
Developer Guide

Amazon SDK for Ruby

Amazon SDK for Ruby Developer Guide

Amazon SDK for Ruby: Developer Guide

Amazon SDK for Ruby Developer Guide

Table of Contents

What is the Amazon SDK for Ruby? ... 1
Additional documentation and resources .. 1

Deploying to the Amazon Cloud ... 1
Maintenance and support for SDK major versions .. 2

Getting started .. 3
Authenticating with Amazon ... 3

Using console credentials .. 3
Using IAM Identity Center authentication ... 3
More authentication information .. 5

Installing the SDK ... 6
Prerequisites ... 6
Installing the SDK ... 6

Creating a simple application .. 7
Writing the code .. 7
Running the program ... 9
Note for Windows users .. 9
Next steps ... 10

Configuring service clients .. 11
Precedence of settings .. 12
Client configuration externally .. 12

Amazon SDK for Ruby environment variables .. 13
Client configuration in code .. 14

Aws.config .. 14
Amazon Web Services Region ... 15

Region search order for resolution ... 15
How to set the Region .. 16

Credential providers ... 17
Credential provider chain .. 17
Creating an Amazon STS access token .. 19

Retries ... 20
Specifying client retry behavior in code .. 20

Observability ... 21
Configuring an OTelProvider for a service client .. 21
Configuring an OTelProvider for all service clients .. 24

iii

Amazon SDK for Ruby Developer Guide

Configuring a custom telemetry provider ... 24
Span Attributes ... 25

HTTP ... 27
Setting a nonstandard endpoint ... 27

Using the SDK .. 28
Making Amazon Web Services service requests .. 28
Using the REPL utility ... 29

Prerequisites ... 29
Bundler setup .. 30
Running REPL .. 30

Using the SDK with Ruby on Rails .. 31
Debugging using wire trace from a client ... 31
Testing with stubbing ... 32

Stubbing client responses ... 32
Stubbing client errors .. 34

Pagination .. 34
Paged responses are enumerable ... 34
Handling paged responses manually .. 35
Paged data classes ... 35

Waiters .. 35
Invoking a waiter .. 36
Wait failures ... 36
Configuring a waiter .. 37
Extending a waiter .. 37

Code examples ... 39
Aurora ... 40

Get started ... 40
Auto Scaling .. 41

Get started ... 40
CloudTrail ... 43

Actions ... 43
CloudWatch ... 47

Actions ... 43
Amazon Cognito Identity Provider ... 60

Get started ... 40
Amazon Comprehend .. 61

iv

Amazon SDK for Ruby Developer Guide

Scenarios ... 62
Amazon DocumentDB ... 62

Serverless examples ... 63
DynamoDB ... 64

Get started ... 40
Basics ... 66
Actions ... 43
Scenarios ... 62
Serverless examples ... 63

Amazon EC2 .. 92
Get started ... 40
Actions ... 43

Elastic Beanstalk .. 126
Actions ... 43

EventBridge ... 132
Scenarios ... 62

Amazon Glue ... 150
Get started ... 40
Basics ... 66
Actions ... 43

IAM .. 177
Get started ... 40
Basics ... 66
Actions ... 43

Kinesis ... 234
Serverless examples ... 63

Amazon KMS ... 236
Actions ... 43

Lambda ... 240
Get started ... 40
Basics ... 66
Actions ... 43
Scenarios ... 62
Serverless examples ... 63

Amazon MSK ... 270
Serverless examples ... 63

v

Amazon SDK for Ruby Developer Guide

Amazon Polly .. 271
Actions ... 43
Scenarios ... 62

Amazon RDS ... 275
Get started ... 40
Actions ... 43
Serverless examples ... 63

Amazon S3 .. 283
Get started ... 40
Basics ... 66
Actions ... 43
Scenarios ... 62
Serverless examples ... 63

Amazon SES .. 315
Actions ... 43

Amazon SES API v2 ... 321
Actions ... 43

Amazon SNS ... 322
Actions ... 43
Serverless examples ... 63

Amazon SQS ... 332
Actions ... 43
Serverless examples ... 63

Amazon STS .. 345
Actions ... 43

Amazon Textract .. 347
Scenarios ... 62

Amazon Translate .. 348
Scenarios ... 62

Migrating versions ... 350
Side-by-side usage ... 350
General differences .. 350
Client differences ... 351
Resource differences .. 352

Security .. 354
Data Protection .. 354

vi

Amazon SDK for Ruby Developer Guide

Identity and Access Management .. 355
Compliance Validation .. 356
Resilience ... 357
Infrastructure Security .. 357
Enforcing a minimum TLS version ... 358

Checking the OpenSSL version .. 358
Upgrading TLS support ... 359

S3 Encryption Client Migration (V1 to V2) ... 359
Migration Overview .. 359
Update Existing Clients to Read New Formats ... 359
Migrate Encryption and Decryption Clients to V2 ... 361

S3 Encryption Client Migration (V2 to V3) ... 364
Migration Overview .. 364
Understanding V3 Features .. 365
Update Existing Clients to Read New Formats ... 368
Migrate Encryption and Decryption Clients to V3 ... 369

Document History .. 376

vii

Amazon SDK for Ruby Developer Guide

What is the Amazon SDK for Ruby?

Welcome to the Amazon SDK for Ruby Developer Guide. The Amazon SDK for Ruby provides
support libraries for almost all Amazon Web Services services, including Amazon Simple Storage
Service (Amazon S3), Amazon Elastic Compute Cloud (Amazon EC2), and Amazon DynamoDB.

The Amazon SDK for Ruby Developer Guide provides information about how to install, set up, and
use the Amazon SDK for Ruby to create Ruby applications that use Amazon Web Services services.

Getting started with the Amazon SDK for Ruby

Additional documentation and resources

For more resources for Amazon SDK for Ruby developers, see the following:

• Amazon SDKs and Tools Reference Guide – Contains settings, features, and other foundational
concepts common among Amazon SDKs

• Amazon SDK for Ruby API Reference - Version 3

• Amazon Code Examples Repository on GitHub

• RubyGems.org – Latest version of SDK is modularized into service-specific gems available here

• Supported Services – Lists all gems that the Amazon SDK for Ruby supports

• Amazon SDK for Ruby source on GitHub:

• Source and README

• Change logs under each gem

• Moving from v2 to v3

• Issues

• Core upgrade notes

• Developer blog

Deploying to the Amazon Cloud

You can use Amazon Web Services services such as Amazon Elastic Beanstalk and Amazon
CodeDeploy to deploy your application to the Amazon Cloud. For deploying Ruby applications with
Elastic Beanstalk, see Deploying Elastic Beanstalk Applications in Ruby Using EB CLI and Git in the

Additional documentation and resources 1

https://docs.amazonaws.cn/sdkref/latest/guide/
https://docs.amazonaws.cn/sdk-for-ruby/v3/api/AWS%20SDK%20for%20Ruby%20API%20Reference%20-%20Version%203.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/ruby/example_code/
https://rubygems.org/gems/aws-sdk/
https://github.com/aws/aws-sdk-ruby/#supported-services
https://github.com/aws/aws-sdk-ruby/
https://github.com/aws/aws-sdk-ruby/#readme
https://github.com/aws/aws-sdk-ruby/blob/version-3/gems
https://github.com/aws/aws-sdk-ruby/blob/version-3/V3_UPGRADING_GUIDE.md
https://github.com/aws/aws-sdk-ruby/issues
https://github.com/aws/aws-sdk-ruby/blob/version-3/UPGRADING.md
http://ruby.awsblog.com/
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/create_deploy_Ruby.html

Amazon SDK for Ruby Developer Guide

Amazon Elastic Beanstalk Developer Guide. For an overview of Amazon deployment services, see
Overview of Deployment Options on Amazon.

Maintenance and support for SDK major versions

For information about maintenance and support for SDK major versions and their underlying
dependencies, see the following in the Amazon SDKs and Tools Reference Guide:

• Amazon SDKs and Tools Maintenance Policy

• Amazon SDKs and Tools Version Support Matrix

Maintenance and support for SDK major versions 2

https://d0.awsstatic.com/whitepapers/overview-of-deployment-options-on-aws.pdf
https://docs.amazonaws.cn/sdkref/latest/guide/overview.html
https://docs.amazonaws.cn/sdkref/latest/guide/maint-policy.html
https://docs.amazonaws.cn/sdkref/latest/guide/version-support-matrix.html

Amazon SDK for Ruby Developer Guide

Getting started with the Amazon SDK for Ruby

Learn how to install, set up, and use the SDK to create a Ruby application to access an Amazon
resource programmatically.

Topics

• Authenticating with Amazon using Amazon SDK for Ruby

• Installing the Amazon SDK for Ruby

• Creating a simple application using the Amazon SDK for Ruby

Authenticating with Amazon using Amazon SDK for Ruby

You must establish how your code authenticates with Amazon when developing with Amazon Web
Services services. You can configure programmatic access to Amazon resources in different ways
depending on the environment and the Amazon access available to you.

To choose your method of authentication and configure it for the SDK, see Authentication and
access in the Amazon SDKs and Tools Reference Guide.

Using console credentials

For local development, we recommend that new users use their existing Amazon Management
Console sign-in credentials for programmatic access to Amazon services. After browser-based
authentication, Amazon generates temporary credentials that work with local development tools
like the Amazon Command Line Interface (Amazon CLI) and the Amazon SDK for Ruby.

If you choose this method, follow the instructions to Login for Amazon local development using
console credentials using the Amazon CLI.

The Amazon SDK for Ruby does not need additional gems (such as aws-sdk-signin) to be added
to your application to use login with console credentials.

Using IAM Identity Center authentication

If you choose this method, complete the procedure for IAM Identity Center authentication in
the Amazon SDKs and Tools Reference Guide. Afterwards, your environment should contain the
following elements:

Authenticating with Amazon 3

https://docs.amazonaws.cn/sdkref/latest/guide/access.html
https://docs.amazonaws.cn/sdkref/latest/guide/access.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-sign-in.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-sign-in.html
https://docs.amazonaws.cn/sdkref/latest/guide/access-sso.html

Amazon SDK for Ruby Developer Guide

• The Amazon CLI, which you use to start an Amazon access portal session before you run your
application.

• A shared Amazonconfig file having a [default] profile with a set of configuration values that
can be referenced from the SDK. To find the location of this file, see Location of the shared files
in the Amazon SDKs and Tools Reference Guide.

• The shared config file sets the region setting. This sets the default Amazon Web Services
Region that the SDK uses for Amazon requests. This Region is used for SDK service requests that
aren't specified with a Region to use.

• The SDK uses the profile's SSO token provider configuration to acquire credentials before
sending requests to Amazon. The sso_role_name value, which is an IAM role connected to an
IAM Identity Center permission set, allows access to the Amazon Web Services services used in
your application.

The following sample config file shows a default profile set up with SSO token provider
configuration. The profile's sso_session setting refers to the named sso-session section.
The sso-session section contains settings to initiate an Amazon access portal session.

[default]
sso_session = my-sso
sso_account_id = 111122223333
sso_role_name = SampleRole
region = us-east-1
output = json

[sso-session my-sso]
sso_region = us-east-1
sso_start_url = https://provided-domain.awsapps.com/start
sso_registration_scopes = sso:account:access

The Amazon SDK for Ruby does not need additional gems (such as aws-sdk-sso and aws-sdk-
ssooidc) to be added to your application to use IAM Identity Center authentication.

Start an Amazon access portal session

Before running an application that accesses Amazon Web Services services, you need an active
Amazon access portal session for the SDK to use IAM Identity Center authentication to resolve
credentials. Depending on your configured session lengths, your access will eventually expire and

Using IAM Identity Center authentication 4

https://docs.amazonaws.cn/sdkref/latest/guide/file-format.html
https://docs.amazonaws.cn/sdkref/latest/guide/file-location.html
https://docs.amazonaws.cn/sdkref/latest/guide/feature-region.html
https://docs.amazonaws.cn/sdkref/latest/guide/feature-sso-credentials.html#feature-sso-credentials-profile
https://docs.amazonaws.cn/sdkref/latest/guide/file-format.html#section-session

Amazon SDK for Ruby Developer Guide

the SDK will encounter an authentication error. To sign in to the Amazon access portal, run the
following command in the Amazon CLI.

aws sso login

If you followed the guidance and have a default profile setup, you do not need to call the
command with a --profile option. If your SSO token provider configuration is using a named
profile, the command is aws sso login --profile named-profile.

To optionally test if you already have an active session, run the following Amazon CLI command.

aws sts get-caller-identity

If your session is active, the response to this command reports the IAM Identity Center account and
permission set configured in the shared config file.

Note

If you already have an active Amazon access portal session and run aws sso login, you
will not be required to provide credentials.
The sign-in process might prompt you to allow the Amazon CLI access to your data.
Because the Amazon CLI is built on top of the SDK for Python, permission messages might
contain variations of the botocore name.

More authentication information

Human users, also known as human identities, are the people, administrators, developers,
operators, and consumers of your applications. They must have an identity to access your Amazon
environments and applications. Human users that are members of your organization - that means
you, the developer - are known as workforce identities.

Use temporary credentials when accessing Amazon. You can use an identity provider for your
human users to provide federated access to Amazon accounts by assuming roles, which provide
temporary credentials. For centralized access management, we recommend that you use Amazon
IAM Identity Center (IAM Identity Center) to manage access to your accounts and permissions
within those accounts. For more alternatives, see the following:

More authentication information 5

Amazon SDK for Ruby Developer Guide

• To learn more about best practices, see Security best practices in IAM in the IAM User Guide.

• To create short-term Amazon credentials, see Temporary Security Credentials in the IAM User
Guide.

• To learn about the Amazon SDK for Ruby credential provider chain, and how different
authentication methods are attempted automatically by the SDK in a sequence, see Credential
provider chain.

• For Amazon SDK credential provider configuration settings, see Standardized credential
providers in the Amazon SDKs and Tools Reference Guide.

Installing the Amazon SDK for Ruby

This section includes prerequisites and installation instructions for the Amazon SDK for Ruby.

Prerequisites

Before you use the Amazon SDK for Ruby, you must authenticate with Amazon. For information
about setting up authentication, see Authenticating with Amazon using Amazon SDK for Ruby.

Installing the SDK

You can install the Amazon SDK for Ruby as you would any Ruby gem. The gems are available at
RubyGems. The Amazon SDK for Ruby is designed to be modular and is separated by Amazon Web
Services service. Installing the entire aws-sdk gem is large and may take over an hour.

We recommend only installing the gems for the Amazon Web Services services you use. These are
named like aws-sdk-service_abbreviation and the complete list is found in the Supported
Services table of the Amazon SDK for Ruby README file. For example, the gem for interfacing with
the Amazon S3 service is directly available at aws-sdk-s3.

Ruby version manager

Instead of using system Ruby, we recommend using a Ruby version manager such as the following:

• RVM

• chruby

• rbenv

Installing the SDK 6

https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.amazonaws.cn/sdkref/latest/guide/standardized-credentials.html
https://docs.amazonaws.cn/sdkref/latest/guide/standardized-credentials.html
https://rubygems.org/gems/aws-sdk/
https://github.com/aws/aws-sdk-ruby/#supported-services
https://github.com/aws/aws-sdk-ruby/#supported-services
https://rubygems.org/gems/aws-sdk-s3
http://rvm.io/
https://github.com/postmodern/chruby
https://github.com/rbenv/rbenv

Amazon SDK for Ruby Developer Guide

For example, if you are using an Amazon Linux 2 operating system, the following commands can be
used to update RVM, list the available Ruby versions, then choose the version you want to use for
development with the Amazon SDK for Ruby. The minimum required Ruby version is 2.5.

$ rvm get head
$ rvm list known
$ rvm install ruby-3.1.3
$ rvm --default use 3.1.3

Bundler

If you use Bundler, the following commands install the Amazon SDK for Ruby gem for Amazon S3:

1. Install Bundler and create the Gemfile:

$ gem install bundler
$ bundle init

2. Open the created Gemfile and add a gem line for each Amazon service gem your code will
use. To follow along with the Amazon S3 example, add the following line to the bottom of the
file:

gem "aws-sdk-s3"

3. Save the Gemfile.

4. Install the dependencies specified in your Gemfile:

$ bundle install

Creating a simple application using the Amazon SDK for Ruby

Say hello to Amazon S3 using the Amazon SDK for Ruby. The following example displays a list of
your Amazon S3 buckets.

Writing the code

Copy and paste the following code into a new source file. Name the file hello-s3.rb.

require 'aws-sdk-s3'

Creating a simple application 7

http://bundler.io/

Amazon SDK for Ruby Developer Guide

Wraps Amazon S3 resource actions.
class BucketListWrapper
 attr_reader :s3_resource

 # @param s3_resource [Aws::S3::Resource] An Amazon S3 resource.
 def initialize(s3_resource)
 @s3_resource = s3_resource
 end

 # Lists buckets for the current account.
 #
 # @param count [Integer] The maximum number of buckets to list.
 def list_buckets(count)
 puts 'Found these buckets:'
 @s3_resource.buckets.each do |bucket|
 puts "\t#{bucket.name}"
 count -= 1
 break if count.zero?
 end
 true
 rescue Aws::Errors::ServiceError => e
 puts "Couldn't list buckets. Here's why: #{e.message}"
 false
 end
end

Example usage:
def run_demo
 wrapper = BucketListWrapper.new(Aws::S3::Resource.new)
 wrapper.list_buckets(25)
end

run_demo if $PROGRAM_NAME == __FILE__

Amazon SDK for Ruby is designed to be modular and is separated by Amazon Web Services service.
After the gem is installed, the require statement at the top of your Ruby source file imports
the Amazon SDK classes and methods for the Amazon S3 service. For a complete list of available
Amazon service gems, see the Supported Services table of the Amazon SDK for Ruby README file.

require 'aws-sdk-s3'

Writing the code 8

https://github.com/aws/aws-sdk-ruby/#supported-services

Amazon SDK for Ruby Developer Guide

Running the program

Open a command prompt to run your Ruby program. The typical command syntax to run a Ruby
program is:

ruby [source filename] [arguments...]

This sample code uses no arguments. To run this code, enter the following into the command
prompt:

$ ruby hello-s3.rb

Note for Windows users

When you use SSL certificates on Windows and run your Ruby code, you might see an error similar
to the following.

C:\Ruby>ruby buckets.rb
C:/Ruby200-x64/lib/ruby/2.0.0/net/http.rb:921:in `connect': SSL_connect returned=1
 errno=0 state=SSLv3 read server certificate B: certificate verify failed
 (Seahorse::Client::NetworkingError)
 from C:/Ruby200-x64/lib/ruby/2.0.0/net/http.rb:921:in `block in connect'

 from C:/Ruby200-x64/lib/ruby/2.0.0/timeout.rb:66:in `timeout'
 from C:/Ruby200-x64/lib/ruby/2.0.0/net/http.rb:921:in `connect'
 from C:/Ruby200-x64/lib/ruby/2.0.0/net/http.rb:862:in `do_start'
 from C:/Ruby200-x64/lib/ruby/2.0.0/net/http.rb:857:in `start'
...

To fix this issue, add the following line to your Ruby source file, somewhere before your first
Amazon call.

Aws.use_bundled_cert!

If you're using only the aws-sdk-s3 gem in your Ruby program and you want to use the bundled
certificate, you also need to add the aws-sdk-core gem.

Running the program 9

Amazon SDK for Ruby Developer Guide

Next steps

To test out many other Amazon S3 operations, check out the Amazon Code Examples Repository
on GitHub.

Next steps 10

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/ruby/example_code//s3

Amazon SDK for Ruby Developer Guide

Configuring service clients in the Amazon SDK for Ruby

To programmatically access Amazon Web Services services, the Amazon SDK for Ruby uses a
client class for each Amazon Web Services service. For example, if your application needs to access
Amazon EC2, your application creates an Amazon EC2 client object to interface with that service.
You then use the service client to make requests to that Amazon Web Services service.

To make a request to an Amazon Web Services service, you must first create a service client. For
each Amazon Web Services service your code uses, it has its own gem and its own dedicated type
for interacting with it. The client exposes one method for each API operation exposed by the
service.

There are many alternative ways to configure SDK behavior, but ultimately everything has to do
with the behavior of service clients. Any configuration has no effect until a service client that is
created from them is used.

You must establish how your code authenticates with Amazon when you develop with Amazon
Web Services services. You must also set the Amazon Web Services Region you want to use.

The Amazon SDKs and Tools Reference Guide also contains settings, features, and other
foundational concepts common among many of the Amazon SDKs.

Topics

• Precedence of settings

• Configuring Amazon SDK for Ruby service clients externally

• Configuring Amazon SDK for Ruby service clients in code

• Setting the Amazon Web Services Region for the Amazon SDK for Ruby

• Using Amazon SDK for Ruby credential providers

• Configuring retries in the Amazon SDK for Ruby

• Configuring observability features in the Amazon SDK for Ruby

• Configuring HTTP-level settings within the Amazon SDK for Ruby

The Shared config and credentials files can be used for configuration settings. For all Amazon
SDK settings, see the Settings reference in the Amazon SDKs and Tools Reference Guide.

11

https://docs.amazonaws.cn/sdkref/latest/guide/
https://docs.amazonaws.cn/sdkref/latest/guide/file-format.html
https://docs.amazonaws.cn/sdkref/latest/guide/settings-reference.html

Amazon SDK for Ruby Developer Guide

Different profiles can be used to store different configurations. To specify the active profile that
the SDK loads, you can use the AWS_PROFILE environment variable or the profile option of
Aws.config.

Precedence of settings

Global settings configure features, credential providers, and other functionality that are supported
by most SDKs and have a broad impact across Amazon Web Services services. All Amazon SDKs
have a series of places (or sources) that they check in order to find a value for global settings. Not
all settings are available in all sources. The following is the setting lookup precedence:

1. Any explicit setting set in the code or on a service client itself takes precedence over anything
else.

a. Any parameters passed directly into a client constructor take highest precedence.

b. Aws.config is checked for global or service-specific settings.

2. The environment variable is checked.

3. The shared Amazon credentials file is checked.

4. The shared Amazon config file is checked.

5. Any default value provided by the Amazon SDK for Ruby source code itself is used last.

Configuring Amazon SDK for Ruby service clients externally

Many configuration settings can be handled outside of your code. When configuration is handled
externally, the configuration is applied across all of your applications. Most configuration settings
can be set as either environment variables or in a separate shared Amazon config file. The
shared config file can maintain separate sets of settings, called profiles, to provide different
configurations for different environments or tests.

Environment variables and shared config file settings are standardized and shared across Amazon
SDKs and tools to support consistent functionality across different programming languages and
applications.

See the Amazon SDKs and Tools Reference Guide to learn about configuring your application
through these methods, plus details on each cross-sdk setting. To see all the all settings that the
SDK can resolve from the environment variables or configuration files, see the Settings reference in
the Amazon SDKs and Tools Reference Guide.

Precedence of settings 12

https://docs.amazonaws.cn/sdkref/latest/guide/settings-reference.html

Amazon SDK for Ruby Developer Guide

To make a request to an Amazon Web Services service, you first instantiate a client for that service.
You can configure common settings for service clients such as timeouts, the HTTP client, and retry
configuration.

Each service client requires an Amazon Web Services Region and a credential provider. The SDK
uses these values to send requests to the correct Region for your resources and to sign requests
with the correct credentials. You can specify these values programmatically in code or have them
automatically loaded from the environment.

The SDK has a series of places (or sources) that it checks in order to find a value for configuration
settings.

1. Any explicit setting set in the code or on a service client itself takes precedence over anything
else.

2. Environment variables

• For details on setting environment variables, see environment variables in the Amazon SDKs
and Tools Reference Guide.

• Note that you can configure environment variables for a shell at different levels of scope:
system-wide, user-wide, and for a specific terminal session.

3. Shared config and credentials files

• For details on setting up these files, see the Shared config and credentials files in the
Amazon SDKs and Tools Reference Guide.

4. Any default value provided by the SDK source code itself is used last.

• Some properties, such as Region, don't have a default. You must specify them either explicitly
in code, in an environment setting, or in the shared config file. If the SDK can't resolve
required configuration, API requests can fail at runtime.

Amazon SDK for Ruby environment variables

Beyond the cross-sdk environment variables supported across most Amazon SDKs, the Amazon
SDK for Ruby supports some unique ones:

AWS_SDK_CONFIG_OPT_OUT

If the Amazon SDK for Ruby environment variable AWS_SDK_CONFIG_OPT_OUT is set, the
shared Amazon config file, typically at ~/.aws/config, won't be used for any configuration
values.

Amazon SDK for Ruby environment variables 13

https://docs.amazonaws.cn/sdkref/latest/guide/environment-variables.html
https://docs.amazonaws.cn/sdkref/latest/guide/file-format.html
https://docs.amazonaws.cn/sdkref/latest/guide/settings-reference.html#EVarSettings

Amazon SDK for Ruby Developer Guide

AMAZON_REGION

An alternative environment variable to AWS_REGION for setting the Amazon Web Services
Region. This value is only checked if AWS_REGION is not used.

Configuring Amazon SDK for Ruby service clients in code

When configuration is handled directly in code, the configuration scope is limited to the application
that uses that code. Within that application, there are options for the global configuration of all
service clients, the configuration to all clients of a certain Amazon Web Services service type, or the
configuration to a specific service client instance.

Aws.config

To provide global configuration within your code for all Amazon classes, use Aws.config that is
available in the aws-sdk-core gem.

Aws.config supports two syntaxes for different uses. Global settings can either be applied for all
Amazon Web Services services or for a specific service. For the complete list of supported settings,
see the Client Options in the Amazon SDK for Ruby API Reference.

Global settings through Aws.config

To set service-agnostic settings through Aws.config, use the following syntax:

Aws.config[:<global setting name>] = <value>

These settings are merged into any created service clients.

Example of a global setting:

Aws.config[:region] = 'us-west-2'

If you try to use a setting name that is not globally supported, an error is raised when you attempt
to create an instance of a type of service that doesn't support it. If this happens, use service-
specific syntax instead.

Service-specific settings through Aws.config

To set service-specific settings through Aws.config, use the following syntax:

Client configuration in code 14

https://github.com/aws/aws-sdk-ruby/blob/version-3/gems/aws-sdk-core/lib/aws-sdk-core/plugins/global_configuration.rb
https://docs.amazonaws.cn/sdk-for-ruby/v3/api/Aws/MachineLearning/Client.html#initialize-instance_method

Amazon SDK for Ruby Developer Guide

Aws.config[:<service identifier>] = { <global setting name>: <value> }

These settings are merged into all created service clients of that service type.

Example of a setting that only applies to Amazon S3:

 Aws.config[:s3] = { force_path_style: true }

The <service identifier> can be identified by looking at the name of the corresponding
Amazon SDK for Ruby gem name, and using the suffix that follows "aws-sdk-". For example:

• For aws-sdk-s3, the service identifier string is "s3".

• For aws-sdk-ecs, the service identifer string is "ecs".

Setting the Amazon Web Services Region for the Amazon SDK
for Ruby

You can access Amazon Web Services services that operate in a specific geographic area by using
Amazon Web Services Regions. This can be useful both for redundancy and to keep your data and
applications running close to where you and your users access them.

Important

Most resources reside in a specific Amazon Web Services Region and you must supply the
correct Region for the resource when using the SDK.

You must set a default Amazon Web Services Region for the SDK for Ruby to use for Amazon
requests. This default is used for any SDK service method calls that aren't specified with a Region.

For more information on the region setting, see Amazon Web Services Region in the Amazon
SDKs and Tools Reference Guide. This also includes examples on how to set the default region
through the shared Amazon config file or environment variables.

Region search order for resolution

You need to set a Region when using most Amazon Web Services services. The Amazon SDK for
Ruby searches for a Region in the following order:

Amazon Web Services Region 15

https://github.com/aws/aws-sdk-ruby/tree/version-3/gems
https://docs.amazonaws.cn/sdkref/latest/guide/feature-region.html

Amazon SDK for Ruby Developer Guide

1. Setting the Region in a client or resource object

2. Setting the Region by using Aws.config

3. Setting the Region by using environment variables

4. Setting the Region by using the shared config file

How to set the Region

This section describes different ways to set a Region, starting with the most common approach.

Setting the Region using the shared config file

Set the region by setting the region variable in the shared Amazon config file. For more
information about the shared config file, see Shared config and credentials files in the Amazon
SDKs and Tools Reference Guide.

Example of setting this value in the config file:

[default]
region = us-west-2

The shared config file is not checked if the environment variable AWS_SDK_CONFIG_OPT_OUT is
set.

Setting the Region using environment variables

Set the Region by setting the AWS_REGION environment variable.

Use the export command to set this variable on Unix-based systems, such as Linux or macOS. The
following example sets the Region to us-west-2.

export AWS_REGION=us-west-2

To set this variable on Windows, use the set command. The following example sets the Region to
us-west-2.

set AWS_REGION=us-west-2

How to set the Region 16

https://docs.amazonaws.cn/sdkref/latest/guide/file-format.html

Amazon SDK for Ruby Developer Guide

Setting the Region with Aws.config

Set the Region by adding a region value to the Aws.config hash. The following example
updates the Aws.config hash to use the us-west-1 Region.

Aws.config.update({region: 'us-west-1'})

Any clients or resources that you create later are bound to this Region.

Setting the Region in a client or resource object

Set the Region when you create an Amazon client or resource. The following example creates
an Amazon S3 resource object in the us-west-1 Region. Choose the correct Region for your
Amazon resources. A service client object is immutable, so you must create a new client for each
service to which you make requests and for making requests to the same service using a different
configuration.

s3 = Aws::S3::Resource.new(region: 'us-west-1')

Using Amazon SDK for Ruby credential providers

All requests to Amazon must be cryptographically signed by using credentials issued by Amazon.
At runtime, the SDK retrieves configuration values for credentials by checking several locations.

Authentication with Amazon can be handled outside of your codebase. Many authentication
methods can be automatically detected, used, and refreshed by the SDK using the credential
provider chain.

For guided options for getting started on Amazon authentication for your project, see
Authentication and access in the Amazon SDKs and Tools Reference Guide.

Credential provider chain

All SDKs have a series of places (or sources) that they check in order to get valid credentials to use
to make a request to an Amazon Web Services service. After valid credentials are found, the search
is stopped. This systematic search is called the default credential provider chain.

Credential providers 17

https://docs.amazonaws.cn/sdkref/latest/guide/access.html

Amazon SDK for Ruby Developer Guide

Note

If you followed the recommended approach for new users to get started, you authenticated
using login with console credentials during Authenticating with Amazon using Amazon SDK
for Ruby. Other authentication methods are useful for different situations. To avoid security
risks, we recommend always using short-term credentials. For other authentication method
procedures, see Authentication and access in the Amazon SDKs and Tools Reference Guide.

For each step in the chain, there are different ways to set the values. Setting values directly in code
always takes precedence, followed by setting as environment variables, and then in the shared
Amazon config file.

The Amazon SDKs and Tools Reference Guide has information on SDK configuration settings used
by all Amazon SDKs and the Amazon CLI. To learn more about how to configure the SDK through
the shared Amazon config file, see Shared config and credentials files. To learn more about how
to configure the SDK through setting environment variables, see Environment variables support.

To authenticate with Amazon, the Amazon SDK for Ruby checks the credential providers in the
order listed in the following table.

Credential provider by
precedence

Amazon SDKs and Tools
Reference Guide

Amazon SDK for Ruby API
Reference

Amazon access keys
(temporary and long-term
credentials)

Amazon access keys Aws::Credentials

Aws::SharedCredent
ials

Web identity token from
Amazon Security Token
Service (Amazon STS)

Assume role credential
provider

Using role_arn, role_sess
ion_name , and web_ident
ity_token_file

Aws::AssumeRoleWeb
IdentityCredentials

Amazon IAM Identity Center.
In this guide, see Authentic

IAM Identity Center credentia
l provider

Aws::SSOCredentials

Credential provider chain 18

https://docs.amazonaws.cn/sdkref/latest/guide/access.html
https://docs.amazonaws.cn/sdkref/latest/guide/file-format.html
https://docs.amazonaws.cn/sdkref/latest/guide/environment-variables.html
https://docs.amazonaws.cn/sdkref/latest/guide/feature-static-credentials.html
https://docs.amazonaws.cn/sdk-for-ruby/v3/api/Aws/Credentials.html
https://docs.amazonaws.cn/sdk-for-ruby/v3/api/Aws/SharedCredentials.html
https://docs.amazonaws.cn/sdk-for-ruby/v3/api/Aws/SharedCredentials.html
https://docs.amazonaws.cn/sdkref/latest/guide/feature-assume-role-credentials.html
https://docs.amazonaws.cn/sdkref/latest/guide/feature-assume-role-credentials.html
https://docs.amazonaws.cn/sdk-for-ruby/v3/api/Aws/AssumeRoleWebIdentityCredentials.html
https://docs.amazonaws.cn/sdk-for-ruby/v3/api/Aws/AssumeRoleWebIdentityCredentials.html
https://docs.amazonaws.cn/sdkref/latest/guide/feature-sso-credentials.html
https://docs.amazonaws.cn/sdkref/latest/guide/feature-sso-credentials.html
https://docs.amazonaws.cn/sdk-for-ruby/v3/api/Aws/SSOCredentials.html

Amazon SDK for Ruby Developer Guide

Credential provider by
precedence

Amazon SDKs and Tools
Reference Guide

Amazon SDK for Ruby API
Reference

ating with Amazon using
Amazon SDK for Ruby.

Trusted entity provider (such
as AWS_ROLE_ARN). In
this guide, see Creating an
Amazon STS access token.

Assume role credential
provider

Using role_arn and
role_session_name

Aws::AssumeRoleCre
dentials

Login credential provider Login credential provider Aws::LoginCredenti
als

Process credential provider Process credential provider Aws::ProcessCreden
tials

Amazon Elastic Container
Service (Amazon ECS)
credentials

Container credential provider Aws::ECSCredentials

Amazon Elastic Compute
Cloud (Amazon EC2) instance
profile credentials (IMDS
credential provider)

IMDS credential provider Aws::InstanceProfi
leCredentials

If the Amazon SDK for Ruby environment variable AWS_SDK_CONFIG_OPT_OUT is set, the shared
Amazon config file, typically at ~/.aws/config, will not be parsed for credentials.

Creating an Amazon STS access token

Assuming a role involves using a set of temporary security credentials that you can use to
access Amazon resources that you might not normally have access to. These temporary
credentials consist of an access key ID, a secret access key, and a security token. You can use the
Aws::AssumeRoleCredentials method to create an Amazon Security Token Service (Amazon
STS) access token.

Creating an Amazon STS access token 19

https://docs.amazonaws.cn/sdkref/latest/guide/feature-assume-role-credentials.html
https://docs.amazonaws.cn/sdkref/latest/guide/feature-assume-role-credentials.html
https://docs.amazonaws.cn/sdk-for-ruby/v3/api/Aws/AssumeRoleCredentials.html
https://docs.amazonaws.cn/sdk-for-ruby/v3/api/Aws/AssumeRoleCredentials.html
https://docs.amazonaws.cn/sdkref/latest/guide/feature-login-credentials.html
https://docs.amazonaws.cn/sdk-for-ruby/v3/api/Aws/LoginCredentials.html
https://docs.amazonaws.cn/sdk-for-ruby/v3/api/Aws/LoginCredentials.html
https://docs.amazonaws.cn/sdkref/latest/guide/feature-process-credentials.html
https://docs.amazonaws.cn/sdk-for-ruby/v3/api/Aws/ProcessCredentials.html
https://docs.amazonaws.cn/sdk-for-ruby/v3/api/Aws/ProcessCredentials.html
https://docs.amazonaws.cn/sdkref/latest/guide/feature-container-credentials.html
https://docs.amazonaws.cn/sdk-for-ruby/v3/api/Aws/ECSCredentials.html
https://docs.amazonaws.cn/sdkref/latest/guide/feature-imds-credentials.html
https://docs.amazonaws.cn/sdk-for-ruby/v3/api/Aws/InstanceProfileCredentials.html
https://docs.amazonaws.cn/sdk-for-ruby/v3/api/Aws/InstanceProfileCredentials.html
https://docs.amazonaws.cn/sdk-for-ruby/v3/api/Aws/AssumeRoleCredentials.html

Amazon SDK for Ruby Developer Guide

The following example uses an access token to create an Amazon S3 client object, where
linked::account::arn is the Amazon Resource Name (ARN) of the role to assume and
session-name is an identifier for the assumed role session.

role_credentials = Aws::AssumeRoleCredentials.new(
 client: Aws::STS::Client.new,
 role_arn: "linked::account::arn",
 role_session_name: "session-name"
)

s3 = Aws::S3::Client.new(credentials: role_credentials)

For more information about setting role_arn or role_session_name, or about setting these
using the shared Amazon config file instead, see Assume role credential provider in the Amazon
SDKs and Tools Reference Guide.

Configuring retries in the Amazon SDK for Ruby

The Amazon SDK for Ruby provides a default retry behavior for service requests and customizable
configuration options. Calls to Amazon Web Services services occasionally return unexpected
exceptions. Certain types of errors, such as throttling or transient errors, might be successful if the
call is retried.

Retry behavior can be configured globally using environment variables or settings in the shared
Amazon config file. For information on this approach, see Retry behavior in the Amazon SDKs and
Tools Reference Guide. It also includes detailed information on retry strategy implementations and
how to choose one over another.

Alternatively, these options can also be configured in your code, as shown in the following sections.

Specifying client retry behavior in code

By default, the Amazon SDK for Ruby performs up to three retries, with 15 seconds between
retries, for a total of up to four attempts. Therefore, an operation could take up to 60 seconds to
time out.

The following example creates an Amazon S3 client in the region us-west-2, and specifies to wait
five seconds between two retries on every client operation. Therefore, Amazon S3 client operations
could take up to 15 seconds to time out.

Retries 20

https://docs.amazonaws.cn/sdkref/latest/guide/feature-assume-role-credentials.html
https://docs.amazonaws.cn/sdkref/latest/guide/feature-retry-behavior.html

Amazon SDK for Ruby Developer Guide

 s3 = Aws::S3::Client.new(
 region: region,
 retry_limit: 2,
 retry_backoff: lambda { |c| sleep(5) }
)

Any explicit setting set in the code or on a service client itself takes precedence over those set in
environment variables or the shared config file.

Configuring observability features in the Amazon SDK for Ruby

Observability is the extent to which a system's current state can be inferred from the data it emits.
The data emitted is commonly referred to as telemetry. The Amazon SDK for Ruby can provide
the traces as a telemetry signal. You can wire up a TelemetryProvider to collect and send
telemetry data to an observability backend. The SDK currently supports OpenTelemetry (OTel) as
a telemetry provider and OpenTelemetry has many ways to export your telemetry data, including
using Amazon X-Ray or Amazon CloudWatch. For more information on OpenTelemetry exporters
for Ruby, see Exporters on the OpenTelemetry website.

By default, the SDK will not record or emit any telemetry data. This topic explains how to configure
and emit telemetry output.

Telemetry can be configured either for a specific service or globally. The SDK for Ruby supplies an
OpenTelemetry provider. You can also define a custom telemetry provider of your choice.

Configuring an OTelProvider for a service client

The SDK for Ruby provides an OpenTelemetry provider called OTelProvider. The following
example configures telemetry export using OpenTelemetry for the Amazon Simple Storage Service
service client. For this simple example, the OTEL_TRACES_EXPORTER environment variable
from OpenTelemetry is used to export the traces to the console output when you run the code.
To learn more about OTEL_TRACES_EXPORTER, see Exporter Selection in the OpenTelemetry
documentation.

require 'aws-sdk-s3'
require 'opentelemetry-sdk'
require 'opentelemetry-exporter-otlp'

ENV['OTEL_TRACES_EXPORTER'] ||= 'console'

Observability 21

https://docs.amazonaws.cn/xray/?icmpid=docs_homepage_devtools
https://docs.amazonaws.cn/cloudwatch/?icmpid=docs_homepage_mgmtgov
https://opentelemetry.io/docs/languages/ruby/exporters
https://docs.amazonaws.cn/sdk-for-ruby/v3/api/Aws/Telemetry/OTelProvider.html
https://opentelemetry.io/docs/specs/otel/configuration/sdk-environment-variables/#exporter-selection

Amazon SDK for Ruby Developer Guide

OpenTelemetry::SDK.configure

otel_provider = Aws::Telemetry::OTelProvider.new
client = Aws::S3::Client.new(telemetry_provider: otel_provider)
client.list_buckets

The previous code example shows the steps to configuring trace output for a service client:

1. Require OpenTelemetry dependencies.

a. opentelemetry-sdk for using Aws::Telemetry::OTelProvider.

b. opentelemetry-exporter-otlp for exporting telemetry data.

2. Call OpenTelemetry::SDK.configure to set up the OpenTelemetry SDK with their
configuration defaults.

3. Using SDK for Ruby's OpenTelemetry provider, create an instance of the OTelProvider to pass
as a configuration option to the service client that you want to trace.

otel_provider = Aws::Telemetry::OTelProvider.new
client = Aws::S3::Client.new(telemetry_provider: otel_provider)

Using these steps, any methods that are called on that service client will emit trace data.

An example of the trace output generated from the call to Amazon S3’s list_buckets method is
as follows:

Example OpenTelemetry trace output

#<struct OpenTelemetry::SDK::Trace::SpanData
 name="Handler.NetHttp",
 kind=:internal,
 status=#<OpenTelemetry::Trace::Status:0x000000011da17bd8 @code=1, @description="">,
 parent_span_id="\xBFb\xC9\xFD\xA6F!\xE1",
 total_recorded_attributes=7,
 total_recorded_events=0,
 total_recorded_links=0,
 start_timestamp=1736190567061767000,
 end_timestamp=1736190567317160000,
 attributes=
 {"http.method"=>"GET",
 "net.protocol.name"=>"http",
 "net.protocol.version"=>"1.1",

Configuring an OTelProvider for a service client 22

https://rubygems.org/gems/opentelemetry-sdk
https://rubygems.org/gems/opentelemetry-exporter-otlp

Amazon SDK for Ruby Developer Guide

 "net.peer.name"=>"s3.amazonaws.com",
 "net.peer.port"=>"443",
 "http.status_code"=>"200",
 "aws.request_id"=>"22HSH7NQTYMB5NHQ"},
 links=nil,
 events=nil,
 resource=
 #<OpenTelemetry::SDK::Resources::Resource:0x000000011e0bf990
 @attributes=
 {"service.name"=>"unknown_service",
 "process.pid"=>37013,
 "process.command"=>"example.rb",
 "process.runtime.name"=>"ruby",
 "process.runtime.version"=>"3.3.0",
 "process.runtime.description"=>"ruby 3.3.0 (2023-12-25 revision 5124f9ac75)
 [arm64-darwin23]",
 "telemetry.sdk.name"=>"opentelemetry",
 "telemetry.sdk.language"=>"ruby",
 "telemetry.sdk.version"=>"1.6.0"}>,
 instrumentation_scope=#<struct OpenTelemetry::SDK::InstrumentationScope
 name="aws.s3.client", version="">,
 span_id="\xEF%\x9C\xB5\x8C\x04\xDB\x7F",
 trace_id=" \xE7\xF1\xF8\x9D\e\x16/\xAC\xE6\x1A\xAC%j\x81\xD8",
 trace_flags=#<OpenTelemetry::Trace::TraceFlags:0x000000011d994328 @flags=1>,
 tracestate=#<OpenTelemetry::Trace::Tracestate:0x000000011d990638 @hash={}>>
#<struct OpenTelemetry::SDK::Trace::SpanData
 name="S3.ListBuckets",
 kind=:client,
 status=#<OpenTelemetry::Trace::Status:0x000000011da17bd8 @code=1, @description="">,
 parent_span_id="\x00\x00\x00\x00\x00\x00\x00\x00",
 total_recorded_attributes=5,
 total_recorded_events=0,
 total_recorded_links=0,
 start_timestamp=1736190567054410000,
 end_timestamp=1736190567327916000,
 attributes={"rpc.system"=>"aws-api", "rpc.service"=>"S3", "rpc.method"=>"ListBuckets",
 "code.function"=>"list_buckets", "code.namespace"=>"Aws::Plugins::Telemetry"},
 links=nil,
 events=nil,
 resource=
 #<OpenTelemetry::SDK::Resources::Resource:0x000000011e0bf990
 @attributes=
 {"service.name"=>"unknown_service",
 "process.pid"=>37013,

Configuring an OTelProvider for a service client 23

Amazon SDK for Ruby Developer Guide

 "process.command"=>"example.rb",
 "process.runtime.name"=>"ruby",
 "process.runtime.version"=>"3.3.0",
 "process.runtime.description"=>"ruby 3.3.0 (2023-12-25 revision 5124f9ac75)
 [arm64-darwin23]",
 "telemetry.sdk.name"=>"opentelemetry",
 "telemetry.sdk.language"=>"ruby",
 "telemetry.sdk.version"=>"1.6.0"}>,
 instrumentation_scope=#<struct OpenTelemetry::SDK::InstrumentationScope
 name="aws.s3.client", version="">,
 span_id="\xBFb\xC9\xFD\xA6F!\xE1",
 trace_id=" \xE7\xF1\xF8\x9D\e\x16/\xAC\xE6\x1A\xAC%j\x81\xD8",
 trace_flags=#<OpenTelemetry::Trace::TraceFlags:0x000000011d994328 @flags=1>,
 tracestate=#<OpenTelemetry::Trace::Tracestate:0x000000011d990638 @hash={}>>

The previous trace output has two spans of data. Each trace entry provides additional metadata
about the event in one or more attributes.

Configuring an OTelProvider for all service clients

Instead of turning on telemetry for a specific service client like the previous section explained, you
have the option to turn on telemetry globally.

To emit telemetry data for all Amazon service clients, you can set the telemetry provider on the
Aws.config prior to creating service clients.

otel_provider = Aws::Telemetry::OTelProvider.new
Aws.config[:telemetry_provider] = otel_provider

With this configuration, any service clients created afterwards will automatically emit telemetry. To
learn more about using Aws.config to set global settings, see Aws.config.

Configuring a custom telemetry provider

If you don't want to use OpenTelemetry as your telemetry provider, the Amazon SDK for Ruby
does support you implementing a custom provider. It might be helpful to use the OTelProvider
implementation that is available in the Amazon SDK for Ruby GitHub repository as an example. For
additional context, refer to the notes in Module: Aws::Telemetry in the Amazon SDK for Ruby
API Reference.

Configuring an OTelProvider for all service clients 24

https://github.com/aws/aws-sdk-ruby/blob/version-3/gems/aws-sdk-core/lib/aws-sdk-core/telemetry/otel.rb
https://github.com/aws/aws-sdk-ruby/blob/version-3/gems/aws-sdk-core/lib/aws-sdk-core/telemetry/otel.rb
https://docs.amazonaws.cn/sdk-for-ruby/v3/api/Aws/Telemetry.html

Amazon SDK for Ruby Developer Guide

Span Attributes

Traces are the output of telemetry. Traces consist of one or more spans. Spans have attributes that
include additional metadata that is automatically included when appropriate for the method call.
The following is a list of the attributes supported by the SDK for Ruby, where:

• Attribute Name - the name used to label the data appearing in the trace.

• Type - the data type of the value.

• Description - a description of what the value represents.

Attribute Name Type Description

error Boolean True if the unit of work was
unsuccessful. Otherwise,
false.

exception.message String The exception or error
message.

exception.stacktrace String A stacktrace as provided
by the language runtime if
available.

exception.type String The type (fully qualified
name) of the exception or
error.

rpc.system String The remote system identifier
set to 'aws-api'.

rpc.method String The name of the operation
being invoked.

rpc.service String The name of the remote
service.

aws.request_id String The Amazon request ID
returned in the response

Span Attributes 25

Amazon SDK for Ruby Developer Guide

headers, per HTTP attempt.
The latest request ID is used
when possible.

code.function String The method or function
name.

code.namespace String The namespace within which
code.function is defined.

http.status_code Long The HTTP response status
code.

http.request_conte
nt_length

Long The size of the request
payload body in bytes.

http.response_cont
ent_length

Long The size of the response
payload body in bytes.

http.method String The HTTP request method.

net.protocol.name String The name of the application
layer protocol.

net.protocol.version String The version of the applicati
on layer protocol (e.g. 1.0, 1.1,
2.0).

net.peer.name String The logical remote hostname.

net.peer.port String The logical remote port
number.

Tip

OpenTelemetry-Ruby has additional implementations that are integrated with SDK for
Ruby's existing Telemetry support. For more information, see OpenTelemetry Amazon-SDK
Instrumentation in the open-telemetry GitHub repository.

Span Attributes 26

https://github.com/open-telemetry/opentelemetry-ruby-contrib/tree/main/instrumentation/aws_sdk
https://github.com/open-telemetry/opentelemetry-ruby-contrib/tree/main/instrumentation/aws_sdk

Amazon SDK for Ruby Developer Guide

Configuring HTTP-level settings within the Amazon SDK for
Ruby

Setting a nonstandard endpoint

The region is used to construct an SSL endpoint to use for Amazon requests. If you need to use
a nonstandard endpoint in the Region you’ve selected, add an endpoint entry to Aws.config.
Alternatively, set the endpoint: when creating a service client or resource object. The following
example creates an Amazon S3 resource object in the other_endpoint endpoint.

s3 = Aws::S3::Resource.new(endpoint: other_endpoint)

To use an endpoint of your choosing for API requests and to have that choice persist, see the
Service-specific endpoints configuration option in the Amazon SDKs and Tools Reference Guide.

HTTP 27

https://docs.amazonaws.cn/sdkref/latest/guide/feature-ss-endpoints.html

Amazon SDK for Ruby Developer Guide

Using the Amazon SDK for Ruby

This section provides information about developing software with the Amazon SDK for Ruby,
including how to use some of the SDK’s advanced features.

The Amazon SDKs and Tools Reference Guide also contains settings, features, and other
foundational concepts common among many of the Amazon SDKs.

Topics

• Making Amazon Web Services service requests using the Amazon SDK for Ruby

• Using the Amazon SDK for Ruby REPL utility

• Using the Amazon SDK for Ruby with Ruby on Rails

• Debugging using wire trace information from an Amazon SDK for Ruby client

• Adding testing with stubbing to your Amazon SDK for Ruby application

• Using paginated results in the Amazon SDK for Ruby

• Using waiters in the Amazon SDK for Ruby

Making Amazon Web Services service requests using the
Amazon SDK for Ruby

To programmatically access Amazon Web Services services, SDKs use a client class for each
Amazon Web Services service. For example, if your application needs to access Amazon EC2, your
application creates an Amazon EC2 client object to interface with that service. You then use the
service client to make requests to that Amazon Web Services service.

To make a request to an Amazon Web Services service, you must first create and configure a
service client. For each Amazon Web Services service your code uses, it has its own gem and its
own dedicated type for interacting with it. The client exposes one method for each API operation
exposed by the service.

Each service client requires an Amazon Web Services Region and a credential provider. The SDK
uses these values to send requests to the correct Region for your resources and to sign requests
with the correct credentials. You can specify these values programmatically in code or have them
automatically loaded from the environment.

Making Amazon Web Services service requests 28

https://docs.amazonaws.cn/sdkref/latest/guide/

Amazon SDK for Ruby Developer Guide

• When instantiating a client class, Amazon credentials must be supplied. For the order that the
SDK checks for authentication providers, see Credential provider chain.

• The SDK has a series of places (or sources) that it checks in order to find a value for configuration
settings. For details, see Precedence of settings.

The SDK for Ruby includes client classes that provide interfaces to the Amazon Web Services
services. Each client class supports a particular Amazon Web Services service and follows the
convention Aws::<service identifier>::Client. For example, Aws::S3::Client provides
an interface to the Amazon Simple Storage Service service, and Aws::SQS::Client provides an
interface to the Amazon Simple Queue Service service.

All client classes for all Amazon Web Services services are thread-safe.

You can pass configuration options directly to Client and Resource constructors. These options take
precedence over the environment and Aws.config defaults.

using a credentials object
ec2 = Aws::EC2::Client.new(region: 'us-west-2', credentials: credentials)

Using the Amazon SDK for Ruby REPL utility

The aws-sdk gem includes a Read-Eval-Print-Loop (REPL) interactive command-line interface
where you can test the SDK for Ruby and immediately see the results. SDK for Ruby gems are
available at RubyGems.org.

Prerequisites

• Installing the Amazon SDK for Ruby.

• The aws-v3.rb is located in the aws-sdk-resources gem. The aws-sdk-resources gem is
also included by the main aws-sdk gem.

• You will need an xml library, such as the rexml gem.

• Although the program does work with the Interactive Ruby Shell (irb), we recommend that you
install the pry gem, which provides a more powerful REPL environment.

Using the REPL utility 29

https://docs.amazonaws.cn/sdk-for-ruby/v3/api/Aws/S3/Client.html
https://docs.amazonaws.cn/sdk-for-ruby/v3/api/Aws/SQS/Client.html
https://rubygems.org/gems/aws-sdk/
https://github.com/aws/aws-sdk-ruby/blob/version-3/gems/aws-sdk-resources/bin/aws-v3.rb
https://github.com/aws/aws-sdk-ruby/tree/version-3/gems/aws-sdk-resources
https://github.com/aws/aws-sdk-ruby/blob/version-3/gems/aws-sdk/aws-sdk.gemspec

Amazon SDK for Ruby Developer Guide

Bundler setup

If you use Bundler, the following updates to your Gemfile will address the prerequisite gems:

1. Open your Gemfile that you created when you installed the Amazon SDK for Ruby. Add the
following lines to the file:

gem "aws-sdk"
gem "rexml"
gem "pry"

2. Save the Gemfile.

3. Install the dependencies specified in your Gemfile:

$ bundle install

Running REPL

You can access the REPL by running aws-v3.rb from the command line.

aws-v3.rb

Alternatively, you can enable HTTP wire logging by setting the verbose flag. HTTP wire logging
provides information about the communication between the Amazon SDK for Ruby and Amazon.
Note, the verbose flag also adds overhead that can make your code run slower.

aws-v3.rb -v

The SDK for Ruby includes client classes that provide interfaces to the Amazon Web Services
services. Each client class supports a particular Amazon Web Services service. In the REPL, every
service class has a helper that returns a new client object for interacting with that service. The
name of the helper will be the name of the service converted to lower case. For example, the
names of the Amazon S3 and Amazon EC2 helper objects are s3 and ec2, respectively. To list the
Amazon S3 buckets in your account, you can enter s3.list_buckets into the prompt.

You can type quit into the REPL prompt to exit.

Bundler setup 30

http://bundler.io/

Amazon SDK for Ruby Developer Guide

Using the Amazon SDK for Ruby with Ruby on Rails

Ruby on Rails provides a web development framework that makes it easy to create websites with
Ruby.

Amazon provides the aws-sdk-rails gem to enable easy integration with Rails. You can
use Amazon Elastic Beanstalk, Amazon OpsWorks, Amazon CodeDeploy, or the Amazon Rails
Provisioner to deploy and run your Rails applications in the Amazon Cloud.

For information on installing and using the aws-sdk-rails gem, see the GitHub repository
https://github.com/aws/aws-sdk-rails.

Debugging using wire trace information from an Amazon SDK
for Ruby client

You can get wire trace information from an Amazon client by setting the http_wire_trace
Boolean. Wire trace information helps differentiate client changes, service issues, and user errors.
When true, the setting shows what is being sent on the wire. The following example creates an
Amazon S3 client with wire tracing enabled at the time of client creation.

s3 = Aws::S3::Client.new(http_wire_trace: true)

Given the following code and the argument bucket_name, the output displays a message that
says whether a bucket with that name exists.

require 'aws-sdk-s3'

s3 = Aws::S3::Resource.new(client: Aws::S3::Client.new(http_wire_trace: true))

if s3.bucket(ARGV[0]).exists?
 puts "Bucket #{ARGV[0]} exists"
else
 puts "Bucket #{ARGV[0]} does not exist"
end

If the bucket exists, the output is similar to the following. (Returns were added to the HEAD line for
readability.)

opening connection to bucket_name.s3-us-west-1.amazonaws.com:443...

Using the SDK with Ruby on Rails 31

http://rubyonrails.org/
https://github.com/awslabs/aws-rails-provisioner
https://github.com/awslabs/aws-rails-provisioner
https://github.com/aws/aws-sdk-rails

Amazon SDK for Ruby Developer Guide

opened
starting SSL for bucket_name.s3-us-west-1.amazonaws.com:443...
SSL established, protocol: TLSv1.2, cipher: ECDHE-RSA-AES128-GCM-SHA256
-> "HEAD / HTTP/1.1
 Accept-Encoding:
 User-Agent: aws-sdk-ruby3/3.171.0 ruby/3.2.2 x86_64-linux aws-sdk-s3/1.120.0
 Host: bucket_name.s3-us-west-1.amazonaws.com
 X-Amz-Date: 20230427T143146Z
/* omitted */
Accept: */*\r\n\r\n"
-> "HTTP/1.1 200 OK\r\n"
-> "x-amz-id-2: XxB2J+kpHgTjmMUwpkUI1EjaFSPxAjWRgkn/+z7YwWc/
iAX5E3OXRBzJ37cfc8T4D7ELC1KFELM=\r\n"
-> "x-amz-request-id: 5MD4APQQS815QVBR\r\n"
-> "Date: Thu, 27 Apr 2023 14:31:47 GMT\r\n"
-> "x-amz-bucket-region: us-east-1\r\n"
-> "x-amz-access-point-alias: false\r\n"
-> "Content-Type: application/xml\r\n"
-> "Server: AmazonS3\r\n"
-> "\r\n"
Conn keep-alive
Bucket bucket_name exists

You can also turn on wire tracing after client creation.

s3 = Aws::S3::Client.new
s3.config.http_wire_trace = true

For more information on the fields in the wire trace information reported, see Transfer Family
required request headers.

Adding testing with stubbing to your Amazon SDK for Ruby
application

Learn how to stub client responses and client errors in an Amazon SDK for Ruby application.

Stubbing client responses

When you stub a response, the Amazon SDK for Ruby disables network traffic and the client
returns stubbed (or fake) data. If you don’t supply stubbed data, the client returns:

Testing with stubbing 32

https://docs.amazonaws.cn/transfer/latest/userguide/making-api-requests.html#request-headers
https://docs.amazonaws.cn/transfer/latest/userguide/making-api-requests.html#request-headers

Amazon SDK for Ruby Developer Guide

• Lists as empty arrays

• Maps as empty hashes

• Numeric values as zero

• Dates as now

The following example returns stubbed names for the list of Amazon S3 buckets.

require 'aws-sdk'

s3 = Aws::S3::Client.new(stub_responses: true)

bucket_data = s3.stub_data(:list_buckets, :buckets => [{name:'aws-sdk'}, {name:'aws-
sdk2'}])
s3.stub_responses(:list_buckets, bucket_data)
bucket_names = s3.list_buckets.buckets.map(&:name)

List each bucket by name
bucket_names.each do |name|
 puts name
end

Running this code displays the following.

aws-sdk
aws-sdk2

Note

After you supply any stubbed data, the default values no longer apply for any remaining
instance attributes. This means that in the previous example, the remaining instance
attribute, creation_date, is not now but nil.

The Amazon SDK for Ruby validates your stubbed data. If you pass in data of the wrong type,
it raises an ArgumentError exception. For example, if instead of the previous assignment to
bucket_data, you used the following:

bucket_data = s3.stub_data(:list_buckets, buckets:['aws-sdk', 'aws-sdk2'])

Stubbing client responses 33

Amazon SDK for Ruby Developer Guide

The Amazon SDK for Ruby raises two ArgumentError exceptions.

expected params[:buckets][0] to be a hash
expected params[:buckets][1] to be a hash

Stubbing client errors

You can also stub errors that the Amazon SDK for Ruby raises for specific methods. The following
example displays Caught Timeout::Error error calling head_bucket on aws-sdk.

require 'aws-sdk'

s3 = Aws::S3::Client.new(stub_responses: true)
s3.stub_responses(:head_bucket, Timeout::Error)

begin
 s3.head_bucket({bucket: 'aws-sdk'})
rescue Exception => ex
 puts "Caught #{ex.class} error calling 'head_bucket' on 'aws-sdk'"
end

Using paginated results in the Amazon SDK for Ruby

Many Amazon operations return truncated results when the payload is too large to return in a
single response. Instead, the service returns a portion of the data and a token to retrieve the next
set of items. This pattern is known as pagination.

Paged responses are enumerable

The simplest way to handle paged response data is to use the built-in enumerator in the response
object, as shown in the following example.

s3 = Aws::S3::Client.new

s3.list_objects(bucket:'aws-sdk').each do |response|
 puts response.contents.map(&:key)
end

This yields one response object per API call made, and enumerates objects in the named bucket.
The SDK retrieves additional pages of data to complete the request.

Stubbing client errors 34

Amazon SDK for Ruby Developer Guide

Handling paged responses manually

To handle paging yourself, use the response’s next_page? method to verify there are more pages
to retrieve, or use the last_page? method to verify there are no more pages to retrieve.

If there are more pages, use the next_page (notice there is no ?) method to retrieve the next page
of results, as shown in the following example.

s3 = Aws::S3::Client.new

Get the first page of data
response = s3.list_objects(bucket:'aws-sdk')

Get additional pages
while response.next_page? do
 response = response.next_page
 # Use the response data here...
end

Note

If you call the next_page method and there are no more pages to retrieve, the SDK raises
an Aws::PageableResponse::LastPageError exception.

Paged data classes

Paged data in the Amazon SDK for Ruby is handled by the Aws::PageableResponse class, which is
included with Seahorse::Client::Response to provide access to paged data.

Using waiters in the Amazon SDK for Ruby

Waiters are utility methods that poll for a particular state to occur on a client. Waiters can fail after
a number of attempts at a polling interval defined for the service client. For an example of how
a waiter is used, see the create_table method of the Amazon DynamoDB Encryption Client in the
Amazon Code Examples Repository.

Handling paged responses manually 35

https://docs.amazonaws.cn/sdk-for-ruby/v3/api/Aws/PageableResponse/LastPageError.html
https://docs.amazonaws.cn/sdk-for-ruby/v3/api/Aws/PageableResponse.html
https://docs.amazonaws.cn/sdk-for-ruby/v3/api/Seahorse/Client/Response.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/ruby/example_code/dynamodb/scaffold.rb#L63

Amazon SDK for Ruby Developer Guide

Invoking a waiter

To invoke a waiter, call wait_until on a service client. In the following example, a waiter waits
until the instance i-12345678 is running before continuing.

ec2 = Aws::EC2::Client.new

begin
 ec2.wait_until(:instance_running, instance_ids:['i-12345678'])
 puts "instance running"
rescue Aws::Waiters::Errors::WaiterFailed => error
 puts "failed waiting for instance running: #{error.message}"
end

The first parameter is the waiter name, which is specific to the service client and indicates which
operation is being waited for. The second parameter is a hash of parameters that are passed to the
client method called by the waiter, which varies according to the waiter name.

For a list of operations that can be waited for and the client methods called for each operation, see
the waiter_names and wait_until field documentation for the client you are using.

Wait failures

Waiters can fail with any of the following exceptions.

Aws::Waiters::Errors::FailureStateError

A failure state was encountered while waiting.

Aws::Waiters::Errors::NoSuchWaiterError

The specified waiter name is not defined for the client being used.

Aws::Waiters::Errors::TooManyAttemptsError

The number of attempts exceeded the waiter’s max_attempts value.

Aws::Waiters::Errors::UnexpectedError

An unexpected error occurred while waiting.

Aws::Waiters::Errors::WaiterFailed

One of the wait states was exceeded or another failure occurred while waiting.

Invoking a waiter 36

https://docs.amazonaws.cn/sdk-for-ruby/v3/api//Aws/Waiters/Errors/FailureStateError.html
https://docs.amazonaws.cn/sdk-for-ruby/v3/api//Aws/Waiters/Errors/NoSuchWaiterError.html
https://docs.amazonaws.cn/sdk-for-ruby/v3/api//Aws/Waiters/Errors/TooManyAttemptsError.html
https://docs.amazonaws.cn/sdk-for-ruby/v3/api//Aws/Waiters/Errors/UnexpectedError.html
https://docs.amazonaws.cn/sdk-for-ruby/v3/api//Aws/Waiters/Errors/WaiterFailed.html

Amazon SDK for Ruby Developer Guide

All of these errors—except NoSuchWaiterError—are based on WaiterFailed. To catch errors
in a waiter, use WaiterFailed, as shown in the following example.

rescue Aws::Waiters::Errors::WaiterFailed => error
 puts "failed waiting for instance running: #{error.message}"
end

Configuring a waiter

Each waiter has a default polling interval and a maximum number of attempts it will make before
returning control to your program. To set these values, use the max_attempts and delay:
parameters in your wait_until call. The following example waits for up to 25 seconds, polling
every five seconds.

Poll for ~25 seconds
client.wait_until(...) do |w|
 w.max_attempts = 5
 w.delay = 5
end

To disable wait failures, set the value of either of these parameters to nil.

Extending a waiter

To modify the behavior of waiters, you can register callbacks that are triggered before each polling
attempt and before waiting.

The following example implements an exponential backoff in a waiter by doubling the amount of
time to wait on every attempt.

ec2 = Aws::EC2::Client.new

ec2.wait_until(:instance_running, instance_ids:['i-12345678']) do |w|
 w.interval = 0 # disable normal sleep
 w.before_wait do |n, resp|
 sleep(n ** 2)
 end
end

The following example disables the maximum number of attempts, and instead waits for one hour
(3600 seconds) before failing.

Configuring a waiter 37

Amazon SDK for Ruby Developer Guide

started_at = Time.now
client.wait_until(...) do |w|
 # Disable max attempts
 w.max_attempts = nil

 # Poll for one hour, instead of a number of attempts
 w.before_wait do |attempts, response|
 throw :failure if Time.now - started_at > 3600
 end
end

Extending a waiter 38

Amazon SDK for Ruby Developer Guide

SDK for Ruby code examples

The code examples in this topic show you how to use the Amazon SDK for Ruby with Amazon.

Basics are code examples that show you how to perform the essential operations within a service.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Scenarios are code examples that show you how to accomplish specific tasks by calling multiple
functions within a service or combined with other Amazon Web Services services.

Some services contain additional example categories that show how to leverage libraries or
functions specific to the service.

Services

• Aurora examples using SDK for Ruby

• Auto Scaling examples using SDK for Ruby

• CloudTrail examples using SDK for Ruby

• CloudWatch examples using SDK for Ruby

• Amazon Cognito Identity Provider examples using SDK for Ruby

• Amazon Comprehend examples using SDK for Ruby

• Amazon DocumentDB examples using SDK for Ruby

• DynamoDB examples using SDK for Ruby

• Amazon EC2 examples using SDK for Ruby

• Elastic Beanstalk examples using SDK for Ruby

• EventBridge examples using SDK for Ruby

• Amazon Glue examples using SDK for Ruby

• IAM examples using SDK for Ruby

• Kinesis examples using SDK for Ruby

• Amazon KMS examples using SDK for Ruby

• Lambda examples using SDK for Ruby

• Amazon MSK examples using SDK for Ruby

• Amazon Polly examples using SDK for Ruby

39

Amazon SDK for Ruby Developer Guide

• Amazon RDS examples using SDK for Ruby

• Amazon S3 examples using SDK for Ruby

• Amazon SES examples using SDK for Ruby

• Amazon SES API v2 examples using SDK for Ruby

• Amazon SNS examples using SDK for Ruby

• Amazon SQS examples using SDK for Ruby

• Amazon STS examples using SDK for Ruby

• Amazon Textract examples using SDK for Ruby

• Amazon Translate examples using SDK for Ruby

Aurora examples using SDK for Ruby

The following code examples show you how to perform actions and implement common scenarios
by using the Amazon SDK for Ruby with Aurora.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Topics

• Get started

Get started

Hello Aurora

The following code example shows how to get started using Aurora.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

require 'aws-sdk-rds'

Aurora 40

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/aurora#code-examples

Amazon SDK for Ruby Developer Guide

Creates an Amazon RDS client for the AWS Region
rds = Aws::RDS::Client.new

puts 'Listing clusters in this AWS account...'

Calls the describe_db_clusters method to get information about clusters
resp = rds.describe_db_clusters(max_records: 20)

Checks if any clusters are found and prints the appropriate message
if resp.db_clusters.empty?
 puts 'No clusters found!'
else
 # Loops through the array of cluster objects and prints the cluster identifier
 resp.db_clusters.each do |cluster|
 puts "Cluster identifier: #{cluster.db_cluster_identifier}"
 end
end

• For API details, see DescribeDBClusters in Amazon SDK for Ruby API Reference.

Auto Scaling examples using SDK for Ruby

The following code examples show you how to perform actions and implement common scenarios
by using the Amazon SDK for Ruby with Auto Scaling.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Topics

• Get started

Get started

Hello Auto Scaling

The following code example shows how to get started using Auto Scaling.

Auto Scaling 41

https://docs.amazonaws.cn/goto/SdkForRubyV3/rds-2014-10-31/DescribeDBClusters

Amazon SDK for Ruby Developer Guide

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

require 'aws-sdk-autoscaling'
require 'logger'

AutoScalingManager is a class responsible for managing AWS Auto Scaling operations
such as listing all Auto Scaling groups in the current AWS account.
class AutoScalingManager
 def initialize(client)
 @client = client
 @logger = Logger.new($stdout)
 end

 # Gets and prints a list of Auto Scaling groups for the account.
 def list_auto_scaling_groups
 paginator = @client.describe_auto_scaling_groups
 auto_scaling_groups = []
 paginator.each_page do |page|
 auto_scaling_groups.concat(page.auto_scaling_groups)
 end

 if auto_scaling_groups.empty?
 @logger.info('No Auto Scaling groups found for this account.')
 else
 auto_scaling_groups.each do |group|
 @logger.info("Auto Scaling group name: #{group.auto_scaling_group_name}")
 @logger.info(" Group ARN: #{group.auto_scaling_group_arn}")
 @logger.info(" Min/max/desired: #{group.min_size}/#{group.max_size}/
#{group.desired_capacity}")
 @logger.info("\n")
 end
 end
 end
end

Get started 42

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/auto-scaling#code-examples

Amazon SDK for Ruby Developer Guide

if $PROGRAM_NAME == __FILE__
 autoscaling_client = Aws::AutoScaling::Client.new
 manager = AutoScalingManager.new(autoscaling_client)
 manager.list_auto_scaling_groups
end

• For API details, see DescribeAutoScalingGroups in Amazon SDK for Ruby API Reference.

CloudTrail examples using SDK for Ruby

The following code examples show you how to perform actions and implement common scenarios
by using the Amazon SDK for Ruby with CloudTrail.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Topics

• Actions

Actions

CreateTrail

The following code example shows how to use CreateTrail.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

require 'aws-sdk-cloudtrail' # v2: require 'aws-sdk'

CloudTrail 43

https://docs.amazonaws.cn/goto/SdkForRubyV3/autoscaling-2011-01-01/DescribeAutoScalingGroups
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/cloudtrail#code-examples

Amazon SDK for Ruby Developer Guide

require 'aws-sdk-s3'
require 'aws-sdk-sts'

def create_trail_example(s3_client, sts_client, cloudtrail_client, trail_name,
 bucket_name)
 resp = sts_client.get_caller_identity({})
 account_id = resp.account

 # Attach policy to an Amazon Simple Storage Service (S3) bucket.
 s3_client.create_bucket(bucket: bucket_name)
 begin
 policy = {
 'Version' => '2012-10-17',
 'Statement' => [
 {
 'Sid' => 'AWSCloudTrailAclCheck20150319',
 'Effect' => 'Allow',
 'Principal' => {
 'Service' => 'cloudtrail.amazonaws.com'
 },
 'Action' => 's3:GetBucketAcl',
 'Resource' => "arn:aws:s3:::#{bucket_name}"
 },
 {
 'Sid' => 'AWSCloudTrailWrite20150319',
 'Effect' => 'Allow',
 'Principal' => {
 'Service' => 'cloudtrail.amazonaws.com'
 },
 'Action' => 's3:PutObject',
 'Resource' => "arn:aws:s3:::#{bucket_name}/AWSLogs/#{account_id}/*",
 'Condition' => {
 'StringEquals' => {
 's3:x-amz-acl' => 'bucket-owner-full-control'
 }
 }
 }
]
 }.to_json

 s3_client.put_bucket_policy(
 bucket: bucket_name,
 policy: policy
)

Actions 44

Amazon SDK for Ruby Developer Guide

 puts "Successfully added policy to bucket #{bucket_name}"
 end

 begin
 cloudtrail_client.create_trail({
 name: trail_name, # required
 s3_bucket_name: bucket_name # required
 })

 puts "Successfully created trail: #{trail_name}."
 rescue StandardError => e
 puts "Got error trying to create trail #{trail_name}:\n #{e}"
 puts e
 exit 1
 end

• For API details, see CreateTrail in Amazon SDK for Ruby API Reference.

DeleteTrail

The following code example shows how to use DeleteTrail.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

 client.delete_trail({
 name: trail_name # required
 })
 puts "Successfully deleted trail: #{trail_name}"
rescue StandardError => e
 puts "Got error trying to delete trail: #{trail_name}:"
 puts e
 exit 1
end

Actions 45

https://docs.amazonaws.cn/goto/SdkForRubyV3/cloudtrail-2013-11-01/CreateTrail
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/cloudtrail#code-examples

Amazon SDK for Ruby Developer Guide

• For API details, see DeleteTrail in Amazon SDK for Ruby API Reference.

ListTrails

The following code example shows how to use ListTrails.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

require 'aws-sdk-cloudtrail' # v2: require 'aws-sdk'

def describe_trails_example(client)
 resp = client.describe_trails({})
 puts "Found #{resp.trail_list.count} trail(s)."

 resp.trail_list.each do |trail|
 puts "Name: #{trail.name}"
 puts "S3 bucket name: #{trail.s3_bucket_name}"
 puts
 end

• For API details, see ListTrails in Amazon SDK for Ruby API Reference.

LookupEvents

The following code example shows how to use LookupEvents.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

Actions 46

https://docs.amazonaws.cn/goto/SdkForRubyV3/cloudtrail-2013-11-01/DeleteTrail
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/cloudtrail#code-examples
https://docs.amazonaws.cn/goto/SdkForRubyV3/cloudtrail-2013-11-01/ListTrails
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/cloudtrail#code-examples

Amazon SDK for Ruby Developer Guide

require 'aws-sdk-cloudtrail' # v2: require 'aws-sdk'

@param [Object] client
def lookup_events_example(client)
 resp = client.lookup_events
 puts "Found #{resp.events.count} events:"
 resp.events.each do |e|
 puts "Event name: #{e.event_name}"
 puts "Event ID: #{e.event_id}"
 puts "Event time: #{e.event_time}"
 puts 'Resources:'

 e.resources.each do |r|
 puts " Name: #{r.resource_name}"
 puts " Type: #{r.resource_type}"
 puts ''
 end
 end
end

• For API details, see LookupEvents in Amazon SDK for Ruby API Reference.

CloudWatch examples using SDK for Ruby

The following code examples show you how to perform actions and implement common scenarios
by using the Amazon SDK for Ruby with CloudWatch.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Topics

• Actions

CloudWatch 47

https://docs.amazonaws.cn/goto/SdkForRubyV3/cloudtrail-2013-11-01/LookupEvents

Amazon SDK for Ruby Developer Guide

Actions

DescribeAlarms

The following code example shows how to use DescribeAlarms.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

require 'aws-sdk-cloudwatch'

Lists the names of available Amazon CloudWatch alarms.
#
@param cloudwatch_client [Aws::CloudWatch::Client]
An initialized CloudWatch client.
@example
list_alarms(Aws::CloudWatch::Client.new(region: 'us-east-1'))
def list_alarms(cloudwatch_client)
 response = cloudwatch_client.describe_alarms
 if response.metric_alarms.count.positive?
 response.metric_alarms.each do |alarm|
 puts alarm.alarm_name
 end
 else
 puts 'No alarms found.'
 end
rescue StandardError => e
 puts "Error getting information about alarms: #{e.message}"
end

• For API details, see DescribeAlarms in Amazon SDK for Ruby API Reference.

Actions 48

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/cloudwatch#code-examples
https://docs.amazonaws.cn/goto/SdkForRubyV3/monitoring-2010-08-01/DescribeAlarms

Amazon SDK for Ruby Developer Guide

DescribeAlarmsForMetric

The following code example shows how to use DescribeAlarmsForMetric.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

#
@param cloudwatch_client [Aws::CloudWatch::Client]
An initialized CloudWatch client.
@example
describe_metric_alarms(Aws::CloudWatch::Client.new(region: 'us-east-1'))
def describe_metric_alarms(cloudwatch_client)
 response = cloudwatch_client.describe_alarms

 if response.metric_alarms.count.positive?
 response.metric_alarms.each do |alarm|
 puts '-' * 16
 puts "Name: #{alarm.alarm_name}"
 puts "State value: #{alarm.state_value}"
 puts "State reason: #{alarm.state_reason}"
 puts "Metric: #{alarm.metric_name}"
 puts "Namespace: #{alarm.namespace}"
 puts "Statistic: #{alarm.statistic}"
 puts "Period: #{alarm.period}"
 puts "Unit: #{alarm.unit}"
 puts "Eval. periods: #{alarm.evaluation_periods}"
 puts "Threshold: #{alarm.threshold}"
 puts "Comp. operator: #{alarm.comparison_operator}"

 if alarm.key?(:ok_actions) && alarm.ok_actions.count.positive?
 puts 'OK actions:'
 alarm.ok_actions.each do |a|
 puts " #{a}"
 end
 end

Actions 49

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/cloudwatch#code-examples

Amazon SDK for Ruby Developer Guide

 if alarm.key?(:alarm_actions) && alarm.alarm_actions.count.positive?
 puts 'Alarm actions:'
 alarm.alarm_actions.each do |a|
 puts " #{a}"
 end
 end

 if alarm.key?(:insufficient_data_actions) &&
 alarm.insufficient_data_actions.count.positive?
 puts 'Insufficient data actions:'
 alarm.insufficient_data_actions.each do |a|
 puts " #{a}"
 end
 end

 puts 'Dimensions:'
 if alarm.key?(:dimensions) && alarm.dimensions.count.positive?
 alarm.dimensions.each do |d|
 puts " Name: #{d.name}, Value: #{d.value}"
 end
 else
 puts ' None for this alarm.'
 end
 end
 else
 puts 'No alarms found.'
 end
rescue StandardError => e
 puts "Error getting information about alarms: #{e.message}"
end

Example usage:
def run_me
 region = ''

 # Print usage information and then stop.
 if ARGV[0] == '--help' || ARGV[0] == '-h'
 puts 'Usage: ruby cw-ruby-example-show-alarms.rb REGION'
 puts 'Example: ruby cw-ruby-example-show-alarms.rb us-east-1'
 exit 1
 # If no values are specified at the command prompt, use these default values.
 elsif ARGV.count.zero?
 region = 'us-east-1'
 # Otherwise, use the values as specified at the command prompt.

Actions 50

Amazon SDK for Ruby Developer Guide

 else
 region = ARGV[0]
 end

 cloudwatch_client = Aws::CloudWatch::Client.new(region: region)
 puts 'Available alarms:'
 describe_metric_alarms(cloudwatch_client)
end

run_me if $PROGRAM_NAME == __FILE__

• For API details, see DescribeAlarmsForMetric in Amazon SDK for Ruby API Reference.

DisableAlarmActions

The following code example shows how to use DisableAlarmActions.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

Disables an alarm in Amazon CloudWatch.
#
Prerequisites.
#
- The alarm to disable.
#
@param cloudwatch_client [Aws::CloudWatch::Client]
An initialized CloudWatch client.
@param alarm_name [String] The name of the alarm to disable.
@return [Boolean] true if the alarm was disabled; otherwise, false.
@example
exit 1 unless alarm_actions_disabled?(
Aws::CloudWatch::Client.new(region: 'us-east-1'),
'ObjectsInBucket'
)

Actions 51

https://docs.amazonaws.cn/goto/SdkForRubyV3/monitoring-2010-08-01/DescribeAlarmsForMetric
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/cloudwatch#code-examples

Amazon SDK for Ruby Developer Guide

def alarm_actions_disabled?(cloudwatch_client, alarm_name)
 cloudwatch_client.disable_alarm_actions(alarm_names: [alarm_name])
 true
rescue StandardError => e
 puts "Error disabling alarm actions: #{e.message}"
 false
end

Example usage:
def run_me
 alarm_name = 'ObjectsInBucket'
 alarm_description = 'Objects exist in this bucket for more than 1 day.'
 metric_name = 'NumberOfObjects'
 # Notify this Amazon Simple Notification Service (Amazon SNS) topic when
 # the alarm transitions to the ALARM state.
 alarm_actions = ['arn:aws:sns:us-
east-1:111111111111:Default_CloudWatch_Alarms_Topic']
 namespace = 'AWS/S3'
 statistic = 'Average'
 dimensions = [
 {
 name: "BucketName",
 value: "amzn-s3-demo-bucket"
 },
 {
 name: 'StorageType',
 value: 'AllStorageTypes'
 }
]
 period = 86_400 # Daily (24 hours * 60 minutes * 60 seconds = 86400 seconds).
 unit = 'Count'
 evaluation_periods = 1 # More than one day.
 threshold = 1 # One object.
 comparison_operator = 'GreaterThanThreshold' # More than one object.
 # Replace us-west-2 with the AWS Region you're using for Amazon CloudWatch.
 region = 'us-east-1'

 cloudwatch_client = Aws::CloudWatch::Client.new(region: region)

 if alarm_created_or_updated?(
 cloudwatch_client,
 alarm_name,
 alarm_description,
 metric_name,

Actions 52

Amazon SDK for Ruby Developer Guide

 alarm_actions,
 namespace,
 statistic,
 dimensions,
 period,
 unit,
 evaluation_periods,
 threshold,
 comparison_operator
)
 puts "Alarm '#{alarm_name}' created or updated."
 else
 puts "Could not create or update alarm '#{alarm_name}'."
 end

 if alarm_actions_disabled?(cloudwatch_client, alarm_name)
 puts "Alarm '#{alarm_name}' disabled."
 else
 puts "Could not disable alarm '#{alarm_name}'."
 end
end

run_me if $PROGRAM_NAME == __FILE__

• For API details, see DisableAlarmActions in Amazon SDK for Ruby API Reference.

ListMetrics

The following code example shows how to use ListMetrics.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

Lists available metrics for a metric namespace in Amazon CloudWatch.
#
@param cloudwatch_client [Aws::CloudWatch::Client]

Actions 53

https://docs.amazonaws.cn/goto/SdkForRubyV3/monitoring-2010-08-01/DisableAlarmActions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/cloudwatch#code-examples

Amazon SDK for Ruby Developer Guide

An initialized CloudWatch client.
@param metric_namespace [String] The namespace of the metric.
@example
list_metrics_for_namespace(
Aws::CloudWatch::Client.new(region: 'us-east-1'),
'SITE/TRAFFIC'
)
def list_metrics_for_namespace(cloudwatch_client, metric_namespace)
 response = cloudwatch_client.list_metrics(namespace: metric_namespace)

 if response.metrics.count.positive?
 response.metrics.each do |metric|
 puts " Metric name: #{metric.metric_name}"
 if metric.dimensions.count.positive?
 puts ' Dimensions:'
 metric.dimensions.each do |dimension|
 puts " Name: #{dimension.name}, Value: #{dimension.value}"
 end
 else
 puts 'No dimensions found.'
 end
 end
 else
 puts "No metrics found for namespace '#{metric_namespace}'. " \
 'Note that it could take up to 15 minutes for recently-added metrics ' \
 'to become available.'
 end
end

Example usage:
def run_me
 metric_namespace = 'SITE/TRAFFIC'
 # Replace us-west-2 with the AWS Region you're using for Amazon CloudWatch.
 region = 'us-east-1'

 cloudwatch_client = Aws::CloudWatch::Client.new(region: region)

 # Add three datapoints.
 puts 'Continuing...' unless datapoint_added_to_metric?(
 cloudwatch_client,
 metric_namespace,
 'UniqueVisitors',
 'SiteName',
 'example.com',

Actions 54

Amazon SDK for Ruby Developer Guide

 5_885.0,
 'Count'
)

 puts 'Continuing...' unless datapoint_added_to_metric?(
 cloudwatch_client,
 metric_namespace,
 'UniqueVisits',
 'SiteName',
 'example.com',
 8_628.0,
 'Count'
)

 puts 'Continuing...' unless datapoint_added_to_metric?(
 cloudwatch_client,
 metric_namespace,
 'PageViews',
 'PageURL',
 'example.html',
 18_057.0,
 'Count'
)

 puts "Metrics for namespace '#{metric_namespace}':"
 list_metrics_for_namespace(cloudwatch_client, metric_namespace)
end

run_me if $PROGRAM_NAME == __FILE__

• For API details, see ListMetrics in Amazon SDK for Ruby API Reference.

PutMetricAlarm

The following code example shows how to use PutMetricAlarm.

Actions 55

https://docs.amazonaws.cn/goto/SdkForRubyV3/monitoring-2010-08-01/ListMetrics

Amazon SDK for Ruby Developer Guide

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

Creates or updates an alarm in Amazon CloudWatch.
#
@param cloudwatch_client [Aws::CloudWatch::Client]
An initialized CloudWatch client.
@param alarm_name [String] The name of the alarm.
@param alarm_description [String] A description about the alarm.
@param metric_name [String] The name of the metric associated with the alarm.
@param alarm_actions [Array] A list of Strings representing the
Amazon Resource Names (ARNs) to execute when the alarm transitions to the
ALARM state.
@param namespace [String] The namespace for the metric to alarm on.
@param statistic [String] The statistic for the metric.
@param dimensions [Array] A list of dimensions for the metric, specified as
Aws::CloudWatch::Types::Dimension.
@param period [Integer] The number of seconds before re-evaluating the metric.
@param unit [String] The unit of measure for the statistic.
@param evaluation_periods [Integer] The number of periods over which data is
compared to the specified threshold.
@param theshold [Float] The value against which the specified statistic is
 compared.
@param comparison_operator [String] The arithmetic operation to use when
comparing the specified statistic and threshold.
@return [Boolean] true if the alarm was created or updated; otherwise, false.
@example
exit 1 unless alarm_created_or_updated?(
Aws::CloudWatch::Client.new(region: 'us-east-1'),
'ObjectsInBucket',
'Objects exist in this bucket for more than 1 day.',
'NumberOfObjects',
['arn:aws:sns:us-east-1:111111111111:Default_CloudWatch_Alarms_Topic'],
'AWS/S3',
'Average',
[
{

Actions 56

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/cloudwatch#code-examples

Amazon SDK for Ruby Developer Guide

name: 'BucketName',
value: 'amzn-s3-demo-bucket'
},
{
name: 'StorageType',
value: 'AllStorageTypes'
}
],
86_400,
'Count',
1,
1,
'GreaterThanThreshold'
)
def alarm_created_or_updated?(
 cloudwatch_client,
 alarm_name,
 alarm_description,
 metric_name,
 alarm_actions,
 namespace,
 statistic,
 dimensions,
 period,
 unit,
 evaluation_periods,
 threshold,
 comparison_operator
)
 cloudwatch_client.put_metric_alarm(
 alarm_name: alarm_name,
 alarm_description: alarm_description,
 metric_name: metric_name,
 alarm_actions: alarm_actions,
 namespace: namespace,
 statistic: statistic,
 dimensions: dimensions,
 period: period,
 unit: unit,
 evaluation_periods: evaluation_periods,
 threshold: threshold,
 comparison_operator: comparison_operator
)
 true

Actions 57

Amazon SDK for Ruby Developer Guide

rescue StandardError => e
 puts "Error creating alarm: #{e.message}"
 false
end

• For API details, see PutMetricAlarm in Amazon SDK for Ruby API Reference.

PutMetricData

The following code example shows how to use PutMetricData.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

require 'aws-sdk-cloudwatch'

Adds a datapoint to a metric in Amazon CloudWatch.
#
@param cloudwatch_client [Aws::CloudWatch::Client]
An initialized CloudWatch client.
@param metric_namespace [String] The namespace of the metric to add the
datapoint to.
@param metric_name [String] The name of the metric to add the datapoint to.
@param dimension_name [String] The name of the dimension to add the
datapoint to.
@param dimension_value [String] The value of the dimension to add the
datapoint to.
@param metric_value [Float] The value of the datapoint.
@param metric_unit [String] The unit of measurement for the datapoint.
@return [Boolean]
@example
exit 1 unless datapoint_added_to_metric?(
Aws::CloudWatch::Client.new(region: 'us-east-1'),
'SITE/TRAFFIC',

Actions 58

https://docs.amazonaws.cn/goto/SdkForRubyV3/monitoring-2010-08-01/PutMetricAlarm
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/cloudwatch#code-examples

Amazon SDK for Ruby Developer Guide

'UniqueVisitors',
'SiteName',
'example.com',
5_885.0,
'Count'
)
def datapoint_added_to_metric?(
 cloudwatch_client,
 metric_namespace,
 metric_name,
 dimension_name,
 dimension_value,
 metric_value,
 metric_unit
)
 cloudwatch_client.put_metric_data(
 namespace: metric_namespace,
 metric_data: [
 {
 metric_name: metric_name,
 dimensions: [
 {
 name: dimension_name,
 value: dimension_value
 }
],
 value: metric_value,
 unit: metric_unit
 }
]
)
 puts "Added data about '#{metric_name}' to namespace " \
 "'#{metric_namespace}'."
 true
rescue StandardError => e
 puts "Error adding data about '#{metric_name}' to namespace " \
 "'#{metric_namespace}': #{e.message}"
 false
end

• For API details, see PutMetricData in Amazon SDK for Ruby API Reference.

Actions 59

https://docs.amazonaws.cn/goto/SdkForRubyV3/monitoring-2010-08-01/PutMetricData

Amazon SDK for Ruby Developer Guide

Amazon Cognito Identity Provider examples using SDK for
Ruby

The following code examples show you how to perform actions and implement common scenarios
by using the Amazon SDK for Ruby with Amazon Cognito Identity Provider.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Topics

• Get started

Get started

Hello Amazon Cognito

The following code example shows how to get started using Amazon Cognito.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

require 'aws-sdk-cognitoidentityprovider'
require 'logger'

CognitoManager is a class responsible for managing AWS Cognito operations
such as listing all user pools in the current AWS account.
class CognitoManager
 def initialize(client)
 @client = client
 @logger = Logger.new($stdout)
 end

 # Lists and prints all user pools associated with the AWS account.
 def list_user_pools

Amazon Cognito Identity Provider 60

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/cognito#code-examples

Amazon SDK for Ruby Developer Guide

 paginator = @client.list_user_pools(max_results: 10)
 user_pools = []
 paginator.each_page do |page|
 user_pools.concat(page.user_pools)
 end

 if user_pools.empty?
 @logger.info('No Cognito user pools found.')
 else
 user_pools.each do |user_pool|
 @logger.info("User pool ID: #{user_pool.id}")
 @logger.info("User pool name: #{user_pool.name}")
 @logger.info("User pool status: #{user_pool.status}")
 @logger.info('---')
 end
 end
 end
end

if $PROGRAM_NAME == __FILE__
 cognito_client = Aws::CognitoIdentityProvider::Client.new
 manager = CognitoManager.new(cognito_client)
 manager.list_user_pools
end

• For API details, see ListUserPools in Amazon SDK for Ruby API Reference.

Amazon Comprehend examples using SDK for Ruby

The following code examples show you how to perform actions and implement common scenarios
by using the Amazon SDK for Ruby with Amazon Comprehend.

Scenarios are code examples that show you how to accomplish specific tasks by calling multiple
functions within a service or combined with other Amazon Web Services services.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Topics

• Scenarios

Amazon Comprehend 61

https://docs.amazonaws.cn/goto/SdkForRubyV3/cognito-idp-2016-04-18/ListUserPools

Amazon SDK for Ruby Developer Guide

Scenarios

Create an application to analyze customer feedback

The following code example shows how to create an application that analyzes customer comment
cards, translates them from their original language, determines their sentiment, and generates an
audio file from the translated text.

SDK for Ruby

This example application analyzes and stores customer feedback cards. Specifically, it fulfills the
need of a fictitious hotel in New York City. The hotel receives feedback from guests in various
languages in the form of physical comment cards. That feedback is uploaded into the app
through a web client. After an image of a comment card is uploaded, the following steps occur:

• Text is extracted from the image using Amazon Textract.

• Amazon Comprehend determines the sentiment of the extracted text and its language.

• The extracted text is translated to English using Amazon Translate.

• Amazon Polly synthesizes an audio file from the extracted text.

The full app can be deployed with the Amazon CDK. For source code and deployment
instructions, see the project in GitHub.

Services used in this example

• Amazon Comprehend

• Lambda

• Amazon Polly

• Amazon Textract

• Amazon Translate

Amazon DocumentDB examples using SDK for Ruby

The following code examples show you how to perform actions and implement common scenarios
by using the Amazon SDK for Ruby with Amazon DocumentDB.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Scenarios 62

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/cross_service_examples/feedback_sentiment_analyzer

Amazon SDK for Ruby Developer Guide

Topics

• Serverless examples

Serverless examples

Invoke a Lambda function from a Amazon DocumentDB trigger

The following code example shows how to implement a Lambda function that receives an event
triggered by receiving records from a DocumentDB change stream. The function retrieves the
DocumentDB payload and logs the record contents.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Serverless examples repository.

Consuming a Amazon DocumentDB event with Lambda using Ruby.

require 'json'

def lambda_handler(event:, context:)
 event['events'].each do |record|
 log_document_db_event(record)
 end
 'OK'
end

def log_document_db_event(record)
 event_data = record['event'] || {}
 operation_type = event_data['operationType'] || 'Unknown'
 db = event_data.dig('ns', 'db') || 'Unknown'
 collection = event_data.dig('ns', 'coll') || 'Unknown'
 full_document = event_data['fullDocument'] || {}

 puts "Operation type: #{operation_type}"
 puts "db: #{db}"
 puts "collection: #{collection}"
 puts "Full document: #{JSON.pretty_generate(full_document)}"

Serverless examples 63

https://github.com/aws-samples/serverless-snippets/tree/main/integration-docdb-to-lambda

Amazon SDK for Ruby Developer Guide

end

DynamoDB examples using SDK for Ruby

The following code examples show you how to perform actions and implement common scenarios
by using the Amazon SDK for Ruby with DynamoDB.

Basics are code examples that show you how to perform the essential operations within a service.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Scenarios are code examples that show you how to accomplish specific tasks by calling multiple
functions within a service or combined with other Amazon Web Services services.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Topics

• Get started

• Basics

• Actions

• Scenarios

• Serverless examples

Get started

Hello DynamoDB

The following code example shows how to get started using DynamoDB.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

DynamoDB 64

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/dynamodb#code-examples

Amazon SDK for Ruby Developer Guide

require 'aws-sdk-dynamodb'
require 'logger'

DynamoDBManager is a class responsible for managing DynamoDB operations
such as listing all tables in the current AWS account.
class DynamoDBManager
 def initialize(client)
 @client = client
 @logger = Logger.new($stdout)
 end

 # Lists and prints all DynamoDB tables in the current AWS account.
 def list_tables
 @logger.info('Here are the DynamoDB tables in your account:')

 paginator = @client.list_tables(limit: 10)
 table_names = []

 paginator.each_page do |page|
 page.table_names.each do |table_name|
 @logger.info("- #{table_name}")
 table_names << table_name
 end
 end

 if table_names.empty?
 @logger.info("You don't have any DynamoDB tables in your account.")
 else
 @logger.info("\nFound #{table_names.length} tables.")
 end
 end
end

if $PROGRAM_NAME == __FILE__
 dynamodb_client = Aws::DynamoDB::Client.new
 manager = DynamoDBManager.new(dynamodb_client)
 manager.list_tables
end

• For API details, see ListTables in Amazon SDK for Ruby API Reference.

Get started 65

https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/ListTables

Amazon SDK for Ruby Developer Guide

Basics

Learn the basics

The following code example shows how to:

• Create a table that can hold movie data.

• Put, get, and update a single movie in the table.

• Write movie data to the table from a sample JSON file.

• Query for movies that were released in a given year.

• Scan for movies that were released in a range of years.

• Delete a movie from the table, then delete the table.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

Create a class that encapsulates a DynamoDB table.

 # Creates an Amazon DynamoDB table that can be used to store movie data.
 # The table uses the release year of the movie as the partition key and the
 # title as the sort key.
 #
 # @param table_name [String] The name of the table to create.
 # @return [Aws::DynamoDB::Table] The newly created table.
 def create_table(table_name)
 @table = @dynamo_resource.create_table(
 table_name: table_name,
 key_schema: [
 { attribute_name: 'year', key_type: 'HASH' }, # Partition key
 { attribute_name: 'title', key_type: 'RANGE' } # Sort key
],
 attribute_definitions: [
 { attribute_name: 'year', attribute_type: 'N' },
 { attribute_name: 'title', attribute_type: 'S' }

Basics 66

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/dynamodb#code-examples

Amazon SDK for Ruby Developer Guide

],
 billing_mode: 'PAY_PER_REQUEST'
)
 @dynamo_resource.client.wait_until(:table_exists, table_name: table_name)
 @table
 rescue Aws::DynamoDB::Errors::ServiceError => e
 @logger.error("Failed create table #{table_name}:\n#{e.code}: #{e.message}")
 raise
 end

Create a helper function to download and extract the sample JSON file.

 # Gets sample movie data, either from a local file or by first downloading it from
 # the Amazon DynamoDB Developer Guide.
 #
 # @param movie_file_name [String] The local file name where the movie data is
 stored in JSON format.
 # @return [Hash] The movie data as a Hash.
 def fetch_movie_data(movie_file_name)
 if !File.file?(movie_file_name)
 @logger.debug("Downloading #{movie_file_name}...")
 movie_content = URI.open(
 'https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/samples/
moviedata.zip'
)
 movie_json = ''
 Zip::File.open_buffer(movie_content) do |zip|
 zip.each do |entry|
 movie_json = entry.get_input_stream.read
 end
 end
 else
 movie_json = File.read(movie_file_name)
 end
 movie_data = JSON.parse(movie_json)
 # The sample file lists over 4000 movies. This returns only the first 250.
 movie_data.slice(0, 250)
 rescue StandardError => e
 puts("Failure downloading movie data:\n#{e}")
 raise
 end

Basics 67

Amazon SDK for Ruby Developer Guide

Run an interactive scenario to create the table and perform actions on it.

 table_name = "doc-example-table-movies-#{rand(10**4)}"
 scaffold = Scaffold.new(table_name)
 dynamodb_wrapper = DynamoDBBasics.new(table_name)

 new_step(1, 'Create a new DynamoDB table if none already exists.')
 unless scaffold.exists?(table_name)
 puts("\nNo such table: #{table_name}. Creating it...")
 scaffold.create_table(table_name)
 print "Done!\n".green
 end

 new_step(2, 'Add a new record to the DynamoDB table.')
 my_movie = {}
 my_movie[:title] = CLI::UI::Prompt.ask('Enter the title of a movie to add to the
 table. E.g. The Matrix')
 my_movie[:year] = CLI::UI::Prompt.ask('What year was it released? E.g. 1989').to_i
 my_movie[:rating] = CLI::UI::Prompt.ask('On a scale of 1 - 10, how do you rate it?
 E.g. 7').to_i
 my_movie[:plot] = CLI::UI::Prompt.ask('Enter a brief summary of the plot. E.g. A
 man awakens to a new reality.')
 dynamodb_wrapper.add_item(my_movie)
 puts("\nNew record added:")
 puts JSON.pretty_generate(my_movie).green
 print "Done!\n".green

 new_step(3, 'Update a record in the DynamoDB table.')
 my_movie[:rating] = CLI::UI::Prompt.ask("Let's update the movie you added with a
 new rating, e.g. 3:").to_i
 response = dynamodb_wrapper.update_item(my_movie)
 puts("Updated '#{my_movie[:title]}' with new attributes:")
 puts JSON.pretty_generate(response).green
 print "Done!\n".green

 new_step(4, 'Get a record from the DynamoDB table.')
 puts("Searching for #{my_movie[:title]} (#{my_movie[:year]})...")
 response = dynamodb_wrapper.get_item(my_movie[:title], my_movie[:year])
 puts JSON.pretty_generate(response).green
 print "Done!\n".green

 new_step(5, 'Write a batch of items into the DynamoDB table.')
 download_file = 'moviedata.json'
 puts("Downloading movie database to #{download_file}...")

Basics 68

Amazon SDK for Ruby Developer Guide

 movie_data = scaffold.fetch_movie_data(download_file)
 puts("Writing movie data from #{download_file} into your table...")
 scaffold.write_batch(movie_data)
 puts("Records added: #{movie_data.length}.")
 print "Done!\n".green

 new_step(5, 'Query for a batch of items by key.')
 loop do
 release_year = CLI::UI::Prompt.ask('Enter a year between 1972 and 2018, e.g.
 1999:').to_i
 results = dynamodb_wrapper.query_items(release_year)
 if results.any?
 puts("There were #{results.length} movies released in #{release_year}:")
 results.each do |movie|
 print "\t #{movie['title']}".green
 end
 break
 else
 continue = CLI::UI::Prompt.ask("Found no movies released in #{release_year}!
 Try another year? (y/n)")
 break unless continue.eql?('y')
 end
 end
 print "\nDone!\n".green

 new_step(6, 'Scan for a batch of items using a filter expression.')
 years = {}
 years[:start] = CLI::UI::Prompt.ask('Enter a starting year between 1972 and
 2018:')
 years[:end] = CLI::UI::Prompt.ask('Enter an ending year between 1972 and 2018:')
 releases = dynamodb_wrapper.scan_items(years)
 if !releases.empty?
 puts("Found #{releases.length} movies.")
 count = Question.ask(
 'How many do you want to see? ', method(:is_int), in_range(1, releases.length)
)
 puts("Here are your #{count} movies:")
 releases.take(count).each do |release|
 puts("\t#{release['title']}")
 end
 else
 puts("I don't know about any movies released between #{years[:start]} "\
 "and #{years[:end]}.")
 end

Basics 69

Amazon SDK for Ruby Developer Guide

 print "\nDone!\n".green

 new_step(7, 'Delete an item from the DynamoDB table.')
 answer = CLI::UI::Prompt.ask("Do you want to remove '#{my_movie[:title]}'? (y/n)
 ")
 if answer.eql?('y')
 dynamodb_wrapper.delete_item(my_movie[:title], my_movie[:year])
 puts("Removed '#{my_movie[:title]}' from the table.")
 print "\nDone!\n".green
 end

 new_step(8, 'Delete the DynamoDB table.')
 answer = CLI::UI::Prompt.ask('Delete the table? (y/n)')
 if answer.eql?('y')
 scaffold.delete_table
 puts("Deleted #{table_name}.")
 else
 puts("Don't forget to delete the table when you're done!")
 end
 print "\nThanks for watching!\n".green
rescue Aws::Errors::ServiceError
 puts('Something went wrong with the demo.')
rescue Errno::ENOENT
 true
end

• For API details, see the following topics in Amazon SDK for Ruby API Reference.

• BatchWriteItem

• CreateTable

• DeleteItem

• DeleteTable

• DescribeTable

• GetItem

• PutItem

• Query

• Scan

• UpdateItem

Basics 70

https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/BatchWriteItem
https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/CreateTable
https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/DeleteItem
https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/DeleteTable
https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/DescribeTable
https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/GetItem
https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/PutItem
https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/Query
https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/Scan
https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/UpdateItem

Amazon SDK for Ruby Developer Guide

Actions

BatchExecuteStatement

The following code example shows how to use BatchExecuteStatement.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

Read a batch of items using PartiQL.

class DynamoDBPartiQLBatch
 attr_reader :dynamo_resource, :table

 def initialize(table_name)
 client = Aws::DynamoDB::Client.new(region: 'us-east-1')
 @dynamodb = Aws::DynamoDB::Resource.new(client: client)
 @table = @dynamodb.table(table_name)
 end

 # Selects a batch of items from a table using PartiQL
 #
 # @param batch_titles [Array] Collection of movie titles
 # @return [Aws::DynamoDB::Types::BatchExecuteStatementOutput]
 def batch_execute_select(batch_titles)
 request_items = batch_titles.map do |title, year|
 {
 statement: "SELECT * FROM \"#{@table.name}\" WHERE title=? and year=?",
 parameters: [title, year]
 }
 end
 @dynamodb.client.batch_execute_statement({ statements: request_items })
 end

Delete a batch of items using PartiQL.

Actions 71

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/dynamodb#code-examples

Amazon SDK for Ruby Developer Guide

class DynamoDBPartiQLBatch
 attr_reader :dynamo_resource, :table

 def initialize(table_name)
 client = Aws::DynamoDB::Client.new(region: 'us-east-1')
 @dynamodb = Aws::DynamoDB::Resource.new(client: client)
 @table = @dynamodb.table(table_name)
 end

 # Deletes a batch of items from a table using PartiQL
 #
 # @param batch_titles [Array] Collection of movie titles
 # @return [Aws::DynamoDB::Types::BatchExecuteStatementOutput]
 def batch_execute_write(batch_titles)
 request_items = batch_titles.map do |title, year|
 {
 statement: "DELETE FROM \"#{@table.name}\" WHERE title=? and year=?",
 parameters: [title, year]
 }
 end
 @dynamodb.client.batch_execute_statement({ statements: request_items })
 end

• For API details, see BatchExecuteStatement in Amazon SDK for Ruby API Reference.

BatchWriteItem

The following code example shows how to use BatchWriteItem.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

class DynamoDBBasics
 attr_reader :dynamo_resource, :table

Actions 72

https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/BatchExecuteStatement
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/dynamodb#code-examples

Amazon SDK for Ruby Developer Guide

 def initialize(table_name)
 client = Aws::DynamoDB::Client.new(region: 'us-east-1')
 @dynamo_resource = Aws::DynamoDB::Resource.new(client: client)
 @table = @dynamo_resource.table(table_name)
 end

 # Fills an Amazon DynamoDB table with the specified data. Items are sent in
 # batches of 25 until all items are written.
 #
 # @param movies [Enumerable] The data to put in the table. Each item must contain
 at least
 # the keys required by the schema that was specified
 when the
 # table was created.
 def write_batch(movies)
 index = 0
 slice_size = 25
 while index < movies.length
 movie_items = []
 movies[index, slice_size].each do |movie|
 movie_items.append({ put_request: { item: movie } })
 end
 @dynamo_resource.client.batch_write_item({ request_items: { @table.name =>
 movie_items } })
 index += slice_size
 end
 rescue Aws::DynamoDB::Errors::ServiceError => e
 puts(
 "Couldn't load data into table #{@table.name}. Here's why:"
)
 puts("\t#{e.code}: #{e.message}")
 raise
 end

• For API details, see BatchWriteItem in Amazon SDK for Ruby API Reference.

CreateTable

The following code example shows how to use CreateTable.

Actions 73

https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/BatchWriteItem

Amazon SDK for Ruby Developer Guide

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

Encapsulates an Amazon DynamoDB table of movie data.
class Scaffold
 attr_reader :dynamo_resource, :table_name, :table

 def initialize(table_name)
 client = Aws::DynamoDB::Client.new(region: 'us-east-1')
 @dynamo_resource = Aws::DynamoDB::Resource.new(client: client)
 @table_name = table_name
 @table = nil
 @logger = Logger.new($stdout)
 @logger.level = Logger::DEBUG
 end

 # Creates an Amazon DynamoDB table that can be used to store movie data.
 # The table uses the release year of the movie as the partition key and the
 # title as the sort key.
 #
 # @param table_name [String] The name of the table to create.
 # @return [Aws::DynamoDB::Table] The newly created table.
 def create_table(table_name)
 @table = @dynamo_resource.create_table(
 table_name: table_name,
 key_schema: [
 { attribute_name: 'year', key_type: 'HASH' }, # Partition key
 { attribute_name: 'title', key_type: 'RANGE' } # Sort key
],
 attribute_definitions: [
 { attribute_name: 'year', attribute_type: 'N' },
 { attribute_name: 'title', attribute_type: 'S' }
],
 billing_mode: 'PAY_PER_REQUEST'
)
 @dynamo_resource.client.wait_until(:table_exists, table_name: table_name)
 @table

Actions 74

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/dynamodb#code-examples

Amazon SDK for Ruby Developer Guide

 rescue Aws::DynamoDB::Errors::ServiceError => e
 @logger.error("Failed create table #{table_name}:\n#{e.code}: #{e.message}")
 raise
 end

• For API details, see CreateTable in Amazon SDK for Ruby API Reference.

DeleteItem

The following code example shows how to use DeleteItem.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

class DynamoDBBasics
 attr_reader :dynamo_resource, :table

 def initialize(table_name)
 client = Aws::DynamoDB::Client.new(region: 'us-east-1')
 @dynamo_resource = Aws::DynamoDB::Resource.new(client: client)
 @table = @dynamo_resource.table(table_name)
 end

 # Deletes a movie from the table.
 #
 # @param title [String] The title of the movie to delete.
 # @param year [Integer] The release year of the movie to delete.
 def delete_item(title, year)
 @table.delete_item(key: { 'year' => year, 'title' => title })
 rescue Aws::DynamoDB::Errors::ServiceError => e
 puts("Couldn't delete movie #{title}. Here's why:")
 puts("\t#{e.code}: #{e.message}")
 raise
 end

Actions 75

https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/CreateTable
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/dynamodb#code-examples

Amazon SDK for Ruby Developer Guide

• For API details, see DeleteItem in Amazon SDK for Ruby API Reference.

DeleteTable

The following code example shows how to use DeleteTable.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

Encapsulates an Amazon DynamoDB table of movie data.
class Scaffold
 attr_reader :dynamo_resource, :table_name, :table

 def initialize(table_name)
 client = Aws::DynamoDB::Client.new(region: 'us-east-1')
 @dynamo_resource = Aws::DynamoDB::Resource.new(client: client)
 @table_name = table_name
 @table = nil
 @logger = Logger.new($stdout)
 @logger.level = Logger::DEBUG
 end

 # Deletes the table.
 def delete_table
 @table.delete
 @table = nil
 rescue Aws::DynamoDB::Errors::ServiceError => e
 puts("Couldn't delete table. Here's why:")
 puts("\t#{e.code}: #{e.message}")
 raise
 end

• For API details, see DeleteTable in Amazon SDK for Ruby API Reference.

Actions 76

https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/DeleteItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/dynamodb#code-examples
https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/DeleteTable

Amazon SDK for Ruby Developer Guide

DescribeTable

The following code example shows how to use DescribeTable.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

Encapsulates an Amazon DynamoDB table of movie data.
class Scaffold
 attr_reader :dynamo_resource, :table_name, :table

 def initialize(table_name)
 client = Aws::DynamoDB::Client.new(region: 'us-east-1')
 @dynamo_resource = Aws::DynamoDB::Resource.new(client: client)
 @table_name = table_name
 @table = nil
 @logger = Logger.new($stdout)
 @logger.level = Logger::DEBUG
 end

 # Determines whether a table exists. As a side effect, stores the table in
 # a member variable.
 #
 # @param table_name [String] The name of the table to check.
 # @return [Boolean] True when the table exists; otherwise, False.
 def exists?(table_name)
 @dynamo_resource.client.describe_table(table_name: table_name)
 @logger.debug("Table #{table_name} exists")
 rescue Aws::DynamoDB::Errors::ResourceNotFoundException
 @logger.debug("Table #{table_name} doesn't exist")
 false
 rescue Aws::DynamoDB::Errors::ServiceError => e
 puts("Couldn't check for existence of #{table_name}:\n")
 puts("\t#{e.code}: #{e.message}")
 raise
 end

Actions 77

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/dynamodb#code-examples

Amazon SDK for Ruby Developer Guide

• For API details, see DescribeTable in Amazon SDK for Ruby API Reference.

ExecuteStatement

The following code example shows how to use ExecuteStatement.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

Select a single item using PartiQL.

class DynamoDBPartiQLSingle
 attr_reader :dynamo_resource, :table

 def initialize(table_name)
 client = Aws::DynamoDB::Client.new(region: 'us-east-1')
 @dynamodb = Aws::DynamoDB::Resource.new(client: client)
 @table = @dynamodb.table(table_name)
 end

 # Gets a single record from a table using PartiQL.
 # Note: To perform more fine-grained selects,
 # use the Client.query instance method instead.
 #
 # @param title [String] The title of the movie to search.
 # @return [Aws::DynamoDB::Types::ExecuteStatementOutput]
 def select_item_by_title(title)
 request = {
 statement: "SELECT * FROM \"#{@table.name}\" WHERE title=?",
 parameters: [title]
 }
 @dynamodb.client.execute_statement(request)
 end

Update a single item using PartiQL.

Actions 78

https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/DescribeTable
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/dynamodb#code-examples

Amazon SDK for Ruby Developer Guide

class DynamoDBPartiQLSingle
 attr_reader :dynamo_resource, :table

 def initialize(table_name)
 client = Aws::DynamoDB::Client.new(region: 'us-east-1')
 @dynamodb = Aws::DynamoDB::Resource.new(client: client)
 @table = @dynamodb.table(table_name)
 end

 # Updates a single record from a table using PartiQL.
 #
 # @param title [String] The title of the movie to update.
 # @param year [Integer] The year the movie was released.
 # @param rating [Float] The new rating to assign the title.
 # @return [Aws::DynamoDB::Types::ExecuteStatementOutput]
 def update_rating_by_title(title, year, rating)
 request = {
 statement: "UPDATE \"#{@table.name}\" SET info.rating=? WHERE title=? and
 year=?",
 parameters: [{ "N": rating }, title, year]
 }
 @dynamodb.client.execute_statement(request)
 end

Add a single item using PartiQL.

class DynamoDBPartiQLSingle
 attr_reader :dynamo_resource, :table

 def initialize(table_name)
 client = Aws::DynamoDB::Client.new(region: 'us-east-1')
 @dynamodb = Aws::DynamoDB::Resource.new(client: client)
 @table = @dynamodb.table(table_name)
 end

 # Adds a single record to a table using PartiQL.
 #
 # @param title [String] The title of the movie to update.
 # @param year [Integer] The year the movie was released.
 # @param plot [String] The plot of the movie.
 # @param rating [Float] The new rating to assign the title.
 # @return [Aws::DynamoDB::Types::ExecuteStatementOutput]

Actions 79

Amazon SDK for Ruby Developer Guide

 def insert_item(title, year, plot, rating)
 request = {
 statement: "INSERT INTO \"#{@table.name}\" VALUE {'title': ?, 'year': ?,
 'info': ?}",
 parameters: [title, year, { 'plot': plot, 'rating': rating }]
 }
 @dynamodb.client.execute_statement(request)
 end

Delete a single item using PartiQL.

class DynamoDBPartiQLSingle
 attr_reader :dynamo_resource, :table

 def initialize(table_name)
 client = Aws::DynamoDB::Client.new(region: 'us-east-1')
 @dynamodb = Aws::DynamoDB::Resource.new(client: client)
 @table = @dynamodb.table(table_name)
 end

 # Deletes a single record from a table using PartiQL.
 #
 # @param title [String] The title of the movie to update.
 # @param year [Integer] The year the movie was released.
 # @return [Aws::DynamoDB::Types::ExecuteStatementOutput]
 def delete_item_by_title(title, year)
 request = {
 statement: "DELETE FROM \"#{@table.name}\" WHERE title=? and year=?",
 parameters: [title, year]
 }
 @dynamodb.client.execute_statement(request)
 end

• For API details, see ExecuteStatement in Amazon SDK for Ruby API Reference.

GetItem

The following code example shows how to use GetItem.

Actions 80

https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/ExecuteStatement

Amazon SDK for Ruby Developer Guide

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

class DynamoDBBasics
 attr_reader :dynamo_resource, :table

 def initialize(table_name)
 client = Aws::DynamoDB::Client.new(region: 'us-east-1')
 @dynamo_resource = Aws::DynamoDB::Resource.new(client: client)
 @table = @dynamo_resource.table(table_name)
 end

 # Gets movie data from the table for a specific movie.
 #
 # @param title [String] The title of the movie.
 # @param year [Integer] The release year of the movie.
 # @return [Hash] The data about the requested movie.
 def get_item(title, year)
 @table.get_item(key: { 'year' => year, 'title' => title })
 rescue Aws::DynamoDB::Errors::ServiceError => e
 puts("Couldn't get movie #{title} (#{year}) from table #{@table.name}:\n")
 puts("\t#{e.code}: #{e.message}")
 raise
 end

• For API details, see GetItem in Amazon SDK for Ruby API Reference.

ListTables

The following code example shows how to use ListTables.

Actions 81

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/dynamodb#code-examples
https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/GetItem

Amazon SDK for Ruby Developer Guide

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

Determine whether a table exists.

Encapsulates an Amazon DynamoDB table of movie data.
class Scaffold
 attr_reader :dynamo_resource, :table_name, :table

 def initialize(table_name)
 client = Aws::DynamoDB::Client.new(region: 'us-east-1')
 @dynamo_resource = Aws::DynamoDB::Resource.new(client: client)
 @table_name = table_name
 @table = nil
 @logger = Logger.new($stdout)
 @logger.level = Logger::DEBUG
 end

 # Determines whether a table exists. As a side effect, stores the table in
 # a member variable.
 #
 # @param table_name [String] The name of the table to check.
 # @return [Boolean] True when the table exists; otherwise, False.
 def exists?(table_name)
 @dynamo_resource.client.describe_table(table_name: table_name)
 @logger.debug("Table #{table_name} exists")
 rescue Aws::DynamoDB::Errors::ResourceNotFoundException
 @logger.debug("Table #{table_name} doesn't exist")
 false
 rescue Aws::DynamoDB::Errors::ServiceError => e
 puts("Couldn't check for existence of #{table_name}:\n")
 puts("\t#{e.code}: #{e.message}")
 raise
 end

• For API details, see ListTables in Amazon SDK for Ruby API Reference.

Actions 82

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/dynamodb#code-examples
https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/ListTables

Amazon SDK for Ruby Developer Guide

PutItem

The following code example shows how to use PutItem.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

class DynamoDBBasics
 attr_reader :dynamo_resource, :table

 def initialize(table_name)
 client = Aws::DynamoDB::Client.new(region: 'us-east-1')
 @dynamo_resource = Aws::DynamoDB::Resource.new(client: client)
 @table = @dynamo_resource.table(table_name)
 end

 # Adds a movie to the table.
 #
 # @param movie [Hash] The title, year, plot, and rating of the movie.
 def add_item(movie)
 @table.put_item(
 item: {
 'year' => movie[:year],
 'title' => movie[:title],
 'info' => { 'plot' => movie[:plot], 'rating' => movie[:rating] }
 }
)
 rescue Aws::DynamoDB::Errors::ServiceError => e
 puts("Couldn't add movie #{title} to table #{@table.name}. Here's why:")
 puts("\t#{e.code}: #{e.message}")
 raise
 end

• For API details, see PutItem in Amazon SDK for Ruby API Reference.

Actions 83

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/dynamodb#code-examples
https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/PutItem

Amazon SDK for Ruby Developer Guide

Query

The following code example shows how to use Query.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

class DynamoDBBasics
 attr_reader :dynamo_resource, :table

 def initialize(table_name)
 client = Aws::DynamoDB::Client.new(region: 'us-east-1')
 @dynamo_resource = Aws::DynamoDB::Resource.new(client: client)
 @table = @dynamo_resource.table(table_name)
 end

 # Queries for movies that were released in the specified year.
 #
 # @param year [Integer] The year to query.
 # @return [Array] The list of movies that were released in the specified year.
 def query_items(year)
 response = @table.query(
 key_condition_expression: '#yr = :year',
 expression_attribute_names: { '#yr' => 'year' },
 expression_attribute_values: { ':year' => year }
)
 rescue Aws::DynamoDB::Errors::ServiceError => e
 puts("Couldn't query for movies released in #{year}. Here's why:")
 puts("\t#{e.code}: #{e.message}")
 raise
 else
 response.items
 end

• For API details, see Query in Amazon SDK for Ruby API Reference.

Actions 84

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/dynamodb#code-examples
https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/Query

Amazon SDK for Ruby Developer Guide

Scan

The following code example shows how to use Scan.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

class DynamoDBBasics
 attr_reader :dynamo_resource, :table

 def initialize(table_name)
 client = Aws::DynamoDB::Client.new(region: 'us-east-1')
 @dynamo_resource = Aws::DynamoDB::Resource.new(client: client)
 @table = @dynamo_resource.table(table_name)
 end

 # Scans for movies that were released in a range of years.
 # Uses a projection expression to return a subset of data for each movie.
 #
 # @param year_range [Hash] The range of years to retrieve.
 # @return [Array] The list of movies released in the specified years.
 def scan_items(year_range)
 movies = []
 scan_hash = {
 filter_expression: '#yr between :start_yr and :end_yr',
 projection_expression: '#yr, title, info.rating',
 expression_attribute_names: { '#yr' => 'year' },
 expression_attribute_values: {
 ':start_yr' => year_range[:start], ':end_yr' => year_range[:end]
 }
 }
 done = false
 start_key = nil
 until done
 scan_hash[:exclusive_start_key] = start_key unless start_key.nil?
 response = @table.scan(scan_hash)
 movies.concat(response.items) unless response.items.empty?
 start_key = response.last_evaluated_key

Actions 85

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/dynamodb#code-examples

Amazon SDK for Ruby Developer Guide

 done = start_key.nil?
 end
 rescue Aws::DynamoDB::Errors::ServiceError => e
 puts("Couldn't scan for movies. Here's why:")
 puts("\t#{e.code}: #{e.message}")
 raise
 else
 movies
 end

• For API details, see Scan in Amazon SDK for Ruby API Reference.

UpdateItem

The following code example shows how to use UpdateItem.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

class DynamoDBBasics
 attr_reader :dynamo_resource, :table

 def initialize(table_name)
 client = Aws::DynamoDB::Client.new(region: 'us-east-1')
 @dynamo_resource = Aws::DynamoDB::Resource.new(client: client)
 @table = @dynamo_resource.table(table_name)
 end

 # Updates rating and plot data for a movie in the table.
 #
 # @param movie [Hash] The title, year, plot, rating of the movie.
 def update_item(movie)
 response = @table.update_item(
 key: { 'year' => movie[:year], 'title' => movie[:title] },
 update_expression: 'set info.rating=:r',
 expression_attribute_values: { ':r' => movie[:rating] },

Actions 86

https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/Scan
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/dynamodb#code-examples

Amazon SDK for Ruby Developer Guide

 return_values: 'UPDATED_NEW'
)
 rescue Aws::DynamoDB::Errors::ServiceError => e
 puts("Couldn't update movie #{movie[:title]} (#{movie[:year]}) in table
 #{@table.name}\n")
 puts("\t#{e.code}: #{e.message}")
 raise
 else
 response.attributes
 end

• For API details, see UpdateItem in Amazon SDK for Ruby API Reference.

Scenarios

Query a table by using batches of PartiQL statements

The following code example shows how to:

• Get a batch of items by running multiple SELECT statements.

• Add a batch of items by running multiple INSERT statements.

• Update a batch of items by running multiple UPDATE statements.

• Delete a batch of items by running multiple DELETE statements.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

Run a scenario that creates a table and runs batch PartiQL queries.

 table_name = "doc-example-table-movies-partiql-#{rand(10**4)}"
 scaffold = Scaffold.new(table_name)
 sdk = DynamoDBPartiQLBatch.new(table_name)

Scenarios 87

https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/UpdateItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/dynamodb#code-examples

Amazon SDK for Ruby Developer Guide

 new_step(1, 'Create a new DynamoDB table if none already exists.')
 unless scaffold.exists?(table_name)
 puts("\nNo such table: #{table_name}. Creating it...")
 scaffold.create_table(table_name)
 print "Done!\n".green
 end

 new_step(2, 'Populate DynamoDB table with movie data.')
 download_file = 'moviedata.json'
 puts("Downloading movie database to #{download_file}...")
 movie_data = scaffold.fetch_movie_data(download_file)
 puts("Writing movie data from #{download_file} into your table...")
 scaffold.write_batch(movie_data)
 puts("Records added: #{movie_data.length}.")
 print "Done!\n".green

 new_step(3, 'Select a batch of items from the movies table.')
 puts "Let's select some popular movies for side-by-side comparison."
 response = sdk.batch_execute_select([['Mean Girls', 2004], ['Goodfellas', 1977],
 ['The Prancing of the Lambs', 2005]])
 puts("Items selected: #{response['responses'].length}\n")
 print "\nDone!\n".green

 new_step(4, 'Delete a batch of items from the movies table.')
 sdk.batch_execute_write([['Mean Girls', 2004], ['Goodfellas', 1977], ['The
 Prancing of the Lambs', 2005]])
 print "\nDone!\n".green

 new_step(5, 'Delete the table.')
 return unless scaffold.exists?(table_name)

 scaffold.delete_table
end

• For API details, see BatchExecuteStatement in Amazon SDK for Ruby API Reference.

Query a table using PartiQL

The following code example shows how to:

• Get an item by running a SELECT statement.

Scenarios 88

https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/BatchExecuteStatement

Amazon SDK for Ruby Developer Guide

• Add an item by running an INSERT statement.

• Update an item by running an UPDATE statement.

• Delete an item by running a DELETE statement.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

Run a scenario that creates a table and runs PartiQL queries.

 table_name = "doc-example-table-movies-partiql-#{rand(10**8)}"
 scaffold = Scaffold.new(table_name)
 sdk = DynamoDBPartiQLSingle.new(table_name)

 new_step(1, 'Create a new DynamoDB table if none already exists.')
 unless scaffold.exists?(table_name)
 puts("\nNo such table: #{table_name}. Creating it...")
 scaffold.create_table(table_name)
 print "Done!\n".green
 end

 new_step(2, 'Populate DynamoDB table with movie data.')
 download_file = 'moviedata.json'
 puts("Downloading movie database to #{download_file}...")
 movie_data = scaffold.fetch_movie_data(download_file)
 puts("Writing movie data from #{download_file} into your table...")
 scaffold.write_batch(movie_data)
 puts("Records added: #{movie_data.length}.")
 print "Done!\n".green

 new_step(3, 'Select a single item from the movies table.')
 response = sdk.select_item_by_title('Star Wars')
 puts("Items selected for title 'Star Wars': #{response.items.length}\n")
 print response.items.first.to_s.yellow
 print "\n\nDone!\n".green

 new_step(4, 'Update a single item from the movies table.')

Scenarios 89

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/dynamodb#code-examples

Amazon SDK for Ruby Developer Guide

 puts "Let's correct the rating on The Big Lebowski to 10.0."
 sdk.update_rating_by_title('The Big Lebowski', 1998, 10.0)
 print "\nDone!\n".green

 new_step(5, 'Delete a single item from the movies table.')
 puts "Let's delete The Silence of the Lambs because it's just too scary."
 sdk.delete_item_by_title('The Silence of the Lambs', 1991)
 print "\nDone!\n".green

 new_step(6, 'Insert a new item into the movies table.')
 puts "Let's create a less-scary movie called The Prancing of the Lambs."
 sdk.insert_item('The Prancing of the Lambs', 2005, 'A movie about happy
 livestock.', 5.0)
 print "\nDone!\n".green

 new_step(7, 'Delete the table.')
 return unless scaffold.exists?(table_name)

 scaffold.delete_table
end

• For API details, see ExecuteStatement in Amazon SDK for Ruby API Reference.

Serverless examples

Invoke a Lambda function from a DynamoDB trigger

The following code example shows how to implement a Lambda function that receives an event
triggered by receiving records from a DynamoDB stream. The function retrieves the DynamoDB
payload and logs the record contents.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Serverless examples repository.

Consuming a DynamoDB event with Lambda using Ruby.

Serverless examples 90

https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/ExecuteStatement
https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda

Amazon SDK for Ruby Developer Guide

def lambda_handler(event:, context:)
 return 'received empty event' if event['Records'].empty?

 event['Records'].each do |record|
 log_dynamodb_record(record)
 end

 "Records processed: #{event['Records'].length}"
 end

 def log_dynamodb_record(record)
 puts record['eventID']
 puts record['eventName']
 puts "DynamoDB Record: #{JSON.generate(record['dynamodb'])}"
 end

Reporting batch item failures for Lambda functions with a DynamoDB trigger

The following code example shows how to implement partial batch response for Lambda functions
that receive events from a DynamoDB stream. The function reports the batch item failures in the
response, signaling to Lambda to retry those messages later.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Serverless examples repository.

Reporting DynamoDB batch item failures with Lambda using Ruby.

def lambda_handler(event:, context:)
 records = event["Records"]
 cur_record_sequence_number = ""

 records.each do |record|
 begin
 # Process your record

Serverless examples 91

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda-with-batch-item-handling

Amazon SDK for Ruby Developer Guide

 cur_record_sequence_number = record["dynamodb"]["SequenceNumber"]
 rescue StandardError => e
 # Return failed record's sequence number
 return {"batchItemFailures" => [{"itemIdentifier" =>
 cur_record_sequence_number}]}
 end
 end

 {"batchItemFailures" => []}
 end

Amazon EC2 examples using SDK for Ruby

The following code examples show you how to perform actions and implement common scenarios
by using the Amazon SDK for Ruby with Amazon EC2.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Topics

• Get started

• Actions

Get started

Hello Amazon EC2

The following code example shows how to get started using Amazon EC2.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

Amazon EC2 92

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/ec2#code-examples

Amazon SDK for Ruby Developer Guide

require 'aws-sdk-ec2'
require 'logger'

EC2Manager is a class responsible for managing EC2 operations
such as listing all EC2 instances in the current AWS account.
class EC2Manager
 def initialize(client)
 @client = client
 @logger = Logger.new($stdout)
 end

 # Lists and prints all EC2 instances in the current AWS account.
 def list_instances
 @logger.info('Listing instances')

 instances = fetch_instances

 if instances.empty?
 @logger.info('You have no instances')
 else
 print_instances(instances)
 end
 end

 private

 # Fetches all EC2 instances using pagination.
 #
 # @return [Array<Aws::EC2::Types::Instance>] List of EC2 instances.
 def fetch_instances
 paginator = @client.describe_instances
 instances = []

 paginator.each_page do |page|
 page.reservations.each do |reservation|
 reservation.instances.each do |instance|
 instances << instance
 end
 end
 end

 instances

Get started 93

Amazon SDK for Ruby Developer Guide

 end

 # Prints details of the given EC2 instances.
 #
 # @param instances [Array<Aws::EC2::Types::Instance>] List of EC2 instances to
 print.
 def print_instances(instances)
 instances.each do |instance|
 @logger.info("Instance ID: #{instance.instance_id}")
 @logger.info("Instance Type: #{instance.instance_type}")
 @logger.info("Public IP: #{instance.public_ip_address}")
 @logger.info("Public DNS Name: #{instance.public_dns_name}")
 @logger.info("\n")
 end
 end
end

if $PROGRAM_NAME == __FILE__
 ec2_client = Aws::EC2::Client.new(region: 'us-west-2')
 manager = EC2Manager.new(ec2_client)
 manager.list_instances
end

• For API details, see DescribeSecurityGroups in Amazon SDK for Ruby API Reference.

Actions

AllocateAddress

The following code example shows how to use AllocateAddress.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

Actions 94

https://docs.amazonaws.cn/goto/SdkForRubyV3/ec2-2016-11-15/DescribeSecurityGroups
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/ec2#code-examples

Amazon SDK for Ruby Developer Guide

Creates an Elastic IP address in Amazon Virtual Private Cloud (Amazon VPC).
#
@param ec2_client [Aws::EC2::Client] An initialized EC2 client.
@return [String] The allocation ID corresponding to the Elastic IP address.
@example
puts allocate_elastic_ip_address(Aws::EC2::Client.new(region: 'us-west-2'))
def allocate_elastic_ip_address(ec2_client)
 response = ec2_client.allocate_address(domain: 'vpc')
 response.allocation_id
rescue StandardError => e
 puts "Error allocating Elastic IP address: #{e.message}"
 'Error'
end

• For API details, see AllocateAddress in Amazon SDK for Ruby API Reference.

AssociateAddress

The following code example shows how to use AssociateAddress.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

Associates an Elastic IP address with an Amazon Elastic Compute Cloud
(Amazon EC2) instance.
#
Prerequisites:
#
- The allocation ID corresponding to the Elastic IP address.
- The Amazon EC2 instance.
#
@param ec2_client [Aws::EC2::Client] An initialized EC2 client.
@param allocation_id [String] The ID of the allocation corresponding to
the Elastic IP address.
@param instance_id [String] The ID of the instance.

Actions 95

https://docs.amazonaws.cn/goto/SdkForRubyV3/ec2-2016-11-15/AllocateAddress
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/ec2#code-examples

Amazon SDK for Ruby Developer Guide

@return [String] The assocation ID corresponding to the association of the
Elastic IP address to the instance.
@example
puts allocate_elastic_ip_address(
Aws::EC2::Client.new(region: 'us-west-2'),
'eipalloc-04452e528a66279EX',
'i-033c48ef067af3dEX')
def associate_elastic_ip_address_with_instance(
 ec2_client,
 allocation_id,
 instance_id
)
 response = ec2_client.associate_address(
 allocation_id: allocation_id,
 instance_id: instance_id
)
 response.association_id
rescue StandardError => e
 puts "Error associating Elastic IP address with instance: #{e.message}"
 'Error'
end

• For API details, see AssociateAddress in Amazon SDK for Ruby API Reference.

CreateKeyPair

The following code example shows how to use CreateKeyPair.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

This code example does the following:
1. Creates a key pair in Amazon Elastic Compute Cloud (Amazon EC2).
2. Displays information about available key pairs.

Actions 96

https://docs.amazonaws.cn/goto/SdkForRubyV3/ec2-2016-11-15/AssociateAddress
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/ec2#code-examples

Amazon SDK for Ruby Developer Guide

3. Deletes the key pair.

require 'aws-sdk-ec2'

@param ec2_client [Aws::EC2::Client] An initialized EC2 client.
@param key_pair_name [String] The name for the key pair and private
key file.
@return [Boolean] true if the key pair and private key file were
created; otherwise, false.
@example
exit 1 unless key_pair_created?(
Aws::EC2::Client.new(region: 'us-west-2'),
'my-key-pair'
)
def key_pair_created?(ec2_client, key_pair_name)
 key_pair = ec2_client.create_key_pair(key_name: key_pair_name)
 puts "Created key pair '#{key_pair.key_name}' with fingerprint " \
 "'#{key_pair.key_fingerprint}' and ID '#{key_pair.key_pair_id}'."
 filename = File.join(Dir.home, "#{key_pair_name}.pem")
 File.open(filename, 'w') { |file| file.write(key_pair.key_material) }
 puts "Private key file saved locally as '#{filename}'."
 true
rescue Aws::EC2::Errors::InvalidKeyPairDuplicate
 puts "Error creating key pair: a key pair named '#{key_pair_name}' " \
 'already exists.'
 false
rescue StandardError => e
 puts "Error creating key pair or saving private key file: #{e.message}"
 false
end

Displays information about available key pairs in
Amazon Elastic Compute Cloud (Amazon EC2).
#
@param ec2_client [Aws::EC2::Client] An initialized EC2 client.
@example
describe_key_pairs(Aws::EC2::Client.new(region: 'us-west-2'))
def describe_key_pairs(ec2_client)
 result = ec2_client.describe_key_pairs
 if result.key_pairs.count.zero?
 puts 'No key pairs found.'
 else
 puts 'Key pair names:'
 result.key_pairs.each do |key_pair|

Actions 97

Amazon SDK for Ruby Developer Guide

 puts key_pair.key_name
 end
 end
rescue StandardError => e
 puts "Error getting information about key pairs: #{e.message}"
end

Deletes a key pair in Amazon Elastic Compute Cloud (Amazon EC2).
#
Prerequisites:
#
- The key pair to delete.
#
@param ec2_client [Aws::EC2::Client] An initialized EC2 client.
@param key_pair_name [String] The name of the key pair to delete.
@return [Boolean] true if the key pair was deleted; otherwise, false.
@example
exit 1 unless key_pair_deleted?(
Aws::EC2::Client.new(region: 'us-west-2'),
'my-key-pair'
)
def key_pair_deleted?(ec2_client, key_pair_name)
 ec2_client.delete_key_pair(key_name: key_pair_name)
 true
rescue StandardError => e
 puts "Error deleting key pair: #{e.message}"
 false
end

Example usage:
def run_me
 key_pair_name = ''
 region = ''
 # Print usage information and then stop.
 if ARGV[0] == '--help' || ARGV[0] == '-h'
 puts 'Usage: ruby ec2-ruby-example-key-pairs.rb KEY_PAIR_NAME REGION'
 puts 'Example: ruby ec2-ruby-example-key-pairs.rb my-key-pair us-west-2'
 exit 1
 # If no values are specified at the command prompt, use these default values.
 # Replace us-west-2 with the AWS Region you're using for Amazon EC2.
 elsif ARGV.count.zero?
 key_pair_name = 'my-key-pair'
 region = 'us-west-2'
 # Otherwise, use the values as specified at the command prompt.

Actions 98

Amazon SDK for Ruby Developer Guide

 else
 key_pair_name = ARGV[0]
 region = ARGV[1]
 end

 ec2_client = Aws::EC2::Client.new(region: region)

 puts 'Displaying existing key pair names before creating this key pair...'
 describe_key_pairs(ec2_client)

 puts '-' * 10
 puts 'Creating key pair...'
 unless key_pair_created?(ec2_client, key_pair_name)
 puts 'Stopping program.'
 exit 1
 end

 puts '-' * 10
 puts 'Displaying existing key pair names after creating this key pair...'
 describe_key_pairs(ec2_client)

 puts '-' * 10
 puts 'Deleting key pair...'
 unless key_pair_deleted?(ec2_client, key_pair_name)
 puts 'Stopping program. You must delete the key pair yourself.'
 exit 1
 end
 puts 'Key pair deleted.'

 puts '-' * 10
 puts 'Now that the key pair is deleted, ' \
 'also deleting the related private key pair file...'
 filename = File.join(Dir.home, "#{key_pair_name}.pem")
 File.delete(filename)
 if File.exist?(filename)
 puts "Could not delete file at '#{filename}'. You must delete it yourself."
 else
 puts 'File deleted.'
 end

 puts '-' * 10
 puts 'Displaying existing key pair names after deleting this key pair...'
 describe_key_pairs(ec2_client)
end

Actions 99

Amazon SDK for Ruby Developer Guide

run_me if $PROGRAM_NAME == __FILE__

• For API details, see CreateKeyPair in Amazon SDK for Ruby API Reference.

CreateRouteTable

The following code example shows how to use CreateRouteTable.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

require 'aws-sdk-ec2'

Prerequisites:
#
- A VPC in Amazon VPC.
- A subnet in that VPC.
- A gateway attached to that subnet.
#
@param ec2_resource [Aws::EC2::Resource] An initialized
Amazon Elastic Compute Cloud (Amazon EC2) resource object.
@param vpc_id [String] The ID of the VPC for the route table.
@param subnet_id [String] The ID of the subnet for the route table.
@param gateway_id [String] The ID of the gateway for the route.
@param destination_cidr_block [String] The destination CIDR block
for the route.
@param tag_key [String] The key portion of the tag for the route table.
@param tag_value [String] The value portion of the tag for the route table.
@return [Boolean] true if the route table was created and associated;
otherwise, false.
@example
exit 1 unless route_table_created_and_associated?(
Aws::EC2::Resource.new(region: 'us-west-2'),
'vpc-0b6f769731EXAMPLE',
'subnet-03d9303b57EXAMPLE',

Actions 100

https://docs.amazonaws.cn/goto/SdkForRubyV3/ec2-2016-11-15/CreateKeyPair
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/ec2#code-examples

Amazon SDK for Ruby Developer Guide

'igw-06ca90c011EXAMPLE',
'0.0.0.0/0',
'my-key',
'my-value'
)
def route_table_created_and_associated?(
 ec2_resource,
 vpc_id,
 subnet_id,
 gateway_id,
 destination_cidr_block,
 tag_key,
 tag_value
)
 route_table = ec2_resource.create_route_table(vpc_id: vpc_id)
 puts "Created route table with ID '#{route_table.id}'."
 route_table.create_tags(
 tags: [
 {
 key: tag_key,
 value: tag_value
 }
]
)
 puts 'Added tags to route table.'
 route_table.create_route(
 destination_cidr_block: destination_cidr_block,
 gateway_id: gateway_id
)
 puts 'Created route with destination CIDR block ' \
 "'#{destination_cidr_block}' and associated with gateway " \
 "with ID '#{gateway_id}'."
 route_table.associate_with_subnet(subnet_id: subnet_id)
 puts "Associated route table with subnet with ID '#{subnet_id}'."
 true
rescue StandardError => e
 puts "Error creating or associating route table: #{e.message}"
 puts 'If the route table was created but not associated, you should ' \
 'clean up by deleting the route table.'
 false
end

Example usage:
def run_me

Actions 101

Amazon SDK for Ruby Developer Guide

 vpc_id = ''
 subnet_id = ''
 gateway_id = ''
 destination_cidr_block = ''
 tag_key = ''
 tag_value = ''
 region = ''
 # Print usage information and then stop.
 if ARGV[0] == '--help' || ARGV[0] == '-h'
 puts 'Usage: ruby ec2-ruby-example-create-route-table.rb ' \
 'VPC_ID SUBNET_ID GATEWAY_ID DESTINATION_CIDR_BLOCK ' \
 'TAG_KEY TAG_VALUE REGION'
 # Replace us-west-2 with the AWS Region you're using for Amazon EC2.
 puts 'Example: ruby ec2-ruby-example-create-route-table.rb ' \
 'vpc-0b6f769731EXAMPLE subnet-03d9303b57EXAMPLE igw-06ca90c011EXAMPLE ' \
 "'0.0.0.0/0' my-key my-value us-west-2"
 exit 1
 # If no values are specified at the command prompt, use these default values.
 elsif ARGV.count.zero?
 vpc_id = 'vpc-0b6f769731EXAMPLE'
 subnet_id = 'subnet-03d9303b57EXAMPLE'
 gateway_id = 'igw-06ca90c011EXAMPLE'
 destination_cidr_block = '0.0.0.0/0'
 tag_key = 'my-key'
 tag_value = 'my-value'
 # Replace us-west-2 with the AWS Region you're using for Amazon EC2.
 region = 'us-west-2'
 # Otherwise, use the values as specified at the command prompt.
 else
 vpc_id = ARGV[0]
 subnet_id = ARGV[1]
 gateway_id = ARGV[2]
 destination_cidr_block = ARGV[3]
 tag_key = ARGV[4]
 tag_value = ARGV[5]
 region = ARGV[6]
 end

 ec2_resource = Aws::EC2::Resource.new(region: region)

 if route_table_created_and_associated?(
 ec2_resource,
 vpc_id,
 subnet_id,

Actions 102

Amazon SDK for Ruby Developer Guide

 gateway_id,
 destination_cidr_block,
 tag_key,
 tag_value
)
 puts 'Route table created and associated.'
 else
 puts 'Route table not created or not associated.'
 end
end

run_me if $PROGRAM_NAME == __FILE__

• For API details, see CreateRouteTable in Amazon SDK for Ruby API Reference.

CreateSecurityGroup

The following code example shows how to use CreateSecurityGroup.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

This code example does the following:
1. Creates an Amazon Elastic Compute Cloud (Amazon EC2) security group.
2. Adds inbound rules to the security group.
3. Displays information about available security groups.
4. Deletes the security group.

require 'aws-sdk-ec2'

Creates an Amazon Elastic Compute Cloud (Amazon EC2) security group.
#
Prerequisites:
#

Actions 103

https://docs.amazonaws.cn/goto/SdkForRubyV3/ec2-2016-11-15/CreateRouteTable
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/ec2#code-examples

Amazon SDK for Ruby Developer Guide

- A VPC in Amazon Virtual Private Cloud (Amazon VPC).
#
@param ec2_client [Aws::EC2::Client] An initialized
Amazon EC2 client.
@param group_name [String] A name for the security group.
@param description [String] A description for the security group.
@param vpc_id [String] The ID of the VPC for the security group.
@return [String] The ID of security group that was created.
@example
puts create_security_group(
Aws::EC2::Client.new(region: 'us-west-2'),
'my-security-group',
'This is my security group.',
'vpc-6713dfEX'
)
def create_security_group(ec2_client, group_name, description, vpc_id)
 security_group = ec2_client.create_security_group(
 group_name: group_name,
 description: description,
 vpc_id: vpc_id
)
 puts "Created security group '#{group_name}' with ID " \
 "'#{security_group.group_id}' in VPC with ID '#{vpc_id}'."
 security_group.group_id
rescue StandardError => e
 puts "Error creating security group: #{e.message}"
 'Error'
end

Adds an inbound rule to an Amazon Elastic Compute Cloud (Amazon EC2)
security group.
#
Prerequisites:
#
- The security group.
#
@param ec2_client [Aws::EC2::Client] An initialized Amazon EC2 client.
@param security_group_id [String] The ID of the security group.
@param ip_protocol [String] The network protocol for the inbound rule.
@param from_port [String] The originating port for the inbound rule.
@param to_port [String] The destination port for the inbound rule.
@param cidr_ip_range [String] The CIDR IP range for the inbound rule.
@return
@example

Actions 104

Amazon SDK for Ruby Developer Guide

exit 1 unless security_group_ingress_authorized?(
Aws::EC2::Client.new(region: 'us-west-2'),
'sg-030a858e078f1b9EX',
'tcp',
'80',
'80',
'0.0.0.0/0'
)
def security_group_ingress_authorized?(
 ec2_client, security_group_id, ip_protocol, from_port, to_port, cidr_ip_range
)
 ec2_client.authorize_security_group_ingress(
 group_id: security_group_id,
 ip_permissions: [
 {
 ip_protocol: ip_protocol,
 from_port: from_port,
 to_port: to_port,
 ip_ranges: [
 {
 cidr_ip: cidr_ip_range
 }
]
 }
]
)
 puts "Added inbound rule to security group '#{security_group_id}' for protocol " \
 "'#{ip_protocol}' from port '#{from_port}' to port '#{to_port}' " \
 "with CIDR IP range '#{cidr_ip_range}'."
 true
rescue StandardError => e
 puts "Error adding inbound rule to security group: #{e.message}"
 false
end

Refactored method to simplify complexity for describing security group permissions
def format_port_information(perm)
 from_port_str = perm.from_port == '-1' || perm.from_port == -1 ? 'All' :
 perm.from_port.to_s
 to_port_str = perm.to_port == '-1' || perm.to_port == -1 ? 'All' :
 perm.to_port.to_s
 { from_port: from_port_str, to_port: to_port_str }
end

Actions 105

Amazon SDK for Ruby Developer Guide

Displays information about a security group's IP permissions set in
Amazon Elastic Compute Cloud (Amazon EC2).
def describe_security_group_permissions(perm)
 ports = format_port_information(perm)

 print " Protocol: #{perm.ip_protocol == '-1' ? 'All' : perm.ip_protocol}"
 print ", From: #{ports[:from_port]}, To: #{ports[:to_port]}"

 print ", CIDR IPv6: #{perm.ipv_6_ranges[0].cidr_ipv_6}" if perm.key?
(:ipv_6_ranges) && perm.ipv_6_ranges.count.positive?

 print ", CIDR IPv4: #{perm.ip_ranges[0].cidr_ip}" if perm.key?(:ip_ranges) &&
 perm.ip_ranges.count.positive?
 print "\n"
end

Displays information about available security groups in
Amazon Elastic Compute Cloud (Amazon EC2).
def describe_security_groups(ec2_client)
 response = ec2_client.describe_security_groups

 if response.security_groups.count.positive?
 response.security_groups.each do |sg|
 display_group_details(sg)
 end
 else
 puts 'No security groups found.'
 end
rescue StandardError => e
 puts "Error getting information about security groups: #{e.message}"
end

Helper method to display the details of security groups
def display_group_details(sg)
 puts '-' * (sg.group_name.length + 13)
 puts "Name: #{sg.group_name}"
 puts "Description: #{sg.description}"
 puts "Group ID: #{sg.group_id}"
 puts "Owner ID: #{sg.owner_id}"
 puts "VPC ID: #{sg.vpc_id}"

 display_group_tags(sg.tags) if sg.tags.count.positive?
 display_group_permissions(sg)
end

Actions 106

Amazon SDK for Ruby Developer Guide

def display_group_tags(tags)
 puts 'Tags:'
 tags.each do |tag|
 puts " Key: #{tag.key}, Value: #{tag.value}"
 end
end

def display_group_permissions(sg)
 if sg.ip_permissions.count.positive?
 puts 'Inbound rules:'
 sg.ip_permissions.each do |p|
 describe_security_group_permissions(p)
 end
 end

 return if sg.ip_permissions_egress.empty?

 puts 'Outbound rules:'
 sg.ip_permissions_egress.each do |p|
 describe_security_group_permissions(p)
 end
end

Deletes an Amazon Elastic Compute Cloud (Amazon EC2)
security group.
def security_group_deleted?(ec2_client, security_group_id)
 ec2_client.delete_security_group(group_id: security_group_id)
 puts "Deleted security group '#{security_group_id}'."
 true
rescue StandardError => e
 puts "Error deleting security group: #{e.message}"
 false
end

Example usage with refactored run_me to reduce complexity
def run_me
 group_name, description, vpc_id, ip_protocol_http, from_port_http, to_port_http, \
 cidr_ip_range_http, ip_protocol_ssh, from_port_ssh, to_port_ssh, \
 cidr_ip_range_ssh, region = process_arguments
 ec2_client = Aws::EC2::Client.new(region: region)

 security_group_id = attempt_create_security_group(ec2_client, group_name,
 description, vpc_id)

Actions 107

Amazon SDK for Ruby Developer Guide

 security_group_exists = security_group_id != 'Error'

 if security_group_exists
 add_inbound_rules(ec2_client, security_group_id, ip_protocol_http,
 from_port_http, to_port_http, cidr_ip_range_http)
 add_inbound_rules(ec2_client, security_group_id, ip_protocol_ssh, from_port_ssh,
 to_port_ssh, cidr_ip_range_ssh)
 end

 describe_security_groups(ec2_client)
 attempt_delete_security_group(ec2_client, security_group_id) if
 security_group_exists
end

def process_arguments
 if ARGV[0] == '--help' || ARGV[0] == '-h'
 display_help
 exit 1
 elsif ARGV.count.zero?
 default_values
 else
 ARGV
 end
end

def attempt_create_security_group(ec2_client, group_name, description, vpc_id)
 puts 'Attempting to create security group...'
 security_group_id = create_security_group(ec2_client, group_name, description,
 vpc_id)
 puts 'Could not create security group. Skipping this step.' if security_group_id
 == 'Error'
 security_group_id
end

def add_inbound_rules(ec2_client, security_group_id, ip_protocol, from_port,
 to_port, cidr_ip_range)
 puts 'Attempting to add inbound rules to security group...'
 return if security_group_ingress_authorized?(ec2_client, security_group_id,
 ip_protocol, from_port, to_port,
 cidr_ip_range)

 puts 'Could not add inbound rule to security group. Skipping this step.'
end

Actions 108

Amazon SDK for Ruby Developer Guide

def attempt_delete_security_group(ec2_client, security_group_id)
 puts "\nAttempting to delete security group..."
 return if security_group_deleted?(ec2_client, security_group_id)

 puts 'Could not delete security group. You must delete it yourself.'
end

def display_help
 puts 'Usage: ruby ec2-ruby-example-security-group.rb ' \
 'GROUP_NAME DESCRIPTION VPC_ID IP_PROTOCOL_1 FROM_PORT_1 TO_PORT_1 ' \
 'CIDR_IP_RANGE_1 IP_PROTOCOL_2 FROM_PORT_2 TO_PORT_2 ' \
 'CIDR_IP_RANGE_2 REGION'
 puts 'Example: ruby ec2-ruby-example-security-group.rb ' \
 "my-security-group 'This is my security group.' vpc-6713dfEX " \
 "tcp 80 80 '0.0.0.0/0' tcp 22 22 '0.0.0.0/0' us-west-2"
end

def default_values
 [
 'my-security-group', 'This is my security group.', 'vpc-6713dfEX', 'tcp', '80',
 '80',
 '0.0.0.0/0', 'tcp', '22', '22', '0.0.0.0/0', 'us-west-2'
]
end

run_me if $PROGRAM_NAME == __FILE__

• For API details, see CreateSecurityGroup in Amazon SDK for Ruby API Reference.

CreateSubnet

The following code example shows how to use CreateSubnet.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

Actions 109

https://docs.amazonaws.cn/goto/SdkForRubyV3/ec2-2016-11-15/CreateSecurityGroup
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/ec2#code-examples

Amazon SDK for Ruby Developer Guide

require 'aws-sdk-ec2'

Creates a subnet within a virtual private cloud (VPC) in
Amazon Virtual Private Cloud (Amazon VPC) and then tags
the subnet.
#
Prerequisites:
#
- A VPC in Amazon VPC.
#
@param ec2_resource [Aws::EC2::Resource] An initialized
Amazon Elastic Compute Cloud (Amazon EC2) resource object.
@param vpc_id [String] The ID of the VPC for the subnet.
@param cidr_block [String] The IPv4 CIDR block for the subnet.
@param availability_zone [String] The ID of the Availability Zone
for the subnet.
@param tag_key [String] The key portion of the tag for the subnet.
@param tag_vlue [String] The value portion of the tag for the subnet.
@return [Boolean] true if the subnet was created and tagged;
otherwise, false.
@example
exit 1 unless subnet_created_and_tagged?(
Aws::EC2::Resource.new(region: 'us-west-2'),
'vpc-6713dfEX',
'10.0.0.0/24',
'us-west-2a',
'my-key',
'my-value'
)
def subnet_created_and_tagged?(
 ec2_resource,
 vpc_id,
 cidr_block,
 availability_zone,
 tag_key,
 tag_value
)
 subnet = ec2_resource.create_subnet(
 vpc_id: vpc_id,
 cidr_block: cidr_block,
 availability_zone: availability_zone
)

Actions 110

Amazon SDK for Ruby Developer Guide

 subnet.create_tags(
 tags: [
 {
 key: tag_key,
 value: tag_value
 }
]
)
 puts "Subnet created with ID '#{subnet.id}' in VPC with ID '#{vpc_id}' " \
 "and CIDR block '#{cidr_block}' in availability zone " \
 "'#{availability_zone}' and tagged with key '#{tag_key}' and " \
 "value '#{tag_value}'."
 true
rescue StandardError => e
 puts "Error creating or tagging subnet: #{e.message}"
 false
end

Example usage:
def run_me
 vpc_id = ''
 cidr_block = ''
 availability_zone = ''
 tag_key = ''
 tag_value = ''
 region = ''
 # Print usage information and then stop.
 if ARGV[0] == '--help' || ARGV[0] == '-h'
 puts 'Usage: ruby ec2-ruby-example-create-subnet.rb ' \
 'VPC_ID CIDR_BLOCK AVAILABILITY_ZONE TAG_KEY TAG_VALUE REGION'
 # Replace us-west-2 with the AWS Region you're using for Amazon EC2.
 puts 'Example: ruby ec2-ruby-example-create-subnet.rb ' \
 'vpc-6713dfEX 10.0.0.0/24 us-west-2a my-key my-value us-west-2'
 exit 1
 # If no values are specified at the command prompt, use these default values.
 elsif ARGV.count.zero?
 vpc_id = 'vpc-6713dfEX'
 cidr_block = '10.0.0.0/24'
 availability_zone = 'us-west-2a'
 tag_key = 'my-key'
 tag_value = 'my-value'
 # Replace us-west-2 with the AWS Region you're using for Amazon EC2.
 region = 'us-west-2'
 # Otherwise, use the values as specified at the command prompt.

Actions 111

Amazon SDK for Ruby Developer Guide

 else
 vpc_id = ARGV[0]
 cidr_block = ARGV[1]
 availability_zone = ARGV[2]
 tag_key = ARGV[3]
 tag_value = ARGV[4]
 region = ARGV[5]
 end

 ec2_resource = Aws::EC2::Resource.new(region: region)

 if subnet_created_and_tagged?(
 ec2_resource,
 vpc_id,
 cidr_block,
 availability_zone,
 tag_key,
 tag_value
)
 puts 'Subnet created and tagged.'
 else
 puts 'Subnet not created or not tagged.'
 end
end

run_me if $PROGRAM_NAME == __FILE__

• For API details, see CreateSubnet in Amazon SDK for Ruby API Reference.

CreateVpc

The following code example shows how to use CreateVpc.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

Actions 112

https://docs.amazonaws.cn/goto/SdkForRubyV3/ec2-2016-11-15/CreateSubnet
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/ec2#code-examples

Amazon SDK for Ruby Developer Guide

require 'aws-sdk-ec2'

Creates a virtual private cloud (VPC) in
Amazon Virtual Private Cloud (Amazon VPC) and then tags
the VPC.
#
@param ec2_resource [Aws::EC2::Resource] An initialized
Amazon Elastic Compute Cloud (Amazon EC2) resource object.
@param cidr_block [String] The IPv4 CIDR block for the subnet.
@param tag_key [String] The key portion of the tag for the VPC.
@param tag_value [String] The value portion of the tag for the VPC.
@return [Boolean] true if the VPC was created and tagged;
otherwise, false.
@example
exit 1 unless vpc_created_and_tagged?(
Aws::EC2::Resource.new(region: 'us-west-2'),
'10.0.0.0/24',
'my-key',
'my-value'
)
def vpc_created_and_tagged?(
 ec2_resource,
 cidr_block,
 tag_key,
 tag_value
)
 vpc = ec2_resource.create_vpc(cidr_block: cidr_block)

 # Create a public DNS by enabling DNS support and DNS hostnames.
 vpc.modify_attribute(enable_dns_support: { value: true })
 vpc.modify_attribute(enable_dns_hostnames: { value: true })

 vpc.create_tags(tags: [{ key: tag_key, value: tag_value }])

 puts "Created VPC with ID '#{vpc.id}' and tagged with key " \
 "'#{tag_key}' and value '#{tag_value}'."
 true
rescue StandardError => e
 puts e.message
 false
end

Actions 113

Amazon SDK for Ruby Developer Guide

Example usage:
def run_me
 cidr_block = ''
 tag_key = ''
 tag_value = ''
 region = ''
 # Print usage information and then stop.
 if ARGV[0] == '--help' || ARGV[0] == '-h'
 puts 'Usage: ruby ec2-ruby-example-create-vpc.rb ' \
 'CIDR_BLOCK TAG_KEY TAG_VALUE REGION'
 # Replace us-west-2 with the AWS Region you're using for Amazon EC2.
 puts 'Example: ruby ec2-ruby-example-create-vpc.rb ' \
 '10.0.0.0/24 my-key my-value us-west-2'
 exit 1
 # If no values are specified at the command prompt, use these default values.
 elsif ARGV.count.zero?
 cidr_block = '10.0.0.0/24'
 tag_key = 'my-key'
 tag_value = 'my-value'
 # Replace us-west-2 with the AWS Region you're using for Amazon EC2.
 region = 'us-west-2'
 # Otherwise, use the values as specified at the command prompt.
 else
 cidr_block = ARGV[0]
 tag_key = ARGV[1]
 tag_value = ARGV[2]
 region = ARGV[3]
 end

 ec2_resource = Aws::EC2::Resource.new(region: region)

 if vpc_created_and_tagged?(
 ec2_resource,
 cidr_block,
 tag_key,
 tag_value
)
 puts 'VPC created and tagged.'
 else
 puts 'VPC not created or not tagged.'
 end
end

run_me if $PROGRAM_NAME == __FILE__

Actions 114

Amazon SDK for Ruby Developer Guide

• For API details, see CreateVpc in Amazon SDK for Ruby API Reference.

DescribeInstances

The following code example shows how to use DescribeInstances.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

require 'aws-sdk-ec2'

@param ec2_resource [Aws::EC2::Resource] An initialized EC2 resource object.
@example
list_instance_ids_states(Aws::EC2::Resource.new(region: 'us-west-2'))
def list_instance_ids_states(ec2_resource)
 response = ec2_resource.instances
 if response.count.zero?
 puts 'No instances found.'
 else
 puts 'Instances -- ID, state:'
 response.each do |instance|
 puts "#{instance.id}, #{instance.state.name}"
 end
 end
rescue StandardError => e
 puts "Error getting information about instances: #{e.message}"
end

Example usage:
def run_me
 region = ''
 # Print usage information and then stop.
 if ARGV[0] == '--help' || ARGV[0] == '-h'
 puts 'Usage: ruby ec2-ruby-example-get-all-instance-info.rb REGION'

Actions 115

https://docs.amazonaws.cn/goto/SdkForRubyV3/ec2-2016-11-15/CreateVpc
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/ec2#code-examples

Amazon SDK for Ruby Developer Guide

 # Replace us-west-2 with the AWS Region you're using for Amazon EC2.
 puts 'Example: ruby ec2-ruby-example-get-all-instance-info.rb us-west-2'
 exit 1
 # If no values are specified at the command prompt, use these default values.
 # Replace us-west-2 with the AWS Region you're using for Amazon EC2.
 elsif ARGV.count.zero?
 region = 'us-west-2'
 # Otherwise, use the values as specified at the command prompt.
 else
 region = ARGV[0]
 end
 ec2_resource = Aws::EC2::Resource.new(region: region)
 list_instance_ids_states(ec2_resource)
end

run_me if $PROGRAM_NAME == __FILE__

• For API details, see DescribeInstances in Amazon SDK for Ruby API Reference.

DescribeRegions

The following code example shows how to use DescribeRegions.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

require 'aws-sdk-ec2'

@param ec2_client [Aws::EC2::Client] An initialized EC2 client.
@example
list_regions_endpoints(Aws::EC2::Client.new(region: 'us-west-2'))
def list_regions_endpoints(ec2_client)
 result = ec2_client.describe_regions
 # Enable pretty printing.
 max_region_string_length = 16

Actions 116

https://docs.amazonaws.cn/goto/SdkForRubyV3/ec2-2016-11-15/DescribeInstances
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/ec2#code-examples

Amazon SDK for Ruby Developer Guide

 max_endpoint_string_length = 33
 # Print header.
 print 'Region'
 print ' ' * (max_region_string_length - 'Region'.length)
 print " Endpoint\n"
 print '-' * max_region_string_length
 print ' '
 print '-' * max_endpoint_string_length
 print "\n"
 # Print Regions and their endpoints.
 result.regions.each do |region|
 print region.region_name
 print ' ' * (max_region_string_length - region.region_name.length)
 print ' '
 print region.endpoint
 print "\n"
 end
end

Displays a list of Amazon Elastic Compute Cloud (Amazon EC2)
Availability Zones available to you depending on the AWS Region
of the Amazon EC2 client.
#
@param ec2_client [Aws::EC2::Client] An initialized EC2 client.
@example
list_availability_zones(Aws::EC2::Client.new(region: 'us-west-2'))
def list_availability_zones(ec2_client)
 result = ec2_client.describe_availability_zones
 # Enable pretty printing.
 max_region_string_length = 16
 max_zone_string_length = 18
 max_state_string_length = 9
 # Print header.
 print 'Region'
 print ' ' * (max_region_string_length - 'Region'.length)
 print ' Zone'
 print ' ' * (max_zone_string_length - 'Zone'.length)
 print " State\n"
 print '-' * max_region_string_length
 print ' '
 print '-' * max_zone_string_length
 print ' '
 print '-' * max_state_string_length
 print "\n"

Actions 117

Amazon SDK for Ruby Developer Guide

 # Print Regions, Availability Zones, and their states.
 result.availability_zones.each do |zone|
 print zone.region_name
 print ' ' * (max_region_string_length - zone.region_name.length)
 print ' '
 print zone.zone_name
 print ' ' * (max_zone_string_length - zone.zone_name.length)
 print ' '
 print zone.state
 # Print any messages for this Availability Zone.
 if zone.messages.count.positive?
 print "\n"
 puts ' Messages for this zone:'
 zone.messages.each do |message|
 print " #{message.message}\n"
 end
 end
 print "\n"
 end
end

Example usage:
def run_me
 region = ''
 # Print usage information and then stop.
 if ARGV[0] == '--help' || ARGV[0] == '-h'
 puts 'Usage: ruby ec2-ruby-example-regions-availability-zones.rb REGION'
 # Replace us-west-2 with the AWS Region you're using for Amazon EC2.
 puts 'Example: ruby ec2-ruby-example-regions-availability-zones.rb us-west-2'
 exit 1
 # If no values are specified at the command prompt, use these default values.
 # Replace us-west-2 with the AWS Region you're using for Amazon EC2.
 elsif ARGV.count.zero?
 region = 'us-west-2'
 # Otherwise, use the values as specified at the command prompt.
 else
 region = ARGV[0]
 end

 ec2_client = Aws::EC2::Client.new(region: region)

 puts 'AWS Regions for Amazon EC2 that are available to you:'
 list_regions_endpoints(ec2_client)

Actions 118

Amazon SDK for Ruby Developer Guide

 puts "\n\nAmazon EC2 Availability Zones that are available to you for AWS Region
 '#{region}':"
 list_availability_zones(ec2_client)
end

run_me if $PROGRAM_NAME == __FILE__

• For API details, see DescribeRegions in Amazon SDK for Ruby API Reference.

ReleaseAddress

The following code example shows how to use ReleaseAddress.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

Releases an Elastic IP address from an
Amazon Elastic Compute Cloud (Amazon EC2) instance.
#
Prerequisites:
#
- An Amazon EC2 instance with an associated Elastic IP address.
#
@param ec2_client [Aws::EC2::Client] An initialized EC2 client.
@param allocation_id [String] The ID of the allocation corresponding to
the Elastic IP address.
@return [Boolean] true if the Elastic IP address was released;
otherwise, false.
@example
exit 1 unless elastic_ip_address_released?(
Aws::EC2::Client.new(region: 'us-west-2'),
'eipalloc-04452e528a66279EX'
)
def elastic_ip_address_released?(ec2_client, allocation_id)
 ec2_client.release_address(allocation_id: allocation_id)
 true

Actions 119

https://docs.amazonaws.cn/goto/SdkForRubyV3/ec2-2016-11-15/DescribeRegions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/ec2#code-examples

Amazon SDK for Ruby Developer Guide

rescue StandardError => e
 puts("Error releasing Elastic IP address: #{e.message}")
 false
end

• For API details, see ReleaseAddress in Amazon SDK for Ruby API Reference.

StartInstances

The following code example shows how to use StartInstances.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

require 'aws-sdk-ec2'

Attempts to start an Amazon Elastic Compute Cloud (Amazon EC2) instance.
#
Prerequisites:
#
- The Amazon EC2 instance.
#
@param ec2_client [Aws::EC2::Client] An initialized EC2 client.
@param instance_id [String] The ID of the instance.
@return [Boolean] true if the instance was started; otherwise, false.
@example
exit 1 unless instance_started?(
Aws::EC2::Client.new(region: 'us-west-2'),
'i-123abc'
)
def instance_started?(ec2_client, instance_id)
 response = ec2_client.describe_instance_status(instance_ids: [instance_id])

 if response.instance_statuses.count.positive?
 state = response.instance_statuses[0].instance_state.name

Actions 120

https://docs.amazonaws.cn/goto/SdkForRubyV3/ec2-2016-11-15/ReleaseAddress
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/ec2#code-examples

Amazon SDK for Ruby Developer Guide

 case state
 when 'pending'
 puts 'Error starting instance: the instance is pending. Try again later.'
 return false
 when 'running'
 puts 'The instance is already running.'
 return true
 when 'terminated'
 puts 'Error starting instance: ' \
 'the instance is terminated, so you cannot start it.'
 return false
 end
 end

 ec2_client.start_instances(instance_ids: [instance_id])
 ec2_client.wait_until(:instance_running, instance_ids: [instance_id])
 puts 'Instance started.'
 true
rescue StandardError => e
 puts "Error starting instance: #{e.message}"
 false
end

Example usage:
def run_me
 instance_id = ''
 region = ''
 # Print usage information and then stop.
 if ARGV[0] == '--help' || ARGV[0] == '-h'
 puts 'Usage: ruby ec2-ruby-example-start-instance-i-123abc.rb ' \
 'INSTANCE_ID REGION '
 # Replace us-west-2 with the AWS Region you're using for Amazon EC2.
 puts 'Example: ruby ec2-ruby-example-start-instance-i-123abc.rb ' \
 'i-123abc us-west-2'
 exit 1
 # If no values are specified at the command prompt, use these default values.
 # Replace us-west-2 with the AWS Region you're using for Amazon EC2.
 elsif ARGV.count.zero?
 instance_id = 'i-123abc'
 region = 'us-west-2'
 # Otherwise, use the values as specified at the command prompt.
 else
 instance_id = ARGV[0]
 region = ARGV[1]

Actions 121

Amazon SDK for Ruby Developer Guide

 end

 ec2_client = Aws::EC2::Client.new(region: region)

 puts "Attempting to start instance '#{instance_id}' " \
 '(this might take a few minutes)...'
 return if instance_started?(ec2_client, instance_id)

 puts 'Could not start instance.'
end

run_me if $PROGRAM_NAME == __FILE__

• For API details, see StartInstances in Amazon SDK for Ruby API Reference.

StopInstances

The following code example shows how to use StopInstances.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

require 'aws-sdk-ec2'

Prerequisites:
#
- The Amazon EC2 instance.
#
@param ec2_client [Aws::EC2::Client] An initialized EC2 client.
@param instance_id [String] The ID of the instance.
@return [Boolean] true if the instance was stopped; otherwise, false.
@example
exit 1 unless instance_stopped?(
Aws::EC2::Client.new(region: 'us-west-2'),
'i-123abc'

Actions 122

https://docs.amazonaws.cn/goto/SdkForRubyV3/ec2-2016-11-15/StartInstances
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/ec2#code-examples

Amazon SDK for Ruby Developer Guide

)
def instance_stopped?(ec2_client, instance_id)
 response = ec2_client.describe_instance_status(instance_ids: [instance_id])

 if response.instance_statuses.count.positive?
 state = response.instance_statuses[0].instance_state.name
 case state
 when 'stopping'
 puts 'The instance is already stopping.'
 return true
 when 'stopped'
 puts 'The instance is already stopped.'
 return true
 when 'terminated'
 puts 'Error stopping instance: ' \
 'the instance is terminated, so you cannot stop it.'
 return false
 end
 end

 ec2_client.stop_instances(instance_ids: [instance_id])
 ec2_client.wait_until(:instance_stopped, instance_ids: [instance_id])
 puts 'Instance stopped.'
 true
rescue StandardError => e
 puts "Error stopping instance: #{e.message}"
 false
end

Example usage:
def run_me
 instance_id = ''
 region = ''
 # Print usage information and then stop.
 if ARGV[0] == '--help' || ARGV[0] == '-h'
 puts 'Usage: ruby ec2-ruby-example-stop-instance-i-123abc.rb ' \
 'INSTANCE_ID REGION '
 # Replace us-west-2 with the AWS Region you're using for Amazon EC2.
 puts 'Example: ruby ec2-ruby-example-start-instance-i-123abc.rb ' \
 'i-123abc us-west-2'
 exit 1
 # If no values are specified at the command prompt, use these default values.
 # Replace us-west-2 with the AWS Region you're using for Amazon EC2.
 elsif ARGV.count.zero?

Actions 123

Amazon SDK for Ruby Developer Guide

 instance_id = 'i-123abc'
 region = 'us-west-2'
 # Otherwise, use the values as specified at the command prompt.
 else
 instance_id = ARGV[0]
 region = ARGV[1]
 end

 ec2_client = Aws::EC2::Client.new(region: region)

 puts "Attempting to stop instance '#{instance_id}' " \
 '(this might take a few minutes)...'
 return if instance_stopped?(ec2_client, instance_id)

 puts 'Could not stop instance.'
end

run_me if $PROGRAM_NAME == __FILE__

• For API details, see StopInstances in Amazon SDK for Ruby API Reference.

TerminateInstances

The following code example shows how to use TerminateInstances.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

require 'aws-sdk-ec2'

Prerequisites:
#
- The Amazon EC2 instance.
#
@param ec2_client [Aws::EC2::Client] An initialized EC2 client.

Actions 124

https://docs.amazonaws.cn/goto/SdkForRubyV3/ec2-2016-11-15/StopInstances
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/ec2#code-examples

Amazon SDK for Ruby Developer Guide

@param instance_id [String] The ID of the instance.
@return [Boolean] true if the instance was terminated; otherwise, false.
@example
exit 1 unless instance_terminated?(
Aws::EC2::Client.new(region: 'us-west-2'),
'i-123abc'
)
def instance_terminated?(ec2_client, instance_id)
 response = ec2_client.describe_instance_status(instance_ids: [instance_id])

 if response.instance_statuses.count.positive? &&
 response.instance_statuses[0].instance_state.name == 'terminated'

 puts 'The instance is already terminated.'
 return true
 end

 ec2_client.terminate_instances(instance_ids: [instance_id])
 ec2_client.wait_until(:instance_terminated, instance_ids: [instance_id])
 puts 'Instance terminated.'
 true
rescue StandardError => e
 puts "Error terminating instance: #{e.message}"
 false
end

Example usage:
def run_me
 instance_id = ''
 region = ''
 # Print usage information and then stop.
 if ARGV[0] == '--help' || ARGV[0] == '-h'
 puts 'Usage: ruby ec2-ruby-example-terminate-instance-i-123abc.rb ' \
 'INSTANCE_ID REGION '
 # Replace us-west-2 with the AWS Region you're using for Amazon EC2.
 puts 'Example: ruby ec2-ruby-example-terminate-instance-i-123abc.rb ' \
 'i-123abc us-west-2'
 exit 1
 # If no values are specified at the command prompt, use these default values.
 # Replace us-west-2 with the AWS Region you're using for Amazon EC2.
 elsif ARGV.count.zero?
 instance_id = 'i-123abc'
 region = 'us-west-2'
 # Otherwise, use the values as specified at the command prompt.

Actions 125

Amazon SDK for Ruby Developer Guide

 else
 instance_id = ARGV[0]
 region = ARGV[1]
 end

 ec2_client = Aws::EC2::Client.new(region: region)

 puts "Attempting to terminate instance '#{instance_id}' " \
 '(this might take a few minutes)...'
 return if instance_terminated?(ec2_client, instance_id)

 puts 'Could not terminate instance.'
end

run_me if $PROGRAM_NAME == __FILE__

• For API details, see TerminateInstances in Amazon SDK for Ruby API Reference.

Elastic Beanstalk examples using SDK for Ruby

The following code examples show you how to perform actions and implement common scenarios
by using the Amazon SDK for Ruby with Elastic Beanstalk.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Topics

• Actions

Actions

DescribeApplications

The following code example shows how to use DescribeApplications.

Elastic Beanstalk 126

https://docs.amazonaws.cn/goto/SdkForRubyV3/ec2-2016-11-15/TerminateInstances

Amazon SDK for Ruby Developer Guide

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

Class to manage Elastic Beanstalk applications
class ElasticBeanstalkManager
 def initialize(eb_client, logger: Logger.new($stdout))
 @eb_client = eb_client
 @logger = logger
 end

 # Lists applications and their environments
 def list_applications
 @eb_client.describe_applications.applications.each do |application|
 log_application_details(application)
 list_environments(application.application_name)
 end
 rescue Aws::ElasticBeanstalk::Errors::ServiceError => e
 @logger.error("Elastic Beanstalk Service Error: #{e.message}")
 end

 private

 # Logs application details
 def log_application_details(application)
 @logger.info("Name: #{application.application_name}")
 @logger.info("Description: #{application.description}")
 end

 # Lists and logs details of environments for a given application
 def list_environments(application_name)
 @eb_client.describe_environments(application_name:
 application_name).environments.each do |env|
 @logger.info(" Environment: #{env.environment_name}")
 @logger.info(" URL: #{env.cname}")
 @logger.info(" Health: #{env.health}")
 end
 rescue Aws::ElasticBeanstalk::Errors::ServiceError => e

Actions 127

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/elasticbeanstalk#code-examples

Amazon SDK for Ruby Developer Guide

 @logger.error("Error listing environments for application #{application_name}:
 #{e.message}")
 end
end

• For API details, see DescribeApplications in Amazon SDK for Ruby API Reference.

ListAvailableSolutionStacks

The following code example shows how to use ListAvailableSolutionStacks.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

Manages listing of AWS Elastic Beanstalk solution stacks
@param [Aws::ElasticBeanstalk::Client] eb_client
@param [String] filter - Returns subset of results based on match
@param [Logger] logger
class StackLister
 # Initialize with AWS Elastic Beanstalk client
 def initialize(eb_client, filter, logger: Logger.new($stdout))
 @eb_client = eb_client
 @filter = filter.downcase
 @logger = logger
 end

 # Lists and logs Elastic Beanstalk solution stacks
 def list_stacks
 stacks = @eb_client.list_available_solution_stacks.solution_stacks
 orig_length = stacks.length
 filtered_length = 0

 stacks.each do |stack|
 if @filter.empty? || stack.downcase.include?(@filter)
 @logger.info(stack)
 filtered_length += 1

Actions 128

https://docs.amazonaws.cn/goto/SdkForRubyV3/elastic-beanstalk-2010-12-01/DescribeApplications
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/elasticbeanstalk#code-examples

Amazon SDK for Ruby Developer Guide

 end
 end

 log_summary(filtered_length, orig_length)
 rescue Aws::Errors::ServiceError => e
 @logger.error("Error listing solution stacks: #{e.message}")
 end

 private

 # Logs summary of listed stacks
 def log_summary(filtered_length, orig_length)
 if @filter.empty?
 @logger.info("Showed #{orig_length} stack(s)")
 else
 @logger.info("Showed #{filtered_length} stack(s) of #{orig_length}")
 end
 end
end

• For API details, see ListAvailableSolutionStacks in Amazon SDK for Ruby API Reference.

UpdateApplication

The following code example shows how to use UpdateApplication.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

Manages deployment of Rails applications to AWS Elastic Beanstalk
class RailsAppDeployer
 def initialize(eb_client, s3_client, app_name, logger: Logger.new($stdout))
 @eb_client = eb_client
 @s3_client = s3_client
 @app_name = app_name
 @logger = logger

Actions 129

https://docs.amazonaws.cn/goto/SdkForRubyV3/elastic-beanstalk-2010-12-01/ListAvailableSolutionStacks
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/elasticbeanstalk#code-examples

Amazon SDK for Ruby Developer Guide

 end

 # Deploys the latest application version to Elastic Beanstalk
 def deploy
 create_storage_location
 zip_file_name = create_zip_file
 upload_zip_to_s3(zip_file_name)
 create_and_deploy_new_application_version(zip_file_name)
 end

 private

 # Creates a new S3 storage location for the application
 def create_storage_location
 resp = @eb_client.create_storage_location
 @logger.info("Created storage location in bucket #{resp.s3_bucket}")
 rescue Aws::Errors::ServiceError => e
 @logger.error("Failed to create storage location: #{e.message}")
 end

 # Creates a ZIP file of the application using git
 def create_zip_file
 zip_file_basename = SecureRandom.urlsafe_base64
 zip_file_name = "#{zip_file_basename}.zip"
 `git archive --format=zip -o #{zip_file_name} HEAD`
 zip_file_name
 end

 # Uploads the ZIP file to the S3 bucket
 def upload_zip_to_s3(zip_file_name)
 zip_contents = File.read(zip_file_name)
 key = "#{@app_name}/#{zip_file_name}"
 @s3_client.put_object(body: zip_contents, bucket: fetch_bucket_name, key: key)
 rescue Aws::Errors::ServiceError => e
 @logger.error("Failed to upload ZIP file to S3: #{e.message}")
 end

 # Fetches the S3 bucket name from Elastic Beanstalk application versions
 def fetch_bucket_name
 app_versions = @eb_client.describe_application_versions(application_name:
 @app_name)
 av = app_versions.application_versions.first
 av.source_bundle.s3_bucket
 rescue Aws::Errors::ServiceError => e

Actions 130

Amazon SDK for Ruby Developer Guide

 @logger.error("Failed to fetch bucket name: #{e.message}")
 raise
 end

 # Creates a new application version and deploys it
 def create_and_deploy_new_application_version(zip_file_name)
 version_label = File.basename(zip_file_name, '.zip')
 @eb_client.create_application_version(
 process: false,
 application_name: @app_name,
 version_label: version_label,
 source_bundle: {
 s3_bucket: fetch_bucket_name,
 s3_key: "#{@app_name}/#{zip_file_name}"
 },
 description: "Updated #{Time.now.strftime('%d/%m/%Y')}"
)
 update_environment(version_label)
 rescue Aws::Errors::ServiceError => e
 @logger.error("Failed to create or deploy application version: #{e.message}")
 end

 # Updates the environment to the new application version
 def update_environment(version_label)
 env_name = fetch_environment_name
 @eb_client.update_environment(
 environment_name: env_name,
 version_label: version_label
)
 rescue Aws::Errors::ServiceError => e
 @logger.error("Failed to update environment: #{e.message}")
 end

 # Fetches the environment name of the application
 def fetch_environment_name
 envs = @eb_client.describe_environments(application_name: @app_name)
 envs.environments.first.environment_name
 rescue Aws::Errors::ServiceError => e
 @logger.error("Failed to fetch environment name: #{e.message}")
 raise
 end
end

Actions 131

Amazon SDK for Ruby Developer Guide

• For API details, see UpdateApplication in Amazon SDK for Ruby API Reference.

EventBridge examples using SDK for Ruby

The following code examples show you how to perform actions and implement common scenarios
by using the Amazon SDK for Ruby with EventBridge.

Scenarios are code examples that show you how to accomplish specific tasks by calling multiple
functions within a service or combined with other Amazon Web Services services.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Topics

• Scenarios

Scenarios

Create and trigger a rule

The following code example shows how to create and trigger a rule in Amazon EventBridge.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

Call the functions in the correct order.

require 'aws-sdk-sns'
require 'aws-sdk-iam'
require 'aws-sdk-cloudwatchevents'
require 'aws-sdk-ec2'
require 'aws-sdk-cloudwatch'
require 'aws-sdk-cloudwatchlogs'
require 'securerandom'

EventBridge 132

https://docs.amazonaws.cn/goto/SdkForRubyV3/elastic-beanstalk-2010-12-01/UpdateApplication
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/eventbridge#code-examples

Amazon SDK for Ruby Developer Guide

Checks whether the specified Amazon Simple Notification Service (Amazon SNS) topic exists
among those provided to this function.

Checks whether the specified Amazon SNS
topic exists among those provided to this function.
This is a helper function that is called by the topic_exists? function.
#
@param topics [Array] An array of Aws::SNS::Types::Topic objects.
@param topic_arn [String] The ARN of the topic to find.
@return [Boolean] true if the topic ARN was found; otherwise, false.
@example
sns_client = Aws::SNS::Client.new(region: 'us-east-1')
response = sns_client.list_topics
if topic_found?(
response.topics,
'arn:aws:sns:us-east-1:111111111111:aws-doc-sdk-examples-topic'
)
puts 'Topic found.'
end
def topic_found?(topics, topic_arn)
 topics.each do |topic|
 return true if topic.topic_arn == topic_arn
 end
 false
end

Checks whether the specified topic exists among those available to the caller in Amazon SNS.

Checks whether the specified topic exists among those available to the
caller in Amazon SNS.
#
@param sns_client [Aws::SNS::Client] An initialized Amazon SNS client.
@param topic_arn [String] The ARN of the topic to find.
@return [Boolean] true if the topic ARN was found; otherwise, false.
@example
exit 1 unless topic_exists?(
Aws::SNS::Client.new(region: 'us-east-1'),
'arn:aws:sns:us-east-1:111111111111:aws-doc-sdk-examples-topic'
)
def topic_exists?(sns_client, topic_arn)

Scenarios 133

Amazon SDK for Ruby Developer Guide

 puts "Searching for topic with ARN '#{topic_arn}'..."
 response = sns_client.list_topics
 if response.topics.count.positive?
 if topic_found?(response.topics, topic_arn)
 puts 'Topic found.'
 return true
 end
 while response.next_page?
 response = response.next_page
 next unless response.topics.count.positive?

 if topic_found?(response.topics, topic_arn)
 puts 'Topic found.'
 return true
 end
 end
 end
 puts 'Topic not found.'
 false
rescue StandardError => e
 puts "Topic not found: #{e.message}"
 false
end

Create a topic in Amazon SNS and then subscribe an email address to receive notifications to
that topic.

Creates a topic in Amazon SNS
and then subscribes an email address to receive notifications to that topic.
#
@param sns_client [Aws::SNS::Client] An initialized Amazon SNS client.
@param topic_name [String] The name of the topic to create.
@param email_address [String] The email address of the recipient to notify.
@return [String] The ARN of the topic that was created.
@example
puts create_topic(
Aws::SNS::Client.new(region: 'us-east-1'),
'aws-doc-sdk-examples-topic',
'mary@example.com'
)
def create_topic(sns_client, topic_name, email_address)
 puts "Creating the topic named '#{topic_name}'..."

Scenarios 134

Amazon SDK for Ruby Developer Guide

 topic_response = sns_client.create_topic(name: topic_name)
 puts "Topic created with ARN '#{topic_response.topic_arn}'."
 subscription_response = sns_client.subscribe(
 topic_arn: topic_response.topic_arn,
 protocol: 'email',
 endpoint: email_address,
 return_subscription_arn: true
)
 puts 'Subscription created with ARN ' \
 "'#{subscription_response.subscription_arn}'. Have the owner of the " \
 "email address '#{email_address}' check their inbox in a few minutes " \
 'and confirm the subscription to start receiving notification emails.'
 topic_response.topic_arn
rescue StandardError => e
 puts "Error creating or subscribing to topic: #{e.message}"
 'Error'
end

Check whether the specified Amazon Identity and Access Management (IAM) role exists among
those provided to this function.

Checks whether the specified AWS Identity and Access Management (IAM)
role exists among those provided to this function.
This is a helper function that is called by the role_exists? function.
#
@param roles [Array] An array of Aws::IAM::Role objects.
@param role_arn [String] The ARN of the role to find.
@return [Boolean] true if the role ARN was found; otherwise, false.
@example
iam_client = Aws::IAM::Client.new(region: 'us-east-1')
response = iam_client.list_roles
if role_found?(
response.roles,
'arn:aws:iam::111111111111:role/aws-doc-sdk-examples-ec2-state-change'
)
puts 'Role found.'
end
def role_found?(roles, role_arn)
 roles.each do |role|
 return true if role.arn == role_arn
 end
 false

Scenarios 135

Amazon SDK for Ruby Developer Guide

end

Check whether the specified role exists among those available to the caller in IAM.

Checks whether the specified role exists among those available to the
caller in AWS Identity and Access Management (IAM).
#
@param iam_client [Aws::IAM::Client] An initialized IAM client.
@param role_arn [String] The ARN of the role to find.
@return [Boolean] true if the role ARN was found; otherwise, false.
@example
exit 1 unless role_exists?(
Aws::IAM::Client.new(region: 'us-east-1'),
'arn:aws:iam::111111111111:role/aws-doc-sdk-examples-ec2-state-change'
)
def role_exists?(iam_client, role_arn)
 puts "Searching for role with ARN '#{role_arn}'..."
 response = iam_client.list_roles
 if response.roles.count.positive?
 if role_found?(response.roles, role_arn)
 puts 'Role found.'
 return true
 end
 while response.next_page?
 response = response.next_page
 next unless response.roles.count.positive?

 if role_found?(response.roles, role_arn)
 puts 'Role found.'
 return true
 end
 end
 end
 puts 'Role not found.'
 false
rescue StandardError => e
 puts "Role not found: #{e.message}"
 false
end

Create a role in IAM.

Scenarios 136

Amazon SDK for Ruby Developer Guide

Creates a role in AWS Identity and Access Management (IAM).
This role is used by a rule in Amazon EventBridge to allow
that rule to operate within the caller's account.
This role is designed to be used specifically by this code example.
#
@param iam_client [Aws::IAM::Client] An initialized IAM client.
@param role_name [String] The name of the role to create.
@return [String] The ARN of the role that was created.
@example
puts create_role(
Aws::IAM::Client.new(region: 'us-east-1'),
'aws-doc-sdk-examples-ec2-state-change'
)
def create_role(iam_client, role_name)
 puts "Creating the role named '#{role_name}'..."
 response = iam_client.create_role(
 assume_role_policy_document: {
 'Version': '2012-10-17',
 'Statement': [
 {
 'Sid': '',
 'Effect': 'Allow',
 'Principal': {
 'Service': 'events.amazonaws.com'
 },
 'Action': 'sts:AssumeRole'
 }
]
 }.to_json,
 path: '/',
 role_name: role_name
)
 puts "Role created with ARN '#{response.role.arn}'."
 puts 'Adding access policy to role...'
 iam_client.put_role_policy(
 policy_document: {
 'Version': '2012-10-17',
 'Statement': [
 {
 'Sid': 'CloudWatchEventsFullAccess',
 'Effect': 'Allow',
 'Resource': '*',
 'Action': 'events:*'

Scenarios 137

Amazon SDK for Ruby Developer Guide

 },
 {
 'Sid': 'IAMPassRoleForCloudWatchEvents',
 'Effect': 'Allow',
 'Resource': 'arn:aws:iam::*:role/AWS_Events_Invoke_Targets',
 'Action': 'iam:PassRole'
 }
]
 }.to_json,
 policy_name: 'CloudWatchEventsPolicy',
 role_name: role_name
)
 puts 'Access policy added to role.'
 response.role.arn
rescue StandardError => e
 puts "Error creating role or adding policy to it: #{e.message}"
 puts 'If the role was created, you must add the access policy ' \
 'to the role yourself, or delete the role yourself and try again.'
 'Error'
end

Checks whether the specified EventBridge rule exists among those provided to this function.

Checks whether the specified Amazon EventBridge rule exists among
those provided to this function.
This is a helper function that is called by the rule_exists? function.
#
@param rules [Array] An array of Aws::CloudWatchEvents::Types::Rule objects.
@param rule_arn [String] The name of the rule to find.
@return [Boolean] true if the name of the rule was found; otherwise, false.
@example
cloudwatchevents_client = Aws::CloudWatch::Client.new(region: 'us-east-1')
response = cloudwatchevents_client.list_rules
if rule_found?(response.rules, 'aws-doc-sdk-examples-ec2-state-change')
puts 'Rule found.'
end
def rule_found?(rules, rule_name)
 rules.each do |rule|
 return true if rule.name == rule_name
 end
 false
end

Scenarios 138

Amazon SDK for Ruby Developer Guide

Checks whether the specified rule exists among those available to the caller in EventBridge.

Checks whether the specified rule exists among those available to the
caller in Amazon EventBridge.
#
@param cloudwatchevents_client [Aws::CloudWatchEvents::Client]
An initialized Amazon EventBridge client.
@param rule_name [String] The name of the rule to find.
@return [Boolean] true if the rule name was found; otherwise, false.
@example
exit 1 unless rule_exists?(
Aws::CloudWatch::Client.new(region: 'us-east-1')
'aws-doc-sdk-examples-ec2-state-change'
)
def rule_exists?(cloudwatchevents_client, rule_name)
 puts "Searching for rule with name '#{rule_name}'..."
 response = cloudwatchevents_client.list_rules
 if response.rules.count.positive?
 if rule_found?(response.rules, rule_name)
 puts 'Rule found.'
 return true
 end
 while response.next_page?
 response = response.next_page
 next unless response.rules.count.positive?

 if rule_found?(response.rules, rule_name)
 puts 'Rule found.'
 return true
 end
 end
 end
 puts 'Rule not found.'
 false
rescue StandardError => e
 puts "Rule not found: #{e.message}"
 false
end

Create a rule in EventBridge.

Scenarios 139

Amazon SDK for Ruby Developer Guide

Creates a rule in Amazon EventBridge.
This rule is triggered whenever an available instance in
Amazon EC2 changes to the specified state.
This rule is designed to be used specifically by this code example.
#
Prerequisites:
#
- A role in AWS Identity and Access Management (IAM) that is designed
to be used specifically by this code example.
- A topic in Amazon SNS.
#
@param cloudwatchevents_client [Aws::CloudWatchEvents::Client]
An initialized Amazon EventBridge client.
@param rule_name [String] The name of the rule to create.
@param rule_description [String] Some description for this rule.
@param instance_state [String] The state that available instances in
Amazon EC2 must change to, to
trigger this rule.
@param role_arn [String] The Amazon Resource Name (ARN) of the IAM role.
@param target_id [String] Some identifying string for the rule's target.
@param topic_arn [String] The ARN of the Amazon SNS topic.
@return [Boolean] true if the rule was created; otherwise, false.
@example
exit 1 unless rule_created?(
Aws::CloudWatch::Client.new(region: 'us-east-1'),
'aws-doc-sdk-examples-ec2-state-change',
'Triggers when any available EC2 instance starts.',
'running',
'arn:aws:iam::111111111111:role/aws-doc-sdk-examples-ec2-state-change',
'sns-topic',
'arn:aws:sns:us-east-1:111111111111:aws-doc-sdk-examples-topic'
)
def rule_created?(
 cloudwatchevents_client,
 rule_name,
 rule_description,
 instance_state,
 role_arn,
 target_id,
 topic_arn
)
 puts "Creating rule with name '#{rule_name}'..."
 put_rule_response = cloudwatchevents_client.put_rule(

Scenarios 140

Amazon SDK for Ruby Developer Guide

 name: rule_name,
 description: rule_description,
 event_pattern: {
 'source': [
 'aws.ec2'
],
 'detail-type': [
 'EC2 Instance State-change Notification'
],
 'detail': {
 'state': [
 instance_state
]
 }
 }.to_json,
 state: 'ENABLED',
 role_arn: role_arn
)
 puts "Rule created with ARN '#{put_rule_response.rule_arn}'."

 put_targets_response = cloudwatchevents_client.put_targets(
 rule: rule_name,
 targets: [
 {
 id: target_id,
 arn: topic_arn
 }
]
)
 if put_targets_response.key?(:failed_entry_count) &&
 put_targets_response.failed_entry_count.positive?
 puts 'Error(s) adding target to rule:'
 put_targets_response.failed_entries.each do |failure|
 puts failure.error_message
 end
 false
 else
 true
 end
rescue StandardError => e
 puts "Error creating rule or adding target to rule: #{e.message}"
 puts 'If the rule was created, you must add the target ' \
 'to the rule yourself, or delete the rule yourself and try again.'
 false

Scenarios 141

Amazon SDK for Ruby Developer Guide

end

Check to see whether the specified log group exists among those available to the caller in
Amazon CloudWatch Logs.

Checks to see whether the specified log group exists among those available
to the caller in Amazon CloudWatch Logs.
#
@param cloudwatchlogs_client [Aws::CloudWatchLogs::Client] An initialized
Amazon CloudWatch Logs client.
@param log_group_name [String] The name of the log group to find.
@return [Boolean] true if the log group name was found; otherwise, false.
@example
exit 1 unless log_group_exists?(
Aws::CloudWatchLogs::Client.new(region: 'us-east-1'),
'aws-doc-sdk-examples-cloudwatch-log'
)
def log_group_exists?(cloudwatchlogs_client, log_group_name)
 puts "Searching for log group with name '#{log_group_name}'..."
 response = cloudwatchlogs_client.describe_log_groups(
 log_group_name_prefix: log_group_name
)
 if response.log_groups.count.positive?
 response.log_groups.each do |log_group|
 if log_group.log_group_name == log_group_name
 puts 'Log group found.'
 return true
 end
 end
 end
 puts 'Log group not found.'
 false
rescue StandardError => e
 puts "Log group not found: #{e.message}"
 false
end

Create a log group in CloudWatch Logs.

Creates a log group in Amazon CloudWatch Logs.
#

Scenarios 142

Amazon SDK for Ruby Developer Guide

@param cloudwatchlogs_client [Aws::CloudWatchLogs::Client] An initialized
Amazon CloudWatch Logs client.
@param log_group_name [String] The name of the log group to create.
@return [Boolean] true if the log group name was created; otherwise, false.
@example
exit 1 unless log_group_created?(
Aws::CloudWatchLogs::Client.new(region: 'us-east-1'),
'aws-doc-sdk-examples-cloudwatch-log'
)
def log_group_created?(cloudwatchlogs_client, log_group_name)
 puts "Attempting to create log group with the name '#{log_group_name}'..."
 cloudwatchlogs_client.create_log_group(log_group_name: log_group_name)
 puts 'Log group created.'
 true
rescue StandardError => e
 puts "Error creating log group: #{e.message}"
 false
end

Write an event to a log stream in CloudWatch Logs.

Writes an event to a log stream in Amazon CloudWatch Logs.
#
Prerequisites:
#
- A log group in Amazon CloudWatch Logs.
- A log stream within the log group.
#
@param cloudwatchlogs_client [Aws::CloudWatchLogs::Client] An initialized
Amazon CloudWatch Logs client.
@param log_group_name [String] The name of the log group.
@param log_stream_name [String] The name of the log stream within
the log group.
@param message [String] The message to write to the log stream.
@param sequence_token [String] If available, the sequence token from the
message that was written immediately before this message. This sequence
token is returned by Amazon CloudWatch Logs whenever you programmatically
write a message to the log stream.
@return [String] The sequence token that is returned by
Amazon CloudWatch Logs after successfully writing the message to the
log stream.
@example

Scenarios 143

Amazon SDK for Ruby Developer Guide

puts log_event(
Aws::EC2::Client.new(region: 'us-east-1'),
'aws-doc-sdk-examples-cloudwatch-log'
'2020/11/19/53f985be-199f-408e-9a45-fc242df41fEX',
"Instance 'i-033c48ef067af3dEX' restarted.",
'495426724868310740095796045676567882148068632824696073EX'
)
def log_event(
 cloudwatchlogs_client,
 log_group_name,
 log_stream_name,
 message,
 sequence_token
)
 puts "Attempting to log '#{message}' to log stream '#{log_stream_name}'..."
 event = {
 log_group_name: log_group_name,
 log_stream_name: log_stream_name,
 log_events: [
 {
 timestamp: (Time.now.utc.to_f.round(3) * 1_000).to_i,
 message: message
 }
]
 }
 event[:sequence_token] = sequence_token unless sequence_token.empty?

 response = cloudwatchlogs_client.put_log_events(event)
 puts 'Message logged.'
 response.next_sequence_token
rescue StandardError => e
 puts "Message not logged: #{e.message}"
end

Restart an Amazon Elastic Compute Cloud (Amazon EC2) instance and adds information about
the related activity to a log stream in CloudWatch Logs.

Restarts an Amazon EC2 instance
and adds information about the related activity to a log stream
in Amazon CloudWatch Logs.
#
Prerequisites:

Scenarios 144

Amazon SDK for Ruby Developer Guide

#
- The Amazon EC2 instance to restart.
- The log group in Amazon CloudWatch Logs to add related activity
information to.
#
@param ec2_client [Aws::EC2::Client] An initialized Amazon EC2 client.
@param cloudwatchlogs_client [Aws::CloudWatchLogs::Client]
An initialized Amazon CloudWatch Logs client.
@param instance_id [String] The ID of the instance.
@param log_group_name [String] The name of the log group.
@return [Boolean] true if the instance was restarted and the information
was written to the log stream; otherwise, false.
@example
exit 1 unless instance_restarted?(
Aws::EC2::Client.new(region: 'us-east-1'),
Aws::CloudWatchLogs::Client.new(region: 'us-east-1'),
'i-033c48ef067af3dEX',
'aws-doc-sdk-examples-cloudwatch-log'
)
def instance_restarted?(
 ec2_client,
 cloudwatchlogs_client,
 instance_id,
 log_group_name
)
 log_stream_name = "#{Time.now.year}/#{Time.now.month}/#{Time.now.day}/" \
 "#{SecureRandom.uuid}"
 cloudwatchlogs_client.create_log_stream(
 log_group_name: log_group_name,
 log_stream_name: log_stream_name
)
 sequence_token = ''

 puts "Attempting to stop the instance with the ID '#{instance_id}'. " \
 'This might take a few minutes...'
 ec2_client.stop_instances(instance_ids: [instance_id])
 ec2_client.wait_until(:instance_stopped, instance_ids: [instance_id])
 puts 'Instance stopped.'
 sequence_token = log_event(
 cloudwatchlogs_client,
 log_group_name,
 log_stream_name,
 "Instance '#{instance_id}' stopped.",
 sequence_token

Scenarios 145

Amazon SDK for Ruby Developer Guide

)

 puts 'Attempting to restart the instance. This might take a few minutes...'
 ec2_client.start_instances(instance_ids: [instance_id])
 ec2_client.wait_until(:instance_running, instance_ids: [instance_id])
 puts 'Instance restarted.'
 sequence_token = log_event(
 cloudwatchlogs_client,
 log_group_name,
 log_stream_name,
 "Instance '#{instance_id}' restarted.",
 sequence_token
)

 true
rescue StandardError => e
 puts 'Error creating log stream or stopping or restarting the instance: ' \
 "#{e.message}"
 log_event(
 cloudwatchlogs_client,
 log_group_name,
 log_stream_name,
 "Error stopping or starting instance '#{instance_id}': #{e.message}",
 sequence_token
)
 false
end

Display information about activity for a rule in EventBridge.

Displays information about activity for a rule in Amazon EventBridge.
#
Prerequisites:
#
- A rule in Amazon EventBridge.
#
@param cloudwatch_client [Amazon::CloudWatch::Client] An initialized
Amazon CloudWatch client.
@param rule_name [String] The name of the rule.
@param start_time [Time] The timestamp that determines the first datapoint
to return. Can also be expressed as DateTime, Date, Integer, or String.
@param end_time [Time] The timestamp that determines the last datapoint

Scenarios 146

Amazon SDK for Ruby Developer Guide

to return. Can also be expressed as DateTime, Date, Integer, or String.
@param period [Integer] The interval, in seconds, to check for activity.
@example
display_rule_activity(
Aws::CloudWatch::Client.new(region: 'us-east-1'),
'aws-doc-sdk-examples-ec2-state-change',
Time.now - 600, # Start checking from 10 minutes ago.
Time.now, # Check up until now.
60 # Check every minute during those 10 minutes.
)
def display_rule_activity(
 cloudwatch_client,
 rule_name,
 start_time,
 end_time,
 period
)
 puts 'Attempting to display rule activity...'
 response = cloudwatch_client.get_metric_statistics(
 namespace: 'AWS/Events',
 metric_name: 'Invocations',
 dimensions: [
 {
 name: 'RuleName',
 value: rule_name
 }
],
 start_time: start_time,
 end_time: end_time,
 period: period,
 statistics: ['Sum'],
 unit: 'Count'
)

 if response.key?(:datapoints) && response.datapoints.count.positive?
 puts "The event rule '#{rule_name}' was triggered:"
 response.datapoints.each do |datapoint|
 puts " #{datapoint.sum} time(s) at #{datapoint.timestamp}"
 end
 else
 puts "The event rule '#{rule_name}' was not triggered during the " \
 'specified time period.'
 end
rescue StandardError => e

Scenarios 147

Amazon SDK for Ruby Developer Guide

 puts "Error getting information about event rule activity: #{e.message}"
end

Display log information for all of the log streams in a CloudWatch Logs log group.

Displays log information for all of the log streams in a log group in
Amazon CloudWatch Logs.
#
Prerequisites:
#
- A log group in Amazon CloudWatch Logs.
#
@param cloudwatchlogs_client [Amazon::CloudWatchLogs::Client] An initialized
Amazon CloudWatch Logs client.
@param log_group_name [String] The name of the log group.
@example
display_log_data(
Amazon::CloudWatchLogs::Client.new(region: 'us-east-1'),
'aws-doc-sdk-examples-cloudwatch-log'
)
def display_log_data(cloudwatchlogs_client, log_group_name)
 puts 'Attempting to display log stream data for the log group ' \
 "named '#{log_group_name}'..."
 describe_log_streams_response = cloudwatchlogs_client.describe_log_streams(
 log_group_name: log_group_name,
 order_by: 'LastEventTime',
 descending: true
)
 if describe_log_streams_response.key?(:log_streams) &&
 describe_log_streams_response.log_streams.count.positive?
 describe_log_streams_response.log_streams.each do |log_stream|
 get_log_events_response = cloudwatchlogs_client.get_log_events(
 log_group_name: log_group_name,
 log_stream_name: log_stream.log_stream_name
)
 puts "\nLog messages for '#{log_stream.log_stream_name}':"
 puts '-' * (log_stream.log_stream_name.length + 20)
 if get_log_events_response.key?(:events) &&
 get_log_events_response.events.count.positive?
 get_log_events_response.events.each do |event|
 puts event.message
 end

Scenarios 148

Amazon SDK for Ruby Developer Guide

 else
 puts 'No log messages for this log stream.'
 end
 end
 end
rescue StandardError => e
 puts 'Error getting information about the log streams or their messages: ' \
 "#{e.message}"
end

Display a reminder to the caller to manually clean up any associated Amazon resources that
they no longer need.

Displays a reminder to the caller to manually clean up any associated
AWS resources that they no longer need.
#
@param topic_name [String] The name of the Amazon SNS topic.
@param role_name [String] The name of the IAM role.
@param rule_name [String] The name of the Amazon EventBridge rule.
@param log_group_name [String] The name of the Amazon CloudWatch Logs log group.
@param instance_id [String] The ID of the Amazon EC2 instance.
@example
manual_cleanup_notice(
'aws-doc-sdk-examples-topic',
'aws-doc-sdk-examples-cloudwatch-events-rule-role',
'aws-doc-sdk-examples-ec2-state-change',
'aws-doc-sdk-examples-cloudwatch-log',
'i-033c48ef067af3dEX'
)
def manual_cleanup_notice(
 topic_name, role_name, rule_name, log_group_name, instance_id
)
 puts '-' * 10
 puts 'Some of the following AWS resources might still exist in your account.'
 puts 'If you no longer want to use this code example, then to clean up'
 puts 'your AWS account and avoid unexpected costs, you might want to'
 puts 'manually delete any of the following resources if they exist:'
 puts "- The Amazon SNS topic named '#{topic_name}'."
 puts "- The IAM role named '#{role_name}'."
 puts "- The Amazon EventBridge rule named '#{rule_name}'."
 puts "- The Amazon CloudWatch Logs log group named '#{log_group_name}'."
 puts "- The Amazon EC2 instance with the ID '#{instance_id}'."

Scenarios 149

Amazon SDK for Ruby Developer Guide

end

• For API details, see the following topics in Amazon SDK for Ruby API Reference.

• PutEvents

• PutRule

Amazon Glue examples using SDK for Ruby

The following code examples show you how to perform actions and implement common scenarios
by using the Amazon SDK for Ruby with Amazon Glue.

Basics are code examples that show you how to perform the essential operations within a service.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Topics

• Get started

• Basics

• Actions

Get started

Hello Amazon Glue

The following code example shows how to get started using Amazon Glue.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

Amazon Glue 150

https://docs.amazonaws.cn/goto/SdkForRubyV3/eventbridge-2015-10-07/PutEvents
https://docs.amazonaws.cn/goto/SdkForRubyV3/eventbridge-2015-10-07/PutRule
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/glue#code-examples

Amazon SDK for Ruby Developer Guide

require 'aws-sdk-glue'
require 'logger'

GlueManager is a class responsible for managing AWS Glue operations
such as listing all Glue jobs in the current AWS account.
class GlueManager
 def initialize(client)
 @client = client
 @logger = Logger.new($stdout)
 end

 # Lists and prints all Glue jobs in the current AWS account.
 def list_jobs
 @logger.info('Here are the Glue jobs in your account:')

 paginator = @client.get_jobs(max_results: 10)
 jobs = []

 paginator.each_page do |page|
 jobs.concat(page.jobs)
 end

 if jobs.empty?
 @logger.info("You don't have any Glue jobs.")
 else
 jobs.each do |job|
 @logger.info("- #{job.name}")
 end
 end
 end
end

if $PROGRAM_NAME == __FILE__
 glue_client = Aws::Glue::Client.new
 manager = GlueManager.new(glue_client)
 manager.list_jobs
end

• For API details, see ListJobs in Amazon SDK for Ruby API Reference.

Get started 151

https://docs.amazonaws.cn/goto/SdkForRubyV3/glue-2017-03-31/ListJobs

Amazon SDK for Ruby Developer Guide

Basics

Learn the basics

The following code example shows how to:

• Create a crawler that crawls a public Amazon S3 bucket and generates a database of CSV-
formatted metadata.

• List information about databases and tables in your Amazon Glue Data Catalog.

• Create a job to extract CSV data from the S3 bucket, transform the data, and load JSON-
formatted output into another S3 bucket.

• List information about job runs, view transformed data, and clean up resources.

For more information, see Tutorial: Getting started with Amazon Glue Studio.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

Create a class that wraps Amazon Glue functions used in the scenario.

The `GlueWrapper` class serves as a wrapper around the AWS Glue API, providing a
 simplified interface for common operations.
It encapsulates the functionality of the AWS SDK for Glue and provides methods for
 interacting with Glue crawlers, databases, tables, jobs, and S3 resources.
The class initializes with a Glue client and a logger, allowing it to make API
 calls and log any errors or informational messages.
class GlueWrapper
 def initialize(glue_client, logger)
 @glue_client = glue_client
 @logger = logger
 end

 # Retrieves information about a specific crawler.
 #

Basics 152

https://docs.amazonaws.cn/glue/latest/ug/tutorial-create-job.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/glue#code-examples

Amazon SDK for Ruby Developer Guide

 # @param name [String] The name of the crawler to retrieve information about.
 # @return [Aws::Glue::Types::Crawler, nil] The crawler object if found, or nil if
 not found.
 def get_crawler(name)
 @glue_client.get_crawler(name: name)
 rescue Aws::Glue::Errors::EntityNotFoundException
 @logger.info("Crawler #{name} doesn't exist.")
 false
 rescue Aws::Glue::Errors::GlueException => e
 @logger.error("Glue could not get crawler #{name}: \n#{e.message}")
 raise
 end

 # Creates a new crawler with the specified configuration.
 #
 # @param name [String] The name of the crawler.
 # @param role_arn [String] The ARN of the IAM role to be used by the crawler.
 # @param db_name [String] The name of the database where the crawler stores its
 metadata.
 # @param db_prefix [String] The prefix to be added to the names of tables that the
 crawler creates.
 # @param s3_target [String] The S3 path that the crawler will crawl.
 # @return [void]
 def create_crawler(name, role_arn, db_name, _db_prefix, s3_target)
 @glue_client.create_crawler(
 name: name,
 role: role_arn,
 database_name: db_name,
 targets: {
 s3_targets: [
 {
 path: s3_target
 }
]
 }
)
 rescue Aws::Glue::Errors::GlueException => e
 @logger.error("Glue could not create crawler: \n#{e.message}")
 raise
 end

 # Starts a crawler with the specified name.
 #
 # @param name [String] The name of the crawler to start.

Basics 153

Amazon SDK for Ruby Developer Guide

 # @return [void]
 def start_crawler(name)
 @glue_client.start_crawler(name: name)
 rescue Aws::Glue::Errors::ServiceError => e
 @logger.error("Glue could not start crawler #{name}: \n#{e.message}")
 raise
 end

 # Deletes a crawler with the specified name.
 #
 # @param name [String] The name of the crawler to delete.
 # @return [void]
 def delete_crawler(name)
 @glue_client.delete_crawler(name: name)
 rescue Aws::Glue::Errors::ServiceError => e
 @logger.error("Glue could not delete crawler #{name}: \n#{e.message}")
 raise
 end

 # Retrieves information about a specific database.
 #
 # @param name [String] The name of the database to retrieve information about.
 # @return [Aws::Glue::Types::Database, nil] The database object if found, or nil
 if not found.
 def get_database(name)
 response = @glue_client.get_database(name: name)
 response.database
 rescue Aws::Glue::Errors::GlueException => e
 @logger.error("Glue could not get database #{name}: \n#{e.message}")
 raise
 end

 # Retrieves a list of tables in the specified database.
 #
 # @param db_name [String] The name of the database to retrieve tables from.
 # @return [Array<Aws::Glue::Types::Table>]
 def get_tables(db_name)
 response = @glue_client.get_tables(database_name: db_name)
 response.table_list
 rescue Aws::Glue::Errors::GlueException => e
 @logger.error("Glue could not get tables #{db_name}: \n#{e.message}")
 raise
 end

Basics 154

Amazon SDK for Ruby Developer Guide

 # Creates a new job with the specified configuration.
 #
 # @param name [String] The name of the job.
 # @param description [String] The description of the job.
 # @param role_arn [String] The ARN of the IAM role to be used by the job.
 # @param script_location [String] The location of the ETL script for the job.
 # @return [void]
 def create_job(name, description, role_arn, script_location)
 @glue_client.create_job(
 name: name,
 description: description,
 role: role_arn,
 command: {
 name: 'glueetl',
 script_location: script_location,
 python_version: '3'
 },
 glue_version: '3.0'
)
 rescue Aws::Glue::Errors::GlueException => e
 @logger.error("Glue could not create job #{name}: \n#{e.message}")
 raise
 end

 # Starts a job run for the specified job.
 #
 # @param name [String] The name of the job to start the run for.
 # @param input_database [String] The name of the input database for the job.
 # @param input_table [String] The name of the input table for the job.
 # @param output_bucket_name [String] The name of the output S3 bucket for the job.
 # @return [String] The ID of the started job run.
 def start_job_run(name, input_database, input_table, output_bucket_name)
 response = @glue_client.start_job_run(
 job_name: name,
 arguments: {
 '--input_database': input_database,
 '--input_table': input_table,
 '--output_bucket_url': "s3://#{output_bucket_name}/"
 }
)
 response.job_run_id
 rescue Aws::Glue::Errors::GlueException => e
 @logger.error("Glue could not start job run #{name}: \n#{e.message}")
 raise

Basics 155

Amazon SDK for Ruby Developer Guide

 end

 # Retrieves a list of jobs in AWS Glue.
 #
 # @return [Aws::Glue::Types::ListJobsResponse]
 def list_jobs
 @glue_client.list_jobs
 rescue Aws::Glue::Errors::GlueException => e
 @logger.error("Glue could not list jobs: \n#{e.message}")
 raise
 end

 # Retrieves a list of job runs for the specified job.
 #
 # @param job_name [String] The name of the job to retrieve job runs for.
 # @return [Array<Aws::Glue::Types::JobRun>]
 def get_job_runs(job_name)
 response = @glue_client.get_job_runs(job_name: job_name)
 response.job_runs
 rescue Aws::Glue::Errors::GlueException => e
 @logger.error("Glue could not get job runs: \n#{e.message}")
 end

 # Retrieves data for a specific job run.
 #
 # @param job_name [String] The name of the job run to retrieve data for.
 # @return [Glue::Types::GetJobRunResponse]
 def get_job_run(job_name, run_id)
 @glue_client.get_job_run(job_name: job_name, run_id: run_id)
 rescue Aws::Glue::Errors::GlueException => e
 @logger.error("Glue could not get job runs: \n#{e.message}")
 end

 # Deletes a job with the specified name.
 #
 # @param job_name [String] The name of the job to delete.
 # @return [void]
 def delete_job(job_name)
 @glue_client.delete_job(job_name: job_name)
 rescue Aws::Glue::Errors::ServiceError => e
 @logger.error("Glue could not delete job: \n#{e.message}")
 end

 # Deletes a table with the specified name.

Basics 156

Amazon SDK for Ruby Developer Guide

 #
 # @param database_name [String] The name of the catalog database in which the
 table resides.
 # @param table_name [String] The name of the table to be deleted.
 # @return [void]
 def delete_table(database_name, table_name)
 @glue_client.delete_table(database_name: database_name, name: table_name)
 rescue Aws::Glue::Errors::ServiceError => e
 @logger.error("Glue could not delete job: \n#{e.message}")
 end

 # Removes a specified database from a Data Catalog.
 #
 # @param database_name [String] The name of the database to delete.
 # @return [void]
 def delete_database(database_name)
 @glue_client.delete_database(name: database_name)
 rescue Aws::Glue::Errors::ServiceError => e
 @logger.error("Glue could not delete database: \n#{e.message}")
 end

 # Uploads a job script file to an S3 bucket.
 #
 # @param file_path [String] The local path of the job script file.
 # @param bucket_resource [Aws::S3::Bucket] The S3 bucket resource to upload the
 file to.
 # @return [void]
 def upload_job_script(file_path, bucket_resource)
 File.open(file_path) do |file|
 bucket_resource.client.put_object({
 body: file,
 bucket: bucket_resource.name,
 key: file_path
 })
 end
 rescue Aws::S3::Errors::S3UploadFailedError => e
 @logger.error("S3 could not upload job script: \n#{e.message}")
 raise
 end
end

Create a class that runs the scenario.

Basics 157

Amazon SDK for Ruby Developer Guide

class GlueCrawlerJobScenario
 def initialize(glue_client, glue_service_role, glue_bucket, logger)
 @glue_client = glue_client
 @glue_service_role = glue_service_role
 @glue_bucket = glue_bucket
 @logger = logger
 end

 def run(crawler_name, db_name, db_prefix, data_source, job_script, job_name)
 wrapper = GlueWrapper.new(@glue_client, @logger)
 setup_crawler(wrapper, crawler_name, db_name, db_prefix, data_source)
 query_database(wrapper, crawler_name, db_name)
 create_and_run_job(wrapper, job_script, job_name, db_name)
 end

 private

 def setup_crawler(wrapper, crawler_name, db_name, db_prefix, data_source)
 new_step(1, 'Create a crawler')
 crawler = wrapper.get_crawler(crawler_name)
 unless crawler
 puts "Creating crawler #{crawler_name}."
 wrapper.create_crawler(crawler_name, @glue_service_role.arn, db_name,
 db_prefix, data_source)
 puts "Successfully created #{crawler_name}."
 end
 wrapper.start_crawler(crawler_name)
 monitor_crawler(wrapper, crawler_name)
 end

 def monitor_crawler(wrapper, crawler_name)
 new_step(2, 'Monitor Crawler')
 crawler_state = nil
 until crawler_state == 'READY'
 custom_wait(15)
 crawler = wrapper.get_crawler(crawler_name)
 crawler_state = crawler[0]['state']
 print "Crawler status: #{crawler_state}".yellow
 end
 end

 def query_database(wrapper, _crawler_name, db_name)
 new_step(3, 'Query the database.')

Basics 158

Amazon SDK for Ruby Developer Guide

 wrapper.get_database(db_name)
 puts "The crawler created database #{db_name}:"
 puts "Database contains tables: #{wrapper.get_tables(db_name).map { |t|
 t['name'] }}"
 end

 def create_and_run_job(wrapper, job_script, job_name, db_name)
 new_step(4, 'Create and run job.')
 wrapper.upload_job_script(job_script, @glue_bucket)
 wrapper.create_job(job_name, 'ETL Job', @glue_service_role.arn, "s3://
#{@glue_bucket.name}/#{job_script}")
 run_job(wrapper, job_name, db_name)
 end

 def run_job(wrapper, job_name, db_name)
 new_step(5, 'Run the job.')
 wrapper.start_job_run(job_name, db_name, wrapper.get_tables(db_name)[0]['name'],
 @glue_bucket.name)
 job_run_status = nil
 until %w[SUCCEEDED FAILED STOPPED].include?(job_run_status)
 custom_wait(10)
 job_run = wrapper.get_job_runs(job_name)
 job_run_status = job_run[0]['job_run_state']
 print "Job #{job_name} status: #{job_run_status}".yellow
 end
 end
end

def main
 banner('../../helpers/banner.txt')
 puts 'Starting AWS Glue demo...'

 # Load resource names from YAML.
 resource_names = YAML.load_file('resource_names.yaml')

 # Setup services and resources.
 iam_role = Aws::IAM::Resource.new(region: 'us-
east-1').role(resource_names['glue_service_role'])
 s3_bucket = Aws::S3::Resource.new(region: 'us-
east-1').bucket(resource_names['glue_bucket'])

 # Instantiate scenario and run.
 scenario = GlueCrawlerJobScenario.new(Aws::Glue::Client.new(region: 'us-east-1'),
 iam_role, s3_bucket, @logger)

Basics 159

Amazon SDK for Ruby Developer Guide

 random_suffix = rand(10**4)
 scenario.run("crawler-#{random_suffix}", "db-#{random_suffix}", "prefix-
#{random_suffix}-", 's3://data_source',
 'job_script.py', "job-#{random_suffix}")

 puts 'Demo complete.'
end

Create an ETL script that is used by Amazon Glue to extract, transform, and load data during job
runs.

import sys
from awsglue.transforms import *
from awsglue.utils import getResolvedOptions
from pyspark.context import SparkContext
from awsglue.context import GlueContext
from awsglue.job import Job

"""
These custom arguments must be passed as Arguments to the StartJobRun request.
 --input_database The name of a metadata database that is contained in your
 AWS Glue Data Catalog and that contains tables that
 describe
 the data to be processed.
 --input_table The name of a table in the database that describes the data
 to
 be processed.
 --output_bucket_url An S3 bucket that receives the transformed output data.
"""
args = getResolvedOptions(
 sys.argv, ["JOB_NAME", "input_database", "input_table", "output_bucket_url"]
)
sc = SparkContext()
glueContext = GlueContext(sc)
spark = glueContext.spark_session
job = Job(glueContext)
job.init(args["JOB_NAME"], args)

Script generated for node S3 Flight Data.
S3FlightData_node1 = glueContext.create_dynamic_frame.from_catalog(
 database=args["input_database"],
 table_name=args["input_table"],

Basics 160

Amazon SDK for Ruby Developer Guide

 transformation_ctx="S3FlightData_node1",
)

This mapping performs two main functions:
1. It simplifies the output by removing most of the fields from the data.
2. It renames some fields. For example, `fl_date` is renamed to `flight_date`.
ApplyMapping_node2 = ApplyMapping.apply(
 frame=S3FlightData_node1,
 mappings=[
 ("year", "long", "year", "long"),
 ("month", "long", "month", "tinyint"),
 ("day_of_month", "long", "day", "tinyint"),
 ("fl_date", "string", "flight_date", "string"),
 ("carrier", "string", "carrier", "string"),
 ("fl_num", "long", "flight_num", "long"),
 ("origin_city_name", "string", "origin_city_name", "string"),
 ("origin_state_abr", "string", "origin_state_abr", "string"),
 ("dest_city_name", "string", "dest_city_name", "string"),
 ("dest_state_abr", "string", "dest_state_abr", "string"),
 ("dep_time", "long", "departure_time", "long"),
 ("wheels_off", "long", "wheels_off", "long"),
 ("wheels_on", "long", "wheels_on", "long"),
 ("arr_time", "long", "arrival_time", "long"),
 ("mon", "string", "mon", "string"),
],
 transformation_ctx="ApplyMapping_node2",
)

Script generated for node Revised Flight Data.
RevisedFlightData_node3 = glueContext.write_dynamic_frame.from_options(
 frame=ApplyMapping_node2,
 connection_type="s3",
 format="json",
 connection_options={"path": args["output_bucket_url"], "partitionKeys": []},
 transformation_ctx="RevisedFlightData_node3",
)

job.commit()

• For API details, see the following topics in Amazon SDK for Ruby API Reference.

• CreateCrawler

• CreateJob

Basics 161

https://docs.amazonaws.cn/goto/SdkForRubyV3/glue-2017-03-31/CreateCrawler
https://docs.amazonaws.cn/goto/SdkForRubyV3/glue-2017-03-31/CreateJob

Amazon SDK for Ruby Developer Guide

• DeleteCrawler

• DeleteDatabase

• DeleteJob

• DeleteTable

• GetCrawler

• GetDatabase

• GetDatabases

• GetJob

• GetJobRun

• GetJobRuns

• GetTables

• ListJobs

• StartCrawler

• StartJobRun

Actions

CreateCrawler

The following code example shows how to use CreateCrawler.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

The `GlueWrapper` class serves as a wrapper around the AWS Glue API, providing a
 simplified interface for common operations.
It encapsulates the functionality of the AWS SDK for Glue and provides methods for
 interacting with Glue crawlers, databases, tables, jobs, and S3 resources.
The class initializes with a Glue client and a logger, allowing it to make API
 calls and log any errors or informational messages.

Actions 162

https://docs.amazonaws.cn/goto/SdkForRubyV3/glue-2017-03-31/DeleteCrawler
https://docs.amazonaws.cn/goto/SdkForRubyV3/glue-2017-03-31/DeleteDatabase
https://docs.amazonaws.cn/goto/SdkForRubyV3/glue-2017-03-31/DeleteJob
https://docs.amazonaws.cn/goto/SdkForRubyV3/glue-2017-03-31/DeleteTable
https://docs.amazonaws.cn/goto/SdkForRubyV3/glue-2017-03-31/GetCrawler
https://docs.amazonaws.cn/goto/SdkForRubyV3/glue-2017-03-31/GetDatabase
https://docs.amazonaws.cn/goto/SdkForRubyV3/glue-2017-03-31/GetDatabases
https://docs.amazonaws.cn/goto/SdkForRubyV3/glue-2017-03-31/GetJob
https://docs.amazonaws.cn/goto/SdkForRubyV3/glue-2017-03-31/GetJobRun
https://docs.amazonaws.cn/goto/SdkForRubyV3/glue-2017-03-31/GetJobRuns
https://docs.amazonaws.cn/goto/SdkForRubyV3/glue-2017-03-31/GetTables
https://docs.amazonaws.cn/goto/SdkForRubyV3/glue-2017-03-31/ListJobs
https://docs.amazonaws.cn/goto/SdkForRubyV3/glue-2017-03-31/StartCrawler
https://docs.amazonaws.cn/goto/SdkForRubyV3/glue-2017-03-31/StartJobRun
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/glue#code-examples

Amazon SDK for Ruby Developer Guide

class GlueWrapper
 def initialize(glue_client, logger)
 @glue_client = glue_client
 @logger = logger
 end

 # Creates a new crawler with the specified configuration.
 #
 # @param name [String] The name of the crawler.
 # @param role_arn [String] The ARN of the IAM role to be used by the crawler.
 # @param db_name [String] The name of the database where the crawler stores its
 metadata.
 # @param db_prefix [String] The prefix to be added to the names of tables that the
 crawler creates.
 # @param s3_target [String] The S3 path that the crawler will crawl.
 # @return [void]
 def create_crawler(name, role_arn, db_name, _db_prefix, s3_target)
 @glue_client.create_crawler(
 name: name,
 role: role_arn,
 database_name: db_name,
 targets: {
 s3_targets: [
 {
 path: s3_target
 }
]
 }
)
 rescue Aws::Glue::Errors::GlueException => e
 @logger.error("Glue could not create crawler: \n#{e.message}")
 raise
 end

• For API details, see CreateCrawler in Amazon SDK for Ruby API Reference.

CreateJob

The following code example shows how to use CreateJob.

Actions 163

https://docs.amazonaws.cn/goto/SdkForRubyV3/glue-2017-03-31/CreateCrawler

Amazon SDK for Ruby Developer Guide

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

The `GlueWrapper` class serves as a wrapper around the AWS Glue API, providing a
 simplified interface for common operations.
It encapsulates the functionality of the AWS SDK for Glue and provides methods for
 interacting with Glue crawlers, databases, tables, jobs, and S3 resources.
The class initializes with a Glue client and a logger, allowing it to make API
 calls and log any errors or informational messages.
class GlueWrapper
 def initialize(glue_client, logger)
 @glue_client = glue_client
 @logger = logger
 end

 # Creates a new job with the specified configuration.
 #
 # @param name [String] The name of the job.
 # @param description [String] The description of the job.
 # @param role_arn [String] The ARN of the IAM role to be used by the job.
 # @param script_location [String] The location of the ETL script for the job.
 # @return [void]
 def create_job(name, description, role_arn, script_location)
 @glue_client.create_job(
 name: name,
 description: description,
 role: role_arn,
 command: {
 name: 'glueetl',
 script_location: script_location,
 python_version: '3'
 },
 glue_version: '3.0'
)
 rescue Aws::Glue::Errors::GlueException => e
 @logger.error("Glue could not create job #{name}: \n#{e.message}")

Actions 164

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/glue#code-examples

Amazon SDK for Ruby Developer Guide

 raise
 end

• For API details, see CreateJob in Amazon SDK for Ruby API Reference.

DeleteCrawler

The following code example shows how to use DeleteCrawler.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

The `GlueWrapper` class serves as a wrapper around the AWS Glue API, providing a
 simplified interface for common operations.
It encapsulates the functionality of the AWS SDK for Glue and provides methods for
 interacting with Glue crawlers, databases, tables, jobs, and S3 resources.
The class initializes with a Glue client and a logger, allowing it to make API
 calls and log any errors or informational messages.
class GlueWrapper
 def initialize(glue_client, logger)
 @glue_client = glue_client
 @logger = logger
 end

 # Deletes a crawler with the specified name.
 #
 # @param name [String] The name of the crawler to delete.
 # @return [void]
 def delete_crawler(name)
 @glue_client.delete_crawler(name: name)
 rescue Aws::Glue::Errors::ServiceError => e
 @logger.error("Glue could not delete crawler #{name}: \n#{e.message}")
 raise
 end

Actions 165

https://docs.amazonaws.cn/goto/SdkForRubyV3/glue-2017-03-31/CreateJob
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/glue#code-examples

Amazon SDK for Ruby Developer Guide

• For API details, see DeleteCrawler in Amazon SDK for Ruby API Reference.

DeleteDatabase

The following code example shows how to use DeleteDatabase.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

The `GlueWrapper` class serves as a wrapper around the AWS Glue API, providing a
 simplified interface for common operations.
It encapsulates the functionality of the AWS SDK for Glue and provides methods for
 interacting with Glue crawlers, databases, tables, jobs, and S3 resources.
The class initializes with a Glue client and a logger, allowing it to make API
 calls and log any errors or informational messages.
class GlueWrapper
 def initialize(glue_client, logger)
 @glue_client = glue_client
 @logger = logger
 end

 # Removes a specified database from a Data Catalog.
 #
 # @param database_name [String] The name of the database to delete.
 # @return [void]
 def delete_database(database_name)
 @glue_client.delete_database(name: database_name)
 rescue Aws::Glue::Errors::ServiceError => e
 @logger.error("Glue could not delete database: \n#{e.message}")
 end

• For API details, see DeleteDatabase in Amazon SDK for Ruby API Reference.

Actions 166

https://docs.amazonaws.cn/goto/SdkForRubyV3/glue-2017-03-31/DeleteCrawler
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/glue#code-examples
https://docs.amazonaws.cn/goto/SdkForRubyV3/glue-2017-03-31/DeleteDatabase

Amazon SDK for Ruby Developer Guide

DeleteJob

The following code example shows how to use DeleteJob.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

The `GlueWrapper` class serves as a wrapper around the AWS Glue API, providing a
 simplified interface for common operations.
It encapsulates the functionality of the AWS SDK for Glue and provides methods for
 interacting with Glue crawlers, databases, tables, jobs, and S3 resources.
The class initializes with a Glue client and a logger, allowing it to make API
 calls and log any errors or informational messages.
class GlueWrapper
 def initialize(glue_client, logger)
 @glue_client = glue_client
 @logger = logger
 end

 # Deletes a job with the specified name.
 #
 # @param job_name [String] The name of the job to delete.
 # @return [void]
 def delete_job(job_name)
 @glue_client.delete_job(job_name: job_name)
 rescue Aws::Glue::Errors::ServiceError => e
 @logger.error("Glue could not delete job: \n#{e.message}")
 end

• For API details, see DeleteJob in Amazon SDK for Ruby API Reference.

DeleteTable

The following code example shows how to use DeleteTable.

Actions 167

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/glue#code-examples
https://docs.amazonaws.cn/goto/SdkForRubyV3/glue-2017-03-31/DeleteJob

Amazon SDK for Ruby Developer Guide

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

The `GlueWrapper` class serves as a wrapper around the AWS Glue API, providing a
 simplified interface for common operations.
It encapsulates the functionality of the AWS SDK for Glue and provides methods for
 interacting with Glue crawlers, databases, tables, jobs, and S3 resources.
The class initializes with a Glue client and a logger, allowing it to make API
 calls and log any errors or informational messages.
class GlueWrapper
 def initialize(glue_client, logger)
 @glue_client = glue_client
 @logger = logger
 end

 # Deletes a table with the specified name.
 #
 # @param database_name [String] The name of the catalog database in which the
 table resides.
 # @param table_name [String] The name of the table to be deleted.
 # @return [void]
 def delete_table(database_name, table_name)
 @glue_client.delete_table(database_name: database_name, name: table_name)
 rescue Aws::Glue::Errors::ServiceError => e
 @logger.error("Glue could not delete job: \n#{e.message}")
 end

• For API details, see DeleteTable in Amazon SDK for Ruby API Reference.

GetCrawler

The following code example shows how to use GetCrawler.

Actions 168

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/glue#code-examples
https://docs.amazonaws.cn/goto/SdkForRubyV3/glue-2017-03-31/DeleteTable

Amazon SDK for Ruby Developer Guide

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

The `GlueWrapper` class serves as a wrapper around the AWS Glue API, providing a
 simplified interface for common operations.
It encapsulates the functionality of the AWS SDK for Glue and provides methods for
 interacting with Glue crawlers, databases, tables, jobs, and S3 resources.
The class initializes with a Glue client and a logger, allowing it to make API
 calls and log any errors or informational messages.
class GlueWrapper
 def initialize(glue_client, logger)
 @glue_client = glue_client
 @logger = logger
 end

 # Retrieves information about a specific crawler.
 #
 # @param name [String] The name of the crawler to retrieve information about.
 # @return [Aws::Glue::Types::Crawler, nil] The crawler object if found, or nil if
 not found.
 def get_crawler(name)
 @glue_client.get_crawler(name: name)
 rescue Aws::Glue::Errors::EntityNotFoundException
 @logger.info("Crawler #{name} doesn't exist.")
 false
 rescue Aws::Glue::Errors::GlueException => e
 @logger.error("Glue could not get crawler #{name}: \n#{e.message}")
 raise
 end

• For API details, see GetCrawler in Amazon SDK for Ruby API Reference.

Actions 169

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/glue#code-examples
https://docs.amazonaws.cn/goto/SdkForRubyV3/glue-2017-03-31/GetCrawler

Amazon SDK for Ruby Developer Guide

GetDatabase

The following code example shows how to use GetDatabase.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

The `GlueWrapper` class serves as a wrapper around the AWS Glue API, providing a
 simplified interface for common operations.
It encapsulates the functionality of the AWS SDK for Glue and provides methods for
 interacting with Glue crawlers, databases, tables, jobs, and S3 resources.
The class initializes with a Glue client and a logger, allowing it to make API
 calls and log any errors or informational messages.
class GlueWrapper
 def initialize(glue_client, logger)
 @glue_client = glue_client
 @logger = logger
 end

 # Retrieves information about a specific database.
 #
 # @param name [String] The name of the database to retrieve information about.
 # @return [Aws::Glue::Types::Database, nil] The database object if found, or nil
 if not found.
 def get_database(name)
 response = @glue_client.get_database(name: name)
 response.database
 rescue Aws::Glue::Errors::GlueException => e
 @logger.error("Glue could not get database #{name}: \n#{e.message}")
 raise
 end

• For API details, see GetDatabase in Amazon SDK for Ruby API Reference.

Actions 170

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/glue#code-examples
https://docs.amazonaws.cn/goto/SdkForRubyV3/glue-2017-03-31/GetDatabase

Amazon SDK for Ruby Developer Guide

GetJobRun

The following code example shows how to use GetJobRun.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

The `GlueWrapper` class serves as a wrapper around the AWS Glue API, providing a
 simplified interface for common operations.
It encapsulates the functionality of the AWS SDK for Glue and provides methods for
 interacting with Glue crawlers, databases, tables, jobs, and S3 resources.
The class initializes with a Glue client and a logger, allowing it to make API
 calls and log any errors or informational messages.
class GlueWrapper
 def initialize(glue_client, logger)
 @glue_client = glue_client
 @logger = logger
 end

 # Retrieves data for a specific job run.
 #
 # @param job_name [String] The name of the job run to retrieve data for.
 # @return [Glue::Types::GetJobRunResponse]
 def get_job_run(job_name, run_id)
 @glue_client.get_job_run(job_name: job_name, run_id: run_id)
 rescue Aws::Glue::Errors::GlueException => e
 @logger.error("Glue could not get job runs: \n#{e.message}")
 end

• For API details, see GetJobRun in Amazon SDK for Ruby API Reference.

GetJobRuns

The following code example shows how to use GetJobRuns.

Actions 171

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/glue#code-examples
https://docs.amazonaws.cn/goto/SdkForRubyV3/glue-2017-03-31/GetJobRun

Amazon SDK for Ruby Developer Guide

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

The `GlueWrapper` class serves as a wrapper around the AWS Glue API, providing a
 simplified interface for common operations.
It encapsulates the functionality of the AWS SDK for Glue and provides methods for
 interacting with Glue crawlers, databases, tables, jobs, and S3 resources.
The class initializes with a Glue client and a logger, allowing it to make API
 calls and log any errors or informational messages.
class GlueWrapper
 def initialize(glue_client, logger)
 @glue_client = glue_client
 @logger = logger
 end

 # Retrieves a list of job runs for the specified job.
 #
 # @param job_name [String] The name of the job to retrieve job runs for.
 # @return [Array<Aws::Glue::Types::JobRun>]
 def get_job_runs(job_name)
 response = @glue_client.get_job_runs(job_name: job_name)
 response.job_runs
 rescue Aws::Glue::Errors::GlueException => e
 @logger.error("Glue could not get job runs: \n#{e.message}")
 end

• For API details, see GetJobRuns in Amazon SDK for Ruby API Reference.

GetTables

The following code example shows how to use GetTables.

Actions 172

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/glue#code-examples
https://docs.amazonaws.cn/goto/SdkForRubyV3/glue-2017-03-31/GetJobRuns

Amazon SDK for Ruby Developer Guide

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

The `GlueWrapper` class serves as a wrapper around the AWS Glue API, providing a
 simplified interface for common operations.
It encapsulates the functionality of the AWS SDK for Glue and provides methods for
 interacting with Glue crawlers, databases, tables, jobs, and S3 resources.
The class initializes with a Glue client and a logger, allowing it to make API
 calls and log any errors or informational messages.
class GlueWrapper
 def initialize(glue_client, logger)
 @glue_client = glue_client
 @logger = logger
 end

 # Retrieves a list of tables in the specified database.
 #
 # @param db_name [String] The name of the database to retrieve tables from.
 # @return [Array<Aws::Glue::Types::Table>]
 def get_tables(db_name)
 response = @glue_client.get_tables(database_name: db_name)
 response.table_list
 rescue Aws::Glue::Errors::GlueException => e
 @logger.error("Glue could not get tables #{db_name}: \n#{e.message}")
 raise
 end

• For API details, see GetTables in Amazon SDK for Ruby API Reference.

ListJobs

The following code example shows how to use ListJobs.

Actions 173

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/glue#code-examples
https://docs.amazonaws.cn/goto/SdkForRubyV3/glue-2017-03-31/GetTables

Amazon SDK for Ruby Developer Guide

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

The `GlueWrapper` class serves as a wrapper around the AWS Glue API, providing a
 simplified interface for common operations.
It encapsulates the functionality of the AWS SDK for Glue and provides methods for
 interacting with Glue crawlers, databases, tables, jobs, and S3 resources.
The class initializes with a Glue client and a logger, allowing it to make API
 calls and log any errors or informational messages.
class GlueWrapper
 def initialize(glue_client, logger)
 @glue_client = glue_client
 @logger = logger
 end

 # Retrieves a list of jobs in AWS Glue.
 #
 # @return [Aws::Glue::Types::ListJobsResponse]
 def list_jobs
 @glue_client.list_jobs
 rescue Aws::Glue::Errors::GlueException => e
 @logger.error("Glue could not list jobs: \n#{e.message}")
 raise
 end

• For API details, see ListJobs in Amazon SDK for Ruby API Reference.

StartCrawler

The following code example shows how to use StartCrawler.

Actions 174

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/glue#code-examples
https://docs.amazonaws.cn/goto/SdkForRubyV3/glue-2017-03-31/ListJobs

Amazon SDK for Ruby Developer Guide

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

The `GlueWrapper` class serves as a wrapper around the AWS Glue API, providing a
 simplified interface for common operations.
It encapsulates the functionality of the AWS SDK for Glue and provides methods for
 interacting with Glue crawlers, databases, tables, jobs, and S3 resources.
The class initializes with a Glue client and a logger, allowing it to make API
 calls and log any errors or informational messages.
class GlueWrapper
 def initialize(glue_client, logger)
 @glue_client = glue_client
 @logger = logger
 end

 # Starts a crawler with the specified name.
 #
 # @param name [String] The name of the crawler to start.
 # @return [void]
 def start_crawler(name)
 @glue_client.start_crawler(name: name)
 rescue Aws::Glue::Errors::ServiceError => e
 @logger.error("Glue could not start crawler #{name}: \n#{e.message}")
 raise
 end

• For API details, see StartCrawler in Amazon SDK for Ruby API Reference.

StartJobRun

The following code example shows how to use StartJobRun.

Actions 175

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/glue#code-examples
https://docs.amazonaws.cn/goto/SdkForRubyV3/glue-2017-03-31/StartCrawler

Amazon SDK for Ruby Developer Guide

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

The `GlueWrapper` class serves as a wrapper around the AWS Glue API, providing a
 simplified interface for common operations.
It encapsulates the functionality of the AWS SDK for Glue and provides methods for
 interacting with Glue crawlers, databases, tables, jobs, and S3 resources.
The class initializes with a Glue client and a logger, allowing it to make API
 calls and log any errors or informational messages.
class GlueWrapper
 def initialize(glue_client, logger)
 @glue_client = glue_client
 @logger = logger
 end

 # Starts a job run for the specified job.
 #
 # @param name [String] The name of the job to start the run for.
 # @param input_database [String] The name of the input database for the job.
 # @param input_table [String] The name of the input table for the job.
 # @param output_bucket_name [String] The name of the output S3 bucket for the job.
 # @return [String] The ID of the started job run.
 def start_job_run(name, input_database, input_table, output_bucket_name)
 response = @glue_client.start_job_run(
 job_name: name,
 arguments: {
 '--input_database': input_database,
 '--input_table': input_table,
 '--output_bucket_url': "s3://#{output_bucket_name}/"
 }
)
 response.job_run_id
 rescue Aws::Glue::Errors::GlueException => e
 @logger.error("Glue could not start job run #{name}: \n#{e.message}")
 raise
 end

Actions 176

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/glue#code-examples

Amazon SDK for Ruby Developer Guide

• For API details, see StartJobRun in Amazon SDK for Ruby API Reference.

IAM examples using SDK for Ruby

The following code examples show you how to perform actions and implement common scenarios
by using the Amazon SDK for Ruby with IAM.

Basics are code examples that show you how to perform the essential operations within a service.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Topics

• Get started

• Basics

• Actions

Get started

Hello IAM

The following code example shows how to get started using IAM.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

IAM 177

https://docs.amazonaws.cn/goto/SdkForRubyV3/glue-2017-03-31/StartJobRun
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

Amazon SDK for Ruby Developer Guide

require 'aws-sdk-iam'
require 'logger'

IAMManager is a class responsible for managing IAM operations
such as listing all IAM policies in the current AWS account.
class IAMManager
 def initialize(client)
 @client = client
 @logger = Logger.new($stdout)
 end

 # Lists and prints all IAM policies in the current AWS account.
 def list_policies
 @logger.info('Here are the IAM policies in your account:')

 paginator = @client.list_policies
 policies = []

 paginator.each_page do |page|
 policies.concat(page.policies)
 end

 if policies.empty?
 @logger.info("You don't have any IAM policies.")
 else
 policies.each do |policy|
 @logger.info("- #{policy.policy_name}")
 end
 end
 end
end

if $PROGRAM_NAME == __FILE__
 iam_client = Aws::IAM::Client.new
 manager = IAMManager.new(iam_client)
 manager.list_policies
end

• For API details, see ListPolicies in Amazon SDK for Ruby API Reference.

Get started 178

https://docs.amazonaws.cn/goto/SdkForRubyV3/iam-2010-05-08/ListPolicies

Amazon SDK for Ruby Developer Guide

Basics

Learn the basics

The following code example shows how to create a user and assume a role.

Warning

To avoid security risks, don't use IAM users for authentication when developing purpose-
built software or working with real data. Instead, use federation with an identity provider
such as Amazon IAM Identity Center.

• Create a user with no permissions.

• Create a role that grants permission to list Amazon S3 buckets for the account.

• Add a policy to let the user assume the role.

• Assume the role and list S3 buckets using temporary credentials, then clean up resources.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

Create an IAM user and a role that grants permission to list Amazon S3 buckets. The user
has rights only to assume the role. After assuming the role, use temporary credentials to list
buckets for the account.

Wraps the scenario actions.
class ScenarioCreateUserAssumeRole
 attr_reader :iam_client

 # @param [Aws::IAM::Client] iam_client: The AWS IAM client.
 def initialize(iam_client, logger: Logger.new($stdout))
 @iam_client = iam_client
 @logger = logger
 end

Basics 179

https://docs.amazonaws.cn/singlesignon/latest/userguide/what-is.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

Amazon SDK for Ruby Developer Guide

 # Waits for the specified number of seconds.
 #
 # @param duration [Integer] The number of seconds to wait.
 def wait(duration)
 puts('Give AWS time to propagate resources...')
 sleep(duration)
 end

 # Creates a user.
 #
 # @param user_name [String] The name to give the user.
 # @return [Aws::IAM::User] The newly created user.
 def create_user(user_name)
 user = @iam_client.create_user(user_name: user_name).user
 @logger.info("Created demo user named #{user.user_name}.")
 rescue Aws::Errors::ServiceError => e
 @logger.info('Tried and failed to create demo user.')
 @logger.info("\t#{e.code}: #{e.message}")
 @logger.info("\nCan't continue the demo without a user!")
 raise
 else
 user
 end

 # Creates an access key for a user.
 #
 # @param user [Aws::IAM::User] The user that owns the key.
 # @return [Aws::IAM::AccessKeyPair] The newly created access key.
 def create_access_key_pair(user)
 user_key = @iam_client.create_access_key(user_name: user.user_name).access_key
 @logger.info("Created accesskey pair for user #{user.user_name}.")
 rescue Aws::Errors::ServiceError => e
 @logger.info("Couldn't create access keys for user #{user.user_name}.")
 @logger.info("\t#{e.code}: #{e.message}")
 raise
 else
 user_key
 end

 # Creates a role that can be assumed by a user.
 #
 # @param role_name [String] The name to give the role.

Basics 180

Amazon SDK for Ruby Developer Guide

 # @param user [Aws::IAM::User] The user who is granted permission to assume the
 role.
 # @return [Aws::IAM::Role] The newly created role.
 def create_role(role_name, user)
 trust_policy = {
 Version: '2012-10-17',
 Statement: [{
 Effect: 'Allow',
 Principal: { 'AWS': user.arn },
 Action: 'sts:AssumeRole'
 }]
 }.to_json
 role = @iam_client.create_role(
 role_name: role_name,
 assume_role_policy_document: trust_policy
).role
 @logger.info("Created role #{role.role_name}.")
 rescue Aws::Errors::ServiceError => e
 @logger.info("Couldn't create a role for the demo. Here's why: ")
 @logger.info("\t#{e.code}: #{e.message}")
 raise
 else
 role
 end

 # Creates a policy that grants permission to list S3 buckets in the account, and
 # then attaches the policy to a role.
 #
 # @param policy_name [String] The name to give the policy.
 # @param role [Aws::IAM::Role] The role that the policy is attached to.
 # @return [Aws::IAM::Policy] The newly created policy.
 def create_and_attach_role_policy(policy_name, role)
 policy_document = {
 Version: '2012-10-17',
 Statement: [{
 Effect: 'Allow',
 Action: 's3:ListAllMyBuckets',
 Resource: 'arn:aws:s3:::*'
 }]
 }.to_json
 policy = @iam_client.create_policy(
 policy_name: policy_name,
 policy_document: policy_document
).policy

Basics 181

Amazon SDK for Ruby Developer Guide

 @iam_client.attach_role_policy(
 role_name: role.role_name,
 policy_arn: policy.arn
)
 @logger.info("Created policy #{policy.policy_name} and attached it to role
 #{role.role_name}.")
 rescue Aws::Errors::ServiceError => e
 @logger.info("Couldn't create a policy and attach it to role #{role.role_name}.
 Here's why: ")
 @logger.info("\t#{e.code}: #{e.message}")
 raise
 end

 # Creates an inline policy for a user that lets the user assume a role.
 #
 # @param policy_name [String] The name to give the policy.
 # @param user [Aws::IAM::User] The user that owns the policy.
 # @param role [Aws::IAM::Role] The role that can be assumed.
 # @return [Aws::IAM::UserPolicy] The newly created policy.
 def create_user_policy(policy_name, user, role)
 policy_document = {
 Version: '2012-10-17',
 Statement: [{
 Effect: 'Allow',
 Action: 'sts:AssumeRole',
 Resource: role.arn
 }]
 }.to_json
 @iam_client.put_user_policy(
 user_name: user.user_name,
 policy_name: policy_name,
 policy_document: policy_document
)
 puts("Created an inline policy for #{user.user_name} that lets the user assume
 role #{role.role_name}.")
 rescue Aws::Errors::ServiceError => e
 @logger.info("Couldn't create an inline policy for user #{user.user_name}.
 Here's why: ")
 @logger.info("\t#{e.code}: #{e.message}")
 raise
 end

 # Creates an Amazon S3 resource with specified credentials. This is separated into
 a

Basics 182

Amazon SDK for Ruby Developer Guide

 # factory function so that it can be mocked for unit testing.
 #
 # @param credentials [Aws::Credentials] The credentials used by the Amazon S3
 resource.
 def create_s3_resource(credentials)
 Aws::S3::Resource.new(client: Aws::S3::Client.new(credentials: credentials))
 end

 # Lists the S3 buckets for the account, using the specified Amazon S3 resource.
 # Because the resource uses credentials with limited access, it may not be able to
 # list the S3 buckets.
 #
 # @param s3_resource [Aws::S3::Resource] An Amazon S3 resource.
 def list_buckets(s3_resource)
 count = 10
 s3_resource.buckets.each do |bucket|
 @logger.info "\t#{bucket.name}"
 count -= 1
 break if count.zero?
 end
 rescue Aws::Errors::ServiceError => e
 if e.code == 'AccessDenied'
 puts('Attempt to list buckets with no permissions: AccessDenied.')
 else
 @logger.info("Couldn't list buckets for the account. Here's why: ")
 @logger.info("\t#{e.code}: #{e.message}")
 raise
 end
 end

 # Creates an AWS Security Token Service (AWS STS) client with specified
 credentials.
 # This is separated into a factory function so that it can be mocked for unit
 testing.
 #
 # @param key_id [String] The ID of the access key used by the STS client.
 # @param key_secret [String] The secret part of the access key used by the STS
 client.
 def create_sts_client(key_id, key_secret)
 Aws::STS::Client.new(access_key_id: key_id, secret_access_key: key_secret)
 end

 # Gets temporary credentials that can be used to assume a role.
 #

Basics 183

Amazon SDK for Ruby Developer Guide

 # @param role_arn [String] The ARN of the role that is assumed when these
 credentials
 # are used.
 # @param sts_client [AWS::STS::Client] An AWS STS client.
 # @return [Aws::AssumeRoleCredentials] The credentials that can be used to assume
 the role.
 def assume_role(role_arn, sts_client)
 credentials = Aws::AssumeRoleCredentials.new(
 client: sts_client,
 role_arn: role_arn,
 role_session_name: 'create-use-assume-role-scenario'
)
 @logger.info("Assumed role '#{role_arn}', got temporary credentials.")
 credentials
 end

 # Deletes a role. If the role has policies attached, they are detached and
 # deleted before the role is deleted.
 #
 # @param role_name [String] The name of the role to delete.
 def delete_role(role_name)
 @iam_client.list_attached_role_policies(role_name:
 role_name).attached_policies.each do |policy|
 @iam_client.detach_role_policy(role_name: role_name, policy_arn:
 policy.policy_arn)
 @iam_client.delete_policy(policy_arn: policy.policy_arn)
 @logger.info("Detached and deleted policy #{policy.policy_name}.")
 end
 @iam_client.delete_role({ role_name: role_name })
 @logger.info("Role deleted: #{role_name}.")
 rescue Aws::Errors::ServiceError => e
 @logger.info("Couldn't detach policies and delete role #{role.name}. Here's
 why:")
 @logger.info("\t#{e.code}: #{e.message}")
 raise
 end

 # Deletes a user. If the user has inline policies or access keys, they are deleted
 # before the user is deleted.
 #
 # @param user [Aws::IAM::User] The user to delete.
 def delete_user(user_name)
 user = @iam_client.list_access_keys(user_name: user_name).access_key_metadata
 user.each do |key|

Basics 184

Amazon SDK for Ruby Developer Guide

 @iam_client.delete_access_key({ access_key_id: key.access_key_id, user_name:
 user_name })
 @logger.info("Deleted access key #{key.access_key_id} for user
 '#{user_name}'.")
 end

 @iam_client.delete_user(user_name: user_name)
 @logger.info("Deleted user '#{user_name}'.")
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error deleting user '#{user_name}': #{e.message}")
 end
end

Runs the IAM create a user and assume a role scenario.
def run_scenario(scenario)
 puts('-' * 88)
 puts('Welcome to the IAM create a user and assume a role demo!')
 puts('-' * 88)
 user = scenario.create_user("doc-example-user-#{Random.uuid}")
 user_key = scenario.create_access_key_pair(user)
 scenario.wait(10)
 role = scenario.create_role("doc-example-role-#{Random.uuid}", user)
 scenario.create_and_attach_role_policy("doc-example-role-policy-#{Random.uuid}",
 role)
 scenario.create_user_policy("doc-example-user-policy-#{Random.uuid}", user, role)
 scenario.wait(10)
 puts('Try to list buckets with credentials for a user who has no permissions.')
 puts('Expect AccessDenied from this call.')
 scenario.list_buckets(
 scenario.create_s3_resource(Aws::Credentials.new(user_key.access_key_id,
 user_key.secret_access_key))
)
 puts('Now, assume the role that grants permission.')
 temp_credentials = scenario.assume_role(
 role.arn, scenario.create_sts_client(user_key.access_key_id,
 user_key.secret_access_key)
)
 puts('Here are your buckets:')
 scenario.list_buckets(scenario.create_s3_resource(temp_credentials))
 puts("Deleting role '#{role.role_name}' and attached policies.")
 scenario.delete_role(role.role_name)
 puts("Deleting user '#{user.user_name}', policies, and keys.")
 scenario.delete_user(user.user_name)
 puts('Thanks for watching!')

Basics 185

Amazon SDK for Ruby Developer Guide

 puts('-' * 88)
rescue Aws::Errors::ServiceError => e
 puts('Something went wrong with the demo.')
 puts("\t#{e.code}: #{e.message}")
end

run_scenario(ScenarioCreateUserAssumeRole.new(Aws::IAM::Client.new)) if
 $PROGRAM_NAME == __FILE__

• For API details, see the following topics in Amazon SDK for Ruby API Reference.

• AttachRolePolicy

• CreateAccessKey

• CreatePolicy

• CreateRole

• CreateUser

• DeleteAccessKey

• DeletePolicy

• DeleteRole

• DeleteUser

• DeleteUserPolicy

• DetachRolePolicy

• PutUserPolicy

Actions

AttachRolePolicy

The following code example shows how to use AttachRolePolicy.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

Actions 186

https://docs.amazonaws.cn/goto/SdkForRubyV3/iam-2010-05-08/AttachRolePolicy
https://docs.amazonaws.cn/goto/SdkForRubyV3/iam-2010-05-08/CreateAccessKey
https://docs.amazonaws.cn/goto/SdkForRubyV3/iam-2010-05-08/CreatePolicy
https://docs.amazonaws.cn/goto/SdkForRubyV3/iam-2010-05-08/CreateRole
https://docs.amazonaws.cn/goto/SdkForRubyV3/iam-2010-05-08/CreateUser
https://docs.amazonaws.cn/goto/SdkForRubyV3/iam-2010-05-08/DeleteAccessKey
https://docs.amazonaws.cn/goto/SdkForRubyV3/iam-2010-05-08/DeletePolicy
https://docs.amazonaws.cn/goto/SdkForRubyV3/iam-2010-05-08/DeleteRole
https://docs.amazonaws.cn/goto/SdkForRubyV3/iam-2010-05-08/DeleteUser
https://docs.amazonaws.cn/goto/SdkForRubyV3/iam-2010-05-08/DeleteUserPolicy
https://docs.amazonaws.cn/goto/SdkForRubyV3/iam-2010-05-08/DetachRolePolicy
https://docs.amazonaws.cn/goto/SdkForRubyV3/iam-2010-05-08/PutUserPolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

Amazon SDK for Ruby Developer Guide

This example module lists, creates, attaches, and detaches role policies.

Manages policies in AWS Identity and Access Management (IAM)
class RolePolicyManager
 # Initialize with an AWS IAM client
 #
 # @param iam_client [Aws::IAM::Client] An initialized IAM client
 def initialize(iam_client, logger: Logger.new($stdout))
 @iam_client = iam_client
 @logger = logger
 @logger.progname = 'PolicyManager'
 end

 # Creates a policy
 #
 # @param policy_name [String] The name of the policy
 # @param policy_document [Hash] The policy document
 # @return [String] The policy ARN if successful, otherwise nil
 def create_policy(policy_name, policy_document)
 response = @iam_client.create_policy(
 policy_name: policy_name,
 policy_document: policy_document.to_json
)
 response.policy.arn
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error creating policy: #{e.message}")
 nil
 end

 # Fetches an IAM policy by its ARN
 # @param policy_arn [String] the ARN of the IAM policy to retrieve
 # @return [Aws::IAM::Types::GetPolicyResponse] the policy object if found
 def get_policy(policy_arn)
 response = @iam_client.get_policy(policy_arn: policy_arn)
 policy = response.policy
 @logger.info("Got policy '#{policy.policy_name}'. Its ID is:
 #{policy.policy_id}.")
 policy
 rescue Aws::IAM::Errors::NoSuchEntity
 @logger.error("Couldn't get policy '#{policy_arn}'. The policy does not exist.")
 raise
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Couldn't get policy '#{policy_arn}'. Here's why: #{e.code}:
 #{e.message}")

Actions 187

Amazon SDK for Ruby Developer Guide

 raise
 end

 # Attaches a policy to a role
 #
 # @param role_name [String] The name of the role
 # @param policy_arn [String] The policy ARN
 # @return [Boolean] true if successful, false otherwise
 def attach_policy_to_role(role_name, policy_arn)
 @iam_client.attach_role_policy(
 role_name: role_name,
 policy_arn: policy_arn
)
 true
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error attaching policy to role: #{e.message}")
 false
 end

 # Lists policy ARNs attached to a role
 #
 # @param role_name [String] The name of the role
 # @return [Array<String>] List of policy ARNs
 def list_attached_policy_arns(role_name)
 response = @iam_client.list_attached_role_policies(role_name: role_name)
 response.attached_policies.map(&:policy_arn)
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error listing policies attached to role: #{e.message}")
 []
 end

 # Detaches a policy from a role
 #
 # @param role_name [String] The name of the role
 # @param policy_arn [String] The policy ARN
 # @return [Boolean] true if successful, false otherwise
 def detach_policy_from_role(role_name, policy_arn)
 @iam_client.detach_role_policy(
 role_name: role_name,
 policy_arn: policy_arn
)
 true
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error detaching policy from role: #{e.message}")

Actions 188

Amazon SDK for Ruby Developer Guide

 false
 end
end

• For API details, see AttachRolePolicy in Amazon SDK for Ruby API Reference.

AttachUserPolicy

The following code example shows how to use AttachUserPolicy.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

 # Attaches a policy to a user
 #
 # @param user_name [String] The name of the user
 # @param policy_arn [String] The Amazon Resource Name (ARN) of the policy
 # @return [Boolean] true if successful, false otherwise
 def attach_policy_to_user(user_name, policy_arn)
 @iam_client.attach_user_policy(
 user_name: user_name,
 policy_arn: policy_arn
)
 true
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error attaching policy to user: #{e.message}")
 false
 end

• For API details, see AttachUserPolicy in Amazon SDK for Ruby API Reference.

CreateAccessKey

The following code example shows how to use CreateAccessKey.

Actions 189

https://docs.amazonaws.cn/goto/SdkForRubyV3/iam-2010-05-08/AttachRolePolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples
https://docs.amazonaws.cn/goto/SdkForRubyV3/iam-2010-05-08/AttachUserPolicy

Amazon SDK for Ruby Developer Guide

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

This example module lists, creates, deactivates, and deletes access keys.

Manages access keys for IAM users
class AccessKeyManager
 def initialize(iam_client, logger: Logger.new($stdout))
 @iam_client = iam_client
 @logger = logger
 @logger.progname = 'AccessKeyManager'
 end

 # Lists access keys for a user
 #
 # @param user_name [String] The name of the user.
 def list_access_keys(user_name)
 response = @iam_client.list_access_keys(user_name: user_name)
 if response.access_key_metadata.empty?
 @logger.info("No access keys found for user '#{user_name}'.")
 else
 response.access_key_metadata.map(&:access_key_id)
 end
 rescue Aws::IAM::Errors::NoSuchEntity
 @logger.error("Error listing access keys: cannot find user '#{user_name}'.")
 []
 rescue StandardError => e
 @logger.error("Error listing access keys: #{e.message}")
 []
 end

 # Creates an access key for a user
 #
 # @param user_name [String] The name of the user.
 # @return [Boolean]
 def create_access_key(user_name)
 response = @iam_client.create_access_key(user_name: user_name)
 access_key = response.access_key

Actions 190

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

Amazon SDK for Ruby Developer Guide

 @logger.info("Access key created for user '#{user_name}':
 #{access_key.access_key_id}")
 access_key
 rescue Aws::IAM::Errors::LimitExceeded
 @logger.error('Error creating access key: limit exceeded. Cannot create more.')
 nil
 rescue StandardError => e
 @logger.error("Error creating access key: #{e.message}")
 nil
 end

 # Deactivates an access key
 #
 # @param user_name [String] The name of the user.
 # @param access_key_id [String] The ID for the access key.
 # @return [Boolean]
 def deactivate_access_key(user_name, access_key_id)
 @iam_client.update_access_key(
 user_name: user_name,
 access_key_id: access_key_id,
 status: 'Inactive'
)
 true
 rescue StandardError => e
 @logger.error("Error deactivating access key: #{e.message}")
 false
 end

 # Deletes an access key
 #
 # @param user_name [String] The name of the user.
 # @param access_key_id [String] The ID for the access key.
 # @return [Boolean]
 def delete_access_key(user_name, access_key_id)
 @iam_client.delete_access_key(
 user_name: user_name,
 access_key_id: access_key_id
)
 true
 rescue StandardError => e
 @logger.error("Error deleting access key: #{e.message}")
 false
 end
end

Actions 191

Amazon SDK for Ruby Developer Guide

• For API details, see CreateAccessKey in Amazon SDK for Ruby API Reference.

CreateAccountAlias

The following code example shows how to use CreateAccountAlias.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

List, create, and delete account aliases.

class IAMAliasManager
 # Initializes the IAM client and logger
 #
 # @param iam_client [Aws::IAM::Client] An initialized IAM client.
 def initialize(iam_client, logger: Logger.new($stdout))
 @iam_client = iam_client
 @logger = logger
 end

 # Lists available AWS account aliases.
 def list_aliases
 response = @iam_client.list_account_aliases

 if response.account_aliases.count.positive?
 @logger.info('Account aliases are:')
 response.account_aliases.each { |account_alias| @logger.info("
 #{account_alias}") }
 else
 @logger.info('No account aliases found.')
 end
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error listing account aliases: #{e.message}")
 end

Actions 192

https://docs.amazonaws.cn/goto/SdkForRubyV3/iam-2010-05-08/CreateAccessKey
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

Amazon SDK for Ruby Developer Guide

 # Creates an AWS account alias.
 #
 # @param account_alias [String] The name of the account alias to create.
 # @return [Boolean] true if the account alias was created; otherwise, false.
 def create_account_alias(account_alias)
 @iam_client.create_account_alias(account_alias: account_alias)
 true
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error creating account alias: #{e.message}")
 false
 end

 # Deletes an AWS account alias.
 #
 # @param account_alias [String] The name of the account alias to delete.
 # @return [Boolean] true if the account alias was deleted; otherwise, false.
 def delete_account_alias(account_alias)
 @iam_client.delete_account_alias(account_alias: account_alias)
 true
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error deleting account alias: #{e.message}")
 false
 end
end

• For API details, see CreateAccountAlias in Amazon SDK for Ruby API Reference.

CreatePolicy

The following code example shows how to use CreatePolicy.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

This example module lists, creates, attaches, and detaches role policies.

Actions 193

https://docs.amazonaws.cn/goto/SdkForRubyV3/iam-2010-05-08/CreateAccountAlias
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

Amazon SDK for Ruby Developer Guide

Manages policies in AWS Identity and Access Management (IAM)
class RolePolicyManager
 # Initialize with an AWS IAM client
 #
 # @param iam_client [Aws::IAM::Client] An initialized IAM client
 def initialize(iam_client, logger: Logger.new($stdout))
 @iam_client = iam_client
 @logger = logger
 @logger.progname = 'PolicyManager'
 end

 # Creates a policy
 #
 # @param policy_name [String] The name of the policy
 # @param policy_document [Hash] The policy document
 # @return [String] The policy ARN if successful, otherwise nil
 def create_policy(policy_name, policy_document)
 response = @iam_client.create_policy(
 policy_name: policy_name,
 policy_document: policy_document.to_json
)
 response.policy.arn
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error creating policy: #{e.message}")
 nil
 end

 # Fetches an IAM policy by its ARN
 # @param policy_arn [String] the ARN of the IAM policy to retrieve
 # @return [Aws::IAM::Types::GetPolicyResponse] the policy object if found
 def get_policy(policy_arn)
 response = @iam_client.get_policy(policy_arn: policy_arn)
 policy = response.policy
 @logger.info("Got policy '#{policy.policy_name}'. Its ID is:
 #{policy.policy_id}.")
 policy
 rescue Aws::IAM::Errors::NoSuchEntity
 @logger.error("Couldn't get policy '#{policy_arn}'. The policy does not exist.")
 raise
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Couldn't get policy '#{policy_arn}'. Here's why: #{e.code}:
 #{e.message}")
 raise

Actions 194

Amazon SDK for Ruby Developer Guide

 end

 # Attaches a policy to a role
 #
 # @param role_name [String] The name of the role
 # @param policy_arn [String] The policy ARN
 # @return [Boolean] true if successful, false otherwise
 def attach_policy_to_role(role_name, policy_arn)
 @iam_client.attach_role_policy(
 role_name: role_name,
 policy_arn: policy_arn
)
 true
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error attaching policy to role: #{e.message}")
 false
 end

 # Lists policy ARNs attached to a role
 #
 # @param role_name [String] The name of the role
 # @return [Array<String>] List of policy ARNs
 def list_attached_policy_arns(role_name)
 response = @iam_client.list_attached_role_policies(role_name: role_name)
 response.attached_policies.map(&:policy_arn)
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error listing policies attached to role: #{e.message}")
 []
 end

 # Detaches a policy from a role
 #
 # @param role_name [String] The name of the role
 # @param policy_arn [String] The policy ARN
 # @return [Boolean] true if successful, false otherwise
 def detach_policy_from_role(role_name, policy_arn)
 @iam_client.detach_role_policy(
 role_name: role_name,
 policy_arn: policy_arn
)
 true
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error detaching policy from role: #{e.message}")
 false

Actions 195

Amazon SDK for Ruby Developer Guide

 end
end

• For API details, see CreatePolicy in Amazon SDK for Ruby API Reference.

CreateRole

The following code example shows how to use CreateRole.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

 # Creates a role and attaches policies to it.
 #
 # @param role_name [String] The name of the role.
 # @param assume_role_policy_document [Hash] The trust relationship policy
 document.
 # @param policy_arns [Array<String>] The ARNs of the policies to attach.
 # @return [String, nil] The ARN of the new role if successful, or nil if an error
 occurred.
 def create_role(role_name, assume_role_policy_document, policy_arns)
 response = @iam_client.create_role(
 role_name: role_name,
 assume_role_policy_document: assume_role_policy_document.to_json
)
 role_arn = response.role.arn

 policy_arns.each do |policy_arn|
 @iam_client.attach_role_policy(
 role_name: role_name,
 policy_arn: policy_arn
)
 end

 role_arn

Actions 196

https://docs.amazonaws.cn/goto/SdkForRubyV3/iam-2010-05-08/CreatePolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

Amazon SDK for Ruby Developer Guide

 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error creating role: #{e.message}")
 nil
 end

• For API details, see CreateRole in Amazon SDK for Ruby API Reference.

CreateServiceLinkedRole

The following code example shows how to use CreateServiceLinkedRole.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

 # Creates a service-linked role
 #
 # @param service_name [String] The service name to create the role for.
 # @param description [String] The description of the service-linked role.
 # @param suffix [String] Suffix for customizing role name.
 # @return [String] The name of the created role
 def create_service_linked_role(service_name, description, suffix)
 response = @iam_client.create_service_linked_role(
 aws_service_name: service_name, description: description, custom_suffix:
 suffix
)
 role_name = response.role.role_name
 @logger.info("Created service-linked role #{role_name}.")
 role_name
 rescue Aws::Errors::ServiceError => e
 @logger.error("Couldn't create service-linked role for #{service_name}. Here's
 why:")
 @logger.error("\t#{e.code}: #{e.message}")
 raise
 end

Actions 197

https://docs.amazonaws.cn/goto/SdkForRubyV3/iam-2010-05-08/CreateRole
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

Amazon SDK for Ruby Developer Guide

• For API details, see CreateServiceLinkedRole in Amazon SDK for Ruby API Reference.

CreateUser

The following code example shows how to use CreateUser.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

 # Creates a user and their login profile
 #
 # @param user_name [String] The name of the user
 # @param initial_password [String] The initial password for the user
 # @return [String, nil] The ID of the user if created, or nil if an error occurred
 def create_user(user_name, initial_password)
 response = @iam_client.create_user(user_name: user_name)
 @iam_client.wait_until(:user_exists, user_name: user_name)
 @iam_client.create_login_profile(
 user_name: user_name,
 password: initial_password,
 password_reset_required: true
)
 @logger.info("User '#{user_name}' created successfully.")
 response.user.user_id
 rescue Aws::IAM::Errors::EntityAlreadyExists
 @logger.error("Error creating user '#{user_name}': user already exists.")
 nil
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error creating user '#{user_name}': #{e.message}")
 nil
 end

• For API details, see CreateUser in Amazon SDK for Ruby API Reference.

Actions 198

https://docs.amazonaws.cn/goto/SdkForRubyV3/iam-2010-05-08/CreateServiceLinkedRole
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples
https://docs.amazonaws.cn/goto/SdkForRubyV3/iam-2010-05-08/CreateUser

Amazon SDK for Ruby Developer Guide

DeleteAccessKey

The following code example shows how to use DeleteAccessKey.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

This example module lists, creates, deactivates, and deletes access keys.

Manages access keys for IAM users
class AccessKeyManager
 def initialize(iam_client, logger: Logger.new($stdout))
 @iam_client = iam_client
 @logger = logger
 @logger.progname = 'AccessKeyManager'
 end

 # Lists access keys for a user
 #
 # @param user_name [String] The name of the user.
 def list_access_keys(user_name)
 response = @iam_client.list_access_keys(user_name: user_name)
 if response.access_key_metadata.empty?
 @logger.info("No access keys found for user '#{user_name}'.")
 else
 response.access_key_metadata.map(&:access_key_id)
 end
 rescue Aws::IAM::Errors::NoSuchEntity
 @logger.error("Error listing access keys: cannot find user '#{user_name}'.")
 []
 rescue StandardError => e
 @logger.error("Error listing access keys: #{e.message}")
 []
 end

 # Creates an access key for a user
 #
 # @param user_name [String] The name of the user.

Actions 199

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

Amazon SDK for Ruby Developer Guide

 # @return [Boolean]
 def create_access_key(user_name)
 response = @iam_client.create_access_key(user_name: user_name)
 access_key = response.access_key
 @logger.info("Access key created for user '#{user_name}':
 #{access_key.access_key_id}")
 access_key
 rescue Aws::IAM::Errors::LimitExceeded
 @logger.error('Error creating access key: limit exceeded. Cannot create more.')
 nil
 rescue StandardError => e
 @logger.error("Error creating access key: #{e.message}")
 nil
 end

 # Deactivates an access key
 #
 # @param user_name [String] The name of the user.
 # @param access_key_id [String] The ID for the access key.
 # @return [Boolean]
 def deactivate_access_key(user_name, access_key_id)
 @iam_client.update_access_key(
 user_name: user_name,
 access_key_id: access_key_id,
 status: 'Inactive'
)
 true
 rescue StandardError => e
 @logger.error("Error deactivating access key: #{e.message}")
 false
 end

 # Deletes an access key
 #
 # @param user_name [String] The name of the user.
 # @param access_key_id [String] The ID for the access key.
 # @return [Boolean]
 def delete_access_key(user_name, access_key_id)
 @iam_client.delete_access_key(
 user_name: user_name,
 access_key_id: access_key_id
)
 true
 rescue StandardError => e

Actions 200

Amazon SDK for Ruby Developer Guide

 @logger.error("Error deleting access key: #{e.message}")
 false
 end
end

• For API details, see DeleteAccessKey in Amazon SDK for Ruby API Reference.

DeleteAccountAlias

The following code example shows how to use DeleteAccountAlias.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

List, create, and delete account aliases.

class IAMAliasManager
 # Initializes the IAM client and logger
 #
 # @param iam_client [Aws::IAM::Client] An initialized IAM client.
 def initialize(iam_client, logger: Logger.new($stdout))
 @iam_client = iam_client
 @logger = logger
 end

 # Lists available AWS account aliases.
 def list_aliases
 response = @iam_client.list_account_aliases

 if response.account_aliases.count.positive?
 @logger.info('Account aliases are:')
 response.account_aliases.each { |account_alias| @logger.info("
 #{account_alias}") }
 else
 @logger.info('No account aliases found.')
 end

Actions 201

https://docs.amazonaws.cn/goto/SdkForRubyV3/iam-2010-05-08/DeleteAccessKey
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

Amazon SDK for Ruby Developer Guide

 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error listing account aliases: #{e.message}")
 end

 # Creates an AWS account alias.
 #
 # @param account_alias [String] The name of the account alias to create.
 # @return [Boolean] true if the account alias was created; otherwise, false.
 def create_account_alias(account_alias)
 @iam_client.create_account_alias(account_alias: account_alias)
 true
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error creating account alias: #{e.message}")
 false
 end

 # Deletes an AWS account alias.
 #
 # @param account_alias [String] The name of the account alias to delete.
 # @return [Boolean] true if the account alias was deleted; otherwise, false.
 def delete_account_alias(account_alias)
 @iam_client.delete_account_alias(account_alias: account_alias)
 true
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error deleting account alias: #{e.message}")
 false
 end
end

• For API details, see DeleteAccountAlias in Amazon SDK for Ruby API Reference.

DeleteRole

The following code example shows how to use DeleteRole.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

Actions 202

https://docs.amazonaws.cn/goto/SdkForRubyV3/iam-2010-05-08/DeleteAccountAlias
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

Amazon SDK for Ruby Developer Guide

 # Deletes a role and its attached policies.
 #
 # @param role_name [String] The name of the role to delete.
 def delete_role(role_name)
 # Detach and delete attached policies
 @iam_client.list_attached_role_policies(role_name: role_name).each do |response|
 response.attached_policies.each do |policy|
 @iam_client.detach_role_policy({
 role_name: role_name,
 policy_arn: policy.policy_arn
 })
 # Check if the policy is a customer managed policy (not AWS managed)
 unless policy.policy_arn.include?('aws:policy/')
 @iam_client.delete_policy({ policy_arn: policy.policy_arn })
 @logger.info("Deleted customer managed policy #{policy.policy_name}.")
 end
 end
 end

 # Delete the role
 @iam_client.delete_role({ role_name: role_name })
 @logger.info("Deleted role #{role_name}.")
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Couldn't detach policies and delete role #{role_name}. Here's
 why:")
 @logger.error("\t#{e.code}: #{e.message}")
 raise
 end

• For API details, see DeleteRole in Amazon SDK for Ruby API Reference.

DeleteServerCertificate

The following code example shows how to use DeleteServerCertificate.

Actions 203

https://docs.amazonaws.cn/goto/SdkForRubyV3/iam-2010-05-08/DeleteRole

Amazon SDK for Ruby Developer Guide

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

List, update, and delete server certificates.

class ServerCertificateManager
 def initialize(iam_client, logger: Logger.new($stdout))
 @iam_client = iam_client
 @logger = logger
 @logger.progname = 'ServerCertificateManager'
 end

 # Creates a new server certificate.
 # @param name [String] the name of the server certificate
 # @param certificate_body [String] the contents of the certificate
 # @param private_key [String] the private key contents
 # @return [Boolean] returns true if the certificate was successfully created
 def create_server_certificate(name, certificate_body, private_key)
 @iam_client.upload_server_certificate({
 server_certificate_name: name,
 certificate_body: certificate_body,
 private_key: private_key
 })
 true
 rescue Aws::IAM::Errors::ServiceError => e
 puts "Failed to create server certificate: #{e.message}"
 false
 end

 # Lists available server certificate names.
 def list_server_certificate_names
 response = @iam_client.list_server_certificates

 if response.server_certificate_metadata_list.empty?
 @logger.info('No server certificates found.')
 return
 end

Actions 204

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

Amazon SDK for Ruby Developer Guide

 response.server_certificate_metadata_list.each do |certificate_metadata|
 @logger.info("Certificate Name:
 #{certificate_metadata.server_certificate_name}")
 end
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error listing server certificates: #{e.message}")
 end

 # Updates the name of a server certificate.
 def update_server_certificate_name(current_name, new_name)
 @iam_client.update_server_certificate(
 server_certificate_name: current_name,
 new_server_certificate_name: new_name
)
 @logger.info("Server certificate name updated from '#{current_name}' to
 '#{new_name}'.")
 true
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error updating server certificate name: #{e.message}")
 false
 end

 # Deletes a server certificate.
 def delete_server_certificate(name)
 @iam_client.delete_server_certificate(server_certificate_name: name)
 @logger.info("Server certificate '#{name}' deleted.")
 true
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error deleting server certificate: #{e.message}")
 false
 end
end

• For API details, see DeleteServerCertificate in Amazon SDK for Ruby API Reference.

DeleteServiceLinkedRole

The following code example shows how to use DeleteServiceLinkedRole.

Actions 205

https://docs.amazonaws.cn/goto/SdkForRubyV3/iam-2010-05-08/DeleteServerCertificate

Amazon SDK for Ruby Developer Guide

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

 # Deletes a service-linked role.
 #
 # @param role_name [String] The name of the role to delete.
 def delete_service_linked_role(role_name)
 response = @iam_client.delete_service_linked_role(role_name: role_name)
 task_id = response.deletion_task_id
 check_deletion_status(role_name, task_id)
 rescue Aws::Errors::ServiceError => e
 handle_deletion_error(e, role_name)
 end

 private

 # Checks the deletion status of a service-linked role
 #
 # @param role_name [String] The name of the role being deleted
 # @param task_id [String] The task ID for the deletion process
 def check_deletion_status(role_name, task_id)
 loop do
 response = @iam_client.get_service_linked_role_deletion_status(
 deletion_task_id: task_id
)
 status = response.status
 @logger.info("Deletion of #{role_name} #{status}.")
 break if %w[SUCCEEDED FAILED].include?(status)

 sleep(3)
 end
 end

 # Handles deletion error
 #
 # @param e [Aws::Errors::ServiceError] The error encountered during deletion
 # @param role_name [String] The name of the role attempted to delete

Actions 206

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

Amazon SDK for Ruby Developer Guide

 def handle_deletion_error(e, role_name)
 return if e.code == 'NoSuchEntity'

 @logger.error("Couldn't delete #{role_name}. Here's why:")
 @logger.error("\t#{e.code}: #{e.message}")
 raise
 end

• For API details, see DeleteServiceLinkedRole in Amazon SDK for Ruby API Reference.

DeleteUser

The following code example shows how to use DeleteUser.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

 # Deletes a user and their associated resources
 #
 # @param user_name [String] The name of the user to delete
 def delete_user(user_name)
 user = @iam_client.list_access_keys(user_name: user_name).access_key_metadata
 user.each do |key|
 @iam_client.delete_access_key({ access_key_id: key.access_key_id, user_name:
 user_name })
 @logger.info("Deleted access key #{key.access_key_id} for user
 '#{user_name}'.")
 end

 @iam_client.delete_user(user_name: user_name)
 @logger.info("Deleted user '#{user_name}'.")
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error deleting user '#{user_name}': #{e.message}")
 end

Actions 207

https://docs.amazonaws.cn/goto/SdkForRubyV3/iam-2010-05-08/DeleteServiceLinkedRole
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

Amazon SDK for Ruby Developer Guide

• For API details, see DeleteUser in Amazon SDK for Ruby API Reference.

DeleteUserPolicy

The following code example shows how to use DeleteUserPolicy.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

 # Deletes a user and their associated resources
 #
 # @param user_name [String] The name of the user to delete
 def delete_user(user_name)
 user = @iam_client.list_access_keys(user_name: user_name).access_key_metadata
 user.each do |key|
 @iam_client.delete_access_key({ access_key_id: key.access_key_id, user_name:
 user_name })
 @logger.info("Deleted access key #{key.access_key_id} for user
 '#{user_name}'.")
 end

 @iam_client.delete_user(user_name: user_name)
 @logger.info("Deleted user '#{user_name}'.")
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error deleting user '#{user_name}': #{e.message}")
 end

• For API details, see DeleteUserPolicy in Amazon SDK for Ruby API Reference.

DetachRolePolicy

The following code example shows how to use DetachRolePolicy.

Actions 208

https://docs.amazonaws.cn/goto/SdkForRubyV3/iam-2010-05-08/DeleteUser
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples
https://docs.amazonaws.cn/goto/SdkForRubyV3/iam-2010-05-08/DeleteUserPolicy

Amazon SDK for Ruby Developer Guide

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

This example module lists, creates, attaches, and detaches role policies.

Manages policies in AWS Identity and Access Management (IAM)
class RolePolicyManager
 # Initialize with an AWS IAM client
 #
 # @param iam_client [Aws::IAM::Client] An initialized IAM client
 def initialize(iam_client, logger: Logger.new($stdout))
 @iam_client = iam_client
 @logger = logger
 @logger.progname = 'PolicyManager'
 end

 # Creates a policy
 #
 # @param policy_name [String] The name of the policy
 # @param policy_document [Hash] The policy document
 # @return [String] The policy ARN if successful, otherwise nil
 def create_policy(policy_name, policy_document)
 response = @iam_client.create_policy(
 policy_name: policy_name,
 policy_document: policy_document.to_json
)
 response.policy.arn
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error creating policy: #{e.message}")
 nil
 end

 # Fetches an IAM policy by its ARN
 # @param policy_arn [String] the ARN of the IAM policy to retrieve
 # @return [Aws::IAM::Types::GetPolicyResponse] the policy object if found
 def get_policy(policy_arn)
 response = @iam_client.get_policy(policy_arn: policy_arn)
 policy = response.policy

Actions 209

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

Amazon SDK for Ruby Developer Guide

 @logger.info("Got policy '#{policy.policy_name}'. Its ID is:
 #{policy.policy_id}.")
 policy
 rescue Aws::IAM::Errors::NoSuchEntity
 @logger.error("Couldn't get policy '#{policy_arn}'. The policy does not exist.")
 raise
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Couldn't get policy '#{policy_arn}'. Here's why: #{e.code}:
 #{e.message}")
 raise
 end

 # Attaches a policy to a role
 #
 # @param role_name [String] The name of the role
 # @param policy_arn [String] The policy ARN
 # @return [Boolean] true if successful, false otherwise
 def attach_policy_to_role(role_name, policy_arn)
 @iam_client.attach_role_policy(
 role_name: role_name,
 policy_arn: policy_arn
)
 true
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error attaching policy to role: #{e.message}")
 false
 end

 # Lists policy ARNs attached to a role
 #
 # @param role_name [String] The name of the role
 # @return [Array<String>] List of policy ARNs
 def list_attached_policy_arns(role_name)
 response = @iam_client.list_attached_role_policies(role_name: role_name)
 response.attached_policies.map(&:policy_arn)
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error listing policies attached to role: #{e.message}")
 []
 end

 # Detaches a policy from a role
 #
 # @param role_name [String] The name of the role
 # @param policy_arn [String] The policy ARN

Actions 210

Amazon SDK for Ruby Developer Guide

 # @return [Boolean] true if successful, false otherwise
 def detach_policy_from_role(role_name, policy_arn)
 @iam_client.detach_role_policy(
 role_name: role_name,
 policy_arn: policy_arn
)
 true
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error detaching policy from role: #{e.message}")
 false
 end
end

• For API details, see DetachRolePolicy in Amazon SDK for Ruby API Reference.

DetachUserPolicy

The following code example shows how to use DetachUserPolicy.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

 # Detaches a policy from a user
 #
 # @param user_name [String] The name of the user
 # @param policy_arn [String] The ARN of the policy to detach
 # @return [Boolean] true if the policy was successfully detached, false otherwise
 def detach_user_policy(user_name, policy_arn)
 @iam_client.detach_user_policy(
 user_name: user_name,
 policy_arn: policy_arn
)
 @logger.info("Policy '#{policy_arn}' detached from user '#{user_name}'
 successfully.")
 true
 rescue Aws::IAM::Errors::NoSuchEntity

Actions 211

https://docs.amazonaws.cn/goto/SdkForRubyV3/iam-2010-05-08/DetachRolePolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

Amazon SDK for Ruby Developer Guide

 @logger.error('Error detaching policy: Policy or user does not exist.')
 false
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error detaching policy from user '#{user_name}': #{e.message}")
 false
 end

• For API details, see DetachUserPolicy in Amazon SDK for Ruby API Reference.

GetAccountPasswordPolicy

The following code example shows how to use GetAccountPasswordPolicy.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

Class to manage IAM account password policies
class PasswordPolicyManager
 attr_accessor :iam_client, :logger

 def initialize(iam_client, logger: Logger.new($stdout))
 @iam_client = iam_client
 @logger = logger
 @logger.progname = 'IAMPolicyManager'
 end

 # Retrieves and logs the account password policy
 def print_account_password_policy
 response = @iam_client.get_account_password_policy
 @logger.info("The account password policy is: #{response.password_policy.to_h}")
 rescue Aws::IAM::Errors::NoSuchEntity
 @logger.info('The account does not have a password policy.')
 rescue Aws::Errors::ServiceError => e
 @logger.error("Couldn't print the account password policy. Error: #{e.code} -
 #{e.message}")

Actions 212

https://docs.amazonaws.cn/goto/SdkForRubyV3/iam-2010-05-08/DetachUserPolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

Amazon SDK for Ruby Developer Guide

 raise
 end
end

• For API details, see GetAccountPasswordPolicy in Amazon SDK for Ruby API Reference.

GetPolicy

The following code example shows how to use GetPolicy.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

 # Fetches an IAM policy by its ARN
 # @param policy_arn [String] the ARN of the IAM policy to retrieve
 # @return [Aws::IAM::Types::GetPolicyResponse] the policy object if found
 def get_policy(policy_arn)
 response = @iam_client.get_policy(policy_arn: policy_arn)
 policy = response.policy
 @logger.info("Got policy '#{policy.policy_name}'. Its ID is:
 #{policy.policy_id}.")
 policy
 rescue Aws::IAM::Errors::NoSuchEntity
 @logger.error("Couldn't get policy '#{policy_arn}'. The policy does not exist.")
 raise
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Couldn't get policy '#{policy_arn}'. Here's why: #{e.code}:
 #{e.message}")
 raise
 end

• For API details, see GetPolicy in Amazon SDK for Ruby API Reference.

Actions 213

https://docs.amazonaws.cn/goto/SdkForRubyV3/iam-2010-05-08/GetAccountPasswordPolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples
https://docs.amazonaws.cn/goto/SdkForRubyV3/iam-2010-05-08/GetPolicy

Amazon SDK for Ruby Developer Guide

GetRole

The following code example shows how to use GetRole.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

 # Gets data about a role.
 #
 # @param name [String] The name of the role to look up.
 # @return [Aws::IAM::Role] The retrieved role.
 def get_role(name)
 role = @iam_client.get_role({
 role_name: name
 }).role
 puts("Got data for role '#{role.role_name}'. Its ARN is '#{role.arn}'.")
 rescue Aws::Errors::ServiceError => e
 puts("Couldn't get data for role '#{name}' Here's why:")
 puts("\t#{e.code}: #{e.message}")
 raise
 else
 role
 end

• For API details, see GetRole in Amazon SDK for Ruby API Reference.

GetUser

The following code example shows how to use GetUser.

Actions 214

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples
https://docs.amazonaws.cn/goto/SdkForRubyV3/iam-2010-05-08/GetRole

Amazon SDK for Ruby Developer Guide

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

 # Retrieves a user's details
 #
 # @param user_name [String] The name of the user to retrieve
 # @return [Aws::IAM::Types::User, nil] The user object if found, or nil if an
 error occurred
 def get_user(user_name)
 response = @iam_client.get_user(user_name: user_name)
 response.user
 rescue Aws::IAM::Errors::NoSuchEntity
 @logger.error("User '#{user_name}' not found.")
 nil
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error retrieving user '#{user_name}': #{e.message}")
 nil
 end

• For API details, see GetUser in Amazon SDK for Ruby API Reference.

ListAccessKeys

The following code example shows how to use ListAccessKeys.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

This example module lists, creates, deactivates, and deletes access keys.

Actions 215

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples
https://docs.amazonaws.cn/goto/SdkForRubyV3/iam-2010-05-08/GetUser
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

Amazon SDK for Ruby Developer Guide

Manages access keys for IAM users
class AccessKeyManager
 def initialize(iam_client, logger: Logger.new($stdout))
 @iam_client = iam_client
 @logger = logger
 @logger.progname = 'AccessKeyManager'
 end

 # Lists access keys for a user
 #
 # @param user_name [String] The name of the user.
 def list_access_keys(user_name)
 response = @iam_client.list_access_keys(user_name: user_name)
 if response.access_key_metadata.empty?
 @logger.info("No access keys found for user '#{user_name}'.")
 else
 response.access_key_metadata.map(&:access_key_id)
 end
 rescue Aws::IAM::Errors::NoSuchEntity
 @logger.error("Error listing access keys: cannot find user '#{user_name}'.")
 []
 rescue StandardError => e
 @logger.error("Error listing access keys: #{e.message}")
 []
 end

 # Creates an access key for a user
 #
 # @param user_name [String] The name of the user.
 # @return [Boolean]
 def create_access_key(user_name)
 response = @iam_client.create_access_key(user_name: user_name)
 access_key = response.access_key
 @logger.info("Access key created for user '#{user_name}':
 #{access_key.access_key_id}")
 access_key
 rescue Aws::IAM::Errors::LimitExceeded
 @logger.error('Error creating access key: limit exceeded. Cannot create more.')
 nil
 rescue StandardError => e
 @logger.error("Error creating access key: #{e.message}")
 nil
 end

Actions 216

Amazon SDK for Ruby Developer Guide

 # Deactivates an access key
 #
 # @param user_name [String] The name of the user.
 # @param access_key_id [String] The ID for the access key.
 # @return [Boolean]
 def deactivate_access_key(user_name, access_key_id)
 @iam_client.update_access_key(
 user_name: user_name,
 access_key_id: access_key_id,
 status: 'Inactive'
)
 true
 rescue StandardError => e
 @logger.error("Error deactivating access key: #{e.message}")
 false
 end

 # Deletes an access key
 #
 # @param user_name [String] The name of the user.
 # @param access_key_id [String] The ID for the access key.
 # @return [Boolean]
 def delete_access_key(user_name, access_key_id)
 @iam_client.delete_access_key(
 user_name: user_name,
 access_key_id: access_key_id
)
 true
 rescue StandardError => e
 @logger.error("Error deleting access key: #{e.message}")
 false
 end
end

• For API details, see ListAccessKeys in Amazon SDK for Ruby API Reference.

ListAccountAliases

The following code example shows how to use ListAccountAliases.

Actions 217

https://docs.amazonaws.cn/goto/SdkForRubyV3/iam-2010-05-08/ListAccessKeys

Amazon SDK for Ruby Developer Guide

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

List, create, and delete account aliases.

class IAMAliasManager
 # Initializes the IAM client and logger
 #
 # @param iam_client [Aws::IAM::Client] An initialized IAM client.
 def initialize(iam_client, logger: Logger.new($stdout))
 @iam_client = iam_client
 @logger = logger
 end

 # Lists available AWS account aliases.
 def list_aliases
 response = @iam_client.list_account_aliases

 if response.account_aliases.count.positive?
 @logger.info('Account aliases are:')
 response.account_aliases.each { |account_alias| @logger.info("
 #{account_alias}") }
 else
 @logger.info('No account aliases found.')
 end
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error listing account aliases: #{e.message}")
 end

 # Creates an AWS account alias.
 #
 # @param account_alias [String] The name of the account alias to create.
 # @return [Boolean] true if the account alias was created; otherwise, false.
 def create_account_alias(account_alias)
 @iam_client.create_account_alias(account_alias: account_alias)
 true
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error creating account alias: #{e.message}")

Actions 218

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

Amazon SDK for Ruby Developer Guide

 false
 end

 # Deletes an AWS account alias.
 #
 # @param account_alias [String] The name of the account alias to delete.
 # @return [Boolean] true if the account alias was deleted; otherwise, false.
 def delete_account_alias(account_alias)
 @iam_client.delete_account_alias(account_alias: account_alias)
 true
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error deleting account alias: #{e.message}")
 false
 end
end

• For API details, see ListAccountAliases in Amazon SDK for Ruby API Reference.

ListAttachedRolePolicies

The following code example shows how to use ListAttachedRolePolicies.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

This example module lists, creates, attaches, and detaches role policies.

Manages policies in AWS Identity and Access Management (IAM)
class RolePolicyManager
 # Initialize with an AWS IAM client
 #
 # @param iam_client [Aws::IAM::Client] An initialized IAM client
 def initialize(iam_client, logger: Logger.new($stdout))
 @iam_client = iam_client
 @logger = logger
 @logger.progname = 'PolicyManager'

Actions 219

https://docs.amazonaws.cn/goto/SdkForRubyV3/iam-2010-05-08/ListAccountAliases
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

Amazon SDK for Ruby Developer Guide

 end

 # Creates a policy
 #
 # @param policy_name [String] The name of the policy
 # @param policy_document [Hash] The policy document
 # @return [String] The policy ARN if successful, otherwise nil
 def create_policy(policy_name, policy_document)
 response = @iam_client.create_policy(
 policy_name: policy_name,
 policy_document: policy_document.to_json
)
 response.policy.arn
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error creating policy: #{e.message}")
 nil
 end

 # Fetches an IAM policy by its ARN
 # @param policy_arn [String] the ARN of the IAM policy to retrieve
 # @return [Aws::IAM::Types::GetPolicyResponse] the policy object if found
 def get_policy(policy_arn)
 response = @iam_client.get_policy(policy_arn: policy_arn)
 policy = response.policy
 @logger.info("Got policy '#{policy.policy_name}'. Its ID is:
 #{policy.policy_id}.")
 policy
 rescue Aws::IAM::Errors::NoSuchEntity
 @logger.error("Couldn't get policy '#{policy_arn}'. The policy does not exist.")
 raise
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Couldn't get policy '#{policy_arn}'. Here's why: #{e.code}:
 #{e.message}")
 raise
 end

 # Attaches a policy to a role
 #
 # @param role_name [String] The name of the role
 # @param policy_arn [String] The policy ARN
 # @return [Boolean] true if successful, false otherwise
 def attach_policy_to_role(role_name, policy_arn)
 @iam_client.attach_role_policy(
 role_name: role_name,

Actions 220

Amazon SDK for Ruby Developer Guide

 policy_arn: policy_arn
)
 true
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error attaching policy to role: #{e.message}")
 false
 end

 # Lists policy ARNs attached to a role
 #
 # @param role_name [String] The name of the role
 # @return [Array<String>] List of policy ARNs
 def list_attached_policy_arns(role_name)
 response = @iam_client.list_attached_role_policies(role_name: role_name)
 response.attached_policies.map(&:policy_arn)
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error listing policies attached to role: #{e.message}")
 []
 end

 # Detaches a policy from a role
 #
 # @param role_name [String] The name of the role
 # @param policy_arn [String] The policy ARN
 # @return [Boolean] true if successful, false otherwise
 def detach_policy_from_role(role_name, policy_arn)
 @iam_client.detach_role_policy(
 role_name: role_name,
 policy_arn: policy_arn
)
 true
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error detaching policy from role: #{e.message}")
 false
 end
end

• For API details, see ListAttachedRolePolicies in Amazon SDK for Ruby API Reference.

ListGroups

The following code example shows how to use ListGroups.

Actions 221

https://docs.amazonaws.cn/goto/SdkForRubyV3/iam-2010-05-08/ListAttachedRolePolicies

Amazon SDK for Ruby Developer Guide

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

A class to manage IAM operations via the AWS SDK client
class IamGroupManager
 # Initializes the IamGroupManager class
 # @param iam_client [Aws::IAM::Client] An instance of the IAM client
 def initialize(iam_client, logger: Logger.new($stdout))
 @iam_client = iam_client
 @logger = logger
 end

 # Lists up to a specified number of groups for the account.
 # @param count [Integer] The maximum number of groups to list.
 # @return [Aws::IAM::Client::Response]
 def list_groups(count)
 response = @iam_client.list_groups(max_items: count)
 response.groups.each do |group|
 @logger.info("\t#{group.group_name}")
 end
 response
 rescue Aws::Errors::ServiceError => e
 @logger.error("Couldn't list groups for the account. Here's why:")
 @logger.error("\t#{e.code}: #{e.message}")
 raise
 end
end

• For API details, see ListGroups in Amazon SDK for Ruby API Reference.

ListPolicies

The following code example shows how to use ListPolicies.

Actions 222

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples
https://docs.amazonaws.cn/goto/SdkForRubyV3/iam-2010-05-08/ListGroups

Amazon SDK for Ruby Developer Guide

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

This example module lists, creates, attaches, and detaches role policies.

Manages policies in AWS Identity and Access Management (IAM)
class RolePolicyManager
 # Initialize with an AWS IAM client
 #
 # @param iam_client [Aws::IAM::Client] An initialized IAM client
 def initialize(iam_client, logger: Logger.new($stdout))
 @iam_client = iam_client
 @logger = logger
 @logger.progname = 'PolicyManager'
 end

 # Creates a policy
 #
 # @param policy_name [String] The name of the policy
 # @param policy_document [Hash] The policy document
 # @return [String] The policy ARN if successful, otherwise nil
 def create_policy(policy_name, policy_document)
 response = @iam_client.create_policy(
 policy_name: policy_name,
 policy_document: policy_document.to_json
)
 response.policy.arn
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error creating policy: #{e.message}")
 nil
 end

 # Fetches an IAM policy by its ARN
 # @param policy_arn [String] the ARN of the IAM policy to retrieve
 # @return [Aws::IAM::Types::GetPolicyResponse] the policy object if found
 def get_policy(policy_arn)
 response = @iam_client.get_policy(policy_arn: policy_arn)
 policy = response.policy

Actions 223

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

Amazon SDK for Ruby Developer Guide

 @logger.info("Got policy '#{policy.policy_name}'. Its ID is:
 #{policy.policy_id}.")
 policy
 rescue Aws::IAM::Errors::NoSuchEntity
 @logger.error("Couldn't get policy '#{policy_arn}'. The policy does not exist.")
 raise
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Couldn't get policy '#{policy_arn}'. Here's why: #{e.code}:
 #{e.message}")
 raise
 end

 # Attaches a policy to a role
 #
 # @param role_name [String] The name of the role
 # @param policy_arn [String] The policy ARN
 # @return [Boolean] true if successful, false otherwise
 def attach_policy_to_role(role_name, policy_arn)
 @iam_client.attach_role_policy(
 role_name: role_name,
 policy_arn: policy_arn
)
 true
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error attaching policy to role: #{e.message}")
 false
 end

 # Lists policy ARNs attached to a role
 #
 # @param role_name [String] The name of the role
 # @return [Array<String>] List of policy ARNs
 def list_attached_policy_arns(role_name)
 response = @iam_client.list_attached_role_policies(role_name: role_name)
 response.attached_policies.map(&:policy_arn)
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error listing policies attached to role: #{e.message}")
 []
 end

 # Detaches a policy from a role
 #
 # @param role_name [String] The name of the role
 # @param policy_arn [String] The policy ARN

Actions 224

Amazon SDK for Ruby Developer Guide

 # @return [Boolean] true if successful, false otherwise
 def detach_policy_from_role(role_name, policy_arn)
 @iam_client.detach_role_policy(
 role_name: role_name,
 policy_arn: policy_arn
)
 true
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error detaching policy from role: #{e.message}")
 false
 end
end

• For API details, see ListPolicies in Amazon SDK for Ruby API Reference.

ListRolePolicies

The following code example shows how to use ListRolePolicies.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

 # Lists policy ARNs attached to a role
 #
 # @param role_name [String] The name of the role
 # @return [Array<String>] List of policy ARNs
 def list_attached_policy_arns(role_name)
 response = @iam_client.list_attached_role_policies(role_name: role_name)
 response.attached_policies.map(&:policy_arn)
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error listing policies attached to role: #{e.message}")
 []
 end

Actions 225

https://docs.amazonaws.cn/goto/SdkForRubyV3/iam-2010-05-08/ListPolicies
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

Amazon SDK for Ruby Developer Guide

• For API details, see ListRolePolicies in Amazon SDK for Ruby API Reference.

ListRoles

The following code example shows how to use ListRoles.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

 # Lists IAM roles up to a specified count.
 # @param count [Integer] the maximum number of roles to list.
 # @return [Array<String>] the names of the roles.
 def list_roles(count)
 role_names = []
 roles_counted = 0

 @iam_client.list_roles.each_page do |page|
 page.roles.each do |role|
 break if roles_counted >= count

 @logger.info("\t#{roles_counted + 1}: #{role.role_name}")
 role_names << role.role_name
 roles_counted += 1
 end
 break if roles_counted >= count
 end

 role_names
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Couldn't list roles for the account. Here's why:")
 @logger.error("\t#{e.code}: #{e.message}")
 raise
 end

• For API details, see ListRoles in Amazon SDK for Ruby API Reference.

Actions 226

https://docs.amazonaws.cn/goto/SdkForRubyV3/iam-2010-05-08/ListRolePolicies
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples
https://docs.amazonaws.cn/goto/SdkForRubyV3/iam-2010-05-08/ListRoles

Amazon SDK for Ruby Developer Guide

ListSAMLProviders

The following code example shows how to use ListSAMLProviders.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

class SamlProviderLister
 # Initializes the SamlProviderLister with IAM client and a logger.
 # @param iam_client [Aws::IAM::Client] The IAM client object.
 # @param logger [Logger] The logger object for logging output.
 def initialize(iam_client, logger = Logger.new($stdout))
 @iam_client = iam_client
 @logger = logger
 end

 # Lists up to a specified number of SAML providers for the account.
 # @param count [Integer] The maximum number of providers to list.
 # @return [Aws::IAM::Client::Response]
 def list_saml_providers(count)
 response = @iam_client.list_saml_providers
 response.saml_provider_list.take(count).each do |provider|
 @logger.info("\t#{provider.arn}")
 end
 response
 rescue Aws::Errors::ServiceError => e
 @logger.error("Couldn't list SAML providers. Here's why:")
 @logger.error("\t#{e.code}: #{e.message}")
 raise
 end
end

• For API details, see ListSAMLProviders in Amazon SDK for Ruby API Reference.

Actions 227

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples
https://docs.amazonaws.cn/goto/SdkForRubyV3/iam-2010-05-08/ListSAMLProviders

Amazon SDK for Ruby Developer Guide

ListServerCertificates

The following code example shows how to use ListServerCertificates.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

List, update, and delete server certificates.

class ServerCertificateManager
 def initialize(iam_client, logger: Logger.new($stdout))
 @iam_client = iam_client
 @logger = logger
 @logger.progname = 'ServerCertificateManager'
 end

 # Creates a new server certificate.
 # @param name [String] the name of the server certificate
 # @param certificate_body [String] the contents of the certificate
 # @param private_key [String] the private key contents
 # @return [Boolean] returns true if the certificate was successfully created
 def create_server_certificate(name, certificate_body, private_key)
 @iam_client.upload_server_certificate({
 server_certificate_name: name,
 certificate_body: certificate_body,
 private_key: private_key
 })
 true
 rescue Aws::IAM::Errors::ServiceError => e
 puts "Failed to create server certificate: #{e.message}"
 false
 end

 # Lists available server certificate names.
 def list_server_certificate_names
 response = @iam_client.list_server_certificates

 if response.server_certificate_metadata_list.empty?

Actions 228

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

Amazon SDK for Ruby Developer Guide

 @logger.info('No server certificates found.')
 return
 end

 response.server_certificate_metadata_list.each do |certificate_metadata|
 @logger.info("Certificate Name:
 #{certificate_metadata.server_certificate_name}")
 end
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error listing server certificates: #{e.message}")
 end

 # Updates the name of a server certificate.
 def update_server_certificate_name(current_name, new_name)
 @iam_client.update_server_certificate(
 server_certificate_name: current_name,
 new_server_certificate_name: new_name
)
 @logger.info("Server certificate name updated from '#{current_name}' to
 '#{new_name}'.")
 true
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error updating server certificate name: #{e.message}")
 false
 end

 # Deletes a server certificate.
 def delete_server_certificate(name)
 @iam_client.delete_server_certificate(server_certificate_name: name)
 @logger.info("Server certificate '#{name}' deleted.")
 true
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error deleting server certificate: #{e.message}")
 false
 end
end

• For API details, see ListServerCertificates in Amazon SDK for Ruby API Reference.

ListUsers

The following code example shows how to use ListUsers.

Actions 229

https://docs.amazonaws.cn/goto/SdkForRubyV3/iam-2010-05-08/ListServerCertificates

Amazon SDK for Ruby Developer Guide

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

 # Lists all users in the AWS account
 #
 # @return [Array<Aws::IAM::Types::User>] An array of user objects
 def list_users
 users = []
 @iam_client.list_users.each_page do |page|
 page.users.each do |user|
 users << user
 end
 end
 users
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error listing users: #{e.message}")
 []
 end

• For API details, see ListUsers in Amazon SDK for Ruby API Reference.

PutUserPolicy

The following code example shows how to use PutUserPolicy.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

 # Creates an inline policy for a specified user.

Actions 230

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples
https://docs.amazonaws.cn/goto/SdkForRubyV3/iam-2010-05-08/ListUsers
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

Amazon SDK for Ruby Developer Guide

 # @param username [String] The name of the IAM user.
 # @param policy_name [String] The name of the policy to create.
 # @param policy_document [String] The JSON policy document.
 # @return [Boolean]
 def create_user_policy(username, policy_name, policy_document)
 @iam_client.put_user_policy({
 user_name: username,
 policy_name: policy_name,
 policy_document: policy_document
 })
 @logger.info("Policy #{policy_name} created for user #{username}.")
 true
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Couldn't create policy #{policy_name} for user #{username}.
 Here's why:")
 @logger.error("\t#{e.code}: #{e.message}")
 false
 end

• For API details, see PutUserPolicy in Amazon SDK for Ruby API Reference.

UpdateServerCertificate

The following code example shows how to use UpdateServerCertificate.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

List, update, and delete server certificates.

class ServerCertificateManager
 def initialize(iam_client, logger: Logger.new($stdout))
 @iam_client = iam_client
 @logger = logger
 @logger.progname = 'ServerCertificateManager'
 end

Actions 231

https://docs.amazonaws.cn/goto/SdkForRubyV3/iam-2010-05-08/PutUserPolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

Amazon SDK for Ruby Developer Guide

 # Creates a new server certificate.
 # @param name [String] the name of the server certificate
 # @param certificate_body [String] the contents of the certificate
 # @param private_key [String] the private key contents
 # @return [Boolean] returns true if the certificate was successfully created
 def create_server_certificate(name, certificate_body, private_key)
 @iam_client.upload_server_certificate({
 server_certificate_name: name,
 certificate_body: certificate_body,
 private_key: private_key
 })
 true
 rescue Aws::IAM::Errors::ServiceError => e
 puts "Failed to create server certificate: #{e.message}"
 false
 end

 # Lists available server certificate names.
 def list_server_certificate_names
 response = @iam_client.list_server_certificates

 if response.server_certificate_metadata_list.empty?
 @logger.info('No server certificates found.')
 return
 end

 response.server_certificate_metadata_list.each do |certificate_metadata|
 @logger.info("Certificate Name:
 #{certificate_metadata.server_certificate_name}")
 end
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error listing server certificates: #{e.message}")
 end

 # Updates the name of a server certificate.
 def update_server_certificate_name(current_name, new_name)
 @iam_client.update_server_certificate(
 server_certificate_name: current_name,
 new_server_certificate_name: new_name
)
 @logger.info("Server certificate name updated from '#{current_name}' to
 '#{new_name}'.")
 true

Actions 232

Amazon SDK for Ruby Developer Guide

 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error updating server certificate name: #{e.message}")
 false
 end

 # Deletes a server certificate.
 def delete_server_certificate(name)
 @iam_client.delete_server_certificate(server_certificate_name: name)
 @logger.info("Server certificate '#{name}' deleted.")
 true
 rescue Aws::IAM::Errors::ServiceError => e
 @logger.error("Error deleting server certificate: #{e.message}")
 false
 end
end

• For API details, see UpdateServerCertificate in Amazon SDK for Ruby API Reference.

UpdateUser

The following code example shows how to use UpdateUser.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

 # Updates an IAM user's name
 #
 # @param current_name [String] The current name of the user
 # @param new_name [String] The new name of the user
 def update_user_name(current_name, new_name)
 @iam_client.update_user(user_name: current_name, new_user_name: new_name)
 true
 rescue StandardError => e
 @logger.error("Error updating user name from '#{current_name}' to '#{new_name}':
 #{e.message}")
 false

Actions 233

https://docs.amazonaws.cn/goto/SdkForRubyV3/iam-2010-05-08/UpdateServerCertificate
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples

Amazon SDK for Ruby Developer Guide

 end

• For API details, see UpdateUser in Amazon SDK for Ruby API Reference.

Kinesis examples using SDK for Ruby

The following code examples show you how to perform actions and implement common scenarios
by using the Amazon SDK for Ruby with Kinesis.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Topics

• Serverless examples

Serverless examples

Invoke a Lambda function from a Kinesis trigger

The following code example shows how to implement a Lambda function that receives an event
triggered by receiving records from a Kinesis stream. The function retrieves the Kinesis payload,
decodes from Base64, and logs the record contents.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Serverless examples repository.

Consuming an Kinesis event with Lambda using Ruby.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
require 'aws-sdk'

def lambda_handler(event:, context:)

Kinesis 234

https://docs.amazonaws.cn/goto/SdkForRubyV3/iam-2010-05-08/UpdateUser
https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda

Amazon SDK for Ruby Developer Guide

 event['Records'].each do |record|
 begin
 puts "Processed Kinesis Event - EventID: #{record['eventID']}"
 record_data = get_record_data_async(record['kinesis'])
 puts "Record Data: #{record_data}"
 # TODO: Do interesting work based on the new data
 rescue => err
 $stderr.puts "An error occurred #{err}"
 raise err
 end
 end
 puts "Successfully processed #{event['Records'].length} records."
end

def get_record_data_async(payload)
 data = Base64.decode64(payload['data']).force_encoding('UTF-8')
 # Placeholder for actual async work
 # You can use Ruby's asynchronous programming tools like async/await or fibers
 here.
 return data
end

Reporting batch item failures for Lambda functions with a Kinesis trigger

The following code example shows how to implement partial batch response for Lambda functions
that receive events from a Kinesis stream. The function reports the batch item failures in the
response, signaling to Lambda to retry those messages later.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Serverless examples repository.

Reporting Kinesis batch item failures with Lambda using Ruby.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
require 'aws-sdk'

Serverless examples 235

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda-with-batch-item-handling

Amazon SDK for Ruby Developer Guide

def lambda_handler(event:, context:)
 batch_item_failures = []

 event['Records'].each do |record|
 begin
 puts "Processed Kinesis Event - EventID: #{record['eventID']}"
 record_data = get_record_data_async(record['kinesis'])
 puts "Record Data: #{record_data}"
 # TODO: Do interesting work based on the new data
 rescue StandardError => err
 puts "An error occurred #{err}"
 # Since we are working with streams, we can return the failed item
 immediately.
 # Lambda will immediately begin to retry processing from this failed item
 onwards.
 return { batchItemFailures: [{ itemIdentifier: record['kinesis']
['sequenceNumber'] }] }
 end
 end

 puts "Successfully processed #{event['Records'].length} records."
 { batchItemFailures: batch_item_failures }
end

def get_record_data_async(payload)
 data = Base64.decode64(payload['data']).force_encoding('utf-8')
 # Placeholder for actual async work
 sleep(1)
 data
end

Amazon KMS examples using SDK for Ruby

The following code examples show you how to perform actions and implement common scenarios
by using the Amazon SDK for Ruby with Amazon KMS.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Amazon KMS 236

Amazon SDK for Ruby Developer Guide

Topics

• Actions

Actions

CreateKey

The following code example shows how to use CreateKey.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

require 'aws-sdk-kms' # v2: require 'aws-sdk'

Create a AWS KMS key.
As long we are only encrypting small amounts of data (4 KiB or less) directly,
a KMS key is fine for our purposes.
For larger amounts of data,
use the KMS key to encrypt a data encryption key (DEK).

client = Aws::KMS::Client.new

resp = client.create_key({
 tags: [
 {
 tag_key: 'CreatedBy',
 tag_value: 'ExampleUser'
 }
]
 })

puts resp.key_metadata.key_id

• For API details, see CreateKey in Amazon SDK for Ruby API Reference.

Actions 237

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/kms#code-examples
https://docs.amazonaws.cn/goto/SdkForRubyV3/kms-2014-11-01/CreateKey

Amazon SDK for Ruby Developer Guide

Decrypt

The following code example shows how to use Decrypt.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

require 'aws-sdk-kms' # v2: require 'aws-sdk'

Decrypted blob

blob =
 '01020200785d68faeec386af1057904926253051eb2919d3c16078badf65b808b26dd057c101747cadf3593596e093d4ffbf22434a6d00000068306606092a864886f70d010706a0593057020100305206092a864886f70d010701301e060960864801650304012e3011040c9d629e573683972cdb7d94b30201108025b20b060591b02ca0deb0fbdfc2f86c8bfcb265947739851ad56f3adce91eba87c59691a9a1'
blob_packed = [blob].pack('H*')

client = Aws::KMS::Client.new(region: 'us-west-2')

resp = client.decrypt({
 ciphertext_blob: blob_packed
 })

puts 'Raw text: '
puts resp.plaintext

• For API details, see Decrypt in Amazon SDK for Ruby API Reference.

Encrypt

The following code example shows how to use Encrypt.

Actions 238

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/kms#code-examples
https://docs.amazonaws.cn/goto/SdkForRubyV3/kms-2014-11-01/Decrypt

Amazon SDK for Ruby Developer Guide

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

require 'aws-sdk-kms' # v2: require 'aws-sdk'

ARN of the AWS KMS key.
#
Replace the fictitious key ARN with a valid key ID

keyId = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

text = '1234567890'

client = Aws::KMS::Client.new(region: 'us-west-2')

resp = client.encrypt({
 key_id: keyId,
 plaintext: text
 })

Display a readable version of the resulting encrypted blob.
puts 'Blob:'
puts resp.ciphertext_blob.unpack('H*')

• For API details, see Encrypt in Amazon SDK for Ruby API Reference.

ReEncrypt

The following code example shows how to use ReEncrypt.

Actions 239

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/kms#code-examples
https://docs.amazonaws.cn/goto/SdkForRubyV3/kms-2014-11-01/Encrypt

Amazon SDK for Ruby Developer Guide

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

require 'aws-sdk-kms' # v2: require 'aws-sdk'

Human-readable version of the ciphertext of the data to reencrypt.

blob =
 '01020200785d68faeec386af1057904926253051eb2919d3c16078badf65b808b26dd057c101747cadf3593596e093d4ffbf22434a6d00000068306606092a864886f70d010706a0593057020100305206092a864886f70d010701301e060960864801650304012e3011040c9d629e573683972cdb7d94b30201108025b20b060591b02ca0deb0fbdfc2f86c8bfcb265947739851ad56f3adce91eba87c59691a9a1'
sourceCiphertextBlob = [blob].pack('H*')

Replace the fictitious key ARN with a valid key ID

destinationKeyId = 'arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321'

client = Aws::KMS::Client.new(region: 'us-west-2')

resp = client.re_encrypt({
 ciphertext_blob: sourceCiphertextBlob,
 destination_key_id: destinationKeyId
 })

Display a readable version of the resulting re-encrypted blob.
puts 'Blob:'
puts resp.ciphertext_blob.unpack('H*')

• For API details, see ReEncrypt in Amazon SDK for Ruby API Reference.

Lambda examples using SDK for Ruby

The following code examples show you how to perform actions and implement common scenarios
by using the Amazon SDK for Ruby with Lambda.

Lambda 240

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/kms#code-examples
https://docs.amazonaws.cn/goto/SdkForRubyV3/kms-2014-11-01/ReEncrypt

Amazon SDK for Ruby Developer Guide

Basics are code examples that show you how to perform the essential operations within a service.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Scenarios are code examples that show you how to accomplish specific tasks by calling multiple
functions within a service or combined with other Amazon Web Services services.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Topics

• Get started

• Basics

• Actions

• Scenarios

• Serverless examples

Get started

Hello Lambda

The following code example shows how to get started using Lambda.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

require 'aws-sdk-lambda'

Creates an AWS Lambda client using the default credentials and configuration
def lambda_client

Get started 241

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/lambda#code-examples

Amazon SDK for Ruby Developer Guide

 Aws::Lambda::Client.new
end

Lists the Lambda functions in your AWS account, paginating the results if
 necessary
def list_lambda_functions
 lambda = lambda_client

 # Use a pagination iterator to list all functions
 functions = []
 lambda.list_functions.each_page do |page|
 functions.concat(page.functions)
 end

 # Print the name and ARN of each function
 functions.each do |function|
 puts "Function name: #{function.function_name}"
 puts "Function ARN: #{function.function_arn}"
 puts
 end

 puts "Total functions: #{functions.count}"
end

list_lambda_functions if __FILE__ == $PROGRAM_NAME

• For API details, see ListFunctions in Amazon SDK for Ruby API Reference.

Basics

Learn the basics

The following code example shows how to:

• Create an IAM role and Lambda function, then upload handler code.

• Invoke the function with a single parameter and get results.

• Update the function code and configure with an environment variable.

• Invoke the function with new parameters and get results. Display the returned execution log.

• List the functions for your account, then clean up resources.

Basics 242

https://docs.amazonaws.cn/goto/SdkForRubyV3/lambda-2015-03-31/ListFunctions

Amazon SDK for Ruby Developer Guide

For more information, see Create a Lambda function with the console.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

Set up pre-requisite IAM permissions for a Lambda function capable of writing logs.

 # Get an AWS Identity and Access Management (IAM) role.
 #
 # @param iam_role_name: The name of the role to retrieve.
 # @param action: Whether to create or destroy the IAM apparatus.
 # @return: The IAM role.
 def manage_iam(iam_role_name, action)
 case action
 when 'create'
 create_iam_role(iam_role_name)
 when 'destroy'
 destroy_iam_role(iam_role_name)
 else
 raise "Incorrect action provided. Must provide 'create' or 'destroy'"
 end
 end

 private

 def create_iam_role(iam_role_name)
 role_policy = {
 'Version': '2012-10-17',
 'Statement': [
 {
 'Effect': 'Allow',
 'Principal': { 'Service': 'lambda.amazonaws.com' },
 'Action': 'sts:AssumeRole'
 }
]
 }
 role = @iam_client.create_role(
 role_name: iam_role_name,

Basics 243

https://docs.amazonaws.cn/lambda/latest/dg/getting-started-create-function.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/lambda#code-examples

Amazon SDK for Ruby Developer Guide

 assume_role_policy_document: role_policy.to_json
)
 @iam_client.attach_role_policy(
 {
 policy_arn: 'arn:aws:iam::aws:policy/service-role/
AWSLambdaBasicExecutionRole',
 role_name: iam_role_name
 }
)
 wait_for_role_to_exist(iam_role_name)
 @logger.debug("Successfully created IAM role: #{role['role']['arn']}")
 sleep(10)
 [role, role_policy.to_json]
 end

 def destroy_iam_role(iam_role_name)
 @iam_client.detach_role_policy(
 {
 policy_arn: 'arn:aws:iam::aws:policy/service-role/
AWSLambdaBasicExecutionRole',
 role_name: iam_role_name
 }
)
 @iam_client.delete_role(role_name: iam_role_name)
 @logger.debug("Detached policy & deleted IAM role: #{iam_role_name}")
 end

 def wait_for_role_to_exist(iam_role_name)
 @iam_client.wait_until(:role_exists, { role_name: iam_role_name }) do |w|
 w.max_attempts = 5
 w.delay = 5
 end
 end

Define a Lambda handler that increments a number provided as an invocation parameter.

require 'logger'

A function that increments a whole number by one (1) and logs the result.
Requires a manually-provided runtime parameter, 'number', which must be Int
#
@param event [Hash] Parameters sent when the function is invoked

Basics 244

Amazon SDK for Ruby Developer Guide

@param context [Hash] Methods and properties that provide information
about the invocation, function, and execution environment.
@return incremented_number [String] The incremented number.
def lambda_handler(event:, context:)
 logger = Logger.new($stdout)
 log_level = ENV['LOG_LEVEL']
 logger.level = case log_level
 when 'debug'
 Logger::DEBUG
 when 'info'
 Logger::INFO
 else
 Logger::ERROR
 end
 logger.debug('This is a debug log message.')
 logger.info('This is an info log message. Code executed successfully!')
 number = event['number'].to_i
 incremented_number = number + 1
 logger.info("You provided #{number.round} and it was incremented to
 #{incremented_number.round}")
 incremented_number.round.to_s
end

Zip your Lambda function into a deployment package.

 # Creates a Lambda deployment package in .zip format.
 #
 # @param source_file: The name of the object, without suffix, for the Lambda file
 and zip.
 # @return: The deployment package.
 def create_deployment_package(source_file)
 Dir.chdir(File.dirname(__FILE__))
 if File.exist?('lambda_function.zip')
 File.delete('lambda_function.zip')
 @logger.debug('Deleting old zip: lambda_function.zip')
 end
 Zip::File.open('lambda_function.zip', create: true) do |zipfile|
 zipfile.add('lambda_function.rb', "#{source_file}.rb")
 end
 @logger.debug("Zipping #{source_file}.rb into: lambda_function.zip.")
 File.read('lambda_function.zip').to_s
 rescue StandardError => e

Basics 245

Amazon SDK for Ruby Developer Guide

 @logger.error("There was an error creating deployment package:\n #{e.message}")
 end

Create a new Lambda function.

 # Deploys a Lambda function.
 #
 # @param function_name: The name of the Lambda function.
 # @param handler_name: The fully qualified name of the handler function.
 # @param role_arn: The IAM role to use for the function.
 # @param deployment_package: The deployment package that contains the function
 code in .zip format.
 # @return: The Amazon Resource Name (ARN) of the newly created function.
 def create_function(function_name, handler_name, role_arn, deployment_package)
 response = @lambda_client.create_function({
 role: role_arn.to_s,
 function_name: function_name,
 handler: handler_name,
 runtime: 'ruby2.7',
 code: {
 zip_file: deployment_package
 },
 environment: {
 variables: {
 'LOG_LEVEL' => 'info'
 }
 }
 })
 @lambda_client.wait_until(:function_active_v2, { function_name: function_name })
 do |w|
 w.max_attempts = 5
 w.delay = 5
 end
 response
 rescue Aws::Lambda::Errors::ServiceException => e
 @logger.error("There was an error creating #{function_name}:\n #{e.message}")
 rescue Aws::Waiters::Errors::WaiterFailed => e
 @logger.error("Failed waiting for #{function_name} to activate:\n #{e.message}")
 end

Invoke your Lambda function with optional runtime parameters.

Basics 246

Amazon SDK for Ruby Developer Guide

 # Invokes a Lambda function.
 # @param function_name [String] The name of the function to invoke.
 # @param payload [nil] Payload containing runtime parameters.
 # @return [Object] The response from the function invocation.
 def invoke_function(function_name, payload = nil)
 params = { function_name: function_name }
 params[:payload] = payload unless payload.nil?
 @lambda_client.invoke(params)
 rescue Aws::Lambda::Errors::ServiceException => e
 @logger.error("There was an error executing #{function_name}:\n #{e.message}")
 end

Update your Lambda function's configuration to inject a new environment variable.

 # Updates the environment variables for a Lambda function.
 # @param function_name: The name of the function to update.
 # @param log_level: The log level of the function.
 # @return: Data about the update, including the status.
 def update_function_configuration(function_name, log_level)
 @lambda_client.update_function_configuration({
 function_name: function_name,
 environment: {
 variables: {
 'LOG_LEVEL' => log_level
 }
 }
 })
 @lambda_client.wait_until(:function_updated_v2, { function_name:
 function_name }) do |w|
 w.max_attempts = 5
 w.delay = 5
 end
 rescue Aws::Lambda::Errors::ServiceException => e
 @logger.error("There was an error updating configurations for #{function_name}:
\n #{e.message}")
 rescue Aws::Waiters::Errors::WaiterFailed => e
 @logger.error("Failed waiting for #{function_name} to activate:\n #{e.message}")
 end

Basics 247

Amazon SDK for Ruby Developer Guide

Update your Lambda function's code with a different deployment package containing different
code.

 # Updates the code for a Lambda function by submitting a .zip archive that
 contains
 # the code for the function.
 #
 # @param function_name: The name of the function to update.
 # @param deployment_package: The function code to update, packaged as bytes in
 # .zip format.
 # @return: Data about the update, including the status.
 def update_function_code(function_name, deployment_package)
 @lambda_client.update_function_code(
 function_name: function_name,
 zip_file: deployment_package
)
 @lambda_client.wait_until(:function_updated_v2, { function_name:
 function_name }) do |w|
 w.max_attempts = 5
 w.delay = 5
 end
 rescue Aws::Lambda::Errors::ServiceException => e
 @logger.error("There was an error updating function code for: #{function_name}:
\n #{e.message}")
 nil
 rescue Aws::Waiters::Errors::WaiterFailed => e
 @logger.error("Failed waiting for #{function_name} to update:\n #{e.message}")
 end

List all existing Lambda functions using the built-in paginator.

 # Lists the Lambda functions for the current account.
 def list_functions
 functions = []
 @lambda_client.list_functions.each do |response|
 response['functions'].each do |function|
 functions.append(function['function_name'])
 end
 end
 functions
 rescue Aws::Lambda::Errors::ServiceException => e
 @logger.error("There was an error listing functions:\n #{e.message}")

Basics 248

Amazon SDK for Ruby Developer Guide

 end

Delete a specific Lambda function.

 # Deletes a Lambda function.
 # @param function_name: The name of the function to delete.
 def delete_function(function_name)
 print "Deleting function: #{function_name}..."
 @lambda_client.delete_function(
 function_name: function_name
)
 print 'Done!'.green
 rescue Aws::Lambda::Errors::ServiceException => e
 @logger.error("There was an error deleting #{function_name}:\n #{e.message}")
 end

• For API details, see the following topics in Amazon SDK for Ruby API Reference.

• CreateFunction

• DeleteFunction

• GetFunction

• Invoke

• ListFunctions

• UpdateFunctionCode

• UpdateFunctionConfiguration

Actions

CreateFunction

The following code example shows how to use CreateFunction.

Actions 249

https://docs.amazonaws.cn/goto/SdkForRubyV3/lambda-2015-03-31/CreateFunction
https://docs.amazonaws.cn/goto/SdkForRubyV3/lambda-2015-03-31/DeleteFunction
https://docs.amazonaws.cn/goto/SdkForRubyV3/lambda-2015-03-31/GetFunction
https://docs.amazonaws.cn/goto/SdkForRubyV3/lambda-2015-03-31/Invoke
https://docs.amazonaws.cn/goto/SdkForRubyV3/lambda-2015-03-31/ListFunctions
https://docs.amazonaws.cn/goto/SdkForRubyV3/lambda-2015-03-31/UpdateFunctionCode
https://docs.amazonaws.cn/goto/SdkForRubyV3/lambda-2015-03-31/UpdateFunctionConfiguration

Amazon SDK for Ruby Developer Guide

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

class LambdaWrapper
 attr_accessor :lambda_client, :cloudwatch_client, :iam_client

 def initialize
 @lambda_client = Aws::Lambda::Client.new
 @cloudwatch_client = Aws::CloudWatchLogs::Client.new(region: 'us-east-1')
 @iam_client = Aws::IAM::Client.new(region: 'us-east-1')
 @logger = Logger.new($stdout)
 @logger.level = Logger::WARN
 end

 # Deploys a Lambda function.
 #
 # @param function_name: The name of the Lambda function.
 # @param handler_name: The fully qualified name of the handler function.
 # @param role_arn: The IAM role to use for the function.
 # @param deployment_package: The deployment package that contains the function
 code in .zip format.
 # @return: The Amazon Resource Name (ARN) of the newly created function.
 def create_function(function_name, handler_name, role_arn, deployment_package)
 response = @lambda_client.create_function({
 role: role_arn.to_s,
 function_name: function_name,
 handler: handler_name,
 runtime: 'ruby2.7',
 code: {
 zip_file: deployment_package
 },
 environment: {
 variables: {
 'LOG_LEVEL' => 'info'
 }
 }
 })

Actions 250

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/lambda#code-examples

Amazon SDK for Ruby Developer Guide

 @lambda_client.wait_until(:function_active_v2, { function_name: function_name })
 do |w|
 w.max_attempts = 5
 w.delay = 5
 end
 response
 rescue Aws::Lambda::Errors::ServiceException => e
 @logger.error("There was an error creating #{function_name}:\n #{e.message}")
 rescue Aws::Waiters::Errors::WaiterFailed => e
 @logger.error("Failed waiting for #{function_name} to activate:\n #{e.message}")
 end

• For API details, see CreateFunction in Amazon SDK for Ruby API Reference.

DeleteFunction

The following code example shows how to use DeleteFunction.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

class LambdaWrapper
 attr_accessor :lambda_client, :cloudwatch_client, :iam_client

 def initialize
 @lambda_client = Aws::Lambda::Client.new
 @cloudwatch_client = Aws::CloudWatchLogs::Client.new(region: 'us-east-1')
 @iam_client = Aws::IAM::Client.new(region: 'us-east-1')
 @logger = Logger.new($stdout)
 @logger.level = Logger::WARN
 end

 # Deletes a Lambda function.
 # @param function_name: The name of the function to delete.
 def delete_function(function_name)

Actions 251

https://docs.amazonaws.cn/goto/SdkForRubyV3/lambda-2015-03-31/CreateFunction
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/lambda#code-examples

Amazon SDK for Ruby Developer Guide

 print "Deleting function: #{function_name}..."
 @lambda_client.delete_function(
 function_name: function_name
)
 print 'Done!'.green
 rescue Aws::Lambda::Errors::ServiceException => e
 @logger.error("There was an error deleting #{function_name}:\n #{e.message}")
 end

• For API details, see DeleteFunction in Amazon SDK for Ruby API Reference.

GetFunction

The following code example shows how to use GetFunction.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

class LambdaWrapper
 attr_accessor :lambda_client, :cloudwatch_client, :iam_client

 def initialize
 @lambda_client = Aws::Lambda::Client.new
 @cloudwatch_client = Aws::CloudWatchLogs::Client.new(region: 'us-east-1')
 @iam_client = Aws::IAM::Client.new(region: 'us-east-1')
 @logger = Logger.new($stdout)
 @logger.level = Logger::WARN
 end

 # Gets data about a Lambda function.
 #
 # @param function_name: The name of the function.
 # @return response: The function data, or nil if no such function exists.
 def get_function(function_name)
 @lambda_client.get_function(
 {

Actions 252

https://docs.amazonaws.cn/goto/SdkForRubyV3/lambda-2015-03-31/DeleteFunction
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/lambda#code-examples

Amazon SDK for Ruby Developer Guide

 function_name: function_name
 }
)
 rescue Aws::Lambda::Errors::ResourceNotFoundException => e
 @logger.debug("Could not find function: #{function_name}:\n #{e.message}")
 nil
 end

• For API details, see GetFunction in Amazon SDK for Ruby API Reference.

Invoke

The following code example shows how to use Invoke.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

class LambdaWrapper
 attr_accessor :lambda_client, :cloudwatch_client, :iam_client

 def initialize
 @lambda_client = Aws::Lambda::Client.new
 @cloudwatch_client = Aws::CloudWatchLogs::Client.new(region: 'us-east-1')
 @iam_client = Aws::IAM::Client.new(region: 'us-east-1')
 @logger = Logger.new($stdout)
 @logger.level = Logger::WARN
 end

 # Invokes a Lambda function.
 # @param function_name [String] The name of the function to invoke.
 # @param payload [nil] Payload containing runtime parameters.
 # @return [Object] The response from the function invocation.
 def invoke_function(function_name, payload = nil)
 params = { function_name: function_name }
 params[:payload] = payload unless payload.nil?
 @lambda_client.invoke(params)

Actions 253

https://docs.amazonaws.cn/goto/SdkForRubyV3/lambda-2015-03-31/GetFunction
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/lambda#code-examples

Amazon SDK for Ruby Developer Guide

 rescue Aws::Lambda::Errors::ServiceException => e
 @logger.error("There was an error executing #{function_name}:\n #{e.message}")
 end

• For API details, see Invoke in Amazon SDK for Ruby API Reference.

ListFunctions

The following code example shows how to use ListFunctions.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

class LambdaWrapper
 attr_accessor :lambda_client, :cloudwatch_client, :iam_client

 def initialize
 @lambda_client = Aws::Lambda::Client.new
 @cloudwatch_client = Aws::CloudWatchLogs::Client.new(region: 'us-east-1')
 @iam_client = Aws::IAM::Client.new(region: 'us-east-1')
 @logger = Logger.new($stdout)
 @logger.level = Logger::WARN
 end

 # Lists the Lambda functions for the current account.
 def list_functions
 functions = []
 @lambda_client.list_functions.each do |response|
 response['functions'].each do |function|
 functions.append(function['function_name'])
 end
 end
 functions
 rescue Aws::Lambda::Errors::ServiceException => e
 @logger.error("There was an error listing functions:\n #{e.message}")
 end

Actions 254

https://docs.amazonaws.cn/goto/SdkForRubyV3/lambda-2015-03-31/Invoke
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/lambda#code-examples

Amazon SDK for Ruby Developer Guide

• For API details, see ListFunctions in Amazon SDK for Ruby API Reference.

UpdateFunctionCode

The following code example shows how to use UpdateFunctionCode.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

class LambdaWrapper
 attr_accessor :lambda_client, :cloudwatch_client, :iam_client

 def initialize
 @lambda_client = Aws::Lambda::Client.new
 @cloudwatch_client = Aws::CloudWatchLogs::Client.new(region: 'us-east-1')
 @iam_client = Aws::IAM::Client.new(region: 'us-east-1')
 @logger = Logger.new($stdout)
 @logger.level = Logger::WARN
 end

 # Updates the code for a Lambda function by submitting a .zip archive that
 contains
 # the code for the function.
 #
 # @param function_name: The name of the function to update.
 # @param deployment_package: The function code to update, packaged as bytes in
 # .zip format.
 # @return: Data about the update, including the status.
 def update_function_code(function_name, deployment_package)
 @lambda_client.update_function_code(
 function_name: function_name,
 zip_file: deployment_package
)
 @lambda_client.wait_until(:function_updated_v2, { function_name:
 function_name }) do |w|

Actions 255

https://docs.amazonaws.cn/goto/SdkForRubyV3/lambda-2015-03-31/ListFunctions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/lambda#code-examples

Amazon SDK for Ruby Developer Guide

 w.max_attempts = 5
 w.delay = 5
 end
 rescue Aws::Lambda::Errors::ServiceException => e
 @logger.error("There was an error updating function code for: #{function_name}:
\n #{e.message}")
 nil
 rescue Aws::Waiters::Errors::WaiterFailed => e
 @logger.error("Failed waiting for #{function_name} to update:\n #{e.message}")
 end

• For API details, see UpdateFunctionCode in Amazon SDK for Ruby API Reference.

UpdateFunctionConfiguration

The following code example shows how to use UpdateFunctionConfiguration.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

class LambdaWrapper
 attr_accessor :lambda_client, :cloudwatch_client, :iam_client

 def initialize
 @lambda_client = Aws::Lambda::Client.new
 @cloudwatch_client = Aws::CloudWatchLogs::Client.new(region: 'us-east-1')
 @iam_client = Aws::IAM::Client.new(region: 'us-east-1')
 @logger = Logger.new($stdout)
 @logger.level = Logger::WARN
 end

 # Updates the environment variables for a Lambda function.
 # @param function_name: The name of the function to update.
 # @param log_level: The log level of the function.
 # @return: Data about the update, including the status.
 def update_function_configuration(function_name, log_level)

Actions 256

https://docs.amazonaws.cn/goto/SdkForRubyV3/lambda-2015-03-31/UpdateFunctionCode
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/lambda#code-examples

Amazon SDK for Ruby Developer Guide

 @lambda_client.update_function_configuration({
 function_name: function_name,
 environment: {
 variables: {
 'LOG_LEVEL' => log_level
 }
 }
 })
 @lambda_client.wait_until(:function_updated_v2, { function_name:
 function_name }) do |w|
 w.max_attempts = 5
 w.delay = 5
 end
 rescue Aws::Lambda::Errors::ServiceException => e
 @logger.error("There was an error updating configurations for #{function_name}:
\n #{e.message}")
 rescue Aws::Waiters::Errors::WaiterFailed => e
 @logger.error("Failed waiting for #{function_name} to activate:\n #{e.message}")
 end

• For API details, see UpdateFunctionConfiguration in Amazon SDK for Ruby API Reference.

Scenarios

Create an application to analyze customer feedback

The following code example shows how to create an application that analyzes customer comment
cards, translates them from their original language, determines their sentiment, and generates an
audio file from the translated text.

SDK for Ruby

This example application analyzes and stores customer feedback cards. Specifically, it fulfills the
need of a fictitious hotel in New York City. The hotel receives feedback from guests in various
languages in the form of physical comment cards. That feedback is uploaded into the app
through a web client. After an image of a comment card is uploaded, the following steps occur:

• Text is extracted from the image using Amazon Textract.

• Amazon Comprehend determines the sentiment of the extracted text and its language.

• The extracted text is translated to English using Amazon Translate.

Scenarios 257

https://docs.amazonaws.cn/goto/SdkForRubyV3/lambda-2015-03-31/UpdateFunctionConfiguration

Amazon SDK for Ruby Developer Guide

• Amazon Polly synthesizes an audio file from the extracted text.

The full app can be deployed with the Amazon CDK. For source code and deployment
instructions, see the project in GitHub.

Services used in this example

• Amazon Comprehend

• Lambda

• Amazon Polly

• Amazon Textract

• Amazon Translate

Serverless examples

Connecting to an Amazon RDS database in a Lambda function

The following code example shows how to implement a Lambda function that connects to an RDS
database. The function makes a simple database request and returns the result.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Serverless examples repository.

Connecting to an Amazon RDS database in a Lambda function using Ruby.

Ruby code here.

require 'aws-sdk-rds'
require 'json'
require 'mysql2'

def lambda_handler(event:, context:)
 endpoint = ENV['DBEndpoint'] # Add the endpoint without https"
 port = ENV['Port'] # 3306
 user = ENV['DBUser']

Serverless examples 258

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/cross_service_examples/feedback_sentiment_analyzer
https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-connect-rds-iam

Amazon SDK for Ruby Developer Guide

 region = ENV['DBRegion'] # 'us-east-1'
 db_name = ENV['DBName']

 credentials = Aws::Credentials.new(
 ENV['AWS_ACCESS_KEY_ID'],
 ENV['AWS_SECRET_ACCESS_KEY'],
 ENV['AWS_SESSION_TOKEN']
)
 rds_client = Aws::RDS::AuthTokenGenerator.new(
 region: region,
 credentials: credentials
)

 token = rds_client.auth_token(
 endpoint: endpoint+ ':' + port,
 user_name: user,
 region: region
)

 begin
 conn = Mysql2::Client.new(
 host: endpoint,
 username: user,
 password: token,
 port: port,
 database: db_name,
 sslca: '/var/task/global-bundle.pem',
 sslverify: true,
 enable_cleartext_plugin: true
)
 a = 3
 b = 2
 result = conn.query("SELECT #{a} + #{b} AS sum").first['sum']
 puts result
 conn.close
 {
 statusCode: 200,
 body: result.to_json
 }
 rescue => e
 puts "Database connection failed due to #{e}"
 end
end

Serverless examples 259

Amazon SDK for Ruby Developer Guide

Invoke a Lambda function from a Kinesis trigger

The following code example shows how to implement a Lambda function that receives an event
triggered by receiving records from a Kinesis stream. The function retrieves the Kinesis payload,
decodes from Base64, and logs the record contents.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Serverless examples repository.

Consuming an Kinesis event with Lambda using Ruby.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
require 'aws-sdk'

def lambda_handler(event:, context:)
 event['Records'].each do |record|
 begin
 puts "Processed Kinesis Event - EventID: #{record['eventID']}"
 record_data = get_record_data_async(record['kinesis'])
 puts "Record Data: #{record_data}"
 # TODO: Do interesting work based on the new data
 rescue => err
 $stderr.puts "An error occurred #{err}"
 raise err
 end
 end
 puts "Successfully processed #{event['Records'].length} records."
end

def get_record_data_async(payload)
 data = Base64.decode64(payload['data']).force_encoding('UTF-8')
 # Placeholder for actual async work
 # You can use Ruby's asynchronous programming tools like async/await or fibers
 here.
 return data
end

Serverless examples 260

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda

Amazon SDK for Ruby Developer Guide

Invoke a Lambda function from a DynamoDB trigger

The following code example shows how to implement a Lambda function that receives an event
triggered by receiving records from a DynamoDB stream. The function retrieves the DynamoDB
payload and logs the record contents.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Serverless examples repository.

Consuming a DynamoDB event with Lambda using Ruby.

def lambda_handler(event:, context:)
 return 'received empty event' if event['Records'].empty?

 event['Records'].each do |record|
 log_dynamodb_record(record)
 end

 "Records processed: #{event['Records'].length}"
 end

 def log_dynamodb_record(record)
 puts record['eventID']
 puts record['eventName']
 puts "DynamoDB Record: #{JSON.generate(record['dynamodb'])}"
 end

Invoke a Lambda function from a Amazon DocumentDB trigger

The following code example shows how to implement a Lambda function that receives an event
triggered by receiving records from a DocumentDB change stream. The function retrieves the
DocumentDB payload and logs the record contents.

Serverless examples 261

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda

Amazon SDK for Ruby Developer Guide

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Serverless examples repository.

Consuming a Amazon DocumentDB event with Lambda using Ruby.

require 'json'

def lambda_handler(event:, context:)
 event['events'].each do |record|
 log_document_db_event(record)
 end
 'OK'
end

def log_document_db_event(record)
 event_data = record['event'] || {}
 operation_type = event_data['operationType'] || 'Unknown'
 db = event_data.dig('ns', 'db') || 'Unknown'
 collection = event_data.dig('ns', 'coll') || 'Unknown'
 full_document = event_data['fullDocument'] || {}

 puts "Operation type: #{operation_type}"
 puts "db: #{db}"
 puts "collection: #{collection}"
 puts "Full document: #{JSON.pretty_generate(full_document)}"
end

Invoke a Lambda function from an Amazon MSK trigger

The following code example shows how to implement a Lambda function that receives an event
triggered by receiving records from an Amazon MSK cluster. The function retrieves the MSK
payload and logs the record contents.

Serverless examples 262

https://github.com/aws-samples/serverless-snippets/tree/main/integration-docdb-to-lambda

Amazon SDK for Ruby Developer Guide

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Serverless examples repository.

Consuming an Amazon MSK event with Lambda using Ruby.

require 'base64'

def lambda_handler(event:, context:)
 # Iterate through keys
 event['records'].each do |key, records|
 puts "Key: #{key}"

 # Iterate through records
 records.each do |record|
 puts "Record: #{record}"

 # Decode base64
 msg = Base64.decode64(record['value'])
 puts "Message: #{msg}"
 end
 end
end

Invoke a Lambda function from an Amazon S3 trigger

The following code example shows how to implement a Lambda function that receives an event
triggered by uploading an object to an S3 bucket. The function retrieves the S3 bucket name and
object key from the event parameter and calls the Amazon S3 API to retrieve and log the content
type of the object.

Serverless examples 263

https://github.com/aws-samples/serverless-snippets/tree/main/integration-msk-to-lambda

Amazon SDK for Ruby Developer Guide

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Serverless examples repository.

Consuming an S3 event with Lambda using Ruby.

require 'json'
require 'uri'
require 'aws-sdk'

puts 'Loading function'

def lambda_handler(event:, context:)
 s3 = Aws::S3::Client.new(region: 'region') # Your AWS region
 # puts "Received event: #{JSON.dump(event)}"

 # Get the object from the event and show its content type
 bucket = event['Records'][0]['s3']['bucket']['name']
 key = URI.decode_www_form_component(event['Records'][0]['s3']['object']['key'],
 Encoding::UTF_8)
 begin
 response = s3.get_object(bucket: bucket, key: key)
 puts "CONTENT TYPE: #{response.content_type}"
 return response.content_type
 rescue StandardError => e
 puts e.message
 puts "Error getting object #{key} from bucket #{bucket}. Make sure they exist
 and your bucket is in the same region as this function."
 raise e
 end
end

Serverless examples 264

https://github.com/aws-samples/serverless-snippets/tree/main/integration-s3-to-lambda

Amazon SDK for Ruby Developer Guide

Invoke a Lambda function from an Amazon SNS trigger

The following code example shows how to implement a Lambda function that receives an event
triggered by receiving messages from an SNS topic. The function retrieves the messages from the
event parameter and logs the content of each message.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Serverless examples repository.

Consuming an SNS event with Lambda using Ruby.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
def lambda_handler(event:, context:)
 event['Records'].map { |record| process_message(record) }
end

def process_message(record)
 message = record['Sns']['Message']
 puts("Processing message: #{message}")
rescue StandardError => e
 puts("Error processing message: #{e}")
 raise
end

Invoke a Lambda function from an Amazon SQS trigger

The following code example shows how to implement a Lambda function that receives an event
triggered by receiving messages from an SQS queue. The function retrieves the messages from the
event parameter and logs the content of each message.

Serverless examples 265

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sns-to-lambda

Amazon SDK for Ruby Developer Guide

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Serverless examples repository.

Consuming an SQS event with Lambda using Ruby.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
def lambda_handler(event:, context:)
 event['Records'].each do |message|
 process_message(message)
 end
 puts "done"
end

def process_message(message)
 begin
 puts "Processed message #{message['body']}"
 # TODO: Do interesting work based on the new message
 rescue StandardError => err
 puts "An error occurred"
 raise err
 end
end

Reporting batch item failures for Lambda functions with a Kinesis trigger

The following code example shows how to implement partial batch response for Lambda functions
that receive events from a Kinesis stream. The function reports the batch item failures in the
response, signaling to Lambda to retry those messages later.

Serverless examples 266

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda

Amazon SDK for Ruby Developer Guide

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Serverless examples repository.

Reporting Kinesis batch item failures with Lambda using Ruby.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
require 'aws-sdk'

def lambda_handler(event:, context:)
 batch_item_failures = []

 event['Records'].each do |record|
 begin
 puts "Processed Kinesis Event - EventID: #{record['eventID']}"
 record_data = get_record_data_async(record['kinesis'])
 puts "Record Data: #{record_data}"
 # TODO: Do interesting work based on the new data
 rescue StandardError => err
 puts "An error occurred #{err}"
 # Since we are working with streams, we can return the failed item
 immediately.
 # Lambda will immediately begin to retry processing from this failed item
 onwards.
 return { batchItemFailures: [{ itemIdentifier: record['kinesis']
['sequenceNumber'] }] }
 end
 end

 puts "Successfully processed #{event['Records'].length} records."
 { batchItemFailures: batch_item_failures }
end

def get_record_data_async(payload)
 data = Base64.decode64(payload['data']).force_encoding('utf-8')
 # Placeholder for actual async work
 sleep(1)
 data

Serverless examples 267

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda-with-batch-item-handling

Amazon SDK for Ruby Developer Guide

end

Reporting batch item failures for Lambda functions with a DynamoDB trigger

The following code example shows how to implement partial batch response for Lambda functions
that receive events from a DynamoDB stream. The function reports the batch item failures in the
response, signaling to Lambda to retry those messages later.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Serverless examples repository.

Reporting DynamoDB batch item failures with Lambda using Ruby.

def lambda_handler(event:, context:)
 records = event["Records"]
 cur_record_sequence_number = ""

 records.each do |record|
 begin
 # Process your record
 cur_record_sequence_number = record["dynamodb"]["SequenceNumber"]
 rescue StandardError => e
 # Return failed record's sequence number
 return {"batchItemFailures" => [{"itemIdentifier" =>
 cur_record_sequence_number}]}
 end
 end

 {"batchItemFailures" => []}
 end

Serverless examples 268

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda-with-batch-item-handling

Amazon SDK for Ruby Developer Guide

Reporting batch item failures for Lambda functions with an Amazon SQS trigger

The following code example shows how to implement partial batch response for Lambda functions
that receive events from an SQS queue. The function reports the batch item failures in the
response, signaling to Lambda to retry those messages later.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Serverless examples repository.

Reporting SQS batch item failures with Lambda using Ruby.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
require 'json'

def lambda_handler(event:, context:)
 if event
 batch_item_failures = []
 sqs_batch_response = {}

 event["Records"].each do |record|
 begin
 # process message
 rescue StandardError => e
 batch_item_failures << {"itemIdentifier" => record['messageId']}
 end
 end

 sqs_batch_response["batchItemFailures"] = batch_item_failures
 return sqs_batch_response
 end
end

Serverless examples 269

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda-with-batch-item-handling

Amazon SDK for Ruby Developer Guide

Amazon MSK examples using SDK for Ruby

The following code examples show you how to perform actions and implement common scenarios
by using the Amazon SDK for Ruby with Amazon MSK.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Topics

• Serverless examples

Serverless examples

Invoke a Lambda function from an Amazon MSK trigger

The following code example shows how to implement a Lambda function that receives an event
triggered by receiving records from an Amazon MSK cluster. The function retrieves the MSK
payload and logs the record contents.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Serverless examples repository.

Consuming an Amazon MSK event with Lambda using Ruby.

require 'base64'

def lambda_handler(event:, context:)
 # Iterate through keys
 event['records'].each do |key, records|
 puts "Key: #{key}"

 # Iterate through records
 records.each do |record|
 puts "Record: #{record}"

Amazon MSK 270

https://github.com/aws-samples/serverless-snippets/tree/main/integration-msk-to-lambda

Amazon SDK for Ruby Developer Guide

 # Decode base64
 msg = Base64.decode64(record['value'])
 puts "Message: #{msg}"
 end
 end
end

Amazon Polly examples using SDK for Ruby

The following code examples show you how to perform actions and implement common scenarios
by using the Amazon SDK for Ruby with Amazon Polly.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Scenarios are code examples that show you how to accomplish specific tasks by calling multiple
functions within a service or combined with other Amazon Web Services services.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Topics

• Actions

• Scenarios

Actions

DescribeVoices

The following code example shows how to use DescribeVoices.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

Amazon Polly 271

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/polly#code-examples

Amazon SDK for Ruby Developer Guide

require 'aws-sdk-polly' # In v2: require 'aws-sdk'

begin
 # Create an Amazon Polly client using
 # credentials from the shared credentials file ~/.aws/credentials
 # and the configuration (region) from the shared configuration file ~/.aws/config
 polly = Aws::Polly::Client.new

 # Get US English voices
 resp = polly.describe_voices(language_code: 'en-US')

 resp.voices.each do |v|
 puts v.name
 puts " #{v.gender}"
 puts
 end
rescue StandardError => e
 puts 'Could not get voices'
 puts 'Error message:'
 puts e.message
end

• For API details, see DescribeVoices in Amazon SDK for Ruby API Reference.

ListLexicons

The following code example shows how to use ListLexicons.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

require 'aws-sdk-polly' # In v2: require 'aws-sdk'

Actions 272

https://docs.amazonaws.cn/goto/SdkForRubyV3/polly-2016-06-10/DescribeVoices
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/polly#code-examples

Amazon SDK for Ruby Developer Guide

begin
 # Create an Amazon Polly client using
 # credentials from the shared credentials file ~/.aws/credentials
 # and the configuration (region) from the shared configuration file ~/.aws/config
 polly = Aws::Polly::Client.new

 resp = polly.list_lexicons

 resp.lexicons.each do |l|
 puts l.name
 puts " Alphabet:#{l.attributes.alphabet}"
 puts " Language:#{l.attributes.language}"
 puts
 end
rescue StandardError => e
 puts 'Could not get lexicons'
 puts 'Error message:'
 puts e.message
end

• For API details, see ListLexicons in Amazon SDK for Ruby API Reference.

SynthesizeSpeech

The following code example shows how to use SynthesizeSpeech.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

require 'aws-sdk-polly' # In v2: require 'aws-sdk'

begin
 # Get the filename from the command line
 if ARGV.empty?
 puts 'You must supply a filename'

Actions 273

https://docs.amazonaws.cn/goto/SdkForRubyV3/polly-2016-06-10/ListLexicons
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/polly#code-examples

Amazon SDK for Ruby Developer Guide

 exit 1
 end

 filename = ARGV[0]

 # Open file and get the contents as a string
 if File.exist?(filename)
 contents = IO.read(filename)
 else
 puts "No such file: #{filename}"
 exit 1
 end

 # Create an Amazon Polly client using
 # credentials from the shared credentials file ~/.aws/credentials
 # and the configuration (region) from the shared configuration file ~/.aws/config
 polly = Aws::Polly::Client.new

 resp = polly.synthesize_speech({
 output_format: 'mp3',
 text: contents,
 voice_id: 'Joanna'
 })

 # Save output
 # Get just the file name
 # abc/xyz.txt -> xyx.txt
 name = File.basename(filename)

 # Split up name so we get just the xyz part
 parts = name.split('.')
 first_part = parts[0]
 mp3_file = "#{first_part}.mp3"

 IO.copy_stream(resp.audio_stream, mp3_file)

 puts "Wrote MP3 content to: #{mp3_file}"
rescue StandardError => e
 puts 'Got error:'
 puts 'Error message:'
 puts e.message
end

Actions 274

Amazon SDK for Ruby Developer Guide

• For API details, see SynthesizeSpeech in Amazon SDK for Ruby API Reference.

Scenarios

Create an application to analyze customer feedback

The following code example shows how to create an application that analyzes customer comment
cards, translates them from their original language, determines their sentiment, and generates an
audio file from the translated text.

SDK for Ruby

This example application analyzes and stores customer feedback cards. Specifically, it fulfills the
need of a fictitious hotel in New York City. The hotel receives feedback from guests in various
languages in the form of physical comment cards. That feedback is uploaded into the app
through a web client. After an image of a comment card is uploaded, the following steps occur:

• Text is extracted from the image using Amazon Textract.

• Amazon Comprehend determines the sentiment of the extracted text and its language.

• The extracted text is translated to English using Amazon Translate.

• Amazon Polly synthesizes an audio file from the extracted text.

The full app can be deployed with the Amazon CDK. For source code and deployment
instructions, see the project in GitHub.

Services used in this example

• Amazon Comprehend

• Lambda

• Amazon Polly

• Amazon Textract

• Amazon Translate

Amazon RDS examples using SDK for Ruby

The following code examples show you how to perform actions and implement common scenarios
by using the Amazon SDK for Ruby with Amazon RDS.

Scenarios 275

https://docs.amazonaws.cn/goto/SdkForRubyV3/polly-2016-06-10/SynthesizeSpeech
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/cross_service_examples/feedback_sentiment_analyzer

Amazon SDK for Ruby Developer Guide

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Topics

• Get started

• Actions

• Serverless examples

Get started

Hello Amazon RDS

The following code example shows how to get started using Amazon RDS.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

require 'aws-sdk-rds'
require 'logger'

RDSManager is a class responsible for managing RDS operations
such as listing all RDS DB instances in the current AWS account.
class RDSManager
 def initialize(client)
 @client = client
 @logger = Logger.new($stdout)
 end

 # Lists and prints all RDS DB instances in the current AWS account.
 def list_db_instances

Get started 276

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/rds#code-examples

Amazon SDK for Ruby Developer Guide

 @logger.info('Listing RDS DB instances')

 paginator = @client.describe_db_instances
 instances = []

 paginator.each_page do |page|
 instances.concat(page.db_instances)
 end

 if instances.empty?
 @logger.info('No instances found.')
 else
 @logger.info("Found #{instances.count} instance(s):")
 instances.each do |instance|
 @logger.info(" * #{instance.db_instance_identifier}
 (#{instance.db_instance_status})")
 end
 end
 end
end

if $PROGRAM_NAME == __FILE__
 rds_client = Aws::RDS::Client.new(region: 'us-west-2')
 manager = RDSManager.new(rds_client)
 manager.list_db_instances
end

• For API details, see DescribeDBInstances in Amazon SDK for Ruby API Reference.

Actions

CreateDBSnapshot

The following code example shows how to use CreateDBSnapshot.

Actions 277

https://docs.amazonaws.cn/goto/SdkForRubyV3/rds-2014-10-31/DescribeDBInstances

Amazon SDK for Ruby Developer Guide

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

require 'aws-sdk-rds' # v2: require 'aws-sdk'

Create a snapshot for an Amazon Relational Database Service (Amazon RDS)
DB instance.
#
@param rds_resource [Aws::RDS::Resource] The resource containing SDK logic.
@param db_instance_name [String] The name of the Amazon RDS DB instance.
@return [Aws::RDS::DBSnapshot, nil] The snapshot created, or nil if error.
def create_snapshot(rds_resource, db_instance_name)
 id = "snapshot-#{rand(10**6)}"
 db_instance = rds_resource.db_instance(db_instance_name)
 db_instance.create_snapshot({
 db_snapshot_identifier: id
 })
rescue Aws::Errors::ServiceError => e
 puts "Couldn't create DB instance snapshot #{id}:\n #{e.message}"
end

• For API details, see CreateDBSnapshot in Amazon SDK for Ruby API Reference.

DescribeDBInstances

The following code example shows how to use DescribeDBInstances.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

Actions 278

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/rds#code-examples
https://docs.amazonaws.cn/goto/SdkForRubyV3/rds-2014-10-31/CreateDBSnapshot
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/rds#code-examples

Amazon SDK for Ruby Developer Guide

require 'aws-sdk-rds' # v2: require 'aws-sdk'

List all Amazon Relational Database Service (Amazon RDS) DB instances.
#
@param rds_resource [Aws::RDS::Resource] An SDK for Ruby Amazon RDS resource.
@return [Array, nil] List of all DB instances, or nil if error.
def list_instances(rds_resource)
 db_instances = []
 rds_resource.db_instances.each do |i|
 db_instances.append({
 "name": i.id,
 "status": i.db_instance_status
 })
 end
 db_instances
rescue Aws::Errors::ServiceError => e
 puts "Couldn't list instances:\n#{e.message}"
end

• For API details, see DescribeDBInstances in Amazon SDK for Ruby API Reference.

DescribeDBParameterGroups

The following code example shows how to use DescribeDBParameterGroups.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

require 'aws-sdk-rds' # v2: require 'aws-sdk'

List all Amazon Relational Database Service (Amazon RDS) parameter groups.
#
@param rds_resource [Aws::RDS::Resource] An SDK for Ruby Amazon RDS resource.
@return [Array, nil] List of all parameter groups, or nil if error.
def list_parameter_groups(rds_resource)

Actions 279

https://docs.amazonaws.cn/goto/SdkForRubyV3/rds-2014-10-31/DescribeDBInstances
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/rds#code-examples

Amazon SDK for Ruby Developer Guide

 parameter_groups = []
 rds_resource.db_parameter_groups.each do |p|
 parameter_groups.append({
 "name": p.db_parameter_group_name,
 "description": p.description
 })
 end
 parameter_groups
rescue Aws::Errors::ServiceError => e
 puts "Couldn't list parameter groups:\n #{e.message}"
end

• For API details, see DescribeDBParameterGroups in Amazon SDK for Ruby API Reference.

DescribeDBParameters

The following code example shows how to use DescribeDBParameters.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

require 'aws-sdk-rds' # v2: require 'aws-sdk'

List all Amazon Relational Database Service (Amazon RDS) parameter groups.
#
@param rds_resource [Aws::RDS::Resource] An SDK for Ruby Amazon RDS resource.
@return [Array, nil] List of all parameter groups, or nil if error.
def list_parameter_groups(rds_resource)
 parameter_groups = []
 rds_resource.db_parameter_groups.each do |p|
 parameter_groups.append({
 "name": p.db_parameter_group_name,
 "description": p.description
 })
 end

Actions 280

https://docs.amazonaws.cn/goto/SdkForRubyV3/rds-2014-10-31/DescribeDBParameterGroups
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/rds#code-examples

Amazon SDK for Ruby Developer Guide

 parameter_groups
rescue Aws::Errors::ServiceError => e
 puts "Couldn't list parameter groups:\n #{e.message}"
end

• For API details, see DescribeDBParameters in Amazon SDK for Ruby API Reference.

DescribeDBSnapshots

The following code example shows how to use DescribeDBSnapshots.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

require 'aws-sdk-rds' # v2: require 'aws-sdk'

List all Amazon Relational Database Service (Amazon RDS) DB instance
snapshots.
#
@param rds_resource [Aws::RDS::Resource] An SDK for Ruby Amazon RDS resource.
@return instance_snapshots [Array, nil] All instance snapshots, or nil if error.
def list_instance_snapshots(rds_resource)
 instance_snapshots = []
 rds_resource.db_snapshots.each do |s|
 instance_snapshots.append({
 "id": s.snapshot_id,
 "status": s.status
 })
 end
 instance_snapshots
rescue Aws::Errors::ServiceError => e
 puts "Couldn't list instance snapshots:\n #{e.message}"
end

Actions 281

https://docs.amazonaws.cn/goto/SdkForRubyV3/rds-2014-10-31/DescribeDBParameters
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/rds#code-examples

Amazon SDK for Ruby Developer Guide

• For API details, see DescribeDBSnapshots in Amazon SDK for Ruby API Reference.

Serverless examples

Connecting to an Amazon RDS database in a Lambda function

The following code example shows how to implement a Lambda function that connects to an RDS
database. The function makes a simple database request and returns the result.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Serverless examples repository.

Connecting to an Amazon RDS database in a Lambda function using Ruby.

Ruby code here.

require 'aws-sdk-rds'
require 'json'
require 'mysql2'

def lambda_handler(event:, context:)
 endpoint = ENV['DBEndpoint'] # Add the endpoint without https"
 port = ENV['Port'] # 3306
 user = ENV['DBUser']
 region = ENV['DBRegion'] # 'us-east-1'
 db_name = ENV['DBName']

 credentials = Aws::Credentials.new(
 ENV['AWS_ACCESS_KEY_ID'],
 ENV['AWS_SECRET_ACCESS_KEY'],
 ENV['AWS_SESSION_TOKEN']
)
 rds_client = Aws::RDS::AuthTokenGenerator.new(
 region: region,
 credentials: credentials
)

Serverless examples 282

https://docs.amazonaws.cn/goto/SdkForRubyV3/rds-2014-10-31/DescribeDBSnapshots
https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-connect-rds-iam

Amazon SDK for Ruby Developer Guide

 token = rds_client.auth_token(
 endpoint: endpoint+ ':' + port,
 user_name: user,
 region: region
)

 begin
 conn = Mysql2::Client.new(
 host: endpoint,
 username: user,
 password: token,
 port: port,
 database: db_name,
 sslca: '/var/task/global-bundle.pem',
 sslverify: true,
 enable_cleartext_plugin: true
)
 a = 3
 b = 2
 result = conn.query("SELECT #{a} + #{b} AS sum").first['sum']
 puts result
 conn.close
 {
 statusCode: 200,
 body: result.to_json
 }
 rescue => e
 puts "Database connection failed due to #{e}"
 end
end

Amazon S3 examples using SDK for Ruby

The following code examples show you how to perform actions and implement common scenarios
by using the Amazon SDK for Ruby with Amazon S3.

Basics are code examples that show you how to perform the essential operations within a service.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Amazon S3 283

Amazon SDK for Ruby Developer Guide

Scenarios are code examples that show you how to accomplish specific tasks by calling multiple
functions within a service or combined with other Amazon Web Services services.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Topics

• Get started

• Basics

• Actions

• Scenarios

• Serverless examples

Get started

Hello Amazon S3

The following code example shows how to get started using Amazon S3.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

frozen_string_literal: true

S3Manager is a class responsible for managing S3 operations
such as listing all S3 buckets in the current AWS account.
class S3Manager
 def initialize(client)
 @client = client
 @logger = Logger.new($stdout)
 end

Get started 284

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/s3#code-examples

Amazon SDK for Ruby Developer Guide

 # Lists and prints all S3 buckets in the current AWS account.
 def list_buckets
 @logger.info('Here are the buckets in your account:')

 response = @client.list_buckets

 if response.buckets.empty?
 @logger.info("You don't have any S3 buckets yet.")
 else
 response.buckets.each do |bucket|
 @logger.info("- #{bucket.name}")
 end
 end
 rescue Aws::Errors::ServiceError => e
 @logger.error("Encountered an error while listing buckets: #{e.message}")
 end
end

if $PROGRAM_NAME == __FILE__
 s3_client = Aws::S3::Client.new
 manager = S3Manager.new(s3_client)
 manager.list_buckets
end

• For API details, see ListBuckets in Amazon SDK for Ruby API Reference.

Basics

Learn the basics

The following code example shows how to:

• Create a bucket and upload a file to it.

• Download an object from a bucket.

• Copy an object to a subfolder in a bucket.

• List the objects in a bucket.

• Delete the bucket objects and the bucket.

Basics 285

https://docs.amazonaws.cn/goto/SdkForRubyV3/s3-2006-03-01/ListBuckets

Amazon SDK for Ruby Developer Guide

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

require 'aws-sdk-s3'

Wraps the getting started scenario actions.
class ScenarioGettingStarted
 attr_reader :s3_resource

 # @param s3_resource [Aws::S3::Resource] An Amazon S3 resource.
 def initialize(s3_resource)
 @s3_resource = s3_resource
 end

 # Creates a bucket with a random name in the currently configured account and
 # AWS Region.
 #
 # @return [Aws::S3::Bucket] The newly created bucket.
 def create_bucket
 bucket = @s3_resource.create_bucket(
 bucket: "amzn-s3-demo-bucket-#{Random.uuid}",
 create_bucket_configuration: {
 location_constraint: 'us-east-1' # NOTE: only certain regions permitted
 }
)
 puts("Created demo bucket named #{bucket.name}.")
 rescue Aws::Errors::ServiceError => e
 puts('Tried and failed to create demo bucket.')
 puts("\t#{e.code}: #{e.message}")
 puts("\nCan't continue the demo without a bucket!")
 raise
 else
 bucket
 end

 # Requests a file name from the user.
 #

Basics 286

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/s3#code-examples

Amazon SDK for Ruby Developer Guide

 # @return The name of the file.
 def create_file
 File.open('demo.txt', w) { |f| f.write('This is a demo file.') }
 end

 # Uploads a file to an Amazon S3 bucket.
 #
 # @param bucket [Aws::S3::Bucket] The bucket object representing the upload
 destination
 # @return [Aws::S3::Object] The Amazon S3 object that contains the uploaded file.
 def upload_file(bucket)
 File.open('demo.txt', 'w+') { |f| f.write('This is a demo file.') }
 s3_object = bucket.object(File.basename('demo.txt'))
 s3_object.upload_file('demo.txt')
 puts("Uploaded file demo.txt into bucket #{bucket.name} with key
 #{s3_object.key}.")
 rescue Aws::Errors::ServiceError => e
 puts("Couldn't upload file demo.txt to #{bucket.name}.")
 puts("\t#{e.code}: #{e.message}")
 raise
 else
 s3_object
 end

 # Downloads an Amazon S3 object to a file.
 #
 # @param s3_object [Aws::S3::Object] The object to download.
 def download_file(s3_object)
 puts("\nDo you want to download #{s3_object.key} to a local file (y/n)? ")
 answer = gets.chomp.downcase
 if answer == 'y'
 puts('Enter a name for the downloaded file: ')
 file_name = gets.chomp
 s3_object.download_file(file_name)
 puts("Object #{s3_object.key} successfully downloaded to #{file_name}.")
 end
 rescue Aws::Errors::ServiceError => e
 puts("Couldn't download #{s3_object.key}.")
 puts("\t#{e.code}: #{e.message}")
 raise
 end

 # Copies an Amazon S3 object to a subfolder within the same bucket.
 #

Basics 287

Amazon SDK for Ruby Developer Guide

 # @param source_object [Aws::S3::Object] The source object to copy.
 # @return [Aws::S3::Object, nil] The destination object.
 def copy_object(source_object)
 dest_object = nil
 puts("\nDo you want to copy #{source_object.key} to a subfolder in your bucket
 (y/n)? ")
 answer = gets.chomp.downcase
 if answer == 'y'
 dest_object = source_object.bucket.object("demo-folder/#{source_object.key}")
 dest_object.copy_from(source_object)
 puts("Copied #{source_object.key} to #{dest_object.key}.")
 end
 rescue Aws::Errors::ServiceError => e
 puts("Couldn't copy #{source_object.key}.")
 puts("\t#{e.code}: #{e.message}")
 raise
 else
 dest_object
 end

 # Lists the objects in an Amazon S3 bucket.
 #
 # @param bucket [Aws::S3::Bucket] The bucket to query.
 def list_objects(bucket)
 puts("\nYour bucket contains the following objects:")
 bucket.objects.each do |obj|
 puts("\t#{obj.key}")
 end
 rescue Aws::Errors::ServiceError => e
 puts("Couldn't list the objects in bucket #{bucket.name}.")
 puts("\t#{e.code}: #{e.message}")
 raise
 end

 # Deletes the objects in an Amazon S3 bucket and deletes the bucket.
 #
 # @param bucket [Aws::S3::Bucket] The bucket to empty and delete.
 def delete_bucket(bucket)
 puts("\nDo you want to delete all of the objects as well as the bucket (y/n)? ")
 answer = gets.chomp.downcase
 if answer == 'y'
 bucket.objects.batch_delete!
 bucket.delete
 puts("Emptied and deleted bucket #{bucket.name}.\n")

Basics 288

Amazon SDK for Ruby Developer Guide

 end
 rescue Aws::Errors::ServiceError => e
 puts("Couldn't empty and delete bucket #{bucket.name}.")
 puts("\t#{e.code}: #{e.message}")
 raise
 end
end

Runs the Amazon S3 getting started scenario.
def run_scenario(scenario)
 puts('-' * 88)
 puts('Welcome to the Amazon S3 getting started demo!')
 puts('-' * 88)

 bucket = scenario.create_bucket
 s3_object = scenario.upload_file(bucket)
 scenario.download_file(s3_object)
 scenario.copy_object(s3_object)
 scenario.list_objects(bucket)
 scenario.delete_bucket(bucket)

 puts('Thanks for watching!')
 puts('-' * 88)
rescue Aws::Errors::ServiceError
 puts('Something went wrong with the demo!')
end

run_scenario(ScenarioGettingStarted.new(Aws::S3::Resource.new)) if $PROGRAM_NAME ==
 __FILE__

• For API details, see the following topics in Amazon SDK for Ruby API Reference.

• CopyObject

• CreateBucket

• DeleteBucket

• DeleteObjects

• GetObject

• ListObjectsV2

• PutObject

Basics 289

https://docs.amazonaws.cn/goto/SdkForRubyV3/s3-2006-03-01/CopyObject
https://docs.amazonaws.cn/goto/SdkForRubyV3/s3-2006-03-01/CreateBucket
https://docs.amazonaws.cn/goto/SdkForRubyV3/s3-2006-03-01/DeleteBucket
https://docs.amazonaws.cn/goto/SdkForRubyV3/s3-2006-03-01/DeleteObjects
https://docs.amazonaws.cn/goto/SdkForRubyV3/s3-2006-03-01/GetObject
https://docs.amazonaws.cn/goto/SdkForRubyV3/s3-2006-03-01/ListObjectsV2
https://docs.amazonaws.cn/goto/SdkForRubyV3/s3-2006-03-01/PutObject

Amazon SDK for Ruby Developer Guide

Actions

CopyObject

The following code example shows how to use CopyObject.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

Copy an object.

require 'aws-sdk-s3'

Wraps Amazon S3 object actions.
class ObjectCopyWrapper
 attr_reader :source_object

 # @param source_object [Aws::S3::Object] An existing Amazon S3 object. This is
 used as the source object for
 # copy actions.
 def initialize(source_object)
 @source_object = source_object
 end

 # Copy the source object to the specified target bucket and rename it with the
 target key.
 #
 # @param target_bucket [Aws::S3::Bucket] An existing Amazon S3 bucket where the
 object is copied.
 # @param target_object_key [String] The key to give the copy of the object.
 # @return [Aws::S3::Object, nil] The copied object when successful; otherwise,
 nil.
 def copy_object(target_bucket, target_object_key)
 @source_object.copy_to(bucket: target_bucket.name, key: target_object_key)
 target_bucket.object(target_object_key)
 rescue Aws::Errors::ServiceError => e
 puts "Couldn't copy #{@source_object.key} to #{target_object_key}. Here's why:
 #{e.message}"

Actions 290

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/s3#code-examples

Amazon SDK for Ruby Developer Guide

 end
end

Example usage:
def run_demo
 source_bucket_name = "amzn-s3-demo-bucket1"
 source_key = "my-source-file.txt"
 target_bucket_name = "amzn-s3-demo-bucket2"
 target_key = "my-target-file.txt"

 source_bucket = Aws::S3::Bucket.new(source_bucket_name)
 wrapper = ObjectCopyWrapper.new(source_bucket.object(source_key))
 target_bucket = Aws::S3::Bucket.new(target_bucket_name)
 target_object = wrapper.copy_object(target_bucket, target_key)
 return unless target_object

 puts "Copied #{source_key} from #{source_bucket_name} to
 #{target_object.bucket_name}:#{target_object.key}."
end

run_demo if $PROGRAM_NAME == __FILE__

Copy an object and add server-side encryption to the destination object.

require 'aws-sdk-s3'

Wraps Amazon S3 object actions.
class ObjectCopyEncryptWrapper
 attr_reader :source_object

 # @param source_object [Aws::S3::Object] An existing Amazon S3 object. This is
 used as the source object for
 # copy actions.
 def initialize(source_object)
 @source_object = source_object
 end

 # Copy the source object to the specified target bucket, rename it with the target
 key, and encrypt it.
 #
 # @param target_bucket [Aws::S3::Bucket] An existing Amazon S3 bucket where the
 object is copied.

Actions 291

Amazon SDK for Ruby Developer Guide

 # @param target_object_key [String] The key to give the copy of the object.
 # @return [Aws::S3::Object, nil] The copied object when successful; otherwise,
 nil.
 def copy_object(target_bucket, target_object_key, encryption)
 @source_object.copy_to(bucket: target_bucket.name, key: target_object_key,
 server_side_encryption: encryption)
 target_bucket.object(target_object_key)
 rescue Aws::Errors::ServiceError => e
 puts "Couldn't copy #{@source_object.key} to #{target_object_key}. Here's why:
 #{e.message}"
 end
end

Example usage:
def run_demo
 source_bucket_name = "amzn-s3-demo-bucket1"
 source_key = "my-source-file.txt"
 target_bucket_name = "amzn-s3-demo-bucket2"
 target_key = "my-target-file.txt"
 target_encryption = "AES256"

 source_bucket = Aws::S3::Bucket.new(source_bucket_name)
 wrapper = ObjectCopyEncryptWrapper.new(source_bucket.object(source_key))
 target_bucket = Aws::S3::Bucket.new(target_bucket_name)
 target_object = wrapper.copy_object(target_bucket, target_key, target_encryption)
 return unless target_object

 puts "Copied #{source_key} from #{source_bucket_name} to
 #{target_object.bucket_name}:#{target_object.key} and "\
 "encrypted the target with #{target_object.server_side_encryption}
 encryption."
end

run_demo if $PROGRAM_NAME == __FILE__

• For API details, see CopyObject in Amazon SDK for Ruby API Reference.

CreateBucket

The following code example shows how to use CreateBucket.

Actions 292

https://docs.amazonaws.cn/goto/SdkForRubyV3/s3-2006-03-01/CopyObject

Amazon SDK for Ruby Developer Guide

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

require 'aws-sdk-s3'

Wraps Amazon S3 bucket actions.
class BucketCreateWrapper
 attr_reader :bucket

 # @param bucket [Aws::S3::Bucket] An Amazon S3 bucket initialized with a name.
 This is a client-side object until
 # create is called.
 def initialize(bucket)
 @bucket = bucket
 end

 # Creates an Amazon S3 bucket in the specified AWS Region.
 #
 # @param region [String] The Region where the bucket is created.
 # @return [Boolean] True when the bucket is created; otherwise, false.
 def create?(region)
 @bucket.create(create_bucket_configuration: { location_constraint: region })
 true
 rescue Aws::Errors::ServiceError => e
 puts "Couldn't create bucket. Here's why: #{e.message}"
 false
 end

 # Gets the Region where the bucket is located.
 #
 # @return [String] The location of the bucket.
 def location
 if @bucket.nil?
 'None. You must create a bucket before you can get its location!'
 else
 @bucket.client.get_bucket_location(bucket: @bucket.name).location_constraint
 end

Actions 293

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/s3#code-examples

Amazon SDK for Ruby Developer Guide

 rescue Aws::Errors::ServiceError => e
 "Couldn't get the location of #{@bucket.name}. Here's why: #{e.message}"
 end
end

Example usage:
def run_demo
 region = "us-west-2"
 wrapper = BucketCreateWrapper.new(Aws::S3::Bucket.new("amzn-s3-demo-bucket-
#{Random.uuid}"))
 return unless wrapper.create?(region)

 puts "Created bucket #{wrapper.bucket.name}."
 puts "Your bucket's region is: #{wrapper.location}"
end

run_demo if $PROGRAM_NAME == __FILE__

• For API details, see CreateBucket in Amazon SDK for Ruby API Reference.

DeleteBucket

The following code example shows how to use DeleteBucket.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

 # Deletes the objects in an Amazon S3 bucket and deletes the bucket.
 #
 # @param bucket [Aws::S3::Bucket] The bucket to empty and delete.
 def delete_bucket(bucket)
 puts("\nDo you want to delete all of the objects as well as the bucket (y/n)? ")
 answer = gets.chomp.downcase
 if answer == 'y'
 bucket.objects.batch_delete!

Actions 294

https://docs.amazonaws.cn/goto/SdkForRubyV3/s3-2006-03-01/CreateBucket
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/s3#code-examples

Amazon SDK for Ruby Developer Guide

 bucket.delete
 puts("Emptied and deleted bucket #{bucket.name}.\n")
 end
 rescue Aws::Errors::ServiceError => e
 puts("Couldn't empty and delete bucket #{bucket.name}.")
 puts("\t#{e.code}: #{e.message}")
 raise
 end

• For API details, see DeleteBucket in Amazon SDK for Ruby API Reference.

DeleteBucketCors

The following code example shows how to use DeleteBucketCors.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

require 'aws-sdk-s3'

Wraps Amazon S3 bucket CORS configuration.
class BucketCorsWrapper
 attr_reader :bucket_cors

 # @param bucket_cors [Aws::S3::BucketCors] A bucket CORS object configured with an
 existing bucket.
 def initialize(bucket_cors)
 @bucket_cors = bucket_cors
 end

 # Deletes the CORS configuration of a bucket.
 #
 # @return [Boolean] True if the CORS rules were deleted; otherwise, false.
 def delete_cors
 @bucket_cors.delete
 true

Actions 295

https://docs.amazonaws.cn/goto/SdkForRubyV3/s3-2006-03-01/DeleteBucket
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/s3#code-examples

Amazon SDK for Ruby Developer Guide

 rescue Aws::Errors::ServiceError => e
 puts "Couldn't delete CORS rules for #{@bucket_cors.bucket.name}. Here's why:
 #{e.message}"
 false
 end

end

• For API details, see DeleteBucketCors in Amazon SDK for Ruby API Reference.

DeleteBucketPolicy

The following code example shows how to use DeleteBucketPolicy.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

Wraps an Amazon S3 bucket policy.
class BucketPolicyWrapper
 attr_reader :bucket_policy

 # @param bucket_policy [Aws::S3::BucketPolicy] A bucket policy object configured
 with an existing bucket.
 def initialize(bucket_policy)
 @bucket_policy = bucket_policy
 end

 def delete_policy
 @bucket_policy.delete
 true
 rescue Aws::Errors::ServiceError => e
 puts "Couldn't delete the policy from #{@bucket_policy.bucket.name}. Here's why:
 #{e.message}"
 false
 end

Actions 296

https://docs.amazonaws.cn/goto/SdkForRubyV3/s3-2006-03-01/DeleteBucketCors
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/s3#code-examples

Amazon SDK for Ruby Developer Guide

end

• For API details, see DeleteBucketPolicy in Amazon SDK for Ruby API Reference.

DeleteObjects

The following code example shows how to use DeleteObjects.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

 # Deletes the objects in an Amazon S3 bucket and deletes the bucket.
 #
 # @param bucket [Aws::S3::Bucket] The bucket to empty and delete.
 def delete_bucket(bucket)
 puts("\nDo you want to delete all of the objects as well as the bucket (y/n)? ")
 answer = gets.chomp.downcase
 if answer == 'y'
 bucket.objects.batch_delete!
 bucket.delete
 puts("Emptied and deleted bucket #{bucket.name}.\n")
 end
 rescue Aws::Errors::ServiceError => e
 puts("Couldn't empty and delete bucket #{bucket.name}.")
 puts("\t#{e.code}: #{e.message}")
 raise
 end

• For API details, see DeleteObjects in Amazon SDK for Ruby API Reference.

GetBucketCors

The following code example shows how to use GetBucketCors.

Actions 297

https://docs.amazonaws.cn/goto/SdkForRubyV3/s3-2006-03-01/DeleteBucketPolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/s3#code-examples
https://docs.amazonaws.cn/goto/SdkForRubyV3/s3-2006-03-01/DeleteObjects

Amazon SDK for Ruby Developer Guide

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

require 'aws-sdk-s3'

Wraps Amazon S3 bucket CORS configuration.
class BucketCorsWrapper
 attr_reader :bucket_cors

 # @param bucket_cors [Aws::S3::BucketCors] A bucket CORS object configured with an
 existing bucket.
 def initialize(bucket_cors)
 @bucket_cors = bucket_cors
 end

 # Gets the CORS configuration of a bucket.
 #
 # @return [Aws::S3::Type::GetBucketCorsOutput, nil] The current CORS configuration
 for the bucket.
 def cors
 @bucket_cors.data
 rescue Aws::Errors::ServiceError => e
 puts "Couldn't get CORS configuration for #{@bucket_cors.bucket.name}. Here's
 why: #{e.message}"
 nil
 end

end

• For API details, see GetBucketCors in Amazon SDK for Ruby API Reference.

GetBucketPolicy

The following code example shows how to use GetBucketPolicy.

Actions 298

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/s3#code-examples
https://docs.amazonaws.cn/goto/SdkForRubyV3/s3-2006-03-01/GetBucketCors

Amazon SDK for Ruby Developer Guide

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

Wraps an Amazon S3 bucket policy.
class BucketPolicyWrapper
 attr_reader :bucket_policy

 # @param bucket_policy [Aws::S3::BucketPolicy] A bucket policy object configured
 with an existing bucket.
 def initialize(bucket_policy)
 @bucket_policy = bucket_policy
 end

 # Gets the policy of a bucket.
 #
 # @return [Aws::S3::GetBucketPolicyOutput, nil] The current bucket policy.
 def policy
 policy = @bucket_policy.data.policy
 policy.respond_to?(:read) ? policy.read : policy
 rescue Aws::Errors::ServiceError => e
 puts "Couldn't get the policy for #{@bucket_policy.bucket.name}. Here's why:
 #{e.message}"
 nil
 end

end

• For API details, see GetBucketPolicy in Amazon SDK for Ruby API Reference.

GetObject

The following code example shows how to use GetObject.

Actions 299

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/s3#code-examples
https://docs.amazonaws.cn/goto/SdkForRubyV3/s3-2006-03-01/GetBucketPolicy

Amazon SDK for Ruby Developer Guide

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

Get an object.

require 'aws-sdk-s3'

Wraps Amazon S3 object actions.
class ObjectGetWrapper
 attr_reader :object

 # @param object [Aws::S3::Object] An existing Amazon S3 object.
 def initialize(object)
 @object = object
 end

 # Gets the object directly to a file.
 #
 # @param target_path [String] The path to the file where the object is downloaded.
 # @return [Aws::S3::Types::GetObjectOutput, nil] The retrieved object data if
 successful; otherwise nil.
 def get_object(target_path)
 @object.get(response_target: target_path)
 rescue Aws::Errors::ServiceError => e
 puts "Couldn't get object #{@object.key}. Here's why: #{e.message}"
 end
end

Example usage:
def run_demo
 bucket_name = "amzn-s3-demo-bucket"
 object_key = "my-object.txt"
 target_path = "my-object-as-file.txt"

 wrapper = ObjectGetWrapper.new(Aws::S3::Object.new(bucket_name, object_key))
 obj_data = wrapper.get_object(target_path)
 return unless obj_data

Actions 300

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/s3#code-examples

Amazon SDK for Ruby Developer Guide

 puts "Object #{object_key} (#{obj_data.content_length} bytes} downloaded to
 #{target_path}."
end

run_demo if $PROGRAM_NAME == __FILE__

Get an object and report its server-side encryption state.

require 'aws-sdk-s3'

Wraps Amazon S3 object actions.
class ObjectGetEncryptionWrapper
 attr_reader :object

 # @param object [Aws::S3::Object] An existing Amazon S3 object.
 def initialize(object)
 @object = object
 end

 # Gets the object into memory.
 #
 # @return [Aws::S3::Types::GetObjectOutput, nil] The retrieved object data if
 successful; otherwise nil.
 def object
 @object.get
 rescue Aws::Errors::ServiceError => e
 puts "Couldn't get object #{@object.key}. Here's why: #{e.message}"
 end
end

Example usage:
def run_demo
 bucket_name = "amzn-s3-demo-bucket"
 object_key = "my-object.txt"

 wrapper = ObjectGetEncryptionWrapper.new(Aws::S3::Object.new(bucket_name,
 object_key))
 obj_data = wrapper.get_object
 return unless obj_data

 encryption = obj_data.server_side_encryption.nil? ? 'no' :
 obj_data.server_side_encryption

Actions 301

Amazon SDK for Ruby Developer Guide

 puts "Object #{object_key} uses #{encryption} encryption."
end

run_demo if $PROGRAM_NAME == __FILE__

• For API details, see GetObject in Amazon SDK for Ruby API Reference.

HeadObject

The following code example shows how to use HeadObject.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

require 'aws-sdk-s3'

Wraps Amazon S3 object actions.
class ObjectExistsWrapper
 attr_reader :object

 # @param object [Aws::S3::Object] An Amazon S3 object.
 def initialize(object)
 @object = object
 end

 # Checks whether the object exists.
 #
 # @return [Boolean] True if the object exists; otherwise false.
 def exists?
 @object.exists?
 rescue Aws::Errors::ServiceError => e
 puts "Couldn't check existence of object #{@object.bucket.name}:#{@object.key}.
 Here's why: #{e.message}"
 false
 end
end

Actions 302

https://docs.amazonaws.cn/goto/SdkForRubyV3/s3-2006-03-01/GetObject
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/s3#code-examples

Amazon SDK for Ruby Developer Guide

Example usage:
def run_demo
 bucket_name = "amzn-s3-demo-bucket"
 object_key = "my-object.txt"

 wrapper = ObjectExistsWrapper.new(Aws::S3::Object.new(bucket_name, object_key))
 exists = wrapper.exists?

 puts "Object #{object_key} #{exists ? 'does' : 'does not'} exist."
end

run_demo if $PROGRAM_NAME == __FILE__

• For API details, see HeadObject in Amazon SDK for Ruby API Reference.

ListBuckets

The following code example shows how to use ListBuckets.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

require 'aws-sdk-s3'

Wraps Amazon S3 resource actions.
class BucketListWrapper
 attr_reader :s3_resource

 # @param s3_resource [Aws::S3::Resource] An Amazon S3 resource.
 def initialize(s3_resource)
 @s3_resource = s3_resource
 end

 # Lists buckets for the current account.
 #

Actions 303

https://docs.amazonaws.cn/goto/SdkForRubyV3/s3-2006-03-01/HeadObject
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/s3#code-examples

Amazon SDK for Ruby Developer Guide

 # @param count [Integer] The maximum number of buckets to list.
 def list_buckets(count)
 puts 'Found these buckets:'
 @s3_resource.buckets.each do |bucket|
 puts "\t#{bucket.name}"
 count -= 1
 break if count.zero?
 end
 true
 rescue Aws::Errors::ServiceError => e
 puts "Couldn't list buckets. Here's why: #{e.message}"
 false
 end
end

Example usage:
def run_demo
 wrapper = BucketListWrapper.new(Aws::S3::Resource.new)
 wrapper.list_buckets(25)
end

run_demo if $PROGRAM_NAME == __FILE__

• For API details, see ListBuckets in Amazon SDK for Ruby API Reference.

ListObjectsV2

The following code example shows how to use ListObjectsV2.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

require 'aws-sdk-s3'

Wraps Amazon S3 bucket actions.
class BucketListObjectsWrapper

Actions 304

https://docs.amazonaws.cn/goto/SdkForRubyV3/s3-2006-03-01/ListBuckets
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/s3#code-examples

Amazon SDK for Ruby Developer Guide

 attr_reader :bucket

 # @param bucket [Aws::S3::Bucket] An existing Amazon S3 bucket.
 def initialize(bucket)
 @bucket = bucket
 end

 # Lists object in a bucket.
 #
 # @param max_objects [Integer] The maximum number of objects to list.
 # @return [Integer] The number of objects listed.
 def list_objects(max_objects)
 count = 0
 puts "The objects in #{@bucket.name} are:"
 @bucket.objects.each do |obj|
 puts "\t#{obj.key}"
 count += 1
 break if count == max_objects
 end
 count
 rescue Aws::Errors::ServiceError => e
 puts "Couldn't list objects in bucket #{bucket.name}. Here's why: #{e.message}"
 0
 end
end

Example usage:
def run_demo
 bucket_name = "amzn-s3-demo-bucket"

 wrapper = BucketListObjectsWrapper.new(Aws::S3::Bucket.new(bucket_name))
 count = wrapper.list_objects(25)
 puts "Listed #{count} objects."
end

run_demo if $PROGRAM_NAME == __FILE__

• For API details, see ListObjectsV2 in Amazon SDK for Ruby API Reference.

PutBucketCors

The following code example shows how to use PutBucketCors.

Actions 305

https://docs.amazonaws.cn/goto/SdkForRubyV3/s3-2006-03-01/ListObjectsV2

Amazon SDK for Ruby Developer Guide

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

require 'aws-sdk-s3'

Wraps Amazon S3 bucket CORS configuration.
class BucketCorsWrapper
 attr_reader :bucket_cors

 # @param bucket_cors [Aws::S3::BucketCors] A bucket CORS object configured with an
 existing bucket.
 def initialize(bucket_cors)
 @bucket_cors = bucket_cors
 end

 # Sets CORS rules on a bucket.
 #
 # @param allowed_methods [Array<String>] The types of HTTP requests to allow.
 # @param allowed_origins [Array<String>] The origins to allow.
 # @returns [Boolean] True if the CORS rules were set; otherwise, false.
 def set_cors(allowed_methods, allowed_origins)
 @bucket_cors.put(
 cors_configuration: {
 cors_rules: [
 {
 allowed_methods: allowed_methods,
 allowed_origins: allowed_origins,
 allowed_headers: %w[*],
 max_age_seconds: 3600
 }
]
 }
)
 true
 rescue Aws::Errors::ServiceError => e
 puts "Couldn't set CORS rules for #{@bucket_cors.bucket.name}. Here's why:
 #{e.message}"

Actions 306

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/s3#code-examples

Amazon SDK for Ruby Developer Guide

 false
 end

end

• For API details, see PutBucketCors in Amazon SDK for Ruby API Reference.

PutBucketPolicy

The following code example shows how to use PutBucketPolicy.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

Wraps an Amazon S3 bucket policy.
class BucketPolicyWrapper
 attr_reader :bucket_policy

 # @param bucket_policy [Aws::S3::BucketPolicy] A bucket policy object configured
 with an existing bucket.
 def initialize(bucket_policy)
 @bucket_policy = bucket_policy
 end

 # Sets a policy on a bucket.
 #
 def policy(policy)
 @bucket_policy.put(policy: policy)
 true
 rescue Aws::Errors::ServiceError => e
 puts "Couldn't set the policy for #{@bucket_policy.bucket.name}. Here's why:
 #{e.message}"
 false
 end

end

Actions 307

https://docs.amazonaws.cn/goto/SdkForRubyV3/s3-2006-03-01/PutBucketCors
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/s3#code-examples

Amazon SDK for Ruby Developer Guide

• For API details, see PutBucketPolicy in Amazon SDK for Ruby API Reference.

PutBucketWebsite

The following code example shows how to use PutBucketWebsite.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

require 'aws-sdk-s3'

Wraps Amazon S3 bucket website actions.
class BucketWebsiteWrapper
 attr_reader :bucket_website

 # @param bucket_website [Aws::S3::BucketWebsite] A bucket website object
 configured with an existing bucket.
 def initialize(bucket_website)
 @bucket_website = bucket_website
 end

 # Sets a bucket as a static website.
 #
 # @param index_document [String] The name of the index document for the website.
 # @param error_document [String] The name of the error document to show for 4XX
 errors.
 # @return [Boolean] True when the bucket is configured as a website; otherwise,
 false.
 def set_website(index_document, error_document)
 @bucket_website.put(
 website_configuration: {
 index_document: { suffix: index_document },
 error_document: { key: error_document }
 }
)

Actions 308

https://docs.amazonaws.cn/goto/SdkForRubyV3/s3-2006-03-01/PutBucketPolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/s3#code-examples

Amazon SDK for Ruby Developer Guide

 true
 rescue Aws::Errors::ServiceError => e
 puts "Couldn't configure #{@bucket_website.bucket.name} as a website. Here's
 why: #{e.message}"
 false
 end
end

Example usage:
def run_demo
 bucket_name = "amzn-s3-demo-bucket"
 index_document = "index.html"
 error_document = "404.html"

 wrapper = BucketWebsiteWrapper.new(Aws::S3::BucketWebsite.new(bucket_name))
 return unless wrapper.set_website(index_document, error_document)

 puts "Successfully configured bucket #{bucket_name} as a static website."
end

run_demo if $PROGRAM_NAME == __FILE__

• For API details, see PutBucketWebsite in Amazon SDK for Ruby API Reference.

PutObject

The following code example shows how to use PutObject.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

Upload a file using a managed uploader (Object.upload_file).

require 'aws-sdk-s3'

Wraps Amazon S3 object actions.

Actions 309

https://docs.amazonaws.cn/goto/SdkForRubyV3/s3-2006-03-01/PutBucketWebsite
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/s3#code-examples

Amazon SDK for Ruby Developer Guide

class ObjectUploadFileWrapper
 attr_reader :object

 # @param object [Aws::S3::Object] An existing Amazon S3 object.
 def initialize(object)
 @object = object
 end

 # Uploads a file to an Amazon S3 object by using a managed uploader.
 #
 # @param file_path [String] The path to the file to upload.
 # @return [Boolean] True when the file is uploaded; otherwise false.
 def upload_file(file_path)
 @object.upload_file(file_path)
 true
 rescue Aws::Errors::ServiceError => e
 puts "Couldn't upload file #{file_path} to #{@object.key}. Here's why:
 #{e.message}"
 false
 end
end

Example usage:
def run_demo
 bucket_name = "amzn-s3-demo-bucket"
 object_key = "my-uploaded-file"
 file_path = "object_upload_file.rb"

 wrapper = ObjectUploadFileWrapper.new(Aws::S3::Object.new(bucket_name,
 object_key))
 return unless wrapper.upload_file(file_path)

 puts "File #{file_path} successfully uploaded to #{bucket_name}:#{object_key}."
end

run_demo if $PROGRAM_NAME == __FILE__

Upload a file using Object.put.

require 'aws-sdk-s3'

Wraps Amazon S3 object actions.

Actions 310

Amazon SDK for Ruby Developer Guide

class ObjectPutWrapper
 attr_reader :object

 # @param object [Aws::S3::Object] An existing Amazon S3 object.
 def initialize(object)
 @object = object
 end

 def put_object(source_file_path)
 File.open(source_file_path, 'rb') do |file|
 @object.put(body: file)
 end
 true
 rescue Aws::Errors::ServiceError => e
 puts "Couldn't put #{source_file_path} to #{object.key}. Here's why:
 #{e.message}"
 false
 end
end

Example usage:
def run_demo
 bucket_name = "amzn-s3-demo-bucket"
 object_key = "my-object-key"
 file_path = "my-local-file.txt"

 wrapper = ObjectPutWrapper.new(Aws::S3::Object.new(bucket_name, object_key))
 success = wrapper.put_object(file_path)
 return unless success

 puts "Put file #{file_path} into #{object_key} in #{bucket_name}."
end

run_demo if $PROGRAM_NAME == __FILE__

Upload a file using Object.put and add server-side encryption.

require 'aws-sdk-s3'

Wraps Amazon S3 object actions.
class ObjectPutSseWrapper
 attr_reader :object

Actions 311

Amazon SDK for Ruby Developer Guide

 # @param object [Aws::S3::Object] An existing Amazon S3 object.
 def initialize(object)
 @object = object
 end

 def put_object_encrypted(object_content, encryption)
 @object.put(body: object_content, server_side_encryption: encryption)
 true
 rescue Aws::Errors::ServiceError => e
 puts "Couldn't put your content to #{object.key}. Here's why: #{e.message}"
 false
 end
end

Example usage:
def run_demo
 bucket_name = "amzn-s3-demo-bucket"
 object_key = "my-encrypted-content"
 object_content = "This is my super-secret content."
 encryption = "AES256"

 wrapper = ObjectPutSseWrapper.new(Aws::S3::Object.new(bucket_name,
 object_content))
 return unless wrapper.put_object_encrypted(object_content, encryption)

 puts "Put your content into #{bucket_name}:#{object_key} and encrypted it with
 #{encryption}."
end

run_demo if $PROGRAM_NAME == __FILE__

• For API details, see PutObject in Amazon SDK for Ruby API Reference.

Scenarios

Create a presigned URL

The following code example shows how to create a presigned URL for Amazon S3 and upload an
object.

Scenarios 312

https://docs.amazonaws.cn/goto/SdkForRubyV3/s3-2006-03-01/PutObject

Amazon SDK for Ruby Developer Guide

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

require 'aws-sdk-s3'
require 'net/http'

Creates a presigned URL that can be used to upload content to an object.
#
@param bucket [Aws::S3::Bucket] An existing Amazon S3 bucket.
@param object_key [String] The key to give the uploaded object.
@return [URI, nil] The parsed URI if successful; otherwise nil.
def get_presigned_url(bucket, object_key)
 url = bucket.object(object_key).presigned_url(:put)
 puts "Created presigned URL: #{url}"
 URI(url)
rescue Aws::Errors::ServiceError => e
 puts "Couldn't create presigned URL for #{bucket.name}:#{object_key}. Here's why:
 #{e.message}"
end

Example usage:
def run_demo
 bucket_name = "amzn-s3-demo-bucket"
 object_key = "my-file.txt"
 object_content = "This is the content of my-file.txt."

 bucket = Aws::S3::Bucket.new(bucket_name)
 presigned_url = get_presigned_url(bucket, object_key)
 return unless presigned_url

 response = Net::HTTP.start(presigned_url.host) do |http|
 http.send_request('PUT', presigned_url.request_uri, object_content,
 'content_type' => '')
 end

 case response
 when Net::HTTPSuccess

Scenarios 313

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/s3#code-examples

Amazon SDK for Ruby Developer Guide

 puts 'Content uploaded!'
 else
 puts response.value
 end
end

run_demo if $PROGRAM_NAME == __FILE__

Serverless examples

Invoke a Lambda function from an Amazon S3 trigger

The following code example shows how to implement a Lambda function that receives an event
triggered by uploading an object to an S3 bucket. The function retrieves the S3 bucket name and
object key from the event parameter and calls the Amazon S3 API to retrieve and log the content
type of the object.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Serverless examples repository.

Consuming an S3 event with Lambda using Ruby.

require 'json'
require 'uri'
require 'aws-sdk'

puts 'Loading function'

def lambda_handler(event:, context:)
 s3 = Aws::S3::Client.new(region: 'region') # Your AWS region
 # puts "Received event: #{JSON.dump(event)}"

 # Get the object from the event and show its content type
 bucket = event['Records'][0]['s3']['bucket']['name']

Serverless examples 314

https://github.com/aws-samples/serverless-snippets/tree/main/integration-s3-to-lambda

Amazon SDK for Ruby Developer Guide

 key = URI.decode_www_form_component(event['Records'][0]['s3']['object']['key'],
 Encoding::UTF_8)
 begin
 response = s3.get_object(bucket: bucket, key: key)
 puts "CONTENT TYPE: #{response.content_type}"
 return response.content_type
 rescue StandardError => e
 puts e.message
 puts "Error getting object #{key} from bucket #{bucket}. Make sure they exist
 and your bucket is in the same region as this function."
 raise e
 end
end

Amazon SES examples using SDK for Ruby

The following code examples show you how to perform actions and implement common scenarios
by using the Amazon SDK for Ruby with Amazon SES.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Topics

• Actions

Actions

GetIdentityVerificationAttributes

The following code example shows how to use GetIdentityVerificationAttributes.

Amazon SES 315

Amazon SDK for Ruby Developer Guide

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

require 'aws-sdk-ses' # v2: require 'aws-sdk'

Create client in us-west-2 region
Replace us-west-2 with the AWS Region you're using for Amazon SES.
client = Aws::SES::Client.new(region: 'us-west-2')

Get up to 1000 identities
ids = client.list_identities({
 identity_type: 'EmailAddress'
 })

ids.identities.each do |email|
 attrs = client.get_identity_verification_attributes({
 identities: [email]
 })

 status = attrs.verification_attributes[email].verification_status

 # Display email addresses that have been verified
 puts email if status == 'Success'
end

• For API details, see GetIdentityVerificationAttributes in Amazon SDK for Ruby API Reference.

ListIdentities

The following code example shows how to use ListIdentities.

Actions 316

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/ses/v1#code-examples
https://docs.amazonaws.cn/goto/SdkForRubyV3/email-2010-12-01/GetIdentityVerificationAttributes

Amazon SDK for Ruby Developer Guide

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

require 'aws-sdk-ses' # v2: require 'aws-sdk'

Create client in us-west-2 region
Replace us-west-2 with the AWS Region you're using for Amazon SES.
client = Aws::SES::Client.new(region: 'us-west-2')

Get up to 1000 identities
ids = client.list_identities({
 identity_type: 'EmailAddress'
 })

ids.identities.each do |email|
 attrs = client.get_identity_verification_attributes({
 identities: [email]
 })

 status = attrs.verification_attributes[email].verification_status

 # Display email addresses that have been verified
 puts email if status == 'Success'
end

• For API details, see ListIdentities in Amazon SDK for Ruby API Reference.

SendEmail

The following code example shows how to use SendEmail.

Actions 317

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/ses/v1#code-examples
https://docs.amazonaws.cn/goto/SdkForRubyV3/email-2010-12-01/ListIdentities

Amazon SDK for Ruby Developer Guide

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

require 'aws-sdk-ses' # v2: require 'aws-sdk'

Replace sender@example.com with your "From" address.
This address must be verified with Amazon SES.
sender = 'sender@example.com'

Replace recipient@example.com with a "To" address. If your account
is still in the sandbox, this address must be verified.
recipient = 'recipient@example.com'

Specify a configuration set. To use a configuration
set, uncomment the next line and line 74.
configsetname = "ConfigSet"

The subject line for the email.
subject = 'Amazon SES test (AWS SDK for Ruby)'

The HTML body of the email.
htmlbody =
 '<h1>Amazon SES test (AWS SDK for Ruby)</h1>'\
 '<p>This email was sent with '\
 'Amazon SES using the '\
 'AWS SDK for Ruby.'

The email body for recipients with non-HTML email clients.
textbody = 'This email was sent with Amazon SES using the AWS SDK for Ruby.'

Specify the text encoding scheme.
encoding = 'UTF-8'

Create a new SES client in the us-west-2 region.
Replace us-west-2 with the AWS Region you're using for Amazon SES.
ses = Aws::SES::Client.new(region: 'us-west-2')

Actions 318

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/ses/v1#code-examples

Amazon SDK for Ruby Developer Guide

Try to send the email.
begin
 # Provide the contents of the email.
 ses.send_email(
 destination: {
 to_addresses: [
 recipient
]
 },
 message: {
 body: {
 html: {
 charset: encoding,
 data: htmlbody
 },
 text: {
 charset: encoding,
 data: textbody
 }
 },
 subject: {
 charset: encoding,
 data: subject
 }
 },
 source: sender
 # Uncomment the following line to use a configuration set.
 # configuration_set_name: configsetname,
)

 puts "Email sent to #{recipient}"

If something goes wrong, display an error message.
rescue Aws::SES::Errors::ServiceError => e
 puts "Email not sent. Error message: #{e}"
end

• For API details, see SendEmail in Amazon SDK for Ruby API Reference.

Actions 319

https://docs.amazonaws.cn/goto/SdkForRubyV3/email-2010-12-01/SendEmail

Amazon SDK for Ruby Developer Guide

VerifyEmailIdentity

The following code example shows how to use VerifyEmailIdentity.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

require 'aws-sdk-ses' # v2: require 'aws-sdk'

Replace recipient@example.com with a "To" address.
recipient = 'recipient@example.com'

Create a new SES resource in the us-west-2 region.
Replace us-west-2 with the AWS Region you're using for Amazon SES.
ses = Aws::SES::Client.new(region: 'us-west-2')

Try to verify email address.
begin
 ses.verify_email_identity({
 email_address: recipient
 })

 puts "Email sent to #{recipient}"

If something goes wrong, display an error message.
rescue Aws::SES::Errors::ServiceError => e
 puts "Email not sent. Error message: #{e}"
end

• For API details, see VerifyEmailIdentity in Amazon SDK for Ruby API Reference.

Actions 320

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/ses/v1#code-examples
https://docs.amazonaws.cn/goto/SdkForRubyV3/email-2010-12-01/VerifyEmailIdentity

Amazon SDK for Ruby Developer Guide

Amazon SES API v2 examples using SDK for Ruby

The following code examples show you how to perform actions and implement common scenarios
by using the Amazon SDK for Ruby with Amazon SES API v2.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Topics

• Actions

Actions

SendEmail

The following code example shows how to use SendEmail.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

require 'aws-sdk-sesv2'
require_relative 'config' # Recipient and sender email addresses.

Set up the SESv2 client.
client = Aws::SESV2::Client.new(region: AWS_REGION)

def send_email(client, sender_email, recipient_email)
 response = client.send_email(
 {
 from_email_address: sender_email,
 destination: {

Amazon SES API v2 321

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/ses/v2#code-examples

Amazon SDK for Ruby Developer Guide

 to_addresses: [recipient_email]
 },
 content: {
 simple: {
 subject: {
 data: 'Test email subject'
 },
 body: {
 text: {
 data: 'Test email body'
 }
 }
 }
 }
 }
)
 puts "Email sent from #{SENDER_EMAIL} to #{RECIPIENT_EMAIL} with message ID:
 #{response.message_id}"
end

send_email(client, SENDER_EMAIL, RECIPIENT_EMAIL)

• For API details, see SendEmail in Amazon SDK for Ruby API Reference.

Amazon SNS examples using SDK for Ruby

The following code examples show you how to perform actions and implement common scenarios
by using the Amazon SDK for Ruby with Amazon SNS.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Topics

• Actions

• Serverless examples

Amazon SNS 322

https://docs.amazonaws.cn/goto/SdkForRubyV3/sesv2-2019-09-27/SendEmail

Amazon SDK for Ruby Developer Guide

Actions

CreateTopic

The following code example shows how to use CreateTopic.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

This class demonstrates how to create an Amazon Simple Notification Service (SNS)
 topic.
class SNSTopicCreator
 # Initializes an SNS client.
 #
 # Utilizes the default AWS configuration for region and credentials.
 def initialize
 @sns_client = Aws::SNS::Client.new
 end

 # Attempts to create an SNS topic with the specified name.
 #
 # @param topic_name [String] The name of the SNS topic to create.
 # @return [Boolean] true if the topic was successfully created, false otherwise.
 def create_topic(topic_name)
 @sns_client.create_topic(name: topic_name)
 puts "The topic '#{topic_name}' was successfully created."
 true
 rescue Aws::SNS::Errors::ServiceError => e
 # Handles SNS service errors gracefully.
 puts "Error while creating the topic named '#{topic_name}': #{e.message}"
 false
 end
end

Example usage:
if $PROGRAM_NAME == __FILE__
 topic_name = 'YourTopicName' # Replace with your topic name

Actions 323

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/sns#code-examples

Amazon SDK for Ruby Developer Guide

 sns_topic_creator = SNSTopicCreator.new

 puts "Creating the topic '#{topic_name}'..."
 unless sns_topic_creator.create_topic(topic_name)
 puts 'The topic was not created. Stopping program.'
 exit 1
 end
end

• For more information, see Amazon SDK for Ruby Developer Guide.

• For API details, see CreateTopic in Amazon SDK for Ruby API Reference.

ListSubscriptions

The following code example shows how to use ListSubscriptions.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

This class demonstrates how to list subscriptions to an Amazon Simple Notification
 Service (SNS) topic
class SnsSubscriptionLister
 def initialize(sns_client)
 @sns_client = sns_client
 @logger = Logger.new($stdout)
 end

 # Lists subscriptions for a given SNS topic
 # @param topic_arn [String] The ARN of the SNS topic
 # @return [Types::ListSubscriptionsResponse] subscriptions: The response object
 def list_subscriptions(topic_arn)
 @logger.info("Listing subscriptions for topic: #{topic_arn}")
 subscriptions = @sns_client.list_subscriptions_by_topic(topic_arn: topic_arn)
 subscriptions.subscriptions.each do |subscription|
 @logger.info("Subscription endpoint: #{subscription.endpoint}")

Actions 324

https://docs.amazonaws.cn/sdk-for-ruby/v3/developer-guide/sns-example-create-topic.html
https://docs.amazonaws.cn/goto/SdkForRubyV3/sns-2010-03-31/CreateTopic
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/sns#code-examples

Amazon SDK for Ruby Developer Guide

 end
 subscriptions
 rescue Aws::SNS::Errors::ServiceError => e
 @logger.error("Error listing subscriptions: #{e.message}")
 raise
 end
end

Example usage:
if $PROGRAM_NAME == __FILE__
 sns_client = Aws::SNS::Client.new
 topic_arn = 'SNS_TOPIC_ARN' # Replace with your SNS topic ARN
 lister = SnsSubscriptionLister.new(sns_client)

 begin
 lister.list_subscriptions(topic_arn)
 rescue StandardError => e
 puts "Failed to list subscriptions: #{e.message}"
 exit 1
 end
end

• For more information, see Amazon SDK for Ruby Developer Guide.

• For API details, see ListSubscriptions in Amazon SDK for Ruby API Reference.

ListTopics

The following code example shows how to use ListTopics.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

require 'aws-sdk-sns' # v2: require 'aws-sdk'

Actions 325

https://docs.amazonaws.cn/sdk-for-ruby/v3/developer-guide/sns-example-show-subscriptions.html
https://docs.amazonaws.cn/goto/SdkForRubyV3/sns-2010-03-31/ListSubscriptions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/sns#code-examples

Amazon SDK for Ruby Developer Guide

def list_topics?(sns_client)
 sns_client.topics.each do |topic|
 puts topic.arn
 rescue StandardError => e
 puts "Error while listing the topics: #{e.message}"
 end
end

def run_me
 region = 'REGION'
 sns_client = Aws::SNS::Resource.new(region: region)

 puts 'Listing the topics.'

 return if list_topics?(sns_client)

 puts 'The bucket was not created. Stopping program.'
 exit 1
end

Example usage:
run_me if $PROGRAM_NAME == __FILE__

• For more information, see Amazon SDK for Ruby Developer Guide.

• For API details, see ListTopics in Amazon SDK for Ruby API Reference.

Publish

The following code example shows how to use Publish.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

Service class for sending messages using Amazon Simple Notification Service (SNS)

Actions 326

https://docs.amazonaws.cn/sdk-for-ruby/v3/developer-guide/sns-example-show-topics.html
https://docs.amazonaws.cn/goto/SdkForRubyV3/sns-2010-03-31/ListTopics
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/sns#code-examples

Amazon SDK for Ruby Developer Guide

class SnsMessageSender
 # Initializes the SnsMessageSender with an SNS client
 #
 # @param sns_client [Aws::SNS::Client] The SNS client
 def initialize(sns_client)
 @sns_client = sns_client
 @logger = Logger.new($stdout)
 end

 # Sends a message to a specified SNS topic
 #
 # @param topic_arn [String] The ARN of the SNS topic
 # @param message [String] The message to send
 # @return [Boolean] true if message was successfully sent, false otherwise
 def send_message(topic_arn, message)
 @sns_client.publish(topic_arn: topic_arn, message: message)
 @logger.info("Message sent successfully to #{topic_arn}.")
 true
 rescue Aws::SNS::Errors::ServiceError => e
 @logger.error("Error while sending the message: #{e.message}")
 false
 end
end

Example usage:
if $PROGRAM_NAME == __FILE__
 topic_arn = 'SNS_TOPIC_ARN' # Should be replaced with a real topic ARN
 message = 'MESSAGE' # Should be replaced with the actual message content

 sns_client = Aws::SNS::Client.new
 message_sender = SnsMessageSender.new(sns_client)

 @logger.info('Sending message.')
 unless message_sender.send_message(topic_arn, message)
 @logger.error('Message sending failed. Stopping program.')
 exit 1
 end
end

• For more information, see Amazon SDK for Ruby Developer Guide.

• For API details, see Publish in Amazon SDK for Ruby API Reference.

Actions 327

https://docs.amazonaws.cn/sdk-for-ruby/v3/developer-guide/sns-example-send-message.html
https://docs.amazonaws.cn/goto/SdkForRubyV3/sns-2010-03-31/Publish

Amazon SDK for Ruby Developer Guide

SetTopicAttributes

The following code example shows how to use SetTopicAttributes.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

Service class to enable an SNS resource with a specified policy
class SnsResourceEnabler
 # Initializes the SnsResourceEnabler with an SNS resource client
 #
 # @param sns_resource [Aws::SNS::Resource] The SNS resource client
 def initialize(sns_resource)
 @sns_resource = sns_resource
 @logger = Logger.new($stdout)
 end

 # Sets a policy on a specified SNS topic
 #
 # @param topic_arn [String] The ARN of the SNS topic
 # @param resource_arn [String] The ARN of the resource to include in the policy
 # @param policy_name [String] The name of the policy attribute to set
 def enable_resource(topic_arn, resource_arn, policy_name)
 policy = generate_policy(topic_arn, resource_arn)
 topic = @sns_resource.topic(topic_arn)

 topic.set_attributes({
 attribute_name: policy_name,
 attribute_value: policy
 })
 @logger.info("Policy #{policy_name} set successfully for topic #{topic_arn}.")
 rescue Aws::SNS::Errors::ServiceError => e
 @logger.error("Failed to set policy: #{e.message}")
 end

 private

 # Generates a policy string with dynamic resource ARNs

Actions 328

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/sns#code-examples

Amazon SDK for Ruby Developer Guide

 #
 # @param topic_arn [String] The ARN of the SNS topic
 # @param resource_arn [String] The ARN of the resource
 # @return [String] The policy as a JSON string
 def generate_policy(topic_arn, resource_arn)
 {
 Version: '2008-10-17',
 Id: '__default_policy_ID',
 Statement: [{
 Sid: '__default_statement_ID',
 Effect: 'Allow',
 Principal: { "AWS": '*' },
 Action: ['SNS:Publish'],
 Resource: topic_arn,
 Condition: {
 ArnEquals: {
 "AWS:SourceArn": resource_arn
 }
 }
 }]
 }.to_json
 end
end

Example usage:
if $PROGRAM_NAME == __FILE__
 topic_arn = 'MY_TOPIC_ARN' # Should be replaced with a real topic ARN
 resource_arn = 'MY_RESOURCE_ARN' # Should be replaced with a real resource ARN
 policy_name = 'POLICY_NAME' # Typically, this is "Policy"

 sns_resource = Aws::SNS::Resource.new
 enabler = SnsResourceEnabler.new(sns_resource)

 enabler.enable_resource(topic_arn, resource_arn, policy_name)
end

• For more information, see Amazon SDK for Ruby Developer Guide.

• For API details, see SetTopicAttributes in Amazon SDK for Ruby API Reference.

Actions 329

https://docs.amazonaws.cn/sdk-for-ruby/v3/developer-guide/sns-example-enable-resource.html
https://docs.amazonaws.cn/goto/SdkForRubyV3/sns-2010-03-31/SetTopicAttributes

Amazon SDK for Ruby Developer Guide

Subscribe

The following code example shows how to use Subscribe.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

Subscribe an email address to a topic.

require 'aws-sdk-sns'
require 'logger'

Represents a service for creating subscriptions in Amazon Simple Notification
 Service (SNS)
class SubscriptionService
 # Initializes the SubscriptionService with an SNS client
 #
 # @param sns_client [Aws::SNS::Client] The SNS client
 def initialize(sns_client)
 @sns_client = sns_client
 @logger = Logger.new($stdout)
 end

 # Attempts to create a subscription to a topic
 #
 # @param topic_arn [String] The ARN of the SNS topic
 # @param protocol [String] The subscription protocol (e.g., email)
 # @param endpoint [String] The endpoint that receives the notifications (email
 address)
 # @return [Boolean] true if subscription was successfully created, false otherwise
 def create_subscription(topic_arn, protocol, endpoint)
 @sns_client.subscribe(topic_arn: topic_arn, protocol: protocol, endpoint:
 endpoint)
 @logger.info('Subscription created successfully.')
 true
 rescue Aws::SNS::Errors::ServiceError => e
 @logger.error("Error while creating the subscription: #{e.message}")
 false

Actions 330

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/sns#code-examples

Amazon SDK for Ruby Developer Guide

 end
end

Main execution if the script is run directly
if $PROGRAM_NAME == __FILE__
 protocol = 'email'
 endpoint = 'EMAIL_ADDRESS' # Should be replaced with a real email address
 topic_arn = 'TOPIC_ARN' # Should be replaced with a real topic ARN

 sns_client = Aws::SNS::Client.new
 subscription_service = SubscriptionService.new(sns_client)

 @logger.info('Creating the subscription.')
 unless subscription_service.create_subscription(topic_arn, protocol, endpoint)
 @logger.error('Subscription creation failed. Stopping program.')
 exit 1
 end
end

• For more information, see Amazon SDK for Ruby Developer Guide.

• For API details, see Subscribe in Amazon SDK for Ruby API Reference.

Serverless examples

Invoke a Lambda function from an Amazon SNS trigger

The following code example shows how to implement a Lambda function that receives an event
triggered by receiving messages from an SNS topic. The function retrieves the messages from the
event parameter and logs the content of each message.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Serverless examples repository.

Consuming an SNS event with Lambda using Ruby.

Serverless examples 331

https://docs.amazonaws.cn/sdk-for-ruby/v3/developer-guide/sns-example-create-subscription.html
https://docs.amazonaws.cn/goto/SdkForRubyV3/sns-2010-03-31/Subscribe
https://github.com/aws-samples/serverless-snippets/tree/main/integration-sns-to-lambda

Amazon SDK for Ruby Developer Guide

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
def lambda_handler(event:, context:)
 event['Records'].map { |record| process_message(record) }
end

def process_message(record)
 message = record['Sns']['Message']
 puts("Processing message: #{message}")
rescue StandardError => e
 puts("Error processing message: #{e}")
 raise
end

Amazon SQS examples using SDK for Ruby

The following code examples show you how to perform actions and implement common scenarios
by using the Amazon SDK for Ruby with Amazon SQS.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Topics

• Actions

• Serverless examples

Actions

ChangeMessageVisibility

The following code example shows how to use ChangeMessageVisibility.

Amazon SQS 332

Amazon SDK for Ruby Developer Guide

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

require 'aws-sdk-sqs' # v2: require 'aws-sdk'
Replace us-west-2 with the AWS Region you're using for Amazon SQS.
sqs = Aws::SQS::Client.new(region: 'us-west-2')

begin
 queue_name = 'my-queue'
 queue_url = sqs.get_queue_url(queue_name: queue_name).queue_url

 # Receive up to 10 messages
 receive_message_result_before = sqs.receive_message({
 queue_url: queue_url,
 max_number_of_messages: 10
 })

 puts "Before attempting to change message visibility timeout: received
 #{receive_message_result_before.messages.count} message(s)."

 receive_message_result_before.messages.each do |message|
 sqs.change_message_visibility({
 queue_url: queue_url,
 receipt_handle: message.receipt_handle,
 visibility_timeout: 30 # This message will not
 be visible for 30 seconds after first receipt.
 })
 end

 # Try to retrieve the original messages after setting their visibility timeout.
 receive_message_result_after = sqs.receive_message({
 queue_url: queue_url,
 max_number_of_messages: 10
 })

Actions 333

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/sqs#code-examples

Amazon SDK for Ruby Developer Guide

 puts "\nAfter attempting to change message visibility timeout: received
 #{receive_message_result_after.messages.count} message(s)."
rescue Aws::SQS::Errors::NonExistentQueue
 puts "Cannot receive messages for a queue named '#{queue_name}', as it does not
 exist."
end

• For API details, see ChangeMessageVisibility in Amazon SDK for Ruby API Reference.

CreateQueue

The following code example shows how to use CreateQueue.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

This code example demonstrates how to create a queue in Amazon Simple Queue
 Service (Amazon SQS).

require 'aws-sdk-sqs'

@param sqs_client [Aws::SQS::Client] An initialized Amazon SQS client.
@param queue_name [String] The name of the queue.
@return [Boolean] true if the queue was created; otherwise, false.
@example
exit 1 unless queue_created?(
Aws::SQS::Client.new(region: 'us-west-2'),
'my-queue'
)
def queue_created?(sqs_client, queue_name)
 sqs_client.create_queue(queue_name: queue_name)
 true
rescue StandardError => e
 puts "Error creating queue: #{e.message}"
 false

Actions 334

https://docs.amazonaws.cn/goto/SdkForRubyV3/sqs-2012-11-05/ChangeMessageVisibility
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/sqs#code-examples

Amazon SDK for Ruby Developer Guide

end

Full example call:
Replace us-west-2 with the AWS Region you're using for Amazon SQS.
def run_me
 region = 'us-west-2'
 queue_name = 'my-queue'
 sqs_client = Aws::SQS::Client.new(region: region)

 puts "Creating the queue named '#{queue_name}'..."

 if queue_created?(sqs_client, queue_name)
 puts 'Queue created.'
 else
 puts 'Queue not created.'
 end
end

Example usage:
run_me if $PROGRAM_NAME == __FILE__

• For API details, see CreateQueue in Amazon SDK for Ruby API Reference.

DeleteQueue

The following code example shows how to use DeleteQueue.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

require 'aws-sdk-sqs' # v2: require 'aws-sdk'
Replace us-west-2 with the AWS Region you're using for Amazon SQS.
sqs = Aws::SQS::Client.new(region: 'us-west-2')

sqs.delete_queue(queue_url: URL)

Actions 335

https://docs.amazonaws.cn/goto/SdkForRubyV3/sqs-2012-11-05/CreateQueue
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/sqs#code-examples

Amazon SDK for Ruby Developer Guide

• For API details, see DeleteQueue in Amazon SDK for Ruby API Reference.

ListQueues

The following code example shows how to use ListQueues.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

require 'aws-sdk-sqs'
require 'aws-sdk-sts'

@param sqs_client [Aws::SQS::Client] An initialized Amazon SQS client.
@example
list_queue_urls(Aws::SQS::Client.new(region: 'us-west-2'))
def list_queue_urls(sqs_client)
 queues = sqs_client.list_queues

 queues.queue_urls.each do |url|
 puts url
 end
rescue StandardError => e
 puts "Error listing queue URLs: #{e.message}"
end

Lists the attributes of a queue in Amazon Simple Queue Service (Amazon SQS).
#
@param sqs_client [Aws::SQS::Client] An initialized Amazon SQS client.
@param queue_url [String] The URL of the queue.
@example
list_queue_attributes(
Aws::SQS::Client.new(region: 'us-west-2'),
'https://sqs.us-west-2.amazonaws.com/111111111111/my-queue'

Actions 336

https://docs.amazonaws.cn/goto/SdkForRubyV3/sqs-2012-11-05/DeleteQueue
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/sqs#code-examples

Amazon SDK for Ruby Developer Guide

)
def list_queue_attributes(sqs_client, queue_url)
 attributes = sqs_client.get_queue_attributes(
 queue_url: queue_url,
 attribute_names: ['All']
)

 attributes.attributes.each do |key, value|
 puts "#{key}: #{value}"
 end
rescue StandardError => e
 puts "Error getting queue attributes: #{e.message}"
end

Full example call:
Replace us-west-2 with the AWS Region you're using for Amazon SQS.
def run_me
 region = 'us-west-2'
 queue_name = 'my-queue'

 sqs_client = Aws::SQS::Client.new(region: region)

 puts 'Listing available queue URLs...'
 list_queue_urls(sqs_client)

 sts_client = Aws::STS::Client.new(region: region)

 # For example:
 # 'https://sqs.us-west-2.amazonaws.com/111111111111/my-queue'
 queue_url = "https://sqs.#{region}.amazonaws.com/
#{sts_client.get_caller_identity.account}/#{queue_name}"

 puts "\nGetting information about queue '#{queue_name}'..."
 list_queue_attributes(sqs_client, queue_url)
end

• For API details, see ListQueues in Amazon SDK for Ruby API Reference.

ReceiveMessage

The following code example shows how to use ReceiveMessage.

Actions 337

https://docs.amazonaws.cn/goto/SdkForRubyV3/sqs-2012-11-05/ListQueues

Amazon SDK for Ruby Developer Guide

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

require 'aws-sdk-sqs'
require 'aws-sdk-sts'

Receives messages in a queue in Amazon Simple Queue Service (Amazon SQS).
#
@param sqs_client [Aws::SQS::Client] An initialized Amazon SQS client.
@param queue_url [String] The URL of the queue.
@param max_number_of_messages [Integer] The maximum number of messages
to receive. This number must be 10 or less. The default is 10.
@example
receive_messages(
Aws::SQS::Client.new(region: 'us-west-2'),
'https://sqs.us-west-2.amazonaws.com/111111111111/my-queue',
10
)
def receive_messages(sqs_client, queue_url, max_number_of_messages = 10)
 if max_number_of_messages > 10
 puts 'Maximum number of messages to receive must be 10 or less. ' \
 'Stopping program.'
 return
 end

 response = sqs_client.receive_message(
 queue_url: queue_url,
 max_number_of_messages: max_number_of_messages
)

 if response.messages.count.zero?
 puts 'No messages to receive, or all messages have already ' \
 'been previously received.'
 return
 end

Actions 338

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/sqs#code-examples

Amazon SDK for Ruby Developer Guide

 response.messages.each do |message|
 puts '-' * 20
 puts "Message body: #{message.body}"
 puts "Message ID: #{message.message_id}"
 end
rescue StandardError => e
 puts "Error receiving messages: #{e.message}"
end

Full example call:
Replace us-west-2 with the AWS Region you're using for Amazon SQS.
def run_me
 region = 'us-west-2'
 queue_name = 'my-queue'
 max_number_of_messages = 10

 sts_client = Aws::STS::Client.new(region: region)

 # For example:
 # 'https://sqs.us-west-2.amazonaws.com/111111111111/my-queue'
 queue_url = "https://sqs.#{region}.amazonaws.com/
#{sts_client.get_caller_identity.account}/#{queue_name}"

 sqs_client = Aws::SQS::Client.new(region: region)

 puts "Receiving messages from queue '#{queue_name}'..."

 receive_messages(sqs_client, queue_url, max_number_of_messages)
end

Example usage:
run_me if $PROGRAM_NAME == __FILE__

• For API details, see ReceiveMessage in Amazon SDK for Ruby API Reference.

SendMessage

The following code example shows how to use SendMessage.

Actions 339

https://docs.amazonaws.cn/goto/SdkForRubyV3/sqs-2012-11-05/ReceiveMessage

Amazon SDK for Ruby Developer Guide

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

require 'aws-sdk-sqs'
require 'aws-sdk-sts'

@param sqs_client [Aws::SQS::Client] An initialized Amazon SQS client.
@param queue_url [String] The URL of the queue.
@param message_body [String] The contents of the message to be sent.
@return [Boolean] true if the message was sent; otherwise, false.
@example
exit 1 unless message_sent?(
Aws::SQS::Client.new(region: 'us-west-2'),
'https://sqs.us-west-2.amazonaws.com/111111111111/my-queue',
'This is my message.'
)
def message_sent?(sqs_client, queue_url, message_body)
 sqs_client.send_message(
 queue_url: queue_url,
 message_body: message_body
)
 true
rescue StandardError => e
 puts "Error sending message: #{e.message}"
 false
end

Full example call:
Replace us-west-2 with the AWS Region you're using for Amazon SQS.
def run_me
 region = 'us-west-2'
 queue_name = 'my-queue'
 message_body = 'This is my message.'

 sts_client = Aws::STS::Client.new(region: region)

Actions 340

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/sqs#code-examples

Amazon SDK for Ruby Developer Guide

 # For example:
 # 'https://sqs.us-west-2.amazonaws.com/111111111111/my-queue'
 queue_url = "https://sqs.#{region}.amazonaws.com/
#{sts_client.get_caller_identity.account}/#{queue_name}"

 sqs_client = Aws::SQS::Client.new(region: region)

 puts "Sending a message to the queue named '#{queue_name}'..."

 if message_sent?(sqs_client, queue_url, message_body)
 puts 'Message sent.'
 else
 puts 'Message not sent.'
 end
end

Example usage:
run_me if $PROGRAM_NAME == __FILE__

• For API details, see SendMessage in Amazon SDK for Ruby API Reference.

SendMessageBatch

The following code example shows how to use SendMessageBatch.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

require 'aws-sdk-sqs'
require 'aws-sdk-sts'

#
@param sqs_client [Aws::SQS::Client] An initialized Amazon SQS client.
@param queue_url [String] The URL of the queue.
@param entries [Hash] The contents of the messages to be sent,

Actions 341

https://docs.amazonaws.cn/goto/SdkForRubyV3/sqs-2012-11-05/SendMessage
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/sqs#code-examples

Amazon SDK for Ruby Developer Guide

in the correct format.
@return [Boolean] true if the messages were sent; otherwise, false.
@example
exit 1 unless messages_sent?(
Aws::SQS::Client.new(region: 'us-west-2'),
'https://sqs.us-west-2.amazonaws.com/111111111111/my-queue',
[
{
id: 'Message1',
message_body: 'This is the first message.'
},
{
id: 'Message2',
message_body: 'This is the second message.'
}
]
)
def messages_sent?(sqs_client, queue_url, entries)
 sqs_client.send_message_batch(
 queue_url: queue_url,
 entries: entries
)
 true
rescue StandardError => e
 puts "Error sending messages: #{e.message}"
 false
end

Full example call:
Replace us-west-2 with the AWS Region you're using for Amazon SQS.
def run_me
 region = 'us-west-2'
 queue_name = 'my-queue'
 entries = [
 {
 id: 'Message1',
 message_body: 'This is the first message.'
 },
 {
 id: 'Message2',
 message_body: 'This is the second message.'
 }
]

Actions 342

Amazon SDK for Ruby Developer Guide

 sts_client = Aws::STS::Client.new(region: region)

 # For example:
 # 'https://sqs.us-west-2.amazonaws.com/111111111111/my-queue'
 queue_url = "https://sqs.#{region}.amazonaws.com/
#{sts_client.get_caller_identity.account}/#{queue_name}"

 sqs_client = Aws::SQS::Client.new(region: region)

 puts "Sending messages to the queue named '#{queue_name}'..."

 if messages_sent?(sqs_client, queue_url, entries)
 puts 'Messages sent.'
 else
 puts 'Messages not sent.'
 end
end

• For API details, see SendMessageBatch in Amazon SDK for Ruby API Reference.

Serverless examples

Invoke a Lambda function from an Amazon SQS trigger

The following code example shows how to implement a Lambda function that receives an event
triggered by receiving messages from an SQS queue. The function retrieves the messages from the
event parameter and logs the content of each message.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Serverless examples repository.

Consuming an SQS event with Lambda using Ruby.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.

Serverless examples 343

https://docs.amazonaws.cn/goto/SdkForRubyV3/sqs-2012-11-05/SendMessageBatch
https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda

Amazon SDK for Ruby Developer Guide

SPDX-License-Identifier: Apache-2.0
def lambda_handler(event:, context:)
 event['Records'].each do |message|
 process_message(message)
 end
 puts "done"
end

def process_message(message)
 begin
 puts "Processed message #{message['body']}"
 # TODO: Do interesting work based on the new message
 rescue StandardError => err
 puts "An error occurred"
 raise err
 end
end

Reporting batch item failures for Lambda functions with an Amazon SQS trigger

The following code example shows how to implement partial batch response for Lambda functions
that receive events from an SQS queue. The function reports the batch item failures in the
response, signaling to Lambda to retry those messages later.

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Serverless examples repository.

Reporting SQS batch item failures with Lambda using Ruby.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
require 'json'

def lambda_handler(event:, context:)
 if event
 batch_item_failures = []

Serverless examples 344

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda-with-batch-item-handling

Amazon SDK for Ruby Developer Guide

 sqs_batch_response = {}

 event["Records"].each do |record|
 begin
 # process message
 rescue StandardError => e
 batch_item_failures << {"itemIdentifier" => record['messageId']}
 end
 end

 sqs_batch_response["batchItemFailures"] = batch_item_failures
 return sqs_batch_response
 end
end

Amazon STS examples using SDK for Ruby

The following code examples show you how to perform actions and implement common scenarios
by using the Amazon SDK for Ruby with Amazon STS.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Topics

• Actions

Actions

AssumeRole

The following code example shows how to use AssumeRole.

Amazon STS 345

Amazon SDK for Ruby Developer Guide

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Amazon Code Examples Repository.

 # Creates an AWS Security Token Service (AWS STS) client with specified
 credentials.
 # This is separated into a factory function so that it can be mocked for unit
 testing.
 #
 # @param key_id [String] The ID of the access key used by the STS client.
 # @param key_secret [String] The secret part of the access key used by the STS
 client.
 def create_sts_client(key_id, key_secret)
 Aws::STS::Client.new(access_key_id: key_id, secret_access_key: key_secret)
 end

 # Gets temporary credentials that can be used to assume a role.
 #
 # @param role_arn [String] The ARN of the role that is assumed when these
 credentials
 # are used.
 # @param sts_client [AWS::STS::Client] An AWS STS client.
 # @return [Aws::AssumeRoleCredentials] The credentials that can be used to assume
 the role.
 def assume_role(role_arn, sts_client)
 credentials = Aws::AssumeRoleCredentials.new(
 client: sts_client,
 role_arn: role_arn,
 role_session_name: 'create-use-assume-role-scenario'
)
 @logger.info("Assumed role '#{role_arn}', got temporary credentials.")
 credentials
 end

• For API details, see AssumeRole in Amazon SDK for Ruby API Reference.

Actions 346

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/iam#code-examples
https://docs.amazonaws.cn/goto/SdkForRubyV3/sts-2011-06-15/AssumeRole

Amazon SDK for Ruby Developer Guide

Amazon Textract examples using SDK for Ruby

The following code examples show you how to perform actions and implement common scenarios
by using the Amazon SDK for Ruby with Amazon Textract.

Scenarios are code examples that show you how to accomplish specific tasks by calling multiple
functions within a service or combined with other Amazon Web Services services.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Topics

• Scenarios

Scenarios

Create an application to analyze customer feedback

The following code example shows how to create an application that analyzes customer comment
cards, translates them from their original language, determines their sentiment, and generates an
audio file from the translated text.

SDK for Ruby

This example application analyzes and stores customer feedback cards. Specifically, it fulfills the
need of a fictitious hotel in New York City. The hotel receives feedback from guests in various
languages in the form of physical comment cards. That feedback is uploaded into the app
through a web client. After an image of a comment card is uploaded, the following steps occur:

• Text is extracted from the image using Amazon Textract.

• Amazon Comprehend determines the sentiment of the extracted text and its language.

• The extracted text is translated to English using Amazon Translate.

• Amazon Polly synthesizes an audio file from the extracted text.

The full app can be deployed with the Amazon CDK. For source code and deployment
instructions, see the project in GitHub.

Services used in this example

• Amazon Comprehend

Amazon Textract 347

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/cross_service_examples/feedback_sentiment_analyzer

Amazon SDK for Ruby Developer Guide

• Lambda

• Amazon Polly

• Amazon Textract

• Amazon Translate

Amazon Translate examples using SDK for Ruby

The following code examples show you how to perform actions and implement common scenarios
by using the Amazon SDK for Ruby with Amazon Translate.

Scenarios are code examples that show you how to accomplish specific tasks by calling multiple
functions within a service or combined with other Amazon Web Services services.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Topics

• Scenarios

Scenarios

Create an application to analyze customer feedback

The following code example shows how to create an application that analyzes customer comment
cards, translates them from their original language, determines their sentiment, and generates an
audio file from the translated text.

SDK for Ruby

This example application analyzes and stores customer feedback cards. Specifically, it fulfills the
need of a fictitious hotel in New York City. The hotel receives feedback from guests in various
languages in the form of physical comment cards. That feedback is uploaded into the app
through a web client. After an image of a comment card is uploaded, the following steps occur:

• Text is extracted from the image using Amazon Textract.

• Amazon Comprehend determines the sentiment of the extracted text and its language.

• The extracted text is translated to English using Amazon Translate.

Amazon Translate 348

Amazon SDK for Ruby Developer Guide

• Amazon Polly synthesizes an audio file from the extracted text.

The full app can be deployed with the Amazon CDK. For source code and deployment
instructions, see the project in GitHub.

Services used in this example

• Amazon Comprehend

• Lambda

• Amazon Polly

• Amazon Textract

• Amazon Translate

Scenarios 349

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/cross_service_examples/feedback_sentiment_analyzer

Amazon SDK for Ruby Developer Guide

Migrating from Amazon SDK for Ruby version 1 or 2 to
Amazon SDK for Ruby version 3

This topic includes details to help you migrate from version 1 or 2 of the Amazon SDK for Ruby to
version 3.

Side-by-side usage

It isn’t necessary to replace the version 1 or 2 of the Amazon SDK for Ruby with version 3. You can
use them together in the same application. See this blog post for more information.

A quick example follows.

require 'aws-sdk-v1' # version 1
require 'aws-sdk' # version 2
require 'aws-sdk-s3' # version 3

s3 = AWS::S3::Client.new # version 1
s3 = Aws::S3::Client.new # version 2 or 3

You don’t need to rewrite existing working version 1 or 2 code to start using the version 3 SDK. A
valid migration strategy is to only write new code against the version 3 SDK.

General differences

Version 3 differs from version 2 in one important way.

• Each service is available as a separate gem.

Version 2 differs from version 1 in several important ways.

• Different root namespace –Aws versus Amazon. This enables side-by-side usage.

• Aws.config– Now a vanilla Ruby hash, instead of a method.

• Strict constructor options - When constructing a client or resource object in the version 1 SDK,
unknown constructor options are ignored. In version 2, unknown constructor options trigger an
ArgumentError. For example:

Side-by-side usage 350

http://ruby.awsblog.com/post/TxFKSK2QJE6RPZ/Upcoming-Stable-Release-of-AWS-SDK-for-Ruby-Version-2

Amazon SDK for Ruby Developer Guide

version 1
AWS::S3::Client.new(http_reed_timeout: 10)
oops, typo'd option is ignored

version 2
Aws::S3::Client.new(http_reed_timeout: 10)
=> raises ArgumentError

Client differences

There are no differences between the client classes in version 2 and version 3.

Between version 1 and version 2, the client classes have the fewest external differences. Many
service clients will have compatible interfaces after client construction. Some important
differences:

• Aws::S3::Client - The version 1 Amazon S3 client class was hand-coded. Version 2 is
generated from a service model. Method names and inputs are very different in version 2.

• Aws::EC2::Client- Version 2 uses plural names for output lists, version 1 uses the suffix
_set. For example:

version 1
resp = AWS::EC2::Client.new.describe_security_groups
resp.security_group_set
#=> [...]

version 2
resp = Aws::EC2::Client.new.describe_security_groups
resp.security_groups
#=> [...]

• Aws::SWF::Client– Version 2 uses structured responses, where version 1 uses vanilla Ruby
hashes.

• Service class renames – Version 2 uses a different name for multiple services:

• Amazon::SimpleWorkflow has become Aws::SWF

• Amazon::ELB has become Aws::ElasticLoadBalancing

• Amazon::SimpleEmailService has become Aws::SES

Client differences 351

Amazon SDK for Ruby Developer Guide

• Client configuration options – Some of the version 1 configuration options are renamed in
version 2. Others are removed or replaced. Here are the primary changes:

• :use_ssl has been removed. Version 2 uses SSL everywhere. To disable SSL you must
configure an :endpoint that uses http://.

• :ssl_ca_file is now :ssl_ca_bundle

• :ssl_ca_path is now :ssl_ca_directory

• Added :ssl_ca_store.

• :endpoint must now be a fully qualified HTTP or HTTPS URI instead of a hostname.

• Removed :*_port options for each service, now replaced by :endpoint.

• :user_agent_prefix is now :user_agent_suffix

Resource differences

There are no differences between the resource interfaces in version 2 and version 3.

There are significant differences between the resource interfaces in version 1 and version 2. Version
1 was entirely hand-coded, where as version 2 resource interfaces are generated from a model.
Version 2 resource interfaces are significantly more consistent. Some of the systemic differences
include:

• Separate resource class – In version 2, the service name is a module, not a class. In this module, it
is the resource interface:

version 1
s3 = AWS::S3.new

version 2
s3 = Aws::S3::Resource.new

• Referencing resources – The version 2 SDK separates collections and individual resource getters
into two different methods:

version 1
s3.buckets['bucket-name'].objects['key'].delete

version 2
s3.bucket('bucket-name').object('key').delete

Resource differences 352

Amazon SDK for Ruby Developer Guide

• Batch operations – In version 1, all batch operations were hand-coded utilities. In version 2,
many batch operations are autogenerated batching operations over the API. Version 2 batching
interfaces are very different from version 1.

Resource differences 353

Amazon SDK for Ruby Developer Guide

Security for Amazon SDK for Ruby

Cloud security at Amazon Web Services (Amazon) is the highest priority. As an Amazon customer,
you benefit from a data center and network architecture that is built to meet the requirements of
the most security-sensitive organizations. Security is a shared responsibility between Amazon and
you. The Shared Responsibility Model describes this as Security of the Cloud and Security in the
Cloud.

Security of the Cloud– Amazon is responsible for protecting the infrastructure that runs all of the
services offered in the Amazon Cloud and providing you with services that you can use securely.
Our security responsibility is the highest priority at Amazon, and the effectiveness of our security is
regularly tested and verified by third-party auditors as part of the Amazon Compliance Programs.

Security in the Cloud– Your responsibility is determined by the Amazon Web Services service you
are using, and other factors including the sensitivity of your data, your organization’s requirements,
and applicable laws and regulations.

Topics

• Data Protection in Amazon SDK for Ruby

• Identity and Access Management for Amazon SDK for Ruby

• Compliance Validation for Amazon SDK for Ruby

• Resilience for Amazon SDK for Ruby

• Infrastructure Security for Amazon SDK for Ruby

• Enforcing a minimum TLS version in the Amazon SDK for Ruby

• Amazon S3 Encryption Client Migration (V1 to V2)

• Amazon S3 Encryption Client Migration (V2 to V3)

Data Protection in Amazon SDK for Ruby

The Amazon shared responsibility model applies to data protection in . As described in this model,
Amazon is responsible for protecting the global infrastructure that runs all of the Amazon Web
Services Cloud. You are responsible for maintaining control over your content that is hosted on this
infrastructure. You are also responsible for the security configuration and management tasks for
the Amazon Web Services services that you use. For more information about data privacy, see the
Data Privacy FAQ.

Data Protection 354

http://www.amazonaws.cn/compliance/shared-responsibility-model/
http://www.amazonaws.cn/compliance/programs/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://www.amazonaws.cn/compliance/data-privacy-faq/

Amazon SDK for Ruby Developer Guide

For data protection purposes, we recommend that you protect Amazon Web Services account
credentials and set up individual users with Amazon IAM Identity Center or Amazon Identity and
Access Management (IAM). That way, each user is given only the permissions necessary to fulfill
their job duties. We also recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with Amazon resources. We require TLS 1.2 and recommend TLS
1.3.

• Set up API and user activity logging with Amazon CloudTrail. For information about using
CloudTrail trails to capture Amazon activities, see Working with CloudTrail trails in the Amazon
CloudTrail User Guide.

• Use Amazon encryption solutions, along with all default security controls within Amazon Web
Services services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-3 validated cryptographic modules when accessing Amazon through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-3.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with or other Amazon Web Services services using the console, API, Amazon
CLI, or Amazon SDKs. Any data that you enter into tags or free-form text fields used for names
may be used for billing or diagnostic logs. If you provide a URL to an external server, we strongly
recommend that you do not include credentials information in the URL to validate your request to
that server.

Identity and Access Management for Amazon SDK for Ruby

Amazon Identity and Access Management (IAM) is an Amazon Web Services (Amazon) service that
helps an administrator securely control access to Amazon resources. IAM administrators control
who can be authenticated (signed in) and authorized (have permissions) to use resources Amazon
Web Services services. IAM is an Amazon Web Services service that you can use with no additional
charge.

Identity and Access Management 355

https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-trails.html
https://www.amazonaws.cn/compliance/fips/

Amazon SDK for Ruby Developer Guide

To use Amazon SDK for Ruby to access Amazon, you need an Amazon account and Amazon
credentials. To increase the security of your Amazon account, we recommend that you use an IAM
user to provide access credentials instead of using your Amazon account credentials.

For details about working with IAM, see IAM.

For an overview of IAM users and why they are important for the security of your account, see
Amazon Security Credentials in the Amazon Web Services General Reference.

Amazon SDK for Ruby follows the shared responsibility model through the specific Amazon Web
Services (Amazon) services it supports. For Amazon Web Services service security information, see
the Amazon Web Services service security documentation page and Amazon Web Services services
that are in scope of Amazon compliance efforts by compliance program.

Compliance Validation for Amazon SDK for Ruby

Amazon SDK for Ruby follows the shared responsibility model through the specific Amazon Web
Services (Amazon) services it supports. For Amazon Web Services service security information, see
the Amazon Web Services service security documentation page and Amazon Web Services services
that are in scope of Amazon compliance efforts by compliance program.

The security and compliance of Amazon Web Services (Amazon) services is assessed by third-party
auditors as part of multiple Amazon compliance programs. These include SOC, PCI, FedRAMP,
HIPAA, and others. Amazon provides a frequently updated list of Amazon Web Services services in
scope of specific compliance programs at Amazon Services in Scope by Compliance Program.

Third-party audit reports are available for you to download using Amazon Artifact. For more
information, see Downloading Reports in Amazon Artifact.

For more information about Amazon compliance programs, see Amazon Compliance Programs.

Your compliance responsibility when using Amazon SDK for Ruby to access an Amazon Web
Services service is determined by the sensitivity of your data, your organization’s compliance
objectives, and applicable laws and regulations. If your use of an Amazon Web Services service is
subject to compliance with standards such as HIPAA, PCI, or FedRAMP, Amazon provides resources
to help:

• Security and Compliance Quick Start Guides– Deployment guides that discuss architectural
considerations and provide steps for deploying security-focused and compliance-focused
baseline environments on Amazon.

Compliance Validation 356

https://docs.amazonaws.cn/IAM/latest/UserGuide/
https://docs.amazonaws.cn/general/latest/gr/aws-security-credentials.html
https://docs.amazonaws.cn/general/latest/gr/
http://www.amazonaws.cn/compliance/shared-responsibility-model
http://www.amazonaws.cn/security/?id=docs_gateway#aws-security
http://www.amazonaws.cn/compliance/services-in-scope/
http://www.amazonaws.cn/compliance/services-in-scope/
http://www.amazonaws.cn/compliance/shared-responsibility-model
http://www.amazonaws.cn/security/?id=docs_gateway#aws-security
http://www.amazonaws.cn/compliance/services-in-scope/
http://www.amazonaws.cn/compliance/services-in-scope/
http://www.amazonaws.cn/compliance/services-in-scope/
https://docs.amazonaws.cn/artifact/latest/ug/downloading-documents.html
http://www.amazonaws.cn/compliance/programs/
http://www.amazonaws.cn/quickstart/?quickstart-all.sort-by=item.additionalFields.updateDate&quickstart-all.sort-order=desc&awsf.quickstart-homepage-filter=categories%23security-identity-compliance

Amazon SDK for Ruby Developer Guide

• HIPAA Eligible Services Reference – Lists HIPAA eligible services. Not all Amazon Web Services
services are HIPAA eligible.

• Amazon Compliance Resources– A collection of workbooks and guides that might apply to your
industry and location.

• Amazon Config– A service that assesses how well your resource configurations comply with
internal practices, industry guidelines, and regulations.

• Amazon Security Hub– A comprehensive view of your security state within Amazon that helps
you check your compliance with security industry standards and best practices.

Resilience for Amazon SDK for Ruby

The Amazon Web Services (Amazon) global infrastructure is built around Amazon Web Services
Regions and Availability Zones.

Amazon Web Services Regions provide multiple physically separated and isolated Availability
Zones, which are connected with low-latency, high-throughput, and highly redundant networking.

With Availability Zones, you can design and operate applications and databases that automatically
fail over between Availability Zones without interruption. Availability Zones are more highly
available, fault tolerant, and scalable than traditional single or multiple data center infrastructures.

For more information about Amazon Web Services Regions and Availability Zones, see Amazon
Global Infrastructure.

Amazon SDK for Ruby follows the shared responsibility model through the specific Amazon Web
Services (Amazon) services it supports. For Amazon Web Services service security information, see
the Amazon Web Services service security documentation page and Amazon Web Services services
that are in scope of Amazon compliance efforts by compliance program.

Infrastructure Security for Amazon SDK for Ruby

Amazon SDK for Ruby follows the shared responsibility model through the specific Amazon Web
Services (Amazon) services it supports. For Amazon Web Services service security information, see
the Amazon Web Services service security documentation page and Amazon Web Services services
that are in scope of Amazon compliance efforts by compliance program.

For information about Amazon security processes, see the Amazon: Overview of Security Processes
whitepaper.

Resilience 357

http://www.amazonaws.cn/compliance/hipaa-eligible-services-reference/
http://www.amazonaws.cn/compliance/resources/
http://www.amazonaws.cn/config/
http://www.amazonaws.cn/security-hub
http://www.amazonaws.cn/about-aws/global-infrastructure/
http://www.amazonaws.cn/about-aws/global-infrastructure/
http://www.amazonaws.cn/compliance/shared-responsibility-model
http://www.amazonaws.cn/security/?id=docs_gateway#aws-security
http://www.amazonaws.cn/compliance/services-in-scope/
http://www.amazonaws.cn/compliance/services-in-scope/
http://www.amazonaws.cn/compliance/shared-responsibility-model
http://www.amazonaws.cn/security/?id=docs_gateway#aws-security
http://www.amazonaws.cn/compliance/services-in-scope/
http://www.amazonaws.cn/compliance/services-in-scope/
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf

Amazon SDK for Ruby Developer Guide

Enforcing a minimum TLS version in the Amazon SDK for Ruby

Communication between the Amazon SDK for Ruby and Amazon is secured using Secure Sockets
Layer (SSL) or Transport Layer Security (TLS). All versions of SSL, and versions of TLS earlier than
1.2, have vulnerabilities that can compromise the security of your communication with Amazon.
For this reason, you should make sure that you’re using the Amazon SDK for Ruby with a version of
Ruby that supports TLS version 1.2 or later.

Ruby uses the OpenSSL library to secure HTTP connections. Supported versions of Ruby (1.9.3
and later) installed through system package managers (yum, apt, and others), an official installer,
or Ruby managers (rbenv, RVM, and others) typically incorporate OpenSSL 1.0.1 or later, which
supports TLS 1.2.

When used with a supported version of Ruby with OpenSSL 1.0.1 or later, the Amazon SDK for
Ruby prefers TLS 1.2, and uses the latest version of SSL or TLS supported by both the client and
server. This is always at least TLS 1.2 for Amazon Web Services services. (The SDK uses the Ruby
Net::HTTP class with use_ssl=true.)

Checking the OpenSSL version

To make sure your installation of Ruby is using OpenSSL 1.0.1 or later, enter the following
command.

ruby -r openssl -e 'puts OpenSSL::OPENSSL_VERSION'

An alternative way to get the OpenSSL version is to query the openssl executable directly. First,
locate the appropriate executable using the following command.

ruby -r rbconfig -e 'puts RbConfig::CONFIG["configure_args"]'

The output should have --with-openssl-dir=/path/to/openssl indicating the location of
the OpenSSL installation. Make a note of this path. To check the version of OpenSSL, enter the
following commands.

cd /path/to/openssl
bin/openssl version

This latter method might not work with all installations of Ruby.

Enforcing a minimum TLS version 358

https://www.ruby-lang.org/en/documentation/installation/#package-management-systems
https://www.ruby-lang.org/en/documentation/installation/#installers
https://www.ruby-lang.org/en/documentation/installation/#managers

Amazon SDK for Ruby Developer Guide

Upgrading TLS support

If the version of OpenSSL used by your Ruby installation is earlier than 1.0.1, upgrade your Ruby
or OpenSSL installation using your system package manager, Ruby installer, or Ruby manager,
as described in Ruby’s installation guide. If you’re installing Ruby from source, install the latest
OpenSSL first, and then pass --with-openssl-dir=/path/to/upgraded/openssl when
running ./configure.

Amazon S3 Encryption Client Migration (V1 to V2)

Note

If you are using V2 of the S3 encryption client and want to migrate to V3, see Amazon S3
Encryption Client Migration (V2 to V3).

This topic shows how to migrate your applications from Version 1 (V1) of the Amazon Simple
Storage Service (Amazon S3) encryption client to Version 2 (V2), and ensure application availability
throughout the migration process.

Migration Overview

This migration happens in two phases:

1. Update existing clients to read new formats. First, deploy an updated version of the Amazon
SDK for Ruby to your application. This will allow existing V1 encryption clients to decrypt objects
written by the new V2 clients. If your application uses multiple Amazon SDKs, you must upgrade
each SDK separately.

2. Migrate encryption and decryption clients to V2. Once all of your V1 encryption clients
can read new formats, you can migrate your existing encryption and decryption clients to their
respective V2 versions.

Update Existing Clients to Read New Formats

The V2 encryption client uses encryption algorithms that older versions of the client don’t support.
The first step in the migration is to update your V1 decryption clients to the latest SDK release.
After completing this step, your application’s V1 clients will be able to decrypt objects encrypted
by V2 encryption clients. See details below for each major version of the Amazon SDK for Ruby.

Upgrading TLS support 359

https://www.ruby-lang.org/en/documentation/installation/
https://www.ruby-lang.org/en/documentation/installation/#building-from-source
https://www.openssl.org/source/
https://www.openssl.org/source/

Amazon SDK for Ruby Developer Guide

Update Amazon SDK for Ruby Version 3

Version 3 is the latest version of the Amazon SDK For Ruby. To complete this migration, you need
to use version 1.76.0 or later of the aws-sdk-s3 gem.

Installing from the Command Line

For projects that install the aws-sdk-s3 gem, use the version option to verify that the minimum
version of 1.76.0 is installed.

gem install aws-sdk-s3 -v '>= 1.76.0'

Using Gemfiles

For projects that use a Gemfile to manage dependencies, set the minimum version of the aws-
sdk-s3 gem to 1.76.0. For example:

gem 'aws-sdk-s3', '>= 1.76.0'

1. Modify your Gemfile.

2. Run bundle update aws-sdk-s3. To verify your version, run bundle info aws-sdk-s3.

Upgrade Amazon SDK for Ruby Version 2

Version 2 of the Amazon SDK for Ruby will enter maintenance mode on November 21st, 2021. To
complete this migration, you need to use version 2.11.562 or later of the aws-sdk gem.

Installing from the Command Line

For projects that install the aws-sdk gem, from the command line, use the version option to verify
that the minimum version of 2.11.562 is installed.

gem install aws-sdk -v '>= 2.11.562'

Using Gemfiles

For projects that use a Gemfile to manage dependencies, set the minimum version of the aws-sdk
gem to 2.11.562. For example:

gem 'aws-sdk', '>= 2.11.562'

Update Existing Clients to Read New Formats 360

https://amazonaws-china.com/blogs/developer/deprecation-schedule-for-aws-sdk-for-ruby-v2/

Amazon SDK for Ruby Developer Guide

1. Modify your Gemfile. If you have a Gemfile.lock file, delete or update it.

2. Run bundle update aws-sdk. To verify your version, run bundle info aws-sdk.

Migrate Encryption and Decryption Clients to V2

After updating your clients to read the new encryption formats, you can update your applications
to the V2 encryption and decryption clients. The following steps show you how to successfully
migrate your code from V1 to V2.

Before updating your code to use the V2 encryption client, ensure that you have followed the
preceding steps and are using the aws-sdk-s3 gem version 2.11.562 or later.

Note

When decrypting with AES-GCM, read the entire object to the end before you start using
the decrypted data. This is to verify that the object has not been modified since it was
encrypted.

Configuring V2 Encryption Clients

The EncryptionV2::Client requires additional configuration. For detailed configuration information,
see the EncryptionV2::Client documentation or the examples provided later in this topic.

1. The key wrap method and content encryption algorithm must be specified on client
construction. When creating a new EncryptionV2::Client, you need to provide values for
key_wrap_schema and content_encryption_schema.

key_wrap_schema - If you are using Amazon KMS, this must be set to :kms_context. If you are
using a symmetric (AES) key, it must be set to :aes_gcm. If you are using an asymmetric (RSA) key,
it must be set to :rsa_oaep_sha1.

content_encryption_schema - This must be set to :aes_gcm_no_padding.

2. security_profile must be specified on client construction. When creating a new
EncryptionV2::Client, you need to provide a value for security_profile. The
security_profile parameter determines the support for reading objects written using the older V1
Encryption::Client. There are two values: :v2 and :v2_and_legacy. To support migration, set
the security_profile to :v2_and_legacy. Use :v2 only for new application development.

Migrate Encryption and Decryption Clients to V2 361

https://docs.amazonaws.cn/sdk-for-ruby/v3/api/Aws/S3/EncryptionV2/Client.html#initialize-instance_method

Amazon SDK for Ruby Developer Guide

3. Amazon KMS key ID is enforced by default. In V1, Encryption::Client, the kms_key_id
used to create the client was not provided to the Amazon KMS Decrypt call. Amazon KMS
can get this information from metadata and add it to the symmetric ciphertext blob. In V2,
E`ncryptionV2::Client`, the kms_key_id is passed to the Amazon KMS Decrypt call, and the call
fails if it does not match the key used to encrypt the object. If your code previously relied on not
setting a specific kms_key_id, either set kms_key_id: :kms_allow_decrypt_with_any_cmk
on client creation or set kms_allow_decrypt_with_any_cmk: true on get_object calls.

Example: Using a Symmetric (AES) Key

Pre-migration

client = Aws::S3::Encryption::Client.new(encryption_key: aes_key)
client.put_object(bucket: bucket, key: key, body: secret_data)
resp = client.get_object(bucket: bucket, key: key)

Post-migration

client = Aws::S3::EncryptionV2::Client.new(
 encryption_key: rsa_key,
 key_wrap_schema: :rsa_oaep_sha1, # the key_wrap_schema must be rsa_oaep_sha1 for
 asymmetric keys
 content_encryption_schema: :aes_gcm_no_padding,
 security_profile: :v2_and_legacy # to allow reading/decrypting objects encrypted by
 the V1 encryption client
)
client.put_object(bucket: bucket, key: key, body: secret_data) # No changes
resp = client.get_object(bucket: bucket, key: key) # No changes

Example: Using Amazon KMS with kms_key_id

Pre-migration

client = Aws::S3::Encryption::Client.new(kms_key_id: kms_key_id)
client.put_object(bucket: bucket, key: key, body: secret_data)
resp = client.get_object(bucket: bucket, key: key)

Post-migration

client = Aws::S3::EncryptionV2::Client.new(

Migrate Encryption and Decryption Clients to V2 362

Amazon SDK for Ruby Developer Guide

 kms_key_id: kms_key_id,
 key_wrap_schema: :kms_context, # the key_wrap_schema must be kms_context for KMS keys
 content_encryption_schema: :aes_gcm_no_padding,
 security_profile: :v2_and_legacy # to allow reading/decrypting objects encrypted by
 the V1 encryption client
)
client.put_object(bucket: bucket, key: key, body: secret_data) # No changes
resp = client.get_object(bucket: bucket, key: key) # No change

Example: Using Amazon KMS without kms_key_id

Pre-migration

client = Aws::S3::Encryption::Client.new(kms_key_id: kms_key_id)
client.put_object(bucket: bucket, key: key, body: secret_data)
resp = client.get_object(bucket: bucket, key: key)

Post-migration

client = Aws::S3::EncryptionV2::Client.new(
 kms_key_id: kms_key_id,
 key_wrap_schema: :kms_context, # the key_wrap_schema must be kms_context for KMS keys
 content_encryption_schema: :aes_gcm_no_padding,
 security_profile: :v2_and_legacy # to allow reading/decrypting objects encrypted by
 the V1 encryption client
)
client.put_object(bucket: bucket, key: key, body: secret_data) # No changes
resp = client.get_object(bucket: bucket, key: key, kms_allow_decrypt_with_any_cmk:
 true) # To allow decrypting with any cmk

Post-Migration Alternative

If you only read and decrypt (never write and encrypt) objects using the S2 encryption client, use
this code.

client = Aws::S3::EncryptionV2::Client.new(
 kms_key_id: :kms_allow_decrypt_with_any_cmk, # set kms_key_id to allow all get_object
 requests to use any cmk
 key_wrap_schema: :kms_context, # the key_wrap_schema must be kms_context for KMS keys
 content_encryption_schema: :aes_gcm_no_padding,
 security_profile: :v2_and_legacy # to allow reading/decrypting objects encrypted by
 the V1 encryption client

Migrate Encryption and Decryption Clients to V2 363

Amazon SDK for Ruby Developer Guide

)
resp = client.get_object(bucket: bucket, key: key) # No change

Amazon S3 Encryption Client Migration (V2 to V3)

Note

If you are using V1 of the S3 encryption client, you must first migrate to V2 before
migrating to V3. See Amazon S3 Encryption Client Migration (V1 to V2) for instructions on
migrating from V1 to V2.

This topic shows how to migrate your applications from Version 2 (V2) of the Amazon Simple
Storage Service (Amazon S3) encryption client to Version 3 (V3), and ensure application
availability throughout the migration process. V3 introduces AES GCM with Key Commitment and
Commitment Policies to enhance security and protect against data key tampering.

Migration Overview

Version 3 of the Amazon S3 encryption client introduces AES GCM with Key Commitment for
enhanced security. This new encryption algorithm provides protection against data key tampering
and ensures the integrity of encrypted data. The migration to V3 requires careful planning to
maintain application availability and data accessibility throughout the process.

This migration happens in two phases:

1. Update existing clients to read new formats. First, deploy an updated version of the Amazon
SDK for Ruby to your application. This will allow existing V2 encryption clients to decrypt objects
written by the new V3 clients. If your application uses multiple Amazon SDKs, you must upgrade
each SDK separately.

2. Migrate encryption and decryption clients to V3. Once all of your V2 encryption clients
can read new formats, you can migrate your existing encryption and decryption clients to their
respective V3 versions. This includes configuring Commitment Policies and updating your code to
use the new client configuration options.

If you have not yet migrated from V1 to V2, you must complete that migration first. See Amazon
S3 Encryption Client Migration (V1 to V2) for detailed instructions on migrating from V1 to V2.

S3 Encryption Client Migration (V2 to V3) 364

Amazon SDK for Ruby Developer Guide

Understanding V3 Features

Version 3 of the Amazon S3 encryption client introduces two key security features: Commitment
Policies and AES GCM with Key Commitment. Understanding these features is essential for
planning your migration strategy and ensuring the security of your encrypted data.

Commitment Policies

Commitment Policies control how the encryption client handles key commitment during
encryption and decryption operations. Key commitment ensures that encrypted data can only
be decrypted with the exact key that was used to encrypt it, protecting against certain types of
cryptographic attacks.

The V3 encryption client supports three Commitment Policy options:

FORBID_ENCRYPT_ALLOW_DECRYPT

This policy encrypts objects without key commitment and allows decryption of both objects with
and without key commitment.

• Encryption behavior: Objects are encrypted without key commitment, using the same algorithm
suite as V2.

• Decryption behavior: Can decrypt objects encrypted with or without key commitment.

• Security implications: This policy does not enforce key commitment and may allow tampering.
Objects encrypted with this policy do not benefit from the enhanced security protections of key
commitment. Use this policy only during migration when you need to maintain compatibility
with V2 encryption behavior.

• Version compatibility: Objects encrypted with this policy can be read by all V2 and V3
implementations of the S3 encryption client.

REQUIRE_ENCRYPT_ALLOW_DECRYPT

This policy encrypts objects with key commitment and allows decryption of both objects with and
without key commitment.

• Encryption behavior: Objects are encrypted with key commitment using AES GCM with Key
Commitment.

• Decryption behavior: Can decrypt objects encrypted with or without key commitment, providing
backward compatibility.

Understanding V3 Features 365

Amazon SDK for Ruby Developer Guide

• Security implications: New objects benefit from key commitment protection, while existing
objects without key commitment can still be read. This provides a balance between security and
backward compatibility during migration.

• Version compatibility: Objects encrypted with this policy can only be read by the V3 and the
latest V2 implementations of the S3 encryption client.

REQUIRE_ENCRYPT_REQUIRE_DECRYPT

This policy encrypts objects with key commitment and only allows decryption of objects that were
encrypted with key commitment.

• Encryption behavior: Objects are encrypted with key commitment using AES GCM with Key
Commitment.

• Decryption behavior: Can only decrypt objects that were encrypted with key commitment.
Attempts to decrypt objects without key commitment will fail.

• Security implications: This policy provides the highest level of security by enforcing key
commitment for all operations. Use this policy only after all objects have been re-encrypted with
key commitment and all clients have been upgraded to V3.

• Version compatibility: Objects encrypted with this policy can only be read by the V3 and the
latest V2 implementations of the S3 encryption client. This policy also prevents reading objects
encrypted by V2 or V1 clients.

Note

When planning your migration, start with REQUIRE_ENCRYPT_ALLOW_DECRYPT to
maintain backward compatibility while gaining the security benefits of key commitment for
new objects. Only move to REQUIRE_ENCRYPT_REQUIRE_DECRYPT after all objects have
been re-encrypted and all clients have been upgraded to V3.

AES GCM with Key Commitment

AES GCM with Key Commitment (ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY) is a new
encryption algorithm introduced in V3 that provides enhanced security by protecting against data
key tampering. Understanding how this algorithm works and when it applies is important for
planning your migration.

Understanding V3 Features 366

Amazon SDK for Ruby Developer Guide

How ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY Differs from Previous Algorithms

Previous versions of the S3 encryption client used AES CBC or AES GCM without key commitment
to encrypt the data key in Instruction Files. ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY
adds a cryptographic commitment to the encryption process, which binds the encrypted data
to a specific key. This prevents an attacker from tampering with the encrypted data key in the
Instruction File and causing the client to decrypt data with an incorrect key.

Without key commitment, it may be possible for an attacker to modify the encrypted data key
in an Instruction File such that it decrypts to a different key, potentially allowing unauthorized
access or data corruption. ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY prevents this attack
by ensuring that the encrypted data key can only decrypt to the original key that was used during
encryption.

Version Compatibility

Objects encrypted with ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY can only be decrypted
by V3 implementations of the S3 encryption client and certain transition versions of V2 that
include support for reading V3 formats. V2 clients without this transition support cannot decrypt
Instruction Files encrypted with ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY.

Warning

Before enabling encryption with ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY (by
using REQUIRE_ENCRYPT_ALLOW_DECRYPT or REQUIRE_ENCRYPT_REQUIRE_DECRYPT
commitment policies), ensure that all clients that need to read your encrypted
objects have been upgraded to V3 or a transition version that supports V3 formats.
If any V2 clients without transition support attempt to read objects encrypted with
ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY, decryption will fail.

During migration, you can use the FORBID_ENCRYPT_ALLOW_DECRYPT commitment policy to
continue encrypting without ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY while still allowing
your V3 clients to read objects encrypted with key commitment. This provides a safe migration
path where you first upgrade all readers, then switch to encrypting with key commitment.

Understanding V3 Features 367

Amazon SDK for Ruby Developer Guide

Update Existing Clients to Read New Formats

The V3 encryption client uses encryption algorithms and key commitment features that V2 clients
don't support by default. The first step in the migration is to update your V2 decryption clients
to a version of the Amazon SDK for Ruby that can read V3 encrypted objects. After completing
this step, your application's V2 clients will be able to decrypt objects encrypted by V3 encryption
clients.

To read objects encrypted by V3 clients (those using REQUIRE_ENCRYPT_ALLOW_DECRYPT or
REQUIRE_ENCRYPT_REQUIRE_DECRYPT commitment policies), you need to use version 1.93.0 or
later of the aws-sdk-s3 gem. This version includes support for decrypting objects encrypted with
AES GCM with Key Commitment.

Installing from the Command Line

For projects that install the aws-sdk-s3 gem from the command line, use the version option to
verify that the minimum version of 1.208.0 is installed.

gem install aws-sdk-s3 -v '>= 1.208.0'

Using Gemfiles

For projects that use a Gemfile to manage dependencies, set the minimum version of the aws-
sdk-s3 gem to 1.208.0. For example:

gem 'aws-sdk-s3', '>= 1.208.0'

1. Modify your Gemfile to specify the minimum version.

2. Run bundle update aws-sdk-s3 to update the gem.

3. To verify your version, run bundle info aws-sdk-s3.

Note

After updating to the latest version, your existing V2 encryption clients will be able to
decrypt objects encrypted by V3 clients. However, they will continue to encrypt new objects
using V2 algorithms until you migrate them to V3 as described in the next section.

Update Existing Clients to Read New Formats 368

Amazon SDK for Ruby Developer Guide

Migrate Encryption and Decryption Clients to V3

After updating your clients to read the new encryption formats, you can update your applications
to the V3 encryption and decryption clients. The following steps show you how to successfully
migrate your code from V2 to V3.

Before updating your code to use the V3 encryption client, ensure that you have followed the
preceding steps and are using the aws-sdk-s3 gem version 1.93.0 or later.

Note

When decrypting with AES-GCM, read the entire object to the end before you start using
the decrypted data. This is to verify that the object has not been modified since it was
encrypted.

Configuring V3 Clients

The V3 encryption client introduces new configuration options that control key commitment
behavior and backward compatibility. Understanding these options is essential for a successful
migration.

commitment_policy

The commitment_policy parameter controls how the encryption client handles key commitment
during encryption and decryption operations. This is the most important configuration option for
V3 clients.

• :require_encrypt_allow_decrypt - Encrypts new objects with key commitment and
allows decryption of objects with or without key commitment. This is the recommended setting
for migration, as it provides enhanced security for new objects while maintaining backward
compatibility with existing V2 objects.

• :forbid_encrypt_allow_decrypt - Encrypts new objects without key commitment (using
V2 algorithms) and allows decryption of objects with or without key commitment. Use this
setting only if you need to maintain V2 encryption behavior during migration, such as when
some clients cannot yet read V3 encrypted objects.

• :require_encrypt_require_decrypt - Encrypts new objects with key commitment and
only allows decryption of objects that were encrypted with key commitment. Use this setting

Migrate Encryption and Decryption Clients to V3 369

Amazon SDK for Ruby Developer Guide

only after all objects have been re-encrypted with key commitment and all clients have been
upgraded to V3.

security_profile

The security_profile parameter determines support for reading objects written by older
encryption client versions. This parameter is essential for maintaining backward compatibility
during migration.

• :v3_and_legacy - Allows the V3 client to decrypt objects encrypted by V1 and V2 encryption
clients. Use this setting during migration to ensure your V3 clients can read all existing encrypted
objects.

• :v3 - Allows the V3 client to decrypt objects encrypted by V2 encryption clients only. Use this
setting if you have already migrated all V1 objects to V2 format.

• If not specified, the client will only decrypt objects encrypted by V3 clients. Use this only for new
application development where no legacy objects exist.

envelope_location

The envelope_location parameter determines where encryption metadata (including the
encrypted data key) is stored. This parameter affects which objects are protected by AES GCM with
Key Commitment.

• :metadata (Default) - Stores encryption metadata in the S3 object's metadata headers. This is
the default behavior and is recommended for most use cases. When using metadata storage, AES
GCM with Key Commitment does not apply.

• :instruction_file - Stores encryption metadata in a separate S3 object (Instruction File)
with a configurable suffix. When using Instruction Files, AES GCM with Key Commitment protects
the encrypted data key from tampering. Use this setting if you require the additional security
provided by key commitment for the data key itself.

When using :instruction_file, you can optionally specify the instruction_file_suffix
parameter to customize the suffix used for Instruction File objects. The default suffix is
.instruction.

When to Use Each Configuration Option

Migrate Encryption and Decryption Clients to V3 370

Amazon SDK for Ruby Developer Guide

During migration, follow this recommended configuration strategy:

1. Initial Migration: Set commitment_policy: :require_encrypt_allow_decrypt and
security_profile: :v3_and_legacy. This allows your V3 clients to encrypt new objects
with key commitment while still being able to decrypt all existing V1 and V2 objects.

2. After All Clients Are Upgraded: Continue using
commitment_policy: :require_encrypt_allow_decrypt and
security_profile: :v3_and_legacy until you have re-encrypted all objects that need key
commitment protection.

3. Full V3 Enforcement: Only after all objects have been re-encrypted with key
commitment and you no longer need to read V1/V2 objects, you can optionally switch
to commitment_policy: :require_encrypt_require_decrypt and remove the
security_profile parameter (or set it to :v2 if V2 objects still exist).

For envelope_location, continue using your existing storage method (:metadata or
:instruction_file) unless you have a specific reason to change it. If you are currently using
metadata storage and want the additional security of AES GCM with Key Commitment for the data
key, you can switch to :instruction_file, but note that this will require updating all clients
that read these objects.

Migrate Encryption and Decryption clients to V3

After updating your clients to read the new encryption formats, you can update your applications
to the V3 encryption and decryption clients. The following examples show you how to successfully
migrate your code from V2 to V3.

Using V3 Encryption Clients

Pre-migration (V2)

require 'aws-sdk-s3'

Create V2 encryption client with KMS
client = Aws::S3::EncryptionV2::Client.new(
 kms_key_id: kms_key_id,
 key_wrap_schema: :kms_context,
 content_encryption_schema: :aes_gcm_no_padding,
 security_profile: :v2_and_legacy,
 commitment_policy: :forbid_encrypt_allow_decrypt

Migrate Encryption and Decryption Clients to V3 371

Amazon SDK for Ruby Developer Guide

)

Encrypt and upload object
client.put_object(bucket: 'my-bucket', key: 'my-object', body: 'secret data')

Download and decrypt object
resp = client.get_object(bucket: 'my-bucket', key: 'my-object')
decrypted_data = resp.body.read

During migration (V3 with backward compatibility)

require 'aws-sdk-s3'

Create V3 encryption client with KMS
client = Aws::S3::EncryptionV3::Client.new(
 kms_key_id: kms_key_id,
 key_wrap_schema: :kms_context,
 content_encryption_schema: :aes_gcm_no_padding,
 security_profile: :v3_and_legacy,
 commitment_policy: :require_encrypt_allow_decrypt
)

Encrypt and upload object
client.put_object(bucket: 'my-bucket', key: 'my-object', body: 'secret data')

Download and decrypt object
resp = client.get_object(bucket: 'my-bucket', key: 'my-object')
decrypted_data = resp.body.read

Post-migration (V3)

require 'aws-sdk-s3'

Create V3 encryption client with KMS
client = Aws::S3::EncryptionV3::Client.new(
 kms_key_id: kms_key_id,
 key_wrap_schema: :kms_context,
 content_encryption_schema: :aes_gcm_no_padding,
 security_profile: :v3,
 # Use the commitment policy (REQUIRE_ENCRYPT_REQUIRE_DECRYPT)
 # This encrypts with key commitment and does not decrypt V2 objects
 commitment_policy: :require_encrypt_require_decrypt
)

Migrate Encryption and Decryption Clients to V3 372

Amazon SDK for Ruby Developer Guide

Encrypt and upload object
client.put_object(bucket: 'my-bucket', key: 'my-object', body: 'secret data')

Download and decrypt object
resp = client.get_object(bucket: 'my-bucket', key: 'my-object')
decrypted_data = resp.body.read

The key difference in V3 is the addition of the commitment_policy parameter. Setting it to
:require_encrypt_require_decrypt ensures that new objects are encrypted with key
commitment and that the client is only decrypting object encrypted with key commitment,
providing enhanced security against data key tampering.

The put_object call itself remains unchanged. All the security enhancements are configured at
the client level.

Additional Examples

This section provides additional examples for specific migration scenarios and configuration
options that may be useful during your V2 to V3 migration.

Instruction File vs Metadata Storage

The S3 encryption client can store encryption metadata (including the encrypted data key) in two
different locations: in the S3 object's metadata headers or in a separate Instruction File. The choice
of storage method affects which objects benefit from AES GCM with Key Commitment protection.

Metadata Storage (Default)

By default, the encryption client stores encryption metadata in the S3 object's metadata headers.
This is the recommended approach for most use cases because it keeps the encryption metadata
with the object and doesn't require managing separate Instruction File objects.

require 'aws-sdk-s3'

Create V3 encryption client with metadata storage (default)
client = Aws::S3::EncryptionV3::Client.new(
 kms_key_id: kms_key_id,
 key_wrap_schema: :kms_context,
 content_encryption_schema: :aes_gcm_no_padding,
 security_profile: :v3_and_legacy,

Migrate Encryption and Decryption Clients to V3 373

Amazon SDK for Ruby Developer Guide

 commitment_policy: :require_encrypt_allow_decrypt,
 envelope_location: :metadata # Explicitly set to metadata (this is the default)
)

Encrypt and upload object
Encryption metadata is stored in the object's metadata headers
client.put_object(bucket: 'my-bucket', key: 'my-object',body: 'secret data')

When using metadata storage, AES GCM with Key Commitment does not apply to the
encrypted data key. However, the content encryption still benefits from key commitment
when using commitment_policy: :require_encrypt_allow_decrypt or
:require_encrypt_require_decrypt.

Instruction File Storage

Alternatively, you can configure the encryption client to store encryption metadata in a separate
S3 object called an Instruction File. When using Instruction Files with V3, the encrypted data key
is protected by AES GCM with Key Commitment, providing additional security against data key
tampering.

require 'aws-sdk-s3'

Create V3 encryption client with instruction file storage
client = Aws::S3::EncryptionV3::Client.new(
 kms_key_id: kms_key_id,
 key_wrap_schema: :kms_context,
 content_encryption_schema: :aes_gcm_no_padding,
 security_profile: :v3_and_legacy,
 commitment_policy: :require_encrypt_allow_decrypt,
 envelope_location: :instruction_file, # Store metadata in separate instruction file
 instruction_file_suffix: '.instruction' # Optional: customize the suffix (default is
 '.instruction')
)

Encrypt and upload object
Encryption metadata is stored in a separate object: 'my-object.instruction'
client.put_object(bucket: 'my-bucket', key: 'my-object', body: 'secret data')

When retrieving the object, the client automatically reads the instruction file
resp = client.get_object(bucket: 'my-bucket', key: 'my-object')
decrypted_data = resp.body.read

Migrate Encryption and Decryption Clients to V3 374

Amazon SDK for Ruby Developer Guide

When using envelope_location: :instruction_file, the encryption client creates two S3
objects:

1. The encrypted data object (e.g., my-object)

2. The Instruction File containing encryption metadata (e.g., my-object.instruction)

The instruction_file_suffix parameter allows you to customize the suffix used for
Instruction Files. The default value is .instruction.

When to Use Each Storage Method

• Use Metadata Storage for most scenarios. It simplifies object management since encryption
metadata travels with the object.

• Use Instruction File Storage when object metadata size is a concern or when you need to
separate encryption metadata from the encrypted object. Note that using Instruction Files
requires managing two S3 objects (the encrypted object and its instruction file) instead of one.

Warning

If you change from metadata storage to instruction file storage (or vice versa), existing
objects encrypted with the old storage method will not be readable by clients configured
with the new storage method. Plan your storage method carefully and maintain
consistency across your application.

Migrate Encryption and Decryption Clients to V3 375

Amazon SDK for Ruby Developer Guide

Document History

The following table describes important changes in this guide. For notification about updates to
this documentation, you can subscribe to an RSS feed.

Change Description Date

Content reorganization Updating the table of
contents and content
organization to better align
with other Amazon SDKs.

March 29, 2025

Observability Added information regarding
Ruby Observability.

January 24, 2025

General updates Updated minimum required
Ruby version to v2.5. Updated
resource links.

November 13, 2024

Table of contents and guided
examples

Removed guided examples to
defer to the more comprehen
sive Code Examples Repositor
y.

July 10, 2024

Table of contents Updated table of contents to
make code examples more
accessible.

June 1, 2023

IAM best practices updates Updated guide to align
with the IAM best practices
. For more information, see
Security best practices in IAM.
Updates to Getting started.

May 8, 2023

General updates Updating welcome page for
relevant external resources
. Also updated minimum
required Ruby version for

August 8, 2022

376

https://docs.aws.amazon.com/sdk-for-ruby/v3/developer-guide/aws-sdk-ruby-dg.rss
https://docs.amazonaws.cn//IAM/latest/UserGuide/best-practices.html

Amazon SDK for Ruby Developer Guide

v2.3. Updated Amazon
Key Management Service
sections to reflect terminolo
gy updates. Updated usage
information on REPL utility
for clarity.

Correcting broken links Fixed broken examples links.
Removed redundant Tips
and Tricks page; redirecti
ng to Amazon EC2 example
content. Included lists of
the code examples that are
available on GitHub in the
Code Examples repository.

August 3, 2022

SDK Metrics Removed information about
enabling SDK Metrics for
Enterprise Support, which has
been deprecated.

January 28, 2022

377

	Amazon SDK for Ruby
	Table of Contents
	What is the Amazon SDK for Ruby?
	Additional documentation and resources
	Deploying to the Amazon Cloud

	Maintenance and support for SDK major versions

	Getting started with the Amazon SDK for Ruby
	Authenticating with Amazon using Amazon SDK for Ruby
	Using console credentials
	Using IAM Identity Center authentication
	Start an Amazon access portal session

	More authentication information

	Installing the Amazon SDK for Ruby
	Prerequisites
	Installing the SDK
	Ruby version manager
	Bundler

	Creating a simple application using the Amazon SDK for Ruby
	Writing the code
	Running the program
	Note for Windows users
	Next steps

	Configuring service clients in the Amazon SDK for Ruby
	Precedence of settings
	Configuring Amazon SDK for Ruby service clients externally
	Amazon SDK for Ruby environment variables

	Configuring Amazon SDK for Ruby service clients in code
	Aws.config
	Global settings through Aws.config
	Service-specific settings through Aws.config

	Setting the Amazon Web Services Region for the Amazon SDK for Ruby
	Region search order for resolution
	How to set the Region
	Setting the Region using the shared config file
	Setting the Region using environment variables
	Setting the Region with Aws.config
	Setting the Region in a client or resource object

	Using Amazon SDK for Ruby credential providers
	Credential provider chain
	Creating an Amazon STS access token

	Configuring retries in the Amazon SDK for Ruby
	Specifying client retry behavior in code

	Configuring observability features in the Amazon SDK for Ruby
	Configuring an OTelProvider for a service client
	Example OpenTelemetry trace output

	Configuring an OTelProvider for all service clients
	Configuring a custom telemetry provider
	Span Attributes

	Configuring HTTP-level settings within the Amazon SDK for Ruby
	Setting a nonstandard endpoint

	Using the Amazon SDK for Ruby
	Making Amazon Web Services service requests using the Amazon SDK for Ruby
	Using the Amazon SDK for Ruby REPL utility
	Prerequisites
	Bundler setup
	Running REPL

	Using the Amazon SDK for Ruby with Ruby on Rails
	Debugging using wire trace information from an Amazon SDK for Ruby client
	Adding testing with stubbing to your Amazon SDK for Ruby application
	Stubbing client responses
	Stubbing client errors

	Using paginated results in the Amazon SDK for Ruby
	Paged responses are enumerable
	Handling paged responses manually
	Paged data classes

	Using waiters in the Amazon SDK for Ruby
	Invoking a waiter
	Wait failures
	Configuring a waiter
	Extending a waiter

	SDK for Ruby code examples
	Aurora examples using SDK for Ruby
	Get started
	Hello Aurora

	Auto Scaling examples using SDK for Ruby
	Get started
	Hello Auto Scaling

	CloudTrail examples using SDK for Ruby
	Actions
	CreateTrail
	DeleteTrail
	ListTrails
	LookupEvents

	CloudWatch examples using SDK for Ruby
	Actions
	DescribeAlarms
	DescribeAlarmsForMetric
	DisableAlarmActions
	ListMetrics
	PutMetricAlarm
	PutMetricData

	Amazon Cognito Identity Provider examples using SDK for Ruby
	Get started
	Hello Amazon Cognito

	Amazon Comprehend examples using SDK for Ruby
	Scenarios
	Create an application to analyze customer feedback

	Amazon DocumentDB examples using SDK for Ruby
	Serverless examples
	Invoke a Lambda function from a Amazon DocumentDB trigger

	DynamoDB examples using SDK for Ruby
	Get started
	Hello DynamoDB

	Basics
	Learn the basics

	Actions
	BatchExecuteStatement
	BatchWriteItem
	CreateTable
	DeleteItem
	DeleteTable
	DescribeTable
	ExecuteStatement
	GetItem
	ListTables
	PutItem
	Query
	Scan
	UpdateItem

	Scenarios
	Query a table by using batches of PartiQL statements
	Query a table using PartiQL

	Serverless examples
	Invoke a Lambda function from a DynamoDB trigger
	Reporting batch item failures for Lambda functions with a DynamoDB trigger

	Amazon EC2 examples using SDK for Ruby
	Get started
	Hello Amazon EC2

	Actions
	AllocateAddress
	AssociateAddress
	CreateKeyPair
	CreateRouteTable
	CreateSecurityGroup
	CreateSubnet
	CreateVpc
	DescribeInstances
	DescribeRegions
	ReleaseAddress
	StartInstances
	StopInstances
	TerminateInstances

	Elastic Beanstalk examples using SDK for Ruby
	Actions
	DescribeApplications
	ListAvailableSolutionStacks
	UpdateApplication

	EventBridge examples using SDK for Ruby
	Scenarios
	Create and trigger a rule

	Amazon Glue examples using SDK for Ruby
	Get started
	Hello Amazon Glue

	Basics
	Learn the basics

	Actions
	CreateCrawler
	CreateJob
	DeleteCrawler
	DeleteDatabase
	DeleteJob
	DeleteTable
	GetCrawler
	GetDatabase
	GetJobRun
	GetJobRuns
	GetTables
	ListJobs
	StartCrawler
	StartJobRun

	IAM examples using SDK for Ruby
	Get started
	Hello IAM

	Basics
	Learn the basics

	Actions
	AttachRolePolicy
	AttachUserPolicy
	CreateAccessKey
	CreateAccountAlias
	CreatePolicy
	CreateRole
	CreateServiceLinkedRole
	CreateUser
	DeleteAccessKey
	DeleteAccountAlias
	DeleteRole
	DeleteServerCertificate
	DeleteServiceLinkedRole
	DeleteUser
	DeleteUserPolicy
	DetachRolePolicy
	DetachUserPolicy
	GetAccountPasswordPolicy
	GetPolicy
	GetRole
	GetUser
	ListAccessKeys
	ListAccountAliases
	ListAttachedRolePolicies
	ListGroups
	ListPolicies
	ListRolePolicies
	ListRoles
	ListSAMLProviders
	ListServerCertificates
	ListUsers
	PutUserPolicy
	UpdateServerCertificate
	UpdateUser

	Kinesis examples using SDK for Ruby
	Serverless examples
	Invoke a Lambda function from a Kinesis trigger
	Reporting batch item failures for Lambda functions with a Kinesis trigger

	Amazon KMS examples using SDK for Ruby
	Actions
	CreateKey
	Decrypt
	Encrypt
	ReEncrypt

	Lambda examples using SDK for Ruby
	Get started
	Hello Lambda

	Basics
	Learn the basics

	Actions
	CreateFunction
	DeleteFunction
	GetFunction
	Invoke
	ListFunctions
	UpdateFunctionCode
	UpdateFunctionConfiguration

	Scenarios
	Create an application to analyze customer feedback

	Serverless examples
	Connecting to an Amazon RDS database in a Lambda function
	Invoke a Lambda function from a Kinesis trigger
	Invoke a Lambda function from a DynamoDB trigger
	Invoke a Lambda function from a Amazon DocumentDB trigger
	Invoke a Lambda function from an Amazon MSK trigger
	Invoke a Lambda function from an Amazon S3 trigger
	Invoke a Lambda function from an Amazon SNS trigger
	Invoke a Lambda function from an Amazon SQS trigger
	Reporting batch item failures for Lambda functions with a Kinesis trigger
	Reporting batch item failures for Lambda functions with a DynamoDB trigger
	Reporting batch item failures for Lambda functions with an Amazon SQS trigger

	Amazon MSK examples using SDK for Ruby
	Serverless examples
	Invoke a Lambda function from an Amazon MSK trigger

	Amazon Polly examples using SDK for Ruby
	Actions
	DescribeVoices
	ListLexicons
	SynthesizeSpeech

	Scenarios
	Create an application to analyze customer feedback

	Amazon RDS examples using SDK for Ruby
	Get started
	Hello Amazon RDS

	Actions
	CreateDBSnapshot
	DescribeDBInstances
	DescribeDBParameterGroups
	DescribeDBParameters
	DescribeDBSnapshots

	Serverless examples
	Connecting to an Amazon RDS database in a Lambda function

	Amazon S3 examples using SDK for Ruby
	Get started
	Hello Amazon S3

	Basics
	Learn the basics

	Actions
	CopyObject
	CreateBucket
	DeleteBucket
	DeleteBucketCors
	DeleteBucketPolicy
	DeleteObjects
	GetBucketCors
	GetBucketPolicy
	GetObject
	HeadObject
	ListBuckets
	ListObjectsV2
	PutBucketCors
	PutBucketPolicy
	PutBucketWebsite
	PutObject

	Scenarios
	Create a presigned URL

	Serverless examples
	Invoke a Lambda function from an Amazon S3 trigger

	Amazon SES examples using SDK for Ruby
	Actions
	GetIdentityVerificationAttributes
	ListIdentities
	SendEmail
	VerifyEmailIdentity

	Amazon SES API v2 examples using SDK for Ruby
	Actions
	SendEmail

	Amazon SNS examples using SDK for Ruby
	Actions
	CreateTopic
	ListSubscriptions
	ListTopics
	Publish
	SetTopicAttributes
	Subscribe

	Serverless examples
	Invoke a Lambda function from an Amazon SNS trigger

	Amazon SQS examples using SDK for Ruby
	Actions
	ChangeMessageVisibility
	CreateQueue
	DeleteQueue
	ListQueues
	ReceiveMessage
	SendMessage
	SendMessageBatch

	Serverless examples
	Invoke a Lambda function from an Amazon SQS trigger
	Reporting batch item failures for Lambda functions with an Amazon SQS trigger

	Amazon STS examples using SDK for Ruby
	Actions
	AssumeRole

	Amazon Textract examples using SDK for Ruby
	Scenarios
	Create an application to analyze customer feedback

	Amazon Translate examples using SDK for Ruby
	Scenarios
	Create an application to analyze customer feedback

	Migrating from Amazon SDK for Ruby version 1 or 2 to Amazon SDK for Ruby version 3
	Side-by-side usage
	General differences
	Client differences
	Resource differences

	Security for Amazon SDK for Ruby
	Data Protection in Amazon SDK for Ruby
	Identity and Access Management for Amazon SDK for Ruby
	Compliance Validation for Amazon SDK for Ruby
	Resilience for Amazon SDK for Ruby
	Infrastructure Security for Amazon SDK for Ruby
	Enforcing a minimum TLS version in the Amazon SDK for Ruby
	Checking the OpenSSL version
	Upgrading TLS support

	Amazon S3 Encryption Client Migration (V1 to V2)
	Migration Overview
	Update Existing Clients to Read New Formats
	Update Amazon SDK for Ruby Version 3
	Upgrade Amazon SDK for Ruby Version 2

	Migrate Encryption and Decryption Clients to V2
	Configuring V2 Encryption Clients
	Example: Using a Symmetric (AES) Key
	Example: Using Amazon KMS with kms_key_id
	Example: Using Amazon KMS without kms_key_id

	Amazon S3 Encryption Client Migration (V2 to V3)
	Migration Overview
	Understanding V3 Features
	Commitment Policies
	AES GCM with Key Commitment

	Update Existing Clients to Read New Formats
	Migrate Encryption and Decryption Clients to V3
	Configuring V3 Clients
	Migrate Encryption and Decryption clients to V3
	Using V3 Encryption Clients

	Additional Examples
	Instruction File vs Metadata Storage

	Document History

