

const agent = new http.Agent({
keepAlive: true,

Reusing Connections with Keep-Alive in Node.js 57

https://nodejs.org/dist/latest-v4.x/docs/api/http.html#http_agent_maxsockets
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/encryption.howitworks.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/encryption.howitworks.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/encryption.howitworks.html
https://github.com/aws/aws-sdk-js/blob/master/CHANGELOG.md#24630

Amazon SDK for JavaScript Developer Guide for SDK v2

// Infinity is read as 50 sockets
maxSockets: Infinity

1)

AWS.config.update({
httpOptions: {
agent
}
1);

The following example shows how to set keepAlive for just a DynamoDB client:

const AWS = require('aws-sdk')

// http or https

const https = require('https');

const agent = new https.Agent({
keepAlive: true

1)

const dynamodb = new AWS.DynamoDB({
httpOptions: {
agent
}
});

If keepAlive is enabled, you can also set the initial delay for TCP Keep-Alive packets with
keepAliveMsecs, which by default is 1000ms. See the Node.js documentation for details.

Configuring Proxies for Node.js

If you can't directly connect to the internet, the SDK for JavaScript supports use of HTTP or HTTPS
proxies through a third-party HTTP agent, such as proxy-agent. To install proxy-agent, type the
following at the command line.

npm install proxy-agent --save

If you decide to use a different proxy, first follow the installation and configuration instructions
for that proxy. To use this or another third-party proxy in your application, you must set the
httpOptions property of AWS.Config to specify the proxy you choose. This example shows
proxy-agent.

Configuring Proxies for Node.js 58

https://nodejs.org/api/http.html
https://github.com/TooTallNate/proxy-agents/tree/main/packages/proxy-agent

Amazon SDK for JavaScript Developer Guide for SDK v2

var AWS = require("aws-sdk");
var ProxyAgent = require('proxy-agent').ProxyAgent;
AWS.config.update({

httpOptions: { agent: new ProxyAgent('http://internal.proxy.com') }
)8

For more information about other proxy libraries, see npm, the Node.js package manager.

Registering Certificate Bundles in Node.js

The default trust stores for Node.js include the certificates needed to access Amazon services. In
some cases, it might be preferable to include only a specific set of certificates.

In this example, a specific certificate on disk is used to create an https.Agent that rejects
connections unless the designated certificate is provided. The newly created https.Agent is then
used to update the SDK configuration.

var fs = require('fs');

var https = require('https');

var certs = [
fs.readFileSync('/path/to/cert.pem')

1;

AWS.config.update({
httpOptions: {
agent: new https.Agent({
rejectUnauthorized: true,
ca: certs
1)
}
1)

Browser Script Considerations

The following topics describe special considerations for using the Amazon SDK for JavaScript in
browser scripts.

Topics

 Building the SDK for Browsers

Registering Certificate Bundles in Node.js 59

https://www.npmjs.com/

Amazon SDK for JavaScript Developer Guide for SDK v2

o Cross-Origin Resource Sharing (CORS)

Building the SDK for Browsers

The SDK for JavaScript is provided as a JavaScript file with support included for a default set of
services. This file is typically loaded into browser scripts using a <script> tag that references
the hosted SDK package. However, you may need support for services other than the default set or
otherwise need to customize the SDK.

If you work with the SDK outside of an environment that enforces CORS in your browser and if
you want access to all services provided by the SDK for JavaScript, you can build a custom copy of
the SDK locally by cloning the repository and running the same build tools that build the default
hosted version of the SDK. The following sections describe the steps to build the SDK with extra
services and API versions.

Topics

» Using the SDK Builder to Build the SDK for JavaScript

» Using the CLI to Build the SDK for JavaScript

» Building Specific Services and API Versions

 Building the SDK as a Dependency with Browserify

Using the SDK Builder to Build the SDK for JavaScript

The easiest way to create your own build of the Amazon SDK for JavaScript is to use the SDK
builder web application at https://sdk.amazonaws.com/builder/js. Use the SDK builder to specify
services, and their API versions, to include in your build.

Choose Select all services or choose Select default services as a starting point from which you can
add or remove services. Choose Development for more readable code or choose Minified to create
a minified build to deploy. After you choose the services and versions to include, choose Build to
build and download your custom SDK.

Using the CLI to Build the SDK for JavaScript

To build the SDK for JavaScript using the Amazon CLI, you first need to clone the Git repository
that contains the SDK source. You must have Git and Node.js installed on your computer.

Building the SDK for Browsers 60

https://sdk.amazonaws.com/builder/js

Amazon SDK for JavaScript Developer Guide for SDK v2

First, clone the repository from GitHub and change directory into the directory:

git clone https://github.com/aws/aws-sdk-js.git
cd aws-sdk-js

After you clone the repository, download the dependency modules for both the SDK and build tool:

npm install

You can now build a packaged version of the SDK.
Building from the Command Line

The builder tool is in dist-tools/browser-builder. js. Run this script by typing:

node dist-tools/browser-builder.js > aws-sdk.js

This command builds the aws-sdk.js file. This file is uncompressed. By default this package includes
only the standard set of services.

Minifying Build Output

To reduce the amount of data on the network, JavaScript files can be compressed through a
process called minification. Minification strips comments, unnecessary spaces, and other characters
that aid in human readability but that do not impact execution of the code. The builder tool

can produce uncompressed or minified output. To minify your build output, set the MINIFY
environment variable:

MINIFY=1 node dist-tools/browser-builder.js > aws-sdk.js

Building Specific Services and API Versions

You can select which services to build into the SDK. To select services, specify the service names,
delimited by commas, as parameters. For example, to build only Amazon S3 and Amazon EC2, use
the following command:

node dist-tools/browser-builder.js s3,ec2 > aws-sdk-s3-ec2.]js

Building the SDK for Browsers 61

Amazon SDK for JavaScript Developer Guide for SDK v2

You can also select specific API versions of the services build by adding the version name after the
service name. For example, to build both API versions of Amazon DynamoDB, use the following
command:

node dist-tools/browser-builder.js dynamodb-2011-12-05,dynamodb-2012-08-10

Service identifiers and API versions are available in the service-specific configuration files at
https://github.com/aws/aws-sdk-js/tree/master/apis.

Building All Services

You can build all services and API versions by including the all parameter:

node dist-tools/browser-builder.js all > aws-sdk-full.js

Building Specific Services

To customize the selected set of services included in the build, pass the AWS_SERVICES
environment variable to the Browserify command that contains the list of services you want. The
following example builds the Amazon EC2, Amazon S3, and DynamoDB services.

$ AWS_SERVICES=ec2,s3,dynamodb browserify index.js > browser-app.js

Building the SDK as a Dependency with Browserify

Node.js has a module-based mechanism for including code and functionality from third-party
developers. This modular approach is not natively supported by JavaScript running in web
browsers. However, with a tool called Browserify, you can use the Node.js module approach and
use modules written for Node.js in the browser. Browserify builds the module dependencies for a
browser script into a single, self-contained JavaScript file that you can use in the browser.

You can build the SDK as a library dependency for any browser script by using Browserify. For
example, the following Node.js code requires the SDK:

var AWS = require('aws-sdk');
var s3 = new AWS.S3();
s3.1listBuckets(function(err, data) { console.log(err, data); });

This example code can be compiled into a browser-compatible version using Browserify:

Building the SDK for Browsers 62

https://github.com/aws/aws-sdk-js/tree/master/apis
https://github.com/aws/aws-sdk-js/tree/master/apis

Amazon SDK for JavaScript Developer Guide for SDK v2

$ browserify index.js > browser-app.js

The application, including its SDK dependencies, is then made available in the browser through
browser-app.js.

For more information about Browserify, see the Browserify website.

Cross-Origin Resource Sharing (CORS)

Cross-origin resource sharing, or CORS, is a security feature of modern web browsers. It enables
web browsers to negotiate which domains can make requests of external websites or services.
CORS is an important consideration when developing browser applications with the Amazon
SDK for JavaScript because most requests to resources are sent to an external domain, such as
the endpoint for a web service. If your JavaScript environment enforces CORS security, you must
configure CORS with the service.

CORS determines whether to allow sharing of resources in a cross-origin request based on:

o The specific domain that makes the request

« The type of HTTP request being made (GET, PUT, POST, DELETE and so on)

How CORS Works

In the simplest case, your browser script makes a GET request for a resource from a server in
another domain. Depending on the CORS configuration of that server, if the request is from a
domain that's authorized to submit GET requests, the cross-origin server responds by returning the
requested resource.

If either the requesting domain or the type of HTTP request is not authorized, the request is
denied. However, CORS makes it possible to preflight the request before actually submitting it.
In this case, a preflight request is made in which the OPTIONS access request operation is sent. If
the cross-origin server's CORS configuration grants access to the requesting domain, the server
sends back a preflight response that lists all the HTTP request types that the requesting domain
can make on the requested resource.

Cross-Origin Resource Sharing (CORS) 63

http://browserify.org/

Amazon SDK for JavaScript Developer Guide for SDK v2

@ Preflight request

GET hitpyfwwraw.axample.com/rascurcse
Accean Requeat: OPTIONS ¢

Origin: httpofwww.yourdomain.com

Allow Origin: httpa/www.yourdomain.com
Request Method: GET, PUT, POST... e
H Raquest
GEr hittpdiwww.example.com/rescurce
— pccess Request: GET —)-
Origin: hittpfwerw. yourdomain.com x

N’ CroSS-0IiGIN
@ Reponse | server

nwuw‘nwhowm

Is CORS Configuration Required

Amazon S3 buckets require CORS configuration before you can perform operations on them.
In some JavaScript environments CORS may not be enforced and therefore configuring CORS
is unnecessary. For example, if you host your application from an Amazon S3 bucket and access

resources from *.s3.amazonaws . com or some other specific endpoint, your requests won't access

an external domain. Therefore, this configuration doesn't require CORS. In this case, CORS is still
used for services other than Amazon S3.

Configuring CORS for an Amazon S3 Bucket

You can configure an Amazon S3 bucket to use CORS in the Amazon S3 console.

1. Inthe Amazon S3 console, choose the bucket you want to edit.

2. Select the Permissions tab, and scoll down to the Cross-origin resource sharing (CORS)
panel.

Cross-Origin Resource Sharing (CORS)

64

Amazon SDK for JavaScript Developer Guide for SDK v2

Cross-origin resource sharing (CORS) Edit

The CORS configuration, written in JSON, defines a way for client web applications that are loaded in one domain to interact with resources in a different domain. Learn more |2',

P

3. Choose Edit, and type your CORS configuration in the CORS Configuration Editor, then
choose Save.

A CORS configuration is an XML file that contains a series of rules within a <CORSRule>. A
configuration can have up to 100 rules. A rule is defined by one of the following tags:

« <AllowedOrigin>, which specifies domain origins that you allow to make cross-domain
requests.

« <AllowedMethod>, which specifies a type of request you allow (GET, PUT, POST, DELETE, HEAD)
in cross-domain requests.

« <AllowedHeader>, which specifies the headers allowed in a preflight request.

For sample configurations, see How Do | Configure CORS on My Bucket? in the Amazon Simple

Storage Service User Guide.

CORS Configuration Example

The following CORS configuration sample allows a user to view, add, remove, or update objects
inside of a bucket from the domain example.oxrg, though it is recommended that you scope the
<AllowedOrigin> to the domain of your website. You can specify "*" to allow any origin.

/A Important
In the new S3 console, the CORS configuration must be JSON.

Cross-Origin Resource Sharing (CORS) 65

https://docs.amazonaws.cn/AmazonS3/latest/userguide/cors.html#how-do-i-enable-cors

Amazon SDK for JavaScript

Developer Guide for SDK v2

XML

<?xml version="1.0" encoding="UTF-8"7?>
<CORSConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
<CORSRule>
<AllowedOrigin>https://example.org</AllowedOrigin>
<AllowedMethod>HEAD</AllowedMethod>
<AllowedMethod>GET</AllowedMethod>
<AllowedMethod>PUT</AllowedMethod>
<AllowedMethod>P0ST</AllowedMethod>
<AllowedMethod>DELETE</AllowedMethod>
<AllowedHeader>*</AllowedHeader>
<ExposeHeader>ETag</ExposeHeader>
<ExposeHeader>x-amz-meta-custom-header</ExposeHeader>
</CORSRule>
</CORSConfiguration>

JSON

"AllowedHeaders": [

i

1,
"AllowedMethods": [

"HEAD",
"GET",
"PUT",
"POST",
"DELETE"
1,
"AllowedOrigins": [
"https://www.example.org"
1,
"ExposeHeaders": [
"ETag",
"Xx-amz-meta-custom-header"]

Cross-Origin Resource Sharing (CORS)

66

Amazon SDK for JavaScript Developer Guide for SDK v2

This configuration does not authorize the user to perform actions on the bucket. It enables the
browser's security model to allow a request to Amazon S3. Permissions must be configured
through bucket permissions or IAM role permissions.

You can use ExposeHeader to let the SDK read response headers returned from Amazon S3. For
example, if you want to read the ETag header from a PUT or multipart upload, you need to include
the ExposeHeader tag in your configuration, as shown in the previous example. The SDK can only
access headers that are exposed through CORS configuration. If you set metadata on the object,
values are returned as headers with the prefix x-amz-meta-, such as x-amz-meta-my-custom-
header, and must also be exposed in the same way.

Bundling Applications with Webpack

Web applications in browser scripts or Node.js use of code modules creates dependencies. These
code modules can have dependencies of their own, resulting in a collection of interconnected
modaules that your application requires to function. To manage dependencies, you can use a
module bundler like webpack.

The webpack module bundler parses your application code, searching for import or require
statements, to create bundles that contain all the assets your application needs so that the assets
can be easily served through a webpage. The SDK for JavaScript can be included in webpack as one
of the dependencies to include in the output bundle.

For more information about webpack, see the webpack module bundler on GitHub.

Installing Webpack

To install the webpack module bundler, you must first have npm, the Node.js package manager,
installed. Type the following command to install the webpack CLI and JavaScript module.

npm install webpack

You may also need to install a webpack plugin that allows it to load JSON files. Type the following
command to install the JSON loader plugin.

npm install json-loader

Bundling with Webpack 67

https://webpack.github.io/

Amazon SDK for JavaScript Developer Guide for SDK v2

Configuring Webpack

By default, webpack searches for a JavaScript file named webpack.config. js in your
project's root directory. This file specifies your configuration options. Here is an example of a
webpack.config. js configuration file.

// Import path for resolving file paths
var path = require('path');
module.exports = {

// Specify the entry point for our app.

entry: [
path.join(__dirname, 'browser.js')
1,
// Specify the output file containing our bundled code
output: {
path: __dirname,
filename: 'bundle.js'
},
module: {
/**

* Tell webpack how to load 'json' files.
* When webpack encounters a 'require()' statement
* where a 'json' file is being imported, it will use
* the json-loader.
*/
loaders: [

{
test: /\.json$/,
loaders: ['json']

In this example, browser. js is specified as the entry point. The entry point is the file webpack
uses to begin searching for imported modules. The file name of the output is specified as

bundle. js. This output file will contain all the JavaScript the application needs to run. If the code
specified in the entry point imports or requires other modules, such as the SDK for JavaScript, that
code is bundled without needing to specify it in the configuration.

The configuration in the json-loader plugin that was installed earlier specifies to webpack how
to import JSON files. By default, webpack only supports JavaScript but uses loaders to add support

Configuring Webpack 68

Amazon SDK for JavaScript Developer Guide for SDK v2

for importing other file types. Because the SDK for JavaScript makes extensive use of JSON files,
webpack throws an error when generating the bundle if json-loader isn't included.

Running Webpack

To build an application to use webpack, add the following to the scripts object in your
package. json file.

"build": "webpack"

Here is an example package. json that demonstrates adding webpack.

"name": "aws-webpack",

"version": "1.0.0",

"description": "",

"main": "index.js",

"scripts": {
"test": "echo \"Error: no test specified\" && exit 1",
"build": "webpack"

1,

"author":

"license": "ISC",

"dependencies": {
"aws-sdk": "~2.6.1"

mnn
’

},

"devDependencies": {
"json-loader": "7Q.5.4",
"webpack": "~1.13.2"

}

}

To build your application, type the following command.

npm run build

The webpack module bundler then generates the JavaScript file you specified in your project's root
directory.

Running Webpack 69

Amazon SDK for JavaScript Developer Guide for SDK v2

Using the Webpack Bundle

To use the bundle in a browser script, you can incorporate the bundle using a <script> tag as
shown in the following example.

<IDOCTYPE html>
<html>
<head>
<title>AWS SDK with webpack</title>
</head>
<body>
<div id="list"></div>
<script src="bundle.js"></script>
</body>
</html>

Importing Individual Services

One of the benefits of webpack is that it parses the dependencies in your code and bundles only
the code your application needs. If you are using the SDK for JavaScript, bundling only the parts of
the SDK actually used by your application can reduce the size of the webpack output considerably.

Consider the following example of the code used to create an Amazon S3 service object.

// Import the AWS SDK
var AWS = require('aws-sdk');

// Set credentials and Region
// This can also be done directly on the service client
AWS.config.update({region: 'us-west-1', credentials: {YOUR_CREDENTIALS}});

var s3 = new AWS.S3({apiVersion: '2006-03-01'});

The require() function specifies the entire SDK. A webpack bundle generated with this code
would include the full SDK but the full SDK is not required when only the Amazon S3 client class
is used. The size of the bundle would be substantially smaller if only the portion of the SDK you
require for the Amazon S3 service was included. Even setting the configuration doesn't require the
full SDK because you can set the configuration data on the Amazon S3 service object.

Here is what the same code looks like when it includes only the Amazon S3 portion of the SDK.

Using the Webpack Bundle 70

Amazon SDK for JavaScript

Developer Guide for SDK v2

// Import the Amazon S3 service client
var S3 = require('aws-sdk/clients/s3');

// Set credentials and Region
var s3 = new S3({
apiVersion: '2006-03-01',
region: 'us-west-1',
credentials: {YOUR_CREDENTIALS}
1)

Bundling for Node.js

You can use webpack to generate bundles that run in Node.js by specifying it as a target in the

configuration.

target: "node"

This is useful when running a Node.js application in an environment where disk space is limited.

Here is an example webpack.config. js configuration with Node.js specified as the output

target.

// Import path for resolving file paths
var path = require('path');
module.exports = {
// Specify the entry point for our app
entry: [
path.join(__dirname, 'node.js')
1,
// Specify the output file containing our bundled code
output: {
path: __dirname,
filename: 'bundle.js'
},
// Let webpack know to generate a Node.js bundle
target: "node",
module: {
/**
* Tell webpack how to load JSON files.
* When webpack encounters a 'require()' statement
* where a JSON file is being imported, it will use
* the json-loader

Bundling for Node.js

71

Amazon SDK for JavaScript Developer Guide for SDK v2

*/
loaders: [

{

test: /\.json$/,
loaders: ['json']

Bundling for Node.js 72

Amazon SDK for JavaScript Developer Guide for SDK v2

Working with Services in the SDK for JavaScript

The Amazon SDK for JavaScript provides access to services that it supports through a collection
of client classes. From these client classes, you create service interface objects, commonly called
service objects. Each supported Amazon service has one or more client classes that offer low-level
APIs for using service features and resources. For example, Amazon DynamoDB APIs are available
through the AWS . DynamoDB class.

The services exposed through the SDK for JavaScript follow the request-response pattern to
exchange messages with calling applications. In this pattern, the code invoking a service submits
an HTTP/HTTPS request to an endpoint for the service. The request contains parameters needed
to successfully invoke the specific feature being called. The service that is invoked generates

a response that is sent back to the requestor. The response contains data if the operation was
successful or error information if the operation was unsuccessful.

nede

a

Amazon 53
(Simple Storage Solution)

— g

Service object
methods and
Farams

Mode.js on servers

45

Identity & Access
Management (L&)

Returning
error or data

Amazon SDK
for JavaScript

Browser scripts Amazo
CloudWatch
JavaScript environmants Amazon Web Sarvices

Invoking an Amazon service includes the full request and response lifecycle of an operation on a
service object, including any retries that are attempted. A request is encapsulated in the SDK by
the AWS.Request object. The response is encapsulated in the SDK by the AWS . Response obiject,
which is provided to the requestor through one of several techniques, such as a callback function or
a JavaScript promise.

73

Amazon SDK for JavaScript Developer Guide for SDK v2

Topics

» Creating and Calling Service Objects

» Logging Amazon SDK for JavaScript Calls

« Calling Services Asychronously

« Using the Response Object

» Working with JSON

o Retry strategy in the Amazon SDK for JavaScript v2

Creating and Calling Service Objects

The JavaScript API supports most available Amazon services. Each service class in the JavaScript
API provides access to every API call in its service. For more information on service classes,
operations, and parameters in the JavaScript API, see the API reference.

When using the SDK in Node.js, you add the SDK package to your application using require,
which provides support for all current services.

var AWS = require('aws-sdk');

When using the SDK with browser JavaScript, you load the SDK package to your browser scripts
using the AWS-hosted SDK package. To load the SDK package, add the following <script>
element:

<script src="https://sdk.amazonaws.com/js/aws-sdk-SDK_VERSION_NUMBER.min.js"></script>

To find the current SDK_VERSION_NUMBER, see the APl Reference for the SDK for JavaScript at
Amazon SDK for JavaScript APl Reference Guide.

The default hosted SDK package provides support for a subset of the available Amazon services.
For a list of the default services in the hosted SDK package for the browser, see Supported Services

in the API Reference. You can use the SDK with other services if CORS security checking is disabled.
In this case, you can build a custom version of the SDK to include the additional services you
require. For more information on building a custom version of the SDK, see Building the SDK for

Browsers.

Creating and Calling Service Objects 74

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/index.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/#Supported_Services

Amazon SDK for JavaScript Developer Guide for SDK v2

Requiring Individual Services

Requiring the SDK for JavaScript as shown previously includes the entire SDK into your code.
Alternately, you can choose to require only the individual services used by your code. Consider the
following code used to create an Amazon S3 service object.

// Import the AWS SDK
var AWS = require('aws-sdk');

// Set credentials and Region
// This can also be done directly on the service client
AWS.config.update({region: 'us-west-1', credentials: {YOUR_CREDENTIALS}});

var s3 = new AWS.S3({apiVersion: '2006-03-01'});

In the previous example, the require function specifies the entire SDK. The amount of code to
transport over the network as well as the memory overhead of your code would be substantially
smaller if only the portion of the SDK you require for the Amazon S3 service was included. To
require an individual service, call the require function as shown, including the service constructor
in all lower case.

require('aws-sdk/clients/SERVICE');

Here is what the code to create the previous Amazon S3 service object looks like when it includes
only the Amazon S3 portion of the SDK.

// Import the Amazon S3 service client
var S3 = require('aws-sdk/clients/s3');

// Set credentials and Region
var s3 = new S3({
apiVersion: '2006-03-01',
region: 'us-west-1',
credentials: {YOUR_CREDENTIALS}
1)

You can still access the global Amazon namespace without every service attached to it.

require('aws-sdk/global');

Requiring Individual Services 75

Amazon SDK for JavaScript Developer Guide for SDK v2

This is a useful technique when applying the same configuration across multiple individual services,
for example to provide the same credentials to all services. Requiring individual services should
reduce loading time and memory consumption in Node.js. When done along with a bundling tool
such as Browserify or webpack, requiring individual services results in the SDK being a fraction of
the full size. This helps with memory or disk-space constrained environments such as an loT device
or in a Lambda function.

Creating Service Objects

To access service features through the JavaScript API, you first create a service object through
which you access a set of features provided by the underlying client class. Generally there is one
client class provided for each service; however, some services divide access to their features among
multiple client classes.

To use a feature, you must create an instance of the class that provides access to that feature. The
following example shows creating a service object for DynamoDB from the AWS . DynamoDB client
class.

var dynamodb = new AWS.DynamoDB({apiVersion: '2012-08-10'});

By default, a service object is configured with the global settings also used to configure the SDK.
However, you can configure a service object with runtime configuration data that is specific to that
service object. Service-specific configuration data is applied after applying the global configuration
settings.

In the following example, an Amazon EC2 service object is created with configuration for a specific
Region but otherwise uses the global configuration.

var ec2 = new AWS.EC2({region: 'us-west-2', apiVersion: '2014-10-01'});

In addition to supporting service-specific configuration applied to an individual service object, you
can also apply service-specific configuration to all newly created service objects of a given class.
For example, to configure all service objects created from the Amazon EC2 class to use the US West
(Oregon) (us-west-2) Region, add the following to the AWS . config global configuration object.

AWS.config.ec2 = {region: 'us-west-2', apiVersion: '2016-04-01'};

Creating Service Objects 76

Amazon SDK for JavaScript Developer Guide for SDK v2

Locking the API Version of a Service Object

You can lock a service object to a specific API version of a service by specifying the apiVersion
option when creating the object. In the following example, a DynamoDB service object is created
that is locked to a specific API version.

var dynamodb = new AWS.DynamoDB({apiVersion: '2011-12-05'});

For more information about locking the API version of a service object, see Locking API Versions.

Specifying Service Object Parameters

When calling a method of a service object, pass parameters in JSON as required by the API.

For example, in Amazon S3, to get an object for a specified bucket and key, pass the following
parameters to the getObject method. For more information about passing JSON parameters, see
Working with JSON.

s3.getObject({Bucket: 'bucketName', Key: 'keyName'});

For more information about Amazon S3 parameters, see Class: AWS.S3 in the API reference.

In addition, you can bind values to individual parameters when creating a service object using the
params parameter. The value of the params parameter of service objects is a map that specifies
one or more of the parameter values defined by the service object. The following example shows
the Bucket parameter of an Amazon S3 service object being bound to a bucket named amzn-s3-
demo-bucket.

var s3bucket = new AWS.S3({params: {Bucket: 'amzn-s3-demo-bucket'}, apiVersion:
'2006-03-01' });

By binding the service object to a bucket, the s3bucket service object treats the amzn-s3-demo-
bucket parameter value as a default value that no longer needs to be specified for subsequent
operations. Any bound parameter values are ignored when using the object for operations where
the parameter value isn't applicable. You can override this bound parameter when making calls on
the service object by specifying a new value.

var s3bucket = new AWS.S3({ params: {Bucket: 'amzn-s3-demo-bucket'}, apiVersion:
'2006-03-01"' });
s3bucket.getObject({Key: 'keyName'});

Locking the API Version of a Service Object 77

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/S3.html

Amazon SDK for JavaScript Developer Guide for SDK v2

// ...
s3bucket.getObject({Bucket: 'amzn-s3-demo-bucket3', Key: 'keyOtherName'});

Details about available parameters for each method are found in the API reference.

Logging Amazon SDK for JavaScript Calls

The Amazon SDK for JavaScript is instrumented with a built-in logger so you can log API calls you
make with the SDK for JavaScript.

To turn on the logger and print log entries in the console, add the following statement to your
code.

AWS.config.logger = console;

Here is an example of the log output.

[AWS s3 200 0.185s @ retries] createMultipartUpload({ Bucket: 'amzn-s3-demo-logging-
bucket', Key: 'issues_1704' })

Using a Third-Party Logger

You can also use a third-party logger, provided it has 1og() or write() operations to write to a
log file or server. You must install and set up your custom logger as instructed before you can use it
with the SDK for JavaScript.

One such logger you can use in either browser scripts or in Node.js is logplease. In Node.js, you can
configure logplease to write log entries to a log file. You can also use it with webpack.

When using a third-party logger, set all options before assigning the logger to
AWS.Config.logger. For example, the following specifies an external log file and sets the log
level for logplease

// Require AWS Node.js SDK

const AWS = require('aws-sdk')

// Require logplease

const logplease = require('logplease');
// Set external log file option
logplease.setlLogfile('debug.log');

// Set log level

Logging Amazon SDK for JavaScript Calls 78

Amazon SDK for JavaScript Developer Guide for SDK v2

logplease.setlLoglLevel('DEBUG');

// Create logger

const logger = logplease.create('logger name');
// Assign logger to SDK

AWS.config.logger = logger;

For more information about logplease, see the logplease Simple JavaScript Logger on GitHub.

Calling Services Asychronously

All requests made through the SDK are asynchronous. This is important to keep in mind when
writing browser scripts. JavaScript running in a web browser typically has just a single execution
thread. After making an asynchronous call to an Amazon service, the browser script continues
running and in the process can try to execute code that depends on that asynchronous result
before it returns.

Making asynchronous calls to an Amazon service includes managing those calls so your code
doesn't try to use data before the data is available. The topics in this section explain the need to
manage asynchronous calls and detail different techniques you can use to manage them.

Topics

« Managing Asychronous Calls

« Using an Anonymous Callback Function

» Using a Request Object Event Listener

« Using async/await

« Using JavaScript Promises

Managing Asychronous Calls

For example, the home page of an e-commerce website lets returning customers sign in. Part of
the benefit for customers who sign in is that, after signing in, the site then customizes itself to
their particular preferences. To make this happen:

1. The customer must log in and be validated with their sign-in credentials.
2. The customer's preferences are requested from a customer database.

3. The database provides the customer's preferences that are used to customize the site before the
page loads.

Calling Services Asychronously 79

https://github.com/haadcode/logplease

Amazon SDK for JavaScript Developer Guide for SDK v2

If these tasks execute synchronously, then each must finish before the next can start. The web
page would be unable to finish loading until the customer preferences return from the database.
However, after the database query is sent to the server, receipt of the customer data can be
delayed or even fail due to network bottlenecks, exceptionally high database traffic, or a poor
mobile device connection.

To keep the website from freezing under those conditions, call the database asychronously. After
the database call executes, sending your asynchronous request, your code continues to execute
as expected. If you don't properly manage the response of an asynchronous call, your code can
attempt to use information it expects back from the database when that data isn't available yet.

Synchronous Call to a Database Asynchronous Call to a Database

@ User logs in

display user login page
authenticate and authorize user access

v v

@ Database queried for user @ Database queried for user

@ LUser logs in

display user login page
authenticate and authorize user accass

create gueary for user table
query user table for account & preferences

v

@ Dizplay customized entry page

miodify greating with usar nama
display new items recomendad for user

\/

@ Display customized entry page

modify gresting with user nama

dizplay new items recomended for user

Using an Anonymous Callback Function

creats query for user table
query usar table for account & prefarencas

€

user data may
arrive after you
need it

Each service object method that creates an AWS.Request object can accept an anonymous
callback function as the last parameter. The signature of this callback function is:

function(error, data) {

// callback handling code

This callback function executes when either a successful response or error data returns. If the
method call succeeds, the contents of the response are available to the callback function in the

Using a Callback Function

Amazon SDK for JavaScript Developer Guide for SDK v2

data parameter. If the call doesn't succeed, the details about the failure are provided in the error
parameter.

Typically the code inside the callback function tests for an error, which it processes if one is
returned. If an error is not returned, the code then retrieves the data in the response from the data
parameter. The basic form of the callback function looks like this example.

function(error, data) {
if (error) {
// error handling code
console.log(error);
} else {
// data handling code
console.log(data);

In the previous example, the details of either the error or the returned data are logged to the
console. Here is an example that shows a callback function passed as part of calling a method on a
service object.

new AWS.EC2({apiVersion: '2014-10-01'}).describelInstances(function(error, data) {
if (error) {
console.log(error); // an error occurred
} else {
console.log(data); // request succeeded
}
});

Accessing the Request and Response Objects

Within the callback function, the JavaScript keyword this refers to the underlying AWS .Response
object for most services. In the following example, the httpResponse property of an

AWS .Response object is used within a callback function to log the raw response data and headers
to help with debugging.

new AWS.EC2({apiVersion: '2014-10-01'}).describeInstances(function(error, data) {
if (error) {
console.log(error); // an error occurred
// Using this keyword to access AWS.Response object and properties

Using a Callback Function 81

Amazon SDK for JavaScript Developer Guide for SDK v2

console.log("Response data and headers: " + JSON.stringify(this.httpResponse));
} else {
console.log(data); // request succeeded
}
1);

In addition, because the AWS.Response object has a Request property that contains the
AWS .Request that was sent by the original method call, you can also access the details of the
request that was made.

Using a Request Object Event Listener

If you do not create and pass an anonymous callback function as a parameter when you call a
service object method, the method call generates an AWS . Request object that must be manually
sent using its send method.

To process the response, you must create an event listener for the AWS . Request object to
register a callback function for the method call. The following example shows how to create the
AWS .Request object for calling a service object method and the event listener for the successful
return.

// create the AWS.Request object
var request = new AWS.EC2({apiVersion: '2014-10-01'}).describelInstances();

// register a callback event handler

request.on('success', function(response) {
// log the successful data response
console.log(response.data);

1)

// send the request
request.send();

After the send method on the AWS.Request object is called, the event handler executes when the
service object receives an AWS .Response object.

For more information about the AWS . Request object, see Class: AWS.Request in the API
Reference. For more information about the AWS . Response object, see Using the Response Object

or Class: AWS.Response in the API Reference.

Using a Request Object Event Listener 82

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/Request.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/Response.html

Amazon SDK for JavaScript Developer Guide for SDK v2

Chaining Multiple Callbacks

You can register multiple callbacks on any request object. Multiple callbacks can be registered
for different events or the same event. Also, you can chain callbacks as shown in the following
example.

request.

on('success', function(response) {
console.log("Success!");

.

on('error', function(response) {
console.log("Error!");

H.

on('complete', function() {
console.log("Always!");

.
send();

Request Object Completion Events

The AWS.Request object raises these completion events based on the response of each service
operation method:

e success

e error

« complete

You can register a callback function in response to any of these events. For a complete list of all
request object events, see Class: AWS.Request in the APl Reference.

The success Event

The success event is raised upon a successful response received from the service object. Here is
how you register a callback function for this event.

request.on('success', function(response) {
// event handler code
1)

Using a Request Object Event Listener 83

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/Request.html

Amazon SDK for JavaScript Developer Guide for SDK v2

The response provides a data property that contains the serialized response data from the service.
For example, the following call to the 1istBuckets method of the Amazon S3 service object

s3.1listBuckets.on('success', function(response) {
console.log(response.data);

}).send();

returns the response and then prints the following data property contents to the console.

{ Owner: { ID: '...', DisplayName: '..." },
Buckets:
[{ Name: 'someBucketName', CreationDate: someCreationDate },
{ Name: 'otherBucketName', CreationDate: otherCreationDate }],
RequestId: '..."' }

The error Event

The error event is raised upon an error response received from the service object. Here is how you
register a callback function for this event.

request.on('error', function(error, response) {
// event handling code
1)

When the error event is raised, the value of the response's data property is null and the error
property contains the error data. The associated error object is passed as the first parameter to
the registered callback function. For example, the following code:

s3.config.credentials.accessKeyId = 'invalid';
s3.listBuckets().on('error', function(error, response) {
console.log(error);

}).send();
returns the error and then prints the following error data to the console.

{ code: 'Forbidden', message: null }

The complete Event

The complete event is raised when a service object call has finished, regardless of whether the call
results in success or error. Here is how you register a callback function for this event.

Using a Request Object Event Listener 84

Amazon SDK for JavaScript Developer Guide for SDK v2

request.on('complete’', function(response) {
// event handler code
)8

Use the complete event callback to handle any request cleanup that must execute regardless
of success or error. If you use response data inside a callback for the complete event, first check
the response.data or response.error properties before attempting to access either one, as
shown in the following example.

request.on('complete', function(response) {
if (response.error) {
// an error occurred, handle it
} else {
// we can use response.data here
}
}).send();

Request Object HTTP Events

The AWS.Request object raises these HTTP events based on the response of each service
operation method:

» httpHeaders

« httpData
 httpUploadProgress

« httpDownloadProgress
e httpError

« httpDone

You can register a callback function in response to any of these events. For a complete list of all
request object events, see Class: AWS.Request in the APl Reference.

The httpHeaders Event

The httpHeaders event is raised when headers are sent by the remote server. Here is how you
register a callback function for this event.

request.on('httpHeaders', function(statusCode, headers, response) {

Using a Request Object Event Listener 85

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/Request.html

Amazon SDK for JavaScript Developer Guide for SDK v2

// event handling code
1);

The statusCode parameter to the callback function is the HTTP status code. The headers
parameter contains the response headers.

The httpData Event

The httpData event is raised to stream response data packets from the service. Here is how you
register a callback function for this event.

request.on('httpData', function(chunk, response) {
// event handling code
1);

This event is typically used to receive large responses in chunks when loading the entire response
into memory is not practical. This event has an additional chunk parameter that contains a portion
of the actual data from the server.

If you register a callback for the httpData event, the data property of the response contains the
entire serialized output for the request. You must remove the default httpData listener if you
don't have the extra parsing and memory overhead for the built-in handlers.

The httpUploadProgress and httpDownloadProgress Events

The httpUploadProgress event is raised when the HTTP request has uploaded more data.
Similarly, the httpDownloadProgress event is raised when the HTTP request has downloaded
more data. Here is how you register a callback function for these events.

request.on('httpUploadProgress', function(progress, response) {
// event handling code
)

.on('httpbownloadProgress', function(progress, response) {
// event handling code
1)

The progress parameter to the callback function contains an object with the loaded and total
bytes of the request.

Using a Request Object Event Listener 86

Amazon SDK for JavaScript Developer Guide for SDK v2

The httpError Event

The httpError event is raised when the HTTP request fails. Here is how you register a callback
function for this event.

request.on('httpError', function(error, response) {
// event handling code
});

The error parameter to the callback function contains the error that was thrown.
The httpDone Event

The httpDone event is raised when the server finishes sending data. Here is how you register a
callback function for this event.

request.on('httpDone', function(response) {
// event handling code
1)

Using async/await

You can use the async/await pattern in your calls to the Amazon SDK for JavaScript. Most
functions that take a callback do not return a promise. Since you only use await functions that
return a promise, to use the async/await pattern you need to chain the .promise() method to
the end of your call, and remove the callback.

The following example uses async/await to list all of your Amazon DynamoDB tables in us-
west-2.

var AWS = require("aws-sdk");
//Create an Amazon DynamoDB client service object.
dbClient = new AWS.DynamoDB({ region: "us-west-2" });
// Call DynamoDB to list existing tables
const run = async () => {
try {
const results = await dbClient.listTables({}).promise();
console.log(results.TableNames.join("\n"));
} catch (err) {
console.error(err);
}
};

Using async/await 87

Amazon SDK for JavaScript Developer Guide for SDK v2

run();

(@ Note

Not all browsers support async/await. See Async functions for a list of browsers with async/

await support.

Using JavaScript Promises

The AWS.Request.promise method provides a way to call a service operation and manage
asynchronous flow instead of using callbacks. In Node.js and browser scripts, an AWS.Request
object is returned when a service operation is called without a callback function. You can call the
request's send method to make the service call.

However, AWS .Request.promise immediately starts the service call and returns a promise that is
either fulfilled with the response data property or rejected with the response error property.

var request = new AWS.EC2({apiVersion: '2014-10-01'}).describeInstances();

// create the promise object
var promise = request.promise();

// handle promise's fulfilled/rejected states
promise.then(
function(data) {
/* process the data */

},
function(error) {
/* handle the error */
}
);

The next example returns a promise that's fulfilled with a data object, or rejected with an error
object. Using promises, a single callback isn't responsible for detecting errors. Instead, the correct
callback is called based on the success or failure of a request.

var s3 = new AWS.S3({apiVersion: '2006-03-01', region: 'us-west-2'});
var params = {

Bucket: 'bucket',

Key: 'example2.txt',

Using Promises 88

https://caniuse.com/#feat=async-functions

Amazon SDK for JavaScript Developer Guide for SDK v2

Body: 'Uploaded text using the promise-based method!'
I
var putObjectPromise = s3.putObject(params).promise();
putObjectPromise.then(function(data) {
console.log('Success');
}).catch(function(err) {
console.log(err);

1)

Coordinating Multiple Promises

In some situations, your code must make multiple asynchronous calls that require action only when
they have all returned successfully. If you manage those individual asynchronous method calls with
promises, you can create an additional promise that uses the all method. This method fulfills this
umbrella promise if and when the array of promises that you pass into the method are fulfilled.
The callback function is passed an array of the values of the promises passed to the all method.

In the following example, an Amazon Lambda function must make three asynchronous calls to
Amazon DynamoDB but can only complete after the promises for each call are fulfilled.

Promise.all([firstPromise, secondPromise, thirdPromise]).then(function(values) {

console.log("Value @ is " + values[@].toString);
console.log("Value 1 is " + values[1l].toString);
console.log("Value 2 is " + values[2].toString);

// return the result to the caller of the Lambda function
callback(null, values);

1)

Browser and Node.js Support for Promises

Support for native JavaScript promises (ECMAScript 2015) depends on the JavaScript engine and
version in which your code executes. To help determine the support for JavaScript promises in each
environment where your code needs to run, see the ECMAScript Compatability Table on GitHub.

Using Other Promise Implementations

In addition to the native promise implementation in ECMAScript 2015, you can also use third-party
promise libraries, including:

¢ bluebird

Using Promises 89

https://compat-table.github.io/compat-table/es6/
http://bluebirdjs.com

Amazon SDK for JavaScript Developer Guide for SDK v2

« RSVP
+ Q

These optional promise libraries can be useful if you need your code to run in environments that
don't support the native promise implementation in ECMAScript 5 and ECMAScript 2015.

To use a third-party promise library, set a promises dependency on the SDK by calling the
setPromisesDependency method of the global configuration object. In browser scripts, make
sure to load the third-party promise library before loading the SDK. In the following example, the
SDK is configured to use the implementation in the bluebird promise library.

AWS.config.setPromisesDependency(require('bluebird'));

To return to using the native promise implementation of the JavaScript engine, call
setPromisesDependency again, passing a null instead of a library name.

Using the Response Object

After a service object method has been called, it returns an AWS . Response object by passing it

to your callback function. You access the contents of the response through the properties of the
AWS .Response object. There are two properties of the AWS . Response object you use to access
the contents of the response:

« data property

e @rror property

When using the standard callback mechanism, these two properties are provided as parameters on
the anonymous callback function as shown in the following example.

function(error, data) {
if (error) {
// error handling code
console.log(error);
} else {
// data handling code
console.log(data);

Using the Response Object 90

https://github.com/tildeio/rsvp.js/
https://github.com/kriskowal/q

Amazon SDK for JavaScript Developer Guide for SDK v2

Accessing Data Returned in the Response Object

The data property of the AWS.Response object contains the serialized data returned by the
service request. When the request is successful, the data property contains an object that contains
a map to the data returned. The data property can be null if an error occurs.

Here is an example of calling the getItem method of a DynamoDB table to retrieve the file name
of an image file to use as part of a game.

// Initialize parameters needed to call DynamoDB
var slotParams = {
Key : {'slotPosition' : {N: 'Q'}},
TableName : 'slotWheels',
ProjectionExpression: 'imageFile'

};

// prepare request object for call to DynamoDB
var request = new AWS.DynamoDB({region: 'us-west-2', apiVersion:
'2012-08-10"'}) .getItem(slotParams);
// log the name of the image file to load in the slot machine
request.on('success', function(response) {
// logs a value like "cherries.jpg" returned from DynamoDB
console.log(response.data.Item.imageFile.S);

1)
// submit DynamoDB request
request.send();

For this example, the DynamoDB table is a lookup of images that show the results of a slot
machine pull as specified by the parameters in slotParams.

Upon a successful call of the getItem method, the data property of the AWS.Response object
contains an Item object returned by DynamoDB. The returned data is accessed according to the
request's ProjectionExpression parameter, which in this case means the imageFile member
of the Item object. Because the imageFile member holds a string value, you access the file name
of the image itself through the value of the S child member of imageFile.

Paging Through Returned Data

Sometimes the contents of the data property returned by a service request span multiple pages.
You can access the next page of data by calling the response.nextPage method. This method

Accessing Data Returned in the Response Object 91

Amazon SDK for JavaScript Developer Guide for SDK v2

sends a new request. The response from the request can be captured either with a callback or with
success and error listeners.

You can check to see if the data returned by a service request has additional pages of data by
calling the response.hasNextPage method. This method returns a boolean to indicate whether
calling response.nextPage returns additional data.

s3.1istObjects({Bucket: 'bucket'}).on('success', function handlePage(response) {
// do something with response.data
if (response.hasNextPage()) {
response.nextPage().on('success', handlePage).send();
}
}).send();

Accessing Error Information from a Response Object

The error property of the AWS .Response object contains the available error data in the event of
a service error or transfer error. The error returned takes the following form.

{ code: 'SHORT_UNIQUE_ERROR_CODE', message: 'a descriptive error message' }

In the case of an error, the value of the data property is null. If you handle events that can be in
a failure state, always check whether the error property was set before attempting to access the
value of the data property.

Accessing the Originating Request Object

The request property provides access to the originating AWS . Request object. It can be useful to
refer to the original AWS.Request object to access the original parameters it sent. In the following
example, the request property is used to access the Key parameter of the original service request.

s3.getObject({Bucket: 'bucket', Key: 'key'}).on('success', function(response) {
console.log("Key was", response.request.params.Key);

}).send();

Accessing Error Information from a Response Object 92

Amazon SDK for JavaScript

Developer Guide for SDK v2

Working with JSON

JSON is a format for data exchange that is both human and machine-readable. While the name
JSON is an acronym for JavaScript Object Notation, the format of JSON is independent of any
programming language.

The SDK for JavaScript uses JSON to send data to service objects when making requests and
receives data from service objects as JSON. For more information about JSON, see json.org.

MName-value pair

oreationDate : 2015-11-20T23:19:43.701%, "— comma saparated

modifiedDate : 2015-11-20T23:19:43.701%,
name : demo,
members :| [
{name : first},
{name : Second},
{name : third}
1

Array

containing objects with a name-value pair

JSON represents data in two ways:

» An object, which is an unordered collection of name-value pairs. An object is defined within

left ({) and right (}) braces. Each name-value pair begins with the name, followed by a colon,

followed by the value. Name-value pairs are comma separated.

« An array, which is an ordered collection of values. An array is defined within left ([) and right (])
brackets. Items in the array are comma separated.

Here is an example of a JSON object that contains an array of objects in which the objects
represent cards in a card game. Each card is defined by two name-value pairs, one that specifies
a unique value to identify that card and another that specifies a URL that points to the
corresponding card image.

var cards = [{"CardID":"defaultname", "Image":"defaulturl"},

{"CardID":
{"CardID":
{"CardID":
{"CardID":

"defaultname",
"defaultname",
"defaultname",
"defaultname",

"Image":"defaulturl"},
"Image":"defaulturl"},
"Image":"defaulturl"},
"Image":"defaulturl"}];

Working with JSON

93

https://json.org

Amazon SDK for JavaScript Developer Guide for SDK v2

JSON as Service Object Parameters

Here is an example of simple JSON used to define the parameters of a call to a Lambda service
object.

var pullParams = {
FunctionName : 'slotPull’,
InvocationType : 'RequestResponse'’,
LogType : 'None'

};

The pullParams object is defined by three name-value pairs, separated by commas within the
left and right braces. When providing parameters to a service object method call, the names are
determined by the parameter names for the service object method you plan to call. When invoking
a Lambda function, FunctionName, InvocationType, and LogType are the parameters used to
call the invoke method on a Lambda service object.

When passing parameters to a service object method call, provide the JSON object to the method
call, as shown in the following example of invoking a Lambda function.

lambda = new AWS.Lambda({region: 'us-west-2', apiVersion: '2015-03-31'});
// create JSON object for service call parameters
var pullParams = {
FunctionName : 'slotPull',
InvocationType : 'RequestResponse'’,
LogType : 'None'
I
// invoke Lambda function, passing JSON object
lambda.invoke(pullParams, function(err, data) {

if (err) {
console.log(err);
} else {

console.log(data);

}
1)

Returning Data as JSON

JSON provides a standard way to pass data between parts of an application that need to send
several values at the same time. The methods of client classes in the API commonly return JSON

JSON as Service Object Parameters 94

Amazon SDK for JavaScript Developer Guide for SDK v2

in the data parameter passed to their callback functions. For example, here is a call to the
getBucketCors method of the Amazon S3 client class.

// call S3 to retrieve CORS configuration for selected bucket
s3.getBucketCors(bucketParams, function(err, data) {
if (err) {
console.log(err);
} else if (data) {
console.log(JSON.stringify(data));
}
1)

The value of data is a JSON obiject, in this example JSON that describes the current CORS
configuration for a specified Amazon S3 bucket.

{
"CORSRules": [
{
"AllowedHeaders":["*"],
"AllowedMethods" :["POST", "GET", "PUT", "DELETE", "HEAD"],
"AllowedOrigins":["*"],
"ExposeHeaders":[],
""MaxAgeSeconds" : 3000
}
]
}

Retry strategy in the Amazon SDK for JavaScript v2

Numerous components on a network, such as DNS servers, switches, load balancers, and others
can generate errors anywhere in the life of a given request. The usual technique for dealing with
these error responses in a networked environment is to implement retries in the client application.
This technique increases the reliability of the application and reduces operational costs for the
developer. Amazon SDKs implement automated retry logic for your Amazon requests.

Exponential backoff based retry behavior

The Amazon SDK for JavaScript v2 implements retry logic using exponential backoff with full jitter
for better flow control. The idea behind exponential backoff is to use progressively longer waits

Retries 95

https://aws.amazon.com/builders-library/timeouts-retries-and-backoff-with-jitter/#Jitter

Amazon SDK for JavaScript Developer Guide for SDK v2

between retries for consecutive error responses. The jitter (randomized delay) is used to prevent
successive collisions.

Testing retry delay in v2

In order to test retry delay in v2, the code in node_modules/aws-sdk/lib/event_listeners.js was
updated to console. log the value present in variable delay as follows:

// delay < @ is a signal from customBackoff to skip retries
if (willRetry && delay >= 0) {

resp.error = null;

console.log('retry delay: ' + delay);

setTimeout(done, delay);
} else {

done();

Retry delays with default configuration

You can test delay for any operation on AWS SDK clients. We call 1istTables operation on a
DynamoDB client using the following code:

import AWS from "aws-sdk";

const region = "us-east-1";
const client new AWS.DynamoDB({ region });
await client.listTables({}).promise();

In order to test retries, we simulate NetworkingError by disconnecting internet from the device
running the test code. You can also set up proxy to return a custom Error.

On running the code, you can see that retry delay using exponential backoff with jitter as follows:

retry delay: 7.39361151766359
retry delay: 9.0672860785882
retry delay: 134.89340825668168
retry delay: 398.53559817403965
retry delay: 523.8076165896343
retry delay: 1323.8789643058465

As retry uses jitter, you will get different values in your run of the example code.

Exponential backoff based retry behavior 96

https://github.com/aws/aws-sdk-js/blob/master/lib/event_listeners.js#L588

Amazon SDK for JavaScript Developer Guide for SDK v2

Retry delays with custom base

The Amazon SDK for JavaScript v2 allows passing a custom base number of milliseconds to
use in the exponential backoff for operation retries. It defaults to 100 ms for all services except
DynamoDB, where it defaults to 50 ms.

We test retries with a custom base of 1000 ms as follows:

const client = new AWS.DynamoDB({ region, retryDelayOptions: { base: 1000 } });

We simulate NetworkingError by disconnecting internet from the device running the test code.
You can see that the values for retry delay are higher as compared to previous run where the
default was 50 or 100 ms.

retry delay: 356.2841549924913
retry delay: 1183.5216495444615
retry delay: 2266.997988094194
retry delay: 1244.6948354966453
retry delay: 4200.323030066383

As retry uses jitter, you will get different values in your run of the example code.
Retry delays with custom backoff algorithm

The Amazon SDK for JavaScript v2 also allows passing a custom backoff function that accepts a
retry count and error and returns the amount of time to delay in milliseconds. If the result is a non-
zero negative value, no further retry attempts will be made.

We test custom backoff function which uses linear backoff with base value of 200 ms as follows:

const client = new AWS.DynamoDB({

region,

retryDelayOptions: { customBackoff: (count, error) => (count + 1) * 200 },
1);

We simulate NetworkingError by disconnecting internet from the device running the test code.
You can see that the values for retry delay are multiples of 200.

Exponential backoff based retry behavior 97

Amazon SDK for JavaScript Developer Guide for SDK v2

retry delay: 200
retry delay: 400
retry delay: 600
retry delay: 800
retry delay: 1000

Exponential backoff based retry behavior 98

Amazon SDK for JavaScript Developer Guide for SDK v2

SDK for JavaScript Code Examples

The topics in this section contain examples of how to use the Amazon SDK for JavaScript with the
APIs of various services to carry out common tasks.

Find the source code for these examples and others in the Amazon documentation code examples

repository on GitHub. To propose a new code example for the Amazon documentation team to

consider producing, create a new request. The team is looking to produce code examples that cover
broader scenarios and use cases, versus simple code snippets that cover only individual API calls.
For instructions, see the Authoring code section in the Contribution guidelines.

Topics

« Amazon CloudWatch Examples

« Amazon DynamoDB Examples

« Amazon EC2 Examples

o AWS Elemental MediaConvert Examples

o Amazon IAM Examples

« Amazon Kinesis Example

« Amazon S3 Examples

« Amazon Simple Email Service Examples

« Amazon Simple Notification Service Examples

« Amazon SQS Examples

Amazon CloudWatch Examples

Amazon CloudWatch (CloudWatch) is a web service that monitors your Amazon Web Services
resources and applications you run on Amazon in real time. You can use CloudWatch to collect and
track metrics, which are variables you can measure for your resources and applications. CloudWatch
alarms send notifications or automatically make changes to the resources you are monitoring
based on rules that you define.

Amazon CloudWatch Examples 99

https://github.com/awsdocs/aws-doc-sdk-examples
https://github.com/awsdocs/aws-doc-sdk-examples
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/CONTRIBUTING.md#authoring-code

Amazon SDK for JavaScript

Developer Guide for SDK v2

The JavaScript API for CloudWatch is exposed through the AWS . CloudWatch,

4=
I .
1] |
I |]j
| By nede .
— .] .
%‘-'": | ;:Z':I’ | 11 -
| L |/ T~ T
JavaScript Amazon SDK
Envircnments for JavaScript

"

Amazon
CloudWatch

AWS .CloudWatchEvents, and AWS.CloudWatchLogs client classes. For more information
about using the CloudWatch client classes, see Class: AWS.CloudWatch, Class:
AWS.CloudWatchEvents,and Class: AWS.CloudWatchLogs in the API reference.

Topics

Creating Alarms in Amazon CloudWatch

Using Alarm Actions in Amazon CloudWatch

Getting Metrics from Amazon CloudWatch

Sending Events to Amazon CloudWatch Events

Using Subscription Filters in Amazon CloudWatch Logs

Creating Alarms in Amazon CloudWatch

This Node.js code example shows:

How to retrieve basic information about your CloudWatch alarms.

How to create and delete a CloudWatch alarm.

Creating Alarms in Amazon CloudWatch

100

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/CloudWatch.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/CloudWatchEvents.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/CloudWatchEvents.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/CloudWatchLogs.html

Amazon SDK for JavaScript Developer Guide for SDK v2

The Scenario

An alarm watches a single metric over a time period you specify, and performs one or more actions
based on the value of the metric relative to a given threshold over a number of time periods.

In this example, a series of Node.js modules are used to create alarms in CloudWatch. The Node.js
modules use the SDK for JavaScript to create alarms using these methods of the AWS.CloudWatch
client class:

e describeAlarms

o putMetricAlarm

e deleteAlarms

For more information about CloudWatch alarms, see Creating Amazon CloudWatch Alarms in the
Amazon CloudWatch User Guide.

Prerequisite Tasks
To set up and run this example, you must first complete these tasks:

« Install Node.js. For more information about installing Node.js, see the Node.js website.

» Create a shared configurations file with your user credentials. For more information about
providing a shared credentials file, see Loading Credentials in Node.js from the Shared
Credentials File.

Describing Alarms

Create a Node.js module with the file name cw_describealarms. js. Be sure to configure the
SDK as previously shown. To access CloudWatch, create an AWS.CloudWatch service object.
Create a JSON object to hold the parameters for retrieving alarm descriptions, limiting the alarms
returned to those with a state of INSUFFICIENT_DATA. Then call the describeAlarms method
of the AWS . CloudWatch service object.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create CloudWatch service object

Creating Alarms in Amazon CloudWatch 101

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/CloudWatch.html#describeAlarms-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/CloudWatch.html#putMetricAlarm-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/CloudWatch.html#deleteAlarms-property
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://nodejs.org

Amazon SDK for JavaScript Developer Guide for SDK v2

var cw = new AWS.CloudWatch({ apiVersion: "2010-08-01" });

cw.describeAlarms({ StateValue: "INSUFFICIENT_DATA" }, function (err, data) {
if (err) {
console.log("Error", err);
} else {
// List the names of all current alarms in the console
data.MetricAlarms.forEach(function (item, index, array) {
console.log(item.AlarmName);
1)
}
1)

To run the example, type the following at the command line.

node cw_describealarms.js

This sample code can be found here on GitHub.

Creating an Alarm for a CloudWatch Metric

Create a Node.js module with the file name cw_putmetricalarm. js. Be sure to configure the
SDK as previously shown. To access CloudWatch, create an AWS. CloudWatch service object. Create
a JSON object for the parameters needed to create an alarm based on a metric, in this case the
CPU utilization of an Amazon EC2 instance. The remaining parameters are set so the alarm triggers
when the metric exceeds a threshold of 70 percent. Then call the describeAlarms method of the
AWS . CloudWatch service object.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create CloudWatch service object
var cw = new AWS.CloudWatch({ apiVersion: "2010-08-01" });

var params = {
AlarmName: "Web_Server_CPU_Utilization",
ComparisonOperator: "GreaterThanThreshold",
EvaluationPeriods: 1,
MetricName: "CPUUtilization",
Namespace: "AWS/EC2",

Creating Alarms in Amazon CloudWatch 102

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/cloudwatch/cw_describealarms.js

Amazon SDK for JavaScript

Developer Guide for SDK v2

Period: 60,

Statistic: "Average",
Threshold: 70.0,
ActionsEnabled: false,

AlarmDescription: "Alarm when server CPU exceeds 70%",

Dimensions: [
{
Name: "InstanceIld",
Value: "INSTANCE_ID",
.
1,
Unit: "Percent",

i

cw.putMetricAlarm(params, function (err, data)
if (err) {
console.log("Error", err);
} else {
console.log("Success", data);
}
1);

To run the example, type the following at the command line.

node cw_putmetricalarm.js

This sample code can be found here on GitHub.

Deleting an Alarm

Create a Node.js module with the file name cw_deletealarms. js. Be sure to configure the SDK
as previously shown. To access CloudWatch, create an AWS.CloudWatch service object. Create a
JSON object to hold the names of the alarms you want to delete. Then call the deleteAlarms

method of the AWS.CloudWatch service object.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create CloudWatch service object

var cw = new AWS.CloudWatch({ apiVersion: "2010-08-01" });

Creating Alarms in Amazon CloudWatch

103

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/cloudwatch/cw_putmetricalarm.js

Amazon SDK for JavaScript Developer Guide for SDK v2

var params = {
AlarmNames: ["Web_Server_CPU_Utilization"],

i
cw.deleteAlarms(params, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Success", data);
}
1)

To run the example, type the following at the command line.

node cw_deletealarms.js

This sample code can be found here on GitHub.

Using Alarm Actions in Amazon CloudWatch

node

This Node.js code example shows:

« How to change the state of your Amazon EC2 instances automatically based on a CloudWatch
alarm.

The Scenario

Using alarm actions, you can create alarms that automatically stop, terminate, reboot, or recover
your Amazon EC2 instances. You can use the stop or terminate actions when you no longer need an
instance to be running. You can use the reboot and recover actions to automatically reboot those
instances.

In this example, a series of Node.js modules are used to define an alarm action in CloudWatch that
triggers the reboot of an Amazon EC2 instance. The Node.js modules use the SDK for JavaScript to
manage Amazon EC2 instances using these methods of the CloudWatch client class:

Using Alarm Actions in Amazon CloudWatch 104

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/cloudwatch/cw_deletealarms.js

Amazon SDK for JavaScript Developer Guide for SDK v2

e enableAlarmActions

e disableAlarmActions

For more information about CloudWatch alarm actions, see Create Alarms to Stop, Terminate,
Reboot, or Recover an Instance in the Amazon CloudWatch User Guide.

Prerequisite Tasks
To set up and run this example, you must first complete these tasks:

« Install Node.js. For more information about installing Node.js, see the Node.js website.

» Create a shared configurations file with your user credentials. For more information about
providing a shared credentials file, see Loading Credentials in Node.js from the Shared

Credentials File.

« Create an IAM role whose policy grants permission to describe, reboot, stop, or terminate an
Amazon EC2 instance. For more information about creating an IAM role, see Creating a Role to

Delegate Permissions to an Amazon Service in the IAM User Guide.

Use the following role policy when creating the IAM role.

JSON

"Version":"2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Action": [
"cloudwatch:Describe*",
"ec2:Describe*",
"ec2:RebootInstances",
"ec2:StopInstances*",
"ec2:TerminateInstances"
]I
"Resource": [
wan
]
}

Using Alarm Actions in Amazon CloudWatch 105

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/CloudWatch.html#enableAlarmActions-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/CloudWatch.html#disableAlarmActions-property
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/UsingAlarmActions.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/UsingAlarmActions.html
http://nodejs.org
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon SDK for JavaScript Developer Guide for SDK v2

}

Configure the SDK for JavaScript by creating a global configuration object then setting the Region
for your code. In this example, the Region is set to us-west-2.

// Load the SDK for JavaScript

var Amazon = require('aws-sdk');

// Set the Region
AWS.config.update({region: 'us-west-2'});

Creating and Enabling Actions on an Alarm

Create a Node.js module with the file name cw_enablealarmactions. js. Be sure to configure
the SDK as previously shown. To access CloudWatch, create an AWS.CloudWatch service object.

Create a JSON object to hold the parameters for creating an alarm, specifying ActionsEnabled
as true and an array of ARNSs for the actions the alarm will trigger. Call the putMetricAlarm
method of the AWS.CloudWatch service object, which creates the alarm if it does not exist or
updates it if the alarm does exist.

In the callback function for the putMetricAlarm, upon successful completion create a JSON
object containing the name of the CloudWatch alarm. Call the enableAlarmActions method to
enable the alarm action.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create CloudWatch service object
var cw = new AWS.CloudWatch({ apiVersion: "2010-08-01" });

var params = {
AlarmName: "Web_Server_CPU_Utilization",
ComparisonOperator: "GreaterThanThreshold",
EvaluationPeriods: 1,
MetricName: "CPUUtilization",
Namespace: "AWS/EC2",
Period: 60,

Using Alarm Actions in Amazon CloudWatch 106

Amazon SDK for JavaScript Developer Guide for SDK v2

Statistic: "Average",
Threshold: 70.0,
ActionsEnabled: true,
AlarmActions: ["ACTION_ARN"],
AlarmDescription: "Alarm when server CPU exceeds 70%",
Dimensions: [
{
Name: "InstanceId",
Value: "INSTANCE_ID",
.
1,
Unit: "Percent",

i

cw.putMetricAlarm(params, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Alarm action added", data);
var paramsEnableAlarmAction = {
AlarmNames: [params.AlarmName],
i
cw.enableAlarmActions(paramsEnableAlarmAction, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Alarm action enabled", data);
}
1);

1)

To run the example, type the following at the command line.

node cw_enablealarmactions.js

This sample code can be found here on GitHub.

Disabling Actions on an Alarm

Create a Node.js module with the file name cw_disablealarmactions. js. Be sure to
configure the SDK as previously shown. To access CloudWatch, create an AWS.CloudWatch

Using Alarm Actions in Amazon CloudWatch 107

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/cloudwatch/cw_enablealarmactions.js

Amazon SDK for JavaScript Developer Guide for SDK v2

service object. Create a JSON object containing the name of the CloudWatch alarm. Call the
disableAlarmActions method to disable the actions for this alarm.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create CloudWatch service object
var cw = new AWS.CloudWatch({ apiVersion: "2010-08-01" });

cw.disableAlarmActions(
{ AlarmNames: ["Web_Server_CPU_Utilization"] 3},
function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Success", data);
}
}
)E

To run the example, type the following at the command line.

node cw_disablealarmactions.js

This sample code can be found here on GitHub.

Getting Metrics from Amazon CloudWatch

nade

This Node.js code example shows:

» How to retrieve a list of published CloudWatch metrics.

« How to publish data points to CloudWatch metrics.

Getting Metrics from Amazon CloudWatch 108

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/cloudwatch/cw_disablealarmactions.js

Amazon SDK for JavaScript Developer Guide for SDK v2

The Scenario

Metrics are data about the performance of your systems. You can enable detailed monitoring of
some resources, such as your Amazon EC2 instances, or your own application metrics.

In this example, a series of Node.js modules are used to get metrics from CloudWatch and to send
events to Amazon CloudWatch Events. The Node.js modules use the SDK for JavaScript to get
metrics from CloudWatch using these methods of the CloudWatch client class:

e listMetrics

e putMetricData

For more information about CloudWatch metrics, see Using Amazon CloudWatch Metrics in the
Amazon CloudWatch User Guide.

Prerequisite Tasks
To set up and run this example, you must first complete these tasks:

« Install Node.js. For more information about installing Node.js, see the Node.js website.

» Create a shared configurations file with your user credentials. For more information about
providing a shared credentials file, see Loading Credentials in Node.js from the Shared
Credentials File.

Listing Metrics

Create a Node.js module with the file name cw_listmetrics. js. Be sure to configure the SDK
as previously shown. To access CloudWatch, create an AWS.CloudWatch service object. Create a
JSON object containing the parameters needed to list metrics within the AWS/Logs namespace.
Call the 1istMetrics method to list the IncominglLogEvents metric.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create CloudWatch service object
var cw = new AWS.CloudWatch({ apiVersion: "2010-08-01" });

Getting Metrics from Amazon CloudWatch 109

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/CloudWatch.html#listMetrics-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/CloudWatch.html#putMetricData-property
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/working_with_metrics.html
https://nodejs.org

Amazon SDK for JavaScript

Developer Guide for SDK v2

var params = {
Dimensions: [
{
Name: "LogGroupName" /* required */,
1,
1,
MetricName: "IncominglLogEvents",
Namespace: "AWS/Logs",
};

cw.listMetrics(params, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Metrics", JSON.stringify(data.Metrics));
}
1);

To run the example, type the following at the command line.

node cw_listmetrics.js

This sample code can be found here on GitHub.

Submitting Custom Metrics

Create a Node.js module with the file name cw_putmetricdata. js. Be sure to configure the SDK
as previously shown. To access CloudWatch, create an AWS.CloudWatch service object. Create a
JSON object containing the parameters needed to submit a data point for the PAGES_VISITED

custom metric. Call the putMetricData method.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create CloudWatch service object
var cw = new AWS.CloudWatch({ apiVersion: "2010-08-01" });

// Create parameters JSON for putMetricData
var params = {
MetricData: [

Getting Metrics from Amazon CloudWatch

110

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/cloudwatch/cw_listmetrics.js

Amazon SDK for JavaScript

Developer Guide for SDK v2

{
MetricName: "PAGES_VISITED",
Dimensions: [
{
Name: "UNIQUE_PAGES",
Value: "URLS",

},

1,

Unit: "None",

Value: 1.0,

},
1,
Namespace: "SITE/TRAFFIC",
i

cw.putMetricData(params, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Success", JSON.stringify(data));
}
1)

To run the example, type the following at the command line.

node cw_putmetricdata.js

This sample code can be found here on GitHub.

Sending Events to Amazon CloudWatch Events

nade

This Node.js code example shows:

» How to create and update a rule used to trigger an event.
« How to define one or more targets to respond to an event.

« How to send events that are matched to targets for handling.

Sending Events to Amazon CloudWatch Events

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/cloudwatch/cw_putmetricdata.js

Amazon SDK for JavaScript Developer Guide for SDK v2

The Scenario

CloudWatch Events delivers a near real-time stream of system events that describe changes in
Amazon Web Services resources to any of various targets. Using simple rules, you can match events
and route them to one or more target functions or streams.

In this example, a series of Node.js modules are used to send events to CloudWatch Events. The
Node.js modules use the SDK for JavaScript to manage instances using these methods of the
CloudWatchEvents client class:

e putRule
e putTargets
» putEvents

For more information about CloudWatch Events, see Adding Events with PutEvents in the Amazon
CloudWatch Events User Guide.

Prerequisite Tasks
To set up and run this example, you must first complete these tasks:

« Install Node.js. For more information about installing Node.js, see the Node.js website.

» Create a shared configurations file with your user credentials. For more information about
providing a shared credentials file, see Loading Credentials in Node.js from the Shared
Credentials File.

» Create a Lambda function using the hello-world blueprint to serve as the target for events. To
learn how, see Step 1: Create an Amazon Lambda function in the Amazon CloudWatch Events
User Guide.

» Create an IAM role whose policy grants permission to CloudWatch Events and that includes
events.amazonaws.com as a trusted entity. For more information about creating an 1AM role,
see Creating a Role to Delegate Permissions to an Amazon Service in the IAM User Guide.

Use the following role policy when creating the IAM role.

JSON

Sending Events to Amazon CloudWatch Events 112

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/CloudWatchEvents.html#putRule-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/CloudWatchEvents.html#putTargets-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/CloudWatchEvents.html#putEvents-property
https://docs.amazonaws.cn/AmazonCloudWatch/latest/events/AddEventsPutEvents.html
https://nodejs.org
https://docs.amazonaws.cn/AmazonCloudWatch/latest/events/LogEC2InstanceState.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon SDK for JavaScript

Developer Guide for SDK v2

"Version":"2012-10-17",
"Statement": [

{
"Sid": "CloudWatchEventsFullAccess",
"Effect": "Allow",
"Action": "events:*",
"Resource": "*"
}I
{
"Sid": "IAMPassRoleForCloudWatchEvents",
"Effect": "Allow",
"Action": "iam:PassRole",
"Resource": "arn:aws:iam::*:role/AWS_Events_Invoke_Targets"
}

Use the following trust relationship when creating the 1AM role.

JSON

{
"Version":"2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"Service": "events.amazonaws.com"
}I
"Action": "sts:AssumeRole"
}
]
}

Creating a Scheduled Rule

Create a Node.js module with the file name cwe_putrule. js. Be sure to configure the SDK as
previously shown. To access CloudWatch Events, create an AWS.CloudWatchEvents service
object. Create a JSON object containing the parameters needed to specify the new scheduled rule,

which include the following:

Sending Events to Amazon CloudWatch Events

Amazon SDK for JavaScript

Developer Guide for SDK v2

« A name for the rule

« The ARN of the IAM role you created previously

« An expression to schedule triggering of the rule every five minutes

Call the putRule method to create the rule. The callback returns the ARN of the new or updated

rule.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create CloudWatchEvents service object

var cwevents = new AWS.CloudWatchEvents({ apiVersion:

var params = {
Name: "DEMO_EVENT",
RoleArn: "IAM_ROLE_ARN",
ScheduleExpression: "rate(5 minutes)",
State: "ENABLED",

b

cwevents.putRule(params, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Success", data.RuleArn);
}
K7

To run the example, type the following at the command line.

node cwe_putrule.js

This sample code can be found here on GitHub.

Adding a Amazon Lambda Function Target

"2015-10-07" });

Create a Node.js module with the file name cwe_puttargets. js. Be sure to configure the SDK
as previously shown. To access CloudWatch Events, create an AWS.CloudWatchEvents service
object. Create a JSON object containing the parameters needed to specify the rule to which

Sending Events to Amazon CloudWatch Events

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/cloudwatch-events/cwe_putrule.js

Amazon SDK for JavaScript Developer Guide for SDK v2

you want to attach the target, including the ARN of the Lambda function you created. Call the
putTargets method of the AWS.CloudWatchEvents service object.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create CloudWatchEvents service object
var cwevents = new AWS.CloudWatchEvents({ apiVersion: "2015-10-07" });

var params = {
Rule: "DEMO_EVENT",
Targets: [
{
Arn: "LAMBDA_FUNCTION_ARN",
Id: "myCloudWatchEventsTarget",
3,
1,
};

cwevents.putTargets(params, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Success", data);
}
3

To run the example, type the following at the command line.

node cwe_puttargets.js

This sample code can be found here on GitHub.

Sending Events

Create a Node.js module with the file name cwe_putevents. js. Be sure to configure the SDK

as previously shown. To access CloudWatch Events, create an AWS.CloudWatchEvents service
object. Create a JSON object containing the parameters needed to send events. For each event,
include the source of the event, the ARNs of any resources affected by the event, and details for the
event. Call the putEvents method of the AWS.CloudWatchEvents service object.

Sending Events to Amazon CloudWatch Events 115

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/cloudwatch-events/cwe_puttargets.js

Amazon SDK for JavaScript Developer Guide for SDK v2

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create CloudWatchEvents service object
var cwevents = new AWS.CloudWatchEvents({ apiVersion: "2015-10-07" });

var params = {
Entries: [
{
Detail: '{ "keyl": "valuel", "key2": "value2" }°',
DetailType: "appRequestSubmitted",
Resources: ["RESOURCE_ARN"],
Source: "com.company.app",
1,
1,
};

cwevents.putEvents(params, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Success", data.Entries);
}
});

To run the example, type the following at the command line.

node cwe_putevents.js

This sample code can be found here on GitHub.

Using Subscription Filters in Amazon CloudWatch Logs

node

This Node.js code example shows:

Using Subscription Filters in Amazon CloudWatch Logs 116

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/cloudwatch-events/cwe_putevents.js

Amazon SDK for JavaScript Developer Guide for SDK v2

« How to create and delete filters for log events in CloudWatch Logs.

The Scenario

Subscriptions provide access to a real-time feed of log events from CloudWatch Logs and deliver
that feed to other services, such as an Amazon Kinesis stream or Amazon Lambda, for custom
processing, analysis, or loading to other systems. A subscription filter defines the pattern to use for
filtering which log events are delivered to your Amazon resource.

In this example, a series of Node.js modules are used to list, create, and delete a subscription
filter in CloudWatch Logs. The destination for the log events is a Lambda function. The Node.js
modaules use the SDK for JavaScript to manage subscription filters using these methods of the
CloudwWatchLogs client class:

e putSubscriptionFilters

o describeSubscriptionFilters

o deleteSubscriptionFilter

For more information about CloudWatch Logs subscriptions, see Real-time Processing of Log Data
with Subscriptions in the Amazon CloudWatch Logs User Guide.

Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

« Install Node.js. For more information about installing Node.js, see the Node.js website.

 Create a shared configurations file with your user credentials. For more information about
providing a shared credentials file, see Loading Credentials in Node.js from the Shared

Credentials File.

» Create a Lambda function as the destination for log events. You will need to use the ARN of this
function. For more information about setting up a Lambda function, see Subscription Filters with
Amazon Lambda in the Amazon CloudWatch Logs User Guide.

» Create an IAM role whose policy grants permission to invoke the Lambda function you created
and grants full access to CloudWatch Logs or apply the following policy to the execution role you
create for the Lambda function. For more information about creating an IAM role, see Creating a
Role to Delegate Permissions to an Amazon Service in the IAM User Guide.

Using Subscription Filters in Amazon CloudWatch Logs 117

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/CloudWatchLogs.html#putSubscriptionFilters-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/CloudWatchLogs.html#describeSubscriptionFilters-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/CloudWatchLogs.html#deleteSubscriptionFilter-property
https://docs.amazonaws.cn/AmazonCloudWatch/latest/logs/Subscriptions.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/logs/Subscriptions.html
https://nodejs.org
https://docs.amazonaws.cn/AmazonCloudWatch/latest/logs/SubscriptionFilters.html#LambdaFunctionExample
https://docs.amazonaws.cn/AmazonCloudWatch/latest/logs/SubscriptionFilters.html#LambdaFunctionExample
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon SDK for JavaScript Developer Guide for SDK v2

Use the following role policy when creating the IAM role.

JSON

{
"Version":"2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"logs:CreatelLogGroup",
"logs:CreateLogStream",
"logs:PutLogEvents"
1,
"Resource": "arn:aws:logs:*:*:*"
},
{
"Effect": "Allow",
"Action": [
"lambda:InvokeFunction"
]I
"Resource": [
wxn
]
}
]
}

Describing Existing Subscription Filters

Create a Node.js module with the file name cwl_describesubscriptionfilters.js.

Be sure to configure the SDK as previously shown. To access CloudWatch Logs, create an

AWS . CloudWatchLogs service object. Create a JSON object containing the parameters needed
to describe your existing filters, including the name of the log group and the maximum number of
filters you want described. Call the describeSubscriptionFilters method.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

Using Subscription Filters in Amazon CloudWatch Logs 118

Amazon SDK for JavaScript Developer Guide for SDK v2

// Create the CloudWatchLogs service object
var cwl = new AWS.CloudWatchLogs({ apiVersion: "2014-03-28" });

var params = {
logGroupName: "GROUP_NAME",
limit: 5,

i

cwl.describeSubscriptionFilters(params, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Success", data.subscriptionFilters);
}
1)

To run the example, type the following at the command line.

node cwl_describesubscriptionfilters.js

This sample code can be found here on GitHub.

Creating a Subscription Filter

Create a Node.js module with the file name cwl_putsubscriptionfilter. js.Be

sure to configure the SDK as previously shown. To access CloudWatch Logs, create an

AWS . CloudWatchLogs service object. Create a JSON object containing the parameters needed to
create a filter, including the ARN of the destination Lambda function, the name of the filter, the
string pattern for filtering, and the name of the log group. Call the putSubscriptionFilters
method.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create the CloudWatchLogs service object
var cwl = new AWS.CloudWatchLogs({ apiVersion: "2014-03-28" });

var params = {

Using Subscription Filters in Amazon CloudWatch Logs 119

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/cloudwatch-logs/cwl_describesubscriptionfilters.js

Amazon SDK for JavaScript Developer Guide for SDK v2

destinationArn: "LAMBDA_FUNCTION_ARN",
filterName: "FILTER_NAME",
filterPattern: "ERROR",
logGroupName: "LOG_GROUP",

};

cwl.putSubscriptionFilter(params, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Success", data);
}
1);

To run the example, type the following at the command line.

node cwl_putsubscriptionfilter.js

This sample code can be found here on GitHub.

Deleting a Subscription Filter

Create a Node.js module with the file name cwl_deletesubscriptionfilters.js.
Be sure to configure the SDK as previously shown. To access CloudWatch Logs, create an
AWS . CloudWatchLogs service object. Create a JSON object containing the parameters
needed to delete a filter, including the names of the filter and the log group. Call the
deleteSubscriptionFilters method.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create the CloudWatchLogs service object
var cwl = new AWS.CloudWatchLogs({ apiVersion: "2014-03-28" });

var params = {
filterName: "FILTER",
logGroupName: "LOG_GROUP",
iF

Using Subscription Filters in Amazon CloudWatch Logs 120

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/cloudwatch-logs/cwl_putsubscriptionfilter.js

Amazon SDK for JavaScript Developer Guide for SDK v2

cwl.deleteSubscriptionFilter(params, function (err, data) {

if (err) {
console.log("Error", err);
} else {
console.log("Success", data);
}
1);

To run the example, type the following at the command line.

node cwl_deletesubscriptionfilter.js

This sample code can be found here on GitHub.

Amazon DynamoDB Examples

Amazon DynamoDB is a fully managed NoSQL cloud database that supports both document and
key-value store models. You create schemaless tables for data without the need to provision or
maintain dedicated database servers.

45
nede
i S, S,
I T, S,
|
—
JavaScript Amazon SDK Amazon
Envircnments for JavaScript DynamoDB

The JavaScript API for DynamoDB is exposed through the AWS .DynamoDB,

AWS .DynamoDBStreams, and AWS.DynamoDB.DocumentClient client classes. For more
information about using the DynamoDB client classes, see Class: AWS.DynamoDB, Class:
AWS .DynamoDBStreams, and Class: AWS.DynamoDB.DocumentClient in the API reference.

Topics

» Creating and Using Tables in DynamoDB

» Reading and Writing A Single Item in DynamoDB

« Reading and Writing Items in Batch in DynamoDB

Amazon DynamoDB Examples 121

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/cloudwatch-logs/cwl_deletesubscriptionfilter.js
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/DynamoDB.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/DynamoDBStreams.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/DynamoDBStreams.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/DynamoDB/DocumentClient.html

Amazon SDK for JavaScript Developer Guide for SDK v2

e Querying and Scanning a DynamoDB Table

« Using the DynamoDB Document Client

Creating and Using Tables in DynamoDB

node

This Node.js code example shows:

« How to create and manage tables used to store and retrieve data from DynamoDB.

The Scenario

Similar to other database systems, DynamoDB stores data in tables. A DynamoDB table is a
collection of data that's organized into items that are analogous to rows. To store or access data in
DynamoDB, you create and work with tables.

In this example, you use a series of Node.js modules to perform basic operations with a DynamoDB
table. The code uses the SDK for JavaScript to create and work with tables by using these methods
of the AWS . DynamoDB client class:

createTable

listTables
describeTable

deleteTable

Prerequisite Tasks
To set up and run this example, first complete these tasks:

« Install Node.js. For more information, see the Node.js website.

» Create a shared configurations file with your user credentials. For more information about
providing a shared credentials file, see Loading Credentials in Node.js from the Shared

Credentials File.

Creating and Using Tables in DynamoDB 122

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/DynamoDB.html#createTable-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/DynamoDB.html#listTables-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/DynamoDB.html#describeTable-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/DynamoDB.html#deleteTable-property
https://nodejs.org

Amazon SDK for JavaScript Developer Guide for SDK v2

Creating a Table

Create a Node.js module with the file name ddb_createtable. js. Be sure to configure the SDK
as previously shown. To access DynamoDB, create an AWS . DynamoDB service object. Create a JSON
object containing the parameters needed to create a table, which in this example includes the
name and data type for each attribute, the key schema, the name of the table, and the units of
throughput to provision. Call the createTable method of the DynamoDB service object.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create the DynamoDB service object
var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

var params = {
AttributeDefinitions: [
{
AttributeName: "CUSTOMER_ID",
AttributeType: "N",
.

{
AttributeName: "CUSTOMER_NAME",

AttributeType: "S",
},
1,
KeySchema: [
{
AttributeName: "CUSTOMER_ID",
KeyType: "HASH",
},

{
AttributeName: "CUSTOMER_NAME",

KeyType: "RANGE",
I

1,

ProvisionedThroughput: {
ReadCapacityUnits: 1,
WriteCapacityUnits: 1,

},

TableName: "CUSTOMER_LIST",

StreamSpecification: {

Creating and Using Tables in DynamoDB 123

Amazon SDK for JavaScript

Developer Guide for SDK v2

StreamEnabled: false,
1,
i

// Call DynamoDB to create the table
ddb.createTable(params, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Table Created", data);
}
1)

To run the example, type the following at the command line.

node ddb_createtable.js

This sample code can be found here on GitHub.

Listing Your Tables

Create a Node.js module with the file name ddb_listtables. js. Be sure to configure the SDK
as previously shown. To access DynamoDB, create an AWS .DynamoDB service object. Create a
JSON object containing the parameters needed to list your tables, which in this example limits the
number of tables listed to 10. Call the 1istTables method of the DynamoDB service object.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create the DynamoDB service object

var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

// Call DynamoDB to retrieve the list of tables
ddb.listTables({ Limit: 10 }, function (err, data) {
if (err) {
console.log("Error", err.code);
} else {
console.log("Table names are ", data.TableNames);
}
1)

Creating and Using Tables in DynamoDB

124

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/dynamodb/ddb_createtable.js

Amazon SDK for JavaScript Developer Guide for SDK v2

To run the example, type the following at the command line.

node ddb_listtables.js

This sample code can be found here on GitHub.

Describing a Table

Create a Node.js module with the file name ddb_describetable. js. Be sure to configure the
SDK as previously shown. To access DynamoDB, create an AWS.DynamoDB service object. Create a
JSON object containing the parameters needed to describe a table, which in this example includes
the name of the table provided as a command-line parameter. Call the describeTable method of
the DynamoDB service object.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create the DynamoDB service object
var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

var params = {
TableName: process.argv[2],

%

// Call DynamoDB to retrieve the selected table descriptions
ddb.describeTable(params, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Success", data.Table.KeySchema);
}
1)

To run the example, type the following at the command line.

node ddb_describetable.js TABLE_NAME

This sample code can be found here on GitHub.

Creating and Using Tables in DynamoDB 125

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/dynamodb/ddb_listtables.js
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/dynamodb/ddb_describetable.js

Amazon SDK for JavaScript Developer Guide for SDK v2

Deleting a Table

Create a Node.js module with the file name ddb_deletetable. js. Be sure to configure the SDK
as previously shown. To access DynamoDB, create an AWS .DynamoDB service object. Create a JSON
object containing the parameters needed to delete a table, which in this example includes the
name of the table provided as a command-Lline parameter. Call the deleteTable method of the
DynamoDB service object.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create the DynamoDB service object
var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

var params = {
TableName: process.argv[2],

};

// Call DynamoDB to delete the specified table
ddb.deleteTable(params, function (err, data) {

if (err && err.code === "ResourceNotFoundException") {
console.log("Error: Table not found");

} else if (err && err.code === "ResourceInUseException") {
console.log("Error: Table in use");

} else {
console.log("Success", data);

}

)i

To run the example, type the following at the command line.

node ddb_deletetable.js TABLE_NAME

This sample code can be found here on GitHub.

Creating and Using Tables in DynamoDB 126

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/dynamodb/ddb_deletetable.js

Amazon SDK for JavaScript Developer Guide for SDK v2

Reading and Writing A Single Item in DynamoDB

nade

This Node.js code example shows:

« How to add an item in a DynamoDB table.
» How to retrieve an item in a DynamoDB table.

« How to delete an item in a DynamoDB table.

The Scenario

In this example, you use a series of Node.js modules to read and write one item in a DynamoDB
table by using these methods of the AWS . DynamoDB client class:

e putltem
» getltem

o deleteltem
Prerequisite Tasks
To set up and run this example, first complete these tasks:

« Install Node.js. For more information, see the Node.js website.

» Create a shared configurations file with your user credentials. For more information about
providing a shared credentials file, see Loading Credentials in Node.js from the Shared

Credentials File.

» Create a DynamoDB table whose items you can access. For more information about creating a
DynamoDB table, see Creating and Using Tables in DynamoDB.

Writing an Item

Create a Node.js module with the file name ddb_putitem. js. Be sure to configure the SDK as
previously shown. To access DynamoDB, create an AWS . DynamoDB service object. Create a JSON

Reading and Writing A Single Item in DynamoDB 127

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/DynamoDB.html#putItem-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/DynamoDB.html#getItem-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/DynamoDB.html#deleteItem-property
https://nodejs.org

Amazon SDK for JavaScript

Developer Guide for SDK v2

object containing the parameters needed to add an item, which in this example includes the name
of the table and a map that defines the attributes to set and the values for each attribute. Call the

putItem method of the DynamoDB service object.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create the DynamoDB service object

var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

var params = {
TableName: "CUSTOMER_LIST",
Item: {
CUSTOMER_ID: { N: "@@1" 1},
CUSTOMER_NAME: { S: "Richard Roe" },
},
i

// Call DynamoDB to add the item to the table
ddb.putItem(params, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Success", data);
}
1)

To run the example, type the following at the command line.

node ddb_putitem.js

This sample code can be found here on GitHub.

Getting an Item

Create a Node.js module with the file name ddb_getitem. js. Be sure to configure the SDK as
previously shown. To access DynamoDB, create an AWS . DynamoDB service object. To identify the
item to get, you must provide the value of the primary key for that item in the table. By default,
the getItem method returns all the attribute values defined for the item. To get only a subset of

all possible attribute values, specify a projection expression.

Reading and Writing A Single Item in DynamoDB

128

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/dynamodb/ddb_putitem.js

Amazon SDK for JavaScript Developer Guide for SDK v2

Create a JSON object containing the parameters needed to get an item, which in this example
includes the name of the table, the name and value of the key for the item you're getting, and
a projection expression that identifies the item attribute you want to retrieve. Call the getItem
method of the DynamoDB service object.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create the DynamoDB service object
var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

var params = {
TableName: "TABLE",
Key: {
KEY_NAME: { N: "@01" 1},
.
ProjectionExpression: "ATTRIBUTE_NAME",
iF

// Call DynamoDB to read the item from the table
ddb.getItem(params, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Success", data.Item);
}
1);

To run the example, type the following at the command line.

node ddb_getitem.js

This sample code can be found here on GitHub.

Deleting an Item

Create a Node.js module with the file name ddb_deleteitem. js. Be sure to configure the SDK
as previously shown. To access DynamoDB, create an AWS .DynamoDB service object. Create a
JSON object containing the parameters needed to delete an item, which in this example includes

Reading and Writing A Single Item in DynamoDB 129

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/dynamodb/ddb_getitem.js

Amazon SDK for JavaScript Developer Guide for SDK v2

the name of the table and both the key name and value for the item you're deleting. Call the
deleteItem method of the DynamoDB service object.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create the DynamoDB service object
var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

var params = {
TableName: "TABLE",
Key: {
KEY_NAME: { N: "VALUE" },
1,
%

// Call DynamoDB to delete the item from the table
ddb.deleteItem(params, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Success", data);
}
3

To run the example, type the following at the command line.

node ddb_deleteitem.js

This sample code can be found here on GitHub.

Reading and Writing Items in Batch in DynamoDB

node

This Node.js code example shows:

Reading and Writing Items in Batch in DynamoDB 130

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/dynamodb/ddb_deleteitem.js

Amazon SDK for JavaScript Developer Guide for SDK v2

» How to read and write batches of items in a DynamoDB table.

The Scenario

In this example, you use a series of Node.js modules to put a batch of items in a DynamoDB table
as well as read a batch of items. The code uses the SDK for JavaScript to perform batch read and
write operations using these methods of the DynamoDB client class:

+ batchGetltem

+ batchWriteltem

Prerequisite Tasks
To set up and run this example, first complete these tasks:

« Install Node.js. For more information, see the Node.js website.

» Create a shared configurations file with your user credentials. For more information about
providing a shared credentials file, see Loading Credentials in Node.js from the Shared

Credentials File.

» Create a DynamoDB table whose items you can access. For more information about creating a
DynamoDB table, see Creating and Using Tables in DynamoDB.

Reading Items in Batch

Create a Node.js module with the file name ddb_batchgetitem. js. Be sure to configure the SDK
as previously shown. To access DynamoDB, create an AWS . DynamoDB service object. Create a JSON
object containing the parameters needed to get a batch of items, which in this example includes
the name of one or more tables from which to read, the values of keys to read in each table, and
the projection expression that specifies the attributes to return. Call the batchGetItem method of
the DynamoDB service object.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create DynamoDB service object
var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

Reading and Writing Items in Batch in DynamoDB 131

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/DynamoDB.html#batchGetItem-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/DynamoDB.html#batchWriteItem-property
https://nodejs.org

Amazon SDK for JavaScript Developer Guide for SDK v2

var params = {
RequestItems: {
TABLE_NAME: {
Keys: [
{ KEY_NAME: { N: "KEY_VALUE_1" } 1},
{ KEY_NAME: { N: "KEY_VALUE_2" } 1},
{ KEY_NAME: { N: "KEY_VALUE_3" } 1},

1,
ProjectionExpression: "KEY_NAME, ATTRIBUTE",
},
.
};
ddb.batchGetItem(params, function (err, data) {
if (err) {
console.log("Error", err);
} else {

data.Responses.TABLE_NAME.forEach(function (element, index, array) {
console.log(element);
1);
}
1);

To run the example, type the following at the command line.

node ddb_batchgetitem.js

This sample code can be found here on GitHub.

Writing Items in Batch

Create a Node.js module with the file name ddb_batchwriteitem. js. Be sure to configure the
SDK as previously shown. To access DynamoDB, create an AWS.DynamoDB service object. Create
a JSON object containing the parameters needed to get a batch of items, which in this example
includes the table into which you want to write items, the key(s) you want to write for each item,
and the attributes along with their values. Call the batchWriteItem method of the DynamoDB
service object.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region

Reading and Writing Items in Batch in DynamoDB 132

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/dynamodb/ddb_batchgetitem.js

Amazon SDK for JavaScript Developer Guide for SDK v2

AWS.config.update({ region: "REGION" });

// Create DynamoDB service object
var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

var params = {
RequestItems: {
TABLE_NAME: [

{
PutRequest: {
Item: {
KEY: { N: "KEY_VALUE" },
ATTRIBUTE_1: { S: "ATTRIBUTE_1_VALUE" 1},
ATTRIBUTE_2: { N: "ATTRIBUTE_2_VALUE" },
},
.
},
{
PutRequest: {
Item: {
KEY: { N: "KEY_VALUE" 1},
ATTRIBUTE_1: { S: "ATTRIBUTE_1_VALUE" 1},
ATTRIBUTE_2: { N: "ATTRIBUTE_2_VALUE" 1},
.
},
.
1,
.
};
ddb.batchWriteItem(params, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Success", data);
}
1);

To run the example, type the following at the command line.

node ddb_batchwriteitem. js

This sample code can be found here on GitHub.

Reading and Writing Items in Batch in DynamoDB 133

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/dynamodb/ddb_batchwriteitem.js

Amazon SDK for JavaScript Developer Guide for SDK v2

Querying and Scanning a DynamoDB Table

nade

This Node.js code example shows:

« How to query and scan a DynamoDB table for items.

The Scenario

Querying finds items in a table or a secondary index using only primary key attribute values. You
must provide a partition key name and a value for which to search. You can also provide a sort key
name and value, and use a comparison operator to refine the search results. Scanning finds items
by checking every item in the specified table.

In this example, you use a series of Node.js modules to identify one or more items you want to
retrieve from a DynamoDB table. The code uses the SDK for JavaScript to query and scan tables
using these methods of the DynamoDB client class:

e quer

e SCan

Prerequisite Tasks

To set up and run this example, first complete these tasks:

« Install Node.js. For more information, see the Node.js website.

» Create a shared configurations file with your user credentials. For more information about
providing a shared credentials file, see Loading Credentials in Node.js from the Shared
Credentials File.

» Create a DynamoDB table whose items you can access. For more information about creating a
DynamoDB table, see Creating and Using Tables in DynamoDB.

Querying and Scanning a DynamoDB Table 134

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/DynamoDB.html#query-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/DynamoDB.html#scan-property
https://nodejs.org

Amazon SDK for JavaScript Developer Guide for SDK v2

Querying a Table

This example queries a table that contains episode information about a video series, returning
the episode titles and subtitles of second season episodes past episode 9 that contain a specified
phrase in their subtitle.

Create a Node.js module with the file name ddb_query. js. Be sure to configure the SDK

as previously shown. To access DynamoDB, create an AWS . DynamoDB service object. Create

a JSON object containing the parameters needed to query the table, which in this example
includes the table name, the ExpressionAttributeValues needed by the query, a
KeyConditionExpression that uses those values to define which items the query returns, and
the names of attribute values to return for each item. Call the query method of the DynamoDB
service object.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create DynamoDB service object
var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

var params = {

ExpressionAttributeValues: {

"is": { N: o "2" 3,

":e": { N: "Q9" },

":topic": { S: "PHRASE" 1},
},
KeyConditionExpression: "Season = :s and Episode > :e",
ProjectionExpression: "Episode, Title, Subtitle",
FilterExpression: "contains (Subtitle, :topic)",
TableName: "EPISODES_TABLE",

i
ddb.query(params, function (err, data) {
if (err) {
console.log("Error", err);
} else {

//console.log("Success", data.Items);

data.Items.forEach(function (element, index, array) {
console.log(element.Title.S + " (" + element.Subtitle.S + ")");

1)

Querying and Scanning a DynamoDB Table 135

Amazon SDK for JavaScript Developer Guide for SDK v2

}
1)

To run the example, type the following at the command line.

node ddb_query.js

This sample code can be found here on GitHub.

Scanning a Table

Create a Node.js module with the file name ddb_scan. js. Be sure to configure the SDK as
previously shown. To access DynamoDB, create an AWS . DynamoDB service object. Create a JSON
object containing the parameters needed to scan the table for items, which in this example
includes the name of the table, the list of attribute values to return for each matching item, and an
expression to filter the result set to find items containing a specified phrase. Call the scan method
of the DynamoDB service object.

// Load the AWS SDK for Node.js.

var AWS = require("aws-sdk");

// Set the AWS Region.
AWS.config.update({ region: "REGION" });

// Create DynamoDB service object.
var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

const params = {
// Specify which items in the results are returned.
FilterExpression: "Subtitle = :topic AND Season = :s AND Episode = :e",
// Define the expression attribute value, which are substitutes for the values you
want to compare.
ExpressionAttributeValues: {
":topic": { S: "SubTitle2" 3},
"is": { N: 113,
":e": { N: 2 3},
},
// Set the projection expression, which are the attributes that you want.
ProjectionExpression: "Season, Episode, Title, Subtitle",
TableName: "EPISODES_TABLE",
};

ddb.scan(params, function (err, data) {

Querying and Scanning a DynamoDB Table 136

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/dynamodb/ddb_query.js

Amazon SDK for JavaScript Developer Guide for SDK v2

if (err) {
console.log("Error", err);
} else {
console.log("Success", data);
data.Items.forEach(function (element, index, array) {
console.log(
"printing",
element.Title.S + " (" + element.Subtitle.S + ")"
);
1)
}
1)

To run the example, type the following at the command line.

node ddb_scan.js

This sample code can be found here on GitHub.

Using the DynamoDB Document Client

nade

This Node.js code example shows:

» How to access a DynamoDB table using the document client.

The Scenario

The DynamoDB document client simplifies working with items by abstracting the notion of
attribute values. This abstraction annotates native JavaScript types supplied as input parameters,
as well as converts annotated response data to native JavaScript types.

For more information on the DynamoDB Document Client class, see
AWS .DynamoDB.DocumentClient in the APl Reference. For more information on programming

with Amazon DynamoDB, see Programming with DynamoDB in the Amazon DynamoDB Developer
Guide.

Using the DynamoDB Document Client 137

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/dynamodb/ddb_scan.js
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/DynamoDB/DocumentClient.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Programming.html

Amazon SDK for JavaScript Developer Guide for SDK v2

In this example, you use a series of Node.js modules to perform basic operations on a DynamoDB
table using the document client. The code uses the SDK for JavaScript to query and scan tables
using these methods of the DynamoDB Document Client class:

Prerequisite Tasks

To set up and run this example, first complete these tasks:

« Install Node.js. For more information, see the Node.js website.

» Create a shared configurations file with your user credentials. For more information about
providing a shared credentials file, see Loading Credentials in Node.js from the Shared
Credentials File.

» Create a DynamoDB table whose items you can access. For more information about creating a
DynamoDB table using the SDK for JavaScript, see Creating and Using Tables in DynamoDB. You

can also use the DynamoDB console to create a table.

Getting an Item from a Table

Create a Node.js module with the file name ddbdoc_get. js. Be sure to configure the SDK as
previously shown. To access DynamoDB, create an AWS.DynamoDB.DocumentClient object.
Create a JSON object containing the parameters needed get an item from the table, which in this
example includes the name of the table, the name of the hash key in that table, and the value of
the hash key for the item you want to get. Call the get method of the DynamoDB document client.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create DynamoDB document client
var docClient = new AWS.DynamoDB.DocumentClient({ apiVersion: "2012-08-10" });

Using the DynamoDB Document Client 138

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/DynamoDB/DocumentClient.html#get-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/DynamoDB/DocumentClient.html#put-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/DynamoDB/DocumentClient.html#update-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/DynamoDB/DocumentClient.html#query-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/DynamoDB/DocumentClient.html#delete-property
https://nodejs.org
https://console.amazonaws.cn/dynamodb/

Amazon SDK for JavaScript

Developer Guide for SDK v2

var params = {
TableName: "EPISODES_TABLE",
Key: { KEY_NAME: VALUE 1},

i

docClient.get(params, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Success", data.Item);
}
1);

To run the example, type the following at the command line.

node ddbdoc_get.js

This sample code can be found here on GitHub.

Putting an Item in a Table

Create a Node.js module with the file name ddbdoc_put. js. Be sure to configure the SDK as

previously shown. To access DynamoDB, create an AWS.DynamoDB.DocumentClient object.

Create a JSON object containing the parameters needed to write an item to the table, which in

this example includes the name of the table and a description of the item to add or update that

includes the hashkey and value as well as names and values for attributes to set on the item. Call

the put method of the DynamoDB document client.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create DynamoDB document client

var docClient = new AWS.DynamoDB.DocumentClient({ apiVersion:

var params = {
TableName: "TABLE",
Item: {
HASHKEY: VALUE,
ATTRIBUTE_1: "STRING_VALUE",

"2012-08-10" });

Using the DynamoDB Document Client

139

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/dynamodb/ddbdoc_get.js

Amazon SDK for JavaScript Developer Guide for SDK v2

ATTRIBUTE_2: VALUE_2,

.
};
docClient.put(params, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Success", data);
}
1);

To run the example, type the following at the command line.

node ddbdoc_put.js

This sample code can be found here on GitHub.

Updating an Item in a Table

Create a Node.js module with the file name ddbdoc_update. js. Be sure to configure the
SDK as previously shown. To access DynamoDB, create an AWS.DynamoDB.DocumentClient
object. Create a JSON object containing the parameters needed to write an item to the table,
which in this example includes the name of the table, the key of the item to update, a set of
UpdateExpressions that define the attributes of the item to update with tokens you assign
values to in the ExpressionAttributeValues parameters. Call the update method of the
DynamoDB document client.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create DynamoDB document client
var docClient = new AWS.DynamoDB.DocumentClient({ apiVersion: "2012-08-10" });

// Create variables to hold numeric key values
var season = SEASON_NUMBER;
var episode = EPISODES_NUMBER;

var params = {

Using the DynamoDB Document Client 140

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/dynamodb/ddbdoc_put.js

Amazon SDK for JavaScript Developer Guide for SDK v2

TableName: "EPISODES_TABLE",
Key: {
Season: season,
Episode: episode,
},
UpdateExpression: "set Title = :t, Subtitle = :s",
ExpressionAttributeValues: {
":t": "NEW_TITLE",
":s": "NEW_SUBTITLE",

.
};
docClient.update(params, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Success", data);
}
1);

To run the example, type the following at the command line.

node ddbdoc_update.js

This sample code can be found here on GitHub.

Querying a Table

This example queries a table that contains episode information about a video series, returning
the episode titles and subtitles of second season episodes past episode 9 that contain a specified
phrase in their subtitle.

Create a Node.js module with the file name ddbdoc_query. js. Be sure to configure the SDK as
previously shown. To access DynamoDB, create an AWS.DynamoDB.DocumentClient object.
Create a JSON object containing the parameters needed to query the table, which in this example
includes the table name, the ExpressionAttributeValues needed by the query, and a
KeyConditionExpression that uses those values to define which items the query returns. Call
the query method of the DynamoDB document client.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");

Using the DynamoDB Document Client 141

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/dynamodb/ddbdoc_update.js

Amazon SDK for JavaScript Developer Guide for SDK v2

// Set the region
AWS.config.update({ region: "REGION" });

// Create DynamoDB document client
var docClient = new AWS.DynamoDB.DocumentClient({ apiVersion: "2012-08-10" });

var params = {
ExpressionAttributeValues: {

":s": 2,
":e": 9,
":topic": "PHRASE",
I
KeyConditionExpression: "Season = :s and Episode > :e",

FilterExpression: "contains (Subtitle, :topic)",
TableName: "EPISODES_TABLE",

i
docClient.query(params, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Success", data.Items);
}
1)

To run the example, type the following at the command line.

node ddbdoc_query.js

This sample code can be found here on GitHub.

Deleting an Item from a Table

Create a Node.js module with the file name ddbdoc_delete. js. Be sure to configure the SDK

as previously shown. To access DynamoDB, create an AWS.DynamoDB.DocumentClient object.
Create a JSON object containing the parameters needed to delete an item in the table, which in
this example includes the name of the table as well as a the name and value of the hashkey of the
item you want to delete. Call the delete method of the DynamoDB document client.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region

Using the DynamoDB Document Client 142

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/dynamodb/ddbdoc_query.js

Amazon SDK for JavaScript Developer Guide for SDK v2

AWS.config.update({ region: "REGION" });

// Create DynamoDB document client
var docClient = new AWS.DynamoDB.DocumentClient({ apiVersion: "2012-08-10" });

var params = {

Key: {
HASH_KEY: VALUE,
},
TableName: "TABLE",
};
docClient.delete(params, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Success", data);
}
1);

To run the example, type the following at the command line.

node ddbdoc_delete. js

This sample code can be found here on GitHub.

Amazon EC2 Examples

Amazon Elastic Compute Cloud (Amazon EC2) is a web service that provides virtual server hosting
in the cloud. It is designed to make web-scale cloud computing easier for developers by providing
resizeable compute capacity.

45

nede ‘ ‘ ‘|||

—
JavaScript Amazon SDK Elastic Compute
Environments for JavaScript Cloud (EC2)

Amazon EC2 Examples 143

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/dynamodb/ddbdoc_delete.js

Amazon SDK for JavaScript Developer Guide for SDK v2

The JavaScript API for Amazon EC2 is exposed through the AWS . EC2 client class. For more
information about using the Amazon EC2 client class, see Class: AWS.EC2 in the API reference.

Topics

» Creating an Amazon EC2 Instance

« Managing Amazon EC2 Instances

» Working with Amazon EC2 Key Pairs

» Using Regions and Availability Zones with Amazon EC2

» Working with Security Groups in Amazon EC2

» Using Elastic IP Addresses in Amazon EC2

Creating an Amazon EC2 Instance

node

This Node.js code example shows:

» How to create an Amazon EC2 instance from a public Amazon Machine Image (AMI).

« How to create and assign tags to the new Amazon EC2 instance.

About the Example

In this example, you use a Node.js module to create an Amazon EC2 instance and assign both a
key pair and tags to it. The code uses the SDK for JavaScript to create and tag an instance by using
these methods of the Amazon EC2 client class:

e TunInstances

o createTags

Prerequisite Tasks

To set up and run this example, first complete these tasks.

Creating an Amazon EC2 Instance 144

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/EC2.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/EC2.html#runInstances-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/EC2.html#createTags-property

Amazon SDK for JavaScript Developer Guide for SDK v2

« Install Node.js. For more information, see the Node.js website.

« Create a shared configurations file with your user credentials. For more information about
providing a shared credentials file, see Loading Credentials in Node.js from the Shared

Credentials File.

» Create a key pair. For details, see Working with Amazon EC2 Key Pairs. You use the name of the

key pair in this example.

Creating and Tagging an Instance

Create a Node.js module with the file name ec2_createinstances. js. Be sure to configure the
SDK as previously shown.

Create an object to pass the parameters for the runInstances method of the AWS.EC2 client
class, including the name of the key pair to assign and the ID of the AMI to run. To call the
runInstances method, create a promise for invoking an Amazon EC2 service object, passing the
parameters. Then handle the response in the promise callback.

The code next adds a Name tag to a new instance, which the Amazon EC2 console recognizes and
displays in the Name field of the instance list. You can add up to 50 tags to an instance, all of
which can be added in a single call to the createTags method.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Load credentials and set region from JSON file
AWS.config.update({ region: "REGION" });

// Create EC2 service object
var ec2 = new AWS.EC2({ apiVersion: "2016-11-15" });

// AMI is amzn-ami-2011.09.1.x86_64-ebs
var instanceParams = {

ImageId: "AMI_ID",

InstanceType: "t2.micro",

KeyName: "KEY_PAIR_NAME",

MinCount: 1,

MaxCount: 1,

};

// Create a promise on an EC2 service object
var instancePromise = new AWS.EC2({ apiVersion: "2016-11-15" })

Creating an Amazon EC2 Instance 145

https://nodejs.org

Amazon SDK for JavaScript Developer Guide for SDK v2

.runInstances(instanceParams)
.promise();

// Handle promise's fulfilled/rejected states
instancePromise
.then(function (data) {
console.log(data);
var instanceld = data.Instances[@].Instanceld;
console.log("Created instance", instanceld);
// Add tags to the instance
tagParams = {
Resources: [instanceld],
Tags: [
{
Key: "Name",
Value: "SDK Sample",
},
1,
};
// Create a promise on an EC2 service object
var tagPromise = new AWS.EC2({ apiVersion: "2016-11-15" })
.createTags(tagParams)
.promise();
// Handle promise's fulfilled/rejected states
tagPromise
.then(function (data) {
console.log("Instance tagged");
D)
.catch(function (err) {
console.error(err, err.stack);
1);
D)

.catch(function (err) {
console.error(err, err.stack);

1)

To run the example, type the following at the command line.

node ec2_createinstances.js

This sample code can be found here on GitHub.

Creating an Amazon EC2 Instance 146

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ec2/ec2_createinstances.js

Amazon SDK for JavaScript Developer Guide for SDK v2

Managing Amazon EC2 Instances

node

This Node.js code example shows:

How to retrieve basic information about your Amazon EC2 instances.

How to start and stop detailed monitoring of an Amazon EC2 instance.

How to start and stop an Amazon EC2 instance.

How to reboot an Amazon EC2 instance.

The Scenario

In this example, you use a series of Node.js modules to perform several basic instance management
operations. The Node.js modules use the SDK for JavaScript to manage instances by using these
Amazon EC2 client class methods:

e describeInstances

e monitorInstances

e unmonitorInstances

e startInstances

e stopInstances

e rebootInstances

For more information about the lifecycle of Amazon EC2 instances, see Instance Lifecycle in the
Amazon EC2 User Guide.

Prerequisite Tasks

To set up and run this example, first complete these tasks:

« Install Node.js. For more information about installing Node.js, see the Node.js website.

Managing Amazon EC2 Instances 147

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/EC2.html#describeInstances-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/EC2.html#monitorInstances-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/EC2.html#unmonitorInstances-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/EC2.html#startInstances-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/EC2.html#stopInstances-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/EC2.html#rebootInstances-property
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/ec2-instance-lifecycle.html
https://nodejs.org

Amazon SDK for JavaScript Developer Guide for SDK v2

» Create a shared configurations file with your user credentials. For more information about
providing a shared credentials file, see Loading Credentials in Node.js from the Shared

Credentials File.

» Create an Amazon EC2 instance. For more information about creating Amazon EC2 instances, see
Amazon EC2 Instances in the Amazon EC2 User Guide or Amazon EC2 Instances in the Amazon
EC2 User Guide.

Describing Your Instances

Create a Node.js module with the file name ec2_describeinstances. js. Be sure to configure
the SDK as previously shown. To access Amazon EC2, create an AWS . EC2 service object. Call the
describeInstances method of the Amazon EC2 service object to retrieve a detailed description
of your instances.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create EC2 service object
var ec2 = new AWS.EC2({ apiVersion: "2016-11-15" });

var params = {
DryRun: false,
}i?

// Call EC2 to retrieve policy for selected bucket
ec2.describeInstances(params, function (err, data) {

if (err) {
console.log("Error", err.stack);
} else {
console.log("Success", JSON.stringify(data));
}
1)

To run the example, type the following at the command line.

node ec2_describeinstances.js

This sample code can be found here on GitHub.

Managing Amazon EC2 Instances 148

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/Instances.html
https://docs.amazonaws.cn/AWSEC2/latest/WindowsGuide/Instances.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ec2/ec2_describeinstances.js

Amazon SDK for JavaScript Developer Guide for SDK v2

Managing Instance Monitoring

Create a Node.js module with the file name ec2_monitorinstances. js. Be sure to configure
the SDK as previously shown. To access Amazon EC2, create an AWS . EC2 service object. Add the
instance IDs of the instances for which you want to control monitoring.

Based on the value of a command-line argument (ON or OFF), call either the monitorInstances
method of the Amazon EC2 service object to begin detailed monitoring of the specified instances
or call the unmonitorInstances method. Use the DryRun parameter to test whether you have
permission to change instance monitoring before you attempt to change the monitoring of these
instances.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create EC2 service object
var ec2 = new AWS.EC2({ apiVersion: "2016-11-15" });

var params = {
InstancelIds: ["INSTANCE_ID"],
DryRun: true,

};
if (process.argv[2].toUpperCase() === "ON") {
// Call EC2 to start monitoring the selected instances
ec2.monitorInstances(params, function (err, data) {
if (err && err.code === "DryRunOperation") {
params.DryRun = false;
ec2.monitorInstances(params, function (err, data) {
if (err) {
console.log("Error", err);
} else if (data) {
console.log("Success", data.InstanceMonitorings);
}
1)
} else {
console.log("You don't have permission to change instance monitoring.");
}
1)
} else if (process.argv[2].toUpperCase() === "OFF") {

Managing Amazon EC2 Instances 149

Amazon SDK for JavaScript Developer Guide for SDK v2

// Call EC2 to stop monitoring the selected instances
ec2.unmonitorInstances(params, function (err, data) {
if (err && err.code === "DryRunOperation") {
params.DryRun = false;
ec2.unmonitorInstances(params, function (err, data) {
if (err) {
console.log("Error", err);
} else if (data) {
console.log("Success", data.InstanceMonitorings);
}
1);
} else {
console.log("You don't have permission to change instance monitoring.");
}
1);

To run the example, type the following at the command line, specifying ON to begin detailed
monitoring or OFF to discontinue monitoring.

node ec2_monitorinstances.js ON

This sample code can be found here on GitHub.

Starting and Stopping Instances

Create a Node.js module with the file name ec2_startstopinstances. js. Be sure to configure
the SDK as previously shown. To access Amazon EC2, create an AWS . EC2 service object. Add the
instance IDs of the instances you want to start or stop.

Based on the value of a command-line argument (START or STOP), call either the
startInstances method of the Amazon EC2 service object to start the specified instances, or
the stopInstances method to stop them. Use the DryRun parameter to test whether you have
permission before actually attempting to start or stop the selected instances.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create EC2 service object

Managing Amazon EC2 Instances 150

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ec2/ec2_monitorinstances.js

Amazon SDK for JavaScript Developer Guide for SDK v2

var ec2 = new AWS.EC2({ apiVersion: "2016-11-15" });

var params = {
Instancelds: [process.argv[3]],
DryRun: true,

};

if (process.argv[2].toUpperCase() === "START") {
// Call EC2 to start the selected instances
ec2.startInstances(params, function (err, data) {
if (err && err.code === "DryRunOperation") {
params.DryRun = false;
ec2.startInstances(params, function (err, data) {
if (err) {
console.log("Error", err);
} else if (data) {
console.log("Success", data.StartingInstances);
}
1);
} else {
console.log("You don't have permission to start instances.");
}
1);

} else if (process.argv[2].toUpperCase() === "STOP") {
// Call EC2 to stop the selected instances
ec2.stopInstances(params, function (err, data) {

if (err && err.code === "DryRunOperation") {
params.DryRun = false;
ec2.stopInstances(params, function (err, data) {
if (err) {
console.log("Error", err);
} else if (data) {
console.log("Success", data.StoppingInstances);
}
1);
} else {
console.log("You don't have permission to stop instances");
}
1);

To run the example, type the following at the command line specifying START to start the
instances or STOP to stop them.

Managing Amazon EC2 Instances 151

Amazon SDK for JavaScript Developer Guide for SDK v2

node ec2_startstopinstances.js START INSTANCE_ID

This sample code can be found here on GitHub.

Rebooting Instances

Create a Node.js module with the file name ec2_rebootinstances. js. Be sure to configure

the SDK as previously shown. To access Amazon EC2, create an Amazon EC2 service object. Add
the instance IDs of the instances you want to reboot. Call the rebootInstances method of

the AWS . EC2 service object to reboot the specified instances. Use the DryRun parameter to test
whether you have permission to reboot these instances before actually attempting to reboot them.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create EC2 service object
var ec2 = new AWS.EC2({ apiVersion: "2016-11-15" });

var params = {
Instancelds: ["INSTANCE_ID"],
DryRun: true,

I

// Call EC2 to reboot instances
ec2.rebootInstances(params, function (err, data) {
if (err && err.code === "DryRunOperation") {
params.DryRun = false;
ec2.rebootInstances(params, function (err, data) {
if (err) {
console.log("Error", err);
} else if (data) {
console.log("Success", data);
}
});
} else {
console.log("You don't have permission to reboot instances.");
}
});

To run the example, type the following at the command line.

Managing Amazon EC2 Instances 152

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ec2/ec2_startstopinstances.js

Amazon SDK for JavaScript Developer Guide for SDK v2

node ec2_rebootinstances.js

This sample code can be found here on GitHub.

Working with Amazon EC2 Key Pairs

nade

This Node.js code example shows:

« How to retrieve information about your key pairs.
» How to create a key pair to access an Amazon EC2 instance.

» How to delete an existing key pair.

The Scenario

Amazon EC2 uses public—key cryptography to encrypt and decrypt login information. Public—key
cryptography uses a public key to encrypt data, then the recipient uses the private key to decrypt
the data. The public and private keys are known as a key pair.

In this example, you use a series of Node.js modules to perform several Amazon EC2 key pair
management operations. The Node.js modules use the SDK for JavaScript to manage instances by
using these methods of the Amazon EC2 client class:

» createKeyPair

o deleteKeyPair

o describeKeyPairs

For more information about the Amazon EC2 key pairs, see Amazon EC2 Key Pairs in the Amazon

EC2 User Guide or Amazon EC2 Key Pairs and Windows Instances in the Amazon EC2 User Guide.

Prerequisite Tasks

To set up and run this example, first complete these tasks:

Working with Amazon EC2 Key Pairs 153

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ec2/ec2_rebootinstances.js
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/EC2.html#createKeyPair-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/EC2.html#deleteKeyPair-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/EC2.html#describeKeyPairs-property
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.amazonaws.cn/AWSEC2/latest/WindowsGuide/ec2-key-pairs.html

Amazon SDK for JavaScript Developer Guide for SDK v2

« Install Node.js. For more information about installing Node.js, see the Node.js website.

» Create a shared configurations file with your user credentials. For more information about
providing a shared credentials file, see Loading Credentials in Node.js from the Shared
Credentials File.

Describing Your Key Pairs

Create a Node.js module with the file name ec2_describekeypairs. js. Be sure to configure
the SDK as previously shown. To access Amazon EC2, create an AWS . EC2 service object. Create

an empty JSON object to hold the parameters needed by the describeKeyPairs method to
return descriptions for all your key pairs. You can also provide an array of names of key pairs in the
KeyName portion of the parameters in the JSON file to the describeKeyPairs method.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create EC2 service object
var ec2 = new AWS.EC2({ apiVersion: "2016-11-15" });

// Retrieve key pair descriptions; no params needed
ec2.describeKeyPairs(function (err, data) {

if (err) {
console.log("Error", err);
} else {
console.log("Success", JSON.stringify(data.KeyPairs));
}
h))5

To run the example, type the following at the command line.

node ec2_describekeypairs.js

This sample code can be found here on GitHub.

Creating a Key Pair

Each key pair requires a name. Amazon EC2 associates the public key with the name that you
specify as the key name. Create a Node.js module with the file name ec2_createkeypair.js. Be

Working with Amazon EC2 Key Pairs 154

https://nodejs.org
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ec2/ec2_describekeypairs.js

Amazon SDK for JavaScript Developer Guide for SDK v2

sure to configure the SDK as previously shown. To access Amazon EC2, create an AWS . EC2 service
object. Create the JSON parameters to specify the name of the key pair, then pass them to call the
createKeyPair method.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create EC2 service object
var ec2 = new AWS.EC2({ apiVersion: "2016-11-15" });

var params = {
KeyName: "KEY_PAIR_NAME",
};

// Create the key pair
ec2.createKeyPair(params, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log(JSON.stringify(data));
}
1)

To run the example, type the following at the command line.

node ec2_createkeypair.js

This sample code can be found here on GitHub.

Deleting a Key Pair

Create a Node.js module with the file name ec2_deletekeypair. js. Be sure to configure
the SDK as previously shown. To access Amazon EC2, create an AWS . EC2 service object. Create
the JSON parameters to specify the name of the key pair you want to delete. Then call the
deleteKeyPair method.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region

Working with Amazon EC2 Key Pairs 155

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ec2/ec2_createkeypair.js

Amazon SDK for JavaScript Developer Guide for SDK v2

AWS.config.update({ region: "REGION" });

// Create EC2 service object
var ec2 = new AWS.EC2({ apiVersion: "2016-11-15" });

var params = {
KeyName: "KEY_PAIR_NAME",
13

// Delete the key pair
ec2.deleteKeyPair(params, function (err, data) {

if (err) {
console.log("Error", err);
} else {
console.log("Key Pair Deleted");
}
1);

To run the example, type the following at the command line.

node ec2_deletekeypair.js

This sample code can be found here on GitHub.

Using Regions and Availability Zones with Amazon EC2

nade

This Node.js code example shows:

» How to retrieve descriptions for Regions and Availability Zones.

The Scenario

Amazon EC2 is hosted in multiple locations worldwide. These locations are composed of Regions
and Availability Zones. Each Region is a separate geographic area. Each Region has multiple,
isolated locations known as Availability Zones. Amazon EC2 provides the ability to place instances
and data in multiple locations.

Using Regions and Availability Zones with Amazon EC2 156

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ec2/ec2_deletekeypair.js

Amazon SDK for JavaScript Developer Guide for SDK v2

In this example, you use a series of Node.js modules to retrieve details about Regions and
Availability Zones. The Node.js modules use the SDK for JavaScript to manage instances by using
the following methods of the Amazon EC2 client class:

o describeAvailabilityZones

» describeRegions

For more information about Regions and Availability Zones, see Regions and Availability Zones in
the Amazon EC2 User Guide or Regions and Availability Zones in the Amazon EC2 User Guide.

Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

« Install Node.js. For more information about installing Node.js, see the Node.js website.

» Create a shared configurations file with your user credentials. For more information about
providing a shared credentials file, see Loading Credentials in Node.js from the Shared

Credentials File.

Describing Regions and Availability Zones

Create a Node.js module with the file name ec2_describeregionsandzones. js. Be sure to
configure the SDK as previously shown. To access Amazon EC2, create an AWS . EC2 service object.
Create an empty JSON object to pass as parameters, which returns all available descriptions. Then
call the describeRegions and describeAvailabilityZones methods.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create EC2 service object
var ec2 = new AWS.EC2({ apiVersion: "2016-11-15" });

var params = {};
// Retrieves all regions/endpoints that work with EC2

ec2.describeRegions(params, function (err, data) {
if (err) {

Using Regions and Availability Zones with Amazon EC2 157

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/EC2.html#describeAvailabilityZones-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/EC2.html#describeRegions-property
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://docs.amazonaws.cn/AWSEC2/latest/WindowsGuide/using-regions-availability-zones.html
https://nodejs.org

Amazon SDK for JavaScript Developer Guide for SDK v2

console.log("Error", err);
} else {
console.log("Regions:

, data.Regions);
}
1)

// Retrieves availability zones only for region of the ec2 service object
ec2.describeAvailabilityZones(params, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Availability Zones: ", data.AvailabilityZones);
}
18

To run the example, type the following at the command line.

node ec2_describeregionsandzones.js

This sample code can be found here on GitHub.

Working with Security Groups in Amazon EC2

node

This Node.js code example shows:

» How to retrieve information about your security groups.
» How to create a security group to access an Amazon EC2 instance.

« How to delete an existing security group.

The Scenario

An Amazon EC2 security group acts as a virtual firewall that controls the traffic for one or more
instances. You add rules to each security group to allow traffic to or from its associated instances.
You can modify the rules for a security group at any time; the new rules are automatically applied
to all instances that are associated with the security group.

Working with Security Groups in Amazon EC2 158

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ec2/ec2_describeregionsandzones.js

Amazon SDK for JavaScript Developer Guide for SDK v2

In this example, you use a series of Node.js modules to perform several Amazon EC2 operations
involving security groups. The Node.js modules use the SDK for JavaScript to manage instances by
using the following methods of the Amazon EC2 client class:

e describeSecurityGroups

e authorizeSecurityGroupIngress

e createSecurityGroup

o describeVpcs

o deleteSecurityGroup

For more information about the Amazon EC2 security groups, see Amazon EC2 Amazon Security
Groups for Linux Instances in the Amazon EC2 User Guide or Amazon EC2 Security Groups for
Windows Instances in the Amazon EC2 User Guide.

Prerequisite Tasks
To set up and run this example, first complete these tasks:

« Install Node.js. For more information about installing Node.js, see the Node.js website.

» Create a shared configurations file with your user credentials. For more information about
providing a shared credentials file, see Loading Credentials in Node.js from the Shared
Credentials File.

Describing Your Security Groups

Create a Node.js module with the file name ec2_describesecuritygroups. js. Be sure to
configure the SDK as previously shown. To access Amazon EC2, create an AWS . EC2 service object.
Create a JSON object to pass as parameters, including the group IDs for the security groups you
want to describe. Then call the describeSecurityGroups method of the Amazon EC2 service
object.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create EC2 service object
var ec2 = new AWS.EC2({ apiVersion: "2016-11-15" });

Working with Security Groups in Amazon EC2 159

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/EC2.html#describeSecurityGroups-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/EC2.html#authorizeSecurityGroupIngress-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/EC2.html#createSecurityGroup-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/EC2.html#describeVpcs-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/EC2.html#deleteSecurityGroup-property
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/using-network-security.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/using-network-security.html
https://docs.amazonaws.cn/AWSEC2/latest/WindowsGuide/using-network-security.html
https://docs.amazonaws.cn/AWSEC2/latest/WindowsGuide/using-network-security.html
https://nodejs.org

Amazon SDK for JavaScript Developer Guide for SDK v2

var params = {
GroupIds: ["SECURITY_GROUP_ID"],
13

// Retrieve security group descriptions
ec2.describeSecurityGroups(params, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Success", JSON.stringify(data.SecurityGroups));
}
1);

To run the example, type the following at the command line.

node ec2_describesecuritygroups.js

This sample code can be found here on GitHub.

Creating a Security Group and Rules

Create a Node.js module with the file name ec2_createsecuritygroup. js. Be sure to
configure the SDK as previously shown. To access Amazon EC2, create an AWS . EC2 service object.
Create a JSON object for the parameters that specify the name of the security group, a description,
and the ID for the VPC. Pass the parameters to the createSecurityGroup method.

After you successfully create the security group, you can define rules for allowing inbound
traffic. Create a JSON object for parameters that specify the IP protocol and inbound
ports on which the Amazon EC2 instance will receive traffic. Pass the parameters to the
authorizeSecurityGroupIngress method.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Load credentials and set region from JSON file
AWS.config.update({ region: "REGION" });

// Create EC2 service object
var ec2 = new AWS.EC2({ apiVersion: "2016-11-15" });

// Variable to hold a ID of a VPC
var vpc = null;

Working with Security Groups in Amazon EC2 160

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ec2/ec2_describesecuritygroups.js

Amazon SDK for JavaScript

Developer Guide for SDK v2

// Retrieve the ID of a VPC
ec2.describeVpcs(function (err, data) {
if (err) {
console.log("Cannot retrieve a VPC", err);
} else {
vpc = data.Vpcs[0].Vpcld;
var paramsSecurityGroup = {
Description: "DESCRIPTION",
GroupName: "SECURITY_GROUP_NAME",
VpcId: vpc,
I

// Create the instance

ec2.createSecurityGroup(paramsSecurityGroup, function (err, data) {

if (err) {
console.log("Error", err);
} else {
var SecurityGroupId = data.GroupIld;
console.log("Success", SecurityGroupId);
var paramsIngress = {
GroupId: "SECURITY_GROUP_ID",
IpPermissions: [
{
IpProtocol: "tcp",
FromPort: 80,
ToPort: 80,
IpRanges: [{ CidrIp: "0.0.0.0/0" }1,
I
{
IpProtocol: "tcp",
FromPort: 22,

ToPort: 22,
IpRanges: [{ CidrIp: "0.0.0.0/0" }1,
.
1,
I
ec2.authorizeSecurityGroupIngress(paramsIngress, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Ingress Successfully Set", data);
}
1);

Working with Security Groups in Amazon EC2

161

Amazon SDK for JavaScript Developer Guide for SDK v2

1)
}
1)

To run the example, type the following at the command line.

node ec2_createsecuritygroup.js

This sample code can be found here on GitHub.

Deleting a Security Group

Create a Node.js module with the file name ec2_deletesecuritygroup. js. Be sure to
configure the SDK as previously shown. To access Amazon EC2, create an AWS . EC2 service object.
Create the JSON parameters to specify the name of the security group to delete. Then call the
deleteSecurityGroup method.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create EC2 service object
var ec2 = new AWS.EC2({ apiVersion: "2016-11-15" 3});

var params = {
GroupId: "SECURITY_GROUP_ID",
i

// Delete the security group
ec2.deleteSecurityGroup(params, function (err, data) {

if (err) {
console.log("Error", err);
} else {
console.log("Security Group Deleted");
}
1)

To run the example, type the following at the command line.

node ec2_deletesecuritygroup.js

Working with Security Groups in Amazon EC2 162

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ec2/ec2_createsecuritygroup.js

Amazon SDK for JavaScript Developer Guide for SDK v2

This sample code can be found here on GitHub.

Using Elastic IP Addresses in Amazon EC2

node

This Node.js code example shows:

» How to retrieve descriptions of your Elastic IP addresses.
« How to allocate and release an Elastic IP address.

« How to associate an Elastic IP address with an Amazon EC2 instance.

The Scenario

An Elastic IP address is a static IP address designed for dynamic cloud computing. An Elastic IP
address is associated with your Amazon account. It is a public IP address, which is reachable from
the Internet. If your instance does not have a public IP address, you can associate an Elastic IP
address with your instance to enable communication with the Internet.

In this example, you use a series of Node.js modules to perform several Amazon EC2 operations
involving Elastic IP addresses. The Node.js modules use the SDK for JavaScript to manage Elastic IP
addresses by using these methods of the Amazon EC2 client class:

e describeAddresses

e allocateAddress

e associateAddress

e releaseAddress

For more information about Elastic IP addresses in Amazon EC2, see Elastic IP Addresses in the
Amazon EC2 User Guide or Elastic IP Addresses in the Amazon EC2 User Guide.

Prerequisite Tasks
To set up and run this example, first complete these tasks:

« Install Node.js. For more information about installing Node.js, see the Node.js website.

Using Elastic IP Addresses in Amazon EC2 163

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ec2/ec2_deletesecuritygroup.js
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/EC2.html#describeAddresses-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/EC2.html#allocateAddress-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/EC2.html#associateAddress-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/EC2.html#releaseAddress-property
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html
https://docs.amazonaws.cn/AWSEC2/latest/WindowsGuide/elastic-ip-addresses-eip.html
https://nodejs.org

Amazon SDK for JavaScript Developer Guide for SDK v2

» Create a shared configurations file with your user credentials. For more information about
providing a shared credentials file, see Loading Credentials in Node.js from the Shared

Credentials File.

» Create an Amazon EC2 instance. For more information about creating Amazon EC2 instances, see
Amazon EC2 Instances in the Amazon EC2 User Guide or Amazon EC2 Instances in the Amazon
EC2 User Guide.

Describing Elastic IP Addresses

Create a Node.js module with the file name ec2_describeaddresses. js. Be sure to configure
the SDK as previously shown. To access Amazon EC2, create an AWS. EC2 service object. Create

a JSON object to pass as parameters, filtering the addresses returned by those in your VPC. To
retrieve descriptions of all your Elastic IP addresses, omit a filter from the parameters JSON. Then
call the describeAddresses method of the Amazon EC2 service object.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create EC2 service object
var ec2 = new AWS.EC2({ apiVersion: "2016-11-15" });

var params = {
Filters: [{ Name: "domain", Values: ["vpc"] }1,

Iy

// Retrieve Elastic IP address descriptions
ec2.describeAddresses(params, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Success", JSON.stringify(data.Addresses));
}
1)

To run the example, type the following at the command line.

node ec2_describeaddresses.js

Using Elastic IP Addresses in Amazon EC2 164

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/Instances.html
https://docs.amazonaws.cn/AWSEC2/latest/WindowsGuide/Instances.html

Amazon SDK for JavaScript Developer Guide for SDK v2

This sample code can be found here on GitHub.

Allocating and Associating an Elastic IP Address with an Amazon EC2 Instance

Create a Node.js module with the file name ec2_allocateaddress. js. Be sure to configure the
SDK as previously shown. To access Amazon EC2, create an AWS . EC2 service object. Create a JSON
object for the parameters used to allocate an Elastic IP address, which in this case specifies the
Domainis a VPC. Call the allocateAddress method of the Amazon EC2 service object.

If the call succeeds, the data parameter to the callback function has an AllocationId property
that identifies the allocated Elastic IP address.

Create a JSON object for the parameters used to associate an Elastic IP address to an Amazon EC2
instance, including the AllocationId from the newly allocated address and the Instanceld

of the Amazon EC2 instance. Then call the associateAddresses method of the Amazon EC2
service object.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create EC2 service object
var ec2 = new AWS.EC2({ apiVersion: "2016-11-15" });

var paramsAllocateAddress = {
Domain: "vpc",

i

// Allocate the Elastic IP address
ec2.allocateAddress(paramsAllocateAddress, function (err, data) {
if (err) {
console.log("Address Not Allocated", err);
} else {
console.log("Address allocated:", data.AllocationId);
var paramsAssociateAddress = {
AllocationId: data.AllocationId,
InstanceId: "INSTANCE_ID",
i
// Associate the new Elastic IP address with an EC2 instance
ec2.associateAddress(paramsAssociateAddress, function (err, data) {
if (err) {

Using Elastic IP Addresses in Amazon EC2 165

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ec2/ec2_describeaddresses.js

Amazon SDK for JavaScript Developer Guide for SDK v2

console.log("Address Not Associated", err);
} else {
console.log("Address associated:", data.AssociationId);
}
1);
}
1);

To run the example, type the following at the command line.

node ec2_allocateaddress.js

This sample code can be found here on GitHub.

Releasing an Elastic IP Address

Create a Node.js module with the file name ec2_releaseaddress. js. Be sure to configure the
SDK as previously shown. To access Amazon EC2, create an AWS . EC2 service object. Create a JSON
object for the parameters used to release an Elastic IP address, which in this case specifies the
AllocationId for the Elastic IP address. Releasing an Elastic IP address also disassociates it from
any Amazon EC2 instance. Call the releaseAddress method of the Amazon EC2 service object.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create EC2 service object
var ec2 = new AWS.EC2({ apiVersion: "2016-11-15" });

var paramsReleaseAddress = {
AllocationId: "ALLOCATION_ID",

1Y

// Disassociate the Elastic IP address from EC2 instance
ec2.releaseAddress(paramsReleaseAddress, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Address released");
}
D)8

Using Elastic IP Addresses in Amazon EC2 166

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ec2/ec2_allocateaddress.js

Amazon SDK for JavaScript Developer Guide for SDK v2

To run the example, type the following at the command line.

node ec2_releaseaddress.js

This sample code can be found here on GitHub.

AWS Elemental MediaConvert Examples

AWS Elemental MediaConvert is a file-based video transcoding service with broadcast-grade
features. You can use it to create assets for broadcast and for video-on-demand (VOD) delivery
across the internet. For more information, see the AWS Elemental MediaConvert User Guide.

The JavaScript API for MediaConvert is exposed through the AWS .MediaConvert client class. For
more information, see Class: AWS.MediaConvert in the API reference.

Topics

« Creating and Managing Transcoding Jobs in MediaConvert

» Using Job Templates in MediaConvert

Creating and Managing Transcoding Jobs in MediaConvert

nade

This Node.js code example shows:

How to create transcoding jobs in MediaConvert.

How to cancel a transcoding job.

How to retrieve the JSON for a completed transcoding job.

How to retrieve a JSON array for up to 20 of the most recently created jobs.

The Scenario

In this example, you use a Node.js module to call MediaConvert to create and manage transcoding
jobs. The code uses the SDK for JavaScript to do this by using these methods of the MediaConvert
client class:

MediaConvert Examples 167

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ec2/ec2_releaseaddress.js
https://docs.amazonaws.cn/mediaconvert/latest/ug/
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/MediaConvert.html

Amazon SDK for JavaScript Developer Guide for SDK v2

createlob
cancelJob

getJob
listJobs

Prerequisite Tasks

To set up and run this example, first complete these tasks:

Install Node.js. For more information, see the Node.js website.

Create a shared configurations file with your user credentials. For more information about
providing a shared credentials file, see Loading Credentials in Node.js from the Shared

Credentials File.

Create and configure Amazon S3 buckets that provide storage for job input files and output files.
For details, see Create Storage for Files in the AWS Elemental MediaConvert User Guide.

Upload the input video to the Amazon S3 bucket you provisioned for input storage. For a list of
supported input video codecs and containers, see Supported Input Codecs and Containers in the
AWS Elemental MediaConvert User Guide.

Create an IAM role that gives MediaConvert access to your input files and the Amazon S3 buckets
where your output files are stored. For details, see Set Up IAM Permissions in the AWS Elemental

MediaConvert User Guide.

Defining a Simple Transcoding Job

Create a Node.js module with the file name emc_createjob. js. Be sure to configure the SDK as

previously shown. Create the JSON that defines the transcode job parameters.

These parameters are quite detailed. You can use the AWS Elemental MediaConvert console to

generate the JSON job parameters by choosing your job settings in the console, and then choosing
Show job JSON at the bottom of the Job section. This example shows the JSON for a simple job.

var params = {
Queue: "JOB_QUEUE_ARN",
UserMetadata: {
Customer: "Amazon",

Iy
Role: "IAM_ROLE_ARN",

Creating and Managing Jobs 168

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/MediaConvert.html#createJob-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/MediaConvert.html#cancelJob-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/MediaConvert.html#getJob-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/MediaConvert.html#listJobs-property
https://nodejs.org
https://docs.aws.amazon.com/mediaconvert/latest/ug/set-up-file-locations.html
https://docs.aws.amazon.com/mediaconvert/latest/ug/reference-codecs-containers-input.html
https://docs.aws.amazon.com/mediaconvert/latest/ug/iam-role.html
https://console.amazonaws.cn/mediaconvert/

Amazon SDK for JavaScript

Developer Guide for SDK v2

Settings: {
OutputGroups:
{

L

Name: "File Group",
OutputGroupSettings: {

Type:

"FILE_GROUP_SETTINGS",

FileGroupSettings: {
Destination: "s3://0UTPUT_BUCKET_NAME/",

}I

1,
Outputs:

{

VideoDescription: {
ScalingBehavior: "DEFAULT",
TimecodeInsertion: "DISABLED",
AntiAlias: "ENABLED",
Sharpness: 50,

CodecSettings: {

Codec: "H_264",
H264Settings: {

InterlaceMode: "PROGRESSIVE",
NumberReferenceFrames: 3,

Syntax: "DEFAULT",

Softness: 0,

GopClosedCadence: 1,

GopSize: 90,

Slices: 1,

GopBReference: "DISABLED",

SlowPal: "DISABLED",
SpatialAdaptiveQuantization: "ENABLED",
TemporalAdaptiveQuantization: "ENABLED",
FlickerAdaptiveQuantization: "DISABLED",
EntropyEncoding: "CABAC",

Bitrate: 5000000,

FramerateControl: "SPECIFIED",
RateControlMode: "CBR",

CodecProfile: "MAIN",

Telecine: '"NONE",

MinIInterval: O,

AdaptiveQuantization: "HIGH",
CodecLevel: "AUTO",

FieldEncoding: "PAFF",
SceneChangeDetect: "ENABLED",
QualityTuninglLevel: "SINGLE_PASS",

Creating and Managing Jobs

169

Amazon SDK for JavaScript

Developer Guide for SDK v2

FramerateConversionAlgorithm: "DUPLICATE_DROP",

UnregisteredSeiTimecode: "DISABLED",
GopSizeUnits: "FRAMES",

ParControl: "SPECIFIED",
NumberBFramesBetweenReferenceFrames: 2,
RepeatPps: "DISABLED",
FramerateNumerator: 30,
FramerateDenominator: 1,

ParNumerator: 1,

ParDenominator: 1,

}I
iy

AfdSignaling: "NONE",
DropFrameTimecode: "ENABLED",
RespondToAfd: "NONE",
ColorMetadata: "INSERT",

}I

AudioDescriptions: [

{

AudioTypeControl: "FOLLOW_INPUT",
CodecSettings: {

Codec: "AAC",

AacSettings: {

iy
}I

AudioDescriptionBroadcasterMix: "NORMAL",
RateControlMode: "CBR",

CodecProfile: "LC",

CodingMode: "CODING_MODE_2_0",

RawFormat: "NONE",

SampleRate: 48000,

Specification: "MPEG4",

Bitrate: 64000,

LanguageCodeControl: "FOLLOW_INPUT",
AudioSourceName: "Audio Selector 1",

iy
]I

ContainerSettings: {
Container: "MP4",
Mp4Settings: {
CslgAtom: "INCLUDE",
FreeSpaceBox: "EXCLUDE",
MoovPlacement: "PROGRESSIVE_DOWNLOAD",

iy

Creating and Managing Jobs

170

Amazon SDK for JavaScript Developer Guide for SDK v2

}I

NameModifier: "_1",
iy
15

},
1,
AdAvailOffset: 0O,
Inputs: [
{
AudioSelectors: {

"Audio Selector 1": {
Offset: O,
DefaultSelection: "NOT_DEFAULT",
ProgramSelection: 1,
SelectorType: "TRACK",
Tracks: [1],

},

.
VideoSelector: {

ColorSpace: "FOLLOW",

},
FilterEnable: "AUTO",
PsiControl: "USE_PSI",
FilterStrength: 0,
DeblockFilter: "DISABLED",
DenoiseFilter: "DISABLED",
TimecodeSource: "EMBEDDED",
FileInput: "s3://INPUT_BUCKET_AND_FILE_NAME",
},
1,
TimecodeConfig: {
Source: "EMBEDDED",
},
.
};

Creating a Transcoding Job

After creating the job parameters JSON, call the createJob method by creating a promise for
invoking an AWS .MediaConvert service object, passing the parameters. Then handle the response
in the promise callback. The ID of the job created is returned in the response data.

// Create a promise on a MediaConvert object

Creating and Managing Jobs 171

Amazon SDK for JavaScript

Developer Guide for SDK v2

var endpointPromise = new AWS.MediaConvert({ apiVersion: "2017-08-29" })
.createJob(params)
.promise();

// Handle promise's fulfilled/rejected status
endpointPromise.then(
function (data) {
console.log("Job created! ", data);
},
function (err) {
console.log("Error", err);
}
);

To run the example, type the following at the command line.

node emc_createjob.js

This sample code can be found here on GitHub.

Canceling a Transcoding Job

Create a Node.js module with the file name emc_canceljob. js. Be sure to configure the SDK
as previously shown. Create the JSON that includes the ID of the job to cancel. Then call the
cancelJob method by creating a promise for invoking an AWS .MediaConvert service object,

passing the parameters. Handle the response in the promise callback.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the Region

AWS.config.update({ region: "us-west-2" });

// Set MediaConvert to customer endpoint
AWS.config.mediaconvert = { endpoint: "ACCOUNT_ENDPOINT" };

var params = {
Id: "JOB_ID" /* required */,
i

// Create a promise on a MediaConvert object

var endpointPromise = new AWS.MediaConvert({ apiVersion: "2017-08-29" })
.cancelJob(params)
.promise();

Creating and Managing Jobs

172

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/mediaconvert/emc_createjob.js

Amazon SDK for JavaScript Developer Guide for SDK v2

// Handle promise's fulfilled/rejected status
endpointPromise.then(
function (data) {
console.log("Job " + params.Id + " is canceled");
.
function (err) {
console.log("Error", err);
}
I

To run the example, type the following at the command line.

node ec2_canceljob.js

This sample code can be found here on GitHub.

Listing Recent Transcoding Jobs

Create a Node.js module with the file name emc_listjobs. js. Be sure to configure the SDK as
previously shown.

Create the parameters JSON, including values to specify whether to sort the list in ASCENDING, or
DESCENDING order, the ARN of the job queue to check, and the status of jobs to include. Then call
the 1istJobs method by creating a promise for invoking an AWS .MediaConvert service object,
passing the parameters. Handle the response in the promise callback.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the Region

AWS.config.update({ region: "us-west-2" });

// Set the customer endpoint

AWS.config.mediaconvert = { endpoint: "ACCOUNT_ENDPOINT" };

var params = {
MaxResults: 10,
Order: "ASCENDING",
Queue: "QUEUE_ARN",
Status: "SUBMITTED",
};

// Create a promise on a MediaConvert object

Creating and Managing Jobs 173

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/mediaconvert/emc_canceljob.js

Amazon SDK for JavaScript

Developer Guide for SDK v2

var endpointPromise = new AWS.MediaConvert({ apiVersion:

.listJobs(params)
.promise();

// Handle promise's fulfilled/rejected status
endpointPromise.then(

function (data) {
console.log("Jobs: ", data);

},

function (err) {
console.log("Error", err);

}

);

To run the example, type the following at the command line.

node emc_listjobs.js

This sample code can be found here on GitHub.

Using Job Templates in MediaConvert

nade

This Node.js code example shows:

How to create MediaConvert job templates.
How to use a job template to create a transcoding job.
How to list all your job templates.

How to delete job templates.

The Scenario

"2017-08-29" })

The JSON required to create a transcoding job in MediaConvert is detailed, containing a large

number of settings. You can greatly simplify job creation by saving known-good settings in a job

template that you can use to create subsequent jobs. In this example, you use a Node.js module to

Using Job Templates

174

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/mediaconvert/emc_listjobs.js

Amazon SDK for JavaScript Developer Guide for SDK v2

call MediaConvert to create, use, and manage job templates. The code uses the SDK for JavaScript
to do this by using these methods of the MediaConvert client class:

createJobTemplate

createJob

deleteJobTemplate

listJobTemplates

Prerequisite Tasks
To set up and run this example, first complete these tasks:

« Install Node.js. For more information, see the Node.js website.

» Create a shared configurations file with your user credentials. For more information about
providing a shared credentials file, see Loading Credentials in Node.js from the Shared
Credentials File.

« Create an IAM role that gives MediaConvert access to your input files and the Amazon S3 buckets
where your output files are stored. For details, see Set Up IAM Permissions in the AWS Elemental
MediaConvert User Guide.

Creating a Job Template

Create a Node.js module with the file name emc_create_jobtemplate. js. Be sure to configure
the SDK as previously shown.

Specify the parameters JSON for template creation. You can use most of the JSON parameters
from a previous successful job to specify the Settings values in the template. This example uses
the job settings from Creating and Managing Transcoding Jobs in MediaConvert.

Call the createJobTemplate method by creating a promise for invoking an AWS .MediaConvert
service object, passing the parameters. Then handle the response in the promise callback.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the Region

AWS.config.update({ region: "us-west-2" });

// Set the custom endpoint for your account
AWS.config.mediaconvert = { endpoint: "ACCOUNT_ENDPOINT" };

Using Job Templates 175

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/MediaConvert.html#createJobTemplate-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/MediaConvert.html#createJob-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/MediaConvert.html#deleteJobTemplate-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/MediaConvert.html#listJobTemplates-property
https://nodejs.org
https://docs.aws.amazon.com/mediaconvert/latest/ug/iam-role.html

Amazon SDK for JavaScript

Developer Guide for SDK v2

var params = {

Category: "YouTube Jobs",

Description: "Final production transcode",
Name: "DemoTemplate",

Queue: "JOB_QUEUE_ARN",

Settings: {
OutputGroups:
{

L

Name: "File Group",
OutputGroupSettings: {

Type:

"FILE_GROUP_SETTINGS",

FileGroupSettings: {
Destination: "s3://BUCKET_NAME/",

}I
iy

Outputs:

{

VideoDescription: {
ScalingBehavior: "DEFAULT",
TimecodeInsertion: "DISABLED",
AntiAlias: "ENABLED",
Sharpness: 50,

CodecSettings: {

Codec: "H_264",
H264Settings: {

InterlaceMode: "PROGRESSIVE",
NumberReferenceFrames: 3,

Syntax: "DEFAULT",

Softness: 0,

GopClosedCadence: 1,

GopSize: 90,

Slices: 1,

GopBReference: "DISABLED",

SlowPal: "DISABLED",
SpatialAdaptiveQuantization: "ENABLED",
TemporalAdaptiveQuantization: "ENABLED",
FlickerAdaptiveQuantization: "DISABLED",
EntropyEncoding: "CABAC",

Bitrate: 5000000,

FramerateControl: "SPECIFIED",
RateControlMode: "CBR",

CodecProfile: "MAIN",

Telecine: '"NONE",

Using Job Templates

176

Amazon SDK for JavaScript

Developer Guide for SDK v2

MinIInterval: O,
AdaptiveQuantization: "HIGH",
CodecLevel: "AUTO",

FieldEncoding: "PAFF",
SceneChangeDetect: "ENABLED",
QualityTuninglLevel: "SINGLE_PASS",

FramerateConversionAlgorithm: "DUPLICATE_DROP",

UnregisteredSeiTimecode: "DISABLED",
GopSizeUnits: "FRAMES",

ParControl: "SPECIFIED",
NumberBFramesBetweenReferenceFrames: 2,
RepeatPps: "DISABLED",
FramerateNumerator: 30,
FramerateDenominator: 1,

ParNumerator: 1,

ParDenominator: 1,

}I
iy

AfdSignaling: "NONE",
DropFrameTimecode: "ENABLED",
RespondToAfd: "NONE",
ColorMetadata: "INSERT",

}I

AudioDescriptions: [

{

AudioTypeControl: "FOLLOW_INPUT",
CodecSettings: {

Codec: "AAC",

AacSettings: {

iy
}I

AudioDescriptionBroadcasterMix: "NORMAL",
RateControlMode: "CBR",

CodecProfile: "LC",

CodingMode: "CODING_MODE_2_0",

RawFormat: "NONE",

SampleRate: 48000,

Specification: "MPEG4",

Bitrate: 64000,

LanguageCodeControl: "FOLLOW_INPUT",
AudioSourceName: "Audio Selector 1",

iy
]I

ContainerSettings: {

Using Job Templates

177

Amazon SDK for JavaScript

Developer Guide for SDK v2

Container: "MP4",
Mp4Settings: {
CslgAtom: "INCLUDE",
FreeSpaceBox: "EXCLUDE",
MoovPlacement: "PROGRESSIVE_DOWNLOAD",
I
},

NameModifier: "_1",

},

1,
},
1,
AdAvailOffset: O,
Inputs: [
{
AudioSelectors: {

"Audio Selector 1": {
Offset: 0,
DefaultSelection: "NOT_DEFAULT",
ProgramSelection: 1,
SelectorType: "TRACK",
Tracks: [1],

},

iy
VideoSelector: {

ColorSpace: "FOLLOW",
},
FilterEnable: "AUTO",
PsiControl: "USE_PSI",
FilterStrength: 0,
DeblockFilter: "DISABLED",
DenoiseFilter: "DISABLED",
TimecodeSource: "EMBEDDED",

I
1,
TimecodeConfig: {

Source: "EMBEDDED",
1,
I

};

// Create a promise on a MediaConvert object
var templatePromise =
.createJobTemplate(params)

new AWS.MediaConvert({ apiVersion:

"2017-08-29" })

Using Job Templates

178

Amazon SDK for JavaScript Developer Guide for SDK v2

.promise();

// Handle promise's fulfilled/rejected status
templatePromise.then(
function (data) {
console.log("Success!", data);

iy
function (err) {
console.log("Error", err);

}
);

To run the example, type the following at the command line.

node emc_create_jobtemplate.js

This sample code can be found here on GitHub.

Creating a Transcoding Job from a Job Template

Create a Node.js module with the file name emc_template_createjob. js. Be sure to configure
the SDK as previously shown.

Create the job creation parameters JSON, including the name of the job template to use, and the
Settings to use that are specific to the job you're creating. Then call the createJobs method
by creating a promise for invoking an AWS .MediaConvert service object, passing the parameters.
Handle the response in the promise callback.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the Region

AWS.config.update({ region: "us-west-2" });

// Set the custom endpoint for your account
AWS.config.mediaconvert = { endpoint: "ACCOUNT_ENDPOINT" };

var params = {
Queue: "QUEUE_ARN",
JobTemplate: "TEMPLATE_NAME",
Role: "ROLE_ARN",
Settings: {
Inputs: [

Using Job Templates 179

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/mediaconvert/emc_create_jobtemplate.js

Amazon SDK for JavaScript

Developer Guide for SDK v2

{

3,
1,
3,
13

AudioSelectors: {
"Audio Selector 1": {
Offset: O,
DefaultSelection: "NOT_DEFAULT",
ProgramSelection: 1,
SelectorType: "TRACK",
Tracks: [1],
},
.
VideoSelector: {
ColorSpace: "FOLLOW",
},
FilterEnable: "AUTO",
PsiControl: "USE_PSI",
FilterStrength: 0,
DeblockFilter: "DISABLED",
DenoiseFilter: "DISABLED",
TimecodeSource: "EMBEDDED",
FileInput: "s3://BUCKET_NAME/FILE_NAME",

// Create a promise on a MediaConvert object

var templateJobPromise = new AWS.MediaConvert({ apiVersion:

.createJob(params)
.promise();

// Handle promise's fulfilled/rejected status
templateJobPromise.then(
function (data) {
console.log("Success! ", data);

}I

function (err) {
console.log("Error", err);

}
);

To run the example, type the following at the command line.

node emc_template_createjob.js

"2017-08-29" })

Using Job Templates

180

Amazon SDK for JavaScript Developer Guide for SDK v2

This sample code can be found here on GitHub.

Listing Your Job Templates

Create a Node.js module with the file name emc_listtemplates. js. Be sure to configure the
SDK as previously shown.

Create an object to pass the request parameters for the 1istTemplates method of the

AWS .MediaConvert client class. Include values to determine what templates to list (NAME,
CREATION DATE, SYSTEM), how many to list, and their sort order. To call the 1istTemplates
method, create a promise for invoking an MediaConvert service object, passing the parameters.
Then handle the response in the promise callback.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the Region

AWS.config.update({ region: "us-west-2" });

// Set the customer endpoint

AWS.config.mediaconvert = { endpoint: "ACCOUNT_ENDPOINT" };

var params = {
ListBy: "NAME",
MaxResults: 10,
Order: "ASCENDING",
I

// Create a promise on a MediaConvert object

var listTemplatesPromise = new AWS.MediaConvert({ apiVersion: "2017-08-29" })
.listJobTemplates(params)
.promise();

// Handle promise's fulfilled/rejected status
listTemplatesPromise.then(
function (data) {
console.log("Success ", data);
},
function (err) {
console.log("Error", err);

}
);

To run the example, type the following at the command line.

Using Job Templates 181

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/mediaconvert/emc_template_createjob.js

Amazon SDK for JavaScript Developer Guide for SDK v2

node emc_listtemplates.js

This sample code can be found here on GitHub.

Deleting a Job Template

Create a Node.js module with the file name emc_deletetemplate. js. Be sure to configure the
SDK as previously shown.

Create an object to pass the name of the job template you want to delete as parameters

for the deleteJobTemplate method of the AWS.MediaConvert client class. To call the
deleteJobTemplate method, create a promise for invoking an MediaConvert service object,
passing the parameters. Handle the response in the promise callback.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the Region

AWS.config.update({ region: "us-west-2" });

// Set the customer endpoint

AWS.config.mediaconvert = { endpoint: "ACCOUNT_ENDPOINT" };

var params = {
Name: "TEMPLATE_NAME",
};

// Create a promise on a MediaConvert object

var deleteTemplatePromise = new AWS.MediaConvert({ apiVersion: "2017-08-29" })
.deleteJobTemplate(params)
.promise();

// Handle promise's fulfilled/rejected status
deleteTemplatePromise.then(
function (data) {
console.log("Success ", data);
},
function (err) {
console.log("Error", err);
}
)E

To run the example, type the following at the command line.

Using Job Templates 182

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/mediaconvert/emc_template_createjob.js

Amazon SDK for JavaScript Developer Guide for SDK v2

node emc_deletetemplate.js

This sample code can be found here on GitHub.

Amazon IAM Examples

Amazon ldentity and Access Management (IAM) is a web service that enables Amazon Web
Services customers to manage users and user permissions in Amazon. The service is targeted at
organizations with multiple users or systems in the cloud that use Amazon products. With 1AM, you
can centrally manage users, security credentials such as access keys, and permissions that control
which Amazon resources users can access.

45
nede
1 . .
| "\-\.,_m '\-\.,_\x‘
JavaScript Amazon 5DK Identity & Access
Environments for JavaScript Management (LAM)

The JavaScript API for IAM is exposed through the AWS. IAM client class. For more information
about using the IAM client class, see Class: AWS.IAM in the API reference.

Topics

Managing IAM Users
Working with 1AM Policies

Managing IAM Access Keys

Working with IAM Server Certificates

Managing IAM Account Aliases

Managing IAM Users

node

Amazon IAM Examples 183

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/mediaconvert/emc_deletetemplate.js
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/IAM.html

Amazon SDK for JavaScript Developer Guide for SDK v2

This Node.js code example shows:

« How to retrieve a list of IAM users.
« How to create and delete users.

» How to update a user name.

The Scenario

In this example, a series of Node.js modules are used to create and manage users in IAM. The
Node.js modules use the SDK for JavaScript to create, delete, and update users using these
methods of the AWS. IAM client class:

e CcreateUser

listUsers

updateUser
getUser

deleteUser

For more information about IAM users, see IAM Users in the IAM User Guide.
Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

« Install Node.js. For more information about installing Node.js, see the Node.js website.

« Create a shared configurations file with your user credentials. For more information about
providing a shared credentials file, see Loading Credentials in Node.js from the Shared

Credentials File.

Creating a User

Create a Node.js module with the file name iam_createuser. js. Be sure to configure the SDK
as previously shown. To access IAM, create an AWS . IAM service object. Create a JSON object
containing the parameters needed, which consists of the user name you want to use for the new
user as a command-line parameter.

Managing IAM Users 184

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/IAM.html#createUser-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/IAM.html#listUsers-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/IAM.html#updateUser-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/IAM.html#getUser-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/IAM.html#deleteUser-property
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users.html
https://nodejs.org

Amazon SDK for JavaScript Developer Guide for SDK v2

Call the getUser method of the AWS . IAM service object to see if the user name already exists.
If the user name does not currently exist, call the createUser method to create it. If the name
already exists, write a message to that effect to the console.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

var params = {
UserName: process.argv[2],

};
iam.getUser(params, function (err, data) {
if (err && err.code === "NoSuchEntity") {
iam.createUser(params, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Success", data);
}
35;
} else {

console.log(
"User " + process.argv[2] + " already exists",
data.User.UserId
);
}
1)

To run the example, type the following at the command line.

node iam_createuser.js USER_NAME

This sample code can be found here on GitHub.

Managing IAM Users 185

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_createuser.js

Amazon SDK for JavaScript Developer Guide for SDK v2

Listing Users in Your Account

Create a Node.js module with the file name iam_listusers. js. Be sure to configure the SDK

as previously shown. To access IAM, create an AWS . IAM service object. Create a JSON object
containing the parameters needed to list your users, limiting the number returned by setting the
MaxItems parameter to 10. Call the 1istUsers method of the AWS.IAM service object. Write the
first user's name and creation date to the console.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

var params = {
MaxItems: 10,
};

iam.listUsers(params, function (err, data) {
if (err) {
console.log("Error", err);
} else {
var users = data.Users || [];
users.forEach(function (user) {
console.log("User " + user.UserName + " created", user.CreateDate);
1)
}
1)

To run the example, type the following at the command line.

node iam_listusers.js

This sample code can be found here on GitHub.

Updating a User's Name

Create a Node.js module with the file name iam_updateuser. js. Be sure to configure the SDK
as previously shown. To access IAM, create an AWS . IAM service object. Create a JSON object

Managing IAM Users 186

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_listusers.js

Amazon SDK for JavaScript Developer Guide for SDK v2

containing the parameters needed to list your users, specifying both the current and new user
names as command-line parameters. Call the updateUser method of the AWS. IAM service object.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

var params = {
UserName: process.argv[2],
NewUserName: process.argv[3],

i

iam.updateUser(params, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Success", data);
}
});

To run the example, type the following at the command line, specifying the user's current name
followed by the new user name.

node iam_updateuser.js ORIGINAL_USERNAME NEW_USERNAME

This sample code can be found here on GitHub.

Deleting a User

Create a Node.js module with the file name iam_deleteuser. js. Be sure to configure the SDK
as previously shown. To access IAM, create an AWS . IAM service object. Create a JSON object
containing the parameters needed, which consists of the user name you want to delete as a
command-line parameter.

Call the getUser method of the AWS. IAM service object to see if the user name already exists. If
the user name does not currently exist, write a message to that effect to the console. If the user
exists, call the deleteUser method to delete it.

Managing IAM Users 187

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_updateuser.js

Amazon SDK for JavaScript

Developer Guide for SDK v2

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

var params = {
UserName: process.argv[2],

};

iam.getUser(params, function (err, data) {
if (err && err.code === "NoSuchEntity") {
console.log("User " + process.argv[2] + " does not exist.");
} else {
iam.deleteUser(params, function (err, data) {

if (err) {
console.log("Error", err);
} else {
console.log("Success", data);
}
1)
}
1)

To run the example, type the following at the command line.

node iam_deleteuser.js USER_NAME

This sample code can be found here on GitHub.

Working with 1AM Policies

nade

This Node.js code example shows:

« How to create and delete IAM policies.

Working with IAM Policies

188

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_deleteuser.js

Amazon SDK for JavaScript Developer Guide for SDK v2

« How to attach and detach IAM policies from roles.

The Scenario

You grant permissions to a user by creating a policy, which is a document that lists the actions that
a user can perform and the resources those actions can affect. Any actions or resources that are not
explicitly allowed are denied by default. Policies can be created and attached to users, groups of
users, roles assumed by users, and resources.

In this example, a series of Node.js modules are used to manage policies in IAM. The Node.js
modules use the SDK for JavaScript to create and delete policies as well as attaching and detaching
role policies using these methods of the AWS . IAM client class:

createPolicy

getPolicy
listAttachedRolePolicies

attachRolePolicy
detachRolePolicy

For more information about IAM users, see Overview of Access Management: Permissions and
Policies in the IAM User Guide.

Prerequisite Tasks
To set up and run this example, you must first complete these tasks:

« Install Node.js. For more information about installing Node.js, see the Node.js website.

» Create a shared configurations file with your user credentials. For more information about
providing a shared credentials file, see Loading Credentials in Node.js from the Shared

Credentials File.

» Create an IAM role to which you can attach policies. For more information about creating roles,
see Creating IAM Roles in the IAM User Guide.

Creating an IAM Policy

Create a Node.js module with the file name iam_createpolicy. js. Be sure to configure the SDK
as previously shown. To access IAM, create an AWS . IAM service object. Create two JSON objects,

Working with IAM Policies 189

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/IAM.html#createPolicy-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/IAM.html#getPolicy-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/IAM.html#listAttachedRolePolicies-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/IAM.html#attachRolePolicy-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/IAM.html#detachRolePolicy-property
https://docs.amazonaws.cn/IAM/latest/UserGuide/introduction_access-management.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/introduction_access-management.html
https://nodejs.org
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create.html

Amazon SDK for JavaScript Developer Guide for SDK v2

one containing the policy document you want to create and the other containing the parameters
needed to create the policy, which includes the policy JSON and the name you want to give the
policy. Be sure to stringify the policy JSON object in the parameters. Call the createPolicy
method of the AWS . IAM service object.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

var myManagedPolicy = {
Version: "2012-10-17",
Statement: [
{
Effect: "Allow",
Action: "logs:CreatelLogGroup",
Resource: "RESOURCE_ARN",
.

{
Effect: "Allow",

Action: [
"dynamodb:DeleteIltem",
"dynamodb:GetItem",
"dynamodb:PutItem",
"dynamodb:Scan",
"dynamodb:UpdateItem",

1,

Resource: "RESOURCE_ARN",

1,
1,
};

var params = {
PolicyDocument: JSON.stringify(myManagedPolicy),
PolicyName: "myDynamoDBPolicy",

};

iam.createPolicy(params, function (err, data) {
if (err) {
console.log("Error", err);

Working with IAM Policies 190

Amazon SDK for JavaScript

Developer Guide for SDK v2

} else {
console.log("Success", data);
}
1)

To run the example, type the following at the command line.

node iam_createpolicy.js

This sample code can be found here on GitHub.

Getting an 1AM Policy

Create a Node.js module with the file name iam_getpolicy. js. Be sure to configure the SDK

as previously shown. To access IAM, create an AWS . IAM service object. Create a JSON object
containing the parameters needed retrieve a policy, which is the ARN of the policy you want to get.
Call the getPolicy method of the AWS. IAM service object. Write the policy description to the

console.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

var params = {

PolicyArn: "arn:aws:iam::aws:policy/AWSLambdaExecute",

};

iam.getPolicy(params, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Success", data.Policy.Description);
}
K7

To run the example, type the following at the command line.

Working with IAM Policies

191

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_createpolicy.js

Amazon SDK for JavaScript Developer Guide for SDK v2

node iam_getpolicy.js

This sample code can be found here on GitHub.

Attaching a Managed Role Policy

Create a Node.js module with the file name iam_attachrolepolicy. js. Be sure to configure the
SDK as previously shown. To access IAM, create an AWS . IAM service object. Create a JSON object
containing the parameters needed to get a list of managed IAM policies attached to a role, which
consists of the name of the role. Provide the role name as a command-line parameter. Call the
listAttachedRolePolicies method of the AWS. IAM service object, which returns an array of
managed policies to the callback function.

Check the array members to see if the policy you want to attach to the role is already attached. If
the policy is not attached, call the attachRolePolicy method to attach it.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

var paramsRolelist = {
RoleName: process.argv[2],

};

iam.listAttachedRolePolicies(paramsRoleList, function (err, data) {
if (err) {
console.log("Error", err);
} else {
var myRolePolicies = data.AttachedPolicies;
myRolePolicies.forEach(function (val, index, array) {
if (myRolePolicies[index].PolicyName === "AmazonDynamoDBFullAccess") {
console.log(
"AmazonDynamoDBFullAccess is already attached to this role."
);
process.exit();
}
18

var params = {

Working with IAM Policies 192

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_getpolicy.js

Amazon SDK for JavaScript Developer Guide for SDK v2

PolicyArn: "arn:aws:iam::aws:policy/AmazonDynamoDBFullAccess",
RoleName: process.argv[2],
};
iam.attachRolePolicy(params, function (err, data) {
if (err) {
console.log("Unable to attach policy to role", err);
} else {
console.log("Role attached successfully");
}
18
}
18

To run the example, type the following at the command line.

node iam_attachrolepolicy.js IAM_ROLE_NAME

Detaching a Managed Role Policy

Create a Node.js module with the file name iam_detachrolepolicy. js. Be sure to configure the
SDK as previously shown. To access IAM, create an AWS . IAM service object. Create a JSON object
containing the parameters needed to get a list of managed IAM policies attached to a role, which
consists of the name of the role. Provide the role name as a command-line parameter. Call the
listAttachedRolePolicies method of the AWS.IAM service object, which returns an array of
managed policies in the callback function.

Check the array members to see if the policy you want to detach from the role is attached. If the
policy is attached, call the detachRolePolicy method to detach it.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

var paramsRolelList = {
RoleName: process.argv[2],

i

iam.listAttachedRolePolicies(paramsRolelList, function (err, data) {

Working with IAM Policies 193

Amazon SDK for JavaScript Developer Guide for SDK v2

if (err) {
console.log("Error", err);
} else {
var myRolePolicies = data.AttachedPolicies;
myRolePolicies.forEach(function (val, index, array) {
if (myRolePolicies[index].PolicyName === "AmazonDynamoDBFullAccess") {
var params = {
PolicyArn: "arn:aws:iam::aws:policy/AmazonDynamoDBFullAccess",
RoleName: process.argv[2],

i
iam.detachRolePolicy(params, function (err, data) {
if (err) {
console.log("Unable to detach policy from role", err);
} else {
console.log("Policy detached from role successfully");
process.exit();
}
1)
}
1)
}
1)

To run the example, type the following at the command line.

node iam_detachrolepolicy.js IAM_ROLE_NAME

Managing IAM Access Keys

nade

This Node.js code example shows:

« How to manage the access keys of your users.

The Scenario

Users need their own access keys to make programmatic calls to Amazon from the SDK for
JavaScript. To fill this need, you can create, modify, view, or rotate access keys (access key IDs and

Managing IAM Access Keys 194

Amazon SDK for JavaScript Developer Guide for SDK v2

secret access keys) for IAM users. By default, when you create an access key, its status is Active,
which means the user can use the access key for API calls.

In this example, a series of Node.js modules are used manage access keys in IAM. The Node.js
modules use the SDK for JavaScript to manage IAM access keys using these methods of the
AWS . TAM client class:

» createAccessKey

o listAccessKeys

o getAccessKeylLastUsed

» updateAccessKey

o deleteAccessKey

For more information about IAM access keys, see Access Keys in the IAM User Guide.
Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

« Install Node.js. For more information about installing Node.js, see the Node.js website.

» Create a shared configurations file with your user credentials. For more information about
providing a shared credentials file, see Loading Credentials in Node.js from the Shared

Credentials File.

Creating Access Keys for a User

Create a Node.js module with the file name iam_createaccesskeys. js. Be sure to configure the
SDK as previously shown. To access IAM, create an AWS . IAM service object. Create a JSON object
containing the parameters needed to create new access keys, which includes IAM user's name. Call
the createAccessKey method of the AWS. IAM service object.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

Managing IAM Access Keys 195

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/IAM.html#createAccessKey-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/IAM.html#listAccessKeys-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/IAM.html#getAccessKeyLastUsed-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/IAM.html#updateAccessKey-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/IAM.html#deleteAccessKey-property
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_access-keys.html
https://nodejs.org

Amazon SDK for JavaScript Developer Guide for SDK v2

iam.createAccessKey({ UserName: "IAM_USER_NAME" }, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Success", data.AccessKey);
}
1)

To run the example, type the following at the command line. Be sure to pipe the returned data to a
text file in order not to lose the secret key, which can only be provided once.

node iam_createaccesskeys.js > newuserkeys.txt

This sample code can be found here on GitHub.

Listing a User's Access Keys

Create a Node.js module with the file name iam_listaccesskeys. js. Be sure to configure
the SDK as previously shown. To access IAM, create an AWS . IAM service object. Create a JSON
object containing the parameters needed to retrieve the user's access keys, which includes IAM
user's name and optionally the maximum number of access key pairs you want listed. Call the
listAccessKeys method of the AWS . IAM service object.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

var params = {

MaxItems: 5,

UserName: "IAM_USER_NAME",
};

iam.listAccessKeys(params, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Success", data);

Managing IAM Access Keys 196

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_createaccesskeys.js

Amazon SDK for JavaScript Developer Guide for SDK v2

}
1)

To run the example, type the following at the command line.

node iam_listaccesskeys.js

This sample code can be found here on GitHub.

Getting the Last Use for Access Keys

Create a Node.js module with the file name iam_accesskeylastused. js. Be sure to configure
the SDK as previously shown. To access IAM, create an AWS . IAM service object. Create a JSON
object containing the parameters needed to create new access keys, which is the access key ID
for which you want the last use information. Call the getAccessKeyLastUsed method of the
AWS . IAM service object.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

iam.getAccessKeylLastUsed(
{ AccessKeyId: "ACCESS_KEY_ID" },
function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Success", data.AccessKeylLastUsed);

}

);

To run the example, type the following at the command line.

node iam_accesskeylastused.js

Managing IAM Access Keys 197

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_listaccesskeys.js

Amazon SDK for JavaScript Developer Guide for SDK v2

This sample code can be found here on GitHub.

Updating Access Key Status

Create a Node.js module with the file name iam_updateaccesskey. js. Be sure to configure
the SDK as previously shown. To access IAM, create an AWS . IAM service object. Create a JSON
object containing the parameters needed to update the status of an access keys, which includes
the access key ID and the updated status. The status can be Active or Inactive. Call the
updateAccessKey method of the AWS. IAM service object.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

var params = {
AccessKeyId: "ACCESS_KEY_ID",
Status: "Active",
UserName: "USER_NAME",

};

iam.updateAccessKey(params, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Success", data);
}
h))5

To run the example, type the following at the command line.

node iam_updateaccesskey.js

This sample code can be found here on GitHub.

Deleting Access Keys

Create a Node.js module with the file name iam_deleteaccesskey. js. Be sure to configure the
SDK as previously shown. To access IAM, create an AWS . IAM service object. Create a JSON object

Managing IAM Access Keys 198

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_accesskeylastused.js
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_updateaccesskey.js

Amazon SDK for JavaScript

Developer Guide for SDK v2

containing the parameters needed to delete access keys, which includes the access key ID and the
name of the user. Call the deleteAccessKey method of the AWS . IAM service object.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

var params = {
AccessKeyId: "ACCESS_KEY_ID",
UserName: "USER_NAME",

12

iam.deleteAccessKey(params, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Success", data);
}
});

To run the example, type the following at the command line.

node iam_deleteaccesskey.js

This sample code can be found here on GitHub.

Working with IAM Server Certificates

nade

This Node.js code example shows:

« How to carry out basic tasks in managing server certificates for HTTPS connections.

Working with IAM Server Certificates

199

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_deleteaccesskey.js

Amazon SDK for JavaScript Developer Guide for SDK v2

The Scenario

To enable HTTPS connections to your website or application on Amazon, you need an SSL/TLS
server certificate. To use a certificate that you obtained from an external provider with your website
or application on Amazon, you must upload the certificate to IAM or import it into Amazon
Certificate Manager.

In this example, a series of Node.js modules are used to handle server certificates in IAM. The
Node.js modules use the SDK for JavaScript to manage server certificates using these methods of
the AWS . IAM client class:

listServerCertificates

getServerCertificate

updateServerCertificate

deleteServerCertificate

For more information about server certificates, see Working with Server Certificates in the IAM User
Guide.

Prerequisite Tasks
To set up and run this example, you must first complete these tasks:

« Install Node.js. For more information about installing Node.js, see the Node.js website.

» Create a shared configurations file with your user credentials. For more information about
providing a shared credentials file, see Loading Credentials in Node.js from the Shared
Credentials File.

Listing Your Server Certificates

Create a Node.js module with the file name iam_listservercerts. js. Be sure to configure
the SDK as previously shown. To access IAM, create an AWS . IAM service object. Call the
listServerCertificates method of the AWS.IAM service object.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

Working with IAM Server Certificates 200

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/IAM.html#listServerCertificates-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/IAM.html#getServerCertificate-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/IAM.html#updateServerCertificate-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/IAM.html#deleteServerCertificate-property
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_server-certs.html
https://nodejs.org

Amazon SDK for JavaScript

Developer Guide for SDK v2

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

iam.listServerCertificates({}, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Success", data);
}
1);

To run the example, type the following at the command line.

node iam_listservercerts.js

This sample code can be found here on GitHub.

Getting a Server Certificate

Create a Node.js module with the file name iam_getservercert. js. Be sure to configure the
SDK as previously shown. To access IAM, create an AWS . IAM service object. Create a JSON object
containing the parameters needed get a certificate, which consists of the name of the server
certificate you want. Call the getServerCertificates method of the AWS.IAM service object.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

iam.getServerCertificate(
{ ServerCertificateName: "CERTIFICATE_NAME" },
function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Success", data);

}

Working with IAM Server Certificates

201

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_listservercerts.js

Amazon SDK for JavaScript Developer Guide for SDK v2

);

To run the example, type the following at the command line.

node iam_getservercert.js

This sample code can be found here on GitHub.

Updating a Server Certificate

Create a Node.js module with the file name iam_updateservercert. js. Be sure to configure
the SDK as previously shown. To access IAM, create an AWS . IAM service object. Create a

JSON object containing the parameters needed to update a certificate, which consists of the
name of the existing server certificate as well as the name of the new certificate. Call the
updateServerCertificate method of the AWS. IAM service object.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

var params = {
ServerCertificateName: "CERTIFICATE_NAME",
NewServerCertificateName: "NEW_CERTIFICATE_NAME",
i

iam.updateServerCertificate(params, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Success", data);
}
1)

To run the example, type the following at the command line.

node iam_updateservercert.js

Working with IAM Server Certificates 202

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_getservercert.js

Amazon SDK for JavaScript

Developer Guide for SDK v2

This sample code can be found here on GitHub.

Deleting a Server Certificate

Create a Node.js module with the file name iam_deleteservercert. js. Be sure to configure the

SDK as previously shown. To access IAM, create an AWS . IAM service object. Create a JSON object

containing the parameters needed to delete a server certificate, which consists of the name of the

certificate you want to delete. Call the deleteServerCertificates method of the AWS.IAM

service object.

// Load the AWS SDK for Node.]js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

iam.deleteServerCertificate(
{ ServerCertificateName: "CERTIFICATE_NAME" 3},
function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Success", data);
}
}
);

To run the example, type the following at the command line.

node iam_deleteservercert.js

This sample code can be found here on GitHub.

Managing IAM Account Aliases

nade

Managing IAM Account Aliases

203

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_updateservercert.js
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_deleteservercert.js

Amazon SDK for JavaScript Developer Guide for SDK v2

This Node.js code example shows:

« How to manage aliases for your Amazon account ID.

The Scenario

If you want the URL for your sign-in page to contain your company name or other friendly
identifier instead of your Amazon account ID, you can create an alias for your Amazon account ID. If
you create an Amazon account alias, your sign-in page URL changes to incorporate the alias.

In this example, a series of Node.js modules are used to create and manage IAM account aliases.
The Node.js modules use the SDK for JavaScript to manage aliases using these methods of the
AWS . IAM client class:

« createAccountAlias

o listAccountAliases

« deleteAccountAlias

For more information about IAM account aliases, see Your Amazon Account ID and Its Alias in the
IAM User Guide.

Prerequisite Tasks
To set up and run this example, you must first complete these tasks:

« Install Node.js. For more information about installing Node.js, see the Node.js website.

» Create a shared configurations file with your user credentials. For more information about
providing a shared credentials file, see Loading Credentials in Node.js from the Shared

Credentials File.

Creating an Account Alias

Create a Node.js module with the file name iam_createaccountalias. js. Be sure to configure
the SDK as previously shown. To access IAM, create an AWS . IAM service object. Create a JSON
object containing the parameters needed to create an account alias, which includes the alias you
want to create. Call the createAccountAlias method of the AWS. IAM service object.

// Load the AWS SDK for Node.js

Managing IAM Account Aliases 204

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/IAM.html#createAccountAlias-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/IAM.html#listAccountAliases-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/IAM.html#deleteAccountAlias-property
https://docs.amazonaws.cn/IAM/latest/UserGuide/console_account-alias.html
https://nodejs.org

Amazon SDK for JavaScript Developer Guide for SDK v2

var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

iam.createAccountAlias({ AccountAlias: process.argv[2] }, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Success", data);

}
1)

To run the example, type the following at the command line.

node iam_createaccountalias.js ALIAS

This sample code can be found here on GitHub.

Listing Account Aliases

Create a Node.js module with the file name iam_listaccountaliases. js. Be sure to configure
the SDK as previously shown. To access IAM, create an AWS . IAM service object. Create a JSON
object containing the parameters needed to list account aliases, which includes the maximum
number of items to return. Call the 1istAccountAliases method of the AWS. IAM service object.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

iam.listAccountAliases({ MaxItems: 10 }, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Success", data);

}

Managing IAM Account Aliases 205

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_createaccountalias.js

Amazon SDK for JavaScript Developer Guide for SDK v2

1)

To run the example, type the following at the command line.

node iam_listaccountaliases.js

This sample code can be found here on GitHub.

Deleting an Account Alias

Create a Node.js module with the file name iam_deleteaccountalias. js. Be sure to configure
the SDK as previously shown. To access IAM, create an AWS . IAM service object. Create a JSON
object containing the parameters needed to delete an account alias, which includes the alias you
want deleted. Call the deleteAccountAlias method of the AWS. IAM service object.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

iam.deleteAccountAlias({ AccountAlias: process.argv[2] }, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Success", data);
}
});

To run the example, type the following at the command line.

node iam_deleteaccountalias.js ALIAS

This sample code can be found here on GitHub.

Managing IAM Account Aliases 206

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_listaccountaliases.js
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_deleteaccountalias.js

Amazon SDK for JavaScript Developer Guide for SDK v2

Amazon Kinesis Example

Amazon Kinesis is a platform for streaming data on Amazon, offering powerful services to load
and analyze streaming data, and also providing the ability for you to build custom streaming data
applications for specialized needs.

4=
node | ‘ In
& b h.__hh
e - -
JavaScript Amazon SDK Amazon Kinesis
Environments for JavaScript

The JavaScript API for Kinesis is exposed through the AWS .Kinesis client class. For more
information about using the Kinesis client class, see Class: AWS.Kinesis in the API reference.

Topics

» Capturing Web Page Scroll Progress with Amazon Kinesis

Capturing Web Page Scroll Progress with Amazon Kinesis

JS5

This browser script example shows:
» How to capture scroll progress in a web page with Amazon Kinesis as an example of streaming

page usage metrics for later analysis.

The Scenario

In this example, a simple HTML page simulates the content of a blog page. As the reader scrolls
the simulated blog post, the browser script uses the SDK for JavaScript to record the scroll distance
down the page and send that data to Kinesis using the putRecords method of the Kinesis client

Amazon Kinesis Example 207

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/Kinesis.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/Kinesis.html#putRecords-property

Amazon SDK for JavaScript Developer Guide for SDK v2

class. The streaming data captured by Amazon Kinesis Data Streams can then be processed by
Amazon EC2 instances and stored in any of several data stores including Amazon DynamoDB and
Amazon Redshift.

Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

» Create an Kinesis stream. You need to include the stream's resource ARN in the browser script.
For more information about creating Amazon Kinesis Data Streams, see Managing Kinesis

Streams in the Amazon Kinesis Data Streams Developer Guide.

» Create an Amazon Cognito identity pool with access enabled for unauthenticated identities.
You need to include the identity pool ID in the code to obtain credentials for the browser script.
For more information about Amazon Cognito identity pools, see Identity Pools in the Amazon

Cognito Developer Guide.

« Create an IAM role whose policy grants permission to submit data to an Kinesis stream. For
more information about creating an IAM role, see Creating a Role to Delegate Permissions to an
Amazon Service in the JAM User Guide.

Use the following role policy when creating the IAM role.

JSON

"Version":"2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Action": [
"mobileanalytics:PutEvents",
"cognito-sync:*"
]I
"Resouxce": [
wxn
]
}I
{

"Effect": "Allow",
"Action": [

Capturing Web Page Scroll Progress with Amazon Kinesis 208

https://docs.amazonaws.cn/streams/latest/dev/working-with-streams.html
https://docs.amazonaws.cn/streams/latest/dev/working-with-streams.html
https://docs.amazonaws.cn/cognito/latest/developerguide/identity-pools.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon SDK for JavaScript Developer Guide for SDK v2

"kinesis:Put*"

]I

"Resource": [
"arn:aws:kinesis:us-east-1:111122223333:stream/stream-name"

The Blog Page

The HTML for the blog page consists mainly of a series of paragraphs contained within a <div>
element. The scrollable height of this <div> is used to help calculate how far a reader has scrolled
through the content as they read. The HTML also contains a pair of <script> elements. One of
these elements adds the SDK for JavaScript to the page and the other adds the browser script that
captures scroll progress on the page and reports it to Kinesis.

<IDOCTYPE html>
<html>
<head>
<title>AWS SDK for JavaScript - Amazon Kinesis Application</title>
</head>
<body>
<div id="BlogContent" style="width: 60%; height: 800px; overflow: auto;margin:
auto; text-align: center;">
<div>
<p>
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vestibulum
vitae nulla eget nisl bibendum feugiat. Fusce rhoncus felis at ultricies luctus.
Vivamus fermentum cursus sem at interdum. Proin vel lobortis nulla. Aenean rutrum
odio in tellus semper rhoncus. Nam eu felis ac augue dapibus laoreet vel in erat.
Vivamus vitae mollis turpis. Integer sagittis dictum odio. Duis nec sapien diam.
In imperdiet sem nec ante laoreet, vehicula facilisis sem placerat. Duis ut metus
egestas, ullamcorper neque et, accumsan quam. Class aptent taciti sociosqu ad litora
torquent per conubia nostra, per inceptos himenaeos.
</p>
<!-- Additional paragraphs in the blog page appear here -->
</div>
</div>
<script src="https://sdk.amazonaws.com/js/aws-sdk-2.283.1.min.js"></script>
<script src="kinesis-example.js"></script>
</body>

Capturing Web Page Scroll Progress with Amazon Kinesis 209

Amazon SDK for JavaScript Developer Guide for SDK v2

</html>

Configuring the SDK

Obtain the credentials needed to configure the SDK by calling the
CognitolIdentityCredentials method, providing the Amazon Cognito identity pool ID. Upon
success, create the Kinesis service object in the callback function.

The following code snippet shows this step. (See Capturing Web Page Scroll Progress Code for the

full example.)

// Configure Credentials to use Cognito
AWS.config.credentials = new AWS.CognitoIdentityCredentials({
IdentityPoolId: "IDENTITY_POOL_ID",

1)

AWS.config.region = "REGION";
// We're going to partition Amazon Kinesis records based on an identity.
// We need to get credentials first, then attach our event listeners.
AWS.config.credentials.get(function (err) {
// attach event listener
if (err) {
alert("Error retrieving credentials.");
console.error(err);
return;
}
// create Amazon Kinesis service object
var kinesis = new AWS.Kinesis({
apiVersion: "2013-12-02",
});

Creating Scroll Records

Scroll progress is calculated using the scrollHeight and scrollTop properties of the <div>
containing the content of the blog post. Each scroll record is created in an event listener function
for the scroll event and then added to an array of records for periodic submission to Kinesis.

The following code snippet shows this step. (See Capturing Web Page Scroll Progress Code for the
full example.)

// Get the ID of the Web page element.
var blogContent = document.getElementById("BlogContent");

Capturing Web Page Scroll Progress with Amazon Kinesis 210

Amazon SDK for JavaScript Developer Guide for SDK v2

// Get Scrollable height
var scrollableHeight = blogContent.clientHeight;

var recordData = [];
var TID = null;
blogContent.addEventListener("scroll", function (event) {
clearTimeout(TID);
// Prevent creating a record while a user is actively scrolling
TID = setTimeout(function () {
// calculate percentage
var scrollableElement = event.target;
var scrollHeight = scrollableElement.scrollHeight;
var scrollTop = scrollableElement.scrollTop;

var scrollTopPercentage = Math.round((scrollTop / scrollHeight) * 100);
var scrollBottomPercentage = Math.round(

((scrollTop + scrollableHeight) / scrollHeight) * 100
);

// Create the Amazon Kinesis record
var record = {
Data: JSON.stringify({
blog: window.location.href,
scrollTopPercentage: scrollTopPercentage,
scrollBottomPercentage: scrollBottomPercentage,
time: new Date(),
1,
PartitionKey: "partition-" + AWS.config.credentials.identitylId,
};
recordData.push(record);
}, 100);
1}

Submitting Records to Kinesis
Once each second, if there are records in the array, those pending records are sent to Kinesis.

The following code snippet shows this step. (See Capturing Web Page Scroll Progress Code for the

full example.)

// upload data to Amazon Kinesis every second if data exists
setInterval(function () {

Capturing Web Page Scroll Progress with Amazon Kinesis 211

Amazon SDK for JavaScript Developer Guide for SDK v2

if (!recordData.length) {
return;
}
// upload data to Amazon Kinesis
kinesis.putRecords(
{
Records: recordData,
StreamName: "NAME_OF_STREAM",
},
function (err, data) {
if (err) {
console.error(err);

}
);
// clear record data
recordData = [];
}, 1000);
1);

Capturing Web Page Scroll Progress Code

Here is the browser script code for the Kinesis capturing web page scroll progress example.

// Configure Credentials to use Cognito

AWS.config.credentials = new AWS.CognitoIdentityCredentials({
IdentityPoolId: "IDENTITY_POOL_ID",

1);

AWS.config.region = "REGION";
// We're going to partition Amazon Kinesis records based on an identity.
// We need to get credentials first, then attach our event listeners.
AWS.config.credentials.get(function (err) {
// attach event listener
if (err) {
alert("Error retrieving credentials.");
console.error(err);
return;
}
// create Amazon Kinesis service object
var kinesis = new AWS.Kinesis({
apiVersion: "2013-12-02",
1);

Capturing Web Page Scroll Progress with Amazon Kinesis 212

Amazon SDK for JavaScript Developer Guide for SDK v2

// Get the ID of the Web page element.
var blogContent = document.getElementById("BlogContent");

// Get Scrollable height
var scrollableHeight = blogContent.clientHeight;

var recordData = [];
var TID = null;
blogContent.addEventListener("scroll", function (event) {
clearTimeout(TID);
// Prevent creating a record while a user is actively scrolling
TID = setTimeout(function () {
// calculate percentage
var scrollableElement = event.target;
var scrollHeight = scrollableElement.scrollHeight;
var scrollTop = scrollableElement.scrollTop;

var scrollTopPercentage = Math.round((scrollTop / scrollHeight) * 100);
var scrollBottomPercentage = Math.zround(

((scrollTop + scrollableHeight) / scrollHeight) * 100
);

// Create the Amazon Kinesis record
var record = {
Data: JSON.stringify({
blog: window.location.href,
scrollTopPercentage: scrollTopPercentage,
scrollBottomPercentage: scrollBottomPercentage,
time: new Date(),

1},
PartitionKey: "partition-" + AWS.config.credentials.identityId,
};
recordData.push(recozrd);
}, 100);

1)

// upload data to Amazon Kinesis every second if data exists
setInterval(function () {
if (!recordData.length) {
retuzrn;
}
// upload data to Amazon Kinesis
kinesis.putRecords(

Capturing Web Page Scroll Progress with Amazon Kinesis 213

Amazon SDK for JavaScript Developer Guide for SDK v2

{

Records: recordData,
StreamName: "NAME_OF_STREAM",

.
function (err, data) {
if (err) {
console.error(err);
}
}

);
// clear record data
recordData = [];

}, 1000);

1)

Amazon S3 Examples

Amazon Simple Storage Service (Amazon S3) is a web service that provides highly scalable cloud
storage. Amazon S3 provides easy to use object storage, with a simple web service interface to
store and retrieve any amount of data from anywhere on the web.

|
i
nede
] \""H. \‘"H
I ™ —
] |
|
JavaScript SL]K_. Amazon 53
Environments tor JavaScript

The JavaScript APl for Amazon S3 is exposed through the AWS . S3 client class. For more
information about using the Amazon S3 client class, see Class: AWS.S3 in the API reference.

Topics

« Amazon S3 Browser Examples

« Amazon S3 Node.js Examples

Amazon S3 Examples 214

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/S3.html

Amazon SDK for JavaScript Developer Guide for SDK v2

Amazon S3 Browser Examples

The following topics show two examples of how the Amazon SDK for JavaScript can be used in the
browser to interact with Amazon S3 buckets.

» The first shows a simple scenario in which the existing photos in an Amazon S3 bucket can be
viewed by any (unauthenticated) user.

» The second shows a more complex scenario in which users are allowed to perform operations on
photos in the bucket such as upload, delete, etc.

Topics

» Viewing Photos in an Amazon S3 Bucket from a Browser

« Uploading Photos to Amazon S3 from a Browser

Viewing Photos in an Amazon S3 Bucket from a Browser

J5

This browser script code example shows:

» How to create a photo album in an Amazon Simple Storage Service (Amazon S3) bucket and
allow unauthenticated users to view the photos.

The Scenario

In this example, a simple HTML page provides a browser-based application for viewing the photos
in a photo album. The photo album is in an Amazon S3 bucket into which photos are uploaded.

: (A
. — @ — Mg

Browser script E

|

Amazen Simple Buckat
Amazon SDE Storage Servica (53)
for JavaScript W Albums and photos

Amazon S3 Browser Examples 215

Amazon SDK for JavaScript Developer Guide for SDK v2

The browser script uses the SDK for JavaScript to interact with an Amazon S3 bucket. The script
uses the 1istObjects method of the Amazon S3 client class to enable you to view the photo
albums.

Prerequisite Tasks

To set up and run this example, first complete these tasks.

(@ Note

In this example, you must use the same Amazon Region for both the Amazon S3 bucket
and the Amazon Cognito identity pool.

Create the Bucket

In the Amazon S3 console, create an Amazon S3 bucket where you can store albums and photos.

For more information about using the console to create an S3 bucket, see Creating a Bucket in the
Amazon Simple Storage Service User Guide.

As you create the S3 bucket, be sure to do the following:

« Make note of the bucket name so you can use it in a subsequent prerequisite task, Configure Role
Permissions.

« Choose an Amazon Region to create the bucket in. This must be the same Region that you'll use
to create an Amazon Cognito identity pool in a subsequent prerequisite task, Create an Identity
Pool.

« Configure bucket permissions by following Setting permissions for website access in the Amazon
Simple Storage Service User Guide.

Create an Identity Pool

In the Amazon Cognito console, create an Amazon Cognito identity pool, as described in the
section called “Step 1: Create an Amazon Cognito Identity Pool” of the Getting Started in a Browser
Script topic.

As you create the identity pool, make note of the identity pool name, as well as the role name for
the unauthenticated identity.

Amazon S3 Browser Examples 216

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/S3.html#listObjects-property
https://console.amazonaws.cn/s3/
https://docs.amazonaws.cn/AmazonS3/latest/userguide/create-bucket.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/WebsiteAccessPermissionsReqd.html
https://console.amazonaws.cn/cognito/

Amazon SDK for JavaScript Developer Guide for SDK v2

Configure Role Permissions

To allow viewing of albums and photos, you have to add permissions to an IAM role of the identity
pool that you just created. Start by creating a policy as follows.

1. Open the IAM console.
2. Inthe navigation pane on the left, choose Policies, and then choose the Create policy button.

3. Onthe JSON tab, enter the following JSON definition, but replace BUCKET_NAME with the
name of the bucket.

JSON

"Version":"2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"s3:ListBucket"
1,

"Resource": [
"arn:aws:s3:: :BUCKET_NAME"

}

4. Choose the Review policy button, name the policy and provide a description (if you want), and
then choose the Create policy button.

Be sure to make note of the name so that you can find it and attach it to the IAM role later.

After the policy is created, navigate back to the IAM console. Find the IAM role for the
unauthenticated identity that Amazon Cognito created in the previous prerequisite task, Create an
Identity Pool. You use the policy you just created to add permissions to this identity.

Although the workflow for this task is generally the same as the section called “Step 2: Add a
Policy to the Created IAM Role"” of the Getting Started in a Browser Script topic, there are a few
differences to note:

Amazon S3 Browser Examples 217

https://console.amazonaws.cn/iam/
https://console.amazonaws.cn/iam/

Amazon SDK for JavaScript Developer Guide for SDK v2

» Use the new policy that you just created, not a policy for Amazon Polly.

« On the Attach Permissions page, to quickly find the new policy, open the Filter policies list and
choose Customer managed.

For additional information about creating an 1AM role, see Creating a Role to Delegate Permissions
to an Amazon Service in the IAM User Guide.

Configure CORS

Before the browser script can access the Amazon S3 bucket, you have to set up its CORS
configuration as follows.

/A Important
In the new S3 console, the CORS configuration must be JSON.

JSON
[
{
"AllowedHeaders": [
nmgn
iF
"AllowedMethods": [
"HEAD",
IIGETII
iF
"AllowedOrigins": [
"y
]
}
]
XML

<?xml version="1.0" encoding="UTF-8"7?>
<CORSConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
<CORSRule>

Amazon S3 Browser Examples 218

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon SDK for JavaScript Developer Guide for SDK v2

<AllowedOrigin>*</AllowedOrigin>
<AllowedMethod>GET</AllowedMethod>
<AllowedMethod>HEAD</AllowedMethod>
<AllowedHeader>*</AllowedHeader>
</CORSRule>
</CORSConfiguration>

Create Albums and Upload Photos

Because this example only allows users to view the photos that are already in the bucket, you need

to create some albums in the bucket and upload photos to them.

(® Note

For this example, the file names of the photo files must start with a single underscore ("_").
This character is important later for filtering. In addition, be sure to respect the copyrights

of the owners of the photos.

1. In the Amazon S3 console, open the bucket that you created earlier.

2. On the Overview tab, choose the Create folder button to create folders. For this example, name

the folders "album1", "album?2", and "album3".

3. For album1 and then albumz2, select the folder and then upload photos to it as follows:
a. Choose the Upload button.
b. Drag or choose the photo files you want to use, and then choose Next.
¢. Under Manage public permissions, choose Grant public read access to this object(s).
d. Choose the Upload button (in the lower-left corner).

4. Leave album3 empty.

Defining the Webpage

The HTML for the photo-viewing application consists of a <div> element in which the browser
script creates the viewing interface. The first <script> element adds the SDK to the browser
script. The second <script> element adds the external JavaScript file that holds the browser
script code.

Amazon S3 Browser Examples

219

https://console.amazonaws.cn/s3/

Amazon SDK for JavaScript Developer Guide for SDK v2

For this example, the file is named PhotoViewer. js, and is located in the same folder as the
HTML file. To find the current SDK_VERSION_NUMBER, see the API Reference for the SDK for
JavaScript at Amazon SDK for JavaScript API Reference Guide.

<!DOCTYPE html>

<html>
<head>
<l-- **pQ THIS**: -->
<l-- Replace SDK_VERSION_NUMBER with the current SDK version number -->

<script src="https://sdk.amazonaws.com/js/aws-sdk-SDK_VERSION_NUMBER.js"></script>
<script src="./PhotoViewer.js"></script>
<script>listAlbums();</script>

</head>

<body>
<h1>Photo Album Viewer</hl>
<div id="viewer" />

</body>

</html>

Configuring the SDK

Obtain the credentials you need to configure the SDK by calling the
CognitolIdentityCredentials method. You need to provide the Amazon Cognito identity pool
ID. Then create an AWS. S3 service object.

// **D0O THIS**:
// Replace BUCKET_NAME with the bucket name.

//
var albumBucketName = "BUCKET_NAME";

// **D0O THIS**:
// Replace this block of code with the sample code located at:
// Cognito -- Manage Identity Pools -- [identity_pool_name] -- Sample Code --
JavaScript
//
// Initialize the Amazon Cognito credentials provider
AWS.config.region = "REGION"; // Region
AWS.config.credentials = new AWS.CognitoIdentityCredentials({
IdentityPoolId: "IDENTITY_POOL_ID",
1)

// Create a new service object

Amazon S3 Browser Examples 220

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/

Amazon SDK for JavaScript Developer Guide for SDK v2

var s3 = new AWS.S3({
apiVersion: "2006-03-01",
params: { Bucket: albumBucketName },

1)

// A utility function to create HTML.
function getHtml(template) {
return template.join("\n");

}

The rest of the code in this example defines the following functions to gather and present
information about the albums and photos in the bucket.

e 1listAlbums

e viewAlbum

Listing Albums in the Bucket

To list all of the existing albums in the bucket, the application's 1istAlbums function calls the
listObjects method of the AWS.S3 service object. The function uses the CommonPrefixes
property so that the call returns only objects that are used as albums (that is, the folders).

The rest of the function takes the list of albums from the Amazon S3 bucket and generates the
HTML needed to display the album list on the webpage.

// List the photo albums that exist in the bucket.
function listAlbums() {
s3.1listObjects({ Delimiter: "/" }, function (err, data) {
if (err) {
return alert("There was an error listing your albums: " + err.message);
} else {
var albums = data.CommonPrefixes.map(function (commonPrefix) {
var prefix = commonPrefix.Prefix;
var albumName = decodeURIComponent(prefix.replace("/", ""));
return getHtml([
"",
'<button style="margin:5px;" onclick="viewAlbum(\'"' +
albumName +
O\,
albumName,
"</button>",
"</1i>",

Amazon S3 Browser Examples 221

Amazon SDK for JavaScript Developer Guide for SDK v2

1);
1)
var message = albums.length
? getHtml(["<p>Click on an album name to view it.</p>"1])
: "<p>You do not have any albums. Please Create album.";
var htmlTemplate = [
"<h2>Albums</h2>",
message,
"",
getHtml(albums),
"",

iy
document.getElementById("viewer").innerHTML = getHtml(htmlTemplate);

1)

Viewing an Album

To display the contents of an album in the Amazon S3 bucket, the application's viewAlbum
function takes an album name and creates the Amazon S3 key for that album. The function then
calls the 1istObjects method of the AWS.S3 service object to obtain a list of all the objects (the
photos) in the album.

The rest of the function takes the list of objects that are in the album and generates the HTML
needed to display the photos on the webpage.

// Show the photos that exist in an album.
function viewAlbum(albumName) {
var albumPhotosKey = encodeURIComponent(albumName) + "/";
s3.1listObjects({ Prefix: albumPhotosKey }, function (err, data) {
if (err) {
return alert("There was an error viewing your album: " + err.message);
}
// 'this' references the AWS.Request instance that represents the response
var href = this.request.httpRequest.endpoint.href;
var bucketUrl = href + albumBucketName + "/";

var photos = data.Contents.map(function (photo) {
var photoKey = photo.Key;
var photoUrl = bucketUrl + encodeURIComponent(photoKey);
return getHtml([
"",

Amazon S3 Browser Examples 222

Amazon SDK for JavaScript Developer Guide for SDK v2

"<div>",
"
",
'',
"</div>",
"<div>",
"",
photoKey.replace(albumPhotosKey, ""),
"",
"</div>",
"",
1D
1)
var message = photos.length
? "<p>The following photos are present.</p>"
: "<p>There are no photos in this album.</p>";
var htmlTemplate = [
"<div>",
'<button onclick="listAlbums()">",
"Back To Albums",
"</button>",
"</div>",
"<h2>",
"Album: " + albumName,
"</h2>",
message,
"<div>",
getHtml(photos),
"</div>",
"<h2>",
"End of Album: " + albumName,
"</h2>",
"<div>",
'<button onclick="listAlbums()">",
"Back To Albums",
"</button>",
"</div>",
1;
document.getElementById("viewer").innerHTML = getHtml(htmlTemplate);
document
.getElementsByTagName("img")[Q]
.setAttribute("style", "display:none;");
1)

Amazon S3 Browser Examples 223

Amazon SDK for JavaScript Developer Guide for SDK v2

Viewing Photos in an Amazon S3 Bucket: Full Code

This section contains the full HTML and JavaScript code for the example in which photos in an
Amazon S3 bucket can be viewed. See the parent section for details and prerequisites.

The HTML for the example:

<!DOCTYPE html>

<html>
<head>
<l-- **DQ THIS**: -->
<l-- Replace SDK_VERSION_NUMBER with the current SDK version number -->

<script src="https://sdk.amazonaws.com/js/aws-sdk-SDK_VERSION_NUMBER.js"></script>
<script src="./PhotoViewer.js"></script>
<script>listAlbums();</script>

</head>

<body>
<hl1>Photo Album Viewer</hl>
<div id="viewer" />

</body>

</html>

This sample code can be found here on GitHub.

The browser script code for the example:

//

// Data constructs and initialization.

//

// **D0O THIS**:
// Replace BUCKET_NAME with the bucket name.

//
var albumBucketName = "BUCKET_NAME";

// **D0O THIS**:

// Replace this block of code with the sample code located at:

// Cognito -- Manage Identity Pools -- [identity_pool_name] -- Sample Code --
JavaScript

//

// Initialize the Amazon Cognito credentials provider

AWS.config.region = "REGION"; // Region

AWS.config.credentials = new AWS.CognitoIdentityCredentials({

Amazon S3 Browser Examples 224

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_PhotoViewer.html

Amazon SDK for JavaScript Developer Guide for SDK v2

IdentityPoolId: "IDENTITY_POOL_ID",
1);

// Create a new service object
var s3 = new AWS.S3({
apiVersion: "2006-03-01",
params: { Bucket: albumBucketName },

1)

// A utility function to create HTML.
function getHtml(template) {
return template.join("\n");

//

// Functions

//

// List the photo albums that exist in the bucket.
function listAlbums() {
s3.1listObjects({ Delimiter: "/" }, function (err, data) {
if (err) {
return alert("There was an error listing your albums: " + err.message);
} else {
var albums = data.CommonPrefixes.map(function (commonPrefix) {
var prefix = commonPrefix.Prefix;
var albumName = decodeURIComponent(prefix.replace("/", ""));
return getHtml([
"",
'<button style="margin:5px;" onclick="viewAlbum(\'"' +
albumName +
O\,
albumName,
"</button>",
"</1i>",
1);
1);
var message = albums.length
? getHtml(["<p>Click on an album name to view it.</p>"])
"<p>You do not have any albums. Please Create album.";
var htmlTemplate = [
"<h2>Albums</h2>",
message,
"",

Amazon S3 Browser Examples 225

Amazon SDK for JavaScript Developer Guide for SDK v2

getHtml(albums),
"",
iF
document.getElementById("viewer").innerHTML = getHtml(htmlTemplate);
}
1)

// Show the photos that exist in an album.
function viewAlbum(albumName) {
var albumPhotosKey = encodeURIComponent(albumName) + "/";
s3.1listObjects({ Prefix: albumPhotosKey }, function (err, data) {
if (err) {
return alert("There was an error viewing your album: " + err.message);
}
// 'this' references the AWS.Request instance that represents the response
var href = this.request.httpRequest.endpoint.href;
var bucketUrl = href + albumBucketName + "/";

var photos = data.Contents.map(function (photo) {
var photoKey = photo.Key;
var photoUrl = bucketUrl + encodeURIComponent(photoKey);
return getHtml([
"",
"<div>",
"
",
'',
"</div>",
"<div>",
"",
photoKey.replace(albumPhotosKey, ""),
"",
"</div>",
"",
1D
1)
var message = photos.length
? "<p>The following photos are present.</p>"
: "<p>There are no photos in this album.</p>";
var htmlTemplate = [
"<div>",
'<button onclick="listAlbums()">",
"Back To Albums",
"</button>",

Amazon S3 Browser Examples 226

Amazon SDK for JavaScript Developer Guide for SDK v2

"</div>",

"<h2>",

"Album: " + albumName,

"</h2>",

message,

"<div>",

getHtml(photos),

"</div>",

"<h2>",

"End of Album: " + albumName,

"</h2>",

"<div>",

'<button onclick="1istAlbums()">",

"Back To Albums",

"</button>",

"</div>",
1;
document.getElementById("viewer").innerHTML = getHtml(htmlTemplate);
document

.getElementsByTagName("img")[Q]

.setAttribute("style", "display:none;");

1)

This sample code can be found here on GitHub.

Uploading Photos to Amazon S3 from a Browser

J5

This browser script code example shows:

» How to create a browser application that allows users to create photo albums in an Amazon S3
bucket and upload photos into the albums.

Amazon S3 Browser Examples 227

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_PhotoViewer.js

Amazon SDK for JavaScript Developer Guide for SDK v2

The Scenario

In this example, a simple HTML page provides a browser-based application for creating photo
albums in an Amazon S3 bucket into which you can upload photos. The application lets you delete
photos and albums that you add.

: 'E
s —r O +—> * H i
Browser script E

Amazen Simple Buckst k
Amazon 5DK Storage Seorvica (53)
for JavaScript W Albums and photos

The browser script uses the SDK for JavaScript to interact with an Amazon S3 bucket. Use the
following methods of the Amazon S3 client class to enable the photo album application:

listObjects

headObject
putObject

upload
deleteObject

deleteObjects

Prerequisite Tasks
To set up and run this example, you must first complete these tasks:

« In the Amazon S3 console, create an Amazon S3 bucket that you will use to store the photos in

the album. For more information about creating a bucket in the console, see Creating a Bucket

in the Amazon Simple Storage Service User Guide. Make sure you have both Read and Write
permissions on Objects. For more information about setting bucket permissions, see Setting
permissions for website access.

« In the Amazon Cognito console, create an Amazon Cognito identity pool using Federated

Identities with access enabled for unauthenticated users in the same Region as the Amazon S3
bucket. You need to include the identity pool ID in the code to obtain credentials for the browser
script. For more information about Amazon Cognito Federated Identities, see Amazon Cognito

Identity Pools (Federated Identites) in the Amazon Cognito Developer Guide.

Amazon S3 Browser Examples 228

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/S3.html#listObjects-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/S3.html#headObject-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/S3.html#putObject-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/S3.html#upload-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/S3.html#deleteObject-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/S3.html#deleteObjects-property
https://console.amazonaws.cn/s3/
https://docs.amazonaws.cn/AmazonS3/latest/userguide/create-bucket.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/WebsiteAccessPermissionsReqd.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/WebsiteAccessPermissionsReqd.html
https://console.amazonaws.cn/cognito/
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-identity.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-identity.html

Amazon SDK for JavaScript Developer Guide for SDK v2

 In the IAM console, find the IAM role created by Amazon Cognito for unauthenticated users.
Add the following policy to grant read and write permissions to an Amazon S3 bucket. For
more information about creating an IAM role, see Creating a Role to Delegate Permissions to an
Amazon Service in the IAM User Guide.

Use this role policy for the IAM role created by Amazon Cognito for unauthenticated users.

/A Warning

If you enable access for unauthenticated users, you will grant write access to the bucket,
and all objects in the bucket, to anyone in the world. This security posture is useful in this
example to keep it focused on the primary goals of the example. In many live situations,
however, tighter security, such as using authenticated users and object ownership, is
highly advisable.

JSON

"Version":"2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"s3:DeleteObject"”,
"s3:GetObject",
"s3:ListBucket",
"s3:PutObject",
"s3:PutObjectAcl"”
1,
"Resource": [
"arn:aws:s3:: :BUCKET_NAME",
"arn:aws:s3:: :BUCKET_NAME/*"

Amazon S3 Browser Examples 229

https://console.amazonaws.cn/iam/
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon SDK for JavaScript Developer Guide for SDK v2

Configuring CORS

Before the browser script can access the Amazon S3 bucket, you must first set up its CORS
configuration as follows.

/A Important
In the new S3 console, the CORS configuration must be JSON.

JSON
[
{
"AllowedHeaders": [
e
1,
"AllowedMethods": [
"HEAD",
"GET",
"PUT",
"POST",
"DELETE"
1,
"AllowedOrigins": [
e
1,
"ExposeHeaders": [
"ETag"
]
}
]
XML

<?xml version="1.0" encoding="UTF-8"7?>
<CORSConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
<CORSRule>
<AllowedOrigin>*</AllowedOrigin>
<AllowedMethod>P0ST</AllowedMethod>
<AllowedMethod>GET</AllowedMethod>

Amazon S3 Browser Examples 230

Amazon SDK for JavaScript Developer Guide for SDK v2

<AllowedMethod>PUT</AllowedMethod>
<AllowedMethod>DELETE</AllowedMethod>
<AllowedMethod>HEAD</AllowedMethod>
<AllowedHeader>*</AllowedHeader>
<ExposeHeader>ETag</ExposeHeader>
</CORSRule>
</CORSConfiguration>

The Web Page

The HTML for the photo upload application consists of a <div> element within which the browser
script creates the upload user interface. The first <script> element adds the SDK to the browser
script. The second <script> element adds the external JavaScript file that holds the browser script
code.

<!IDOCTYPE html>

<html>
<head>
<l-- **p0 THIS**: -->
<l-- Replace SDK_VERSION_NUMBER with the current SDK version number -->

<script src="https://sdk.amazonaws.com/js/aws-sdk-SDK_VERSION_NUMBER.js"></script>
<script src="./s3_photoExample.js"></script>
<script>
function getHtml(template) {
return template.join('\n');
}
listAlbums();
</script>
</head>
<body>
<h1>My Photo Albums App</hl>
<div id="app"></div>
</body>
</html>

Configuring the SDK

Obtain the credentials needed to configure the SDK by calling the
CognitolIdentityCredentials method, providing the Amazon Cognito identity pool ID. Next,
create an AWS. S3 service object.

Amazon S3 Browser Examples 231

Amazon SDK for JavaScript Developer Guide for SDK v2

var albumBucketName = "BUCKET_NAME";
var bucketRegion = "REGION";
var IdentityPoolId = "IDENTITY_POOL_ID";

AWS.config.update({
region: bucketRegion,
credentials: new AWS.CognitoIdentityCredentials({
IdentityPoolId: IdentityPoolId,

1},
1)

var s3 = new AWS.S3({
apiVersion: "2006-03-01",
params: { Bucket: albumBucketName },

1)

Nearly all of the rest of the code in this example is organized into a series of functions that gather
and present information about the albums in the bucket, upload and display photos uploaded into
albums, and delete photos and albums. Those functions are:

e listAlbums
e createAlbum
e viewAlbum

« addPhoto

« deleteAlbum
« deletePhoto

Listing Albums in the Bucket

The application creates albums in the Amazon S3 bucket as objects whose keys begin with a
forward slash character, indicating the object functions as a folder. To list all the existing albums in
the bucket, the application's 1istAlbums function calls the 1istObjects method of the AWS.S3
service object while using commonPrefix so the call returns only objects used as albums.

The rest of the function takes the list of albums from the Amazon S3 bucket and generates the
HTML needed to display the album list in the web page. It also enables deleting and opening
individual albums.

function listAlbums() {

Amazon S3 Browser Examples 232

Amazon SDK for JavaScript Developer Guide for SDK v2

s3.1listObjects({ Delimiter: "/" }, function (err, data) {
if (err) {
return alert("There was an error listing your albums: " + err.message);
} else {
var albums = data.CommonPrefixes.map(function (commonPrefix) {
var prefix = commonPrefix.Prefix;
var albumName = decodeURIComponent(prefix.replace("/", ""));
return getHtml([
"",
"X",
"",
albumName,
"",
"</1li>",
1);
1)
var message = albums.length
? getHtml([
"<p>Click on an album name to view it.</p>",
"<p>Click on the X to delete the album.</p>",
D
"<p>You do not have any albums. Please Create album.";
var htmlTemplate = [
"<h2>Albums</h2>",
message,
"",
getHtml(albums),
"",
"<button onclick=\"createAlbum(prompt('Enter Album Name:'))\">",
"Create New Album",
"</button>",
iy
document.getElementById("app").innerHTML = getHtml(htmlTemplate);
}
1);

Creating an Album in the Bucket

To create an album in the Amazon S3 bucket, the application's createAlbum function first
validates the name given for the new album to ensure it contains suitable characters. The function
then forms an Amazon S3 object key, passing it to the headObject method of the Amazon S3

Amazon S3 Browser Examples 233

Amazon SDK for JavaScript Developer Guide for SDK v2

service object. This method returns the metadata for the specified key, so if it returns data, then an
object with that key already exists.

If the album doesn't already exist, the function calls the putObject method of the AWS.S3 service
object to create the album. It then calls the viewAlbum function to display the new empty album.

function createAlbum(albumName) {
albumName = albumName.trim();
if (!albumName) {
return alert("Album names must contain at least one non-space character.");

}
if (albumName.indexOf("/") !== -1) {

return alert("Album names cannot contain slashes.");
}

var albumKey = encodeURIComponent(albumName);
s3.headObject({ Key: albumKey }, function (err, data) {

if (lerr) {
return alert("Album already exists.");
}
if (err.code !== "NotFound") {
return alert("There was an error creating your album: " + err.message);
}
s3.putObject({ Key: albumKey }, function (err, data) {
if (err) {
return alert("There was an error creating your album: " + err.message);
}

alert("Successfully created album.");
viewAlbum(albumName);
1))8
});
}

Viewing an Album

To display the contents of an album in the Amazon S3 bucket, the application's viewAlbum
function takes an album name and creates the Amazon S3 key for that album. The function then
calls the 1istObjects method of the AWS.S3 service object to obtain a list of all the objects
(photos) in the album.

The rest of the function takes the list of objects (photos) from the album and generates the HTML
needed to display the photos in the web page. It also enables deleting individual photos and
navigating back to the album list.

Amazon S3 Browser Examples 234

Amazon SDK for JavaScript Developer Guide for SDK v2

function viewAlbum(albumName) {

var albumPhotosKey = encodeURIComponent(albumName) + "/";

s3.1listObjects({ Prefix: albumPhotosKey }, function (err, data) {
if (err) {

return alert("There was an error viewing your album: " + err.message);

}
// 'this' references the AWS.Response instance that represents the response
var href = this.request.httpRequest.endpoint.href;
var bucketUrl = href + albumBucketName + "/";

var photos = data.Contents.map(function (photo) {

var photoKey = photo.Key;

var photoUrl = bucketUrl + encodeURIComponent(photoKey);

return getHtml([
"",
"<div>",
'',
"</div>",
"<div>",
"<span onclick=\"deletePhoto('" +

albumName +
mrott o+
photoKey +
O\,
e
"",
"",
photoKey.replace(albumPhotosKey, ""),
"",
"</div>",
"",
1);
1);
var message = photos.length
? "<p>Click on the X to delete the photo</p>"
"<p>You do not have any photos in this album. Please add photos.</p>";
var htmlTemplate = [
"<h2>",
"Album: " + albumName,
"</h2>",
message,
"<div>",
getHtml(photos),

Amazon S3 Browser Examples 235

Amazon SDK for JavaScript Developer Guide for SDK v2

"</div>",
'<input id="photoupload" type="file" accept="image/*">",
'<button id="addphoto" onclick="addPhoto(\'' + albumName + "')\">",
"Add Photo",
"</button>",
'<button onclick="1istAlbums()">",
"Back To Albums",
"</button>",
1;
document.getElementById("app").innerHTML = getHtml(htmlTemplate);
1);

Adding Photos to an Album

To upload a photo to an album in the Amazon S3 bucket, the application's addPhoto function uses
a file picker element in the web page to identify a file to upload. It then forms a key for the photo
to upload from the current album name and the file name.

The function calls the upload method of the Amazon S3 service object to upload the photo. After
uploading the photo, the function redisplays the album so the uploaded photo appears.

function addPhoto(albumName) {
var files = document.getElementById("photoupload").files;
if (!files.length) {
return alert("Please choose a file to upload first.");
}
var file = files[0];
var fileName = file.name;
var albumPhotosKey = encodeURIComponent(albumName) + "/";

var photoKey = albumPhotosKey + fileName;

// Use S3 ManagedUpload class as it supports multipart uploads
var upload = new AWS.S3.ManagedUpload({
params: {
Bucket: albumBucketName,
Key: photoKey,
Body: file,
I
1);

var promise = upload.promise();

Amazon S3 Browser Examples 236

Amazon SDK for JavaScript Developer Guide for SDK v2

promise.then(
function (data) {
alert("Successfully uploaded photo.");

viewAlbum(albumName);

iy

function (err) {
return alert("There was an error uploading your photo: ", err.message);

}
);

Deleting a Photo

To delete a photo from an album in the Amazon S3 bucket, the application's deletePhoto
function calls the deleteObject method of the Amazon S3 service object. This deletes the photo

specified by the photoKey value passed to the function.

function deletePhoto(albumName, photoKey) {
s3.deleteObject({ Key: photoKey }, function (err, data) {
if (err) {
return alert("There was an error deleting your photo: ", err.message);
}
alert("Successfully deleted photo.");
viewAlbum(albumName);

1)

Deleting an Album

To delete an album in the Amazon S3 bucket, the application's deleteAlbum function calls the
deleteObjects method of the Amazon S3 service object.

function deleteAlbum(albumName) {
var albumKey = encodeURIComponent(albumName) + "/";
s3.1listObjects({ Prefix: albumKey }, function (err, data) {
if (err) {
return alert("There was an error deleting your album: ", err.message);
}
var objects = data.Contents.map(function (object) {
return { Key: object.Key };

1)

Amazon S3 Browser Examples 237

Amazon SDK for JavaScript Developer Guide for SDK v2

s3.deleteObjects(

{
Delete: { Objects: objects, Quiet: true },
.
function (err, data) {
if (err) {
return alert("There was an error deleting your album: ", err.message);
}
alert("Successfully deleted album.");
listAlbums();
}
I

1)

Uploading Photos to Amazon S3: Full Code

This section contains the full HTML and JavaScript code for the example in which photos are
uploaded to an Amazon S3 photo album. See the parent section for details and prerequisites.

The HTML for the example:

<!DOCTYPE html>

<html>
<head>
<l-- **pQ THIS**: -->
<l-- Replace SDK_VERSION_NUMBER with the current SDK version number -->

<script src="https://sdk.amazonaws.com/js/aws-sdk-SDK_VERSION_NUMBER.js"></script>
<script src="./s3_photoExample.js"></script>
<script>
function getHtml(template) {
return template.join('\n');
}
listAlbums();
</script>
</head>
<body>
<h1>My Photo Albums App</hl>
<div id="app"></div>
</body>
</html>

This sample code can be found here on GitHub.

Amazon S3 Browser Examples 238

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_photoExample.html

Amazon SDK for JavaScript Developer Guide for SDK v2

The browser script code for the example:

var albumBucketName = "BUCKET_NAME";
var bucketRegion = "REGION";
var IdentityPoolId = "IDENTITY_POOL_ID";

AWS.config.update({
region: bucketRegion,
credentials: new AWS.CognitoIdentityCredentials({
IdentityPoolId: IdentityPoolId,
b,
1}

var s3 = new AWS.S3({
apiVersion: "2006-03-01",
params: { Bucket: albumBucketName },

1)

function listAlbums() {
s3.1listObjects({ Delimiter: "/" }, function (err, data) {
if (err) {
return alert("There was an error listing your albums: " + err.message);
} else {
var albums = data.CommonPrefixes.map(function (commonPrefix) {
var prefix = commonPrefix.Prefix;
var albumName = decodeURIComponent(prefix.replace("/", ""));
return getHtml([
"",
"X",
"",
albumName,
"",
"</1i>",
1);
18
var message = albums.length
? getHtml([
"<p>Click on an album name to view it.</p>",
"<p>Click on the X to delete the album.</p>",
D
"<p>You do not have any albums. Please Create album.";
var htmlTemplate = [
"<h2>Albums</h2>",
message,

Amazon S3 Browser Examples 239

Amazon SDK for JavaScript Developer Guide for SDK v2

"",
getHtml(albums),
"",
"<button onclick=\"createAlbum(prompt('Enter Album Name:'))\">",
"Create New Album",
"</button>",
1;
document.getElementById("app").innerHTML = getHtml(htmlTemplate);
}
18

function createAlbum(albumName) {
albumName = albumName.trim();
if (!albumName) {
return alert("Album names must contain at least one non-space character.");
}
if (albumName.indexOf("/") !== -1) {
return alert("Album names cannot contain slashes.");
}
var albumKey = encodeURIComponent(albumName);
s3.headObject({ Key: albumKey }, function (err, data) {
if (lerr) {
return alert("Album already exists.");

}
if (err.code !== "NotFound") {
return alert("There was an error creating your album: " + err.message);
}
s3.putObject({ Key: albumKey }, function (err, data) {
if (err) {
return alert("There was an error creating your album: " + err.message);
}
alert("Successfully created album.");
viewAlbum(albumName);
1);
1)

function viewAlbum(albumName) {
var albumPhotosKey = encodeURIComponent(albumName) + "/";
s3.1listObjects({ Prefix: albumPhotosKey }, function (err, data) {
if (err) {
return alert("There was an error viewing your album: " + err.message);

Amazon S3 Browser Examples 240

Amazon SDK for JavaScript Developer Guide for SDK v2

// 'this' references the AWS.Response instance that represents the response
var href = this.request.httpRequest.endpoint.href;
var bucketUrl = href + albumBucketName + "/";

var photos = data.Contents.map(function (photo) {
var photoKey = photo.Key;
var photoUrl = bucketUrl + encodeURIComponent(photoKey);
return getHtml([
"",
"<div>",
'',
"</div>",
"<div>",
"<span onclick=\"deletePhoto('" +
albumName +
"" L
photoKey +
DN
ny
"",
"",
photoKey.replace(albumPhotosKey, ""),
"",
"</div>",
"",
D;
1}
var message = photos.length
? "<p>Click on the X to delete the photo</p>"
"<p>You do not have any photos in this album. Please add photos.</p>";
var htmlTemplate = [
"<h2>",
"Album: " + albumName,
"</h2>",
message,
"<div>",
getHtml(photos),
"</div>",
'<input id="photoupload" type="file" accept="image/*">',
'<button id="addphoto" onclick="addPhoto(\'"' + albumName + "')\">",
"Add Photo",
"</button>",
'<button onclick="listAlbums()">",
"Back To Albums",

Amazon S3 Browser Examples 241

Amazon SDK for JavaScript Developer Guide for SDK v2

"</button>",
iy
document.getElementById("app").innerHTML = getHtml(htmlTemplate);
1);

function addPhoto(albumName) {
var files = document.getElementById("photoupload").files;
if (!files.length) {
return alert("Please choose a file to upload first.");

var file = files[0];
var fileName = file.name;
var albumPhotosKey = encodeURIComponent(albumName) + "/";

var photoKey = albumPhotosKey + fileName;

// Use S3 ManagedUpload class as it supports multipart uploads
var upload = new AWS.S3.ManagedUpload({
params: {
Bucket: albumBucketName,
Key: photoKey,
Body: file,
I
1);

var promise = upload.promise();

promise.then(
function (data) {
alert("Successfully uploaded photo.");
viewAlbum(albumName);
},
function (err) {
return alert("There was an error uploading your photo: ", err.message);
}
);

function deletePhoto(albumName, photoKey) {
s3.deleteObject({ Key: photoKey }, function (err, data) {
if (err) {
return alert("There was an error deleting your photo:

}

, err.message);

Amazon S3 Browser Examples 242

Amazon SDK for JavaScript Developer Guide for SDK v2

alert("Successfully deleted photo.");
viewAlbum(albumName);

1)

function deleteAlbum(albumName) {
var albumKey = encodeURIComponent(albumName) + "/";
s3.1listObjects({ Prefix: albumKey }, function (err, data) {
if (err) {
return alert("There was an error deleting your album: ", err.message);
}
var objects = data.Contents.map(function (object) {
return { Key: object.Key };
1)
s3.deleteObjects(
{
Delete: { Objects: objects, Quiet: true },
.
function (err, data) {
if (err) {
return alert("There was an error deleting your album: ", err.message);
}
alert("Successfully deleted album.");
listAlbums();

DE
1)

This sample code can be found here on GitHub.

Amazon S3 Node.js Examples

The following topics show examples of how the Amazon SDK for JavaScript can be used to interact
with Amazon S3 buckets using Node.js.

Topics

» Creating and Using Amazon S3 Buckets

« Configuring Amazon S3 Buckets

« Managing Amazon S3 Bucket Access Permissions

« Working with Amazon S3 Bucket Policies

Amazon S3 Node.js Examples 243

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_photoExample.js

Amazon SDK for JavaScript Developer Guide for SDK v2

« Using an Amazon S3 Bucket as a Static Web Host

Creating and Using Amazon S3 Buckets

node

This Node.js code example shows:

« How to obtain and display a list of Amazon S3 buckets in your account.
« How to create an Amazon S3 bucket.

» How to upload an object to a specified bucket.

The Scenario

In this example, a series of Node.js modules are used to obtain a list of existing Amazon S3 buckets,
create a bucket, and upload a file to a specified bucket. These Node.js modules use the SDK for
JavaScript to get information from and upload files to an Amazon S3 bucket using these methods
of the Amazon S3 client class:

listBuckets

createBucket

listObjects

upload
deleteBucket

Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

« Install Node.js. For more information about installing Node.js, see the Node.js website.

» Create a shared configurations file with your user credentials. For more information about
providing a shared credentials file, see Loading Credentials in Node.js from the Shared

Credentials File.

Amazon S3 Node.js Examples 244

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/S3.html#listBuckets-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/S3.html#createBucket-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/S3.html#listObjects-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/S3.html#upload-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/S3.html#deleteBucket-property
https://nodejs.org

Amazon SDK for JavaScript Developer Guide for SDK v2

Configuring the SDK

Configure the SDK for JavaScript by creating a global configuration object then setting the Region
for your code. In this example, the Region is set to us-west-2.

// Load the SDK for JavaScript

var AWS = require('aws-sdk');

// Set the Region
AWS.config.update({region: 'us-west-2'});

Displaying a List of Amazon S3 Buckets

Create a Node.js module with the file name s3_listbuckets. js. Make sure to configure the SDK
as previously shown. To access Amazon Simple Storage Service, create an AWS . S3 service object.
Call the 1istBuckets method of the Amazon S3 service object to retrieve a list of your buckets.
The data parameter of the callback function has a Buckets property containing an array of maps
to represent the buckets. Display the bucket list by logging it to the console.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create S3 service object
s3 = new AWS.S3({ apiVersion: "2006-03-01" });

// Call S3 to list the buckets
s3.listBuckets(function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Success", data.Buckets);

}
1)

To run the example, type the following at the command line.

node s3_listbuckets.js

This sample code can be found here on GitHub.

Amazon S3 Node.js Examples 245

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_listbuckets.js

Amazon SDK for JavaScript Developer Guide for SDK v2

Creating an Amazon S3 Bucket

Create a Node.js module with the file name s3_createbucket. js. Make sure to configure
the SDK as previously shown. Create an AWS. S3 service object. The module will take a single
command-line argument to specify a name for the new bucket.

Add a variable to hold the parameters used to call the createBucket method of the Amazon S3
service object, including the name for the newly created bucket. The callback function logs the new
bucket's location to the console after Amazon S3 successfully creates it.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create S3 service object
s3 = new AWS.S3({ apiVersion: "2006-03-01" });

// Create the parameters for calling createBucket
var bucketParams = {
Bucket: process.argv[2],

i

// call S3 to create the bucket
s3.createBucket(bucketParams, function (err, data) {

if (err) {
console.log("Error", err);
} else {
console.log("Success", data.Location);
}
1)

To run the example, type the following at the command line.

node s3_createbucket.js BUCKET_NAME

This sample code can be found here on GitHub.

Uploading a File to an Amazon S3 Bucket

Create a Node.js module with the file name s3_upload. js. Make sure to configure the SDK as
previously shown. Create an AWS. S3 service object. The module will take two command-line

Amazon S3 Node.js Examples 246

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_createbucket.js

Amazon SDK for JavaScript Developer Guide for SDK v2

arguments, the first one to specify the destination bucket and the second to specify the file to
upload.

Create a variable with the parameters needed to call the upload method of the Amazon S3 service
object. Provide the name of the target bucket in the Bucket parameter. The Key parameter is set
to the name of the selected file, which you can obtain using the Node.js path module. The Body
parameter is set to the contents of the file, which you can obtain using createReadStream from
the Node.js fs module.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create S3 service object
var s3 = new AWS.S3({ apiVersion: "2006-03-01" });

// call S3 to retrieve upload file to specified bucket
var uploadParams = { Bucket: process.argv[2], Key: "", Body: "" };
var file = process.argv[3];

// Configure the file stream and obtain the upload parameters
var fs = require("fs");
var fileStream = fs.createReadStream(file);
fileStream.on("error", function (err) {
console.log("File Error", err);
1)
uploadParams.Body = fileStream;
var path = require("path");
uploadParams.Key = path.basename(file);

// call S3 to retrieve upload file to specified bucket
s3.upload(uploadParams, function (err, data) {

if (err) {
console.log("Error", err);
}
if (data) {
console.log("Upload Success", data.Location);
}
18

To run the example, type the following at the command line.

Amazon S3 Node.js Examples 247

Amazon SDK for JavaScript Developer Guide for SDK v2

node s3_upload.js BUCKET_NAME FILE_NAME

This sample code can be found here on GitHub.

Listing Objects in an Amazon S3 Bucket

Create a Node.js module with the file name s3_listobjects. js. Make sure to configure the SDK
as previously shown. Create an AWS.S3 service object.

Add a variable to hold the parameters used to call the 1istObjects method of the Amazon S3
service object, including the name of the bucket to read. The callback function logs a list of objects
(files) or a failure message.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create S3 service object
s3 = new AWS.S3({ apiVersion: "2006-03-01" });

// Create the parameters for calling listObjects
var bucketParams = {
Bucket: "BUCKET_NAME",

Iy

// Call S3 to obtain a list of the objects in the bucket
s3.1listObjects(bucketParams, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Success", data);
}
1)

To run the example, type the following at the command line.

node s3_listobjects.js

This sample code can be found here on GitHub.

Amazon S3 Node.js Examples 248

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_upload.js
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_listobjects.js

Amazon SDK for JavaScript Developer Guide for SDK v2

Deleting an Amazon S3 Bucket

Create a Node.js module with the file name s3_deletebucket. js. Make sure to configure the
SDK as previously shown. Create an AWS . S3 service object.

Add a variable to hold the parameters used to call the createBucket method of the Amazon S3
service object, including the name of the bucket to delete. The bucket must be empty in order to
delete it. The callback function logs a success or failure message.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create S3 service object
s3 = new AWS.S3({ apiVersion: "2006-03-01" });

// Create params for S3.deleteBucket
var bucketParams = {

Bucket: "BUCKET_NAME",
iy

// Call S3 to delete the bucket
s3.deleteBucket(bucketParams, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Success", data);
}
)i

To run the example, type the following at the command line.

node s3_deletebucket.js

This sample code can be found here on GitHub.

Amazon S3 Node.js Examples 249

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_deletebucket.js

Amazon SDK for JavaScript Developer Guide for SDK v2

Configuring Amazon S3 Buckets

node

This Node.js code example shows:

» How to configure the cross-origin resource sharing (CORS) permissions for a bucket.

The Scenario

In this example, a series of Node.js modules are used to list your Amazon S3 buckets and to
configure CORS and bucket logging. The Node.js modules use the SDK for JavaScript to configure a
selected Amazon S3 bucket using these methods of the Amazon S3 client class:

» getBucketCors

» putBucketCors

For more information about using CORS configuration with an Amazon S3 bucket, see Cross-Origin
Resource Sharing (CORS) in the Amazon Simple Storage Service User Guide.

Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

« Install Node.js. For more information about installing Node.js, see the Node.js website.

» Create a shared configurations file with your user credentials. For more information about
providing a shared credentials file, see Loading Credentials in Node.js from the Shared

Credentials File.

Configuring the SDK

Configure the SDK for JavaScript by creating a global configuration object then setting the Region
for your code. In this example, the Region is set to us-west-2.

// Load the SDK for JavaScript

Amazon S3 Node.js Examples 250

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/S3.html#getBucketCors-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/S3.html#putBucketCors-property
https://docs.amazonaws.cn/AmazonS3/latest/userguide/cors.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/cors.html
https://nodejs.org

Amazon SDK for JavaScript Developer Guide for SDK v2

var AWS = require('aws-sdk');
// Set the Region
AWS.config.update({region: 'us-west-2'});

Retrieving a Bucket CORS Configuration

Create a Node.js module with the file name s3_getcors. js. The module will take a single
command-line argument to specify the bucket whose CORS configuration you want. Make sure to
configure the SDK as previously shown. Create an AWS . S3 service object.

The only parameter you need to pass is the name of the selected bucket when calling the
getBucketCors method. If the bucket currently has a CORS configuration, that configuration is
returned by Amazon S3 as the CORSRules property of the data parameter passed to the callback
function.

If the selected bucket has no CORS configuration, that information is returned to the callback
function in the error parameter.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create S3 service object
s3 = new AWS.S3({ apiVersion: "2006-03-01" });

// Set the parameters for S3.getBucketCors
var bucketParams = { Bucket: process.argv[2] };

// call S3 to retrieve CORS configuration for selected bucket
s3.getBucketCors(bucketParams, function (err, data) {
if (err) {
console.log("Error", err);
} else if (data) {
console.log("Success", JSON.stringify(data.CORSRules));
}
1)

To run the example, type the following at the command line.

node s3_getcors.js BUCKET_NAME

Amazon S3 Node.js Examples 251

Amazon SDK for JavaScript Developer Guide for SDK v2

This sample code can be found here on GitHub.

Setting a Bucket CORS Configuration

Create a Node.js module with the file name s3_setcors. js. The module takes multiple
command-line arguments, the first of which specifies the bucket whose CORS configuration you
want to set. Additional arguments enumerate the HTTP methods (POST, GET, PUT, PATCH, DELETE,
POST) you want to allow for the bucket. Configure the SDK as previously shown.

Create an AWS. S3 service object. Next create a JSON object to hold the values for the CORS
configuration as required by the putBucketCors method of the AWS. S3 service object. Specify
"Authorization" for the AllowedHeaders value and "*" for the AllowedOrigins value. Set
the value of AllowedMethods as empty array initially.

Specify the allowed methods as command line parameters to the Node.js module, adding each
of the methods that match one of the parameters. Add the resulting CORS configuration to the
array of configurations contained in the CORSRules parameter. Specify the bucket you want to
configure for CORS in the Bucket parameter.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create S3 service object
s3 = new AWS.S3({ apiVersion: "2006-03-01" });

// Create initial parameters JSON for putBucketCors
var thisConfig = {
AllowedHeaders: ["Authorization"],
AllowedMethods: [1],
AllowedOrigins: ["*"],
ExposeHeaders: [],
MaxAgeSeconds: 3000,

};

// Assemble the list of allowed methods based on command line parameters
var allowedMethods = [];
process.argv.forEach(function (val, index, array) {
if (val.toUpperCase() === "POST") {
allowedMethods.push("POST");
}

Amazon S3 Node.js Examples 252

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_getcors.js

Amazon SDK for JavaScript Developer Guide for SDK v2

if (val.toUpperCase() === "GET") {
allowedMethods.push("GET");

}

if (val.toUpperCase() === "PUT") {
allowedMethods.push("PUT");

}

if (val.toUpperCase() === "PATCH") {
allowedMethods.push("PATCH");

}

if (val.toUpperCase() === "DELETE") {
allowedMethods.push("DELETE");

}

if (val.toUpperCase() === "HEAD") {
allowedMethods.push("HEAD");

}

1)

// Copy the array of allowed methods into the config object
thisConfig.AllowedMethods = allowedMethods;

// Create array of configs then add the config object to it
var corsRules = new Array(thisConfig);

// Create CORS params
var corsParams = {

Bucket: process.argv[2],

CORSConfiguration: { CORSRules: corsRules },
};

// set the new CORS configuration on the selected bucket
s3.putBucketCors(corsParams, function (err, data) {
if (err) {
// display error message
console.log("Error", err);
} else {
// update the displayed CORS config for the selected bucket
console.log("Success", data);
}
1)

To run the example, type the following at the command line including one or more HTTP methods
as shown.

node s3_setcors.js BUCKET_NAME get put

Amazon S3 Node.js Examples 253

Amazon SDK for JavaScript Developer Guide for SDK v2

This sample code can be found here on GitHub.

Managing Amazon S3 Bucket Access Permissions

node

This Node.js code example shows:

« How to retrieve or set the access control list for an Amazon S3 bucket.

The Scenario

In this example, a Node.js module is used to display the bucket access control list (ACL) for a
selected bucket and apply changes to the ACL for a selected bucket. The Node.js module uses the
SDK for JavaScript to manage Amazon S3 bucket access permissions using these methods of the
Amazon S3 client class:

o getBucketAcl

o putBucketAcl

For more information about access control lists for Amazon S3 buckets, see Managing Access with

ACLs in the Amazon Simple Storage Service User Guide.
Prerequisite Tasks
To set up and run this example, you must first complete these tasks:

« Install Node.js. For more information about installing Node.js, see the Node.js website.

» Create a shared configurations file with your user credentials. For more information about
providing a shared credentials file, see Loading Credentials in Node.js from the Shared
Credentials File.

Configuring the SDK

Configure the SDK for JavaScript by creating a global configuration object then setting the Region
for your code. In this example, the Region is set to us-west-2.

Amazon S3 Node.js Examples 254

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_setcors.js
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/S3.html#getBucketAcl-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/S3.html#putBucketAcl-property
https://docs.amazonaws.cn/AmazonS3/latest/userguide/S3_ACLs_UsingACLs.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/S3_ACLs_UsingACLs.html
https://nodejs.org

Amazon SDK for JavaScript Developer Guide for SDK v2

// Load the SDK for JavaScript

var AWS = require('aws-sdk');

// Set the Region
AWS.config.update({region: 'us-west-2'});

Retrieving the Current Bucket Access Control List

Create a Node.js module with the file name s3_getbucketacl. js. The module will take a single
command-line argument to specify the bucket whose ACL configuration you want. Make sure to
configure the SDK as previously shown.

Create an AWS. S3 service object. The only parameter you need to pass is the name of the selected
bucket when calling the getBucketAcl method. The current access control list configuration is
returned by Amazon S3 in the data parameter passed to the callback function.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create S3 service object
s3 = new AWS.S3({ apiVersion: "2006-03-01" });

var bucketParams = { Bucket: process.argv[2] };
// call S3 to retrieve policy for selected bucket
s3.getBucketAcl(bucketParams, function (err, data) {
if (err) {
console.log("Error", err);
} else if (data) {
console.log("Success", data.Grants);
}
});

To run the example, type the following at the command line.

node s3_getbucketacl.js BUCKET_NAME

This sample code can be found here on GitHub.

Amazon S3 Node.js Examples 255

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_getbucketacl.js

Amazon SDK for JavaScript Developer Guide for SDK v2

Working with Amazon S3 Bucket Policies

node

This Node.js code example shows:

» How to retrieve the bucket policy of an Amazon S3 bucket.
» How to add or update the bucket policy of an Amazon S3 bucket.

« How to delete the bucket policy of an Amazon S3 bucket.

The Scenario

In this example, a series of Node.js modules are used to retrieve, set, or delete a bucket policy on
an Amazon S3 bucket. The Node.js modules use the SDK for JavaScript to configure policy for a
selected Amazon S3 bucket using these methods of the Amazon S3 client class:

o getBucketPolicy

o putBucketPolicy

o deleteBucketPolicy

For more information about bucket policies for Amazon S3 buckets, see Using Bucket Policies and
User Policies in the Amazon Simple Storage Service User Guide.

Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

« Install Node.js. For more information about installing Node.js, see the Node.js website.

» Create a shared configurations file with your user credentials. For more information about
providing a shared credentials file, see Loading Credentials in Node.js from the Shared
Credentials File.

Amazon S3 Node.js Examples 256

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/S3.html#getBucketPolicy-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/S3.html#putBucketPolicy-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/S3.html#deleteBucketPolicy-property
https://docs.amazonaws.cn/AmazonS3/latest/userguide/using-iam-policies.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/using-iam-policies.html
https://nodejs.org

Amazon SDK for JavaScript Developer Guide for SDK v2

Configuring the SDK

Configure the SDK for JavaScript by creating a global configuration object then setting the Region
for your code. In this example, the Region is set to us-west-2.

// Load the SDK for JavaScript

var AWS = require('aws-sdk');

// Set the Region
AWS.config.update({region: 'us-west-2'});

Retrieving the Current Bucket Policy

Create a Node.js module with the file name s3_getbucketpolicy. js. The module takes a single
command-line argument that specifies the bucket whose policy you want. Make sure to configure
the SDK as previously shown.

Create an AWS . S3 service object. The only parameter you need to pass is the name of the selected
bucket when calling the getBucketPolicy method. If the bucket currently has a policy, that
policy is returned by Amazon S3 in the data parameter passed to the callback function.

If the selected bucket has no policy, that information is returned to the callback function in the
error parameter.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create S3 service object
s3 = new AWS.S3({ apiVersion: "2006-03-01" });

var bucketParams = { Bucket: process.argv[2] };
// call S3 to retrieve policy for selected bucket
s3.getBucketPolicy(bucketParams, function (err, data) {
if (err) {
console.log("Error", err);
} else if (data) {
console.log("Success", data.Policy);
}
1);

To run the example, type the following at the command line.

Amazon S3 Node.js Examples 257

Amazon SDK for JavaScript Developer Guide for SDK v2

node s3_getbucketpolicy.js BUCKET_NAME

This sample code can be found here on GitHub.

Setting a Simple Bucket Policy

Create a Node.js module with the file name s3_setbucketpolicy. js. The module takes a single
command-line argument that specifies the bucket whose policy you want to apply. Configure the
SDK as previously shown.

Create an AWS . S3 service object. Bucket policies are specified in JSON. First, create a JSON object
that contains all of the values to specify the policy except for the Resource value that identifies
the bucket.

Format the Resource string required by the policy, incorporating the name of the selected
bucket. Insert that string into the JSON object. Prepare the parameters for the putBucketPolicy
method, including the name of the bucket and the JSON policy converted to a string value.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create S3 service object
s3 = new AWS.S3({ apiVersion: "2006-03-01" });

var readOnlyAnonUserPolicy = {
Version: "2012-10-17",
Statement: [
{
Sid: "AddPerm",
Effect: "Allow",
Principal: "*",
Action: ["s3:GetObject"],
Resource: [""],
},
1,
};

// create selected bucket resource string for bucket policy
var bucketResource = "arn:aws:s3:::" + process.argv[2] + "/*";
readOnlyAnonUserPolicy.Statement[@].Resource[@] = bucketResource;

Amazon S3 Node.js Examples 258

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_getbucketpolicy.js

Amazon SDK for JavaScript Developer Guide for SDK v2

// convert policy JSON into string and assign into params
var bucketPolicyParams = {

Bucket: process.argv[2],

Policy: JSON.stringify(readOnlyAnonUserPolicy),
I

// set the new policy on the selected bucket
s3.putBucketPolicy(bucketPolicyParams, function (err, data) {
if (err) {
// display error message
console.log("Error", err);
} else {
console.log("Success", data);
}
1)

To run the example, type the following at the command line.

node s3_setbucketpolicy.js BUCKET_NAME

This sample code can be found here on GitHub.

Deleting a Bucket Policy

Create a Node.js module with the file name s3_deletebucketpolicy. js. The module takes
a single command-line argument that specifies the bucket whose policy you want to delete.
Configure the SDK as previously shown.

Create an AWS. S3 service object. The only parameter you need to pass when calling the
deleteBucketPolicy method is the name of the selected bucket.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create S3 service object
s3 = new AWS.S3({ apiVersion: "2006-03-01" });

var bucketParams = { Bucket: process.argv[2] };
// call S3 to delete policy for selected bucket
s3.deleteBucketPolicy(bucketParams, function (err, data) {

Amazon S3 Node.js Examples 259

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_setbucketpolicy.js

Amazon SDK for JavaScript Developer Guide for SDK v2

if (err) {
console.log("Error", err);
} else if (data) {
console.log("Success", data);
}
1)

To run the example, type the following at the command line.

node s3_deletebucketpolicy.js BUCKET_NAME

This sample code can be found here on GitHub.

Using an Amazon S3 Bucket as a Static Web Host

node

This Node.js code example shows:

« How to set up an Amazon S3 bucket as a static web host.

The Scenario

In this example, a series of Node.js modules are used to configure any of your buckets to act as a
static web host. The Node.js modules use the SDK for JavaScript to configure a selected Amazon S3
bucket using these methods of the Amazon S3 client class:

o getBucketWebsite

o putBucketWebsite

e deleteBucketWebsite

For more information about using an Amazon S3 bucket as a static web host, see Hosting a Static
Website on Amazon S3 in the Amazon Simple Storage Service User Guide.

Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

Amazon S3 Node.js Examples 260

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_deletebucketpolicy.js
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/S3.html#getBucketWebsite-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/S3.html#putBucketWebsite-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/S3.html#deleteBucketWebsite-property
https://docs.amazonaws.cn/AmazonS3/latest/userguide/WebsiteHosting.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/WebsiteHosting.html

Amazon SDK for JavaScript Developer Guide for SDK v2

« Install Node.js. For more information about installing Node.js, see the Node.js website.

» Create a shared configurations file with your user credentials. For more information about
providing a shared credentials file, see Loading Credentials in Node.js from the Shared
Credentials File.

Configuring the SDK

Configure the SDK for JavaScript by creating a global configuration object then setting the Region
for your code. In this example, the Region is set to us-west-2.

// Load the SDK for JavaScript

var AWS = require('aws-sdk');

// Set the Region
AWS.config.update({region: 'us-west-2'});

Retrieving the Current Bucket Website Configuration

Create a Node.js module with the file name s3_getbucketwebsite. js. The module takes a
single command-line argument that specifies the bucket whose website configuration you want.
Configure the SDK as previously shown.

Create an AWS . S3 service object. Create a function that retrieves the current bucket website
configuration for the bucket selected in the bucket list. The only parameter you need to pass is the
name of the selected bucket when calling the getBucketWebsite method. If the bucket currently
has a website configuration, that configuration is returned by Amazon S3 in the data parameter
passed to the callback function.

If the selected bucket has no website configuration, that information is returned to the callback
function in the err parameter.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create S3 service object
s3 = new AWS.S3({ apiVersion: "2006-03-01" });

var bucketParams = { Bucket: process.argv[2] };

Amazon S3 Node.js Examples 261

https://nodejs.org

Amazon SDK for JavaScript

Developer Guide for SDK v2

// call S3 to retrieve the website configuration for selected bucket
s3.getBucketWebsite(bucketParams, function (err, data) {

if (err) {
console.log("Error", err);
} else if (data) {
console.log("Success", data);
}
1)

To run the example, type the following at the command line.

node s3_getbucketwebsite.js BUCKET_NAME

This sample code can be found here on GitHub.

Setting a Bucket Website Configuration

Create a Node.js module with the file name s3_setbucketwebsite. js. Make sure to configure

the SDK as previously shown. Create an AWS . S3 service object.

Create a function that applies a bucket website configuration. The configuration allows the

selected bucket to serve as a static web host. Website configurations are specified in JSON. First,
create a JSON object that contains all the values to specify the website configuration, except for
the Key value that identifies the error document, and the Suffix value that identifies the index

document.

Insert the values of the text input elements into the JSON object. Prepare the parameters for
the putBucketWebsite method, including the name of the bucket and the JSON website

configuration.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create S3 service object
s3 = new AWS.S3({ apiVersion: "2006-03-01" });

// Create JSON for putBucketWebsite parameters
var staticHostParams = {

Bucket: "",

WebsiteConfiguration: {

Amazon S3 Node.js Examples

262

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_getbucketwebsite.js

Amazon SDK for JavaScript Developer Guide for SDK v2

ErrorDocument: {

Key: Illl’

I

IndexDocument: {
Suffix: "",

},

}I
};

// Insert specified bucket name and index and error documents into params JSON
// from command line arguments

staticHostParams.Bucket = process.argv[2];
staticHostParams.WebsiteConfiguration.IndexDocument.Suffix = process.argv[3];
staticHostParams.WebsiteConfiguration.ErrorDocument.Key = process.argv[4];

// set the new website configuration on the selected bucket
s3.putBucketWebsite(staticHostParams, function (err, data) {
if (err) {
// display error message
console.log("Error", err);
} else {
// update the displayed website configuration for the selected bucket
console.log("Success", data);
}
1);

To run the example, type the following at the command line.

node s3_setbucketwebsite.js BUCKET_NAME INDEX_PAGE ERROR_PAGE

This sample code can be found here on GitHub.

Deleting a Bucket Website Configuration

Create a Node.js module with the file name s3_deletebucketwebsite. js. Make sure to
configure the SDK as previously shown. Create an AWS.S3 service object.

Create a function that deletes the website configuration for the selected bucket. The only
parameter you need to pass when calling the deleteBucketWebsite method is the name of the
selected bucket.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");

Amazon S3 Node.js Examples 263

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_setbucketwebsite.js

Amazon SDK for JavaScript Developer Guide for SDK v2

// Set the region
AWS.config.update({ region: "REGION" });

// Create S3 service object
s3 = new AWS.S3({ apiVersion: "2006-03-01" });

var bucketParams = { Bucket: process.argv[2] };

// call S3 to delete website configuration for selected bucket
s3.deleteBucketWebsite(bucketParams, function (error, data) {
if (error) {
console.log("Error", err);
} else if (data) {
console.log("Success", data);
}
1)

To run the example, type the following at the command line.

node s3_deletebucketwebsite.js BUCKET_NAME

This sample code can be found here on GitHub.

Amazon Simple Email Service Examples

Amazon Simple Email Service (Amazon SES) is a cloud-based email sending service designed to
help digital marketers and application developers send marketing, notification, and transactional
emails. It is a reliable, cost-effective service for businesses of all sizes that use email to keep in
contact with their customers.

4=
n d c @ ‘
—
JavaScript Amazon SI;IK . Amazgn .
Environmesits for JavaScript Simple Email Service

The JavaScript API for Amazon SES is exposed through the AWS . SES client class. For more
information about using the Amazon SES client class, see Class: AWS.SES in the API reference.

Amazon SES Examples 264

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_deletebucketwebsite.js
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SES.html

Amazon SDK for JavaScript Developer Guide for SDK v2

Topics

Managing Amazon SES Identities

Working with Email Templates in Amazon SES

Sending Email Using Amazon SES

Using IP Address Filters for Email Receipt in Amazon SES

Using Receipt Rules in Amazon SES

Managing Amazon SES Identities

node

This Node.js code example shows:

How to verify email addresses and domains used with Amazon SES.

How to assign IAM policy to your Amazon SES identities.

How to list all Amazon SES identities for your Amazon account.

How to delete identities used with Amazon SES.

An Amazon SES identity is an email address or domain that Amazon SES uses to send email.
Amazon SES requires you to verify your email identities, confirming that you own them and
preventing others from using them.

For details on how to verify email addresses and domains in Amazon SES, see Verifying Email

Addresses and Domains in Amazon SES in the Amazon Simple Email Service Developer Guide. For

information about sending authorization in Amazon SES, see Overview of Amazon SES Sending
Authorization .

The Scenario

In this example, you use a series of Node.js modules to verify and manage Amazon SES identities.
The Node.js modules use the SDK for JavaScript to verify email addresses and domains, using these
methods of the AWS . SES client class:

e listIdentities

Managing Identities 265

https://docs.amazonaws.cn/ses/latest/DeveloperGuide/verify-addresses-and-domains.html
https://docs.amazonaws.cn/ses/latest/DeveloperGuide/verify-addresses-and-domains.html
Amazon%20Simple%20Email%20Service%20Developer%20Guidesending-authorization-overview.html
Amazon%20Simple%20Email%20Service%20Developer%20Guidesending-authorization-overview.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SES.html#listIdentities-property

Amazon SDK for JavaScript Developer Guide for SDK v2

o« deleteldentity

o« verifyEmailldentity

o verifyDomainIdentity

Prerequisite Tasks
To set up and run this example, you must first complete these tasks:

« Install Node.js. For more information about installing Node.js, see the Node.js website.

» Create a shared configurations file with your user credentials. For more information about
providing a credentials JSON file, see Loading Credentials in Node.js from the Shared Credentials
File.

Configuring the SDK

Configure the SDK for JavaScript by creating a global configuration object then setting the Region
for your code. In this example, the Region is set to us-west-2.

// Load the SDK for JavaScript
var AWS = require('aws-sdk');

// Set the Region
AWS.config.update({region: 'us-west-2'});

Listing Your Identities

In this example, use a Node.js module to list email addresses and domains to use with Amazon
SES. Create a Node.js module with the file name ses_listidentities. js. Configure the SDK as
previously shown.

Create an object to pass the IdentityType and other parameters for the l1istIdentities
method of the AWS . SES client class. To call the 1istIdentities method, create a promise for
invoking an Amazon SES service object, passing the parameters object.

Then handle the response in the promise callback. The data returned by the promise contains an
array of domain identities as specified by the IdentityType parameter.

// Load the AWS SDK for Node.js

Managing Identities 266

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SES.html#deleteIdentity-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SES.html#verifyEmailIdentity-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SES.html#verifyDomainIdentity-property
https://nodejs.org

Amazon SDK for JavaScript Developer Guide for SDK v2

var AWS = require("aws-sdk");
// Set region
AWS.config.update({ region: "REGION" });

// Create listIdentities params
var params = {
IdentityType: "Domain",
MaxItems: 10,
};

// Create the promise and SES service object

var listIDsPromise = new AWS.SES({ apiVersion: "2010-12-01" })
.listIdentities(params)
.promise();

// Handle promise's fulfilled/rejected states
listIDsPromise
.then(function (data) {
console.log(data.Identities);

1)
.catch(function (err) {
console.error(err, err.stack);

1)

To run the example, type the following at the command line.

node ses_listidentities.js

This sample code can be found here on GitHub.

Verifying an Email Address Identity

In this example, use a Node.js module to verify email senders to use with Amazon SES. Create
a Node.js module with the file name ses_verifyemailidentity. js. Configure the SDK as
previously shown. To access Amazon SES, create an AWS. SES service object.

Create an object to pass the EmailAddress parameter for the verifyEmailIdentity method
of the AWS . SES client class. To call the verifyEmailIdentity method, create a promise for
invoking an Amazon SES service object, passing the parameters. Then handle the response in the
promise callback.

// Load the AWS SDK for Node.js

Managing Identities 267

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_listidentities.js

Amazon SDK for JavaScript Developer Guide for SDK v2

var AWS = require("aws-sdk");
// Set region
AWS.config.update({ region: "REGION" });

// Create promise and SES service object

var verifyEmailPromise = new AWS.SES({ apiVersion: "2010-12-01" })
.verifyEmailldentity({ EmailAddress: "ADDRESS@DOMAIN.EXT" })
.promise();

// Handle promise's fulfilled/rejected states
verifyEmailPromise
.then(function (data) {
console.log("Email verification initiated");

1}
.catch(function (err) {
console.error(err, err.stack);

1)

To run the example, type the following at the command line. The domain is added to Amazon SES
to be verified.

node ses_verifyemailidentity.js

This sample code can be found here on GitHub.

Verifying a Domain Identity

In this example, use a Node.js module to verify email domains to use with Amazon SES. Create
a Node.js module with the file name ses_verifydomainidentity. js. Configure the SDK as
previously shown.

Create an object to pass the Domain parameter for the verifyDomainIdentity method of the
AWS . SES client class. To call the verifyDomainIdentity method, create a promise for invoking
an Amazon SES service object, passing the parameters object. Then handle the response in the
promise callback.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set region

AWS.config.update({ region: "REGION" });

Managing Identities 268

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_verifyemailidentity.js

Amazon SDK for JavaScript Developer Guide for SDK v2

// Create the promise and SES service object

var verifyDomainPromise = new AWS.SES({ apiVersion: "2010-12-01" })
.verifyDomainIdentity({ Domain: "DOMAIN_NAME" })
.promise();

// Handle promise's fulfilled/rejected states
verifyDomainPromise
.then(function (data) {
console.log("Verification Token: " + data.VerificationToken);

1}
.catch(function (err) {
console.error(err, err.stack);

1)

To run the example, type the following at the command line. The domain is added to Amazon SES
to be verified.

node ses_verifydomainidentity.js

This sample code can be found here on GitHub.

Deleting Identities

In this example, use a Node.js module to delete email addresses or domains used with Amazon
SES. Create a Node.js module with the file name ses_deleteidentity. js. Configure the SDK as
previously shown.

Create an object to pass the Identity parameter for the deleteIdentity method of the
AWS . SES client class. To call the deleteIdentity method, create a request for invoking an
Amazon SES service object, passing the parameters. Then handle the response in the promise
callback..

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set region

AWS.config.update({ region: "REGION" });

// Create the promise and SES service object

var deletePromise = new AWS.SES({ apiVersion: "2010-12-01" })
.deleteIdentity({ Identity: "DOMAIN_NAME" })
.promise();

Managing Identities 269

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_verifydomainidentity.js

Amazon SDK for JavaScript Developer Guide for SDK v2

// Handle promise's fulfilled/rejected states
deletePromise
.then(function (data) {
console.log("Identity Deleted");
1)

.catch(function (err) {
console.error(err, err.stack);

1)

To run the example, type the following at the command line.

node ses_deleteidentity.js

This sample code can be found here on GitHub.

Working with Email Templates in Amazon SES

node

This Node.js code example shows:

» Get a list of all of your email templates.
» Retrieve and update email templates.

» Create and delete email templates.

Amazon SES lets you send personalized email messages using email templates. For details on how
to create and use email templates in Amazon Simple Email Service, see Sending Personalized Email
Using the Amazon SES API in the Amazon Simple Email Service Developer Guide.

The Scenario

In this example, you use a series of Node.js modules to work with email templates. The Node.js
modules use the SDK for JavaScript to create and use email templates using these methods of the
AWS . SES client class:

o« listTemplates

Working with Email Templates 270

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_deleteidentity.js
https://docs.amazonaws.cn/ses/latest/DeveloperGuide/send-personalized-email-api.html
https://docs.amazonaws.cn/ses/latest/DeveloperGuide/send-personalized-email-api.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SES.html#listTemplates-property

Amazon SDK for JavaScript Developer Guide for SDK v2

createTemplate

getTemplate

deleteTemplate

updateTemplate

Prerequisite Tasks
To set up and run this example, you must first complete these tasks:

« Install Node.js. For more information about installing Node.js, see the Node.js website.

» Create a shared configurations file with your user credentials. For more information about
creating a credentials file, see Loading Credentials in Node.js from the Shared Credentials File.

Listing Your Email Templates

In this example, use a Node.js module to create an email template to use with Amazon SES. Create
a Node.js module with the file name ses_listtemplates. js. Configure the SDK as previously
shown.

Create an object to pass the parameters for the 1istTemplates method of the AWS . SES client
class. To call the 1istTemplates method, create a promise for invoking an Amazon SES service
object, passing the parameters. Then handle the response in the promise callback.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create the promise and SES service object

var templatePromise = new AWS.SES({ apiVersion: "2010-12-01" })
.listTemplates({ MaxItems: ITEMS_COUNT })
.promise();

// Handle promise's fulfilled/rejected states
templatePromise
.then(function (data) {
console.log(data);

1)

.catch(function (err) {

Working with Email Templates 271

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SES.html#createTemplate-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SES.html#getTemplate-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SES.html#deleteTemplate-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SES.html#updateTemplate-property
https://nodejs.org

Amazon SDK for JavaScript Developer Guide for SDK v2

console.error(err, err.stack);

1)

To run the example, type the following at the command line. Amazon SES returns the list of
templates.

node ses_listtemplates.]js

This sample code can be found here on GitHub.

Getting an Email Template

In this example, use a Node.js module to get an email template to use with Amazon SES. Create
a Node.js module with the file name ses_gettemplate. js. Configure the SDK as previously
shown.

Create an object to pass the TemplateName parameter for the getTemplate method of the
AWS . SES client class. To call the getTemplate method, create a promise for invoking an Amazon
SES service object, passing the parameters. Then handle the response in the promise callback.

// Load the AWS SDK for Node.js.

var AWS = require("aws-sdk");

// Set the AWS Region.
AWS.config.update({ region: "REGION" });

// Create the promise and Amazon Simple Email Service (Amazon SES) service object.
var templatePromise = new AWS.SES({ apiVersion: "2010-12-01" })

.getTemplate({ TemplateName: "TEMPLATE_NAME" })

.promise();

// Handle promise's fulfilled/rejected states
templatePromise
.then(function (data) {
console.log(data.Template.SubjectPart);
1)

.catch(function (err) {
console.error(err, err.stack);

1)

To run the example, type the following at the command line. Amazon SES returns the template
details.

Working with Email Templates 272

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_listtemplates.js

Amazon SDK for JavaScript Developer Guide for SDK v2

node ses_gettemplate.js

This sample code can be found here on GitHub.

Creating an Email Template

In this example, use a Node.js module to create an email template to use with Amazon SES. Create
a Node.js module with the file name ses_createtemplate. js. Configure the SDK as previously
shown.

Create an object to pass the parameters for the createTemplate method of the AWS.SES
client class, including TemplateName, HtmlPart, SubjectPart, and TextPart. To call the
createTemplate method, create a promise for invoking an Amazon SES service object, passing
the parameters. Then handle the response in the promise callback.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create createTemplate params
var params = {
Template: {
TemplateName: "TEMPLATE_NAME" /* required */,
HtmlPart: "HTML_CONTENT",
SubjectPart: "SUBJECT_LINE",
TextPart: "TEXT_CONTENT",
.
};

// Create the promise and SES service object

var templatePromise = new AWS.SES({ apiVersion: "2010-12-01" })
.createTemplate(params)
.promise();

// Handle promise's fulfilled/rejected states
templatePromise
.then(function (data) {
console.log(data);
)

.catch(function (err) {

Working with Email Templates 273

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_gettemplate.js

Amazon SDK for JavaScript Developer Guide for SDK v2

console.error(err, err.stack);

1)

To run the example, type the following at the command line. The template is added to Amazon
SES.

node ses_createtemplate.js

This sample code can be found here on GitHub.

Updating an Email Template

In this example, use a Node.js module to create an email template to use with Amazon SES. Create
a Node.js module with the file name ses_updatetemplate. js. Configure the SDK as previously
shown.

Create an object to pass the Template parameter values you want to update in the template, with
the required TemplateName parameter passed to the updateTemplate method of the AWS.SES
client class. To call the updateTemplate method, create a promise for invoking an Amazon SES
service object, passing the parameters. Then handle the response in the promise callback.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create updateTemplate parameters
var params = {
Template: {
TemplateName: "TEMPLATE_NAME" /* required */,
HtmlPart: "HTML_CONTENT",
SubjectPart: "SUBJECT_LINE",
TextPart: "TEXT_CONTENT",
I
};

// Create the promise and SES service object

var templatePromise = new AWS.SES({ apiVersion: "2010-12-01" })
.updateTemplate(params)
.promise();

Working with Email Templates 274

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_createtemplate.js

Amazon SDK for JavaScript Developer Guide for SDK v2

// Handle promise's fulfilled/rejected states
templatePromise
.then(function (data) {
console.log("Template Updated");
b

.catch(function (err) {
console.error(err, err.stack);

1)

To run the example, type the following at the command line. Amazon SES returns the template
details.

node ses_updatetemplate.js

This sample code can be found here on GitHub.

Deleting an Email Template

In this example, use a Node.js module to create an email template to use with Amazon SES. Create
a Node.js module with the file name ses_deletetemplate. js. Configure the SDK as previously
shown.

Create an object to pass the requiredTemplateName parameter to the deleteTemplate method
of the AWS . SES client class. To call the deleteTemplate method, create a promise for invoking

an Amazon SES service object, passing the parameters. Then handle the response in the promise
callback.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create the promise and SES service object

var templatePromise = new AWS.SES({ apiVersion: "2010-12-01" })
.deleteTemplate({ TemplateName: "TEMPLATE_NAME" })
.promise();

// Handle promise's fulfilled/rejected states
templatePromise
.then(function (data) {
console.log("Template Deleted");

Working with Email Templates 275

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_updatetemplate.js

Amazon SDK for JavaScript Developer Guide for SDK v2

1)
.catch(function (err) {
console.error(err, err.stack);

1)

To run the example, type the following at the command line. Amazon SES returns the template
details.

node ses_deletetemplate.js

This sample code can be found here on GitHub.

Sending Email Using Amazon SES

node

This Node.js code example shows:

« Send a text or HTML email.
« Send emails based on an email template.

« Send bulk emails based on an email template.

The Amazon SES API provides two different ways for you to send an email, depending on how
much control you want over the composition of the email message: formatted and raw. For details,
see Sending Formatted Email Using the Amazon SES APl and Sending Raw Email Using the Amazon
SES API.

The Scenario

In this example, you use a series of Node.js modules to send email in a variety of ways. The Node.js
modules use the SDK for JavaScript to create and use email templates using these methods of the
AWS . SES client class:

e sendEmail

o sendTemplatedEmail

Sending Email Using Amazon SES 276

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_deletetemplate.js
https://docs.amazonaws.cn/ses/latest/DeveloperGuide/send-email-formatted.html
https://docs.amazonaws.cn/ses/latest/DeveloperGuide/send-email-raw.html
https://docs.amazonaws.cn/ses/latest/DeveloperGuide/send-email-raw.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SES.html#sendEmail-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SES.html#sendTemplatedEmail-property

Amazon SDK for JavaScript Developer Guide for SDK v2

» sendBulkTemplatedEmail

Prerequisite Tasks

« Install Node.js. For more information about installing Node.js, see the Node.js website.

« Create a shared configurations file with your user credentials. For more information about
providing a credentials JSON file, see Loading Credentials in Node.js from the Shared Credentials
File.

Email Message Sending Requirements

Amazon SES composes an email message and immediately queues it for sending. To send email
using the SES. sendEmail method, your message must meet the following requirements:

» You must send the message from a verified email address or domain. If you attempt to send
email using a non-verified address or domain, the operation results in an "Email address not
verified" error.

o If your account is still in the Amazon SES sandbox, you can only send to verified addresses or
domains, or to email addresses associated with the Amazon SES Mailbox Simulator. For more
information, see Verifying Email Addresses and Domains in the Amazon Simple Email Service

Developer Guide.
« The total size of the message, including attachments, must be smaller than 10 MB.

« The message must include at least one recipient email address. The recipient address can be a
To: address, a CC: address, or a BCC: address. If a recipient email address is invalid (that is, it is
not in the format UserName@[SubDomain.]JDomain.TopLevelDomain), the entire message is
rejected, even if the message contains other recipients that are valid.

» The message cannot include more than 50 recipients, across the To:, CC: and BCC: fields. If you
need to send an email message to a larger audience, you can divide your recipient list into groups
of 50 or fewer, and then call the sendEmail method several times to send the message to each

group.

Sending an Email

In this example, use a Node.js module to send email with Amazon SES. Create a Node.js module
with the file name ses_sendemail. js. Configure the SDK as previously shown.

Sending Email Using Amazon SES 277

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SES.html#sendBulkTemplatedEmail-property
https://nodejs.org
https://docs.amazonaws.cn/ses/latest/DeveloperGuide/verify-addresses-and-domains.html

Amazon SDK for JavaScript Developer Guide for SDK v2

Create an object to pass the parameter values that define the email to be sent, including sender
and receiver addresses, subject, email body in plain text and HTML formats, to the sendEmail
method of the AWS . SES client class. To call the sendEmail method, create a promise for invoking

an Amazon SES service object, passing the parameters. Then handle the response in the promise
callback.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create sendEmail params
var params = {
Destination: {
/* required */
CcAddresses: [
"EMAIL_ADDRESS",
/* more items */
1,
ToAddresses: [
"EMAIL_ADDRESS",
/* more items */
1,
.
Message: {
/* required */
Body: {
/* required */
Html: {
Charset: "UTF-8",
Data: "HTML_FORMAT_BODY",

iy
Text: {
Charset: "UTF-8",
Data: "TEXT_FORMAT_BODY",
iy
},
Subject: {

Charset: "UTF-8",
Data: "Test email",
},
.
Source: "SENDER_EMAIL_ADDRESS" /* required */,

Sending Email Using Amazon SES 278

Amazon SDK for JavaScript Developer Guide for SDK v2

ReplyToAddresses: [
"EMAIL_ADDRESS",
/* more items */
1,
};

// Create the promise and SES service object

var sendPromise = new AWS.SES({ apiVersion: "2010-12-01" })
.sendEmail(params)
.promise();

// Handle promise's fulfilled/rejected states
sendPromise
.then(function (data) {
console.log(data.Messageld);
1)

.catch(function (err) {
console.error(err, err.stack);

1)

To run the example, type the following at the command line. The email is queued for sending by
Amazon SES.

node ses_sendemail.js

This sample code can be found here on GitHub.

Sending an Email Using a Template

In this example, use a Node.js module to send email with Amazon SES. Create a Node.js module
with the file name ses_sendtemplatedemail. js. Configure the SDK as previously shown.

Create an object to pass the parameter values that define the email to be sent, including

sender and receiver addresses, subject, email body in plain text and HTML formats, to the
sendTemplatedEmail method of the AWS. SES client class. To call the sendTemplatedEmail
method, create a promise for invoking an Amazon SES service object, passing the parameters. Then
handle the response in the promise callback.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region

Sending Email Using Amazon SES 279

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_sendemail.js

Amazon SDK for JavaScript Developer Guide for SDK v2

AWS.config.update({ region: "REGION" });

// Create sendTemplatedEmail params
var params = {
Destination: {
/* required */
CcAddresses: [
"EMAIL_ADDRESS",
/* more CC email addresses */
1,
ToAddresses: [
"EMAIL_ADDRESS",
/* more To email addresses */
1,

+
Source: "EMAIL_ADDRESS" /* required */,

Template: "TEMPLATE_NAME" /* required */,
TemplateData: '{ "REPLACEMENT_TAG_NAME":"REPLACEMENT_VALUE" }' /* required */,
ReplyToAddresses: ["EMAIL_ADDRESS"],

};

// Create the promise and SES service object

var sendPromise = new AWS.SES({ apiVersion: "2010-12-01" })
.sendTemplatedEmail(params)
.promise();

// Handle promise's fulfilled/rejected states
sendPromise
.then(function (data) {
console.log(data);

1)
.catch(function (err) {
console.error(err, err.stack);

1)

To run the example, type the following at the command line. The email is queued for sending by
Amazon SES.

node ses_sendtemplatedemail.js

This sample code can be found here on GitHub.

Sending Email Using Amazon SES 280

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_sendtemplatedemail.js

Amazon SDK for JavaScript Developer Guide for SDK v2

Sending Bulk Email Using a Template

In this example, use a Node.js module to send email with Amazon SES. Create a Node.js module
with the file name ses_sendbulktemplatedemail. js. Configure the SDK as previously shown.

Create an object to pass the parameter values that define the email to be sent, including

sender and receiver addresses, subject, email body in plain text and HTML formats,

to the sendBulkTemplatedEmail method of the AWS.SES client class. To call the
sendBulkTemplatedEmail method, create a promise for invoking an Amazon SES service object,
passing the parameters. Then handle the response in the promise callback.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create sendBulkTemplatedEmail params
var params = {
Destinations: [
/* required */
{
Destination: {
/* required */
CcAddresses: [
"EMAIL_ADDRESS",
/* more items */
1,
ToAddresses: [
"EMAIL_ADDRESS",
"EMAIL_ADDRESS",
/* more items */
1,
1,
ReplacementTemplateData: '{ "REPLACEMENT_TAG_NAME":"REPLACEMENT_VALUE" }°',
},
1,
Source: "EMAIL_ADDRESS" /* required */,
Template: "TEMPLATE_NAME" /* required */,
DefaultTemplateData: '{ "REPLACEMENT_TAG_NAME":"REPLACEMENT_VALUE" }',
ReplyToAddresses: ["EMAIL_ADDRESS"],
};

// Create the promise and SES service object

Sending Email Using Amazon SES 281

Amazon SDK for JavaScript Developer Guide for SDK v2

var sendPromise = new AWS.SES({ apiVersion: "2010-12-01" })
.sendBulkTemplatedEmail(params)
.promise();

// Handle promise's fulfilled/rejected states
sendPromise
.then(function (data) {
console.log(data);

1)
.catch(function (err) {
console.log(err, err.stack);

1)

To run the example, type the following at the command line. The email is queued for sending by
Amazon SES.

node ses_sendbulktemplatedemail.js

This sample code can be found here on GitHub.

Using IP Address Filters for Email Receipt in Amazon SES

nade

This Node.js code example shows:

» Create IP address filters to accept or reject mail that originates from an IP address or range of IP
addresses.

« List your current IP address filters.

o Delete an IP address filter.

In Amazon SES, a filter is a data structure that consists of a name, an IP address range, and whether
to allow or block mail from it. IP addresses you want to block or allow are specified as a single IP
address or a range of IP addresses in Classless Inter-Domain Routing (CIDR) notation. For details on
how Amazon SES receives email, see Amazon SES Email-Receiving Concepts in the Amazon Simple

Email Service Developer Guide.

Using IP Address Filters 282

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_sendbulktemplatedemail.js
http://docs.aws.amazon.com/ses/latest/DeveloperGuide/receiving-email-concepts.html

Amazon SDK for JavaScript Developer Guide for SDK v2

The Scenario

In this example, a series of Node.js modules are used to send email in a variety of ways. The Node.js
modules use the SDK for JavaScript to create and use email templates using these methods of the
AWS . SES client class:

o createReceiptFilter

o listReceiptFilters

o deleteReceiptFilter

Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

« Install Node.js. For more information about installing Node.js, see the Node.js website.

» Create a shared configurations file with your user credentials. For more information about
providing a shared credentials file, see Loading Credentials in Node.js from the Shared

Credentials File.

Configuring the SDK

Configure the SDK for JavaScript by creating a global configuration object then setting the Region
for your code. In this example, the Region is set to us-west-2.

// Load the SDK for JavaScript

var AWS = require('aws-sdk');

// Set the Region
AWS.config.update({region: 'us-west-2'});

Creating an IP Address Filter

In this example, use a Node.js module to send email with Amazon SES. Create a Node.js module
with the file name ses_createreceiptfilter. js. Configure the SDK as previously shown.

Create an object to pass the parameter values that define the IP filter, including the filter name,
an IP address or range of addresses to filter, and whether to allow or block email traffic from the
filtered addresses. To call the createReceiptFilter method, create a promise for invoking an

Using IP Address Filters 283

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SES.html#createReceiptFilter-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SES.html#listReceiptFilters-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SES.html#deleteReceiptFilter-property
https://nodejs.org

Amazon SDK for JavaScript Developer Guide for SDK v2

Amazon SES service object, passing the parameters. Then handle the response in the promise
callback.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create createReceiptFilter params
var params = {

Filter: {
IpFilter: {
Cidr: "IP_ADDRESS_OR_RANGE",
Policy: "Allow" | "Block",
},
Name: "NAME",
},

};

// Create the promise and SES service object

var sendPromise = new AWS.SES({ apiVersion: "2010-12-01" })
.createReceiptFilter(params)
.promise();

// Handle promise's fulfilled/rejected states
sendPromise
.then(function (data) {
console.log(data);

1)
.catch(function (err) {
console.error(err, err.stack);

1)

To run the example, type the following at the command line. The filter is created in Amazon SES.

node ses_createreceiptfilter.js

This sample code can be found here on GitHub.

Using IP Address Filters 284

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_createreceiptfilter.js

Amazon SDK for JavaScript Developer Guide for SDK v2

Listing Your IP Address Filters

In this example, use a Node.js module to send email with Amazon SES. Create a Node.js module
with the file name ses_listreceiptfilters. js. Configure the SDK as previously shown.

Create an empty parameters object. To call the 1istReceiptFilters method, create a promise
for invoking an Amazon SES service object, passing the parameters. Then handle the response in
the promise callback.

// Load the AWS SDK for Node.]js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create the promise and SES service object

var sendPromise = new AWS.SES({ apiVersion: "2010-12-01" })
.listReceiptFilters({})
.promise();

// Handle promise's fulfilled/rejected states
sendPromise
.then(function (data) {
console.log(data.Filters);

1)
.catch(function (err) {
console.error(err, err.stack);

1)

To run the example, type the following at the command line. Amazon SES returns the filter list.

node ses_listreceiptfilters.js

This sample code can be found here on GitHub.

Deleting an IP Address Filter

In this example, use a Node.js module to send email with Amazon SES. Create a Node.js module
with the file name ses_deletereceiptfilter. js. Configure the SDK as previously shown.

Create an object to pass the name of the IP filter to delete. To call the deleteReceiptFilter
method, create a promise for invoking an Amazon SES service object, passing the parameters. Then
handle the response in the promise callback.

Using IP Address Filters 285

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_listreceiptfilters.js

Amazon SDK for JavaScript Developer Guide for SDK v2

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create the promise and SES service object

var sendPromise = new AWS.SES({ apiVersion: "2010-12-01" })
.deleteReceiptFilter({ FilterName: "NAME" })
.promise();

// Handle promise's fulfilled/rejected states
sendPromise
.then(function (data) {
console.log("IP Filter deleted");
1)

.catch(function (err) {
console.error(err, err.stack);

1)

To run the example, type the following at the command line. The filter is deleted from Amazon
SES.

node ses_deletereceiptfilter.js

This sample code can be found here on GitHub.

Using Receipt Rules in Amazon SES

node

This Node.js code example shows:

» Create and delete receipt rules.

« Organize receipt rules into receipt rule sets.

Receipt rules in Amazon SES specify what to do with email received for email addresses or domains
you own. A receipt rule contains a condition and an ordered list of actions. If the recipient of an

Using Receipt Rules 286

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_deletereceiptfilter.js

Amazon SDK for JavaScript Developer Guide for SDK v2

incoming email matches a recipient specified in the conditions for the receipt rule, Amazon SES
performs the actions that the receipt rule specifies.

To use Amazon SES as your email receiver, you must have at least one active receipt rule set. A
receipt rule set is an ordered collection of receipt rules that specify what Amazon SES should do
with mail it receives across your verified domains. For more information, see Creating Receipt Rules

for Amazon SES Email Receiving and Creating a Receipt Rule Set for Amazon SES Email Receiving in
the Amazon Simple Email Service Developer Guide.

The Scenario

In this example, a series of Node.js modules are used to send email in a variety of ways. The Node.js
modules use the SDK for JavaScript to create and use email templates using these methods of the
AWS . SES client class:

createReceiptRule

deleteReceiptRule

createReceiptRuleSet

deleteReceiptRuleSet

Prerequisite Tasks
To set up and run this example, you must first complete these tasks:

« Install Node.js. For more information about installing Node.js, see the Node.js website.

 Create a shared configurations file with your user credentials. For more information about
providing a credentials JSON file, see Loading Credentials in Node.js from the Shared Credentials
File.

Creating an Amazon S3 Receipt Rule

Each receipt rule for Amazon SES contains an ordered list of actions. This example creates a receipt
rule with an Amazon S3 action, which delivers the mail message to an Amazon S3 bucket. For
details on receipt rule actions, see Action Options in the Amazon Simple Email Service Developer
Guide.

For Amazon SES to write email to an Amazon S3 bucket, create a bucket policy that gives
PutObject permission to Amazon SES. For information about creating this bucket policy, see Give

Using Receipt Rules 287

Amazon%20Simple%20Email%20Service%20Developer%20Guidereceiving-email-receipt-rules.html
Amazon%20Simple%20Email%20Service%20Developer%20Guidereceiving-email-receipt-rules.html
Amazon%20Simple%20Email%20Service%20Developer%20Guidereceiving-email-receipt-rule-set.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SES.html#createReceiptRule-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SES.html#deleteReceiptRule-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SES.html#createReceiptRuleSet-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SES.html#deleteReceiptRuleSet-property
https://nodejs.org
Amazon%20Simple%20Email%20Service%20Developer%20Guidereceiving-email-action.html
Amazon%20Simple%20Email%20Service%20Developer%20Guidereceiving-email-permissions.html%23receiving-email-permissions-s3.html

Amazon SDK for JavaScript Developer Guide for SDK v2

Amazon SES Permission to Write to Your Amazon S3 Bucket in the Amazon Simple Email Service
Developer Guide.

In this example, use a Node.js module to create a receipt rule in Amazon SES to save
received messages in an Amazon S3 bucket. Create a Node.js module with the file name
ses_createreceiptrule. js. Configure the SDK as previously shown.

Create a parameters object to pass the values needed to create for the receipt rule set. To call the
createReceiptRuleSet method, create a promise for invoking an Amazon SES service object,
passing the parameters. Then handle the response in the promise callback.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create createReceiptRule params
var params = {

Rule: {
Actions: [
{
S3Action: {

BucketName: "S3_BUCKET_NAME",
ObjectKeyPrefix: "email",
},
I
1,
Recipients: [
"DOMAIN | EMAIL_ADDRESS",
/* more items */
1,
Enabled: true | false,
Name: "RULE_NAME",
ScanEnabled: true | false,
TlsPolicy: "Optional",
I
RuleSetName: "RULE_SET_NAME",
I

// Create the promise and SES service object

var newRulePromise = new AWS.SES({ apiVersion: "2010-12-01" })
.createReceiptRule(params)
.promise();

Using Receipt Rules 288

Amazon%20Simple%20Email%20Service%20Developer%20Guidereceiving-email-permissions.html%23receiving-email-permissions-s3.html

Amazon SDK for JavaScript Developer Guide for SDK v2

// Handle promise's fulfilled/rejected states
newRulePromise
.then(function (data) {
console.log("Rule created");

1)
.catch(function (err) {
console.error(err, err.stack);

1)

To run the example, type the following at the command line. Amazon SES creates the receipt rule.

node ses_createreceiptrule.js

This sample code can be found here on GitHub.

Deleting a Receipt Rule

In this example, use a Node.js module to send email with Amazon SES. Create a Node.js module
with the file name ses_deletereceiptrule. js. Configure the SDK as previously shown.

Create a parameters object to pass the name for the receipt rule to delete. To call the
deleteReceiptRule method, create a promise for invoking an Amazon SES service object,
passing the parameters. Then handle the response in the promise callback.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create deleteReceiptRule params
var params = {
RuleName: "RULE_NAME" /* required */,
RuleSetName: "RULE_SET_NAME" /* required */,
I

// Create the promise and SES service object

var newRulePromise = new AWS.SES({ apiVersion: "2010-12-01" })
.deleteReceiptRule(params)
.promise();

// Handle promise's fulfilled/rejected states

Using Receipt Rules 289

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_createreceiptrule.js

Amazon SDK for JavaScript Developer Guide for SDK v2

newRulePromise
.then(function (data) {
console.log("Receipt Rule Deleted");
i)

.catch(function (err) {
console.error(err, err.stack);

1)

To run the example, type the following at the command line. Amazon SES creates the receipt rule
set list.

node ses_deletereceiptrule.js

This sample code can be found here on GitHub.

Creating a Receipt Rule Set

In this example, use a Node.js module to send email with Amazon SES. Create a Node.js module
with the file name ses_createreceiptruleset. js. Configure the SDK as previously shown.

Create a parameters object to pass the name for the new receipt rule set. To call the
createReceiptRuleSet method, create a promise for invoking an Amazon SES service object,
passing the parameters. Then handle the response in the promise callback.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create the promise and SES service object

var newRulePromise = new AWS.SES({ apiVersion: "2010-12-01" })
.createReceiptRuleSet({ RuleSetName: "NAME" })
.promise();

// Handle promise's fulfilled/rejected states
newRulePromise
.then(function (data) {
console.log(data);
1)
.catch(function (err) {
console.error(err, err.stack);

1});

Using Receipt Rules 290

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_deletereceiptrule.js

Amazon SDK for JavaScript Developer Guide for SDK v2

To run the example, type the following at the command line. Amazon SES creates the receipt rule
set list.

node ses_createreceiptruleset.js

This sample code can be found here on GitHub.

Deleting a Receipt Rule Set

In this example, use a Node.js module to send email with Amazon SES. Create a Node.js module
with the file name ses_deletereceiptruleset. js. Configure the SDK as previously shown.

Create an object to pass the name for the receipt rule set to delete. To call the
deleeReceiptRuleSet method, create a promise for invoking an Amazon SES service object,
passing the parameters. Then handle the response in the promise callback.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create the promise and SES service object

var newRulePromise = new AWS.SES({ apiVersion: "2010-12-01" })
.deleteReceiptRuleSet({ RuleSetName: "NAME" })
.promise();

// Handle promise's fulfilled/rejected states
newRulePromise
.then(function (data) {
console.log(data);

)
.catch(function (err) {
console.error(err, err.stack);

1)

To run the example, type the following at the command line. Amazon SES creates the receipt rule
set list.

node ses_deletereceiptruleset.js

This sample code can be found here on GitHub.

Using Receipt Rules 291

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_createreceiptruleset.js
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_deletereceiptruleset.js

Amazon SDK for JavaScript Developer Guide for SDK v2

Amazon Simple Notification Service Examples

Amazon Simple Notification Service (Amazon SNS) is a web service that coordinates and manages
the delivery or sending of messages to subscribing endpoints or clients.

In Amazon SNS, there are two types of clients—publishers and subscribers—also referred to as
producers and consumers.

J45
® @ [ll\
- _._..-"
JavaScript Amazon S‘F'K Amazon Simple
Ervironments for JavaScrpt Motification Service

Publishers communicate asynchronously with subscribers by producing and sending a message to
a topic, which is a logical access point and communication channel. Subscribers (web servers, email
addresses, Amazon SQS queues, Lambda functions) consume or receive the message or notification
over one of the supported protocols (Amazon SQS, HTTP/S, email, SMS, Amazon Lambda) when
they are subscribed to the topic.

The JavaScript API for Amazon SNS is exposed through the Class: AWS.SNS.

Topics

Managing Topics in Amazon SNS

Publishing Messages in Amazon SNS

Managing Subscriptions in Amazon SNS

Sending SMS Messages with Amazon SNS

Managing Topics in Amazon SNS

node

Amazon SNS Examples 292

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SNS.html

Amazon SDK for JavaScript Developer Guide for SDK v2

This Node.js code example shows:

How to create topics in Amazon SNS to which you can publish notifications.

How to delete topics created in Amazon SNS.

How to get a list of available topics.

How to get and set topic attributes.

The Scenario

In this example, you use a series of Node.js modules to create, list, and delete Amazon SNS topics,
and to handle topic attributes. The Node.js modules use the SDK for JavaScript to manage topics
using these methods of the AWS . SNS client class:

createTopic

listTopics
deleteTopic

getTopicAttributes

setTopicAttributes

Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

« Install Node.js. For more information about installing Node.js, see the Node.js website.

» Create a shared configurations file with your user credentials. For more information about
providing a credentials JSON file, see Loading Credentials in Node.js from the Shared Credentials
File.

Creating a Topic

In this example, use a Node.js module to create an Amazon SNS topic. Create a Node.js module
with the file name sns_createtopic. js. Configure the SDK as previously shown.

Create an object to pass the Name for the new topic to the createTopic method of the AWS . SNS
client class. To call the createTopic method, create a promise for invoking an Amazon SNS

Managing Topics 293

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SNS.html#createTopic-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SNS.html#listTopics-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SNS.html#deleteTopic-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SNS.html#getTopicAttributes-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SNS.html#setTopicAttributes-property
http://nodejs.org

Amazon SDK for JavaScript Developer Guide for SDK v2

service object, passing the parameters object. Then handle the response in the promise callback.
The data returned by the promise contains the ARN of the topic.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set region

AWS.config.update({ region: "REGION" });

// Create promise and SNS service object

var createTopicPromise = new AWS.SNS({ apiVersion: "2010-03-31" })
.createTopic({ Name: "TOPIC_NAME" })
.promise();

// Handle promise's fulfilled/rejected states
createTopicPromise
.then(function (data) {
console.log("Topic ARN is " + data.TopicArn);
)

.catch(function (err) {
console.error(err, err.stack);

1)

To run the example, type the following at the command line.

node sns_createtopic.js

This sample code can be found here on GitHub.

Listing Your Topics

In this example, use a Node.js module to list all Amazon SNS topics. Create a Node.js module with
the file name sns_listtopics. js. Configure the SDK as previously shown.

Create an empty object to pass to the 1istTopics method of the AWS. SNS client class. To call
the 1listTopics method, create a promise for invoking an Amazon SNS service object, passing the
parameters object. Then handle the response in the promise callback. The data returned by the
promise contains an array of your topic ARNs.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set region

Managing Topics 294

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sns/sns_createtopic.js

Amazon SDK for JavaScript Developer Guide for SDK v2

AWS.config.update({ region: "REGION" });

// Create promise and SNS service object

var listTopicsPromise = new AWS.SNS({ apiVersion: "2010-03-31" })
.listTopics({})
.promise();

// Handle promise's fulfilled/rejected states
listTopicsPromise
.then(function (data) {
console.log(data.Topics);

1}
.catch(function (err) {
console.error(err, err.stack);

1)

To run the example, type the following at the command line.

node sns_listtopics.js

This sample code can be found here on GitHub.

Deleting a Topic

In this example, use a Node.js module to delete an Amazon SNS topic. Create a Node.js module
with the file name sns_deletetopic. js. Configure the SDK as previously shown.

Create an object containing the TopicAxrn of the topic to delete to pass to the deleteTopic
method of the AWS . SNS client class. To call the deleteTopic method, create a promise for
invoking an Amazon SNS service object, passing the parameters object. Then handle the response
in the promise callback.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set region

AWS.config.update({ region: "REGION" });

// Create promise and SNS service object

var deleteTopicPromise = new AWS.SNS({ apiVersion: "2010-03-31" })
.deleteTopic({ TopicArn: "TOPIC_ARN" })
.promise();

Managing Topics 295

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sns/sns_listtopics.js

Amazon SDK for JavaScript Developer Guide for SDK v2

// Handle promise's fulfilled/rejected states
deleteTopicPromise
.then(function (data) {
console.log("Topic Deleted");
1)

.catch(function (err) {
console.error(err, err.stack);

1)

To run the example, type the following at the command line.

node sns_deletetopic.js

This sample code can be found here on GitHub.

Getting Topic Attributes

In this example, use a Node.js module to retrieve attributes of an Amazon SNS topic. Create
a Node.js module with the file name sns_gettopicattributes. js. Configure the SDK as
previously shown.

Create an object containing the TopicAzrn of a topic to delete to pass to the
getTopicAttributes method of the AWS.SNS client class. To call the getTopicAttributes
method, create a promise for invoking an Amazon SNS service object, passing the parameters
object. Then handle the response in the promise callback.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set region

AWS.config.update({ region: "REGION" });

// Create promise and SNS service object

var getTopicAttribsPromise = new AWS.SNS({ apiVersion: "2010-03-31" })
.getTopicAttributes({ TopicArn: "TOPIC_ARN" })
.promise();

// Handle promise's fulfilled/rejected states
getTopicAttribsPromise
.then(function (data) {
console.log(data);

Managing Topics 296

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sns/sns_deletetopic.js

Amazon SDK for JavaScript Developer Guide for SDK v2

1)

.catch(function (err) {

console.error(err, err.stack);

1)

To run the example, type the following at the command line.

node sns_gettopicattributes.js

This sample code can be found here on GitHub.

Setting Topic Attributes

In this example, use a Node.js module to set the mutable attributes of an Amazon SNS topic.
Create a Node.js module with the file name sns_settopicattributes. js. Configure the SDK as
previously shown.

Create an object containing the parameters for the attribute update, including the TopicArn of
the topic whose attributes you want to set, the name of the attribute to set, and the new value
for that attribute. You can set only the Policy, DisplayName, and DeliveryPolicy attributes.
Pass the parameters to the setTopicAttributes method of the AWS. SNS client class. To call
the setTopicAttributes method, create a promise for invoking an Amazon SNS service object,
passing the parameters object. Then handle the response in the promise callback.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set region

AWS.config.update({ region: "REGION" });

// Create setTopicAttributes parameters

var params = {
AttributeName: "ATTRIBUTE_NAME" /* required */,
TopicArn: "TOPIC_ARN" /* required */,
AttributeValue: "NEW_ATTRIBUTE_VALUE",

};

// Create promise and SNS service object

var setTopicAttribsPromise = new AWS.SNS({ apiVersion: "2010-03-31" })
.setTopicAttributes(params)
.promise();

Managing Topics 297

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sns/sns_gettopicattributes.js

Amazon SDK for JavaScript Developer Guide for SDK v2

// Handle promise's fulfilled/rejected states
setTopicAttribsPromise
.then(function (data) {
console.log(data);

1)
.catch(function (err) {
console.error(err, err.stack);

1)

To run the example, type the following at the command line.

node sns_settopicattributes.js

This sample code can be found here on GitHub.

Publishing Messages in Amazon SNS

nede

This Node.js code example shows:

» How to publish messages to an Amazon SNS topic.

The Scenario

In this example, you use a series of Node.js modules to publish messages from Amazon SNS to
topic endpoints, emails, or phone numbers. The Node.js modules use the SDK for JavaScript to
send messages using this method of the AWS . SNS client class:

e publish

Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

« Install Node.js. For more information about installing Node.js, see the Node.js website.

Publishing Messages to a Topic 298

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sns/sns_settopicattributes.js
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SNS.html#publish-property
http://nodejs.org

Amazon SDK for JavaScript Developer Guide for SDK v2

» Create a shared configurations file with your user credentials. For more information about
providing a credentials JSON file, see Loading Credentials in Node.js from the Shared Credentials
File.

Publishing a Message to an Amazon SNS Topic

In this example, use a Node.js module to publish a message to an Amazon SNS topic. Create a
Node.js module with the file name sns_publishtotopic. js. Configure the SDK as previously
shown.

Create an object containing the parameters for publishing a message, including the message
text and the ARN of the Amazon SNS topic. For details on available SMS attributes, see
SetSMSAttributes.

Pass the parameters to the publish method of the AWS. SNS client class. Create a promise for
invoking an Amazon SNS service object, passing the parameters object. Then handle the response
in the promise callback.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set region

AWS.config.update({ region: "REGION" });

// Create publish parameters

var params = {
Message: "MESSAGE_TEXT" /* required */,
TopicArn: "TOPIC_ARN",

i

// Create promise and SNS service object

var publishTextPromise = new AWS.SNS({ apiVersion: "2010-03-31" })
.publish(params)
.promise();

// Handle promise's fulfilled/rejected states
publishTextPromise
.then(function (data) {
console.log(
‘Message ${params.Message} sent to the topic ${params.TopicArn}"
I

console.log("MessageID is " + data.Messageld);

Publishing Messages to a Topic 299

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SNS.html#setSMSAttributes-property

Amazon SDK for JavaScript Developer Guide for SDK v2

1)
.catch(function (err) {
console.error(err, err.stack);

1)

To run the example, type the following at the command line.

node sns_publishtotopic.js

This sample code can be found here on GitHub.

Managing Subscriptions in Amazon SNS

node

This Node.js code example shows:

» How to list all subscriptions to an Amazon SNS topic.

» How to subscribe an email address, an application endpoint, or an Amazon Lambda function to
an Amazon SNS topic.

« How to unsubscribe from Amazon SNS topics.

The Scenario

In this example, you use a series of Node.js modules to publish notification messages to Amazon
SNS topics. The Node.js modules use the SDK for JavaScript to manage topics using these methods
of the AWS . SNS client class:

e subscribe

o confirmSubscription

o listSubscriptionsByTopic

e unsubscribe

Managing Subscriptions 300

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sns/sns_publishtotopic.js
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SNS.html#subscribe-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SNS.html#confirmSubscription-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SNS.html#listSubscriptionsByTopic-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SNS.html#unsubscribe-property

Amazon SDK for JavaScript Developer Guide for SDK v2

Prerequisite Tasks
To set up and run this example, you must first complete these tasks:

« Install Node.js. For more information about installing Node.js, see the Node.js website.

» Create a shared configurations file with your user credentials. For more information about
providing a credentials JSON file, see Loading Credentials in Node.js from the Shared Credentials
File.

Listing Subscriptions to a Topic

In this example, use a Node.js module to list all subscriptions to an Amazon SNS topic. Create
a Node.js module with the file name sns_listsubscriptions. js. Configure the SDK as
previously shown.

Create an object containing the TopicArn parameter for the topic whose subscriptions you want
to list. Pass the parameters to the 1istSubscriptionsByTopic method of the AWS.SNS client
class. To call the 1istSubscriptionsByTopic method, create a promise for invoking an Amazon
SNS service object, passing the parameters object. Then handle the response in the promise
callback.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set region

AWS.config.update({ region: "REGION" });

const params = {
TopicArn: "TOPIC_ARN",
i

// Create promise and SNS service object

var subslistPromise = new AWS.SNS({ apiVersion: "2010-03-31" })
.listSubscriptionsByTopic(params)
.promise();

// Handle promise's fulfilled/rejected states
subslistPromise
.then(function (data) {
console.log(data);
1)

.catch(function (err) {

Managing Subscriptions 301

http://nodejs.org

Amazon SDK for JavaScript Developer Guide for SDK v2

console.error(err, err.stack);

1)

To run the example, type the following at the command line.

node sns_listsubscriptions.js

This sample code can be found here on GitHub.

Subscribing an Email Address to a Topic

In this example, use a Node.js module to subscribe an email address so that it receives SMTP
email messages from an Amazon SNS topic. Create a Node.js module with the file name
sns_subscribeemail. js. Configure the SDK as previously shown.

Create an object containing the Protocol parameter to specify the email protocol, the
TopicAzxn for the topic to subscribe to, and an email address as the message Endpoint. Pass the
parameters to the subscribe method of the AWS.SNS client class. You can use the subscribe
method to subscribe several different endpoints to an Amazon SNS topic, depending on the values
used for parameters passed, as other examples in this topic will show.

To call the subscribe method, create a promise for invoking an Amazon SNS service object,
passing the parameters object. Then handle the response in the promise callback.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set region

AWS.config.update({ region: "REGION" });

// Create subscribe/email parameters

var params = {
Protocol: "EMAIL" /* required */,
TopicArn: "TOPIC_ARN" /* required */,
Endpoint: "EMAIL_ADDRESS",

};

// Create promise and SNS service object

var subscribePromise = new AWS.SNS({ apiVersion: "2010-03-31" })
.subscribe(params)
.promise();

Managing Subscriptions 302

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sns/sns_listsubscriptions.js

Amazon SDK for JavaScript Developer Guide for SDK v2

// Handle promise's fulfilled/rejected states
subscribePromise
.then(function (data) {
console.log("Subscription ARN is " + data.SubscriptionAzn);

1)
.catch(function (err) {
console.error(err, err.stack);

1)

To run the example, type the following at the command line.

node sns_subscribeemail. js

This sample code can be found here on GitHub.

Subscribing an Application Endpoint to a Topic

In this example, use a Node.js module to subscribe a mobile application endpoint so it
receives notifications from an Amazon SNS topic. Create a Node.js module with the file name
sns_subscribeapp. js. Configure the SDK as previously shown.

Create an object containing the Protocol parameter to specify the application protocol, the
TopicAzxn for the topic to subscribe to, and the ARN of a mobile application endpoint for the
Endpoint parameter. Pass the parameters to the subscribe method of the AWS . SNS client class.

To call the subscribe method, create a promise for invoking an Amazon SNS service object,
passing the parameters object. Then handle the response in the promise callback.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set region

AWS.config.update({ region: "REGION" });

// Create subscribe/email parameters

var params = {
Protocol: "application" /* required */,
TopicArn: "TOPIC_ARN" /* required */,
Endpoint: "MOBILE_ENDPOINT_ARN",

};

// Create promise and SNS service object

Managing Subscriptions 303

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sns/sns_subscribeemail.js

Amazon SDK for JavaScript Developer Guide for SDK v2

var subscribePromise = new AWS.SNS({ apiVersion: "2010-03-31" })
.subscribe(params)
.promise();

// Handle promise's fulfilled/rejected states
subscribePromise
.then(function (data) {
console.log("Subscription ARN is " + data.SubscriptionAzn);

1)
.catch(function (err) {
console.error(err, err.stack);

1)

To run the example, type the following at the command line.

node sns_subscribeapp.js

This sample code can be found here on GitHub.

Subscribing a Lambda Function to a Topic

In this example, use a Node.js module to subscribe an Amazon Lambda function so it
receives notifications from an Amazon SNS topic. Create a Node.js module with the file name

sns_subscribelambda. js. Configure the SDK as previously shown.

Create an object containing the Protocol parameter, specifying the 1ambda protocol, the
TopicAzxn for the topic to subscribe to, and the ARN of an Amazon Lambda function as the

Endpoint parameter. Pass the parameters to the subscribe method of the AWS . SNS client class.

To call the subscribe method, create a promise for invoking an Amazon SNS service object,

passing the parameters object. Then handle the response in the promise callback.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set region

AWS.config.update({ region: "REGION" });

// Create subscribe/email parameters
var params = {
Protocol: "lambda" /* required */,
TopicArn: "TOPIC_ARN" /* required */,

Managing Subscriptions

304

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sns/sns_subscribeapp.js

Amazon SDK for JavaScript Developer Guide for SDK v2

Endpoint: "LAMBDA_FUNCTION_ARN",
};

// Create promise and SNS service object

var subscribePromise = new AWS.SNS({ apiVersion: "2010-03-31" })
.subscribe(params)
.promise();

// Handle promise's fulfilled/rejected states
subscribePromise
.then(function (data) {
console.log("Subscription ARN is " + data.SubscriptionAzn);

1)
.catch(function (err) {
console.error(err, err.stack);

18
To run the example, type the following at the command line.

node sns_subscribelambda.js

This sample code can be found here on GitHub.

Unsubscribing from a Topic

In this example, use a Node.js module to unsubscribe an Amazon SNS topic subscription. Create
a Node.js module with the file name sns_unsubscribe. js. Configure the SDK as previously
shown.

Create an object containing the SubscriptionArn parameter, specifying the ARN of the
subscription to unsubscribe. Pass the parameters to the unsubscribe method of the AWS . SNS
client class.

To call the unsubscribe method, create a promise for invoking an Amazon SNS service object,
passing the parameters object. Then handle the response in the promise callback.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set region

AWS.config.update({ region: "REGION" });

// Create promise and SNS service object

Managing Subscriptions 305

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sns/sns_subscribelambda.js

Amazon SDK for JavaScript Developer Guide for SDK v2

var subscribePromise = new AWS.SNS({ apiVersion: "2010-03-31" })
.unsubscribe({ SubscriptionArn: TOPIC_SUBSCRIPTION_ARN })
.promise();

// Handle promise's fulfilled/rejected states
subscribePromise
.then(function (data) {
console.log(data);

1)
.catch(function (err) {
console.error(err, err.stack);

1)

To run the example, type the following at the command line.

node sns_unsubscribe.js

This sample code can be found here on GitHub.

Sending SMS Messages with Amazon SNS

node

This Node.js code example shows:

How to get and set SMS messaging preferences for Amazon SNS.

How to check a phone number to see if it has opted out of receiving SMS messages.

How to get a list of phone numbers that have opted out of receiving SMS messages.

How to send an SMS message.

The Scenario

You can use Amazon SNS to send text messages, or SMS messages, to SMS-enabled devices. You
can send a message directly to a phone number, or you can send a message to multiple phone
numbers at once by subscribing those phone numbers to a topic and sending your message to the
topic.

Sending SMS Messages 306

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sns/sns_unsubscribe.js

Amazon SDK for JavaScript Developer Guide for SDK v2

In this example, you use a series of Node.js modules to publish SMS text messages from Amazon
SNS to SMS-enabled devices. The Node.js modules use the SDK for JavaScript to publish SMS
messages using these methods of the AWS . SNS client class:

o getSMSAttributes

setSMSAttributes

checkIfPhoneNumberIsOptedOut

1istPhoneNumbersOptedOut

publish

Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

« Install Node.js. For more information about installing Node.js, see the Node.js website.

» Create a shared configurations file with your user credentials. For more information about
providing a credentials JSON file, see Loading Credentials in Node.js from the Shared Credentials
File.

Getting SMS Attributes

Use Amazon SNS to specify preferences for SMS messaging, such as how your deliveries are
optimized (for cost or for reliable delivery), your monthly spending limit, how message deliveries
are logged, and whether to subscribe to daily SMS usage reports. These preferences are retrieved
and set as SMS attributes for Amazon SNS.

In this example, use a Node.js module to get the current SMS attributes in Amazon SNS. Create a
Node.js module with the file name sns_getsmstype. js. Configure the SDK as previously shown.
Create an object containing the parameters for getting SMS attributes, including the names of the
individual attributes to get. For details on available SMS attributes, see SetSMSAttributes in the
Amazon Simple Notification Service APl Reference.

This example gets the DefaultSMSType attribute, which controls whether SMS messages
are sent as Promotional, which optimizes message delivery to incur the lowest cost, or as
Transactional, which optimizes message delivery to achieve the highest reliability. Pass
the parameters to the setTopicAttributes method of the AWS.SNS client class. To call the

Sending SMS Messages 307

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SNS.html#getSMSAttributes-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SNS.html#setSMSAttributes-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SNS.html#checkIfPhoneNumberIsOptedOut-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SNS.html#listPhoneNumbersOptedOut-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SNS.html#publish-property
http://nodejs.org
https://docs.amazonaws.cn/sns/latest/api/API_SetSMSAttributes.html

Amazon SDK for JavaScript Developer Guide for SDK v2

getSMSAttributes method, create a promise for invoking an Amazon SNS service object, passing
the parameters object. Then handle the response in the promise callback.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set region

AWS.config.update({ region: "REGION" });

// Create SMS Attribute parameter you want to get
var params = {
attributes: [
"DefaultSMSType",
"ATTRIBUTE_NAME",
/* more items */
1,
};

// Create promise and SNS service object

var getSMSTypePromise = new AWS.SNS({ apiVersion: "2010-03-31" })
.getSMSAttributes(params)
.promise();

// Handle promise's fulfilled/rejected states
getSMSTypePromise
.then(function (data) {
console.log(data);

1}
.catch(function (err) {
console.error(err, err.stack);

1)

To run the example, type the following at the command line.

node sns_getsmstype.js

This sample code can be found here on GitHub.

Setting SMS Attributes

In this example, use a Node.js module to get the current SMS attributes in Amazon SNS. Create a
Node.js module with the file name sns_setsmstype. js. Configure the SDK as previously shown.
Create an object containing the parameters for setting SMS attributes, including the names of the

Sending SMS Messages 308

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sns/sns_getsmstype.js

Amazon SDK for JavaScript Developer Guide for SDK v2

individual attributes to set and the values to set for each. For details on available SMS attributes,
see SetSMSAttributes in the Amazon Simple Notification Service APl Reference.

This example sets the DefaultSMSType attribute to Transactional, which optimizes message
delivery to achieve the highest reliability. Pass the parameters to the setTopicAttributes
method of the AWS . SNS client class. To call the getSMSAttributes method, create a promise for
invoking an Amazon SNS service object, passing the parameters object. Then handle the response
in the promise callback.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set region

AWS.config.update({ region: "REGION" });

// Create SMS Attribute parameters
var params = {
attributes: {
/* required */
DefaultSMSType: "Transactional" /* highest reliability */,
//'DefaultSMSType': 'Promotional' /* lowest cost */
I
};

// Create promise and SNS service object

var setSMSTypePromise = new AWS.SNS({ apiVersion: "2010-03-31" })
.setSMSAttributes(params)
.promise();

// Handle promise's fulfilled/rejected states
setSMSTypePromise
.then(function (data) {
console.log(data);
b

.catch(function (err) {
console.error(err, err.stack);

1)

To run the example, type the following at the command line.

node sns_setsmstype.js

This sample code can be found here on GitHub.

Sending SMS Messages 309

https://docs.amazonaws.cn/sns/latest/api/API_SetSMSAttributes.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sns/sns_setsmstype.js

Amazon SDK for JavaScript Developer Guide for SDK v2

Checking If a Phone Number Has Opted Out

In this example, use a Node.js module to check a phone number to see if it has

opted out from receiving SMS messages. Create a Node.js module with the file name
sns_checkphoneoptout. js. Configure the SDK as previously shown. Create an object containing
the phone number to check as a parameter.

This example sets the PhoneNumber parameter to specify the phone number to check. Pass the
object to the checkIfPhoneNumberIsOptedOut method of the AWS.SNS client class. To call
the checkIfPhoneNumberIsOptedOut method, create a promise for invoking an Amazon SNS
service object, passing the parameters object. Then handle the response in the promise callback.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set region

AWS.config.update({ region: "REGION" });

// Create promise and SNS service object

var phonenumPromise = new AWS.SNS({ apiVersion: "2010-03-31" })
.checkIfPhoneNumberIsOptedOut({ phoneNumber: "PHONE_NUMBER" })
.promise();

// Handle promise's fulfilled/rejected states
phonenumPromise
.then(function (data) {
console.log("Phone Opt Out is " + data.isOptedOut);
1)

.catch(function (err) {
console.error(err, err.stack);

1)

To run the example, type the following at the command line.

node sns_checkphoneoptout.js

This sample code can be found here on GitHub.

Listing Opted-Out Phone Numbers

In this example, use a Node.js module to get a list of phone numbers that have
opted out from receiving SMS messages. Create a Node.js module with the file name

Sending SMS Messages 310

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sns/sns_checkphoneoptout.js

Amazon SDK for JavaScript Developer Guide for SDK v2

sns_listnumbersoptedout. js. Configure the SDK as previously shown. Create an empty object
as a parameter.

Pass the object to the 1istPhoneNumbersOptedOut method of the AWS. SNS client class. To call
the 1istPhoneNumbersOptedOut method, create a promise for invoking an Amazon SNS service
object, passing the parameters object. Then handle the response in the promise callback.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set region

AWS.config.update({ region: "REGION" });

// Create promise and SNS service object

var phonelistPromise = new AWS.SNS({ apiVersion: "2010-03-31" })
.listPhoneNumbersOptedOut({})
.promise();

// Handle promise's fulfilled/rejected states
phonelistPromise
.then(function (data) {
console.log(data);

})
.catch(function (err) {
console.error(err, err.stack);

1)

To run the example, type the following at the command line.

node sns_listnumbersoptedout.js

This sample code can be found here on GitHub.

Publishing an SMS Message

In this example, use a Node.js module to send an SMS message to a phone number. Create a
Node.js module with the file name sns_publishsms. js. Configure the SDK as previously shown.
Create an object containing the Message and PhoneNumber parameters.

When you send an SMS message, specify the phone number using the E.164 format. E.164 is
a standard for the phone number structure used for international telecommunication. Phone

Sending SMS Messages 311

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sns/sns_listnumbersoptedout.js

Amazon SDK for JavaScript Developer Guide for SDK v2

numbers that follow this format can have a maximum of 15 digits, and they are prefixed with the
plus character (+) and the country code. For example, a US phone number in E.164 format would
appear as +1001XXX5550100.

This example sets the PhoneNumber parameter to specify the phone number to send the message.
Pass the object to the publish method of the AWS. SNS client class. To call the publish method,
create a promise for invoking an Amazon SNS service object, passing the parameters object. Then
handle the response in the promise callback.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set region

AWS.config.update({ region: "REGION" });

// Create publish parameters

var params = {
Message: "TEXT_MESSAGE" /* required */,
PhoneNumber: "E.164_PHONE_NUMBER",

¥

// Create promise and SNS service object

var publishTextPromise = new AWS.SNS({ apiVersion: "2010-03-31" })
.publish(params)
.promise();

// Handle promise's fulfilled/rejected states
publishTextPromise
.then(function (data) {
console.log("MessageID is " + data.Messageld);

)
.catch(function (err) {
console.error(err, err.stack);

1)

To run the example, type the following at the command line.

node sns_publishsms. js

This sample code can be found here on GitHub.

Sending SMS Messages 312

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sns/sns_publishsms.js

Amazon SDK for JavaScript Developer Guide for SDK v2

Amazon SQS Examples

Amazon Simple Queue Service (Amazon SQS) is a fast, reliable, scalable, fully managed message
queuing service. Amazon SQS lets you decouple the components of a cloud application. Amazon
SQS includes standard queues with high throughput and at-least-once processing, and FIFO queues
that provide FIFO (first-in, first-out) delivery and exactly-once processing.

45

- . [T

- "~
JavaScript Amazon SDK Amazon SQS
Envircnments for JavaScript

The JavaScript API for Amazon SQS is exposed through the AWS . SQS client class. For more
information about using the Amazon SQS client class, see Class: AWS.SQS in the API reference.

Topics

« Using Queues in Amazon SQS

« Sending and Receiving Messages in Amazon SQS

« Managing Visibility Timeout in Amazon SQS

« Enabling Long Polling in Amazon SQS

» Using Dead Letter Queues in Amazon SQS

Using Queues in Amazon SQS

node

This Node.js code example shows:

« How to get a list of all of your message queues

« How to obtain the URL for a particular queue

Amazon SQS Examples 313

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SQS.html

Amazon SDK for JavaScript Developer Guide for SDK v2

« How to create and delete queues

About the Example

In this example, a series of Node.js modules are used to work with queues. The Node.js modules
use the SDK for JavaScript to enable queues to call the following methods of the AWS. SQS client
class:

listQueues

createQueue

getQueuelrl

deleteQueue

For more information about Amazon SQS messages, see How Queues Work in the Amazon Simple

Queue Service Developer Guide.
Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

« Install Node.js. For more information about installing Node.js, see the Node.js website.

» Create a shared configurations file with your user credentials. For more information about
providing a shared credentials file, see Loading Credentials in Node.js from the Shared

Credentials File.

Listing Your Queues

Create a Node.js module with the file name sqs_listqueues. js. Be sure to configure the SDK as
previously shown. To access Amazon SQS, create an AWS. SQS service object. Create a JSON object
containing the parameters needed to list your queues, which by default is an empty object. Call the
listQueues method to retrieve the list of queues. The callback returns the URLs of all queues.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

Using Queues in Amazon SQS 314

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SQS.html#listQueues-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SQS.html#createQueue-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SQS.html#getQueueUrl-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SQS.html#deleteQueue-property
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-how-it-works.html
https://nodejs.org

Amazon SDK for JavaScript Developer Guide for SDK v2

// Create an SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" 3});

var params = {};

sgs.listQueues(params, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Success", data.QueueUrls);
}
1)

To run the example, type the following at the command line.

node sqs_listqueues.js

This sample code can be found here on GitHub.

Creating a Queue

Create a Node.js module with the file name sqs_createqueue. js. Be sure to configure the SDK
as previously shown. To access Amazon SQS, create an AWS . SQS service object. Create a JSON
object containing the parameters needed to list your queues, which must include the name for
the queue created. The parameters can also contain attributes for the queue, such as the number
of seconds for which message delivery is delayed or the number of seconds to retain a received
message. Call the createQueue method. The callback returns the URL of the created queue.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create an SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

var params = {
QueueName: "SQS_QUEUE_NAME",
Attributes: {
DelaySeconds: "60",
MessageRetentionPeriod: "86400",

Using Queues in Amazon SQS 315

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sqs/sqs_listqueues.js

Amazon SDK for JavaScript Developer Guide for SDK v2

}I

};

sgs.createQueue(params, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Success", data.QueueUrl);
}
1)

To run the example, type the following at the command line.

node sqs_createqueue.js

This sample code can be found here on GitHub.

Getting the URL for a Queue

Create a Node.js module with the file name sqs_getqueueurl. js. Be sure to configure the SDK
as previously shown. To access Amazon SQS, create an AWS . SQS service object. Create a JSON
object containing the parameters needed to list your queues, which must include the name of the
queue whose URL you want. Call the getQueueUrl method. The callback returns the URL of the
specified queue.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create an SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

var params = {
QueueName: "SQS_QUEUE_NAME",
iF

sqgs.getQueueUrl(params, function (err, data) {
if (err) {
console.log("Error", err);
} else {

Using Queues in Amazon SQS 316

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sqs/sqs_createqueue.js

Amazon SDK for JavaScript

Developer Guide for SDK v2

console.log("Success", data.QueueUrl);
}
});

To run the example, type the following at the command line.

node sqs_getqueueurl.js

This sample code can be found here on GitHub.

Deleting a Queue

Create a Node.js module with the file name sqs_deletequeue. js. Be sure to configure the SDK
as previously shown. To access Amazon SQS, create an AWS . SQS service object. Create a JSON
object containing the parameters needed to delete a queue, which consists of the URL of the queue

you want to delete. Call the deleteQueue method.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create an SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

var params = {
QueueUrl: "SQS_QUEUE_URL",
i

sgs.deleteQueue(params, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Success", data);
}
1)

To run the example, type the following at the command line.

node sqs_deletequeue.js

Using Queues in Amazon SQS

317

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sqs/sqs_getqueueurl.js

Amazon SDK for JavaScript Developer Guide for SDK v2

This sample code can be found here on GitHub.

Sending and Receiving Messages in Amazon SQS

node

This Node.js code example shows:

« How to send messages in a queue.
« How to receive messages in a queue.

« How to delete messages in a queue.

The Scenario

In this example, a series of Node.js modules are used to send and receive messages. The Node.js
modules use the SDK for JavaScript to send and receive messages by using these methods of the
AWS . SQS client class:

» sendMessage

e receiveMessage

 deleteMessage

For more information about Amazon SQS messages, see Sending a Message to an Amazon SQS

Queue and Receiving and Deleting a Message from an Amazon SQS Queue in the Amazon Simple

Queue Service Developer Guide.
Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

« Install Node.js. For more information about installing Node.js, see the Node.js website.

» Create a shared configurations file with your user credentials. For more information about
providing a shared credentials file, see Loading Credentials in Node.js from the Shared

Credentials File.

Sending and Receiving Messages in Amazon SQS 318

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sqs/sqs_deletequeue.js
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SQS.html#sendMessage-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SQS.html#receiveMessage-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SQS.html#deleteMessage-property
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-send-message.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-send-message.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-receive-delete-message.html
https://nodejs.org

Amazon SDK for JavaScript Developer Guide for SDK v2

» Create an Amazon SQS queue. For an example of creating a queue, see Using Queues in Amazon
SQS.

Sending a Message to a Queue

Create a Node.js module with the file name sqs_sendmessage. js. Be sure to configure the SDK
as previously shown. To access Amazon SQS, create an AWS. SQS service object. Create a JSON
object containing the parameters needed for your message, including the URL of the queue to
which you want to send this message. In this example, the message provides details about a book
on a list of fiction best sellers including the title, author, and number of weeks on the list.

Call the sendMessage method. The callback returns the unique ID of the message.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create an SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

var params = {
// Remove DelaySeconds parameter and value for FIFO queues
DelaySeconds: 10,
MessageAttributes: {
Title: {
DataType: "String",
StringValue: "The Whistler",
I
Author: {
DataType: "String",
StringValue: "John Grisham",
I
WeeksOn: {
DataType: "Number",
StringValue: "6",
I
},
MessageBody:
"Information about current NY Times fiction bestseller for week of 12/11/2016.",
// MessageDeduplicationId: "TheWhistler", // Required for FIFO queues
// MessageGroupId: "Groupl", // Required for FIFO queues

Sending and Receiving Messages in Amazon SQS 319

Amazon SDK for JavaScript Developer Guide for SDK v2

QueueUrl: "SQS_QUEUE_URL",

i
sgs.sendMessage(params, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Success", data.Messageld);
}
1)

To run the example, type the following at the command line.

node sqgs_sendmessage.js

This sample code can be found here on GitHub.

Receiving and Deleting Messages from a Queue

Create a Node.js module with the file name sqs_receivemessage. js. Be sure to configure the
SDK as previously shown. To access Amazon SQS, create an AWS. SQS service object. Create a JSON
object containing the parameters needed for your message, including the URL of the queue from
which you want to receive messages. In this example, the parameters specify receipt of all message
attributes, as well as receipt of no more than 10 messages.

Call the receiveMessage method. The callback returns an array of Message objects from which
you can retrieve ReceiptHandle for each message that you use to later delete that message.
Create another JSON object containing the parameters needed to delete the message, which are
the URL of the queue and the ReceiptHandle value. Call the deleteMessage method to delete
the message you received.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create an SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" 3});

var queueURL = "SQS_QUEUE_URL";

Sending and Receiving Messages in Amazon SQS 320

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sqs/sqs_sendmessage.js

Amazon SDK for JavaScript Developer Guide for SDK v2

var params = {
AttributeNames: ["SentTimestamp"],
MaxNumberOfMessages: 10,
MessageAttributeNames: ["All"],
QueueUrl: queueURL,
VisibilityTimeout: 20,
WaitTimeSeconds: 0,

};

sqs.receiveMessage(params, function (err, data) {
if (err) {
console.log("Receive Error", err);
} else if (data.Messages) {
var deleteParams = {
QueueUrl: queueURL,
ReceiptHandle: data.Messages[@].ReceiptHandle,
};
sgs.deleteMessage(deleteParams, function (err, data) {
if (err) {
console.log("Delete Error", err);
} else {
console.log("Message Deleted", data);
}
1)

1)

To run the example, type the following at the command line.

node sgs_receivemessage.js

This sample code can be found here on GitHub.

Managing Visibility Timeout in Amazon SQS

nade

This Node.js code example shows:

« How to specify the time interval during which messages received by a queue are not visible.

Managing Visibility Timeout in Amazon SQS 321

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sqs/sqs_receivemessage.js

Amazon SDK for JavaScript Developer Guide for SDK v2

The Scenario

In this example, a Node.js module is used to manage visibility timeout. The Node.js module uses
the SDK for JavaScript to manage visibility timeout by using this method of the AWS. SQS client
class:

e changeMessageVisibility

For more information about Amazon SQS visibility timeout, see Visibility Timeout in the Amazon

Simple Queue Service Developer Guide.
Prerequisite Tasks
To set up and run this example, you must first complete these tasks:

« Install Node.js. For more information about installing Node.js, see the Node.js website.

» Create a shared configurations file with your user credentials. For more information about
providing a shared credentials file, see Loading Credentials in Node.js from the Shared

Credentials File.

» Create an Amazon SQS queue. For an example of creating a queue, see Using Queues in Amazon
SQS.

» Send a message to the queue. For an example of sending a message to a queue, see Sending and
Receiving Messages in Amazon SQS.

Changing the Visibility Timeout

Create a Node.js module with the file name sqs_changingvisibility. js. Be sure to configure
the SDK as previously shown. To access Amazon Simple Queue Service, create an AWS. SQS service
object. Receive the message from the queue.

Upon receipt of the message from the queue, create a JSON object containing the parameters
needed for setting the timeout, including the URL of the queue containing the message, the
ReceiptHandle returned when the message was received, and the new timeout in seconds. Call
the changeMessageVisibility method.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region to us-west-2

Managing Visibility Timeout in Amazon SQS 322

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SQS.html#changeMessageVisibility-property
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-visibility-timeout.html
https://nodejs.org

Amazon SDK for JavaScript Developer Guide for SDK v2

AWS.config.update({ region: "us-west-2" });

// Create the SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

var queueURL = "https://sqs.REGION.amazonaws.com/ACCOUNT-ID/QUEUE-NAME";

var params = {
AttributeNames: ["SentTimestamp"],
MaxNumberOfMessages: 1,
MessageAttributeNames: ["All"],
QueueUrl: queueURL,

i

sqs.receiveMessage(params, function (err, data) {
if (err) {
console.log("Receive Error", err);
} else {
// Make sure we have a message
if (data.Messages != null) {
var visibilityParams = {
QueueUrl: queueURL,
ReceiptHandle: data.Messages[@].ReceiptHandle,
VisibilityTimeout: 20, // 20 second timeout

};
sqgs.changeMessageVisibility(visibilityParams, function (err, data) {
if (err) {
console.log("Delete Error", err);
} else {
console.log("Timeout Changed", data);
}
18
} else {
console.log("No messages to change");
}
}
1);

To run the example, type the following at the command line.
node sqgs_changingvisibility.js

This sample code can be found here on GitHub.

Managing Visibility Timeout in Amazon SQS 323

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sqs/sqs_changingvisibility.js

Amazon SDK for JavaScript Developer Guide for SDK v2

Enabling Long Polling in Amazon SQS

nade

This Node.js code example shows:

» How to enable long polling for a newly created queue
« How to enable long polling for an existing queue

» How to enable long polling upon receipt of a message

The Scenario

Long polling reduces the number of empty responses by allowing Amazon SQS to wait a specified
time for a message to become available in the queue before sending a response. Also, long polling
eliminates false empty responses by querying all of the servers instead of a sampling of servers.
To enable long polling, you must specify a non-zero wait time for received messages. You can do
this by setting the ReceiveMessageWaitTimeSeconds parameter of a queue or by setting the
WaitTimeSeconds parameter on a message when it is received.

In this example, a series of Node.js modules are used to enable long polling. The Node.js modules
use the SDK for JavaScript to enable long polling using these methods of the AWS . SQS client class:

e setQueueAttributes

e receiveMessage

e createQueue

For more information about Amazon SQS long polling, see Long Polling in the Amazon Simple
Queue Service Developer Guide.

Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

« Install Node.js. For more information about installing Node.js, see the Node.js website.

Enabling Long Polling in Amazon SQS 324

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SQS.html#setQueueAttributes-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SQS.html#receiveMessage-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SQS.html#createQueue-property
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-long-polling.html
https://nodejs.org

Amazon SDK for JavaScript Developer Guide for SDK v2

» Create a shared configurations file with your user credentials. For more information about
providing a shared credentials file, see Loading Credentials in Node.js from the Shared
Credentials File.

Enabling Long Polling When Creating a Queue

Create a Node.js module with the file name sqs_longpolling_createqueue. js. Be sure to
configure the SDK as previously shown. To access Amazon SQS, create an AWS . SQS service object.
Create a JSON object containing the parameters needed to create a queue, including a non-zero
value for the ReceiveMessageWaitTimeSeconds parameter. Call the createQueue method.
Long polling is then enabled for the queue.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create the SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

var params = {
QueueName: "SQS_QUEUE_NAME",
Attributes: {
ReceiveMessageWaitTimeSeconds: "20",

.
};
sgs.createQueue(params, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Success", data.QueueUrl);
}
3

To run the example, type the following at the command line.

node sqgs_longpolling_createqueue.js

This sample code can be found here on GitHub.

Enabling Long Polling in Amazon SQS 325

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sqs/sqs_longpolling_createqueue.js

Amazon SDK for JavaScript

Developer Guide for SDK v2

Enabling Long Polling on an Existing Queue

Create a Node.js module with the file name sqs_longpolling_existingqueue. js. Be sure

to configure the SDK as previously shown. To access Amazon Simple Queue Service, create an

AWS . SQS service object. Create a JSON object containing the parameters needed to set the
attributes of queue, including a non-zero value for the ReceiveMessageWaitTimeSeconds
parameter and the URL of the queue. Call the setQueueAttributes method. Long polling is then

enabled for the queue.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create the SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

var params = {
Attributes: {
ReceiveMessageWaitTimeSeconds: "20",

1,
QueueUrl: "SQS_QUEUE_URL",

Iy

sgs.setQueueAttributes(params, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Success", data);
}
1)

To run the example, type the following at the command line.
node sqs_longpolling_existingqueue.js

This sample code can be found here on GitHub.

Enabling Long Polling on Message Receipt

Create a Node.js module with the file name sqs_longpolling_receivemessage. js. Be
sure to configure the SDK as previously shown. To access Amazon Simple Queue Service, create

Enabling Long Polling in Amazon SQS

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sqs/sqs_longpolling_existingqueue.js

Amazon SDK for JavaScript Developer Guide for SDK v2

an AWS . SQS service object. Create a JSON object containing the parameters needed to receive
messages, including a non-zero value for the WaitTimeSeconds parameter and the URL of the
queue. Call the receiveMessage method.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create the SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

var queueURL = "SQS_QUEUE_URL";

var params = {
AttributeNames: ["SentTimestamp"],
MaxNumberOfMessages: 1,
MessageAttributeNames: ["All"],
QueueUrl: queueURL,
WaitTimeSeconds: 20,

I

sgs.receiveMessage(params, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Success", data);
}
1)

To run the example, type the following at the command line.

node sqs_longpolling_receivemessage.js

This sample code can be found here on GitHub.

Using Dead Letter Queues in Amazon SQS

nade

Using Dead Letter Queues in Amazon SQS 327

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sqs/sqs_longpolling_receivemessage.js

Amazon SDK for JavaScript Developer Guide for SDK v2

This Node.js code example shows:

« How to use a queue to receive and hold messages from other queues that the queues can't
process.

The Scenario

A dead letter queue is one that other (source) queues can target for messages that can't be
processed successfully. You can set aside and isolate these messages in the dead letter queue to
determine why their processing did not succeed. You must individually configure each source queue
that sends messages to a dead letter queue. Multiple queues can target a single dead letter queue.

In this example, a Node.js module is used to route messages to a dead letter queue. The Node.js
module uses the SDK for JavaScript to use dead letter queues using this method of the AWS . SQS
client class:

e setQueueAttributes

For more information about Amazon SQS dead letter queues, see Using Amazon SQS Dead Letter
Queues in the Amazon Simple Queue Service Developer Guide.

Prerequisite Tasks
To set up and run this example, you must first complete these tasks:

« Install Node.js. For more information about installing Node.js, see the Node.js website.

» Create a shared configurations file with your user credentials. For more information about
providing a shared credentials file, see Loading Credentials in Node.js from the Shared
Credentials File.

» Create an Amazon SQS queue to serve as a dead letter queue. For an example of creating a
queue, see Using Queues in Amazon SQS.

Configuring Source Queues

After you create a queue to act as a dead letter queue, you must configure the other queues
that route unprocessed messages to the dead letter queue. To do this, specify a redrive policy
that identifies the queue to use as a dead letter queue and the maximum number of receives by
individual messages before they are routed to the dead letter queue.

Using Dead Letter Queues in Amazon SQS 328

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SQS.html#setQueueAttributes-property
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-dead-letter-queues.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-dead-letter-queues.html
https://nodejs.org

Amazon SDK for JavaScript Developer Guide for SDK v2

Create a Node.js module with the file name sqs_deadletterqueue. js. Be sure to configure
the SDK as previously shown. To access Amazon SQS, create an AWS . SQS service object. Create
a JSON object containing the parameters needed to update queue attributes, including the
RedrivePolicy parameter that specifies both the ARN of the dead letter queue, as well as the
value of maxReceiveCount. Also specify the URL source queue you want to configure. Call the
setQueueAttributes method.

// Load the AWS SDK for Node.js

var AWS = require("aws-sdk");

// Set the region

AWS.config.update({ region: "REGION" });

// Create the SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

var params = {
Attributes: {
RedrivePolicy:
'"{"deadLetterTargetArn":"DEAD_LETTER_QUEUE_ARN", "maxReceiveCount":"10"}"',

.
QueueUrl: "SOURCE_QUEUE_URL",
i
sqgs.setQueueAttributes(params, function (err, data) {
if (err) {
console.log("Error", err);
} else {
console.log("Success", data);
}
1)

To run the example, type the following at the command line.

node sqgs_deadletterqueue.js

This sample code can be found here on GitHub.

Using Dead Letter Queues in Amazon SQS 329

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sqs/sqs_deadletterqueue.js

Amazon SDK for JavaScript Developer Guide for SDK v2

Tutorials

The following tutorials show you how to perform different tasks related to using the Amazon SDK
for JavaScript.

Topics

« Tutorial: Setting Up Node.js on an Amazon EC2 Instance

Tutorial: Setting Up Node.js on an Amazon EC2 Instance

A common scenario for using Node.js with the SDK for JavaScript is to set up and run a Node.js web
application on an Amazon Elastic Compute Cloud (Amazon EC2) instance. In this tutorial, you will
create a Linux instance, connect to it using SSH, and then install Node.js to run on that instance.

Prerequisites

This tutorial assumes that you have already launched a Linux instance with a public DNS name
that is reachable from the Internet and to which you are able to connect using SSH. For more
information, see Step 1: Launch an Instance in the Amazon EC2 User Guide.

/A Important

Use the Amazon Linux 2023 Amazon Machine Image (AMI) when launching a new Amazon
EC2 instance.

You must also have configured your security group to allow SSH (port 22), HTTP (port 80), and
HTTPS (port 443) connections. For more information about these prerequisites, see Setting Up
with Amazon Amazon EC2 in the Amazon EC2 User Guide.

Procedure

The following procedure helps you install Node.js on an Amazon Linux instance. You can use this
server to host a Node.js web application.

To set up Node.js on your Linux instance

1. Connect to your Linux instance as ec2-user using SSH.

Tutorial: Setting Up Node.js on an Amazon EC2 Instance 330

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/EC2_GetStarted.html#ec2-launch-instance
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html

Amazon SDK for JavaScript Developer Guide for SDK v2

2. Install node version manager (nvm) by typing the following at the command line.

/A Warning

Amazon does not control the following code. Before you run it, be sure to verify its
authenticity and integrity. More information about this code can be found in the nvm
GitHub repository.

curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.7/install.sh | bash

We will use nvm to install Node.js because nvm can install multiple versions of Node.js and
allow you to switch between them.

3. Load nvm by typing the following at the command line.

source ~/.bashrc

4. Use nvm to install the latest LTS version of Node.js by typing the following at the command
line.

nvm install --1ts

Installing Node.js also installs the Node Package Manager (npm), so you can install additional
modules as needed.

5. Test that Node.js is installed and running correctly by typing the following at the command
line.

node -e "console.log('Running Node.js ' + process.version)"

This displays the following message that shows the version of Node.js that is running.

Running Node.js VERSION

(® Note

The node installation only applies to the current Amazon EC2 session. If you restart your
CLI session you need to use nvm to enable the installed node version. If the instance is

Procedure 331

https://github.com/nvm-sh/nvm/blob/master/README.md

Amazon SDK for JavaScript Developer Guide for SDK v2

terminated, you need to install node again. The alternative is to make an Amazon Machine
Image (AMI) of the Amazon EC2 instance once you have the configuration that you want to
keep, as described in the following topic.

Creating an Amazon Machine Image

After you install Node.js on an Amazon EC2 instance, you can create an Amazon Machine Image
(AMI) from that instance. Creating an AMI makes it easy to provision multiple Amazon EC2
instances with the same Node.js installation. For more information about creating an AMI from an
existing instance, see Creating an Amazon EBS-Backed Linux AMI in the Amazon EC2 User Guide.

Related Resources

For more information about the commands and software used in this topic, see the following web
pages:

« node version manager (nvm): see nvm repo on GitHub.

« node package manager (npm): see npm website.

Creating an Amazon Machine Image 332

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/creating-an-ami-ebs.html
https://github.com/creationix/nvm
https://www.npmjs.com

Amazon SDK for JavaScript Developer Guide for SDK v2

JavaScript API Reference

The API Reference topics for the latest version of the SDK for JavaScript are found at:

Amazon SDK for JavaScript APl Reference Guide.

SDK Changelog on GitHub

The changelog for releases from version 2.4.8 and later is found at:

Change log.

SDK Changelog on GitHub 333

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/
https://github.com/aws/aws-sdk-js/blob/master/CHANGELOG.md

Amazon SDK for JavaScript Developer Guide for SDK v2

Migrate to v3 of the Amazon SDK for JavaScript

The Amazon SDK for JavaScript version 3 is a major rewrite of version 2. For more information on
migrating to version 3, see Migrate from version 2.x to 3.x of the Amazon SDK for JavaScript in the

Amazon SDK for JavaScript Developer Guide v3.

334

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/migrating.html

Amazon SDK for JavaScript Developer Guide for SDK v2

Security for this Amazon Product or Service

Cloud security at Amazon Web Services (Amazon) is the highest priority. As an Amazon customer,
you benefit from a data center and network architecture that is built to meet the requirements of
the most security-sensitive organizations. Security is a shared responsibility between Amazon and
you. The Shared Responsibility Model describes this as Security of the Cloud and Security in the
Cloud.

Security of the Cloud — Amazon is responsible for protecting the infrastructure that runs all of the
services offered in the Amazon Cloud and providing you with services that you can use securely.
Our security responsibility is the highest priority at Amazon, and the effectiveness of our security is
regularly tested and verified by third-party auditors as part of the Amazon Compliance Programs.

Security in the Cloud - Your responsibility is determined by the Amazon service you are using,
and other factors including the sensitivity of your data, your organization’s requirements, and
applicable laws and regulations.

This Amazon product or service follows the shared responsibility model through the specific

Amazon Web Services (Amazon) services it supports. For Amazon service security information, see
the Amazon service security documentation page and Amazon services that are in scope of Amazon

compliance efforts by compliance program.

Topics

» Data protection in this Amazon product or service

« Identity and Access Management

« Compliance Validation for this Amazon Product or Service

« Resilience for this Amazon Product or Service

« Infrastructure Security for this Amazon Product or Service

« Enforcing a minimum version of TLS

Data protection in this Amazon product or service

The Amazon shared responsibility model applies to data protection in this Amazon product or

service. As described in this model, Amazon is responsible for protecting the global infrastructure
that runs all of the Amazon Web Services Cloud. You are responsible for maintaining control
over your content that is hosted on this infrastructure. You are also responsible for the security

Data protection 335

http://www.amazonaws.cn/compliance/shared-responsibility-model/
http://www.amazonaws.cn/compliance/programs/
http://www.amazonaws.cn/compliance/shared-responsibility-model/
https://docs.amazonaws.cn/security/?id=docs_gateway#aws-security
http://www.amazonaws.cn/compliance/services-in-scope/
http://www.amazonaws.cn/compliance/services-in-scope/
https://aws.amazon.com/compliance/shared-responsibility-model/

Amazon SDK for JavaScript Developer Guide for SDK v2

configuration and management tasks for the Amazon Web Services services that you use. For more
information about data privacy, see the Data Privacy FAQ.

For data protection purposes, we recommend that you protect Amazon Web Services account
credentials and set up individual users with Amazon IAM Identity Center or Amazon Identity and
Access Management (IAM). That way, each user is given only the permissions necessary to fulfill
their job duties. We also recommend that you secure your data in the following ways:

« Use multi-factor authentication (MFA) with each account.

o Use SSL/TLS to communicate with Amazon resources. We require TLS 1.2 and recommend TLS
1.3.

« Set up APl and user activity logging with Amazon CloudTrail. For information about using
CloudTrail trails to capture Amazon activities, see Working with CloudTrail trails in the Amazon
CloudTrail User Guide.

« Use Amazon encryption solutions, along with all default security controls within Amazon Web
Services services.

» Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

« If you require FIPS 140-3 validated cryptographic modules when accessing Amazon through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-3.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with this Amazon product or service or other Amazon Web Services services using
the console, API, Amazon CLI, or Amazon SDKs. Any data that you enter into tags or free-form

text fields used for names may be used for billing or diagnostic logs. If you provide a URL to an
external server, we strongly recommend that you do not include credentials information in the URL
to validate your request to that server.

Identity and Access Management

Amazon ldentity and Access Management (IAM) is an Amazon Web Services service that helps an
administrator securely control access to Amazon resources. IAM administrators control who can
be authenticated (signed in) and authorized (have permissions) to use Amazon resources. IAM is an
Amazon Web Services service that you can use with no additional charge.

Identity and Access Management 336

https://www.amazonaws.cn/compliance/data-privacy-faq/
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-trails.html
https://www.amazonaws.cn/compliance/fips/

Amazon SDK for JavaScript Developer Guide for SDK v2

Topics

Audience

Authenticating with identities

Managing access using policies

How Amazon Web Services services work with IAM

Troubleshooting Amazon identity and access

Audience

How you use Amazon Identity and Access Management (IAM) differs, depending on the work that
you do in Amazon.

Service user - If you use Amazon Web Services services to do your job, then your administrator
provides you with the credentials and permissions that you need. As you use more Amazon features
to do your work, you might need additional permissions. Understanding how access is managed
can help you request the right permissions from your administrator. If you cannot access a feature
in Amazon, see Troubleshooting Amazon identity and access or the user guide of the Amazon Web

Services service you are using.

Service administrator - If you're in charge of Amazon resources at your company, you probably
have full access to Amazon. It's your job to determine which Amazon features and resources your
service users should access. You must then submit requests to your IAM administrator to change
the permissions of your service users. Review the information on this page to understand the basic
concepts of IAM. To learn more about how your company can use IAM with Amazon, see the user
guide of the Amazon Web Services service you are using.

IAM administrator - If you're an IAM administrator, you might want to learn details about how you
can write policies to manage access to Amazon. To view example Amazon identity-based policies
that you can use in IAM, see the user guide of the Amazon Web Services service you are using.

Authenticating with identities

Authentication is how you sign in to Amazon using your identity credentials. You must be
authenticated as the Amazon Web Services account root user, an IAM user, or by assuming an IAM
role.

For programmatic access, Amazon provides an SDK and CLI to cryptographically sign requests. For
more information, see Amazon Signature Version 4 for AP| requests in the /AM User Guide.

Audience 337

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_sigv.html

Amazon SDK for JavaScript Developer Guide for SDK v2

Amazon Web Services account root user

When you create an Amazon Web Services account, you begin with one sign-in identity called the
Amazon Web Services account root user that has complete access to all Amazon Web Services
services and resources. We strongly recommend that you don't use the root user for everyday tasks.
For tasks that require root user credentials, see Tasks that require root user credentials in the IAM
User Guide.

Federated identity

As a best practice, require human users to use federation with an identity provider to access
Amazon Web Services services using temporary credentials.

A federated identity is a user from your enterprise directory, web identity provider, or Amazon
Directory Service that accesses Amazon Web Services services using credentials from an identity
source. Federated identities assume roles that provide temporary credentials.

IAM users and groups

An IAM user is an identity with specific permissions for a single person or application. We
recommend using temporary credentials instead of IAM users with long-term credentials. For more
information, see Require human users to use federation with an identity provider to access Amazon
using temporary credentials in the JAM User Guide.

An IAM group specifies a collection of IAM users and makes permissions easier to manage for large
sets of users. For more information, see Use cases for IAM users in the IAM User Guide.

IAM roles

An IAM role is an identity with specific permissions that provides temporary credentials. You can
assume a role by switching from a user to an IAM role (console) or by calling an Amazon CLI or

Amazon API operation. For more information, see Methods to assume a role in the IAM User Guide.

IAM roles are useful for federated user access, temporary IAM user permissions, cross-account
access, cross-service access, and applications running on Amazon EC2. For more information, see
Cross account resource access in |AM in the IAM User Guide.

Managing access using policies

You control access in Amazon by creating policies and attaching them to Amazon identities or
resources. A policy defines permissions when associated with an identity or resource. Amazon

Managing access using policies 338

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp
https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_groups.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/gs-identities-iam-users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

Amazon SDK for JavaScript Developer Guide for SDK v2

evaluates these policies when a principal makes a request. Most policies are stored in Amazon as
JSON documents. For more information about JSON policy documents, see Overview of JSON

policies in the IAM User Guide.

Using policies, administrators specify who has access to what by defining which principal can
perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. An IAM administrator creates IAM policies and
adds them to roles, which users can then assume. IAM policies define permissions regardless of the
method used to perform the operation.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you attach to an identity (user,
group, or role). These policies control what actions identities can perform, on which resources, and
under what conditions. To learn how to create an identity-based policy, see Define custom IAM

permissions with customer managed policies in the IAM User Guide.

Identity-based policies can be inline policies (embedded directly into a single identity) or managed
policies (standalone policies attached to multiple identities). To learn how to choose between
managed and inline policies, see Choose between managed policies and inline policies in the IAM
User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples
include IAM role trust policies and Amazon S3 bucket policies. In services that support resource-
based policies, service administrators can use them to control access to a specific resource. You
must specify a principal in a resource-based policy.

Resource-based policies are inline policies that are located in that service. You can't use Amazon
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Managing access using policies 339

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_principal.html

Amazon SDK for JavaScript Developer Guide for SDK v2

Amazon S3, Amazon WAF, and Amazon VPC are examples of services that support ACLs. To learn
more about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service
Developer Guide.

Other policy types

Amazon supports additional policy types that can set the maximum permissions granted by more
common policy types:

« Permissions boundaries — Set the maximum permissions that an identity-based policy can grant
to an IAM entity. For more information, see Permissions boundaries for IAM entities in the IAM
User Guide.

» Service control policies (SCPs) — Specify the maximum permissions for an organization or
organizational unit in Amazon Organizations. For more information, see Service control policies

in the Amazon Organizations User Guide.

» Resource control policies (RCPs) — Set the maximum available permissions for resources
in your accounts. For more information, see Resource control policies (RCPs) in the Amazon

Organizations User Guide.

» Session policies — Advanced policies passed as a parameter when creating a temporary session
for a role or federated user. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how Amazon determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How Amazon Web Services services work with IAM

To get a high-level view of how Amazon Web Services services work with most IAM features, see
Amazon services that work with IAM in the IAM User Guide.

To learn how to use a specific Amazon Web Services service with 1AM, see the security section of
the relevant service's User Guide.

Troubleshooting Amazon identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with Amazon and IAM.

How Amazon Web Services services work with IAM 340

https://docs.amazonaws.cn/AmazonS3/latest/userguide/acl-overview.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.amazonaws.cn/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.amazonaws.cn/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon SDK for JavaScript Developer Guide for SDK v2

Topics

« | am not authorized to perform an action in Amazon

« | am not authorized to perform iam:PassRole

« | want to allow people outside of my Amazon Web Services account to access my Amazon

resources

I am not authorized to perform an action in Amazon

If you receive an error that you're not authorized to perform an action, your policies must be
updated to allow you to perform the action.

The following example error occurs when the mateojackson IAM user tries to use the console
to view details about a fictional my-example-widget resource but doesn't have the fictional
awes:GetWidget permissions.

User: arn:aws-cn:iam::123456789012:user/mateojackson is not authorized to perform:
awes:GetWidget on resource: my-example-widget

In this case, the policy for the mateojackson user must be updated to allow access to the my -
example-widget resource by using the awes: GetWidget action.

If you need help, contact your Amazon administrator. Your administrator is the person who
provided you with your sign-in credentials.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to Amazon.

Some Amazon Web Services services allow you to pass an existing role to that service instead of
creating a new service role or service-linked role. To do this, you must have permissions to pass the
role to the service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in Amazon. However, the action requires the service to have permissions that
are granted by a service role. Mary does not have permissions to pass the role to the service.

User: arn:aws-cn:iam::123456789012:user/marymajor is not authorized to perform:
iam:PassRole

Troubleshooting Amazon identity and access 341

Amazon SDK for JavaScript Developer Guide for SDK v2

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your Amazon administrator. Your administrator is the person who
provided you with your sign-in credentials.

| want to allow people outside of my Amazon Web Services account to access my
Amazon resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

« To learn whether Amazon supports these features, see How Amazon Web Services services work
with IAM.

» To learn how to provide access to your resources across Amazon Web Services accounts that you
own, see Providing access to an IAM user in another Amazon Web Services account that you own
in the JAM User Guide.

« To learn how to provide access to your resources to third-party Amazon Web Services accounts,
see Providing access to Amazon Web Services accounts owned by third parties in the IAM User
Guide.

» To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

» To learn the difference between using roles and resource-based policies for cross-account access,
see Cross account resource access in IAM in the IAM User Guide.

Compliance Validation for this Amazon Product or Service

To learn whether an Amazon Web Services service is within the scope of specific compliance
programs, see Amazon Web Services services in Scope by Compliance Program and choose the

compliance program that you are interested in. For general information, see Amazon Web Services

Compliance Programs.

You can download third-party audit reports using Amazon Artifact. For more information, see
Downloading Reports in Amazon Artifact.

Compliance Validation 342

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html

Amazon SDK for JavaScript Developer Guide for SDK v2

Your compliance responsibility when using Amazon Web Services services is determined by

the sensitivity of your data, your company's compliance objectives, and applicable laws and
regulations. For more information about your compliance responsibility when using Amazon Web
Services services, see Amazon Security Documentation.

This Amazon product or service follows the shared responsibility model through the specific

Amazon Web Services (Amazon) services it supports. For Amazon service security information, see
the Amazon service security documentation page and Amazon services that are in scope of Amazon

compliance efforts by compliance program.

Resilience for this Amazon Product or Service

The Amazon global infrastructure is built around Amazon Web Services Regions and Availability
Zones.

Amazon Web Services Regions provide multiple physically separated and isolated Availability
Zones, which are connected with low-latency, high-throughput, and highly redundant networking.

With Availability Zones, you can design and operate applications and databases that automatically
fail over between zones without interruption. Availability Zones are more highly available, fault
tolerant, and scalable than traditional single or multiple data center infrastructures.

For more information about Amazon Regions and Availability Zones, see Amazon Global

Infrastructure.

This Amazon product or service follows the shared responsibility model through the specific

Amazon Web Services (Amazon) services it supports. For Amazon service security information, see
the Amazon service security documentation page and Amazon services that are in scope of Amazon

compliance efforts by compliance program.

Infrastructure Security for this Amazon Product or Service

This Amazon product or service uses managed services, and therefore is protected by the Amazon
global network security. For information about Amazon security services and how Amazon protects
infrastructure, see Amazon Cloud Security. To design your Amazon environment using the best

practices for infrastructure security, see Infrastructure Protection in Security Pillar Amazon Well-
Architected Framework.

Resilience 343

https://docs.amazonaws.cn/security/
http://www.amazonaws.cn/compliance/shared-responsibility-model/
https://docs.amazonaws.cn/security/?id=docs_gateway#aws-security
http://www.amazonaws.cn/compliance/services-in-scope/
http://www.amazonaws.cn/compliance/services-in-scope/
http://www.amazonaws.cn/about-aws/global-infrastructure/
http://www.amazonaws.cn/about-aws/global-infrastructure/
http://www.amazonaws.cn/compliance/shared-responsibility-model/
https://docs.amazonaws.cn/security/?id=docs_gateway#aws-security
http://www.amazonaws.cn/compliance/services-in-scope/
http://www.amazonaws.cn/compliance/services-in-scope/
https://www.amazonaws.cn/security/
https://docs.amazonaws.cn/wellarchitected/latest/security-pillar/infrastructure-protection.html

Amazon SDK for JavaScript Developer Guide for SDK v2

You use Amazon published API calls to access this Amazon Product or Service through the network.
Clients must support the following:

» Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

 Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the Amazon Security Token Service (Amazon STS)

to generate temporary security credentials to sign requests.

This Amazon product or service follows the shared responsibility model through the specific

Amazon Web Services (Amazon) services it supports. For Amazon service security information, see
the Amazon service security documentation page and Amazon services that are in scope of Amazon

compliance efforts by compliance program.

Enforcing a minimum version of TLS

To add increased security when communicating with Amazon services, configure the Amazon SDK
for JavaScript to use TLS 1.2 or later.

Transport Layer Security (TLS) is a protocol used by web browsers and other applications to ensure
the privacy and integrity of data exchanged over a network.

/A Important

As of June 10, 2024, we announced that TLS 1.3 is available on Amazon service API
endpoints across each of the Amazon Regions. The Amazon SDK for JavaScript v2 does

not negotiate the TLS version itself. Instead, it uses the TLS version determined by Node.js,
which is configurable via https.Agent. Amazon recommends using the current Active LTS
version of Node.js.

Verify and enforce TLS in Node.js

When you use the Amazon SDK for JavaScript with Node.js, the underlying Node.js security layer is
used to set the TLS version.

Enforcing a minimum version of TLS 344

https://docs.amazonaws.cn/STS/latest/APIReference/Welcome.html
http://www.amazonaws.cn/compliance/shared-responsibility-model/
https://docs.amazonaws.cn/security/?id=docs_gateway#aws-security
http://www.amazonaws.cn/compliance/services-in-scope/
http://www.amazonaws.cn/compliance/services-in-scope/
https://amazonaws-china.com/blogs//security/faster-aws-cloud-connections-with-tls-1-3/

Amazon SDK for JavaScript Developer Guide for SDK v2

Node.js 12.0.0 and later use a minimum version of OpenSSL 1.1.1b, which supports TLS 1.3. The
Amazon SDK for JavaScript v2 defaults to use TLS 1.3 when available, but defaults to a lower
version if required.

Verify the version of OpenSSL and TLS

To get the version of OpenSSL used by Node.js on your computer, run the following command.

node -p process.versions

The version of OpenSSL in the list is the version used by Node.js, as shown in the following
example.

openssl: '1.1.1b'

To get the version of TLS used by Node.js on your computer, start the Node shell and run the
following commands, in order.

> var tls = require("tls");
> var tlsSocket = new tls.TLSSocket();
> tlsSocket.getProtocol();

The last command outputs the TLS version, as shown in the following example.

'TLSv1.3'

Node.js defaults to use this version of TLS, and tries to negotiate another version of TLS if a call is
not successful.

Checking Minimum and Maximum Supported TLS Versions

Developers can check the minimum and maximum supported TLS versions in Node.js using the
following script:

var tls = require("tls");
console.log("Supported TLS versions:", tls.DEFAULT_MIN_VERSION + " to " +
t1ls.DEFAULT_MAX_VERSION);

The last command outputs the default minimum and maximum TLS version, as shown in the
following example.

Verify and enforce TLS in Node.js 345

Amazon SDK for JavaScript Developer Guide for SDK v2

Supported TLS versions: TLSv1l.2 to TLSv1l.3

Enforce a minimum version of TLS

Node.js negotiates a version of TLS when a call fails. You can enforce the minimum allowable TLS
version during this negotiation, either when running a script from the command line or per request
in your JavaScript code.

To specify the minimum TLS version from the command line, you must use Node.js version 11.4.0
or later. To install a specific Node.js version, first install Node Version Manager (nvm) using the
steps found at Node Version Manager Installing and Updating. Then run the following commands
to install and use a specific version of Node.js.

nvm install 11
nvm use 11

Enforcing TLS 1.2

To enforce that TLS 1.2 is the minimum allowable version, specify the --tls-min-v1.2
argument when running your script, as shown in the following example.

node --tls-min-v1.2 yourScript.js

To specify the minimum allowable TLS version for a specific request in your JavaScript code, use
the httpOptions parameter to specify the protocol, as shown in the following example.

const https = require("https");
const {NodeHttpHandler} = require("@aws-sdk/node-http-handler");
const {DynamoDBClient} = require("@aws-sdk/client-dynamodb");

const client = new DynamoDBClient({
region: "us-west-2",
requestHandler: new NodeHttpHandler({
httpsAgent: new https.Agent(
{

secureProtocol: 'TLSvl_2_method'

1D)
1)

Verify and enforce TLS in Node.js 346

https://github.com/nvm-sh/nvm#installing-and-updating

Amazon SDK for JavaScript Developer Guide for SDK v2

Enforcing TLS 1.3

To enforce that TLS 1.3 is the minimum allowable version, specify the --tls-min-v1.3
argument when running your script, as shown in the following example.

node --tls-min-v1.3 yourScript.js

To specify the minimum allowable TLS version for a specific request in your JavaScript code, use
the httpOptions parameter to specify the protocol, as shown in the following example.

const https = require("https");
const {NodeHttpHandler} = require("@aws-sdk/node-http-handler");
const {DynamoDBClient} = require("@aws-sdk/client-dynamodb");

const client = new DynamoDBClient({
region: "us-west-2",
requestHandler: new NodeHttpHandler({
httpsAgent: new https.Agent(
{

secureProtocol: 'TLSvl_3_method'

1)
1)

Verify and enforce TLS in a browser script

When you use the SDK for JavaScript in a browser script, browser settings control the version of
TLS that is used. The version of TLS used by the browser cannot be discovered or set by script and
must be configured by the user. To verify and enforce the version of TLS used in a browser script,
refer to the instructions for your specific browser.

Microsoft Internet Explorer

Open Internet Explorer.
From the menu bar, choose Tools - Internet Options - Advanced tab.

Scroll down to Security category, manually check the option box for Use TLS 1.2.
Click OK.

i A W=

Close your browser and restart Internet Explorer.

Verify and enforce TLS in a browser script 347

Amazon SDK for JavaScript Developer Guide for SDK v2

Microsoft Edge

1. In the Windows menu search box, type Internet options.
2. Under Best match, click Internet Options.

3. Inthe Internet Properties window, on the Advanced tab, scroll down to the Security
section.

4. Check the User TLS 1.2 checkbox.
Click OK.

Google Chrome

1. Open Google Chrome.

2. Click Alt F and select Settings.

3. Scroll down and select Show advanced settings....

4. Scroll down to the System section and click on Open proxy settings....

5. Select the Advanced tab.

6. Scroll down to Security category, manually check the option box for Use TLS 1.2.
7. Click OK.

8

Close your browser and restart Google Chrome.

Mozilla Firefox

Open Firefox.

In the address bar, type about:config and press Enter.

In the Search field, enter tls. Find and double-click the entry for security.tls.version.min.
Set the integer value to 3 to force protocol of TLS 1.2 to be the default.

Click OK.

o v sk W=

Close your browser and restart Mozilla Firefox.

Apple Safari

There are no options for enabling SSL protocols. If you are using Safari version 7 or greater, TLS
1.2 is automatically enabled.

Verify and enforce TLS in a browser script 348

Amazon SDK for JavaScript Developer Guide for SDK v2

Additional Resources

The following links provide additional resources you can use with the Amazon SDK for JavaScript.

Amazon SDKs and Tools Reference Guide

The Amazon SDKs and Tools Reference Guide also contains settings, features, and other

foundational concepts common among many of the Amazon SDKs.

JavaScript SDK Forum

You can find questions and discussions on matters of interest to users of the SDK for JavaScript in
the JavaScript SDK Forum.

JavaScript SDK and Developer Guide on GitHub

There are several repositories on GitHub for the SDK for JavaScript.

« The current SDK for JavaScript is available in the SDK repo.

» The SDK for JavaScript Developer Guide (this document) is available in markdown format in its
own documentation repo.

« Some of the sample code that is included in this guide is available in the SDK sample code repo.

JavaScript SDK on Gitter

You can also find questions and discussions about the SDK for JavaScript in the JavaScript SDK
community on Gitter.

Amazon SDKs and Tools Reference Guide 349

https://docs.amazonaws.cn/sdkref/latest/guide/
https://forums.aws.amazon.com/forum.jspa?forumID=148
https://github.com/aws/aws-sdk-js
https://github.com/awsdocs/aws-javascript-developer-guide-v2
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript
https://gitter.im/aws/aws-sdk-js
https://gitter.im/aws/aws-sdk-js

Amazon SDK for JavaScript Developer Guide for SDK v2

Document History for Amazon SDK for JavaScript

« SDK version: See JavaScript API Reference

» Latest major documentation update: March 31, 2022

Document History

The following table describes important changes in each release of the Amazon SDK for JavaScript
after May 2018. For notification about updates to this documentation, you can subscribe to an RSS
feed.

Change

TLS 1.3 is now supported

across all Amazon service API

endpoints in all Regions

Enforcing a minimum version
of TLS

Viewing Photos in an Amazon

S3 Bucket from a Browser

Setting Credentials in Node.js,

new credential-loading

choices

Credentials using a Configure

d Credential Process

New Getting Started in a

Browser Script

Description

Updated supported TLS
version and method for
logging TLS version.

Added information about TLS
1.3.

Added an example for simply
viewing photos in existing
photo albums.

Added information about
credentials that are loaded
from the ECS credentials
provider or a configured
credential process.

Added information about
credentials that are loaded
from a configured credential
process.

Getting Started in a Browser
Script has been rewritten to

Date

April 10, 2025

March 31, 2022

May 13, 2019

April 25, 2019

April 25, 2019

July 14, 2018

Document History

350

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/amazon-sdk-javascript-guide-doc-history.rss
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/amazon-sdk-javascript-guide-doc-history.rss
https://docs.amazonaws.cn/sdk-for-javascript/latest/developer-guide/setting-credentials-node.html
https://docs.amazonaws.cn/sdk-for-javascript/latest/developer-guide/setting-credentials-node.html
https://docs.amazonaws.cn/sdk-for-javascript/latest/developer-guide/setting-credentials-node.html
https://docs.amazonaws.cn/sdk-for-javascript/latest/developer-guide/loading-node-credentials-configured-credential-process.html
https://docs.amazonaws.cn/sdk-for-javascript/latest/developer-guide/loading-node-credentials-configured-credential-process.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/getting-started-browser.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/getting-started-browser.html

Amazon SDK for JavaScript

Developer Guide for SDK v2

New Amazon SNS Code
Samples

New Getting Started in
Node.js

Earlier Updates

simplify the example and

to access the Amazon Polly
service to send text and
return synthesized speech you
can play in the browser. See
Getting Started in Browser
Script for the new content.

Four new Node.js code June 29, 2018
samples for working with

Amazon SNS have been

added. See Amazon SNS

Examples for the sample

code.

Getting Started in Node.js
has been rewritten to use

June 4, 2018

updated sample code and

to provide greater detail in
how to create the package. j
son file as well as the
Node.js code itself. See
Getting Started in Node.js for
the new content.

The following table describes important changes in each release of the Amazon SDK for JavaScript

before June 2018.

Change

New AWS Elemental
MediaConvert code samples

Description Date

Three new Node.js code May 21, 2018
samples for working with

AWS Elemental MediaConv

ert have been added. See

AWS Elemental MediaConv

Earlier Updates

351

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/getting-started-browser.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/getting-started-browser.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/sns-examples.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/sns-examples.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/sns-examples.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/sns-examples.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/getting-started-nodejs.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/getting-started-nodejs.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/getting-started-nodejs.html

Amazon SDK for JavaScript

Developer Guide for SDK v2

Change

New Edit on GitHub Button

New Topic on Custom
Endpoints

SDK for JavaScript Developer
Guide on GitHub

New Amazon DynamoDB
code sample

Description

ert Examples for the sample
code.

The header of every topic
now provides a button that
takes you to the markdown
version of same topic on
GitHub so you can provide
edits to improve the accuracy
and completeness of the
guide.

Information has been added
on the format and use of
custom endpoints for making
API calls. See Specifying
Custom Endpoints.

The SDK for JavaScript
Developer Guide is available
in markdown format in its
own documentation repo. You

can post issues you would
like the guide to address

or submit pull requests to
submit proposed changes.

A new Node.js code sample
for updating a DynamoDB
table using the Document
Client has been added.

See Using the DynamoDB

Document Client for the

sample code.

Date

February 21, 2018

February 20, 2018

February 16, 2018

February 14, 2018

Earlier Updates

352

https://github.com/awsdocs/aws-javascript-developer-guide-v2

Amazon SDK for JavaScript

Developer Guide for SDK v2

Change

New Topic on SDK Logging

Updated Topic on Region
Setting

New Amazon SES Code
Examples

Description

A topic describing how to
log API calls made with the
SDK for JavaScript has been
added, including informati
on about using a third-party
logger. See Logging Amazon
SDK for JavaScript Calls.

The topic describing how

to set the Region used with
the SDK has been updated
and expanded, including
information about the order
of precedence for setting
the Region. See Setting the
Amazon Region.

The section with SDK code
examples has been updated
to include five new examples
for working with Amazon SES.
For more information about
these code examples, see
Amazon Simple Email Service

Examples.

Date

February 5, 2018

December 12, 2017

November 9, 2017

Earlier Updates

353

Amazon SDK for JavaScript Developer Guide for SDK v2

Change Description Date

Usability Improvements Based on recent usability August 9, 2017
testing, a number of changes
have been made to improve
documentation usability.

o Code samples are more
clearly identified as
targeted either for browser
or Node.js execution.

« TOC links no longer jump
immediately to other web
content, including the API
Reference.

« Includes more linking in
Getting Started section
to details on obtaining
Amazon credentials.

» Provides more informati
on about common Node.js
features needed to use the
SDK. For more information,
see Node.js Considerations.

New DynamoDB Code The section with SDK code June 21, 2017
Examples examples has been updated

to re-write the two previous

examples as well as add three

brand new examples for

working with DynamoDB. For

more information about these

code examples, see Amazon

DynamoDB Examples.

Earlier Updates 354

Amazon SDK for JavaScript

Developer Guide for SDK v2

Change

New IAM Code Examples

New CloudWatch and Amazon
SQS Code Examples

New Amazon EC2 Code
Examples

List of supported browsers
made more visible

Description

The section with SDK code
examples has been updated
to include five new examples
for working with 1AM. For
more information about these
code examples, see Amazon
IAM Examples.

The section with SDK code
examples has been updated
to include new examples for
working with CloudWatch
and with Amazon SQS. For
more information about these
code examples, see Amazon
CloudWatch Examples and

Amazon SQS Examples.

The section with SDK code
examples has been updated
to include five new examples
for working with Amazon EC2.
For more information about
these code examples, see
Amazon EC2 Examples.

The list of browsers
supported by the SDK

for JavaScript, which was
previously found in the topic
on Prerequisites, has been
given its own topic to make
it more visible in the table of
contents.

Date

December 23, 2016

December 20, 2016

December 15, 2016

November 16, 2016

Earlier Updates

355

Amazon SDK for JavaScript Developer Guide for SDK v2

Change Description Date
Initial publication of the new The previous Developer October 28, 2016
Developer Guide Guide is now deprecated.

The new Developer Guide
has been reorganized to
make information easier to
find. When either Node.js or
browser JavaScript scenarios
present special considera
tions, those are identified

as appropriate. The guide
also provides additional code
examples that are better
organized to make them
easier and faster to find.

Earlier Updates 356

	Amazon SDK for JavaScript
	Table of Contents
	
	What Is the Amazon SDK for JavaScript?
	Maintenance and support for SDK major versions
	Using the SDK with Node.js
	Using the SDK with Amazon Amplify
	Using the SDK with Web Browsers
	Common Use Cases
	About the Examples

	Getting Started with the Amazon SDK for JavaScript
	Getting Started in a Browser Script
	The Scenario
	Step 1: Create an Amazon Cognito Identity Pool
	Step 2: Add a Policy to the Created IAM Role
	Step 3: Create the HTML Page
	Step 4: Write the Browser Script
	Step 5: Run the Sample
	Full Sample
	Possible Enhancements

	Getting Started in Node.js
	The Scenario
	Prerequisite Tasks
	Step 1: Install the SDK and Dependencies
	Step 2: Configure Your Credentials
	Step 3: Create the Package JSON for the Project
	Step 4: Write the Node.js Code
	Step 5: Run the Sample

	Setting Up the SDK for JavaScript
	Prerequisites
	Setting Up an Amazon Node.js Environment
	Web Browsers Supported

	Installing the SDK for JavaScript
	Installing Using Bower

	Loading the SDK for JavaScript
	Upgrading the SDK for JavaScript from Version 1
	Automatic Conversion of Base64 and Timestamp Types on Input/Output
	Moved response.data.RequestId to response.requestId
	Exposed Wrapper Elements
	Dropped Client Properties

	Configuring the SDK for JavaScript
	Using the Global Configuration Object
	Setting Global Configuration
	Global Configuration Examples

	Setting Configuration Per Service
	Immutable Configuration Data

	Setting the Amazon Region
	In a Client Class Constructor
	Using the Global Configuration Object
	Using an Environment Variable
	Using a Shared Config File
	Order of Precedence for Setting the Region

	Specifying Custom Endpoints
	Endpoint String Format
	Endpoints for the ap-northeast-3 Region
	Endpoints for MediaConvert

	SDK authentication with Amazon
	Start an Amazon access portal session
	More authentication information

	Setting Credentials
	Best Practices for Credentials
	Setting Credentials in Node.js
	Loading Credentials in Node.js from IAM roles for Amazon EC2
	Loading Credentials for a Node.js Lambda Function
	Loading Credentials in Node.js from the Shared Credentials File
	Loading Credentials in Node.js from Environment Variables
	Loading Credentials in Node.js from a JSON File
	Loading Credentials in Node.js using a Configured Credential Process

	Setting Credentials in a Web Browser
	Using Amazon Cognito Identity to Authenticate Users
	Configuring the Amazon Cognito Identity Credentials Object
	Switching Unauthenticated Users to Authenticated Users
	Initially Unauthenticated User
	Switch to Authenticated User

	Using Web Federated Identity to Authenticate Users
	Step 1: Registering with Identity Providers
	Step 2: Creating an IAM Role for an Identity Provider
	Step 3: Obtaining a Provider Access Token After Login
	Step 4: Obtaining Temporary Credentials

	Web Federated Identity Examples
	Login with Amazon Example
	Facebook Login Example
	Google+ Sign-in Example

	Locking API Versions
	Getting API Versions

	Node.js Considerations
	Using Built-In Node.js Modules
	Using NPM Packages
	Configuring maxSockets in Node.js
	Reusing Connections with Keep-Alive in Node.js
	Configuring Proxies for Node.js
	Registering Certificate Bundles in Node.js

	Browser Script Considerations
	Building the SDK for Browsers
	Using the SDK Builder to Build the SDK for JavaScript
	Using the CLI to Build the SDK for JavaScript
	Building from the Command Line
	Minifying Build Output

	Building Specific Services and API Versions
	Building All Services
	Building Specific Services

	Building the SDK as a Dependency with Browserify

	Cross-Origin Resource Sharing (CORS)
	How CORS Works
	Is CORS Configuration Required
	Configuring CORS for an Amazon S3 Bucket
	CORS Configuration Example

	Bundling Applications with Webpack
	Installing Webpack
	Configuring Webpack
	Running Webpack
	Using the Webpack Bundle
	Importing Individual Services
	Bundling for Node.js

	Working with Services in the SDK for JavaScript
	Creating and Calling Service Objects
	Requiring Individual Services
	Creating Service Objects
	Locking the API Version of a Service Object
	Specifying Service Object Parameters

	Logging Amazon SDK for JavaScript Calls
	Using a Third-Party Logger

	Calling Services Asychronously
	Managing Asychronous Calls
	Using an Anonymous Callback Function
	Accessing the Request and Response Objects

	Using a Request Object Event Listener
	Chaining Multiple Callbacks
	Request Object Completion Events
	The success Event
	The error Event
	The complete Event

	Request Object HTTP Events
	The httpHeaders Event
	The httpData Event
	The httpUploadProgress and httpDownloadProgress Events
	The httpError Event
	The httpDone Event

	Using async/await
	Using JavaScript Promises
	Coordinating Multiple Promises
	Browser and Node.js Support for Promises
	Using Other Promise Implementations

	Using the Response Object
	Accessing Data Returned in the Response Object
	Paging Through Returned Data
	Accessing Error Information from a Response Object
	Accessing the Originating Request Object

	Working with JSON
	JSON as Service Object Parameters
	Returning Data as JSON

	Retry strategy in the Amazon SDK for JavaScript v2
	Exponential backoff based retry behavior
	Testing retry delay in v2
	Retry delays with default configuration
	Retry delays with custom base
	Retry delays with custom backoff algorithm

	SDK for JavaScript Code Examples
	Amazon CloudWatch Examples
	Creating Alarms in Amazon CloudWatch
	The Scenario
	Prerequisite Tasks
	Describing Alarms
	Creating an Alarm for a CloudWatch Metric
	Deleting an Alarm

	Using Alarm Actions in Amazon CloudWatch
	The Scenario
	Prerequisite Tasks
	
	Creating and Enabling Actions on an Alarm
	Disabling Actions on an Alarm

	Getting Metrics from Amazon CloudWatch
	The Scenario
	Prerequisite Tasks
	Listing Metrics
	Submitting Custom Metrics

	Sending Events to Amazon CloudWatch Events
	The Scenario
	Prerequisite Tasks
	Creating a Scheduled Rule
	Adding a Amazon Lambda Function Target
	Sending Events

	Using Subscription Filters in Amazon CloudWatch Logs
	The Scenario
	Prerequisite Tasks
	Describing Existing Subscription Filters
	Creating a Subscription Filter
	Deleting a Subscription Filter

	Amazon DynamoDB Examples
	Creating and Using Tables in DynamoDB
	The Scenario
	Prerequisite Tasks
	Creating a Table
	Listing Your Tables
	Describing a Table
	Deleting a Table

	Reading and Writing A Single Item in DynamoDB
	The Scenario
	Prerequisite Tasks
	Writing an Item
	Getting an Item
	Deleting an Item

	Reading and Writing Items in Batch in DynamoDB
	The Scenario
	Prerequisite Tasks
	Reading Items in Batch
	Writing Items in Batch

	Querying and Scanning a DynamoDB Table
	The Scenario
	Prerequisite Tasks
	Querying a Table
	Scanning a Table

	Using the DynamoDB Document Client
	The Scenario
	Prerequisite Tasks
	Getting an Item from a Table
	Putting an Item in a Table
	Updating an Item in a Table
	Querying a Table
	Deleting an Item from a Table

	Amazon EC2 Examples
	Creating an Amazon EC2 Instance
	About the Example
	Prerequisite Tasks
	Creating and Tagging an Instance

	Managing Amazon EC2 Instances
	The Scenario
	Prerequisite Tasks
	Describing Your Instances
	Managing Instance Monitoring
	Starting and Stopping Instances
	Rebooting Instances

	Working with Amazon EC2 Key Pairs
	The Scenario
	Prerequisite Tasks
	Describing Your Key Pairs
	Creating a Key Pair
	Deleting a Key Pair

	Using Regions and Availability Zones with Amazon EC2
	The Scenario
	Prerequisite Tasks
	Describing Regions and Availability Zones

	Working with Security Groups in Amazon EC2
	The Scenario
	Prerequisite Tasks
	Describing Your Security Groups
	Creating a Security Group and Rules
	Deleting a Security Group

	Using Elastic IP Addresses in Amazon EC2
	The Scenario
	Prerequisite Tasks
	Describing Elastic IP Addresses
	Allocating and Associating an Elastic IP Address with an Amazon EC2 Instance
	Releasing an Elastic IP Address

	AWS Elemental MediaConvert Examples
	Creating and Managing Transcoding Jobs in MediaConvert
	The Scenario
	Prerequisite Tasks
	Defining a Simple Transcoding Job
	Creating a Transcoding Job
	Canceling a Transcoding Job
	Listing Recent Transcoding Jobs

	Using Job Templates in MediaConvert
	The Scenario
	Prerequisite Tasks
	Creating a Job Template
	Creating a Transcoding Job from a Job Template
	Listing Your Job Templates
	Deleting a Job Template

	Amazon IAM Examples
	Managing IAM Users
	The Scenario
	Prerequisite Tasks
	Creating a User
	Listing Users in Your Account
	Updating a User's Name
	Deleting a User

	Working with IAM Policies
	The Scenario
	Prerequisite Tasks
	Creating an IAM Policy
	Getting an IAM Policy
	Attaching a Managed Role Policy
	Detaching a Managed Role Policy

	Managing IAM Access Keys
	The Scenario
	Prerequisite Tasks
	Creating Access Keys for a User
	Listing a User's Access Keys
	Getting the Last Use for Access Keys
	Updating Access Key Status
	Deleting Access Keys

	Working with IAM Server Certificates
	The Scenario
	Prerequisite Tasks
	Listing Your Server Certificates
	Getting a Server Certificate
	Updating a Server Certificate
	Deleting a Server Certificate

	Managing IAM Account Aliases
	The Scenario
	Prerequisite Tasks
	Creating an Account Alias
	Listing Account Aliases
	Deleting an Account Alias

	Amazon Kinesis Example
	Capturing Web Page Scroll Progress with Amazon Kinesis
	The Scenario
	Prerequisite Tasks
	The Blog Page
	Configuring the SDK
	Creating Scroll Records
	Submitting Records to Kinesis
	Capturing Web Page Scroll Progress Code

	Amazon S3 Examples
	Amazon S3 Browser Examples
	Viewing Photos in an Amazon S3 Bucket from a Browser
	The Scenario
	Prerequisite Tasks
	Create the Bucket
	Create an Identity Pool
	Configure Role Permissions
	Configure CORS
	Create Albums and Upload Photos

	Defining the Webpage
	Configuring the SDK
	Listing Albums in the Bucket
	Viewing an Album
	Viewing Photos in an Amazon S3 Bucket: Full Code

	Uploading Photos to Amazon S3 from a Browser
	The Scenario
	Prerequisite Tasks
	Configuring CORS
	The Web Page
	Configuring the SDK
	Listing Albums in the Bucket
	Creating an Album in the Bucket
	Viewing an Album
	Adding Photos to an Album
	Deleting a Photo
	Deleting an Album
	Uploading Photos to Amazon S3: Full Code

	Amazon S3 Node.js Examples
	Creating and Using Amazon S3 Buckets
	The Scenario
	Prerequisite Tasks
	Configuring the SDK
	Displaying a List of Amazon S3 Buckets
	Creating an Amazon S3 Bucket
	Uploading a File to an Amazon S3 Bucket
	Listing Objects in an Amazon S3 Bucket
	Deleting an Amazon S3 Bucket

	Configuring Amazon S3 Buckets
	The Scenario
	Prerequisite Tasks
	Configuring the SDK
	Retrieving a Bucket CORS Configuration
	Setting a Bucket CORS Configuration

	Managing Amazon S3 Bucket Access Permissions
	The Scenario
	Prerequisite Tasks
	Configuring the SDK
	Retrieving the Current Bucket Access Control List

	Working with Amazon S3 Bucket Policies
	The Scenario
	Prerequisite Tasks
	Configuring the SDK
	Retrieving the Current Bucket Policy
	Setting a Simple Bucket Policy
	Deleting a Bucket Policy

	Using an Amazon S3 Bucket as a Static Web Host
	The Scenario
	Prerequisite Tasks
	Configuring the SDK
	Retrieving the Current Bucket Website Configuration
	Setting a Bucket Website Configuration
	Deleting a Bucket Website Configuration

	Amazon Simple Email Service Examples
	Managing Amazon SES Identities
	The Scenario
	Prerequisite Tasks
	Configuring the SDK
	Listing Your Identities
	Verifying an Email Address Identity
	Verifying a Domain Identity
	Deleting Identities

	Working with Email Templates in Amazon SES
	The Scenario
	Prerequisite Tasks
	Listing Your Email Templates
	Getting an Email Template
	Creating an Email Template
	Updating an Email Template
	Deleting an Email Template

	Sending Email Using Amazon SES
	The Scenario
	Prerequisite Tasks
	Email Message Sending Requirements
	Sending an Email
	Sending an Email Using a Template
	Sending Bulk Email Using a Template

	Using IP Address Filters for Email Receipt in Amazon SES
	The Scenario
	Prerequisite Tasks
	Configuring the SDK
	Creating an IP Address Filter
	Listing Your IP Address Filters
	Deleting an IP Address Filter

	Using Receipt Rules in Amazon SES
	The Scenario
	Prerequisite Tasks
	Creating an Amazon S3 Receipt Rule
	Deleting a Receipt Rule
	Creating a Receipt Rule Set
	Deleting a Receipt Rule Set

	Amazon Simple Notification Service Examples
	Managing Topics in Amazon SNS
	The Scenario
	Prerequisite Tasks
	Creating a Topic
	Listing Your Topics
	Deleting a Topic
	Getting Topic Attributes
	Setting Topic Attributes

	Publishing Messages in Amazon SNS
	The Scenario
	Prerequisite Tasks
	Publishing a Message to an Amazon SNS Topic

	Managing Subscriptions in Amazon SNS
	The Scenario
	Prerequisite Tasks
	Listing Subscriptions to a Topic
	Subscribing an Email Address to a Topic
	Subscribing an Application Endpoint to a Topic
	Subscribing a Lambda Function to a Topic
	Unsubscribing from a Topic

	Sending SMS Messages with Amazon SNS
	The Scenario
	Prerequisite Tasks
	Getting SMS Attributes
	Setting SMS Attributes
	Checking If a Phone Number Has Opted Out
	Listing Opted-Out Phone Numbers
	Publishing an SMS Message

	Amazon SQS Examples
	Using Queues in Amazon SQS
	About the Example
	Prerequisite Tasks
	Listing Your Queues
	Creating a Queue
	Getting the URL for a Queue
	Deleting a Queue

	Sending and Receiving Messages in Amazon SQS
	The Scenario
	Prerequisite Tasks
	Sending a Message to a Queue
	Receiving and Deleting Messages from a Queue

	Managing Visibility Timeout in Amazon SQS
	The Scenario
	Prerequisite Tasks
	Changing the Visibility Timeout

	Enabling Long Polling in Amazon SQS
	The Scenario
	Prerequisite Tasks
	Enabling Long Polling When Creating a Queue
	Enabling Long Polling on an Existing Queue
	Enabling Long Polling on Message Receipt

	Using Dead Letter Queues in Amazon SQS
	The Scenario
	Prerequisite Tasks
	Configuring Source Queues

	Tutorials
	Tutorial: Setting Up Node.js on an Amazon EC2 Instance
	Prerequisites
	Procedure
	Creating an Amazon Machine Image
	Related Resources

	JavaScript API Reference
	SDK Changelog on GitHub

	Migrate to v3 of the Amazon SDK for JavaScript
	Security for this Amazon Product or Service
	Data protection in this Amazon product or service
	Identity and Access Management
	Audience
	Authenticating with identities
	Amazon Web Services account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How Amazon Web Services services work with IAM
	Troubleshooting Amazon identity and access
	I am not authorized to perform an action in Amazon
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my Amazon Web Services account to access my Amazon resources

	Compliance Validation for this Amazon Product or Service
	Resilience for this Amazon Product or Service
	Infrastructure Security for this Amazon Product or Service
	Enforcing a minimum version of TLS
	Verify and enforce TLS in Node.js
	Verify the version of OpenSSL and TLS
	Checking Minimum and Maximum Supported TLS Versions
	Enforce a minimum version of TLS

	Verify and enforce TLS in a browser script

	Additional Resources
	Amazon SDKs and Tools Reference Guide
	JavaScript SDK Forum
	JavaScript SDK and Developer Guide on GitHub
	JavaScript SDK on Gitter

	Document History for Amazon SDK for JavaScript
	Document History
	Earlier Updates

