
Developer Guide

Amazon Timestream

Amazon Timestream Developer Guide

Amazon Timestream: Developer Guide

Amazon Timestream Developer Guide

Table of Contents

... xi
Amazon Timestream for LiveAnalytics ... 1

Timestream for LiveAnalytics key benefits ... 1
Timestream for LiveAnalytics use cases .. 2
Getting started with Timestream for LiveAnalytics .. 2
Amazon Timestream for LiveAnalytics availability change .. 3

Amazon Timestream for LiveAnalytics availability change .. 3
Migration Guide ... 5

How it works ... 18
Concepts .. 19
Architecture .. 21
Writes ... 25
Storage .. 40
Queries .. 41
Scheduled queries ... 46
Timestream Compute Unit (TCU) .. 46

Accessing Timestream for LiveAnalytics .. 56
.. 56
Using the console ... 58
Using the Amazon CLI ... 63
Using the API ... 67
Using the Amazon SDKs .. 71

Getting started ... 75
Tutorial .. 75
Sample application ... 77

Code samples .. 79
Write SDK client .. 80
Query SDK client ... 83
Create database .. 84
Describe database ... 88
Update a database ... 92
Delete database .. 97
List databases .. 101
Create table ... 105

iii

Amazon Timestream Developer Guide

Describe table .. 114
Update table .. 118
Delete table ... 122
List tables ... 126
Write data .. 131
Run query ... 186
Run UNLOAD query ... 211
Cancel query .. 234
Create batch load task .. 237
Describe batch load task .. 250
List batch load tasks .. 255
Resume batch load task .. 261
Create scheduled query .. 265
List scheduled query .. 280
Describe scheduled query ... 285
Execute scheduled query .. 288
Update scheduled query ... 291
Delete scheduled query .. 295

Using batch load .. 298
Concepts ... 298
Prerequisites .. 299
Best practices .. 301
Preparing a batch load data file ... 301
Data model mappings ... 303
Using batch load with the console ... 307
Using batch load with the CLI ... 311
Using batch load with the SDKs ... 319
Using batch load error reports .. 319

Using scheduled queries ... 320
Benefits ... 321
Use cases .. 321
Example .. 322
Concepts ... 322
Schedule expressions ... 326
Data model mappings ... 330
Notification messages .. 349

iv

Amazon Timestream Developer Guide

Error reports .. 355
Patterns and examples .. 359

Using UNLOAD ... 458
Benefits ... 459
Use cases .. 459
Concepts ... 460
Prerequisites .. 470
Best practices .. 472
Example use case ... 473
Limits ... 478

Using query insights ... 479
Benefits ... 479
Optimizing data access ... 479
Enabling query insights in Amazon Timestream ... 484
Optimizing queries ... 485

Working with Amazon Backup .. 489
How it works ... 490
Creating backups .. 494
Restoring backups .. 496
Copying backups ... 497
Deleting backups .. 498
Quotas and limits ... 498

Customer-defined partition keys .. 499
Using customer-defined partition keys .. 499
Getting started with customer-defined partition keys ... 500
Checking partitioning schema configuration .. 504
Updating partitioning schema configuration ... 510
Advantages of customer-defined partition keys .. 513
Limitations of customer-defined partition keys ... 513
Customer-defined partition keys and low cardinality dimensions ... 513
Creating partition keys for existing tables .. 514
Timestream for LiveAnalytics schema validation with custom composite partition keys 514

Tagging resources .. 517
Tagging restrictions .. 517
Tagging operations .. 518

Security .. 519

v

Amazon Timestream Developer Guide

Data protection ... 520
Identity and access management ... 523
Logging and monitoring ... 561
Resilience .. 565
Infrastructure security ... 565
Configuration and vulnerability analysis ... 566
Incident response ... 566
VPC endpoints ... 566
Security best practices .. 570

Working with other services .. 572
Amazon DynamoDB ... 572
Amazon Lambda ... 573
Amazon IoT Core .. 575
Amazon Managed Service for Apache Flink ... 579
Amazon Kinesis ... 581
Amazon MQ ... 588
Amazon MSK ... 589
Amazon QuickSight .. 592
Amazon SageMaker AI ... 596
Amazon SQS .. 598
DBeaver ... 599
Grafana ... 604
SquaredUp .. 605
Open source Telegraf .. 606
JDBC .. 611
ODBC ... 627
VPC endpoints ... 635

Best practices .. 635
Data modeling ... 636
Security .. 653
Configuring Timestream for LiveAnalytics .. 654
Writes .. 655
Queries .. 656
Scheduled queries .. 657
Client applications and supported integrations ... 658
General .. 659

vi

Amazon Timestream Developer Guide

Metering and cost optimization ... 659
Writes .. 659
Storage .. 662
Queries .. 663
Cost optimization ... 663
Monitoring with Amazon CloudWatch ... 664

Troubleshooting ... 680
Handling WriteRecords throttles ... 680
Handling rejected records ... 680
Troubleshooting UNLOAD ... 681
Timestream for LiveAnalytics specific error codes ... 683

Quotas .. 685
Default quotas ... 685
Service limits ... 686
Supported data types .. 690
Batch load .. 690
Naming constraints .. 691
Reserved keywords ... 693
System identifiers ... 695
UNLOAD .. 695

Query language reference ... 696
Supported data types .. 697
Built-in time series functionality ... 700
SQL support ... 714
Logical operators .. 723
Comparison operators ... 725
Comparison functions .. 725
Conditional expressions ... 728
Conversion functions ... 730
Mathematical operators .. 731
Mathematical functions ... 731
String operators .. 734
String functions .. 735
Array operators ... 738
Array functions .. 739
Bitwise functions .. 747

vii

Amazon Timestream Developer Guide

Regular expression functions ... 749
Date / time operators .. 754
Date / time functions .. 756
Aggregate functions ... 773
Window functions ... 788
Sample queries .. 792

API reference ... 805
Actions .. 806
Data Types ... 947
Common Errors ... 1063
Common Parameters ... 1064

Document history .. 1067
Amazon Timestream for InfluxDB .. 1074

DB instances ... 1074
DB instance classes ... 1076
DB instance class types .. 1076
Hardware specifications ... 1076
Instance Storage .. 1078

InfluxDB storage types .. 1078
Instance sizing ... 1078

Regions and Availability Zones ... 1079
Regions availability .. 1081
Regions design .. 1083
Availability Zones ... 1083

Billing ... 1084
Setting up ... 1084

Sign up for Amazon .. 1084
Setting up .. 1085
Determine requirements ... 1087
VPC access ... 1089

Getting started ... 1090
Creating and connecting to a Timestream for InfluxDB instance ... 1091
Creating a new operator token for your InfluxDB instance ... 1105

Migrating data from self-managed InfluxDB to Timestream for InfluxDB 1105
Preparation .. 1106
How to use scripts ... 1107

viii

Amazon Timestream Developer Guide

Migration Overview ... 1110
Configuring a DB instance ... 1114

Creating a DB instance .. 1114
Settings for DB instances ... 1117
Connecting to an Amazon Timestream for InfluxDB DB instance .. 1121

Working with read replica clusters .. 1156
Instance class availability ... 1156
Read replica cluster architecture .. 1157
Parameter groups ... 1158
Replica lag ... 1159
Availability and durability .. 1160
Read replicas cluster overview .. 1160
Creating a read replica cluster .. 1164
Connecting to a read replica DB cluster ... 1178
Modifying a read replica cluster ... 1180
Creating CloudWatch alarms to monitor Timestream for InfluxDB 1184
Read replica licensing through Amazon Web Services Marketplace 1189

Managing DB instances .. 1194
Updating DB instances .. 1194
Maintaining a DB instance ... 1196
Deleting a DB instance .. 1197
Multi-AZ DB instance deployments .. 1198
Setup to view InfluxDB Logs on Timestream Influxdb Instances ... 1202

Tagging resources .. 1204
Tagging restrictions ... 1205

Best practices for Timestream for InfluxDB ... 1205
Optimize writes to InfluxDB .. 1205
Design for performance .. 1207

Troubleshooting ... 1209
Warning of "dev" version not recognized ... 1209
Migration failed during restoration stage ... 1209
Amazon Timestream for InfluxDB basic operational guidelines ... 1210
DB instance RAM recommendations .. 1211

Security .. 1211
Overview .. 1212
Database authentication with Amazon Timestream for InfluxDB .. 1215

ix

Amazon Timestream Developer Guide

How Timestream for InfluxDB uses secrets .. 1217
Data protection ... 1224
Identity and Access Management ... 1225
Logging and monitoring ... 1261
Compliance validation ... 1265
Resilience .. 1265
Infrastructure security ... 1265
Configuration and vulnerability analysis in Timestream for InfluxDB 1266
Incident response ... 1266
Amazon Timestream for InfluxDB API and interface VPC endpoints (Amazon
PrivateLink) .. 1267
Security best practices .. 1269

Working with other services ... 1272
InfluxDB portals .. 1272
DBeaver .. 1273
Grafana ... 1273

API reference .. 1278
Document history .. 1278

x

Amazon Timestream Developer Guide

Amazon Timestream for LiveAnalytics will no longer be open to new customers starting June 20,
2025. If you would like to use Amazon Timestream for LiveAnalytics, sign up prior to that date.
Existing customers can continue to use the service as normal. For more information, see Amazon
Timestream for LiveAnalytics availability change.

xi

https://docs.amazonaws.cn/timestream/latest/developerguide/AmazonTimestreamForLiveAnalytics-availability-change.html
https://docs.amazonaws.cn/timestream/latest/developerguide/AmazonTimestreamForLiveAnalytics-availability-change.html

Amazon Timestream Developer Guide

What is Amazon Timestream for LiveAnalytics?

Amazon Timestream for LiveAnalytics is a fast, scalable, fully managed, purpose-built time series
database that makes it easy to store and analyze trillions of time series data points per day.
Timestream for LiveAnalytics saves you time and cost in managing the lifecycle of time series
data by keeping recent data in memory and moving historical data to a cost optimized storage
tier based upon user defined policies. Timestream for LiveAnalytics's purpose-built query engine
lets you access and analyze recent and historical data together, without having to specify its
location. Amazon Timestream for LiveAnalytics has built-in time series analytics functions, helping
you identify trends and patterns in your data in near real-time. Timestream for LiveAnalytics is
serverless and automatically scales up or down to adjust capacity and performance. Because you
don't need to manage the underlying infrastructure, you can focus on optimizing and building your
applications.

Timestream for LiveAnalytics also integrates with commonly used services for data collection,
visualization, and machine learning. You can send data to Amazon Timestream for LiveAnalytics
using Amazon IoT Core, Amazon Kinesis, Amazon MSK, and open source Telegraf. You can visualize
data using QuickSight, Grafana, and business intelligence tools through JDBC. You can also use
Amazon SageMaker AI with Timestream for LiveAnalytics for machine learning.

Timestream for LiveAnalytics key benefits

The key benefits of Amazon Timestream for LiveAnalytics are:

• Serverless with auto-scaling - With Amazon Timestream for LiveAnalytics, there are no servers to
manage and no capacity to provision. As the needs of your application change, Timestream for
LiveAnalytics automatically scales to adjust capacity.

• Data lifecycle management - Amazon Timestream for LiveAnalytics simplifies the complex
process of data lifecycle management. It offers storage tiering, with a memory store for recent
data and a magnetic store for historical data. Amazon Timestream automates the transfer of
data from the memory store to the magnetic store based upon user configurable policies.

• Simplified data access - With Amazon Timestream for LiveAnalytics, you no longer need to use
disparate tools to access recent and historical data. Amazon Timestream for LiveAnalytics's
purpose-built query engine transparently accesses and combines data across storage tiers
without you having to specify the data location.

Timestream for LiveAnalytics key benefits 1

Amazon Timestream Developer Guide

• Purpose-built for time series - You can quickly analyze time series data using SQL, with built-
in time series functions for smoothing, approximation, and interpolation. Timestream for
LiveAnalytics also supports advanced aggregates, window functions, and complex data types
such as arrays and rows.

• Always encrypted - Amazon Timestream for LiveAnalytics ensures that your time series data
is always encrypted, whether at rest or in transit. Amazon Timestream for LiveAnalytics also
enables you to specify an Amazon KMS customer managed key (CMK) for encrypting data in the
magnetic store.

• High availability - Amazon Timestream ensures high availability of your write and read requests
by automatically replicating data and allocating resources across at least 3 different Availability
Zones within a single Amazon Region. For more information, see the Timestream Service Level
Agreement.

• Durability - Amazon Timestream ensures durability of your data by automatically replicating
your memory and magnetic store data across different Availability Zones within a single Amazon
Region. All of your data is written to disk before acknowledging your write request as complete.

Timestream for LiveAnalytics use cases

Examples of a growing list of use cases for Timestream for LiveAnalytics include:

• Monitoring metrics to improve the performance and availability of your applications.

• Storage and analysis of industrial telemetry to streamline equipment management and
maintenance.

• Tracking user interaction with an application over time.

• Storage and analysis of IoT sensor data.

Getting started with Timestream for LiveAnalytics

We recommend that you begin by reading the following sections:

• Tutorial - To create a database populated with sample data sets and run sample queries.

• Amazon Timestream for LiveAnalytics concepts - To learn essential Timestream for
LiveAnalytics concepts.

• Accessing Timestream for LiveAnalytics - To learn how to access Timestream for LiveAnalytics
using the console, Amazon CLI, or API.

Timestream for LiveAnalytics use cases 2

https://www.amazonaws.cn/timestream/sla/
https://www.amazonaws.cn/timestream/sla/

Amazon Timestream Developer Guide

• Quotas - To learn about quotas on the number of Timestream for LiveAnalytics components that
you can provision.

To learn how to quickly begin developing applications for Timestream for LiveAnalytics, see the
following:

• Using the Amazon SDKs

• Query language reference

Amazon Timestream for LiveAnalytics availability change

After careful consideration, we have made the decision to close new customer access to Amazon
Timestream for LiveAnalytics, effective 6/20/25. This change will not impact customer workloads
running with Amazon Timestream for LiveAnalytics. Amazon continues to invest in security,
availability, and performance improvements for Amazon Timestream for LiveAnalytics. We
recommend evaluating Amazon Timestream for InfluxDB as an alternative due to its similar
functionality.

Topics

• Amazon Timestream for LiveAnalytics availability change

• Migration Guide

Amazon Timestream for LiveAnalytics availability change

Since time-series applications have unique requirements and characteristics, we offer a broad
framework to help you evaluate various alternatives before diving into specific implementation
details. This high-level guidance serves as a foundation for your decision-making process, with
more detailed steps and practical implementations to be covered in subsequent sections.

Alternative services evaluation

Use-case fits into Amazon Timestream for InfluxDB

We recommend Timestream for InfluxDB, if your Timestream for LiveAnalytics table has
less than 10 million cardinality (series keys), meaning the unique combinations of Amazon
Timestream for LiveAnalytics concepts or if you can reduce your table's cardinality under 10
million. Timestream for InfluxDB gives you access to the capabilities of the open source version

Amazon Timestream for LiveAnalytics availability change 3

https://docs.amazonaws.cn/timestream/latest/developerguide/timestream-for-influxdb.html
https://docs.amazonaws.cn/timestream/latest/developerguide/timestream-for-influxdb.html
https://docs.influxdata.com/influxdb/v2/reference/key-concepts/data-elements/#series

Amazon Timestream Developer Guide

of InfluxDB. Choosing this path provides existing time-series functionality such as time-series
analytics functions provided by Flux, tasks (equivalent to Scheduled queries) and other similar
functions offered by Timestream for LiveAnalytics. Timestream for InfluxDB also provides
InfluxQL (an SQL-like query language) to interact with InfluxDB for querying and analyzing your
time-series data.

Prefer using SQL instead of InfluxQL

We recommend implementing Amazon Aurora or RDS PostgreSQL. These databases offer
full SQL functionality while providing effective time-series data management capabilities.
Time-series analytics can either be implemented using the built-in database functions where
available, or managed at the application layer.

Require high-scale data ingestion (exceeding 1 million records per second)

We recommend using Amazon DynamoDB or other Amazon NoSQL databases. These databases
can be selected based on your specific application needs. Time-series analytics can either
be implemented using the built-in database functions where available, or managed at the
application layer.

Before beginning your data migration to the chosen alternate Amazon service, it is crucial to
assess several key factors that will significantly influence your migration strategy and its ultimate
success. These evaluations will help shape your approach, identify potential challenges, and ensure
a smoother transition during the migration process.

Data selection and retention considerations

Assess your data migration scope by defining exact retention requirements. Consider whether
you need to migrate the complete historical dataset, recent data only (such as the last 30, 60,
or 90 days), or specific time-series data segments. This decision should be guided by three key
factors: regulatory compliance requirements, analytical needs of your business, and practical
considerations around migration complexity and costs.

Query pattern compatibility analysis

Query compatibility between your source (Timestream for LiveAnalytics) and target service
requires thorough evaluation, as time-series databases handle query languages and features
differently. Conduct comprehensive testing to identify syntax differences, functional gaps, and
performance variations between systems. Test all business-critical queries or if possible all queries
that your applications rely on to ensure they will function correctly after migration and are
performant.

Amazon Timestream for LiveAnalytics availability change 4

https://docs.influxdata.com/influxdb/v2/query-data/flux/
https://docs.influxdata.com/influxdb/v2/query-data/influxql/
https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/PostgreSQL_Partitions.html
https://aws.amazon.com/nosql/

Amazon Timestream Developer Guide

Data transformation planning

Before migrating, pay close attention to schema mapping to ensure proper data alignment and
structural consistency between source and target systems, and accurate data type conversions
specifically tailored for time-series data. These components work together to ensure data
quality, optimize performance, and maintain functionality across different system architectures.
In addition, consider any specialized indexing patterns and system-specific optimizations to
guarantee efficient data access and retrieval.

Continuity and downtime management

Since data migration inherently causes operational disruption, developing a comprehensive
switchover strategy is crucial for success. Few best practices to consider in the migration plan to
minimize downtime are:

• Implement temporary parallel processing systems where possible to maintain business
continuity.

• Schedule migrations during low-traffic periods such as weekends or overnight hours.

• Establish well-tested rollback procedures for quick recovery in case of unexpected issues.

Migration Guide

This guide presents two approaches for migrating time-series data from Amazon Timestream for
LiveAnalytics to Timestream for InfluxDB, and to Aurora or RDS PostgreSQL with a intermediate
layer for Amazon S3. For migrations to other database services, we recommend consulting the
specific documentation for importing data from S3 into your chosen service.

In this guide, we walk through following steps:

1. Export your data from Timestream for LiveAnalytics to Amazon S3.

2. Ingesting data to Timestream for InfluxDB.

3. Ingestion data to PostgreSQL.

Topics

• Exporting Timestream data to Amazon S3

• Timestream for InfluxDB as a Target

Migration Guide 5

https://docs.amazonaws.cn/AmazonRDS/latest/AuroraUserGuide/Aurora.AuroraPostgreSQL.html
https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html
https://aws.amazon.com/s3/

Amazon Timestream Developer Guide

• Aurora/RDS Postgres as a target

Exporting Timestream data to Amazon S3

Irrespective of the target service for migration, we recommend following the below best
practices for exporting your Timestream for LiveAnalytics data to Amazon S3, creating a durable
intermediate storage layer that serves as the foundation for subsequent database-specific
ingestion.

To reliably export data from Timestream for LiveAnalytics tables to Amazon S3, we recommend
using Timestream for LiveAnalytics export tool, which uses the Timestream UNLOAD feature —
designed for large-scale data exports.

Timestream for LiveAnalytics export tool

Time-based chunking strategy

Time-based chunking is essential when migrating large volumes of time-series data. This approach
breaks down the export process into manageable units that can be independently processed and
re-tried on failures, significantly reducing migration risks. It creates checkpoints for easier progress
tracking and adds the ability to resume after interruptions. For organizations with continuous
data ingestion, this allows newer data to be exported in separate time chunks, enabling better
coordination between ongoing operations and migration. The tool uses day-based chunking,
storing each day's data with S3 bucket prefix for efficient management. Additionally, chunking can
be based on hour, day, month, or year.

Monitoring migration

The tool provides an option to capture the migration statistics in a DynamoDB table, tracking
metrics such as configurations used, records exported, and other data points for validating the
completeness of your migration. We recommend monitoring these metrics closely during your
migration and validation. You can also use the logging provided within your orchestration script,
capturing execution timestamps, chunk boundaries, and any error conditions encountered. The tool
also provides SNS notification if you want to integrate your downstream system to take action on
failures.

Recommendations and best practices

The Timestream for LiveAnalytics export tool provides a flexible and robust solution for exporting
data to S3 with various configuration options tailored to your target system requirements. If your

Migration Guide 6

https://github.com/awslabs/amazon-timestream-tools/blob/mainline/tools/python/liveanalytics_migration_scripts/unload/README.md
https://docs.amazonaws.cn/timestream/latest/developerguide/supported-sql-constructs.UNLOAD.html

Amazon Timestream Developer Guide

target is Timestream for InfluxDB, use Parquet format without compression to ensure compatibility
with ingestion scripts. For optimal tracking and monitoring, enable DynamoDB logging and
configure SNS notifications to receive alerts about export failures or completions.

The tool leverages the Timestream for LiveAnalytics UNLOAD feature while overcoming its
partition for query limitations by automatically exporting data in batches based on your specified
time range. You can customize data partitioning by hour, day, month, or year, day being the
default. Each partition must remain under approximately 350 GB to avoid memory-related errors,
such as query computation exceeding maximum available memory. For example, if your yearly
data exceeds 350 GB, consider using monthly partitions or even more granular options like daily or
hourly partitioning. If you choose hourly and still get a "The query computation exceeds maximum
available memory" error, you can reduce the number of partitions, making sure your exports are
successful.

The tool offers flexibility in the scope of export, allowing you to export a single table, an entire
database, or all databases in your account. For more specialized requirements, such as exporting
multiple specific databases, you can build a custom wrapper around this automation. Additionally,
you can choose to export the most recent data first by enabling the reverse chronological order
option. When restarting after failures, you can either continue with the same migration tag to keep
all files under the same S3 prefix or omit the tag to create files under a new prefix. As the tool
exports the data in batches, if you encounter failures we recommend starting from the failed batch
rather than restarting from the original start time. If you don't specify an end timestamp, the tool
automatically uses the current timestamp (UTC) to ensure consistent exports and validation.

Basic commands

Example : Export a table with DynamoDB logging enabled

python3.9 unload.py \
 --export-table \
 --database Demo \
 --table Demo \
 --start-time '2020-03-26 17:24:38' \
 --enable-dynamodb_logger true

Example : Export entire database

python3.9 unload.py \
 --export-database \

Migration Guide 7

https://parquet.apache.org/docs/overview/
https://docs.amazonaws.cn/timestream/latest/developerguide/supported-sql-constructs.UNLOAD.html
https://docs.amazonaws.cn/timestream/latest/developerguide/export-unload-limits.html
https://github.com/awslabs/amazon-timestream-tools/blob/mainline/tools/python/liveanalytics_migration_scripts/unload/README.md#optional-parameters

Amazon Timestream Developer Guide

 --database Demo \
 --start-time '2020-03-26 17:24:38'

Example : Export all databases

python3.9 unload.py \
 --export-all_databases \
 --start-time '2020-03-26 17:24:38'

Example : Advanced export with more options

python unload.py \
 --export-table \
 --database MyDB \
 --table MyTable \
 --start-time '2024-05-14 00:00:00' \
 --end-time '2025-05-14 00:00:00' \
 --partition month \
 --export-format PARQUET \
 --compression GZIP \
 --region us-east-1 \
 --s3-uri s3://my-bucket \
 --enable-dynamodb_logger \
 --sns-topic_arn arn:aws:sns:region:account-id:topic-name

For more information, see the unload script's README.

Timestream for InfluxDB as a Target

Amazon Timestream for InfluxDB is a managed time-series database service on Amazon that uses
open-source InfluxDB APIs for real-time applications. It offers easy setup, operation, and scaling,
delivering queries with single-digit millisecond response times.

The first step for determining whether Timestream for InfluxDB is an appropriate migration target
for your use-case is determining the cardinality of your Timestream for LiveAnalytics table. We
have developed a script that calculates table cardinality in Timestream for LiveAnalytics. This
calculation serves two purposes:

1. Checks if the cardinality is under 10 million, which will help determine whether Timestream for
InfluxDB can handle your use-case.

Migration Guide 8

https://github.com/awslabs/amazon-timestream-tools/blob/mainline/tools/python/liveanalytics_migration_scripts/unload/README.md
https://github.com/awslabs/amazon-timestream-tools/blob/mainline/tools/python/liveanalytics_migration_scripts/cardinality/README.md

Amazon Timestream Developer Guide

2. Helps you decide which Timestream for InfluxDB Instance type to use.

Cardinality in InfluxDB is the number of unique measurements, tags, and field key combinations in
an InfluxDB bucket. Refer to Timestream for InfluxDB's documentation on cardinality management
to understand how exceeding recommended limits can degrade query performance and increase
memory consumption. Benchmark your anticipated query patterns against representative data
samples before finalizing your instance selection to ensure your queries remain performant post-
migration. Pay attention to memory-intensive aggregation queries that might behave differently
than in Timestream for LiveAnalytics. When migrating from Timestream for LiveAnalytics, carefully
select your InfluxDB instance specifications based on your dataset's cardinality as this directly
impacts performance and resource requirement. We recommend considering other destinations if
your data cardinality is more than 10 million.

Cardinality calculation script overview

The cardinality calculation script calculates the cardinality of a Timestream for LiveAnalytics
table. If the cardinality is under 10 million, the script recommends a Timestream for InfluxDB
instance type. Using the default schema mapping, cardinality is calculated by computing the total
unique combinations of dimensions and measure name. Choosing the right line protocol tags
(equivalent to dimensions in Timestream for LiveAnalytics) helps you automatically index your data
and filter your data efficiently using tags. The script also provides the option to exclude specific
dimensions when calculating cardinality. If applicable to your case that is, if you are not using
certain dimensions for filtering data in SQL queries (specifically not using them as predicates) then
you can exclude these dimensions from the cardinality calculation. Later, you can ingest them as
fields (equivalent to measures in Timestream for LiveAnalytics) in the next steps of migration.

Prerequisites and installation

See the Prerequisites section and installation in the cardinality script's README.

Basic usage

To determine the cardinality of a table, example_table, in the database example_database the
script can be used in the following way:

Example

python3 cardinality.py \
 --table-name example_table \

Migration Guide 9

https://docs.influxdata.com/influxdb/v2/reference/glossary/#series-cardinality
https://docs.influxdata.com/influxdb/v2/reference/syntax/line-protocol/#measurement
https://docs.influxdata.com/influxdb/v2/reference/syntax/line-protocol/#tag-set
https://docs.influxdata.com/influxdb/v2/reference/syntax/line-protocol/#field-set
https://docs.influxdata.com/influxdb/v2/admin/buckets/
https://docs.influxdata.com/influxdb/v2/reference/syntax/line-protocol/#elements-of-line-protocol
https://docs.influxdata.com/influxdb/v2/reference/key-concepts/data-elements/#tag-value
https://github.com/awslabs/amazon-timestream-tools/blob/mainline/tools/python/liveanalytics_migration_scripts/cardinality/README.md

Amazon Timestream Developer Guide

 --database-name example_database

This produces the following output:

Cardinality of "example_database"."example_table": 160
Your recommended Timestream for InfluxDB type is: db.influx.medium

Recommendations

The script automatically scans the entire table to calculate cardinality while offering time filter
options for optimal query execution. We suggest implementing time filters when your data
involves consistent dimensions and when analyzing distinct dimension variations across the entire
table yields similar results to analyzing specific time ranges. This approach ensures efficient and
performant query execution.

For more information, see the cardinality script's README.

Ingesting data from Amazon S3 to Timestream for InfluxDB automation

After the Timestream for LiveAnalytics export tool completes the unload process, the next step in
the automation process begins. This automation uses InfluxDB's import tools to transfer the data
into its specialized time-series structure. The process transforms Timestream's data model to match
InfluxDB' s concepts of measurements, tags, and fields. Finally, it loads the data efficiently using
InfluxDB's line protocol.

The workflow for completing a migration is separated into four stages:

1. Unload data using Timestream for LiveAnalytics export tool.

2. Data transformation: Converting Timestream for LiveAnalytics data into InfluxDB line protocol
format (Based on the schema defined after the cardinality assessment) using Amazon Athena.

3. Data ingestion: Ingest the line protocol dataset to your Timestream for InfluxDB instance.

4. Validation: Optionally, you can validate that every line protocol point has been ingested
(Requires --add-validation-field true during data transformation step).

Data Transformation

For data transformation, we developed a script to convert Timestream for LiveAnalytics exported
data parquet format into InfluxDB's Line Protocol format using Amazon Athena. Amazon Athena

Migration Guide 10

https://github.com/awslabs/amazon-timestream-tools/blob/mainline/tools/python/liveanalytics_migration_scripts/cardinality/README.md
https://docs.influxdata.com/influxdb/v2/write-data/
https://docs.influxdata.com/influxdb/v2/reference/syntax/line-protocol/
https://github.com/awslabs/amazon-timestream-tools/blob/mainline/tools/python/liveanalytics_migration_scripts/targets/timestream_for_influxdb/transform/README.md
https://docs.amazonaws.cn/athena/latest/ug/when-should-i-use-ate.html
https://github.com/awslabs/amazon-timestream-tools/blob/mainline/tools/python/liveanalytics_migration_scripts/targets/timestream_for_influxdb/ingestion/README.md
https://github.com/awslabs/amazon-timestream-tools/blob/mainline/tools/python/liveanalytics_migration_scripts/targets/timestream_for_influxdb/validation/README.md

Amazon Timestream Developer Guide

provides a serverless query service and a cost-effective way to transform large volumes of time-
series data without requiring dedicated compute resources.

The script does the following:

• Loads exported Timestream for LiveAnalytics data from an Amazon S3 bucket into an Amazon
Athena table.

• Performs data mapping and transformation from the data stored in the Athena table into line
protocol and stores it in the S3 bucket.

Data Mapping

The following table shows how Timestream for LiveAnalytics data is mapped to line protocol data.

Timestream for LiveAnalytics Concept Line Protocol Concept

Table Name Measurement

Dimensions Tags

Measure name Tag (Optional)

Measures Fields

Time Timestamp

Prerequisites and Installation

See the Prerequisites and Installation sections in the transformation script’s README.

Usage

To transform data stored in the bucket example_s3_bucket from the Timestream for LiveAnalytics
table example_table in example_database, run the following command:

python3 transform.py \
 --database-name example_database \
 --tables example_table \
 --s3-bucket-path example_s3_bucket \
 --add-validation-field false

Migration Guide 11

https://docs.amazonaws.cn/timestream/latest/developerguide/API_Table.html
https://docs.influxdata.com/influxdb/v2/reference/syntax/line-protocol/#measurement
https://docs.amazonaws.cn/timestream/latest/developerguide/API_Dimension.html
https://docs.influxdata.com/influxdb/v2/reference/syntax/line-protocol/#tag-set
https://docs.amazonaws.cn/timestream/latest/developerguide/data-modeling.html#data-modeling-measurenamemulti
https://docs.amazonaws.cn/timestream/latest/developerguide/API_MeasureValue.html
https://docs.influxdata.com/influxdb/v2/reference/syntax/line-protocol/#field-set
https://docs.amazonaws.cn//timestream/latest/developerguide/writes.html#writes.data-types
https://docs.influxdata.com/influxdb/v2/reference/syntax/line-protocol/#timestamp
https://github.com/awslabs/amazon-timestream-tools/blob/mainline/tools/python/liveanalytics_migration_scripts/targets/timestream_for_influxdb/transform/README.md#prerequisites

Amazon Timestream Developer Guide

After the script is completed,

• In Athena, the table example_database_example_table will be created, containing Timestream
for LiveAnalytics data.

• In Athena, the table lp_example_database_example_table will be created, containing
Timestream for LiveAnalytics data transformed to line protocol points.

• In the S3 bucket example_s3_bucket, within the path example_database/example_table/
unload-<%Y-%m-%d-%H:%M:%S>/line-protocol-output, line protocol data will be stored.

Recommendations

Refer to the transformation script’s README for more details on the latest usage of the script
and outputs are required for later steps of the migration, such as validation. If you excluded
dimensions in order to improve cardinality, adjust the schema to reduce cardinality by using the --
dimensions-to-fields argument to change particular dimensions to fields.

Adding a Field for Validation

For information on how to add a field for validation, see the Adding a Field for Validation section in
the transformation script’s README.

Data ingestion into Timestream for InfluxDB

The InfluxDB ingestion script ingests compressed line protocol datasets to Timestream for
InfluxDB. A directory containing gzip compressed line protocol files is passed in as a command
line argument along with the ingestion destination InfluxDB bucket. This script was designed to
ingest multiple files at a time using multi-processing to utilize the resources with InfluxDB and the
machine executing the script.

The script does following:

• Extracts zipped files and ingests them into InfluxDB.

• Implements retry mechanisms and error handling.

• Tracks successful and failed ingestions for resuming.

• Optimizes I/O operations when reading from line protocol dataset.

Prerequisites and installation

See the Prerequisites and Installation section in the ingestion script's README in GitHub.

Migration Guide 12

https://github.com/awslabs/amazon-timestream-tools/blob/mainline/tools/python/liveanalytics_migration_scripts/targets/timestream_for_influxdb/transform/README.md#prerequisites
https://github.com/awslabs/amazon-timestream-tools/blob/mainline/tools/python/liveanalytics_migration_scripts/targets/timestream_for_influxdb/transform/README.md#adding-a-field-for-validation
https://github.com/awslabs/amazon-timestream-tools/blob/mainline/tools/python/liveanalytics_migration_scripts/README.md#installation

Amazon Timestream Developer Guide

Data preparation

The zipped line protocol files required for ingestion are generated by the data transform scripts.
Follow these steps to prepare your data:

1. Set up an EC2 instance with sufficient storage to hold the transformed dataset.

2. Sync the transformed data from the S3 bucket to your local directory:

aws s3 sync \
 s3://your-bucket-name/path/to/transformed/data \
 ./data_directory

3. Make sure you have read access to all files in the data directory.

4. Run the following ingestion script to ingest data into Timestream for InfluxDB.

Usage

python influxdb_ingestion.py <bucket_name> <data_directory> [options]

Basic usage

python influxdb_ingestion.py my_bucket ./data_files

Ingestion rates

We have run some tests for Ingestion rates. Ingestion tests using a C5N.9XL EC2 instance executing
the ingestion script with 10 Workers, and ingesting ~500 GB line protocol to 8XL Timestream for
InfluxDB instances:

• 3K IOPS 15.86 GB/hour.

• 12K IOPS 70.34 GB/hour.

• 16K IOPS 71.28 GB/hour.

Recommendations

• Use an EC2 instance with sufficient CPU cores to handle parallel processing.

• Ensure the instance has enough storage to hold the entire transformed dataset with additional
room for extraction.

Migration Guide 13

Amazon Timestream Developer Guide

• The number of files extracted at one time is equal to the number of workers configured during
script execution.

• Position the EC2 instance in the same region and AZ (if possible) as your InfluxDB instance to
minimize latency.

• Consider using instance types optimized for network operations, for example C5N.

• If high ingestion rates are required, at least 12K IOPS is recommended for the Timestream for
InfluxDB instance. Additional optimizations can be gained by increasing the worker count for the
script dependent on Timestream for InfluxDB instance size.

For more information, see the ingestion script's README.

Migration validation script

The validation script compares logical row/point counts between a source table (Amazon
Timestream or Amazon Athena) and an InfluxDB bucket measurement, with optional time-range
specifications. This tool helps ensure data integrity during migration processes by running parallel
queries against both systems and comparing the results.

The validation script supports queries against either the exported dataset in Athena or the original
Timestream database/table. Be aware that querying Timestream directly may lead to inaccurate
comparisons if data has been written since the export. The validation script can be run anytime
after ingestion has begun. It first polls InfluxDB's metrics endpoint to wait for the WAL (Write-
Ahead Log) to flush completely, ensuring all data processing, including post-ingestion file merging
and de-duplication, is finished. The script then executes count-only queries over identical time
windows, comparing results to highlight matches or mismatches. It supports optional schema/
tag filtering for transformed schemas where dimensions are used as fields, and produces human-
readable timing and result summaries to facilitate validation of the migration process.

Prerequisites and installation

See the prerequisites and installation section in the Migration Validation Script README.

Usage

python validator.py [options]

All settings can be supplied as CLI flags or environment variables. See the example.env file within
the repository.

Migration Guide 14

https://github.com/awslabs/amazon-timestream-tools/blob/mainline/tools/python/liveanalytics_migration_scripts/README.md#installation
https://docs.influxdata.com/influxdb/v2/reference/internals/storage-engine/#write-ahead-log-wal
https://docs.influxdata.com/influxdb/v2/reference/internals/storage-engine/#write-ahead-log-wal
https://github.com/awslabs/amazon-timestream-tools/blob/mainline/tools/python/liveanalytics_migration_scripts/README.md#installation

Amazon Timestream Developer Guide

For troubleshooting and recommendations see the Migration Validation Script README.

Cleanup

After finishing a migration, following resources/artifacts will be created:

• An Athena table, containing Timestream for LiveAnalytics data. By default, this is <Timestream
database name>_<Timestream table name> in the default Athena database.

• An Athena table, containing transformed line protocol data. By default, this is lp_<Athena table
name> in the default Athena database.

• Line protocol data within your S3 bucket, with the path <Timestream database name>/
<Timestream table name>/unload-<%Y-%m-%d-%H:%M:%S>/line-protocol-output.

• Unloaded data that was created as part of Timestream for LiveAnalytics export tool.

• Downloaded data and logs on your EC2 instance.

• DynamoDB table if used for logging as part of Timestream for LiveAnalytics export tool.

Cleaning up Athena resources

To delete any Athena table, run the following Amazon CLI command, replacing <Athena table
name> with the name of the table that you want to delete and <Athena database name> with the
name of the Athena database that the table resides in:

aws glue delete-table \
 --database-name <Athena database name> \
 --name <Athena table name>

Cleaning up S3 resources

To delete line protocol data within your S3 bucket, run the following Amazon CLI command,
replacing <S3 bucket name> with the name of your S3 bucket, <Timestream database name> with
the name of your Timestream for LiveAnalytics database, <Timestream table name> with the name
of your Timestream for LiveAnalytics table, and <timestamp> with the timestamp that forms the
unload-<%Y-%m-%d-%H:%M:%S> path in your S3 bucket:

aws s3 rm \
 s3://<S3 bucket name>/<Timestream database name>/<Timestream table name>/unload-
<timestamp>/line-protocol-output \
 --recursive

Migration Guide 15

https://github.com/awslabs/amazon-timestream-tools/blob/mainline/tools/python/liveanalytics_migration_scripts/README.md#installation
https://aws.amazon.com/cli/

Amazon Timestream Developer Guide

To delete an S3 bucket, run the following command, replacing <S3 bucket name> with the name of
your S3 bucket:

aws s3 delete-bucket --bucket <S3 bucket name>

Cleaning up DynamoDB resources

To delete a DynamoDB table, run the following command, replacing <table name> with the name
of the DynamoDB table that you want to delete:

aws dynamodb delete-table --table-name <table name>

Aurora/RDS Postgres as a target

This section explains ingesting the S3 staged time-series data into Amazon RDS/Aurora
PostgreSQL. The ingestion process will primarily focus on the CSV files generated from
Timestream's export tool to ingest into Postgres. We recommend designing the PostgreSQL
schema and table with proper indexing strategies for time-based queries. Use any ETL processes
to transform Timestream's specialized structures into relational tables optimized for your specific
requirements. When migrating Timestream data to a relational database, structure your schema
with a timestamp column as the primary time index, measurement identifier columns derived
from Timestream's measure_name, and dimension columns from Timestream's dimensions and
your actual measures. Create strategic indexes on time ranges and frequently queried dimension
combinations to optimize performance during data transformation and loading process. When
migrating time-series data to PostgreSQL, proper instance sizing is critical for maintaining query
performance at scale. Consider your expected data volume, query complexity, and concurrency
requirements when selecting an instance class, with particular attention to memory allocation
for time-series aggregation workloads. For datasets exceeding tens of millions of rows, leverage
PostgreSQL's native partitioning capabilities and advanced indexing strategies to optimize for
time-series access patterns.

We recommend performing functional and performance testing to choose the right instance
and tuning your PostgreSQL database to address any performance bottlenecks. Performing
rigorous data integrity checks through sample query comparisons between your source Timestream
database and target system is critical to ensure migration success and maintain query correctness.
By executing identical queries against both systems and comparing results — including record
counts, aggregations, and outlier values — you can identify any discrepancies that might indicate
transformation errors, data loss, or semantic differences in query interpretation. This verification

Migration Guide 16

https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/PostgreSQL_Partitions.html
https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/PostgreSQL.Tuning_proactive_insights.html

Amazon Timestream Developer Guide

process validates that your data maintains its analytical value post-migration, builds confidence
in the new system among stakeholders who rely on these insights, helps identify any necessary
query adjustments to accommodate syntax or functional differences between platforms, and
establishes a quantifiable baseline for determining when the migration can be considered complete
and successful. Without these systematic checks, subtle data inconsistencies might remain
undetected, potentially leading to incorrect business decisions or undermining confidence in the
entire migration project.

Ingestion

We recommend using AmazonDatabase Migration Service (DMS) with source as S3 (both CSV and
Parquet are supported) with PostgreSQL as the target. For scenarios where Amazon DMS may
not be suitable for your specific requirements, we provide a supplementary Python-based utility
(PostgreSQL CSV Ingestion Tool) for migrating CSV data from S3 to PostgreSQL.

Overview of PostgreSQL CSV ingestion tool

The PostgreSQL CSV Ingestion Tool, is a high-performance utility designed to efficiently load CSV
files into PostgreSQL databases. It leverages multi-threading and connection pooling to process
multiple files in parallel, significantly reducing data loading time. We recommend to running this
script using an EC2 instance. Consider using instance types optimized for network operations, such
as C5N.

Key features

• Multi-threaded Processing: Loads multiple CSV files simultaneously.

• Connection Pooling: Efficiently manages database connections.

• Automatic Column Detection: Dynamically extracts column names from CSV headers.

• Retry Logic: Handles transient errors with exponential backoff.

• File Management; Moves processed files to a designated directory so retrying is resuming but not
restarting.

• Comprehensive Logging: Detailed logs for monitoring and troubleshooting.

• Error Notifications: Optional SNS notifications for failures.

• Secure Credentials: Retrieves database passwords from Amazon Secrets Manager.

Prerequisites and installation

See prerequisites and installation in the PostgreSQL CSV Ingestion Tool Readme in GitHub.

Migration Guide 17

https://docs.amazonaws.cn/dms/latest/userguide/Welcome.html
https://docs.amazonaws.cn/dms/latest/userguide/CHAP_Source.S3.html
https://docs.amazonaws.cn/dms/latest/userguide/CHAP_Target.PostgreSQL.html
https://github.com/awslabs/amazon-timestream-tools/blob/mainline/tools/python/liveanalytics_migration_scripts/targets/rds_for_postgresql/README.md
https://github.com/awslabs/amazon-timestream-tools/blob/mainline/tools/python/liveanalytics_migration_scripts/targets/rds_for_postgresql/README.md

Amazon Timestream Developer Guide

Usage

python copy_postgres.py \
 --database 'postgres_testing' \
 --table 'demolarge_restored' \
 --csv-files-dir '/data/csv_files/*partition*/*.csv' \
 --host database-1.cluster-xxxxxxxx.us-east-1.rds.amazonaws.com \
 --secret-arn 'arn:aws:secretsmanager:<region>:<account_id>:secret:rds!cluster-
xxxxx-xx-xx-xx-xxxxxxxx-xxxxx' \
 --sns-topic-arn 'arn:aws:sns:<region>:<account_id>:<topic_name>'

Validation

You can use DynamoDB for exported rows or logs generated by Timestream's export tool and
compare against rows ingested from PostgreSQL Ingestion automation logs. You can do select
counts against the source and target tables with the consistent export and import time, if the
data is being continuously ingested during the migration process the counts will vary so the
recommendation is to compare rows exported and rows important from logging.

Cleanup

• Cleanup unloaded data that was created as part of Timestream for LiveAnalytics export tool.

• Delete downloaded data and logs on EC2 to reclaim the space.

• Delete DynamoDB table if used for logging as part of Timestream for LiveAnalytics export tool.

How it works

The following sections provide an overview of Amazon Timestream for Live Analytics service
components and how they interact.

After you read this introduction, see the Accessing Timestream for LiveAnalytics sections to learn
how to access Timestream for Live Analytics using the console, Amazon CLI, or SDKs.

Topics

• Amazon Timestream for LiveAnalytics concepts

• Architecture

• Writes

• Storage

How it works 18

Amazon Timestream Developer Guide

• Queries

• Scheduled queries

• Timestream Compute Unit (TCU)

Amazon Timestream for LiveAnalytics concepts

Time series data is a sequence of data points recorded over a time interval. This type of data is used
for measuring events that change over time. Examples include the following.

• Stock prices over time

• Temperature measurements over time

• CPU utilization of an EC2 instance over time

With time series data, each data point consists of a timestamp, one or more attributes, and the
event that changes over time. This data can be used to derive insights into the performance and
health of an application, detect anomalies, and identify optimization opportunities. For example,
DevOps engineers might want to view data that measures changes in infrastructure performance
metrics. Manufacturers might want to track IoT sensor data that measures changes in equipment
across a facility. Online marketers might want to analyze clickstream data that captures how a
user navigates a website over time. Because time series data is generated from multiple sources in
extremely high volumes, it needs to be cost-effectively collected in near real time, and therefore
requires efficient storage that helps organize and analyze the data.

Following are the key concepts of Timestream for LiveAnalytics.

• Time series - A sequence of one or more data points (or records) recorded over a time interval.
Examples are the price of a stock over time, the CPU or memory utilization of an EC2 instance
over time, and the temperature/pressure reading of an IoT sensor over time.

• Record - A single data point in a time series.

• Dimension - An attribute that describes the meta-data of a time series. A dimension consists of a
dimension name and a dimension value. Consider the following examples:

• When considering a stock exchange as a dimension, the dimension name is "stock exchange"
and the dimension value is "NYSE"

• When considering an Amazon Region as a dimension, the dimension name is "region" and the
dimension value is "us-east-1"

Concepts 19

Amazon Timestream Developer Guide

• For an IoT sensor, the dimension name is "device ID" and the dimension value is "12345"

• Measure - The actual value being measured by the record. Examples are the stock price, the CPU
or memory utilization, and the temperature or humidity reading. Measures consist of measure
names and measure values. Consider the following examples:

• For a stock price, the measure name is "stock price" and the measure value is the actual stock
price at a point in time.

• For CPU utilization, the measure name is "CPU utilization" and the measure value is the actual
CPU utilization.

Measures can be modeled in Timestream for LiveAnalytics as multi-measure or single-measure
records. For more information, see Multi-measure records vs. single-measure records.

• Timestamp - Indicates when a measure was collected for a given record. Timestream for
LiveAnalytics supports timestamps with nanosecond granularity.

• Table - A container for a set of related time series.

• Database - A top level container for tables.

A summary of Timestream for LiveAnalytics concepts

A database contains 0 or more tables. Each table contains 0 or more time series. Each time
series consists of a sequence of records over a given time interval at a specified granularity. Each
time series can be described using its meta-data or dimensions, its data or measures, and its
timestamps.

Concepts 20

Amazon Timestream Developer Guide

Architecture

Amazon Timestream for Live Analytics has been designed from the ground up to collect, store, and
process time series data at scale. Its serverless architecture supports fully decoupled data ingestion,
storage, and query processing systems that can scale independently. This design simplifies each
subsystem, making it easier to achieve unwavering reliability, eliminate scaling bottlenecks, and
reduce the chances of correlated system failures. Each of these factors becomes more important as
the system scales.

Topics

• Write architecture

• Storage architecture

• Query architecture

• Cellular architecture

Architecture 21

Amazon Timestream Developer Guide

Write architecture

When writing time-series data, Amazon Timestream for Live Analytics routes writes for a table,
partition, to a fault-tolerant memory store instance that processes high throughput data writes.
The memory store in turn achieves durability in a separate storage system that replicates the data
across three Availability Zones (AZs). Replication is quorum based such that the loss of nodes, or an
entire AZ, will not disrupt write availability. In near real-time, other in-memory storage nodes sync
to the data in order to serve queries. The reader replica nodes span AZs as well, to ensure high read
availability.

Architecture 22

Amazon Timestream Developer Guide

Timestream for Live Analytics supports writing data directly into the magnetic store, for
applications generating lower throughput late-arriving data. Late-arriving data is data with a
timestamp earlier than the current time. Similar to the high throughput writes in the memory
store, the data written into the magnetic store is replicated across three AZs and the replication is
quorum based.

Whether data is written to the memory or magnetic store, Timestream for Live Analytics
automatically indexes and partitions data before writing it to storage. A single Timestream for
Live Analytics table may have hundreds, thousands, or even millions of partitions. Individual
partitions do not, directly, communicate with each other and do not share any data (shared-
nothing architecture). Instead, the partitioning of a table is tracked through a highly available
partition tracking and indexing service. This provides another separation of concerns designed
specifically to minimize the effect of failures in the system and make correlated failures much less
likely.

Storage architecture

When data is stored in Timestream for Live Analytics, data is organized in time order as well as
across time based on context attributes written with the data. Having a partitioning scheme that
divides "space" in addition to time is important for massively scaling a time series system. This is
because most time series data is written at or around the current time. As a result, partitioning by
time alone does not do a good job of distributing write traffic or allowing for effective pruning of
data at query time. This is important for extreme scale time series processing, and it has allowed
Timestream for Live Analytics to scale orders of magnitude higher than the other leading systems
out there today in serverless fashion. The resulting partitions are referred to as "tiles" because
they represent divisions of a two-dimensional space (which are designed to be of a similar size).
Timestream for Live Analytics tables start out as a single partition (tile), and then split in the
spatial dimension as throughput requires. When tiles reach a certain size, they then split in the time
dimension in order to achieve better read parallelism as the data size grows.

Timestream for Live Analytics is designed to automatically manage the lifecycle of time series data.
Timestream for Live Analytics offers two data stores—an in-memory store and a cost-effective
magnetic store. It also supports configuring table-level policies to automatically transfer data
across stores. Incoming high throughput data writes land in the memory store where data is
optimized for writes, as well as reads performed around current time for powering dashboard and
alerting type queries. When the main time frame for writes, alerting, and dashboarding needs has
passed, allowing the data to automatically flow from the memory store to the magnetic store to
optimize cost. Timestream for Live Analytics allows setting a data retention policy on the memory

Architecture 23

Amazon Timestream Developer Guide

store for this purpose. Data writes for late-arriving data are directly written into the magnetic
store.

Once the data is available in the magnetic store (because of expiration of the memory store
retention period or because of direct writes into the magnetic store), it is reorganized into a
format that is highly optimized for large volume data reads. The magnetic store also has a data
retention policy that may be configured if there is a time threshold where the data outlives its
usefulness. When the data exceeds the time range defined for the magnetic store retention policy,
it is automatically removed. Therefore, with Timestream for Live Analytics, other than some
configuration, the data lifecycle management occurs seamlessly behind the scenes.

Query architecture

Timestream for Live Analytics queries are expressed in a SQL grammar that has extensions for time
series-specific support (time series-specific data types and functions), so the learning curve is easy
for developers already familiar with SQL. Queries are then processed by an adaptive, distributed
query engine that uses metadata from the tile tracking and indexing service to seamlessly access
and combine data across data stores at the time the query is issued. This makes for an experience
that resonates well with customers as it collapses many of the Rube Goldberg complexities into a
simple and familiar database abstraction.

Queries are run by a dedicated fleet of workers where the number of workers enlisted to run a
given query is determined by query complexity and data size. Performance for complex queries
over large datasets is achieved through massive parallelism, both on the query runtime fleet
and the storage fleets of the system. The ability to analyze massive amounts of data quickly and
efficiently is one of the greatest strengths of Timestream for Live Analytics. A single query that
runs over terabytes or even petabytes of data might have thousands of machines working on it all
at the same time.

Cellular architecture

To ensure that Timestream for Live Analytics can offer virtually infinite scale for your applications,
while simultaneously ensuring 99.99% availability, the system is also designed using a cellular
architecture. Rather than scaling the system as a whole, Timestream for Live Analytics segments
into multiple smaller copies of itself, referred to as cells. This allows cells to be tested at full scale,
and prevents a system problem in one cell from affecting activity in any other cells in a given
region. While Timestream for Live Analytics is designed to support multiple cells per region,
consider the following fictitious scenario, in which there are 2 cells in a region.

Architecture 24

Amazon Timestream Developer Guide

In the scenario depicted above, the data ingestion and query requests are first processed by
the discovery endpoint for data ingestion and query, respectively. Then, the discovery endpoint
identifies the cell containing the customer data, and directs the request to the appropriate
ingestion or query endpoint for that cell. When using the SDKs, these endpoint management tasks
are transparently handled for you.

Note

When using VPC endpoints with Timestream for Live Analytics or directly accessing REST
API operations for Timestream for Live Analytics, you will need to interact directly with the
cellular endpoints. For guidance on how to do so, see VPC Endpoints for instructions on
how to set up VPC endpoints, and Endpoint Discovery Pattern for instructions on direct
invocation of the REST API operations.

Writes

You can collect time series data from connected devices, IT systems, and industrial equipment,
and write it into Timestream for Live Analytics. Timestream for Live Analytics enables you to write

Writes 25

Amazon Timestream Developer Guide

data points from a single time series and/or data points from many series in a single write request
when the time series belong to the same table. For your convenience, Timestream for Live Analytics
offers you with a flexible schema that auto detects the column names and data types for your
Timestream for Live Analytics tables based on the dimension names and the data types of the
measure values you specify when invoking writes into the database. You can also write batches of
data into Timestream for Live Analytics.

Note

Timestream for Live Analytics supports eventual consistency semantics for reads.
This means that when you query data immediately after writing a batch of data into
Timestream for Live Analytics, the query results might not reflect the results of a recently
completed write operation. The results may also include some stale data. Similarly, while
writing time series data with one or more new dimensions, a query can return a partial
subset of columns for a short period of time. If you repeat these query requests after a
short time, the results should return the latest data.

You can write data using the Amazon SDKs, Amazon CLI, or through Amazon Lambda, Amazon IoT
Core, Amazon Managed Service for Apache Flink, Amazon Kinesis, Amazon MSK, and Open source
Telegraf.

Topics

• Data types

• No upfront schema definition

• Writing data (inserts and upserts)

• Eventual consistency for reads

• Batching writes with WriteRecords API

• Batch load

• Choosing between the WriteRecords API operation and batch load

Data types

Timestream for Live Analytics supports the following data types for writes.

Writes 26

Amazon Timestream Developer Guide

Data type Description

BIGINT Represents a 64-bit signed integer.

BOOLEAN Represents the two truth values of logic, namely, true, and false.

DOUBLE 64-bit variable-precision implementing the IEEE Standard 754 for
Binary Floating-Point Arithmetic.

Note

There are query language functions for Infinity and NaN
double values which can be used in queries. But you cannot
write those values to Timestream.

VARCHAR Variable length character data with an optional maximum length.
The maximum limit is 2 KB.

MULTI Data type for multi-measure records. This data type includes one or
more measures of type BIGINT, BOOLEAN, DOUBLE, VARCHAR, and
TIMESTAMP .

TIMESTAMP Represents an instance in time using nanosecond precision time in
UTC, tracking the time since Unix time. This data type is currently
supported only for multi-measure records (i.e. within measure
values of type MULTI).

YYYY-MM-DD hh:mm:ss.sssssssss

Writes support timestamps in the range 1970-01-01
00:00:00.000000000 to 2262-04-11 23:47:16.
854775807 .

No upfront schema definition

Before sending data into Amazon Timestream for Live Analytics, you must create a database and a
table using the Amazon Web Services Management Console, Timestream for Live Analytics SDKs,
or the Timestream for Live Analytics API operations. For more information, see Create a database

Writes 27

Amazon Timestream Developer Guide

and Create a table. While creating the table, you do not need to define the schema up front.
Amazon Timestream for Live Analytics automatically detects the schema based on the measures
and dimensions of the data points being sent, so you no longer need to alter your schema offline
to adapt it to your rapidly changing time series data.

Writing data (inserts and upserts)

The write operation in Amazon Timestream for Live Analytics enables you to insert and upsert data.
By default, writes in Amazon Timestream for Live Analytics follow the first writer wins semantics,
where data is stored as append only and duplicate records are rejected. While the first writer wins
semantics satisfies the requirements of many time series applications, there are scenarios where
applications need to update existing records in an idempotent manner and/or write data with
the last writer wins semantics, where the record with the highest version is stored in the service.
To address these scenarios, Amazon Timestream for Live Analytics provides the ability to upsert
data. Upsert is an operation that inserts a record into the system when the record does not exist,
or updates the record when one exists. When the record is updated, it is updated in an idempotent
manner.

There isn't a record level operation for deletion. But tables and databases can be deleted.

Writing data into the memory store and the magnetic store

Amazon Timestream for Live Analytics offers the ability to directly write data into the memory
store and the magnetic store. The memory store is optimized for high throughput data writes and
the magnetic store is optimized for lower throughput writes of late arrival data.

Late-arriving data is data with a timestamp earlier than the current time and outside
the memory store retention period. You must explicitly enable the ability to write late-
arriving data into the magnetic store by enabling magnetic store writes for the table. Also,
MagneticStoreRejectedDataLocation is defined when a table is created. To write to the
magnetic store, callers of WriteRecords must have S3:PutObject permissions to the S3
bucket specified in MagneticStoreRejectedDataLocationduring table creation. For more
information, see CreateTable, WriteRecords, and PutObject.

Writing data with single-measure records and multi-measure records

Amazon Timestream for Live Analytics offers the ability to write data using two types of records,
namely, single-measure records and multi-measure records.

Single-measure records

Writes 28

https://docs.amazonaws.cn/timestream/latest/developerguide/API_CreateTable.html
https://docs.amazonaws.cn/timestream/latest/developerguide/API_WriteRecords.html
https://docs.amazonaws.cn/AmazonS3/latest/API/API_PutObject.html

Amazon Timestream Developer Guide

Single-measure records enable you to send a single measure per record. When data is sent to
Timestream for Live Analytics using this format, Timestream for Live Analytics creates one table
row per record. This means that if a device emits 4 metrics and each metric is sent as a single-
measure record, Timestream for Live Analytics will create 4 rows in the table to store this data,
and the device attributes will be repeated for each row. This format is recommended in cases when
you want to monitor a single metric from an application or when your application does not emit
multiple metrics at the same time.

Multi-measure records

With multi-measure records, you can store multiple measures in a single table row, instead of
storing one measure per table row. Multi-measure records therefore enable you to migrate your
existing data from relational databases to Amazon Timestream for Live Analytics with minimal
changes.

You can also batch more data in a single write request than single-measure records. This increases
data write throughput and performance, and also reduces the cost of data writes. This is because
batching more data in a write request enables Amazon Timestream for Live Analytics to identify
more repeatable data in a single write request (where applicable), and charge only once for
repeated data.

Topics

• Multi-measure records

• Writing data with a timestamp that exists in the past or in the future

Multi-measure records

With multi-measure records, you can store your time-series data in a more compact format in the
memory and magnetic store, which helps lower data storage costs. Also, the compact data storage
lends itself to writing simpler queries for data retrieval, improves query performance, and lowers
the cost of queries.

Furthermore, multi-measure records also support the TIMESTAMP data type for storing more than
one timestamp in a time-series record. TIMESTAMP attributes in a multi-measure record support
timestamps in future or past. Multi-measure records therefore help improve performance, cost, and
query simplicity—and offer more flexibility for storing different types of correlated measures.

Writes 29

Amazon Timestream Developer Guide

Benefits

The following are the benefits of using multi-measure records.

• Performance and cost – Multi-measure records enable you to write multiple time-series
measures in a single write request. This increases the write throughput and also reduces the cost
of writes. With multi-measure records, you can store data in a more compact manner, which
helps lower the data storage costs. The compact data storage of multi-measure records results in
less data being processed by queries. This is designed to improve the overall query performance
and help lower the query cost.

• Query simplicity – With multi-measure records, you do not need to write complex common
table expressions (CTEs) in a query to read multiple measures with the same timestamp. This
is because the measures are stored as columns in a single table row. Multi-measure records
therefore enable writing simpler queries.

• Data modeling flexibility – You can write future timestamps into Timestream for Live Analytics
by using the TIMESTAMP data type and multi-measure records. A multi-measure record can have
multiple attributes of TIMESTAMP data type, in addition to the time field in a record. TIMESTAMP
attributes, in a multi-measure record, can have timestamps in the future or the past and behave
like the time field except that Timestream for Live Analytics does not index on the values of type
TIMESTAMP in a multi-measure record.

Use cases

You can use multi-measure records for any time-series application that generates more than
one measurement from the same device at any given time. The following are some example
applications.

• A video streaming platform that generates hundreds of metrics at a given time.

• Medical devices that generate measurements such as blood oxygen levels, heart rate, and pulse.

• Industrial equipment such as oil rigs that generate metrics, temperature, and weather sensors.

• Other applications that are architected with one or more microservices.

Example: Monitoring the performance and health of a video streaming application

Consider a video streaming application that is running on 200 EC2 instances. You want to use
Amazon Timestream for Live Analytics to store and analyze the metrics being emitted from the

Writes 30

Amazon Timestream Developer Guide

application, so you can understand the performance and health of your application, quickly
identify anomalies, resolve issues, and discover optimization opportunities.

We will model this scenario with single-measure records and multi-measure records, and then
compare/contrast both approaches. For each approach, we make the following assumptions.

• Each EC2 instance emits four measures (video_startup_time, rebuffering_ratio,
video_playback_failures, and average_frame_rate) and four dimensions (device_id, device_type,
os_version, and region) per second.

• You want to store 6 hours of data in the memory store and 6 months of data in the magnetic
store.

• To identify anomalies, you've set up 10 queries that run every minute to identify any unusual
activity over the past few minutes. You've also built a dashboard with eight widgets that display
the last 6 hours of data, so that you can effectively monitor your application. This dashboard is
accessed by five users at any given time and is auto-refreshed every hour.

Using single measure records

Data modeling: With single measure records, we will create one record for each of the four
measures (video startup time, rebuffering ratio, video playback failures, and average frame rate).
Each record will have the four dimensions (device_id, device_type, os_version, and region) and a
timestamp.

Writes: When you write data into Amazon Timestream for Live Analytics, the records are
constructed as follows.

public void writeRecords() {
 System.out.println("Writing records");
 // Specify repeated values for all records
 List<Record> records = new ArrayList<>();
 final long time = System.currentTimeMillis();

 List<Dimension> dimensions = new ArrayList<>();

 final Dimension device_id = new
 Dimension().withName("device_id").withValue("12345678");
 final Dimension device_type = new
 Dimension().withName("device_type").withValue("iPhone 11");
 final Dimension os_version = new
 Dimension().withName("os_version").withValue("14.8");

Writes 31

Amazon Timestream Developer Guide

 final Dimension region = new Dimension().withName("region").withValue("us-east-1");

 dimensions.add(device_id);
 dimensions.add(device_type);
 dimensions.add(os_version);
 dimensions.add(region);

 Record videoStartupTime = new Record()
 .withDimensions(dimensions)
 .withMeasureName("video_startup_time")
 .withMeasureValue("200")
 .withMeasureValueType(MeasureValueType.BIGINT)
 .withTime(String.valueOf(time));
 Record rebufferingRatio = new Record()
 .withDimensions(dimensions)
 .withMeasureName("rebuffering_ratio")
 .withMeasureValue("0.5")
 .withMeasureValueType(MeasureValueType.DOUBLE)
 .withTime(String.valueOf(time));
 Record videoPlaybackFailures = new Record()
 .withDimensions(dimensions)
 .withMeasureName("video_playback_failures")
 .withMeasureValue("0")
 .withMeasureValueType(MeasureValueType.BIGINT)
 .withTime(String.valueOf(time));
 Record averageFrameRate = new Record()
 .withDimensions(dimensions)
 .withMeasureName("average_frame_rate")
 .withMeasureValue("0.5")
 .withMeasureValueType(MeasureValueType.DOUBLE)
 .withTime(String.valueOf(time));

 records.add(videoStartupTime);
 records.add(rebufferingRatio);
 records.add(videoPlaybackFailures);
 records.add(averageFrameRate);

 WriteRecordsRequest writeRecordsRequest = new WriteRecordsRequest()
 .withDatabaseName(DATABASE_NAME)
 .withTableName(TABLE_NAME)
 .withRecords(records);

 try {

Writes 32

Amazon Timestream Developer Guide

 WriteRecordsResult writeRecordsResult =
 amazonTimestreamWrite.writeRecords(writeRecordsRequest);
 System.out.println("WriteRecords Status: " +
 writeRecordsResult.getSdkHttpMetadata().getHttpStatusCode());
 } catch (RejectedRecordsException e) {
 System.out.println("RejectedRecords: " + e);
 for (RejectedRecord rejectedRecord : e.getRejectedRecords()) {
 System.out.println("Rejected Index " + rejectedRecord.getRecordIndex() + ": "
 + rejectedRecord.getReason());
 }
 System.out.println("Other records were written successfully. ");
 } catch (Exception e) {
 System.out.println("Error: " + e);
 }
 }

When you store single-measure records, the data is logically represented as follows.

Time device_id device_ty
pe

os_versio
n

region measure_n
ame

measure_v
alue::big
int

measure_v
alue::dou
ble

2021-09-0
7
21:48:44 .00000000
0

12345678 iPhone
11

14.8 us-east-1 video_sta
rtup_time

200

2021-09-0
7
21:48:44 .00000000
0

12345678 iPhone
11

14.8 us-east-1 rebufferi
ng_ratio

0.5

2021-09-0
7
21:48:44 .00000000
0

12345678 iPhone
11

14.8 us-east-1 video_pla
yback_fai
lures

0

2021-09-0
7

12345678 iPhone
11

14.8 us-east-1 average_f
rame_rate

0.85

Writes 33

Amazon Timestream Developer Guide

Time device_id device_ty
pe

os_versio
n

region measure_n
ame

measure_v
alue::big
int

measure_v
alue::dou
ble

21:48:44 .00000000
0

2021-09-0
7
21:53:44 .00000000
0

12345678 iPhone
11

14.8 us-east-1 video_sta
rtup_time

500

2021-09-0
7
21:53:44 .00000000
0

12345678 iPhone
11

14.8 us-east-1 rebufferi
ng_ratio

1.5

2021-09-0
7
21:53:44 .00000000
0

12345678 iPhone
11

14.8 us-east-1 video_pla
yback_fai
lures

10

2021-09-0
7
21:53:44 .00000000
0

12345678 iPhone
11

14.8 us-east-1 average_f
rame_rate

0.2

Queries: You can write a query that retrieves all of the data points with the same timestamp
received over the past 15 minutes as follows.

with cte_video_startup_time as (SELECT time, device_id, device_type, os_version,
 region, measure_value::bigint as video_startup_time FROM table where time >= ago(15m)
 and measure_name=”video_startup_time”),
cte_rebuffering_ratio as (SELECT time, device_id, device_type, os_version, region,
 measure_value::double as rebuffering_ratio FROM table where time >= ago(15m) and
 measure_name=”rebuffering_ratio”),
cte_video_playback_failures as (SELECT time, device_id, device_type, os_version,
 region, measure_value::bigint as video_playback_failures FROM table where time >=
 ago(15m) and measure_name=”video_playback_failures”),

Writes 34

Amazon Timestream Developer Guide

cte_average_frame_rate as (SELECT time, device_id, device_type, os_version, region,
 measure_value::double as average_frame_rate FROM table where time >= ago(15m) and
 measure_name=”average_frame_rate”)
SELECT a.time, a.device_id, a.os_version, a.region, a.video_startup_time,
 b.rebuffering_ratio, c.video_playback_failures, d.average_frame_rate FROM
 cte_video_startup_time a, cte_buffering_ratio b, cte_video_playback_failures c,
 cte_average_frame_rate d WHERE
a.time = b.time AND a.device_id = b.device_id AND a.os_version = b.os_version AND
 a.region=b.region AND
a.time = c.time AND a.device_id = c.device_id AND a.os_version = c.os_version AND
 a.region=c.region AND
a.time = d.time AND a.device_id = d.device_id AND a.os_version = d.os_version AND
 a.region=d.region

Workload cost: The cost of this workload is estimated to be $373.23 per month with single-
measure records

Using multi-measure records

Data modeling: With multi-measure records, we will create one record that contains all four
measures (video startup time, rebuffering ratio, video playback failures, and average frame rate),
all four dimensions (device_id, device_type, os_version, and region), and a timestamp.

Writes: When you write data into Amazon Timestream for Live Analytics, the records are
constructed as follows.

public void writeRecords() {
 System.out.println("Writing records");
 // Specify repeated values for all records
 List<Record> records = new ArrayList<>();
 final long time = System.currentTimeMillis();

 List<Dimension> dimensions = new ArrayList<>();

 final Dimension device_id = new
 Dimension().withName("device_id").withValue("12345678");
 final Dimension device_type = new
 Dimension().withName("device_type").withValue("iPhone 11");
 final Dimension os_version = new
 Dimension().withName("os_version").withValue("14.8");
 final Dimension region = new Dimension().withName("region").withValue("us-east-1");

 dimensions.add(device_id);

Writes 35

Amazon Timestream Developer Guide

 dimensions.add(device_type);
 dimensions.add(os_version);
 dimensions.add(region);

 Record videoMetrics = new Record()
 .withDimensions(dimensions)
 .withMeasureName("video_metrics")
 .withTime(String.valueOf(time));
 .withMeasureValueType(MeasureValueType.MULTI)
 .withMeasureValues(
 new MeasureValue()
 .withName("video_startup_time")
 .withValue("0")
 .withValueType(MeasureValueType.BIGINT),
 new MeasureValue()
 .withName("rebuffering_ratio")
 .withValue("0.5")
 .withType(MeasureValueType.DOUBLE),
 new MeasureValue()
 .withName("video_playback_failures")
 .withValue("0")
 .withValueType(MeasureValueType.BIGINT),
 new MeasureValue()
 .withName("average_frame_rate")
 .withValue("0.5")
 .withValueType(MeasureValueType.DOUBLE))

 records.add(videoMetrics);

 WriteRecordsRequest writeRecordsRequest = new WriteRecordsRequest()
 .withDatabaseName(DATABASE_NAME)
 .withTableName(TABLE_NAME)
 .withRecords(records);

 try {
 WriteRecordsResult writeRecordsResult =
 amazonTimestreamWrite.writeRecords(writeRecordsRequest);
 System.out.println("WriteRecords Status: " +
 writeRecordsResult.getSdkHttpMetadata().getHttpStatusCode());
 } catch (RejectedRecordsException e) {
 System.out.println("RejectedRecords: " + e);
 for (RejectedRecord rejectedRecord : e.getRejectedRecords()) {
 System.out.println("Rejected Index " + rejectedRecord.getRecordIndex() + ": "
 + rejectedRecord.getReason());

Writes 36

Amazon Timestream Developer Guide

 }
 System.out.println("Other records were written successfully. ");
 } catch (Exception e) {
 System.out.println("Error: " + e);
 }
 }

When you store multi-measure records, the data is logically represented as follows.

Time device_iddevice_ty
pe

os_versio
n

region measure_n
ame

video_sta
rtup_time

rebufferi
ng_ratio

video_
playback_
failures

average_f
rame_rate

2021-09-0
7
21:48:44 .00000000
0

12345678iPhone
11

14.8 us-
east-1

video_met
rics

200 0.5 0 0.85

2021-09-0
7
21:53:44 .00000000
0

12345678iPhone
11

14.8 us-
east-1

video_met
rics

500 1.5 10 0.2

Queries: You can write a query that retrieves all of the data points with the same timestamp
received over the past 15 minutes as follows.

SELECT time, device_id, device_type, os_version, region, video_startup_time,
 rebuffering_ratio, video_playback_failures, average_frame_rate FROM table where time
 >= ago(15m)

Workload cost: The cost of workload is estimated to be $127.43 with multi-measure records.

Note

In this case, using multi-measure records reduces the overall estimated monthly spend by
2.5x, with the data writes cost reduced by 3.3x, the storage cost reduced by 3.3x, and the
query cost reduced by 1.2x.

Writes 37

Amazon Timestream Developer Guide

Writing data with a timestamp that exists in the past or in the future

Timestream for Live Analytics offers the ability to write data with a timestamp that lies outside of
the memory store retention window through a couple different mechanisms.

• Magnetic store writes – You can write late-arriving data directly into the magnetic store through
magnetic store writes. To use magnetic store writes, you must first enable magnetic store writes
for a table. You can then ingest data into the table using the same mechanism used for writing
data into the memory store. Amazon Timestream for Live Analytics will automatically write the
data into the magnetic store based on its timestamp.

Note

The write-to-read latency for the magnetic store can be up to 6 hours, unlike writing data
into the memory store, where the write-to-read latency is in the sub-second range.

• TIMESTAMP data type for measures – You can use the TIMESTAMP data type to store data from
the past, present, or future. A multi-measure record can have multiple attributes of TIMESTAMP
data type, in addition to the time field in a record. TIMESTAMP attributes, in a multi-measure
record, can have timestamps in the future or the past and behave like the time field except
that Timestream for Live Analytics does not index on the values of type TIMESTAMP in a multi-
measure record.

Note

The TIMESTAMP data type is supported only for multi-measure records.

Eventual consistency for reads

Timestream for Live Analytics supports eventual consistency semantics for reads. This means that
when you query data immediately after writing a batch of data into Timestream for Live Analytics,
the query results might not reflect the results of a recently completed write operation. If you
repeat these query requests after a short time, the results should return the latest data.

Batching writes with WriteRecords API

Amazon Timestream for Live Analytics enables you to write data points from a single time series
and/or data points from many series in a single write request. Batching multiple data points in

Writes 38

Amazon Timestream Developer Guide

a single write operation is beneficial from a performance and cost perspective. See Writes in the
Metering and Pricing section for more details.

Note

Your write requests to Timestream for Live Analytics may be throttled as Timestream
for Live Analytics scales to adapt to the data ingestion needs of your application. If your
applications encounter throttling exceptions, you must continue to send data at the same
(or higher) throughput to allow Timestream for Live Analytics to automatically scale to your
application's needs.

Batch load

With batch load for Amazon Timestream for LiveAnalytics, you can ingest CSV files stored in
Amazon S3 into Timestream in batches. With this new functionality, you can have your data in
Timestream for LiveAnalytics without having to rely on other tools or write custom code. You can
use batch load for backfilling data with flexible wait times, such as data that isn't immediately
required for querying or analysis.

You can create batch load tasks by using the Amazon Web Services Management Console, the
Amazon CLI, and the Amazon SDKs. For more information, see Using batch load with the console,
Using batch load with the Amazon CLI, and Using batch load with the Amazon SDKs.

For more information about batch load, see Using batch load in Timestream for LiveAnalytics.

Choosing between the WriteRecords API operation and batch load

With the WriteRecords API operation, you can write your streaming time series data into
Timestream for LiveAnalytics as it's generated by your system. By using WriteRecords, you can
continuously ingest a single data point or smaller batches of data in real time. Timestream for
LiveAnalytics offers you a flexible schema that auto detects the column names and data types for
your Timestream for LiveAnalytics tables, based on the dimension names and data types of the
data points you specify when invoking writes into the database.

In contrast, batch load enables the robust ingestion of batched time-series data from source
files (CSV files) into Timestream for LiveAnalytics, using a data model that you define. A few
examples for when to use batch load with a source file are importing time series data in bulk for
the evaluation of Timestream for LiveAnalytics through a proof of concept, importing time series
data in bulk from an IoT device that was offline for some time, and migrating historical time series

Writes 39

Amazon Timestream Developer Guide

data from Amazon S3 to Timestream for LiveAnalytics. For information about batch load, see Using
batch load in Timestream for LiveAnalytics.

Both solutions are secure, reliable, and performant.

Use WriteRecords when:

• Streaming smaller amounts (less than 10 MB) of data per request.

• Populating existing tables.

• Ingesting data from a log stream.

• Performing real-time analytics.

• Requiring lower latency.

Use batch load when:

• Ingesting larger loads of data that originate in Amazon S3 in CSV files. For more information
about limits, see Quotas.

• Populating new tables, such as in the case of a data migration.

• Enriching databases with historical data (ingestion into new tables).

• You have source data that changes slowly or not at all.

• You have flexible wait times because a batch load task might be in a pending state until
resources are available, especially if you load a very large amount of data. Batch load is suitable
for data that doesn't need to be readily available for querying or analysis to add more clarity.

Storage

Timestream for Live Analytics stores and organizes your time series data to optimize query
processing time and to reduce storage costs. It offers data storage tiering and supports two storage
tiers: a memory store and a magnetic store. The memory store is optimized for high throughput
data writes and fast point-in-time queries. The magnetic store is optimized for lower throughput
late-arriving data writes, long term data storage, and fast analytical queries.

Timestream for Live Analytics ensures durability of your data by automatically replicating your
memory and magnetic store data across different Availability Zones within a single Amazon Web
Services Region. All of your data is written to disk before acknowledging your write request as
complete.

Storage 40

Amazon Timestream Developer Guide

Timestream for Live Analytics enables you to configure retention policies to move data from the
memory store to the magnetic store. When the data reaches the configured value, Timestream for
Live Analytics automatically moves the data to the magnetic store. You can also set a retention
value on the magnetic store. When data expires out of the magnetic store, it is permanently
deleted.

For example, consider a scenario where you configure the memory store to hold a week's-worth
of data and the magnetic store to hold 1 year's-worth of data. The age of the data is computed
using the timestamp associated with the data point. When the data in the memory store becomes
a week old it is automatically moved to the magnetic store. It is then retained in the magnetic store
for a year. When the data becomes a year old, it is deleted from Timestream for Live Analytics. The
retention values of the memory store and the magnetic store cumulatively define the amount of
time that your data will be stored in Timestream for Live Analytics. This means that for the above
scenario, from the time of data arrival, the data is stored in Timestream for Live Analytics for a
total period of 1 year and 1 week.

Note

When you upgrade the retention period of the memory or magnetic store, the retention
change takes effect from that point onwards. For example, if the retention period of the
memory store was set to 2 hours and then changed to 24 hours by updating the table
retention policies, the memory store will be capable of holding 24 hours of data, but will be
populated with 24 hours of data 22 hours after this change was made. Timestream for Live
Analytics does not retrieve data from the magnetic store to populate the memory store.

To ensure the security of your time series data, your data in Timestream for Live Analytics is always
encrypted by default. This applies to data in transit and at rest. Furthermore, Timestream for Live
Analytics enables you to use customer managed keys to secure your data in the magnetic store. For
more information on customer managed keys, see Amazon KMS keys.

Queries

With Timestream for Live Analytics, you can easily store and analyze metrics for DevOps, sensor
data for IoT applications, and industrial telemetry data for equipment maintenance, as well as
many other use cases. The purpose-built, adaptive query engine in Timestream for Live Analytics
allows you to access data across storage tiers using a single SQL statement. It transparently
accesses and combines data across storage tiers without requiring you to specify the data location.

Queries 41

https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#kms_keys

Amazon Timestream Developer Guide

You can use SQL to query data in Timestream for Live Analytics to retrieve time series data from
one or more tables. You can access the metadata information for databases and tables. Timestream
for Live Analytics SQL also supports built-in functions for time series analytics. You can refer to the
Query language reference reference for additional details.

Timestream for Live Analytics is designed to have a fully decoupled data ingestion, storage, and
query architecture where each component can scale independently of other components (allowing
it to offer virtually infinite scale for an application's needs). This means that Timestream for Live
Analytics does not "tip over" when your applications send hundreds of terabytes of data per day
or run millions of queries processing small or large amounts of data. As your data grows over time,
the query latency in Timestream for Live Analytics remains mostly unchanged. This is because the
Timestream for Live Analytics query architecture can leverage massive amounts of parallelism
to process larger data volumes and automatically scale to match query throughput needs of an
application.

Data model

Timestream supports two data models for queries—the flat model and the time series model.

Note

Data in Timestream is stored using the flat model and it is the default model for querying
data. The time series model is a query-time concept and is used for time series analytics.

• Flat model

• Time series model

Flat model

The flat model is Timestream's default data model for queries. It represents time series data in
a tabular format. The dimension names, time, measure names and measure values appear as
columns. Each row in the table is an atomic data point corresponding to a measurement at a
specific time within a time series. Timestream databases, tables, and columns have some naming
constraints. Those are described in Service limits.

The table below shows an illustrative example for how Timestream stores data representing
the CPU utilization, memory utilization, and network activity of EC2 instances, when the data
is sent as a single-measure record. In this case, the dimensions are the region, availability zone,

Queries 42

Amazon Timestream Developer Guide

virtual private cloud, and instance IDs of the EC2 instances. The measures are the CPU utilization,
memory utilization, and the incoming network data for the EC2 instances. The columns region,
az, vpc, and instance_id contain the dimension values. The column time contains the timestamp
for each record. The column measure_name contains the names of the measures represented by
cpu-utilization, memory_utilization, and network_bytes_in. The columns measure_value::double
contains measurements emitted as doubles (e.g. CPU utilization and memory utilization). The
column measure_value::bigint contains measurements emitted as integers e.g. the incoming
network data.

Time region az vpc instance_
id

measure_n
ame

measure_v
alue::dou
ble

measure_v
alue::big
int

2019-12-0
4
19:00:00.
000000000

us-east-1 us-east-1
d

vpc-1a2b3
c4d

i-1234567
890abcdef
0

cpu_utili
zation

35.0 null

2019-12-0
4
19:00:01.
000000000

us-east-1 us-east-1
d

vpc-1a2b3
c4d

i-1234567
890abcdef
0

cpu_utili
zation

38.2 null

2019-12-0
4
19:00:02.
000000000

us-east-1 us-east-1
d

vpc-1a2b3
c4d

i-1234567
890abcdef
0

cpu_utili
zation

45.3 null

2019-12-0
4
19:00:00.
000000000

us-east-1 us-east-1
d

vpc-1a2b3
c4d

i-1234567
890abcdef
0

memory_ut
ilization

54.9 null

2019-12-0
4
19:00:01.
000000000

us-east-1 us-east-1
d

vpc-1a2b3
c4d

i-1234567
890abcdef
0

memory_ut
ilization

42.6 null

Queries 43

Amazon Timestream Developer Guide

Time region az vpc instance_
id

measure_n
ame

measure_v
alue::dou
ble

measure_v
alue::big
int

2019-12-0
4
19:00:02.
000000000

us-east-1 us-east-1
d

vpc-1a2b3
c4d

i-1234567
890abcdef
0

memory_ut
ilization

33.3 null

2019-12-0
4
19:00:00.
000000000

us-east-1 us-east-1
d

vpc-1a2b3
c4d

i-1234567
890abcdef
0

network_b
ytes

34,400 null

2019-12-0
4
19:00:01.
000000000

us-east-1 us-east-1
d

vpc-1a2b3
c4d

i-1234567
890abcdef
0

network_b
ytes

1,500 null

2019-12-0
4
19:00:02.
000000000

us-east-1 us-east-1
d

vpc-1a2b3
c4d

i-1234567
890abcdef
0

network_b
ytes

6,000 null

The table below shows an illustrative example for how Timestream stores data representing the
CPU utilization, memory utilization, and network activity of EC2 instances, when the data is sent as
a multi-measure record.

Time region az vpc instance_
id

measure_n
ame

cpu_utili
zation

memory_ut
ilization

network_b
ytes

2019-12-0
4
19:00:00.
000000000

us-
east-1

us-
east-1d

vpc-1a2b3
c4d

i-1234567
890abcdef
0

metrics 35.0 54.9 34,400

Queries 44

Amazon Timestream Developer Guide

Time region az vpc instance_
id

measure_n
ame

cpu_utili
zation

memory_ut
ilization

network_b
ytes

2019-12-0
4
19:00:01.
000000000

us-
east-1

us-
east-1d

vpc-1a2b3
c4d

i-1234567
890abcdef
0

metrics 38.2 42.6 1,500

2019-12-0
4
19:00:02.
000000000

us-
east-1

us-
east-1d

vpc-1a2b3
c4d

i-1234567
890abcdef
0

metrics 45.3 33.3 6,600

Time series model

The time series model is a query time construct used for time series analytics. It represents data
as an ordered sequence of (time, measure value) pairs. Timestream supports time series functions
such as interpolation to enable you to fill the gaps in your data. To use these functions, you must
convert your data into the time series model using functions such as create_time_series. Refer to
Query language reference for more details.

Using the earlier example of the EC2 instance, here is the CPU utilization data expressed as a
timeseries.

region az vpc instance_id cpu_utilization

us-east-1 us-east-1d vpc-1a2b3c4d i-1234567
890abcdef0

[{time:
2019-12-0
4 19:00:00.
000000000,
value: 35}, {time:
2019-12-0
4 19:00:01.
000000000
, value:
38.2}, {time:
2019-12-0

Queries 45

Amazon Timestream Developer Guide

region az vpc instance_id cpu_utilization

4 19:00:02.
000000000,
value: 45.3}]

Scheduled queries

The scheduled query feature in Amazon Timestream for Live Analytics is a fully managed,
serverless, and scalable solution for calculating and storing aggregates, rollups, and other forms
of preprocessed data typically used to power operational dashboards, business reports, ad hoc
analytics, and other applications. Scheduled queries make real-time analytics more performant
and cost-effective, so you can derive additional insights from your data, and can continue to make
better business decisions.

For more information about scheduled query, see Using scheduled queries in Timestream for
LiveAnalytics.

Timestream Compute Unit (TCU)

Amazon Timestream for Live Analytics measures the compute capacity allocated to you for your
query needs in Timestream compute unit (TCU). One TCU comprises of 4 vCPUs and 16 GB of
memory. When you run queries in Timestream for Live Analytics, the service allocates TCUs on-
demand based on the complexity of your queries and the amount of data being processed. The
number of TCUs that a query consumes determines the associated cost.

Note

All Amazon Web Services accounts that onboard to the service after April 29, 2024 will
default to using TCUs for query pricing.

In this topic:

• Provisioned Timestream Compute Units

• MaxQuery TCU

• Billing for TCU

Scheduled queries 46

Amazon Timestream Developer Guide

• Configuring TCU

• Estimating required compute units

• When to increase MaxQueryTCU

• When to decrease MaxQueryTCU

• Monitoring usage with CloudWatch metrics

• Understanding variations in compute units usage

Provisioned Timestream Compute Units

Note

Provisioned TCU is available only in the Asia Pacific (Mumbai) region.

With provisioned Timestream Compute Units (TCUs), you can allocate a fixed number of TCUs to
your account, ensuring predictable performance and cost for your queries. By provisioning TCUs,
you gain greater control over compute capacity, enabling you to optimize both performance and
query costs based on your application's specific needs.

Topics

• Benefits of Provisioning TCU

• How Provisioned TCU Works

• Monitoring Provisioned TCU usage

• Modifying your Provisioned TCUs

• Pricing for Provisioned TCUs

Benefits of Provisioning TCU

Provisioning TCU provides several benefits for customers with dedicated workloads, including:

1. Predictable Performance: By allocating a fixed number of TCUs, you ensure consistent
performance for your queries.

2. Cost Control: With provisioned TCU, you can better predict and manage your costs, as you are
only charged for the duration of the provisioned TCUs.

Timestream Compute Unit (TCU) 47

Amazon Timestream Developer Guide

3. Flexibility: Provisioned TCU ensures that your workload has dedicated compute resources and
you can adjust the number of provisioned TCUs to match your workload requirements, providing
the required scalability as your application’s needs change.

How Provisioned TCU Works

Each Timestream Compute Unit (TCU) is comprised of 4 vCPUs and 16GB of memory. To provision
TCUs, use the Amazon Management Console or the UpdateAccountSettings API operation to
allocate a fixed number of TCUs to your account, which are then dedicated to your workload.
This ensures predictable performance and cost for your queries. The minimum number of
provisioned TCUs is 4, with subsequent increments also in multiples of 4 (e.g., 4, 8, 12, 16).
Once provisioned, you can run your query workloads uninterrupted. As your workload demands
change, you can adjust the provisioned TCUs using the Amazon Management Console or the
UpdateAccountSettings API operation at any time. However, you can only decrease the number of
TCUs after a minimum of 1 hour has passed since provisioning them.

For example, if you provision 8 TCUs at 10:00 AM, you will be charged for a minimum of 1 hour,
until 11:00 AM. During this time, you can increment the TCUs to 12 or more, but you cannot
decrement them until 11:00 AM.

The time it takes to provision the requested Timestream Compute Units (TCUs) in your account
varies depending on the number of TCUs requested. For example, provisioning 100 TCUs could take
up to 30 minutes. However, you will only be charged for the resources once they are provisioned
and available to serve your query workload. To ensure a smooth experience during planned
increases in usage, we recommend provisioning the required resources in advance. This allows
sufficient time for the resources to become available and ensures that your workload can be
handled without interruption.

Monitoring Provisioned TCU usage

To monitor your provisioned TCU usage, you can use the following CloudWatch metrics:

• Provisioned QueryTCU: This metric specifies the number of TCUs provisioned in your account.

• QueryTCU: This metric specifies the number of TCUs used by your workload.

• InsufficientTCUThrottles: This metric specifies the number of queries throttled due to
insufficient compute capacity.

Timestream Compute Unit (TCU) 48

Amazon Timestream Developer Guide

Modifying your Provisioned TCUs

You can adjust the number of provisioned Timestream Compute Units (TCUs) to match your
changing workload demands using the Amazon Management Console, Amazon Command Line
Interface (CLI), or Amazon SDKs.

To view the current number of provisioned TCUs in your account, navigate to the "Admin
Dashboard" section in the Amazon Management Console. From there, you can easily monitor and
manage your provisioned TCUs.

In the Query Compute Settings, you can verify that the compute mode is set to "Provisioned" and
view the current number of provisioned Timestream Compute Units (TCUs) in your account, which
is displayed as "Active Query TCU". The default value is 0. You need to provision TCUs before you
run your query workload.

To modify the query compute settings, click the "Modify" button. For instance, if you want to
increase the provisioned TCUs from 32 to 64, simply enter your desired target value (64) in the
"Target Query TCU" field. Additionally, you can specify an Amazon Simple Notification Service
(SNS) topic to receive a notification when the provisioning process is complete.

After confirming your desired configuration by selecting "Save settings", you will see that the
current request status is updated to "Pending". The "Target Query TCU" field will now reflect the
desired number of compute units, which is 64 in this case, indicating that the provisioning process
has been initiated and is awaiting completion.

Timestream Compute Unit (TCU) 49

Amazon Timestream Developer Guide

Once provisioned, the "Active Query TCU" field will be updated to reflect the new provisioned
capacity of 64 Timestream Compute Units, indicating that the provisioning process is complete and
the additional resources are now available for use in your account.

To reduce the number of provisioned Timestream Compute Units (TCUs) in your account, follow
the same steps as before and enter your desired target value. For example, if you want to decrease
the provisioned TCUs to 16, simply set the "Target Query TCU" field to 16. Please note that you can
only decrease the number of provisioned TCUs after a minimum of 1 hour has passed since the last
provisioning request. This means that if you provisioned or modified your TCUs within the last hour,
you will need to wait until the 1-hour window has elapsed before you can decrement the TCUs.

After requesting a decrease in provisioned Timestream Compute Units (TCUs), the service will
decrement the TCUs when it determines it is safe to do so, which may take up to a few minutes.
During this time, the "Target Query TCU" field will continue to display the desired target value, in
this case, 16 TCUs, indicating the pending change. Once the decrement is complete, the "Active
Query TCU" field will be updated to reflect the new provisioned capacity of 16 TCUs.

Timestream Compute Unit (TCU) 50

Amazon Timestream Developer Guide

Once the request is successfully completed, the "Active Query TCU" field will be updated to reflect
the new provisioned capacity of 16 Timestream Compute Units (TCUs). If you no longer anticipate
any query workload, you can further decrement the provisioned TCUs to 0, effectively releasing all
provisioned resources and stopping any associated charges.

Pricing for Provisioned TCUs

You are charged for the duration of the Timestream Compute Units (TCUs) provisioned in your
account, with a minimum charge of 1 hour. After the first hour, the TCUs are metered per second.

To calculate the total metered hours, multiply the number of provisioned TCUs by the duration
of use. For example: If you provision 16 TCUs for 2 hours, the total metered hours are 16 TCU *
2 hours = 32 TCU-hours. If you provision 16 TCUs for 4 hours, then decrement to 8 TCUs and use
them for 6 hours, the total metered hours are 16 TCU * 4 hours + 8 TCU * 6 hours = 112 TCU-hours.

Your total spend will depend on the prevailing TCU-hour cost in your region. Please refer to the
Amazon Timestream Pricing page for detailed information.

Best Practices for managing Provisioned TCU

To get the most out of the Provisioned TCU feature, follow these best practices:

• Monitor your workload: Monitor your workload's performance, QueryTCU used and view
InsufficientTCUThrottles to understand your usage patterns and adjust your provisioned
TCUs accordingly.

• Pro-active adjustment: Increase or decrease provisioned TCUs based on observed trends and
anticipated workload changes. Make adjustments for your peak and off-peak periods.

• Maintain Headroom: Maintain your consumed QueryTCU to within 80% - 90% of your
ProvisionedQueryTCU to handle unexpected spikes.

• Optimize Queries: Leverage features such as Query Insights and follow Timestream Query best
practices to optimize queries for reduced compute usage.

• Implement Retries:Timestream for LiveAnalytics Query SDK supports a retry mechanism with a
default of 3 retries. Adjust the value accordingly to handle occasional and unanticipated bursts.

Timestream Compute Unit (TCU) 51

Amazon Timestream Developer Guide

MaxQuery TCU

This setting specifies the maximum number of compute units the service will use at any point in
time to serve your queries. To run queries, you must set the minimum capacity to 4 TCUs. You can
set the maximum number of TCUs in multiples of 4, for example, 4, 8, 16, 32, and so on. You're
charged only for the compute resources you use for your workload. For example, if you set the
maximum TCUs to 128, but consistently use only 8 TCUs. You'll be charged only for the duration
during which you used the 8 TCUs. The default MaxQueryTCU in your account is set to 200. You
can adjust MaxQueryTCU from 4 to 1000, using the Amazon Web Services Management Console or
UpdateAccountSettings API operation with the Amazon SDK or Amazon CLI.

We recommend setting the MaxQueryTCU for your account. Setting a maximum TCU limit helps
control costs by restricting the number of compute units the service can use for your query
workload. This allows you to better predict and manage your query spending.

Billing for TCU

Each TCU is billed on an hourly basis with per-second granularity and for a minimum of 30
seconds. The usage unit of these compute units is TCU-hour.

When you run queries, you're billed for the TCUs used during the query execution time, measured
in TCU-hours. For example:

• Your workload uses 20 TCUs for 3 hours. You're billed for 60 TCU-hours (20 TCUs x 3 hours).

• Your workload uses 10 TCUs for 30 minutes, and then 20 TCUs for the next 30 minutes. You're
billed for 15 TCU-hours (10 TCUs x 0.5 hours + 20 TCUs x 0.5 hours).

The pricing per TCU-hour varies by Amazon Web Services Region. Refer to Amazon Timestream
pricing for additional details. As your workload grows, the service automatically scales the
compute capacity up to the specified maximum TCU limit (MaxQueryTCU) to maintain consistent
performance. The MaxQueryTCU setting acts as a ceiling for the compute capacity that the service
can scale to. This setting helps you to control the number of compute resources and as a result
their cost.

Configuring TCU

When you onboard the service, each Amazon Web Services account has a default MaxQueryTCU
limit of 200. You can update this limit as required at any point in time using the Amazon Web

Timestream Compute Unit (TCU) 52

https://docs.amazonaws.cn/timestream/latest/developerguide/API_query_UpdateAccountSettings.html
https://www.amazonaws.cn/timestream/pricing/
https://www.amazonaws.cn/timestream/pricing/

Amazon Timestream Developer Guide

Services Management Console or UpdateAccountSettings API operation with the Amazon SDK or
Amazon CLI.

If you're unsure about the values to configure, monitor the QueryTCU metric for your account. This
metric is available in the Amazon Web Services Management Console and Amazon CloudWatch.
This metric provides insight into the maximum number of TCUs used at a minute granularity. Based
on historical data and your estimation of future growth, set the MaxQueryTCU to accommodate
the spikes in your usage. We recommend having a headroom of at least 4-16 TCUs above your peak
usage. For example, if your peak QueryTCU in the last 30 days was 128, we recommend setting
MaxQueryTCU between 132 to 144.

Estimating required compute units

Compute units can process queries concurrently. To determine the number of compute units
required, consider the general guidelines in the following table:

Concurrent queries TCUs

7 4

14 8

21 12

Note

• These are general guidelines and the actual number of compute units required depends
on several factors, such as:

• The effective concurrency of queries.

• Query patterns.

• The number of partitions scanned.

• Other workload-specific characteristics.

• This guideline pertains to queries that scan for the last few minutes to an hour of data
and adhere to the Timestream query best practices and Data modeling guidelines.

Timestream Compute Unit (TCU) 53

https://docs.amazonaws.cn/timestream/latest/developerguide/API_query_UpdateAccountSettings.html

Amazon Timestream Developer Guide

• Monitor your application's performance and the QueryTCU metric to adjust the compute
units, as required.

When to increase MaxQueryTCU

You should consider increasing the MaxQueryTCU in the following scenarios:

• Your peak query consumption is approaching or reaching the current configured maximum query
TCU. We recommend setting the maximum query TCU at least 4-16 TCUs higher than your peak
consumption.

• Your queries are returning a 4xx error with the message MaxQueryTCU exceeded. If you
anticipate a planned increase in your workload, revisit and adjust the configured maximum query
TCU accordingly.

When to decrease MaxQueryTCU

You should consider decreasing the MaxQueryTCU in the following scenarios:

• Your workload has a predictable and stable usage pattern, and you have a good understanding
of your compute usage requirements. Lowering the maximum query TCU to within 4-16 TCU
above your peak consumption can help prevent unintentional usage and costs. You can modify
the value using the UpdateAccountSettings API operation.

• Your workload's peak usage has decreased over time, either due to changes in your application or
user behavior patterns. Lowering the maximum TCU can help mitigate unintentional costs.

Note

Depending on your current usage, reducing the maximum TCU limit change might take
up to 24 hours to be effective. You're billed only for the TCUs that your queries actually
consume. Having a higher maximum query TCU limit does not impact your costs unless
those TCUs are used by your workload.

Timestream Compute Unit (TCU) 54

https://docs.amazonaws.cn/timestream/latest/developerguide/API_query_UpdateAccountSettings.html

Amazon Timestream Developer Guide

Monitoring usage with CloudWatch metrics

To monitor your TCU usage, Timestream for Live Analytics provides the following CloudWatch
metric: QueryTCU. This metric specifies the number of compute units used in a minute and is
emitted every minute. You can choose to monitor the maximum and minimum TCUs used in a
minute. You can also set alarms on this metric to track your query costs in real-time.

Understanding variations in compute units usage

The number of compute resources required for your queries can either increase or decrease based
on several parameters. For example, data volume, data ingestion patterns, query latency, query
shape, query efficiency, and query combinations that use real-time and analytical queries. These
parameters can lead to either higher or lower TCU units required for your workload. In a steady
state where these parameters don't change, you might observe that the number of compute units
required for your workload decrease. Consequently, this can lower your monthly cost.

Additionally, if any of these parameters in your workload or data change, the number of
compute units required might increase. When Timestream receives a query, depending upon the
data partitions the query accesses, Timestream decides the number of compute resources to
performantly address the query.

At periodic intervals, based on your ingest and query access patterns, Timestream optimizes the
data layout. Timestream performs the optimization by clubbing less accessed partitions into a
single partition or splitting a hot partition into multiple partitions for performance. Consequently,
the compute capacity used by the same query might vary slightly at different points in time.

Opting-in to use TCU pricing for your queries

As an existing user, you can do a one-time opt-in to use TCUs for better cost management
and removal of per query minimum bytes metered. You can opt-in using the Amazon Web
Services Management Console or UpdateAccountSettings API operation with the Amazon
SDK or Amazon CLI. In the API operation, set the QueryPricingModel parameter to
COMPUTE_UNITS.
Opting into the compute-based pricing model is an irreversible change.

Timestream Compute Unit (TCU) 55

https://docs.amazonaws.cn/timestream/latest/developerguide/API_query_UpdateAccountSettings.html

Amazon Timestream Developer Guide

Accessing Timestream for LiveAnalytics

You can access Timestream for LiveAnalytics using the console, CLI or the API. For information
about accessing Timestream for LiveAnalytics, review the following:

Topics

• Sign up for an Amazon Web Services account

• Secure IAM users

• Provide Timestream for LiveAnalytics access

• Grant programmatic access

Sign up for an Amazon Web Services account

If you do not have an Amazon Web Services account, use the following procedure to create one.

To sign up for Amazon Web Services

1. Open http://www.amazonaws.cn/ and choose Sign Up.

2. Follow the on-screen instructions.

Amazon sends you a confirmation email after the sign-up process is complete. At any time,
you can view your current account activity and manage your account by going to http://
www.amazonaws.cn/ and choosing My Account.

Secure IAM users

After you sign up for an Amazon Web Services account, safeguard your administrative user by
turning on multi-factor authentication (MFA). For instructions, see Enable a virtual MFA device for
an IAM user (console) in the IAM User Guide.

To give other users access to your Amazon Web Services account resources, create IAM users. To
secure your IAM users, turn on MFA and only give the IAM users the permissions needed to perform
their tasks.

For more information about creating and securing IAM users, see the following topics in the IAM
User Guide:

• Creating an IAM user in your Amazon Web Services account

Accessing Timestream for LiveAnalytics 56

http://www.amazonaws.cn/
http://www.amazonaws.cn/
http://www.amazonaws.cn/
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users_create.html

Amazon Timestream Developer Guide

• Access management for Amazon resources

• Example IAM identity-based policies

Provide Timestream for LiveAnalytics access

The permissions that are required to access Timestream for LiveAnalytics are already granted to the
administrator. For other users, you should grant them Timestream for LiveAnalytics access using
the following policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "timestream:*",
 "kms:DescribeKey",
 "kms:CreateGrant",
 "kms:Decrypt",
 "dbqms:CreateFavoriteQuery",
 "dbqms:DescribeFavoriteQueries",
 "dbqms:UpdateFavoriteQuery",
 "dbqms:DeleteFavoriteQueries",
 "dbqms:GetQueryString",
 "dbqms:CreateQueryHistory",
 "dbqms:UpdateQueryHistory",
 "dbqms:DeleteQueryHistory",
 "dbqms:DescribeQueryHistory",
 "s3:ListAllMyBuckets"
],
 "Resource": "*"
 }
]
}

Note

For information about dbqms, see Actions, resources, and condition keys for Database
Query Metadata Service. For information about kms see Actions, resources, and condition
keys for Amazon Key Management Service.

Accessing Timestream for LiveAnalytics 57

https://docs.amazonaws.cn/IAM/latest/UserGuide/access.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_examples.html
https://docs.amazonaws.cn/service-authorization/latest/reference/list_databasequerymetadataservice.html
https://docs.amazonaws.cn/service-authorization/latest/reference/list_databasequerymetadataservice.html
https://docs.amazonaws.cn/service-authorization/latest/reference/list_awskeymanagementservice.html
https://docs.amazonaws.cn/service-authorization/latest/reference/list_awskeymanagementservice.html

Amazon Timestream Developer Guide

Grant programmatic access

Users need programmatic access if they want to interact with Amazon outside of the Amazon Web
Services Management Console. The Amazon APIs and the Amazon Command Line Interface require
access keys. Whenever possible, create temporary credentials that consist of an access key ID, a
secret access key, and a security token that indicates when the credentials expire.

To grant users programmatic access, choose one of the following options.

Which user needs
programmatic access?

To By

IAM Use short-term credentials to
sign programmatic requests
to the Amazon CLI or Amazon
APIs (directly or by using the
Amazon SDKs).

Following the instructions in
Using temporary credentials
with Amazon resources in the
IAM User Guide.

IAM (Not recommended)
Use long-term credentials to
sign programmatic requests
to the Amazon CLI or Amazon
APIs (directly or by using the
Amazon SDKs).

Following the instructions in
Managing access keys for IAM
users in the IAM User Guide.

Using the console

You can use the Amazon Management Console for Timestream Live Analytics to create, edit, delete,
describe, and list databases and tables. You can also use the console to run queries.

Topics

• Tutorial

• Create a database

• Create a table

• Run a query

• Create a scheduled query

Using the console 58

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_access-keys.html

Amazon Timestream Developer Guide

• Delete a scheduled query

• Delete a table

• Delete a database

• Edit a table

• Edit a database

Tutorial

This tutorial shows you how to create a database populated with sample data sets and run sample
queries. The sample datasets used in this tutorial are frequently seen in IoT and DevOps scenarios.
The IoT dataset contains time series data such as the speed, location, and load of a truck, to
streamline fleet management and identify optimization opportunities. The DevOps dataset
contains EC2 instance metrics such as CPU, network, and memory utilization to improve application
performance and availability. Here's a video tutorial for the instructions described in this section

Follow these steps to create a database populated with the sample data sets and run sample
queries using the Amazon Console.

1. Open the Amazon Console.

2. In the navigation pane, choose Databases

3. Click on Create database.

4. On the create database page, enter the following:

• Choose configuration—Select Sample database.

• Name—Enter a database name of your choice.

• Choose sample datasets—Select IoT and DevOps.

• Click on Create database to create a database containing two tables—IoT and DevOps
populated with sample data.

5. In the navigation pane, choose Query editor

6. Select Sample queries from the top menu.

7. Click on one of the sample queries. This will take you back to the query editor with the editor
populated with the sample query.

8. Click Run to run the query and see query results.

Using the console 59

https://www.youtube.com/watch?v=YBWCGDd4ChQ
https://console.aws.amazon.com/timestream

Amazon Timestream Developer Guide

Create a database

Follow these steps to create a database using the Amazon Console.

1. Open the Amazon Console.

2. In the navigation pane, choose Databases

3. Click on Create database.

4. On the create database page, enter the following.

• Choose configuration—Select Standard database.

• Name—Enter a database name of your choice.

• Encryption —Choose a KMS key or use the default option, where Timestream Live Analytics
will create a KMS key in your account if one does not already exist.

5. Click on Create database to create a database.

Create a table

Follow these steps to create a table using the Amazon Console.

1. Open the Amazon Console.

2. In the navigation pane, choose Tables

3. Click on Create table.

4. On the create table page, enter the following.

• Database name—Select the name of the database created in Create a database.

• Table name—Enter a table name of your choice.

• Memory store retention—Specify how long you want to retain data in the memory store.
The memory store processes incoming data, including late arriving data (data with a
timestamp earlier than the current time) and is optimized for fast point-in-time queries.

• Magnetic store retention—Specify how long you want to retain data in the magnetic store.
The magnetic store is meant for long term storage and is optimized for fast analytical
queries.

5. Click on Create table.

Using the console 60

https://console.aws.amazon.com/timestream
https://console.aws.amazon.com/timestream

Amazon Timestream Developer Guide

Run a query

Follow these steps to run queries using the Amazon Console.

1. Open the Amazon Console.

2. In the navigation pane, choose Query editor

3. In the left pane, select the database created in Create a database.

4. In the left pane, select the database created in Create a table.

5. In the query editor, you can run a query. To see the latest 10 rows in the table, run:

SELECT * FROM <database_name>.<table_name> ORDER BY time DESC LIMIT 10

6. (Optional) Turn on Enable Insights to get insights about the efficiency of your queries.

Create a scheduled query

Follow these steps to create a scheduled query using the Amazon Console.

1. Open the Amazon Console.

2. In the navigation pane, choose Scheduled queries.

3. Click on Create scheduled query.

4. In the Query Name and Destination Table sections, enter the following.

• Name—Enter a query name.

• Database name—Select the name of the database created in Create a database.

• Table name—Select the name of the table created in Create a table.

5. In the Query Statement section, enter a valid query statement. Then click Validate query.

6. From Destination table model, define the model for any undefined attributes. You can use
Visual builder or JSON.

7. In the Run schedule section, choose Fixed rate or Chron expression.For chron expressions,
refer to Schedule Expressions for Scheduled Queries for more details on schedule expressions.

8. In the SNS topic section, enter the SNS topic that will be used to for notification.

9. In the Error log report section enter the S3 location that will be used to report errors.

Choose the Encryption key type.

Using the console 61

https://console.aws.amazon.com/timestream
https://console.aws.amazon.com/timestream
https://docs.amazonaws.cn/timestream/latest/developerguide/scheduledqueries-schedule.html

Amazon Timestream Developer Guide

10. In the Security settings section from Amazon KMS key, choose the type of Amazon KMS key.

Enter the IAM role that Timestream for LiveAnalytics will use to run the scheduled query. Refer
to the IAM policy examples for scheduled queries for details on the required permissions and
trust relationship for the role.

11. Click Create scheduled query.

Delete a scheduled query

Follow these steps to delete or disable a scheduled query using the Amazon Console.

1. Open the Amazon Console.

2. In the navigation pane, choose Scheduled queries

3. Select the scheduled query created in Create a scheduled query.

4. Select Actions.

5. Choose Disable or Delete.

6. If you selected Delete, confirm the action and select Delete.

Delete a table

Follow these steps to delete a database using the Amazon Console.

1. Open the Amazon Console.

2. In the navigation pane, choose Tables

3. Select the table that you created in Create a table.

4. Click Delete.

5. Type delete in the confirmation box.

Delete a database

Follow these steps to delete a database using the Amazon Console:

1. Open the Amazon Console.

2. In the navigation pane, choose Databases

3. Select the database that you created in Create a database.

Using the console 62

https://docs.amazonaws.cn/timestream/latest/developerguide/security_iam_id-based-policy-examples.html#security_iam_id-based-policy-examples-sheduledqueries
https://console.aws.amazon.com/timestream
https://console.aws.amazon.com/timestream
https://console.aws.amazon.com/timestream

Amazon Timestream Developer Guide

4. Click Delete.

5. Type delete in the confirmation box.

Edit a table

Follow these steps to edit a table using the Amazon Console.

1. Open the Amazon Console.

2. In the navigation pane, choose Tables

3. Select the table that you created in Create a table.

4. Click Edit

5. Edit the table details and save.

• Memory store retention—Specify how long you want to retain data in the memory store.
The memory store processes incoming data, including late arriving data (data with a
timestamp earlier than the current time) and is optimized for fast point-in-time queries.

• Magnetic store retention—Specify how long you want to retain data in the magnetic store.
The magnetic store is meant for long term storage and is optimized for fast analytical
queries.

Edit a database

Follow these steps to edit a database using the Amazon Console.

1. Open the Amazon Console.

2. In the navigation pane, choose Databases

3. Select the database that you created in Create a database.

4. Click Edit

5. Edit the database details and save.

Accessing Amazon Timestream for LiveAnalytics using the Amazon CLI

You can use the Amazon Command Line Interface (Amazon CLI) to control multiple Amazon
services from the command line and automate them through scripts. You can use the Amazon

Using the Amazon CLI 63

https://console.aws.amazon.com/timestream
https://console.aws.amazon.com/timestream

Amazon Timestream Developer Guide

CLI for ad hoc operations. You can also use it to embed Amazon Timestream for LiveAnalytics
operations within utility scripts.

Before you can use the Amazon CLI with Timestream for LiveAnalytics, you must set up
programmatic access. For more information, see Grant programmatic access.

For a complete listing of all the commands available for the Timestream for LiveAnalytics Query
API in the Amazon CLI, see the Amazon CLI Command Reference.

For a complete listing of all the commands available for the Timestream for LiveAnalytics Write API
in the Amazon CLI, see the Amazon CLI Command Reference.

Topics

• Downloading and configuring the Amazon CLI

• Using the Amazon CLI with Timestream for LiveAnalytics

Downloading and configuring the Amazon CLI

The Amazon CLI runs on Windows, macOS, or Linux. To download, install, and configure it, follow
these steps:

1. Download the Amazon CLI at http://www.amazonaws.cn/cli.

2. Follow the instructions for Installing the Amazon CLI and Configuring the Amazon CLI in the
Amazon Command Line Interface User Guide.

Using the Amazon CLI with Timestream for LiveAnalytics

The command line format consists of an Amazon Timestream for LiveAnalytics operation name,
followed by the parameters for that operation. The Amazon CLI supports a shorthand syntax for
the parameter values, in addition to JSON.

Use help to list all available commands in Timestream for LiveAnalytics. For example:

aws timestream-write help

aws timestream-query help

You can also use help to describe a specific command and learn more about its usage:

Using the Amazon CLI 64

https://docs.amazonaws.cn/cli/latest/reference/timestream-query/index.html
https://docs.amazonaws.cn/cli/latest/reference/timestream-write/index.html
http://www.amazonaws.cn/cli
https://docs.amazonaws.cn/cli/latest/userguide/installing.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-getting-started.html

Amazon Timestream Developer Guide

aws timestream-write create-database help

For example, to create a database:

aws timestream-write create-database --database-name myFirstDatabase

To create a table with magnetic store writes enabled:

aws timestream-write create-table \
--database-name metricsdb \
--table-name metrics \
--magnetic-store-write-properties "{\"EnableMagneticStoreWrites\": true}"

To write data using single-measure records:

aws timestream-write write-records \
--database-name metricsdb \
--table-name metrics \
--common-attributes "{\"Dimensions\":[{\"Name\":\"asset_id\", \"Value\":\"100\"}],
 \"Time\":\"1631051324000\",\"TimeUnit\":\"MILLISECONDS\"}" \
--records "[{\"MeasureName\":\"temperature\", \"MeasureValueType\":\"DOUBLE\",
\"MeasureValue\":\"30\"},{\"MeasureName\":\"windspeed\", \"MeasureValueType\":\"DOUBLE
\",\"MeasureValue\":\"7\"},{\"MeasureName\":\"humidity\", \"MeasureValueType\":\"DOUBLE
\",\"MeasureValue\":\"15\"},{\"MeasureName\":\"brightness\", \"MeasureValueType\":
\"DOUBLE\",\"MeasureValue\":\"17\"}]"

To write data using multi-measure records:

wide model helper method to create Multi-measure records
function ingest_multi_measure_records {
 epoch=`date +%s`
 epoch+=$i

 # multi-measure records
 aws timestream-write write-records \
 --database-name $src_db_wide \
 --table-name $src_tbl_wide \
 --common-attributes "{\"Dimensions\":[{\"Name\":\"device_id\", \
 \"Value\":\"12345678\"},\
 {\"Name\":\"device_type\", \"Value\":\"iPhone\"}, \

Using the Amazon CLI 65

Amazon Timestream Developer Guide

 {\"Name\":\"os_version\", \"Value\":\"14.8\"}, \
 {\"Name\":\"region\", \"Value\":\"us-east-1\"}], \
 \"Time\":\"$epoch\",\"TimeUnit\":\"MILLISECONDS\"}" \
--records "[{\"MeasureName\":\"video_metrics\", \"MeasureValueType\":\"MULTI\", \
 \"MeasureValues\": \
 [{\"Name\":\"video_startup_time\",\"Value\":\"0\",\"Type\":\"BIGINT\"}, \
 {\"Name\":\"rebuffering_ratio\",\"Value\":\"0.5\",\"Type\":\"DOUBLE\"}, \
 {\"Name\":\"video_playback_failures\",\"Value\":\"0\",\"Type\":\"BIGINT\"}, \
 {\"Name\":\"average_frame_rate\",\"Value\":\"0.5\",\"Type\":\"DOUBLE\"}]}]" \
--endpoint-url $ingest_endpoint \
 --region $region
}

create 5 records
for i in {100..105};
 do ingest_multi_measure_records $i;
done

To query a table:

aws timestream-query query \
--query-string "SELECT time, device_id, device_type, os_version,
region, video_startup_time, rebuffering_ratio, video_playback_failures, \
average_frame_rate \
FROM metricsdb.metrics \
where time >= ago (15m)"

To create a scheduled query:

aws timestream-query create-scheduled-query \
 --name scheduled_query_name \
 --query-string "select bin(time, 1m) as time, \
 avg(measure_value::double) as avg_cpu, min(measure_value::double) as min_cpu,
 region \
 from $src_db.$src_tbl where measure_name = 'cpu' \
 and time BETWEEN @scheduled_runtime - (interval '5' minute) AND
 @scheduled_runtime \
 group by region, bin(time, 1m)" \
 --schedule-configuration "{\"ScheduleExpression\":\"$cron_exp\"}" \
 --notification-configuration "{\"SnsConfiguration\":{\"TopicArn\":\"$sns_topic_arn
\"}}" \
 --scheduled-query-execution-role-arn "arn:aws:iam::452360119086:role/
TimestreamSQExecutionRole" \

Using the Amazon CLI 66

Amazon Timestream Developer Guide

 --target-configuration "{\"TimestreamConfiguration\":{\
 \"DatabaseName\": \"$dest_db\",\
 \"TableName\": \"$dest_tbl\",\
 \"TimeColumn\":\"time\",\
 \"DimensionMappings\":[{\
 \"Name\": \"region\", \"DimensionValueType\": \"VARCHAR\"
 }],\
 \"MultiMeasureMappings\":{\
 \"TargetMultiMeasureName\": \"mma_name\",
 \"MultiMeasureAttributeMappings\":[{\
 \"SourceColumn\": \"avg_cpu\", \"MeasureValueType\": \"DOUBLE\",
 \"TargetMultiMeasureAttributeName\": \"target_avg_cpu\"
 },\
 { \
 \"SourceColumn\": \"min_cpu\", \"MeasureValueType\": \"DOUBLE\",
 \"TargetMultiMeasureAttributeName\": \"target_min_cpu\"
 }] \
 }\
 }}" \
 --error-report-configuration "{\"S3Configuration\": {\
 \"BucketName\": \"$s3_err_bucket\",\
 \"ObjectKeyPrefix\": \"scherrors\",\
 \"EncryptionOption\": \"SSE_S3\"\
 }\
 }"

Using the API

In addition to the SDKs, Amazon Timestream for LiveAnalytics provides direct REST API access via
the endpoint discovery pattern. The endpoint discovery pattern is described below, along with its
use cases.

The endpoint discovery pattern

Because Timestream Live Analytics's SDKs are designed to transparently work with the service's
architecture, including the management and mapping of the service endpoints, it is recommended
that you use the SDKs for most applications. However, there are a few instances where use of the
Timestream for LiveAnalytics REST API endpoint discovery pattern is necessary:

• You are using VPC endpoints (Amazon PrivateLink) with Timestream for LiveAnalytics

• Your application uses a programming language that does not yet have SDK support

Using the API 67

Amazon Timestream Developer Guide

• You require better control over the client-side implementation

This section includes information on how the endpoint discovery pattern works, how to implement
the endpoint discovery pattern, and usage notes. Select a topic below to learn more.

Topics

• How the endpoint discovery pattern works

• Implementing the endpoint discovery pattern

How the endpoint discovery pattern works

Timestream is built using a cellular architecture to ensure better scaling and traffic isolation
properties. Because each customer account is mapped to a specific cell in a region, your application
must use the correct cell-specific endpoints that your account has been mapped to. When using
the SDKs, this mapping is transparently handled for you and you do not need to manage the cell-
specific endpoints. However, when directly accessing the REST API, you will need to manage and
map the correct endpoints yourself. This process, the endpoint discovery pattern, is described below:

1. The endpoint discovery pattern starts with a call to the DescribeEndpoints action
(described in the DescribeEndpoints section).

2. The endpoint should be cached and reused for the amount of time specified by the returned
time-to-live (TTL) value (the CachePeriodInMinutes). Calls to the Timestream Live
Analytics API can then be made for the duration of the TTL.

3. After the TTL expires, a new call to DescribeEndpoints should be made to refresh the endpoint
(in other words, start over at Step 1).

Note

Syntax, parameters and other usage information for the DescribeEndpoints action are
described in the API Reference. Note that the DescribeEndpoints action is available via
both SDKs, and is identical for each.

For implementation of the endpoint discovery pattern, see Implementing the endpoint discovery
pattern.

Using the API 68

https://docs.amazonaws.cn/timestream/latest/developerguide/API_Reference.html
https://docs.amazonaws.cn/timestream/latest/developerguide/API_Endpoint.html#timestream-Type-Endpoint-CachePeriodInMinutes.html
https://docs.amazonaws.cn/timestream/latest/developerguide/API_DescribeEndpoints.html

Amazon Timestream Developer Guide

Implementing the endpoint discovery pattern

To implement the endpoint discovery pattern, choose an API (Write or Query), create a
DescribeEndpoints request, and use the returned endpoint(s) for the duration of the returned TTL
value(s). The implementation procedure is described below.

Note

Ensure you are familiar with the usage notes.

Implementation procedure

1. Acquire the endpoint for the API you would like to make calls against (Write or Query). using
the DescribeEndpoints request.

a. Create a request for DescribeEndpoints that corresponds to the API of interest (Write
or Query) using one of the two endpoints described below. There are no input parameters
for the request. Ensure that you read the notes below.

Write SDK:

ingest.timestream.<region>.amazonaws.com

Query SDK:

query.timestream.<region>.amazonaws.com

An example CLI call for region us-east-1 follows.

REGION_ENDPOINT="https://query.timestream.us-east-1.amazonaws.com"
REGION=us-east-1
aws timestream-write describe-endpoints \
--endpoint-url $REGION_ENDPOINT \
--region $REGION

Using the API 69

https://docs.amazonaws.cn/timestream/latest/developerguide/API_Operations_Amazon_Timestream_Write.html
https://docs.amazonaws.cn/timestream/latest/developerguide/API_Operations_Amazon_Timestream_Query.html
https://docs.amazonaws.cn/timestream/latest/developerguide/API_DescribeEndpoints.html
https://docs.amazonaws.cn/timestream/latest/developerguide/API_DescribeEndpoints.html
https://docs.amazonaws.cn/timestream/latest/developerguide/API_Operations_Amazon_Timestream_Write.html
https://docs.amazonaws.cn/timestream/latest/developerguide/API_Operations_Amazon_Timestream_Query.html

Amazon Timestream Developer Guide

Note

The HTTP "Host" header must also contain the API endpoint. The request will fail
if the header is not populated. This is a standard requirement for all HTTP/1.1
requests. If you use an HTTP library supporting 1.1 or later, the HTTP library
should automatically populate the header for you.

Note

Substitute <region> with the region identifier for the region the request is being
made in, e.g. us-east-1

b. Parse the response to extract the endpoint(s), and cache TTL value(s). The response is an
array of one or more Endpoint objects . Each Endpoint object contains an endpoint
address (Address) and the TTL for that endpoint (CachePeriodInMinutes).

2. Cache the endpoint for up to the specified TTL.

3. When the TTL expires, retrieve a new endpoint by starting over at step 1 of the
Implementation.

Usage notes for the endpoint discovery pattern

• The DescribeEndpoints action is the only action that Timestream Live Analytics regional
endpoints recognize.

• The response contains a list of endpoints to make Timestream Live Analytics API calls against.

• On successful response, there should be at least one endpoint in the list. If there is more than
one endpoint in the list, any of them are equally usable for the API calls, and the caller may
choose the endpoint to use at random.

• In addition to the DNS address of the endpoint, each endpoint in the list will specify a time to
live (TTL) that is allowable for using the endpoint specified in minutes.

• The endpoint should be cached and reused for the amount of time specified by the returned TTL
value (in minutes). After the TTL expires a new call to DescribeEndpoints should be made to
refresh the endpoint to use, as the endpoint will no longer work after the TTL has expired.

Using the API 70

https://docs.amazonaws.cn/timestream/latest/developerguide/API_Endpoint.html

Amazon Timestream Developer Guide

Using the Amazon SDKs

You can access Amazon Timestream using the Amazon SDKs. Timestream supports two SDKs per
language; namely, the Write SDK and the Query SDK. The Write SDK is used to perform CRUD
operations and to insert your time series data into Timestream. The Query SDK is used to query
your existing time series data stored in Timestream.

Once you've completed the necessary prerequisites for your SDK of choice, you can get started with
the Code samples.

Topics

• Java

• Java v2

• Go

• Python

• Node.js

• .NET

Java

To get started with the Java 1.0 SDK and Amazon Timestream, complete the prerequisites,
described below.

Once you've completed the necessary prerequisites for the Java SDK, you can get started with the
Code samples.

Prerequisites

Before you get started with Java, you must do the following:

1. Follow the Amazon setup instructions in Accessing Timestream for LiveAnalytics.

2. Set up a Java development environment by downloading and installing the following:

• Java SE Development Kit 8 (such as Amazon Corretto 8).

• Java IDE (such as Eclipse or IntelliJ).

For more information, see Getting Started with the Amazon SDK for Java

Using the Amazon SDKs 71

https://aws.amazon.com/sdk-for-java/
https://docs.amazonaws.cn/corretto/latest/corretto-8-ug/downloads-list.html
http://www.eclipse.org
https://www.jetbrains.com/idea/
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/get-started.html

Amazon Timestream Developer Guide

3. Configure your Amazon credentials and Region for development:

• Set up your Amazon security credentials for use with the Amazon SDK for Java.

• Set your Amazon Region to determine your default Timestream for LiveAnalytics endpoint.

Using Apache Maven

You can use Apache Maven to configure and build Amazon SDK for Java projects.

Note

To use Apache Maven, ensure your Java SDK and runtime are 1.8 or higher.

You can configure the Amazon SDK as a Maven dependency as described in Using the SDK with
Apache Maven.

You can run compile and run your source code with the following command:

mvn clean compile
mvn exec:java -Dexec.mainClass=<your source code Main class>

Note

<your source code Main class> is the path to your Java source code's main class.

Setting your Amazon credentials

The Amazon SDK for Java requires that you provide Amazon credentials to your application at
runtime. The code examples in this guide assume that you are using an Amazon credentials file, as
described in Set up Amazon Credentials and Region for Development in the Amazon SDK for Java
Developer Guide.

The following is an example of an Amazon credentials file named ~/.aws/credentials, where
the tilde character (~) represents your home directory.

[default]
aws_access_key_id = Amazon access key ID goes here

Using the Amazon SDKs 72

https://maven.apache.org/
https://docs.amazonaws.cn/sdk-for-java/v1/developer-guide/setup-project-maven.html
https://docs.amazonaws.cn/sdk-for-java/v1/developer-guide/setup-project-maven.html
http://www.amazonaws.cn/sdk-for-java
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/setup-credentials.html

Amazon Timestream Developer Guide

aws_secret_access_key = Secret key goes here

Java v2

To get started with the Java 2.0 SDK and Amazon Timestream, complete the prerequisites,
described below.

Once you've completed the necessary prerequisites for the Java 2.0 SDK, you can get started with
the Code samples.

Prerequisites

Before you get started with Java, you must do the following:

1. Follow the Amazon setup instructions in Accessing Timestream for LiveAnalytics.

2. You can configure the Amazon SDK as a Maven dependency as described in Using the SDK
with Apache Maven.

3. Set up a Java development environment by downloading and installing the following:

• Java SE Development Kit 8 (such as Amazon Corretto 8).

• Java IDE (such as Eclipse or IntelliJ).

For more information, see Getting Started with the Amazon SDK for Java

Using Apache Maven

You can use Apache Maven to configure and build Amazon SDK for Java projects.

Note

To use Apache Maven, ensure your Java SDK and runtime are 1.8 or higher.

You can configure the Amazon SDK as a Maven dependency as described in Using the SDK with
Apache Maven. The changes required to the pom.xml file are described here.

You can run compile and run your source code with the following command:

mvn clean compile

Using the Amazon SDKs 73

https://aws.amazon.com/sdk-for-java/
https://docs.amazonaws.cn/sdk-for-java/v2/developer-guide/welcome.html
https://docs.amazonaws.cn/sdk-for-java/v2/developer-guide/welcome.html
https://docs.amazonaws.cn/corretto/latest/corretto-8-ug/downloads-list.html
http://www.eclipse.org
https://www.jetbrains.com/idea/
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/get-started.html
https://maven.apache.org/
https://docs.amazonaws.cn/sdk-for-java/v2/developer-guide/welcome.html
https://docs.amazonaws.cn/sdk-for-java/v2/developer-guide/welcome.html
https://docs.amazonaws.cn/sdk-for-java/v2/migration-guide/whats-different.html#adding-v2

Amazon Timestream Developer Guide

mvn exec:java -Dexec.mainClass=<your source code Main class>

Note

<your source code Main class> is the path to your Java source code's main class.

Go

To get started with the Go SDK and Amazon Timestream, complete the prerequisites, described
below.

Once you've completed the necessary prerequisites for the Go SDK, you can get started with the
Code samples.

Prerequisites

1. Download the GO SDK 1.14.

2. Configure the GO SDK.

3. Construct your client.

Python

To get started with the Python SDK and Amazon Timestream, complete the prerequisites,
described below.

Once you've completed the necessary prerequisites for the Python SDK, you can get started with
the Code samples.

Prerequisites

To use Python, install and configure Boto3, following the instructions here.

Node.js

To get started with the Node.js SDK and Amazon Timestream, complete the prerequisites,
described below.

Once you've completed the necessary prerequisites for the Node.js SDK, you can get started with
the Code samples.

Using the Amazon SDKs 74

https://aws.amazon.com/sdk-for-go/
https://golang.org/doc/install
https://docs.amazonaws.cn/sdk-for-go/v1/developer-guide/configuring-sdk.html
https://docs.amazonaws.cn/sdk-for-go/v1/developer-guide/configuring-sdk.html
https://aws.amazon.com/sdk-for-python/
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://aws.amazon.com/sdk-for-node-js/

Amazon Timestream Developer Guide

Prerequisites

Before you get started with Node.js, you must do the following:

1. Install Node.js.

2. Install the Amazon SDK for JavaScript.

.NET

To get started with the .NET SDK and Amazon Timestream, complete the prerequisites, described
below.

Once you've completed the necessary prerequisites for the .NET SDK, you can get started with the
Code samples.

Prerequisites

Before you get started with .NET, install the required NuGet packages and ensure that
AWSSDK.Core version is 3.3.107 or newer by running the following commands:

dotnet add package AWSSDK.Core
dotnet add package AWSSDK.TimestreamWrite
dotnet add package AWSSDK.TimestreamQuery

Getting started

This section includes a tutorial to get you started with Amazon Timestream Live Analytics, as well
as instructions for setting up a fully functional sample application. You can get started with the
tutorial or the sample application by selecting one of the links below.

Topics

• Tutorial

• Sample application

Tutorial

This tutorial shows you how to create a database populated with sample data sets and run sample
queries. The sample data sets used in this tutorial are frequently seen in IoT and DevOps scenarios.

Getting started 75

https://nodejs.org/en/
https://aws.amazon.com/sdk-for-node-js/
https://aws.amazon.com/sdk-for-net/

Amazon Timestream Developer Guide

The IoT data set contains time series data such as the speed, location, and load of a truck, to
streamline fleet management and identify optimization opportunities. The DevOps data set
contains EC2 instance metrics such as CPU, network, and memory utilization to improve application
performance and availability. Here's a video tutorial for the instructions described in this section.

Follow these steps to create a database populated with the sample data sets and run sample
queries using the Amazon Console:

Using the console

Follow these steps to create a database populated with the sample data sets and run sample
queries using the Amazon Console:

1. Open the Amazon Console.

2. In the navigation pane, choose Databases.

3. Click on Create database.

4. On the create database page, enter the following:

• Choose configuration—Select Sample database.

• Name—Enter a database name of your choice.

Note

After creating a database with sample data sets, to use the sample queries which
are available in the console, you can adjust the database name referenced in the
query to match the database name you enter here. There are sample queries for
each combination of sample data set and type of time series records.

• Choose sample data sets—Select IoT and DevOps.

• Choose the type of time series records—Select Multi-measure records.

• Click on Create database to create a database containing two tables populated with sample
data. The table names for sample data sets with multi-measure records are DevOpsMulti
and IoTMulti. The table names for sample datasets with single-measure records are
DevOps and IoT.

5. In the navigation pane, choose Query editor.

6. Select Sample queries from the top menu.

Tutorial 76

https://www.youtube.com/watch?v=YBWCGDd4ChQ
https://console.aws.amazon.com/timestream

Amazon Timestream Developer Guide

7. Click on one of the sample queries for a data set you chose when creating the sample
database. This will take you back to the query editor with the editor populated with the
sample query.

8. Adjust the database name for the sample query.

9. Click Run to run the query and see query results.

Using the SDKs

Timestream Live Analytics provides a fully functional sample application that shows you how to
create a database and table, populate the table with ~126K rows of sample data, and run sample
queries. The sample application is available in GitHub for Java, Python, Node.js, Go, and .NET.

1. Clone the GitHub repository Timestream Live Analytics sample applications following the
instructions from GitHub.

2. Configure the Amazon SDK to connect to Amazon Timestream Live Analytics following the
instructions described in Using the Amazon SDKs.

3. Compile and run the sample application using the instructions below:

• Instructions for the Java sample application.

• Instructions for the Java v2 sample application.

• Instructions for the Go sample application.

• Instructions for the Python sample application.

• Instructions for the Node.js sample application.

• Instructions for the .NET sample application.

Sample application

Timestream ships with a fully functional sample application that shows how to create a database
and table, populate the table with ~126K rows of sample data, and run sample queries. Follow the
steps below to get started with the sample application in any of the supported languages:

Java

1. Clone the GitHub repository Timestream for LiveAnalytics sample applications following
the instructions from GitHub.

Sample application 77

https://github.com/awslabs/amazon-timestream-tools/blob/master/sample_apps
https://github.com/awslabs/amazon-timestream-tools/blob/master/sample_apps/java/README.md
https://github.com/awslabs/amazon-timestream-tools/blob/master/sample_apps/javaV2/README.md
https://github.com/awslabs/amazon-timestream-tools/blob/mainline/sample_apps/goV2/README.md
https://github.com/awslabs/amazon-timestream-tools/blob/master/sample_apps/python/README.md
https://github.com/awslabs/amazon-timestream-tools/blob/master/sample_apps/js/README.md
https://github.com/awslabs/amazon-timestream-tools/blob/master/sample_apps/dotnet/README.md
https://github.com/awslabs/amazon-timestream-tools/blob/master/sample_apps
https://docs.github.com/en/free-pro-team@latest/github/creating-cloning-and-archiving-repositories/cloning-a-repository

Amazon Timestream Developer Guide

2. Configure the Amazon SDK to connect to Timestream for LiveAnalytics following the
instructions described in Getting Started with Java.

3. Run the Java sample application following the instructions described here

Java v2

1. Clone the GitHub repository Timestream for LiveAnalytics sample applications following
the instructions from GitHub.

2. Configure the Amazon SDK to connect to Amazon Timestream for LiveAnalytics following
the instructions described in Getting Started with Java v2.

3. Run the Java 2.0 sample application following the instructions described here

Go

1. Clone the GitHub repository Timestream for LiveAnalytics sample applications following
the instructions from GitHub.

2. Configure the Amazon SDK to connect to Amazon Timestream for LiveAnalytics following
the instructions described in Getting Started with Go.

3. Run the Go sample application following the instructions described here

Python

1. Clone the GitHub repository Timestream for LiveAnalytics sample applications following
the instructions from GitHub.

2. Configure the Amazon SDK to connect to Amazon Timestream for LiveAnalytics following
the instructions described in Python.

3. Run the Python sample application following the instructions described here

Node.js

1. Clone the GitHub repository Timestream for LiveAnalytics sample applications following
the instructions from GitHub.

2. Configure the Amazon SDK to connect to Amazon Timestream for LiveAnalytics following
the instructions described in Getting Started with Node.js.

3. Run the Node.js sample application following the instructions described here

Sample application 78

https://github.com/awslabs/amazon-timestream-tools/blob/master/sample_apps/java
https://github.com/awslabs/amazon-timestream-tools/blob/master/sample_apps/java/README.md
https://github.com/awslabs/amazon-timestream-tools/blob/master/sample_apps
https://docs.github.com/en/free-pro-team@latest/github/creating-cloning-and-archiving-repositories/cloning-a-repository
https://github.com/awslabs/amazon-timestream-tools/blob/master/sample_apps/javaV2
https://github.com/awslabs/amazon-timestream-tools/blob/master/sample_apps/javaV2/README.md
https://github.com/awslabs/amazon-timestream-tools/blob/master/sample_apps
https://docs.github.com/en/free-pro-team@latest/github/creating-cloning-and-archiving-repositories/cloning-a-repository
https://github.com/awslabs/amazon-timestream-tools/tree/mainline/sample_apps/goV2
https://github.com/awslabs/amazon-timestream-tools/blob/mainline/sample_apps/goV2/README.md
https://github.com/awslabs/amazon-timestream-tools/blob/master/sample_apps
https://docs.github.com/en/free-pro-team@latest/github/creating-cloning-and-archiving-repositories/cloning-a-repository
https://github.com/awslabs/amazon-timestream-tools/blob/master/sample_apps/python
https://github.com/awslabs/amazon-timestream-tools/blob/master/sample_apps/python/README.md
https://github.com/awslabs/amazon-timestream-tools/blob/master/sample_apps
https://docs.github.com/en/free-pro-team@latest/github/creating-cloning-and-archiving-repositories/cloning-a-repository
https://github.com/awslabs/amazon-timestream-tools/blob/master/sample_apps/js
https://github.com/awslabs/amazon-timestream-tools/blob/master/sample_apps/js/README.md

Amazon Timestream Developer Guide

.NET

1. Clone the GitHub repository Timestream for LiveAnalytics sample applications following
the instructions from GitHub.

2. Configure the Amazon SDK to connect to Amazon Timestream for LiveAnalytics following
the instructions described in Getting Started with .NET.

3. Run the .NET sample application following the instructions described here

Code samples

You can access Amazon Timestream using the Amazon SDKs. Timestream supports two SDKs per
language; namely, the Write SDK and the Query SDK. The Write SDK is used to perform CRUD
operations and to insert your time series data into Timestream. The Query SDK is used to query
your existing time series data stored in Timestream. Select a topic from the list below for more
details, including code samples for each of the supported SDKs.

Topics

• Write SDK client

• Query SDK client

• Create database

• Describe database

• Update database

• Delete database

• List databases

• Create table

• Describe table

• Update table

• Delete table

• List tables

• Write data (inserts and upserts)

• Run query

• Run UNLOAD query

• Cancel query

Code samples 79

https://github.com/awslabs/amazon-timestream-tools/blob/master/sample_apps
https://docs.github.com/en/free-pro-team@latest/github/creating-cloning-and-archiving-repositories/cloning-a-repository
https://github.com/awslabs/amazon-timestream-tools/blob/master/sample_apps/dotnet
https://github.com/awslabs/amazon-timestream-tools/blob/master/sample_apps/dotnet/README.md

Amazon Timestream Developer Guide

• Create batch load task

• Describe batch load task

• List batch load tasks

• Resume batch load task

• Create scheduled query

• List scheduled query

• Describe scheduled query

• Execute scheduled query

• Update scheduled query

• Delete scheduled query

Write SDK client

You can use the following code snippets to create a Timestream client for the Write SDK. The Write
SDK is used to perform CRUD operations and to insert your time series data into Timestream.

Note

These code snippets are based on full sample applications on GitHub. For more information
about how to get started with the sample applications, see Sample application.

Java

 private static AmazonTimestreamWrite buildWriteClient() {
 final ClientConfiguration clientConfiguration = new ClientConfiguration()
 .withMaxConnections(5000)
 .withRequestTimeout(20 * 1000)
 .withMaxErrorRetry(10);

 return AmazonTimestreamWriteClientBuilder
 .standard()
 .withRegion("us-east-1")
 .withClientConfiguration(clientConfiguration)
 .build();
 }

Write SDK client 80

https://github.com/awslabs/amazon-timestream-tools/blob/master/sample_apps

Amazon Timestream Developer Guide

Java v2

 private static TimestreamWriteClient buildWriteClient() {
 ApacheHttpClient.Builder httpClientBuilder =
 ApacheHttpClient.builder();
 httpClientBuilder.maxConnections(5000);

 RetryPolicy.Builder retryPolicy =
 RetryPolicy.builder();
 retryPolicy.numRetries(10);

 ClientOverrideConfiguration.Builder overrideConfig =
 ClientOverrideConfiguration.builder();
 overrideConfig.apiCallAttemptTimeout(Duration.ofSeconds(20));
 overrideConfig.retryPolicy(retryPolicy.build());

 return TimestreamWriteClient.builder()
 .httpClientBuilder(httpClientBuilder)
 .overrideConfiguration(overrideConfig.build())
 .region(Region.US_EAST_1)
 .build();
 }

Go

tr := &http.Transport{
 ResponseHeaderTimeout: 20 * time.Second,
 // Using DefaultTransport values for other parameters: https://golang.org/
pkg/net/http/#RoundTripper
 Proxy: http.ProxyFromEnvironment,
 DialContext: (&net.Dialer{
 KeepAlive: 30 * time.Second,
 DualStack: true,
 Timeout: 30 * time.Second,
 }).DialContext,
 MaxIdleConns: 100,
 IdleConnTimeout: 90 * time.Second,
 TLSHandshakeTimeout: 10 * time.Second,
 ExpectContinueTimeout: 1 * time.Second,
 }

 // So client makes HTTP/2 requests
 http2.ConfigureTransport(tr)

Write SDK client 81

Amazon Timestream Developer Guide

 sess, err := session.NewSession(&aws.Config{ Region: aws.String("us-east-1"),
 MaxRetries: aws.Int(10), HTTPClient: &http.Client{ Transport: tr }})
 writeSvc := timestreamwrite.New(sess)

Python

write_client = session.client('timestream-write', config=Config(read_timeout=20,
 max_pool_connections = 5000, retries={'max_attempts': 10}))

Node.js

The following snippet uses Amazon SDK for JavaScript v3. For more information about how to
install the client and usage, see Timestream Write Client - Amazon SDK for JavaScript v3.

An additional command import is shown here. The CreateDatabaseCommand import is not
required to create the client.

import { TimestreamWriteClient, CreateDatabaseCommand } from "@aws-sdk/client-
timestream-write";
const writeClient = new TimestreamWriteClient({ region: "us-east-1" });

The following snippet uses the Amazon SDK for JavaScript V2 style. It is based on the sample
application at Node.js sample Amazon Timestream for LiveAnalytics application on GitHub.

var https = require('https');
var agent = new https.Agent({
 maxSockets: 5000
});
writeClient = new AWS.TimestreamWrite({
 maxRetries: 10,
 httpOptions: {
 timeout: 20000,
 agent: agent
 }
 });

.NET

var writeClientConfig = new AmazonTimestreamWriteConfig
{
 RegionEndpoint = RegionEndpoint.USEast1,

Write SDK client 82

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/clients/client-timestream-write/index.html
https://github.com/awslabs/amazon-timestream-tools/tree/mainline/sample_apps/js

Amazon Timestream Developer Guide

 Timeout = TimeSpan.FromSeconds(20),
 MaxErrorRetry = 10
};

var writeClient = new AmazonTimestreamWriteClient(writeClientConfig);

We recommend you use the following configuration.

• Set the SDK retry count to 10.

• Use SDK DEFAULT_BACKOFF_STRATEGY.

• Set RequestTimeout to 20 seconds.

• Set the max connections to 5000 or higher.

Query SDK client

You can use the following code snippets to create a Timestream client for the Query SDK. The
Query SDK is used to query your existing time series data stored in Timestream.

Note

These code snippets are based on full sample applications on GitHub. For more information
about how to get started with the sample applications, see Sample application.

Java

 private static AmazonTimestreamQuery buildQueryClient() {
 AmazonTimestreamQuery client =
 AmazonTimestreamQueryClient.builder().withRegion("us-east-1").build();
 return client;
 }

Java v2

 private static TimestreamQueryClient buildQueryClient() {
 return TimestreamQueryClient.builder()
 .region(Region.US_EAST_1)
 .build();

Query SDK client 83

https://github.com/awslabs/amazon-timestream-tools/blob/master/sample_apps

Amazon Timestream Developer Guide

 }

Go

sess, err := session.NewSession(&aws.Config{Region: aws.String("us-east-1")})

Python

query_client = session.client('timestream-query')

Node.js

The following snippet uses Amazon SDK for JavaScript v3. For more information about how to
install the client and usage, see Timestream Query Client - ,Amazon SDK for JavaScript v3.

An additional command import is shown here. The QueryCommand import is not required to
create the client.

import { TimestreamQueryClient, QueryCommand } from "@aws-sdk/client-timestream-
query";
const queryClient = new TimestreamQueryClient({ region: "us-east-1" });

The following snippet uses the Amazon SDK for JavaScript V2 style. It is based on the sample
application at Node.js sample Amazon Timestream for LiveAnalytics application on GitHub.

queryClient = new AWS.TimestreamQuery();

.NET

var queryClientConfig = new AmazonTimestreamQueryConfig
{
 RegionEndpoint = RegionEndpoint.USEast1
};

var queryClient = new AmazonTimestreamQueryClient(queryClientConfig);

Create database

You can use the following code snippets to create a database.

Create database 84

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/clients/client-timestream-query/index.html
https://github.com/awslabs/amazon-timestream-tools/tree/mainline/sample_apps/js

Amazon Timestream Developer Guide

Note

These code snippets are based on full sample applications on GitHub. For more information
about how to get started with the sample applications, see Sample application.

Java

 public void createDatabase() {
 System.out.println("Creating database");
 CreateDatabaseRequest request = new CreateDatabaseRequest();
 request.setDatabaseName(DATABASE_NAME);
 try {
 amazonTimestreamWrite.createDatabase(request);
 System.out.println("Database [" + DATABASE_NAME + "] created
 successfully");
 } catch (ConflictException e) {
 System.out.println("Database [" + DATABASE_NAME + "] exists. Skipping
 database creation");
 }
 }

Java v2

 public void createDatabase() {
 System.out.println("Creating database");
 CreateDatabaseRequest request =
 CreateDatabaseRequest.builder().databaseName(DATABASE_NAME).build();
 try {
 timestreamWriteClient.createDatabase(request);
 System.out.println("Database [" + DATABASE_NAME + "] created
 successfully");
 } catch (ConflictException e) {
 System.out.println("Database [" + DATABASE_NAME + "] exists. Skipping
 database creation");
 }
 }

Go

// Create database.
 createDatabaseInput := ×treamwrite.CreateDatabaseInput{

Create database 85

https://github.com/awslabs/amazon-timestream-tools/blob/master/sample_apps

Amazon Timestream Developer Guide

 DatabaseName: aws.String(*databaseName),
 }

 _, err = writeSvc.CreateDatabase(createDatabaseInput)

 if err != nil {
 fmt.Println("Error:")
 fmt.Println(err)
 } else {
 fmt.Println("Database successfully created")
 }

 fmt.Println("Describing the database, hit enter to continue")

Python

 def create_database(self):
 print("Creating Database")
 try:
 self.client.create_database(DatabaseName=Constant.DATABASE_NAME)
 print("Database [%s] created successfully." % Constant.DATABASE_NAME)
 except self.client.exceptions.ConflictException:
 print("Database [%s] exists. Skipping database creation" %
 Constant.DATABASE_NAME)
 except Exception as err:
 print("Create database failed:", err)

Node.js

The following snippet uses Amazon SDK for JavaScript v3. For more information about how to
install the client and usage, see Timestream Write Client - Amazon SDK for JavaScript v3.

Also see Class CreateDatabaseCommand and CreateDatabase.

import { TimestreamWriteClient, CreateDatabaseCommand } from "@aws-sdk/client-
timestream-write";
const writeClient = new TimestreamWriteClient({ region: "us-east-1" });

const params = {
 DatabaseName: "testDbFromNode"
};

const command = new CreateDatabaseCommand(params);

Create database 86

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/clients/client-timestream-write/index.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/clients/client-timestream-write/classes/createdatabasecommand.html
https://docs.amazonaws.cn/timestream/latest/developerguide/API_CreateDatabase.html

Amazon Timestream Developer Guide

try {
 const data = await writeClient.send(command);
 console.log(`Database ${data.Database.DatabaseName} created successfully`);
} catch (error) {
 if (error.code === 'ConflictException') {
 console.log(`Database ${params.DatabaseName} already exists. Skipping
 creation.`);
 } else {
 console.log("Error creating database", error);
 }
}

The following snippet uses the Amazon SDK for JavaScript V2 style. It is based on the sample
application at Node.js sample Amazon Timestream for LiveAnalytics application on GitHub.

async function createDatabase() {
 console.log("Creating Database");
 const params = {
 DatabaseName: constants.DATABASE_NAME
 };

 const promise = writeClient.createDatabase(params).promise();

 await promise.then(
 (data) => {
 console.log(`Database ${data.Database.DatabaseName} created
 successfully`);
 },
 (err) => {
 if (err.code === 'ConflictException') {
 console.log(`Database ${params.DatabaseName} already exists.
 Skipping creation.`);
 } else {
 console.log("Error creating database", err);
 }
 }
);
}

.NET

 public async Task CreateDatabase()

Create database 87

https://github.com/awslabs/amazon-timestream-tools/tree/mainline/sample_apps/js

Amazon Timestream Developer Guide

 {
 Console.WriteLine("Creating Database");

 try
 {
 var createDatabaseRequest = new CreateDatabaseRequest
 {
 DatabaseName = Constants.DATABASE_NAME
 };
 CreateDatabaseResponse response = await
 writeClient.CreateDatabaseAsync(createDatabaseRequest);
 Console.WriteLine($"Database {Constants.DATABASE_NAME} created");
 }
 catch (ConflictException)
 {
 Console.WriteLine("Database already exists.");
 }
 catch (Exception e)
 {
 Console.WriteLine("Create database failed:" + e.ToString());
 }

 }

Describe database

You can use the following code snippets to get information about the attributes of your newly
created database.

Note

These code snippets are based on full sample applications on GitHub. For more information
about how to get started with the sample applications, see Sample application.

Java

 public void describeDatabase() {
 System.out.println("Describing database");
 final DescribeDatabaseRequest describeDatabaseRequest = new
 DescribeDatabaseRequest();

Describe database 88

https://github.com/awslabs/amazon-timestream-tools/blob/master/sample_apps

Amazon Timestream Developer Guide

 describeDatabaseRequest.setDatabaseName(DATABASE_NAME);
 try {
 DescribeDatabaseResult result =
 amazonTimestreamWrite.describeDatabase(describeDatabaseRequest);
 final Database databaseRecord = result.getDatabase();
 final String databaseId = databaseRecord.getArn();
 System.out.println("Database " + DATABASE_NAME + " has id " +
 databaseId);
 } catch (final Exception e) {
 System.out.println("Database doesn't exist = " + e);
 throw e;
 }
 }

Java v2

 public void describeDatabase() {
 System.out.println("Describing database");
 final DescribeDatabaseRequest describeDatabaseRequest =
 DescribeDatabaseRequest.builder()
 .databaseName(DATABASE_NAME).build();
 try {
 DescribeDatabaseResponse response =
 timestreamWriteClient.describeDatabase(describeDatabaseRequest);
 final Database databaseRecord = response.database();
 final String databaseId = databaseRecord.arn();
 System.out.println("Database " + DATABASE_NAME + " has id " +
 databaseId);
 } catch (final Exception e) {
 System.out.println("Database doesn't exist = " + e);
 throw e;
 }
 }

Go

describeDatabaseOutput, err := writeSvc.DescribeDatabase(describeDatabaseInput)

 if err != nil {
 fmt.Println("Error:")
 fmt.Println(err)
 } else {
 fmt.Println("Describe database is successful, below is the output:")

Describe database 89

Amazon Timestream Developer Guide

 fmt.Println(describeDatabaseOutput)
 }

Python

 def describe_database(self):
 print("Describing database")
 try:
 result =
 self.client.describe_database(DatabaseName=Constant.DATABASE_NAME)
 print("Database [%s] has id [%s]" % (Constant.DATABASE_NAME,
 result['Database']['Arn']))
 except self.client.exceptions.ResourceNotFoundException:
 print("Database doesn't exist")
 except Exception as err:
 print("Describe database failed:", err)

Node.js

The following snippet uses Amazon SDK for JavaScript v3. For more information about how to
install the client and usage, see Timestream Write Client - Amazon SDK for JavaScript v3.

Also see Class DescribeDatabaseCommand and DescribeDatabase.

import { TimestreamWriteClient, DescribeDatabaseCommand } from "@aws-sdk/client-
timestream-write";
const writeClient = new TimestreamWriteClient({ region: "us-east-1" });

const params = {
 DatabaseName: "testDbFromNode"
};

const command = new DescribeDatabaseCommand(params);

try {
 const data = await writeClient.send(command);
 console.log(`Database ${data.Database.DatabaseName} has id
 ${data.Database.Arn}`);
} catch (error) {
 if (error.code === 'ResourceNotFoundException') {
 console.log("Database doesn't exist.");
 } else {
 console.log("Describe database failed.", error);

Describe database 90

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/clients/client-timestream-write/index.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/clients/client-timestream-write/classes/describedatabasecommand.html
https://docs.amazonaws.cn/timestream/latest/developerguide/API_DescribeDatabase.html

Amazon Timestream Developer Guide

 throw error;
 }
}

The following snippet uses the Amazon SDK for JavaScript V2 style. It is based on the sample
application at Node.js sample Amazon Timestream for LiveAnalytics application on GitHub.

async function describeDatabase () {
 console.log("Describing Database");
 const params = {
 DatabaseName: constants.DATABASE_NAME
 };

 const promise = writeClient.describeDatabase(params).promise();

 await promise.then(
 (data) => {
 console.log(`Database ${data.Database.DatabaseName} has id
 ${data.Database.Arn}`);
 },
 (err) => {
 if (err.code === 'ResourceNotFoundException') {
 console.log("Database doesn't exist.");
 } else {
 console.log("Describe database failed.", err);
 throw err;
 }
 }
);
}

.NET

 public async Task DescribeDatabase()
 {
 Console.WriteLine("Describing Database");

 try
 {
 var describeDatabaseRequest = new DescribeDatabaseRequest
 {
 DatabaseName = Constants.DATABASE_NAME
 };

Describe database 91

https://github.com/awslabs/amazon-timestream-tools/tree/mainline/sample_apps/js

Amazon Timestream Developer Guide

 DescribeDatabaseResponse response = await
 writeClient.DescribeDatabaseAsync(describeDatabaseRequest);
 Console.WriteLine($"Database {Constants.DATABASE_NAME} has id:
{response.Database.Arn}");
 }
 catch (ResourceNotFoundException)
 {
 Console.WriteLine("Database does not exist.");
 }
 catch (Exception e)
 {
 Console.WriteLine("Describe database failed:" + e.ToString());
 }

 }

Update database

You can use the following code snippets to update your databases.

Note

These code snippets are based on full sample applications on GitHub. For more information
about how to get started with the sample applications, see Sample application.

Java

 public void updateDatabase(String kmsId) {
 System.out.println("Updating kmsId to " + kmsId);
 UpdateDatabaseRequest request = new UpdateDatabaseRequest();
 request.setDatabaseName(DATABASE_NAME);
 request.setKmsKeyId(kmsId);
 try {
 UpdateDatabaseResult result =
 amazonTimestreamWrite.updateDatabase(request);
 System.out.println("Update Database complete");
 } catch (final ValidationException e) {
 System.out.println("Update database failed:");
 e.printStackTrace();
 } catch (final ResourceNotFoundException e) {

Update a database 92

https://github.com/awslabs/amazon-timestream-tools/blob/master/sample_apps

Amazon Timestream Developer Guide

 System.out.println("Database " + DATABASE_NAME + " doesn't exist = " +
 e);
 } catch (final Exception e) {
 System.out.println("Could not update Database " + DATABASE_NAME + " = "
 + e);
 throw e;
 }
 }

Java v2

 public void updateDatabase(String kmsKeyId) {

 if (kmsKeyId == null) {
 System.out.println("Skipping UpdateDatabase because KmsKeyId was not
 given");
 return;
 }

 System.out.println("Updating database");

 UpdateDatabaseRequest request = UpdateDatabaseRequest.builder()
 .databaseName(DATABASE_NAME)
 .kmsKeyId(kmsKeyId)
 .build();
 try {
 timestreamWriteClient.updateDatabase(request);
 System.out.println("Database [" + DATABASE_NAME + "] updated
 successfully with kmsKeyId " + kmsKeyId);
 } catch (ResourceNotFoundException e) {
 System.out.println("Database [" + DATABASE_NAME + "] does not exist.
 Skipping UpdateDatabase");
 } catch (Exception e) {
 System.out.println("UpdateDatabase failed: " + e);
 }
 }

Go

// Update Database.
 updateDatabaseInput := ×treamwrite.UpdateDatabaseInput {
 DatabaseName: aws.String(*databaseName),
 KmsKeyId: aws.String(*kmsKeyId),

Update a database 93

Amazon Timestream Developer Guide

 }

 updateDatabaseOutput, err := writeSvc.UpdateDatabase(updateDatabaseInput)

 if err != nil {
 fmt.Println("Error:")
 fmt.Println(err)
 } else {
 fmt.Println("Update database is successful, below is the output:")
 fmt.Println(updateDatabaseOutput)
 }

Python

 def update_database(self, kms_id):
 print("Updating database")
 try:
 result =
 self.client.update_database(DatabaseName=Constant.DATABASE_NAME, KmsKeyId=kms_id)
 print("Database [%s] was updated to use kms [%s] successfully" %
 (Constant.DATABASE_NAME,

 result['Database']['KmsKeyId']))
 except self.client.exceptions.ResourceNotFoundException:
 print("Database doesn't exist")
 except Exception as err:
 print("Update database failed:", err)

Node.js

The following snippet uses Amazon SDK for JavaScript v3. For more information about how to
install the client and usage, see Timestream Write Client - Amazon SDK for JavaScript v3.

Also see Class UpdateDatabaseCommand and UpdateDatabase.

import { TimestreamWriteClient, UpdateDatabaseCommand } from "@aws-sdk/client-
timestream-write";
const writeClient = new TimestreamWriteClient({ region: "us-east-1" });
let updatedKmsKeyId = "<updatedKmsKeyId>";

const params = {
 DatabaseName: "testDbFromNode",
 KmsKeyId: updatedKmsKeyId

Update a database 94

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/clients/client-timestream-write/index.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/clients/client-timestream-write/classes/updatedatabasecommand.html
https://docs.amazonaws.cn/timestream/latest/developerguide/API_UpdateDatabase.html

Amazon Timestream Developer Guide

};

const command = new UpdateDatabaseCommand(params);

try {
 const data = await writeClient.send(command);
 console.log(`Database ${data.Database.DatabaseName} updated kmsKeyId to
 ${updatedKmsKeyId}`);
} catch (error) {
 if (error.code === 'ResourceNotFoundException') {
 console.log("Database doesn't exist.");
 } else {
 console.log("Update database failed.", error);
 }
}

The following snippet uses the Amazon SDK for JavaScript V2 style. It is based on the sample
application at Node.js sample Amazon Timestream for LiveAnalytics application on GitHub.

async function updateDatabase(updatedKmsKeyId) {

 if (updatedKmsKeyId === undefined) {
 console.log("Skipping UpdateDatabase; KmsKeyId was not given");
 return;
 }
 console.log("Updating Database");
 const params = {
 DatabaseName: constants.DATABASE_NAME,
 KmsKeyId: updatedKmsKeyId
 }

 const promise = writeClient.updateDatabase(params).promise();

 await promise.then(
 (data) => {
 console.log(`Database ${data.Database.DatabaseName} updated kmsKeyId to
 ${updatedKmsKeyId}`);
 },
 (err) => {
 if (err.code === 'ResourceNotFoundException') {
 console.log("Database doesn't exist.");
 } else {
 console.log("Update database failed.", err);

Update a database 95

https://github.com/awslabs/amazon-timestream-tools/tree/mainline/sample_apps/js

Amazon Timestream Developer Guide

 }
 }
);
}

.NET

 public async Task UpdateDatabase(String updatedKmsKeyId)
 {
 Console.WriteLine("Updating Database");

 try
 {
 var updateDatabaseRequest = new UpdateDatabaseRequest
 {
 DatabaseName = Constants.DATABASE_NAME,
 KmsKeyId = updatedKmsKeyId
 };
 UpdateDatabaseResponse response = await
 writeClient.UpdateDatabaseAsync(updateDatabaseRequest);
 Console.WriteLine($"Database {Constants.DATABASE_NAME} updated with
 KmsKeyId {updatedKmsKeyId}");
 }
 catch (ResourceNotFoundException)
 {
 Console.WriteLine("Database does not exist.");
 }
 catch (Exception e)
 {
 Console.WriteLine("Update database failed: " + e.ToString());
 }

 }

 private void PrintDatabases(List<Database> databases)
 {
 foreach (Database database in databases)
 Console.WriteLine($"Database:{database.DatabaseName}");
 }

Update a database 96

Amazon Timestream Developer Guide

Delete database

You can use the following code snippet to delete a database.

Note

These code snippets are based on full sample applications on GitHub. For more information
about how to get started with the sample applications, see Sample application.

Java

 public void deleteDatabase() {
 System.out.println("Deleting database");
 final DeleteDatabaseRequest deleteDatabaseRequest = new
 DeleteDatabaseRequest();
 deleteDatabaseRequest.setDatabaseName(DATABASE_NAME);
 try {
 DeleteDatabaseResult result =
 amazonTimestreamWrite.deleteDatabase(deleteDatabaseRequest);
 System.out.println("Delete database status: " +
 result.getSdkHttpMetadata().getHttpStatusCode());
 } catch (final ResourceNotFoundException e) {
 System.out.println("Database " + DATABASE_NAME + " doesn't exist = " +
 e);
 throw e;
 } catch (final Exception e) {
 System.out.println("Could not delete Database " + DATABASE_NAME + " = "
 + e);
 throw e;
 }
 }

Java v2

 public void deleteDatabase() {
 System.out.println("Deleting database");
 final DeleteDatabaseRequest deleteDatabaseRequest = new
 DeleteDatabaseRequest();
 deleteDatabaseRequest.setDatabaseName(DATABASE_NAME);
 try {

Delete database 97

https://github.com/awslabs/amazon-timestream-tools/blob/master/sample_apps

Amazon Timestream Developer Guide

 DeleteDatabaseResult result =
 amazonTimestreamWrite.deleteDatabase(deleteDatabaseRequest);
 System.out.println("Delete database status: " +
 result.getSdkHttpMetadata().getHttpStatusCode());
 } catch (final ResourceNotFoundException e) {
 System.out.println("Database " + DATABASE_NAME + " doesn't exist = " +
 e);
 throw e;
 } catch (final Exception e) {
 System.out.println("Could not delete Database " + DATABASE_NAME + " = "
 + e);
 throw e;
 }
 }

Go

deleteDatabaseInput := ×treamwrite.DeleteDatabaseInput{
 DatabaseName: aws.String(*databaseName),
 }

 _, err = writeSvc.DeleteDatabase(deleteDatabaseInput)

 if err != nil {
 fmt.Println("Error:")
 fmt.Println(err)
 } else {
 fmt.Println("Database deleted:", *databaseName)
 }

Python

 def delete_database(self):
 print("Deleting Database")
 try:
 result =
 self.client.delete_database(DatabaseName=Constant.DATABASE_NAME)
 print("Delete database status [%s]" % result['ResponseMetadata']
['HTTPStatusCode'])
 except self.client.exceptions.ResourceNotFoundException:
 print("database [%s] doesn't exist" % Constant.DATABASE_NAME)
 except Exception as err:
 print("Delete database failed:", err)

Delete database 98

Amazon Timestream Developer Guide

Node.js

The following snippet uses Amazon SDK for JavaScript v3. For more information about how to
install the client and usage, see Timestream Write Client - Amazon SDK for JavaScript v3.

Also see Class DeleteDatabaseCommand and DeleteDatabase.

import { TimestreamWriteClient, DeleteDatabaseCommand } from "@aws-sdk/client-
timestream-write";
const writeClient = new TimestreamWriteClient({ region: "us-east-1" });

const params = {
 DatabaseName: "testDbFromNode"
};

const command = new DeleteDatabaseCommand(params);

try {
 const data = await writeClient.send(command);
 console.log("Deleted database");
} catch (error) {
 if (error.code === 'ResourceNotFoundException') {
 console.log(`Database ${params.DatabaseName} doesn't exists.`);
 } else {
 console.log("Delete database failed.", error);
 throw error;
 }
}

The following snippet uses the Amazon SDK for JavaScript V2 style. It is based on the sample
application at Node.js sample Amazon Timestream for LiveAnalytics application on GitHub.

async function deleteDatabase() {
 console.log("Deleting Database");
 const params = {
 DatabaseName: constants.DATABASE_NAME
 };

 const promise = writeClient.deleteDatabase(params).promise();

 await promise.then(
 function (data) {
 console.log("Deleted database");

Delete database 99

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/clients/client-timestream-write/index.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/clients/client-timestream-write/classes/deletedatabasecommand.html
https://docs.amazonaws.cn/timestream/latest/developerguide/API_DeleteDatabase.html
https://github.com/awslabs/amazon-timestream-tools/tree/mainline/sample_apps/js

Amazon Timestream Developer Guide

 },
 function(err) {
 if (err.code === 'ResourceNotFoundException') {
 console.log(`Database ${params.DatabaseName} doesn't exists.`);
 } else {
 console.log("Delete database failed.", err);
 throw err;
 }
 }
);
}

.NET

 public async Task DeleteDatabase()
 {
 Console.WriteLine("Deleting database");
 try
 {
 var deleteDatabaseRequest = new DeleteDatabaseRequest
 {
 DatabaseName = Constants.DATABASE_NAME
 };
 DeleteDatabaseResponse response = await
 writeClient.DeleteDatabaseAsync(deleteDatabaseRequest);
 Console.WriteLine($"Database {Constants.DATABASE_NAME} delete
 request status:{response.HttpStatusCode}");
 }
 catch (ResourceNotFoundException)
 {
 Console.WriteLine($"Database {Constants.DATABASE_NAME} does not
 exists");
 }
 catch (Exception e)
 {
 Console.WriteLine("Exception while deleting database:" +
 e.ToString());
 }
 }

Delete database 100

Amazon Timestream Developer Guide

List databases

You can use the following code snippets to list your databases.

Note

These code snippets are based on full sample applications on GitHub. For more information
about how to get started with the sample applications, see Sample application.

Java

 public void listDatabases() {
 System.out.println("Listing databases");
 ListDatabasesRequest request = new ListDatabasesRequest();
 ListDatabasesResult result = amazonTimestreamWrite.listDatabases(request);
 final List<Database> databases = result.getDatabases();
 printDatabases(databases);

 String nextToken = result.getNextToken();
 while (nextToken != null && !nextToken.isEmpty()) {
 request.setNextToken(nextToken);
 ListDatabasesResult nextResult =
 amazonTimestreamWrite.listDatabases(request);
 final List<Database> nextDatabases = nextResult.getDatabases();
 printDatabases(nextDatabases);
 nextToken = nextResult.getNextToken();
 }
 }

 private void printDatabases(List<Database> databases) {
 for (Database db : databases) {
 System.out.println(db.getDatabaseName());
 }
 }

Java v2

 public void listDatabases() {
 System.out.println("Listing databases");
 ListDatabasesRequest request =
 ListDatabasesRequest.builder().maxResults(2).build();

List databases 101

https://github.com/awslabs/amazon-timestream-tools/blob/master/sample_apps

Amazon Timestream Developer Guide

 ListDatabasesIterable listDatabasesIterable =
 timestreamWriteClient.listDatabasesPaginator(request);
 for(ListDatabasesResponse listDatabasesResponse : listDatabasesIterable) {
 final List<Database> databases = listDatabasesResponse.databases();
 databases.forEach(database ->
 System.out.println(database.databaseName()));
 }
 }

Go

// List databases.
 listDatabasesMaxResult := int64(15)

 listDatabasesInput := ×treamwrite.ListDatabasesInput{
 MaxResults: &listDatabasesMaxResult,
 }

 listDatabasesOutput, err := writeSvc.ListDatabases(listDatabasesInput)

 if err != nil {
 fmt.Println("Error:")
 fmt.Println(err)
 } else {
 fmt.Println("List databases is successful, below is the output:")
 fmt.Println(listDatabasesOutput)
 }

Python

 def list_databases(self):
 print("Listing databases")
 try:
 result = self.client.list_databases(MaxResults=5)
 self._print_databases(result['Databases'])
 next_token = result.get('NextToken', None)
 while next_token:
 result = self.client.list_databases(NextToken=next_token,
 MaxResults=5)
 self._print_databases(result['Databases'])
 next_token = result.get('NextToken', None)
 except Exception as err:
 print("List databases failed:", err)

List databases 102

Amazon Timestream Developer Guide

Node.js

The following snippet uses Amazon SDK for JavaScript v3. For more information about how to
install the client and usage, see Timestream Write Client - Amazon SDK for JavaScript v3.

Also see Class ListDatabasesCommand and ListDatabases.

import { TimestreamWriteClient, ListDatabasesCommand } from "@aws-sdk/client-
timestream-write";
const writeClient = new TimestreamWriteClient({ region: "us-east-1" });

const params = {
 MaxResults: 15
};

const command = new ListDatabasesCommand(params);

getDatabasesList(null);

async function getDatabasesList(nextToken) {
 if (nextToken) {
 params.NextToken = nextToken;
 }

 try {
 const data = await writeClient.send(command);

 data.Databases.forEach(function (database) {
 console.log(database.DatabaseName);
 });

 if (data.NextToken) {
 return getDatabasesList(data.NextToken);
 }
 } catch (error) {
 console.log("Error while listing databases", error);
 }
}

The following snippet uses the Amazon SDK for JavaScript V2 style. It is based on the sample
application at Node.js sample Amazon Timestream for LiveAnalytics application on GitHub.

async function listDatabases() {

List databases 103

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/clients/client-timestream-write/index.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/clients/client-timestream-write/classes/listdatabasescommand.html
https://docs.amazonaws.cn/timestream/latest/developerguide/API_ListDatabases.html
https://github.com/awslabs/amazon-timestream-tools/tree/mainline/sample_apps/js

Amazon Timestream Developer Guide

 console.log("Listing databases:");
 const databases = await getDatabasesList(null);
 databases.forEach(function(database){
 console.log(database.DatabaseName);
 });
}

function getDatabasesList(nextToken, databases = []) {
 var params = {
 MaxResults: 15
 };

 if(nextToken) {
 params.NextToken = nextToken;
 }

 return writeClient.listDatabases(params).promise()
 .then(
 (data) => {
 databases.push.apply(databases, data.Databases);
 if (data.NextToken) {
 return getDatabasesList(data.NextToken, databases);
 } else {
 return databases;
 }
 },
 (err) => {
 console.log("Error while listing databases", err);
 });
}

.NET

 public async Task ListDatabases()
 {
 Console.WriteLine("Listing Databases");

 try
 {
 var listDatabasesRequest = new ListDatabasesRequest
 {
 MaxResults = 5
 };

List databases 104

Amazon Timestream Developer Guide

 ListDatabasesResponse response = await
 writeClient.ListDatabasesAsync(listDatabasesRequest);
 PrintDatabases(response.Databases);
 var nextToken = response.NextToken;
 while (nextToken != null)
 {
 listDatabasesRequest.NextToken = nextToken;
 response = await
 writeClient.ListDatabasesAsync(listDatabasesRequest);
 PrintDatabases(response.Databases);
 nextToken = response.NextToken;
 }
 }
 catch (Exception e)
 {
 Console.WriteLine("List database failed:" + e.ToString());
 }

 }

Create table

Topics

• Memory store writes

• Magnetic store writes

Memory store writes

You can use the following code snippet to create a table that has magnetic store writes disabled, as
a result you can only write data into your memory store retention window.

Note

These code snippets are based on full sample applications on GitHub. For more information
about how to get started with the sample applications, see Sample application.

Create table 105

https://github.com/awslabs/amazon-timestream-tools/blob/master/sample_apps

Amazon Timestream Developer Guide

Java

 public void createTable() {
 System.out.println("Creating table");
 CreateTableRequest createTableRequest = new CreateTableRequest();
 createTableRequest.setDatabaseName(DATABASE_NAME);
 createTableRequest.setTableName(TABLE_NAME);
 final RetentionProperties retentionProperties = new RetentionProperties()
 .withMemoryStoreRetentionPeriodInHours(HT_TTL_HOURS)
 .withMagneticStoreRetentionPeriodInDays(CT_TTL_DAYS);
 createTableRequest.setRetentionProperties(retentionProperties);

 try {
 amazonTimestreamWrite.createTable(createTableRequest);
 System.out.println("Table [" + TABLE_NAME + "] successfully created.");
 } catch (ConflictException e) {
 System.out.println("Table [" + TABLE_NAME + "] exists on database [" +
 DATABASE_NAME + "] . Skipping database creation");
 }
 }

Java v2

 public void createTable() {
 System.out.println("Creating table");

 final RetentionProperties retentionProperties =
 RetentionProperties.builder()
 .memoryStoreRetentionPeriodInHours(HT_TTL_HOURS)
 .magneticStoreRetentionPeriodInDays(CT_TTL_DAYS).build();
 final CreateTableRequest createTableRequest = CreateTableRequest.builder()

 .databaseName(DATABASE_NAME).tableName(TABLE_NAME).retentionProperties(retentionProperties).build();

 try {
 timestreamWriteClient.createTable(createTableRequest);
 System.out.println("Table [" + TABLE_NAME + "] successfully created.");
 } catch (ConflictException e) {
 System.out.println("Table [" + TABLE_NAME + "] exists on database [" +
 DATABASE_NAME + "] . Skipping database creation");
 }
 }

Create table 106

Amazon Timestream Developer Guide

Go

// Create table.
 createTableInput := ×treamwrite.CreateTableInput{
 DatabaseName: aws.String(*databaseName),
 TableName: aws.String(*tableName),
 }
 _, err = writeSvc.CreateTable(createTableInput)

 if err != nil {
 fmt.Println("Error:")
 fmt.Println(err)
 } else {
 fmt.Println("Create table is successful")
 }

Python

 def create_table(self):
 print("Creating table")
 retention_properties = {
 'MemoryStoreRetentionPeriodInHours': Constant.HT_TTL_HOURS,
 'MagneticStoreRetentionPeriodInDays': Constant.CT_TTL_DAYS
 }
 try:
 self.client.create_table(DatabaseName=Constant.DATABASE_NAME,
 TableName=Constant.TABLE_NAME,
 RetentionProperties=retention_properties)
 print("Table [%s] successfully created." % Constant.TABLE_NAME)
 except self.client.exceptions.ConflictException:
 print("Table [%s] exists on database [%s]. Skipping table creation" % (
 Constant.TABLE_NAME, Constant.DATABASE_NAME))
 except Exception as err:
 print("Create table failed:", err)

Node.js

The following snippet uses Amazon SDK for JavaScript v3. For more information about how to
install the client and usage, see Timestream Write Client - Amazon SDK for JavaScript v3.

Also see Class CreateTableCommand and CreateTable.

Create table 107

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/clients/client-timestream-write/index.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/clients/client-timestream-write/classes/createtablecommand.html
https://docs.amazonaws.cn/timestream/latest/developerguide/API_CreateTable.html

Amazon Timestream Developer Guide

import { TimestreamWriteClient, CreateTableCommand } from "@aws-sdk/client-
timestream-write";
const writeClient = new TimestreamWriteClient({ region: "us-east-1" });

const params = {
 DatabaseName: "testDbFromNode",
 TableName: "testTableFromNode",
 RetentionProperties: {
 MemoryStoreRetentionPeriodInHours: 24,
 MagneticStoreRetentionPeriodInDays: 365
 }
};

const command = new CreateTableCommand(params);

try {
 const data = await writeClient.send(command);
 console.log(`Table ${data.Table.TableName} created successfully`);
} catch (error) {
 if (error.code === 'ConflictException') {
 console.log(`Table ${params.TableName} already exists on db
 ${params.DatabaseName}. Skipping creation.`);
 } else {
 console.log("Error creating table. ", error);
 throw error;
 }
}

The following snippet uses the Amazon SDK for JavaScript V2 style. It is based on the sample
application at Node.js sample Amazon Timestream for LiveAnalytics application on GitHub.

async function createTable() {
 console.log("Creating Table");
 const params = {
 DatabaseName: constants.DATABASE_NAME,
 TableName: constants.TABLE_NAME,
 RetentionProperties: {
 MemoryStoreRetentionPeriodInHours: constants.HT_TTL_HOURS,
 MagneticStoreRetentionPeriodInDays: constants.CT_TTL_DAYS
 }
 };

 const promise = writeClient.createTable(params).promise();

Create table 108

https://github.com/awslabs/amazon-timestream-tools/tree/mainline/sample_apps/js

Amazon Timestream Developer Guide

 await promise.then(
 (data) => {
 console.log(`Table ${data.Table.TableName} created successfully`);
 },
 (err) => {
 if (err.code === 'ConflictException') {
 console.log(`Table ${params.TableName} already exists on db
 ${params.DatabaseName}. Skipping creation.`);
 } else {
 console.log("Error creating table. ", err);
 throw err;
 }
 }
);
}

.NET

 public async Task CreateTable()
 {
 Console.WriteLine("Creating Table");

 try
 {
 var createTableRequest = new CreateTableRequest
 {
 DatabaseName = Constants.DATABASE_NAME,
 TableName = Constants.TABLE_NAME,
 RetentionProperties = new RetentionProperties
 {
 MagneticStoreRetentionPeriodInDays = Constants.CT_TTL_DAYS,
 MemoryStoreRetentionPeriodInHours = Constants.HT_TTL_HOURS
 }
 };
 CreateTableResponse response = await
 writeClient.CreateTableAsync(createTableRequest);
 Console.WriteLine($"Table {Constants.TABLE_NAME} created");
 }
 catch (ConflictException)
 {
 Console.WriteLine("Table already exists.");
 }

Create table 109

Amazon Timestream Developer Guide

 catch (Exception e)
 {
 Console.WriteLine("Create table failed:" + e.ToString());
 }

 }

Magnetic store writes

You can use the following code snippet to create a table with magnetic store writes enabled. With
magnetic store writes you can write data into both your memory store retention window and
magnetic store retention window.

Note

These code snippets are based on full sample applications on GitHub. For more information
about how to get started with the sample applications, see Sample application.

Java

 public void createTable(String databaseName, String tableName) {
 System.out.println("Creating table");
 CreateTableRequest createTableRequest = new CreateTableRequest();
 createTableRequest.setDatabaseName(databaseName);
 createTableRequest.setTableName(tableName);
 final RetentionProperties retentionProperties = new RetentionProperties()
 .withMemoryStoreRetentionPeriodInHours(HT_TTL_HOURS)
 .withMagneticStoreRetentionPeriodInDays(CT_TTL_DAYS);
 createTableRequest.setRetentionProperties(retentionProperties);
 // Enable MagneticStoreWrite
 final MagneticStoreWriteProperties magneticStoreWriteProperties = new
 MagneticStoreWriteProperties()
 .withEnableMagneticStoreWrites(true);

 createTableRequest.setMagneticStoreWriteProperties(magneticStoreWriteProperties);
 try {
 amazonTimestreamWrite.createTable(createTableRequest);
 System.out.println("Table [" + tableName + "] successfully created.");
 } catch (ConflictException e) {

Create table 110

https://github.com/awslabs/amazon-timestream-tools/blob/master/sample_apps

Amazon Timestream Developer Guide

 System.out.println("Table [" + tableName + "] exists on database [" +
 databaseName + "] . Skipping table creation");
 //We do not throw exception here, we use the existing table instead
 }
 }

Java v2

 public void createTable(String databaseName, String tableName) {
 System.out.println("Creating table");

 // Enable MagneticStoreWrite
 final MagneticStoreWriteProperties magneticStoreWriteProperties =
 MagneticStoreWriteProperties.builder()
 .enableMagneticStoreWrites(true)
 .build();

 CreateTableRequest createTableRequest =
 CreateTableRequest.builder()
 .databaseName(databaseName)
 .tableName(tableName)
 .retentionProperties(RetentionProperties.builder()
 .memoryStoreRetentionPeriodInHours(HT_TTL_HOURS)
 .magneticStoreRetentionPeriodInDays(CT_TTL_DAYS)
 .build())
 .magneticStoreWriteProperties(magneticStoreWriteProperties)
 .build();
 try {
 timestreamWriteClient.createTable(createTableRequest);
 System.out.println("Table [" + tableName + "] successfully created.");
 } catch (ConflictException e) {
 System.out.println("Table [" + tableName + "] exists in database [" +
 databaseName + "] . Skipping table creation");
 }
 }

Go

// Create table.
 createTableInput := ×treamwrite.CreateTableInput{
 DatabaseName: aws.String(*databaseName),
 TableName: aws.String(*tableName),
 // Enable MagneticStoreWrite

Create table 111

Amazon Timestream Developer Guide

 MagneticStoreWriteProperties: ×treamwrite.MagneticStoreWriteProperties{
 EnableMagneticStoreWrites: aws.Bool(true),
 },
 }
 _, err = writeSvc.CreateTable(createTableInput)

Python

 def create_table(self):
 print("Creating table")
 retention_properties = {
 'MemoryStoreRetentionPeriodInHours': Constant.HT_TTL_HOURS,
 'MagneticStoreRetentionPeriodInDays': Constant.CT_TTL_DAYS
 }
 magnetic_store_write_properties = {
 'EnableMagneticStoreWrites': True
 }
 try:
 self.client.create_table(DatabaseName=Constant.DATABASE_NAME,
 TableName=Constant.TABLE_NAME,
 RetentionProperties=retention_properties,

 MagneticStoreWriteProperties=magnetic_store_write_properties)
 print("Table [%s] successfully created." % Constant.TABLE_NAME)
 except self.client.exceptions.ConflictException:
 print("Table [%s] exists on database [%s]. Skipping table creation" % (
 Constant.TABLE_NAME, Constant.DATABASE_NAME))
 except Exception as err:
 print("Create table failed:", err)

Node.js

async function createTable() {
 console.log("Creating Table");

 const params = {
 DatabaseName: constants.DATABASE_NAME,
 TableName: constants.TABLE_NAME,
 RetentionProperties: {
 MemoryStoreRetentionPeriodInHours: constants.HT_TTL_HOURS,
 MagneticStoreRetentionPeriodInDays: constants.CT_TTL_DAYS
 },
 MagneticStoreWriteProperties: {

Create table 112

Amazon Timestream Developer Guide

 EnableMagneticStoreWrites: true
 }
 };

 const promise = writeClient.createTable(params).promise();

 await promise.then(
 (data) => {
 console.log(`Table ${data.Table.TableName} created successfully`);
 },
 (err) => {
 if (err.code === 'ConflictException') {
 console.log(`Table ${params.TableName} already exists on db
 ${params.DatabaseName}. Skipping creation.`);
 } else {
 console.log("Error creating table. ", err);
 throw err;
 }
 }
);
}

.NET

 public async Task CreateTable()
 {
 Console.WriteLine("Creating Table");

 try
 {
 var createTableRequest = new CreateTableRequest
 {
 DatabaseName = Constants.DATABASE_NAME,
 TableName = Constants.TABLE_NAME,
 RetentionProperties = new RetentionProperties
 {
 MagneticStoreRetentionPeriodInDays = Constants.CT_TTL_DAYS,
 MemoryStoreRetentionPeriodInHours = Constants.HT_TTL_HOURS
 },
 // Enable MagneticStoreWrite
 MagneticStoreWriteProperties = new MagneticStoreWriteProperties
 {
 EnableMagneticStoreWrites = true,

Create table 113

Amazon Timestream Developer Guide

 }
 };
 CreateTableResponse response = await
 writeClient.CreateTableAsync(createTableRequest);
 Console.WriteLine($"Table {Constants.TABLE_NAME} created");
 }
 catch (ConflictException)
 {
 Console.WriteLine("Table already exists.");
 }
 catch (Exception e)
 {
 Console.WriteLine("Create table failed:" + e.ToString());
 }

 }

Describe table

You can use the following code snippets to get information about the attributes of your table.

Note

These code snippets are based on full sample applications on GitHub. For more information
about how to get started with the sample applications, see Sample application.

Java

 public void describeTable() {
 System.out.println("Describing table");
 final DescribeTableRequest describeTableRequest = new
 DescribeTableRequest();
 describeTableRequest.setDatabaseName(DATABASE_NAME);
 describeTableRequest.setTableName(TABLE_NAME);
 try {
 DescribeTableResult result =
 amazonTimestreamWrite.describeTable(describeTableRequest);
 String tableId = result.getTable().getArn();
 System.out.println("Table " + TABLE_NAME + " has id " + tableId);
 } catch (final Exception e) {

Describe table 114

https://github.com/awslabs/amazon-timestream-tools/blob/master/sample_apps

Amazon Timestream Developer Guide

 System.out.println("Table " + TABLE_NAME + " doesn't exist = " + e);
 throw e;
 }
 }

Java v2

 public void describeTable() {
 System.out.println("Describing table");
 final DescribeTableRequest describeTableRequest =
 DescribeTableRequest.builder()
 .databaseName(DATABASE_NAME).tableName(TABLE_NAME).build();
 try {
 DescribeTableResponse response =
 timestreamWriteClient.describeTable(describeTableRequest);
 String tableId = response.table().arn();
 System.out.println("Table " + TABLE_NAME + " has id " + tableId);
 } catch (final Exception e) {
 System.out.println("Table " + TABLE_NAME + " doesn't exist = " + e);
 throw e;
 }
 }

Go

// Describe table.
 describeTableInput := ×treamwrite.DescribeTableInput{
 DatabaseName: aws.String(*databaseName),
 TableName: aws.String(*tableName),
 }
 describeTableOutput, err := writeSvc.DescribeTable(describeTableInput)

 if err != nil {
 fmt.Println("Error:")
 fmt.Println(err)
 } else {
 fmt.Println("Describe table is successful, below is the output:")
 fmt.Println(describeTableOutput)
 }

Python

 def describe_table(self):

Describe table 115

Amazon Timestream Developer Guide

 print("Describing table")
 try:
 result = self.client.describe_table(DatabaseName=Constant.DATABASE_NAME,
 TableName=Constant.TABLE_NAME)
 print("Table [%s] has id [%s]" % (Constant.TABLE_NAME, result['Table']
['Arn']))
 except self.client.exceptions.ResourceNotFoundException:
 print("Table doesn't exist")
 except Exception as err:
 print("Describe table failed:", err)

Node.js

The following snippet uses Amazon SDK for JavaScript v3. For more information about how to
install the client and usage, see Timestream Write Client - Amazon SDK for JavaScript v3.

Also see Class DescribeTableCommand and DescribeTable.

import { TimestreamWriteClient, DescribeTableCommand } from "@aws-sdk/client-
timestream-write";
const writeClient = new TimestreamWriteClient({ region: "us-east-1" });

const params = {
 DatabaseName: "testDbFromNode",
 TableName: "testTableFromNode"
};

const command = new DescribeTableCommand(params);

try {
 const data = await writeClient.send(command);
 console.log(`Table ${data.Table.TableName} has id ${data.Table.Arn}`);
} catch (error) {
 if (error.code === 'ResourceNotFoundException') {
 console.log("Table or Database doesn't exist.");
 } else {
 console.log("Describe table failed.", error);
 throw error;
 }
}

The following snippet uses the Amazon SDK for JavaScript V2 style. It is based on the sample
application at Node.js sample Amazon Timestream for LiveAnalytics application on GitHub.

Describe table 116

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/clients/client-timestream-write/index.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/clients/client-timestream-write/classes/describedatabasecommand.html
https://docs.amazonaws.cn/timestream/latest/developerguide/API_DescribeTable.html
https://github.com/awslabs/amazon-timestream-tools/tree/mainline/sample_apps/js

Amazon Timestream Developer Guide

async function describeTable() {
 console.log("Describing Table");
 const params = {
 DatabaseName: constants.DATABASE_NAME,
 TableName: constants.TABLE_NAME
 };

 const promise = writeClient.describeTable(params).promise();

 await promise.then(
 (data) => {
 console.log(`Table ${data.Table.TableName} has id ${data.Table.Arn}`);
 },
 (err) => {
 if (err.code === 'ResourceNotFoundException') {
 console.log("Table or Database doesn't exists.");
 } else {
 console.log("Describe table failed.", err);
 throw err;
 }
 }
);
}

.NET

 public async Task DescribeTable()
 {
 Console.WriteLine("Describing Table");

 try
 {
 var describeTableRequest = new DescribeTableRequest
 {
 DatabaseName = Constants.DATABASE_NAME,
 TableName = Constants.TABLE_NAME
 };
 DescribeTableResponse response = await
 writeClient.DescribeTableAsync(describeTableRequest);
 Console.WriteLine($"Table {Constants.TABLE_NAME} has id:
{response.Table.Arn}");
 }
 catch (ResourceNotFoundException)

Describe table 117

Amazon Timestream Developer Guide

 {
 Console.WriteLine("Table does not exist.");
 }
 catch (Exception e)
 {
 Console.WriteLine("Describe table failed:" + e.ToString());
 }

 }

Update table

You can use the following code snippets to update a table.

Note

These code snippets are based on full sample applications on GitHub. For more information
about how to get started with the sample applications, see Sample application.

Java

 public void updateTable() {
 System.out.println("Updating table");
 UpdateTableRequest updateTableRequest = new UpdateTableRequest();
 updateTableRequest.setDatabaseName(DATABASE_NAME);
 updateTableRequest.setTableName(TABLE_NAME);

 final RetentionProperties retentionProperties = new RetentionProperties()
 .withMemoryStoreRetentionPeriodInHours(HT_TTL_HOURS)
 .withMagneticStoreRetentionPeriodInDays(CT_TTL_DAYS);

 updateTableRequest.setRetentionProperties(retentionProperties);

 amazonTimestreamWrite.updateTable(updateTableRequest);
 System.out.println("Table updated");
 }

Java v2

 public void updateTable() {

Update table 118

https://github.com/awslabs/amazon-timestream-tools/blob/master/sample_apps

Amazon Timestream Developer Guide

 System.out.println("Updating table");

 final RetentionProperties retentionProperties =
 RetentionProperties.builder()
 .memoryStoreRetentionPeriodInHours(HT_TTL_HOURS)
 .magneticStoreRetentionPeriodInDays(CT_TTL_DAYS).build();
 final UpdateTableRequest updateTableRequest = UpdateTableRequest.builder()

 .databaseName(DATABASE_NAME).tableName(TABLE_NAME).retentionProperties(retentionProperties).build();

 timestreamWriteClient.updateTable(updateTableRequest);
 System.out.println("Table updated");
 }

Go

// Update table.
 magneticStoreRetentionPeriodInDays := int64(7 * 365)
 memoryStoreRetentionPeriodInHours := int64(24)

 updateTableInput := ×treamwrite.UpdateTableInput{
 DatabaseName: aws.String(*databaseName),
 TableName: aws.String(*tableName),
 RetentionProperties: ×treamwrite.RetentionProperties{
 MagneticStoreRetentionPeriodInDays: &magneticStoreRetentionPeriodInDays,
 MemoryStoreRetentionPeriodInHours: &memoryStoreRetentionPeriodInHours,
 },
 }
 updateTableOutput, err := writeSvc.UpdateTable(updateTableInput)

 if err != nil {
 fmt.Println("Error:")
 fmt.Println(err)
 } else {
 fmt.Println("Update table is successful, below is the output:")
 fmt.Println(updateTableOutput)
 }

Python

 def update_table(self):
 print("Updating table")
 retention_properties = {

Update table 119

Amazon Timestream Developer Guide

 'MemoryStoreRetentionPeriodInHours': Constant.HT_TTL_HOURS,
 'MagneticStoreRetentionPeriodInDays': Constant.CT_TTL_DAYS
 }
 try:
 self.client.update_table(DatabaseName=Constant.DATABASE_NAME,
 TableName=Constant.TABLE_NAME,
 RetentionProperties=retention_properties)
 print("Table updated.")
 except Exception as err:
 print("Update table failed:", err)

Node.js

The following snippet uses Amazon SDK for JavaScript v3. For more information about how to
install the client and usage, see Timestream Write Client - Amazon SDK for JavaScript v3.

Also see Class UpdateTableCommand and UpdateTable.

import { TimestreamWriteClient, UpdateTableCommand } from "@aws-sdk/client-
timestream-write";
const writeClient = new TimestreamWriteClient({ region: "us-east-1" });

const params = {
 DatabaseName: "testDbFromNode",
 TableName: "testTableFromNode",
 RetentionProperties: {
 MemoryStoreRetentionPeriodInHours: 24,
 MagneticStoreRetentionPeriodInDays: 180
 }
};

const command = new UpdateTableCommand(params);

try {
 const data = await writeClient.send(command);
 console.log("Table updated")
} catch (error) {
 console.log("Error updating table. ", error);
}

The following snippet uses the Amazon SDK for JavaScript V2 style. It is based on the sample
application at Node.js sample Amazon Timestream for LiveAnalytics application on GitHub.

Update table 120

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/clients/client-timestream-write/index.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/clients/client-timestream-write/classes/updatetablecommand.html
https://docs.amazonaws.cn/timestream/latest/developerguide/API_UpdateTable.html
https://github.com/awslabs/amazon-timestream-tools/tree/mainline/sample_apps/js

Amazon Timestream Developer Guide

async function updateTable() {
 console.log("Updating Table");
 const params = {
 DatabaseName: constants.DATABASE_NAME,
 TableName: constants.TABLE_NAME,
 RetentionProperties: {
 MemoryStoreRetentionPeriodInHours: constants.HT_TTL_HOURS,
 MagneticStoreRetentionPeriodInDays: constants.CT_TTL_DAYS
 }
 };

 const promise = writeClient.updateTable(params).promise();

 await promise.then(
 (data) => {
 console.log("Table updated")
 },
 (err) => {
 console.log("Error updating table. ", err);
 throw err;
 }
);
}

.NET

 public async Task UpdateTable()
 {
 Console.WriteLine("Updating Table");

 try
 {
 var updateTableRequest = new UpdateTableRequest
 {
 DatabaseName = Constants.DATABASE_NAME,
 TableName = Constants.TABLE_NAME,
 RetentionProperties = new RetentionProperties
 {
 MagneticStoreRetentionPeriodInDays = Constants.CT_TTL_DAYS,
 MemoryStoreRetentionPeriodInHours = Constants.HT_TTL_HOURS
 }
 };

Update table 121

Amazon Timestream Developer Guide

 UpdateTableResponse response = await
 writeClient.UpdateTableAsync(updateTableRequest);
 Console.WriteLine($"Table {Constants.TABLE_NAME} updated");
 }
 catch (ResourceNotFoundException)
 {
 Console.WriteLine("Table does not exist.");
 }
 catch (Exception e)
 {
 Console.WriteLine("Update table failed:" + e.ToString());
 }

 }

Delete table

You can use the following code snippets to delete a table.

Note

These code snippets are based on full sample applications on GitHub. For more information
about how to get started with the sample applications, see Sample application.

Java

 public void deleteTable() {
 System.out.println("Deleting table");
 final DeleteTableRequest deleteTableRequest = new DeleteTableRequest();
 deleteTableRequest.setDatabaseName(DATABASE_NAME);
 deleteTableRequest.setTableName(TABLE_NAME);
 try {
 DeleteTableResult result =
 amazonTimestreamWrite.deleteTable(deleteTableRequest);
 System.out.println("Delete table status: " +
 result.getSdkHttpMetadata().getHttpStatusCode());
 } catch (final ResourceNotFoundException e) {
 System.out.println("Table " + TABLE_NAME + " doesn't exist = " + e);
 throw e;
 } catch (final Exception e) {

Delete table 122

https://github.com/awslabs/amazon-timestream-tools/blob/master/sample_apps

Amazon Timestream Developer Guide

 System.out.println("Could not delete table " + TABLE_NAME + " = " + e);
 throw e;
 }
 }

Java v2

 public void deleteTable() {
 System.out.println("Deleting table");
 final DeleteTableRequest deleteTableRequest = DeleteTableRequest.builder()
 .databaseName(DATABASE_NAME).tableName(TABLE_NAME).build();
 try {
 DeleteTableResponse response =
 timestreamWriteClient.deleteTable(deleteTableRequest);
 System.out.println("Delete table status: " +
 response.sdkHttpResponse().statusCode());
 } catch (final ResourceNotFoundException e) {
 System.out.println("Table " + TABLE_NAME + " doesn't exist = " + e);
 throw e;
 } catch (final Exception e) {
 System.out.println("Could not delete table " + TABLE_NAME + " = " + e);
 throw e;
 }
 }

Go

deleteTableInput := ×treamwrite.DeleteTableInput{
 DatabaseName: aws.String(*databaseName),
 TableName: aws.String(*tableName),
 }
 _, err = writeSvc.DeleteTable(deleteTableInput)

 if err != nil {
 fmt.Println("Error:")
 fmt.Println(err)
 } else {
 fmt.Println("Table deleted", *tableName)
 }

Python

 def delete_table(self):

Delete table 123

Amazon Timestream Developer Guide

 print("Deleting Table")
 try:
 result = self.client.delete_table(DatabaseName=Constant.DATABASE_NAME,
 TableName=Constant.TABLE_NAME)
 print("Delete table status [%s]" % result['ResponseMetadata']
['HTTPStatusCode'])
 except self.client.exceptions.ResourceNotFoundException:
 print("Table [%s] doesn't exist" % Constant.TABLE_NAME)
 except Exception as err:
 print("Delete table failed:", err)

Node.js

The following snippet uses Amazon SDK for JavaScript v3. For more information about how to
install the client and usage, see Timestream Write Client - Amazon SDK for JavaScript v3.

Also see Class DeleteTableCommand and DeleteTable.

import { TimestreamWriteClient, DeleteTableCommand } from "@aws-sdk/client-
timestream-write";
const writeClient = new TimestreamWriteClient({ region: "us-east-1" });

const params = {
 DatabaseName: "testDbFromNode",
 TableName: "testTableFromNode"
};

const command = new DeleteTableCommand(params);

try {
 const data = await writeClient.send(command);
 console.log("Deleted table");
} catch (error) {
 if (error.code === 'ResourceNotFoundException') {
 console.log(`Table ${params.TableName} or Database ${params.DatabaseName}
 doesn't exist.`);
 } else {
 console.log("Delete table failed.", error);
 throw error;
 }
}

Delete table 124

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/clients/client-timestream-write/index.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/clients/client-timestream-write/classes/deletetablecommand.html
https://docs.amazonaws.cn/timestream/latest/developerguide/API_DeleteTable.html

Amazon Timestream Developer Guide

The following snippet uses the Amazon SDK for JavaScript V2 style. It is based on the sample
application at Node.js sample Amazon Timestream for LiveAnalytics application on GitHub.

async function deleteTable() {
 console.log("Deleting Table");
 const params = {
 DatabaseName: constants.DATABASE_NAME,
 TableName: constants.TABLE_NAME
 };

 const promise = writeClient.deleteTable(params).promise();

 await promise.then(
 function (data) {
 console.log("Deleted table");
 },
 function(err) {
 if (err.code === 'ResourceNotFoundException') {
 console.log(`Table ${params.TableName} or Database
 ${params.DatabaseName} doesn't exists.`);
 } else {
 console.log("Delete table failed.", err);
 throw err;
 }
 }
);
}

.NET

 public async Task DeleteTable()
 {
 Console.WriteLine("Deleting table");
 try
 {
 var deleteTableRequest = new DeleteTableRequest
 {
 DatabaseName = Constants.DATABASE_NAME,
 TableName = Constants.TABLE_NAME
 };
 DeleteTableResponse response = await
 writeClient.DeleteTableAsync(deleteTableRequest);

Delete table 125

https://github.com/awslabs/amazon-timestream-tools/tree/mainline/sample_apps/js

Amazon Timestream Developer Guide

 Console.WriteLine($"Table {Constants.TABLE_NAME} delete request
 status: {response.HttpStatusCode}");
 }
 catch (ResourceNotFoundException)
 {
 Console.WriteLine($"Table {Constants.TABLE_NAME} does not exists");
 }
 catch (Exception e)
 {
 Console.WriteLine("Exception while deleting table:" + e.ToString());
 }
 }

List tables

You can use the following code snippets to list tables.

Note

These code snippets are based on full sample applications on GitHub. For more information
about how to get started with the sample applications, see Sample application.

Java

 public void listTables() {
 System.out.println("Listing tables");
 ListTablesRequest request = new ListTablesRequest();
 request.setDatabaseName(DATABASE_NAME);
 ListTablesResult result = amazonTimestreamWrite.listTables(request);
 printTables(result.getTables());

 String nextToken = result.getNextToken();
 while (nextToken != null && !nextToken.isEmpty()) {
 request.setNextToken(nextToken);
 ListTablesResult nextResult = amazonTimestreamWrite.listTables(request);

 printTables(nextResult.getTables());
 nextToken = nextResult.getNextToken();
 }
 }

List tables 126

https://github.com/awslabs/amazon-timestream-tools/blob/master/sample_apps

Amazon Timestream Developer Guide

 private void printTables(List<Table> tables) {
 for (Table table : tables) {
 System.out.println(table.getTableName());
 }
 }

Java v2

 public void listTables() {
 System.out.println("Listing tables");
 ListTablesRequest request =
 ListTablesRequest.builder().databaseName(DATABASE_NAME).maxResults(2).build();
 ListTablesIterable listTablesIterable =
 timestreamWriteClient.listTablesPaginator(request);
 for(ListTablesResponse listTablesResponse : listTablesIterable) {
 final List<Table> tables = listTablesResponse.tables();
 tables.forEach(table -> System.out.println(table.tableName()));
 }
 }

Go

listTablesMaxResult := int64(15)

 listTablesInput := ×treamwrite.ListTablesInput{
 DatabaseName: aws.String(*databaseName),
 MaxResults: &listTablesMaxResult,
 }
 listTablesOutput, err := writeSvc.ListTables(listTablesInput)

 if err != nil {
 fmt.Println("Error:")
 fmt.Println(err)
 } else {
 fmt.Println("List tables is successful, below is the output:")
 fmt.Println(listTablesOutput)
 }

Python

 def list_tables(self):

List tables 127

Amazon Timestream Developer Guide

 print("Listing tables")
 try:
 result = self.client.list_tables(DatabaseName=Constant.DATABASE_NAME,
 MaxResults=5)
 self.__print_tables(result['Tables'])
 next_token = result.get('NextToken', None)
 while next_token:
 result =
 self.client.list_tables(DatabaseName=Constant.DATABASE_NAME,
 NextToken=next_token, MaxResults=5)
 self.__print_tables(result['Tables'])
 next_token = result.get('NextToken', None)
 except Exception as err:
 print("List tables failed:", err)

Node.js

The following snippet uses Amazon SDK for JavaScript v3. For more information about how to
install the client and usage, see Timestream Write Client - Amazon SDK for JavaScript v3.

Also see Class ListTablesCommand and ListTables.

import { TimestreamWriteClient, ListTablesCommand } from "@aws-sdk/client-
timestream-write";
const writeClient = new TimestreamWriteClient({ region: "us-east-1" });

const params = {
 DatabaseName: "testDbFromNode",
 MaxResults: 15
};

const command = new ListTablesCommand(params);

getTablesList(null);

async function getTablesList(nextToken) {
 if (nextToken) {
 params.NextToken = nextToken;
 }

 try {
 const data = await writeClient.send(command);

 data.Tables.forEach(function (table) {

List tables 128

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/clients/client-timestream-write/index.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/clients/client-timestream-write/classes/listtablescommand.html
https://docs.amazonaws.cn/timestream/latest/developerguide/API_ListTables.html

Amazon Timestream Developer Guide

 console.log(table.TableName);
 });

 if (data.NextToken) {
 return getTablesList(data.NextToken);
 }
 } catch (error) {
 console.log("Error while listing tables", error);
 }
}

The following snippet uses the Amazon SDK for JavaScript V2 style. It is based on the sample
application at Node.js sample Amazon Timestream for LiveAnalytics application on GitHub.

async function listTables() {
 console.log("Listing tables:");
 const tables = await getTablesList(null);
 tables.forEach(function(table){
 console.log(table.TableName);
 });
}

function getTablesList(nextToken, tables = []) {
 var params = {
 DatabaseName: constants.DATABASE_NAME,
 MaxResults: 15
 };

 if(nextToken) {
 params.NextToken = nextToken;
 }

 return writeClient.listTables(params).promise()
 .then(
 (data) => {
 tables.push.apply(tables, data.Tables);
 if (data.NextToken) {
 return getTablesList(data.NextToken, tables);
 } else {
 return tables;
 }
 },
 (err) => {

List tables 129

https://github.com/awslabs/amazon-timestream-tools/tree/mainline/sample_apps/js

Amazon Timestream Developer Guide

 console.log("Error while listing databases", err);
 });
}

.NET

 public async Task ListTables()
 {
 Console.WriteLine("Listing Tables");

 try
 {
 var listTablesRequest = new ListTablesRequest
 {
 MaxResults = 5,
 DatabaseName = Constants.DATABASE_NAME
 };
 ListTablesResponse response = await
 writeClient.ListTablesAsync(listTablesRequest);
 PrintTables(response.Tables);
 string nextToken = response.NextToken;
 while (nextToken != null)
 {
 listTablesRequest.NextToken = nextToken;
 response = await writeClient.ListTablesAsync(listTablesRequest);
 PrintTables(response.Tables);
 nextToken = response.NextToken;
 }
 }
 catch (Exception e)
 {
 Console.WriteLine("List table failed:" + e.ToString());
 }

 }

 private void PrintTables(List<Table> tables)
 {
 foreach (Table table in tables)
 Console.WriteLine($"Table: {table.TableName}");
 }

List tables 130

Amazon Timestream Developer Guide

Write data (inserts and upserts)

Topics

• Writing batches of records

• Writing batches of records with common attributes

• Upserting records

• Multi-measure attribute example

• Handling write failures

Writing batches of records

You can use the following code snippets to write data into an Amazon Timestream table. Writing
data in batches helps to optimize the cost of writes. See Calculating the number of writes for more
information.

Note

These code snippets are based on full sample applications on GitHub. For more information
about how to get started with the sample applications, see Sample application.

Java

 public void writeRecords() {
 System.out.println("Writing records");
 // Specify repeated values for all records
 List<Record> records = new ArrayList<>();
 final long time = System.currentTimeMillis();

 List<Dimension> dimensions = new ArrayList<>();
 final Dimension region = new Dimension().withName("region").withValue("us-
east-1");
 final Dimension az = new Dimension().withName("az").withValue("az1");
 final Dimension hostname = new
 Dimension().withName("hostname").withValue("host1");

 dimensions.add(region);
 dimensions.add(az);
 dimensions.add(hostname);

Write data 131

https://github.com/awslabs/amazon-timestream-tools/blob/master/sample_apps

Amazon Timestream Developer Guide

 Record cpuUtilization = new Record()
 .withDimensions(dimensions)
 .withMeasureName("cpu_utilization")
 .withMeasureValue("13.5")
 .withMeasureValueType(MeasureValueType.DOUBLE)
 .withTime(String.valueOf(time));
 Record memoryUtilization = new Record()
 .withDimensions(dimensions)
 .withMeasureName("memory_utilization")
 .withMeasureValue("40")
 .withMeasureValueType(MeasureValueType.DOUBLE)
 .withTime(String.valueOf(time));

 records.add(cpuUtilization);
 records.add(memoryUtilization);

 WriteRecordsRequest writeRecordsRequest = new WriteRecordsRequest()
 .withDatabaseName(DATABASE_NAME)
 .withTableName(TABLE_NAME)
 .withRecords(records);

 try {
 WriteRecordsResult writeRecordsResult =
 amazonTimestreamWrite.writeRecords(writeRecordsRequest);
 System.out.println("WriteRecords Status: " +
 writeRecordsResult.getSdkHttpMetadata().getHttpStatusCode());
 } catch (RejectedRecordsException e) {
 System.out.println("RejectedRecords: " + e);
 for (RejectedRecord rejectedRecord : e.getRejectedRecords()) {
 System.out.println("Rejected Index " + rejectedRecord.getRecordIndex() + ":
 "
 + rejectedRecord.getReason());
 }
 System.out.println("Other records were written successfully. ");
 } catch (Exception e) {
 System.out.println("Error: " + e);
 }
 }

Java v2

 public void writeRecords() {

Write data 132

Amazon Timestream Developer Guide

 System.out.println("Writing records");
 // Specify repeated values for all records
 List<Record> records = new ArrayList<>();
 final long time = System.currentTimeMillis();

 List<Dimension> dimensions = new ArrayList<>();
 final Dimension region = Dimension.builder().name("region").value("us-
east-1").build();
 final Dimension az = Dimension.builder().name("az").value("az1").build();
 final Dimension hostname =
 Dimension.builder().name("hostname").value("host1").build();

 dimensions.add(region);
 dimensions.add(az);
 dimensions.add(hostname);

 Record cpuUtilization = Record.builder()
 .dimensions(dimensions)
 .measureValueType(MeasureValueType.DOUBLE)
 .measureName("cpu_utilization")
 .measureValue("13.5")
 .time(String.valueOf(time)).build();

 Record memoryUtilization = Record.builder()
 .dimensions(dimensions)
 .measureValueType(MeasureValueType.DOUBLE)
 .measureName("memory_utilization")
 .measureValue("40")
 .time(String.valueOf(time)).build();

 records.add(cpuUtilization);
 records.add(memoryUtilization);

 WriteRecordsRequest writeRecordsRequest = WriteRecordsRequest.builder()
 .databaseName(DATABASE_NAME).tableName(TABLE_NAME).records(records).build();

 try {
 WriteRecordsResponse writeRecordsResponse =
 timestreamWriteClient.writeRecords(writeRecordsRequest);
 System.out.println("WriteRecords Status: " +
 writeRecordsResponse.sdkHttpResponse().statusCode());
 } catch (RejectedRecordsException e) {
 System.out.println("RejectedRecords: " + e);
 for (RejectedRecord rejectedRecord : e.rejectedRecords()) {

Write data 133

Amazon Timestream Developer Guide

 System.out.println("Rejected Index " + rejectedRecord.recordIndex() + ": "
 + rejectedRecord.reason());
 }
 System.out.println("Other records were written successfully. ");
 } catch (Exception e) {
 System.out.println("Error: " + e);
 }
 }

Go

now := time.Now()
currentTimeInSeconds := now.Unix()
writeRecordsInput := ×treamwrite.WriteRecordsInput{
 DatabaseName: aws.String(*databaseName),
 TableName: aws.String(*tableName),
 Records: []*timestreamwrite.Record{
 ×treamwrite.Record{
 Dimensions: []*timestreamwrite.Dimension{
 ×treamwrite.Dimension{
 Name: aws.String("region"),
 Value: aws.String("us-east-1"),
 },
 ×treamwrite.Dimension{
 Name: aws.String("az"),
 Value: aws.String("az1"),
 },
 ×treamwrite.Dimension{
 Name: aws.String("hostname"),
 Value: aws.String("host1"),
 },
 },
 MeasureName: aws.String("cpu_utilization"),
 MeasureValue: aws.String("13.5"),
 MeasureValueType: aws.String("DOUBLE"),
 Time: aws.String(strconv.FormatInt(currentTimeInSeconds, 10)),
 TimeUnit: aws.String("SECONDS"),
 },
 ×treamwrite.Record{
 Dimensions: []*timestreamwrite.Dimension{
 ×treamwrite.Dimension{
 Name: aws.String("region"),
 Value: aws.String("us-east-1"),

Write data 134

Amazon Timestream Developer Guide

 },
 ×treamwrite.Dimension{
 Name: aws.String("az"),
 Value: aws.String("az1"),
 },
 ×treamwrite.Dimension{
 Name: aws.String("hostname"),
 Value: aws.String("host1"),
 },
 },
 MeasureName: aws.String("memory_utilization"),
 MeasureValue: aws.String("40"),
 MeasureValueType: aws.String("DOUBLE"),
 Time: aws.String(strconv.FormatInt(currentTimeInSeconds, 10)),
 TimeUnit: aws.String("SECONDS"),
 },
 },
}

_, err = writeSvc.WriteRecords(writeRecordsInput)

if err != nil {
 fmt.Println("Error:")
 fmt.Println(err)
} else {
 fmt.Println("Write records is successful")
}

Python

 def write_records(self):
 print("Writing records")
 current_time = self._current_milli_time()

 dimensions = [
 {'Name': 'region', 'Value': 'us-east-1'},
 {'Name': 'az', 'Value': 'az1'},
 {'Name': 'hostname', 'Value': 'host1'}
]

 cpu_utilization = {
 'Dimensions': dimensions,
 'MeasureName': 'cpu_utilization',

Write data 135

Amazon Timestream Developer Guide

 'MeasureValue': '13.5',
 'MeasureValueType': 'DOUBLE',
 'Time': current_time
 }

 memory_utilization = {
 'Dimensions': dimensions,
 'MeasureName': 'memory_utilization',
 'MeasureValue': '40',
 'MeasureValueType': 'DOUBLE',
 'Time': current_time
 }

 records = [cpu_utilization, memory_utilization]

 try:
 result = self.client.write_records(DatabaseName=Constant.DATABASE_NAME,
 TableName=Constant.TABLE_NAME,
 Records=records, CommonAttributes={})
 print("WriteRecords Status: [%s]" % result['ResponseMetadata']
['HTTPStatusCode'])
 except self.client.exceptions.RejectedRecordsException as err:
 self._print_rejected_records_exceptions(err)
 except Exception as err:
 print("Error:", err)

 @staticmethod
 def _print_rejected_records_exceptions(err):
 print("RejectedRecords: ", err)
 for rr in err.response["RejectedRecords"]:
 print("Rejected Index " + str(rr["RecordIndex"]) + ": " + rr["Reason"])
 if "ExistingVersion" in rr:
 print("Rejected record existing version: ", rr["ExistingVersion"])

 @staticmethod
 def _current_milli_time():
 return str(int(round(time.time() * 1000)))

Node.js

The following snippet uses the Amazon SDK for JavaScript V2 style. It is based on the sample
application at Node.js sample Amazon Timestream for LiveAnalytics application on GitHub.

Write data 136

https://github.com/awslabs/amazon-timestream-tools/tree/mainline/sample_apps/js

Amazon Timestream Developer Guide

async function writeRecords() {
 console.log("Writing records");
 const currentTime = Date.now().toString(); // Unix time in milliseconds

 const dimensions = [
 {'Name': 'region', 'Value': 'us-east-1'},
 {'Name': 'az', 'Value': 'az1'},
 {'Name': 'hostname', 'Value': 'host1'}
];

 const cpuUtilization = {
 'Dimensions': dimensions,
 'MeasureName': 'cpu_utilization',
 'MeasureValue': '13.5',
 'MeasureValueType': 'DOUBLE',
 'Time': currentTime.toString()
 };

 const memoryUtilization = {
 'Dimensions': dimensions,
 'MeasureName': 'memory_utilization',
 'MeasureValue': '40',
 'MeasureValueType': 'DOUBLE',
 'Time': currentTime.toString()
 };

 const records = [cpuUtilization, memoryUtilization];

 const params = {
 DatabaseName: constants.DATABASE_NAME,
 TableName: constants.TABLE_NAME,
 Records: records
 };

 const request = writeClient.writeRecords(params);

 await request.promise().then(
 (data) => {
 console.log("Write records successful");
 },
 (err) => {
 console.log("Error writing records:", err);
 if (err.code === 'RejectedRecordsException') {

Write data 137

Amazon Timestream Developer Guide

 const responsePayload =
 JSON.parse(request.response.httpResponse.body.toString());
 console.log("RejectedRecords: ", responsePayload.RejectedRecords);
 console.log("Other records were written successfully. ");
 }
 }
);
}

.NET

 public async Task WriteRecords()
 {
 Console.WriteLine("Writing records");

 DateTimeOffset now = DateTimeOffset.UtcNow;
 string currentTimeString = (now.ToUnixTimeMilliseconds()).ToString();

 List<Dimension> dimensions = new List<Dimension>{
 new Dimension { Name = "region", Value = "us-east-1" },
 new Dimension { Name = "az", Value = "az1" },
 new Dimension { Name = "hostname", Value = "host1" }
 };

 var cpuUtilization = new Record
 {
 Dimensions = dimensions,
 MeasureName = "cpu_utilization",
 MeasureValue = "13.6",
 MeasureValueType = MeasureValueType.DOUBLE,
 Time = currentTimeString
 };

 var memoryUtilization = new Record
 {
 Dimensions = dimensions,
 MeasureName = "memory_utilization",
 MeasureValue = "40",
 MeasureValueType = MeasureValueType.DOUBLE,
 Time = currentTimeString
 };

Write data 138

Amazon Timestream Developer Guide

 List<Record> records = new List<Record> {
 cpuUtilization,
 memoryUtilization
 };

 try
 {
 var writeRecordsRequest = new WriteRecordsRequest
 {
 DatabaseName = Constants.DATABASE_NAME,
 TableName = Constants.TABLE_NAME,
 Records = records
 };
 WriteRecordsResponse response = await
 writeClient.WriteRecordsAsync(writeRecordsRequest);
 Console.WriteLine($"Write records status code:
 {response.HttpStatusCode.ToString()}");
 }
 catch (RejectedRecordsException e) {
 Console.WriteLine("RejectedRecordsException:" + e.ToString());
 foreach (RejectedRecord rr in e.RejectedRecords) {
 Console.WriteLine("RecordIndex " + rr.RecordIndex + " : " + rr.Reason);
 }
 Console.WriteLine("Other records were written successfully. ");
 }
 catch (Exception e)
 {
 Console.WriteLine("Write records failure:" + e.ToString());
 }
 }

Writing batches of records with common attributes

If your time series data has measures and/or dimensions that are common across many data
points, you can also use the following optimized version of the writeRecords API to insert data into
Timestream for LiveAnalytics. Using common attributes with batching can further optimize the
cost of writes as described in Calculating the number of writes.

Write data 139

Amazon Timestream Developer Guide

Note

These code snippets are based on full sample applications on GitHub. For more information
about how to get started with the sample applications, see Sample application.

Java

 public void writeRecordsWithCommonAttributes() {
 System.out.println("Writing records with extracting common attributes");
 // Specify repeated values for all records
 List<Record> records = new ArrayList<>();
 final long time = System.currentTimeMillis();

 List<Dimension> dimensions = new ArrayList<>();
 final Dimension region = new Dimension().withName("region").withValue("us-
east-1");
 final Dimension az = new Dimension().withName("az").withValue("az1");
 final Dimension hostname = new
 Dimension().withName("hostname").withValue("host1");

 dimensions.add(region);
 dimensions.add(az);
 dimensions.add(hostname);

 Record commonAttributes = new Record()
 .withDimensions(dimensions)
 .withMeasureValueType(MeasureValueType.DOUBLE)
 .withTime(String.valueOf(time));

 Record cpuUtilization = new Record()
 .withMeasureName("cpu_utilization")
 .withMeasureValue("13.5");
 Record memoryUtilization = new Record()
 .withMeasureName("memory_utilization")
 .withMeasureValue("40");

 records.add(cpuUtilization);
 records.add(memoryUtilization);

 WriteRecordsRequest writeRecordsRequest = new WriteRecordsRequest()
 .withDatabaseName(DATABASE_NAME)
 .withTableName(TABLE_NAME)

Write data 140

https://github.com/awslabs/amazon-timestream-tools/blob/master/sample_apps

Amazon Timestream Developer Guide

 .withCommonAttributes(commonAttributes);
 writeRecordsRequest.setRecords(records);

 try {
 WriteRecordsResult writeRecordsResult =
 amazonTimestreamWrite.writeRecords(writeRecordsRequest);
 System.out.println("writeRecordsWithCommonAttributes Status: " +
 writeRecordsResult.getSdkHttpMetadata().getHttpStatusCode());
 } catch (RejectedRecordsException e) {
 System.out.println("RejectedRecords: " + e);
 for (RejectedRecord rejectedRecord : e.getRejectedRecords()) {
 System.out.println("Rejected Index " + rejectedRecord.getRecordIndex() + ":
 "
 + rejectedRecord.getReason());
 }
 System.out.println("Other records were written successfully. ");
 } catch (Exception e) {
 System.out.println("Error: " + e);
 }
 }

Java v2

 public void writeRecordsWithCommonAttributes() {
 System.out.println("Writing records with extracting common attributes");
 // Specify repeated values for all records
 List<Record> records = new ArrayList<>();
 final long time = System.currentTimeMillis();

 List<Dimension> dimensions = new ArrayList<>();
 final Dimension region = Dimension.builder().name("region").value("us-
east-1").build();
 final Dimension az = Dimension.builder().name("az").value("az1").build();
 final Dimension hostname =
 Dimension.builder().name("hostname").value("host1").build();

 dimensions.add(region);
 dimensions.add(az);
 dimensions.add(hostname);

 Record commonAttributes = Record.builder()
 .dimensions(dimensions)
 .measureValueType(MeasureValueType.DOUBLE)

Write data 141

Amazon Timestream Developer Guide

 .time(String.valueOf(time)).build();

 Record cpuUtilization = Record.builder()
 .measureName("cpu_utilization")
 .measureValue("13.5").build();
 Record memoryUtilization = Record.builder()
 .measureName("memory_utilization")
 .measureValue("40").build();

 records.add(cpuUtilization);
 records.add(memoryUtilization);

 WriteRecordsRequest writeRecordsRequest = WriteRecordsRequest.builder()
 .databaseName(DATABASE_NAME)
 .tableName(TABLE_NAME)
 .commonAttributes(commonAttributes)
 .records(records).build();

 try {
 WriteRecordsResponse writeRecordsResponse =
 timestreamWriteClient.writeRecords(writeRecordsRequest);
 System.out.println("writeRecordsWithCommonAttributes Status: " +
 writeRecordsResponse.sdkHttpResponse().statusCode());
 } catch (RejectedRecordsException e) {
 System.out.println("RejectedRecords: " + e);
 for (RejectedRecord rejectedRecord : e.rejectedRecords()) {
 System.out.println("Rejected Index " + rejectedRecord.recordIndex() + ": "
 + rejectedRecord.reason());
 }
 System.out.println("Other records were written successfully. ");
 } catch (Exception e) {
 System.out.println("Error: " + e);
 }
 }

Go

now = time.Now()
currentTimeInSeconds = now.Unix()
writeRecordsCommonAttributesInput := ×treamwrite.WriteRecordsInput{
 DatabaseName: aws.String(*databaseName),
 TableName: aws.String(*tableName),
 CommonAttributes: ×treamwrite.Record{

Write data 142

Amazon Timestream Developer Guide

 Dimensions: []*timestreamwrite.Dimension{
 ×treamwrite.Dimension{
 Name: aws.String("region"),
 Value: aws.String("us-east-1"),
 },
 ×treamwrite.Dimension{
 Name: aws.String("az"),
 Value: aws.String("az1"),
 },
 ×treamwrite.Dimension{
 Name: aws.String("hostname"),
 Value: aws.String("host1"),
 },
 },
 MeasureValueType: aws.String("DOUBLE"),
 Time: aws.String(strconv.FormatInt(currentTimeInSeconds, 10)),
 TimeUnit: aws.String("SECONDS"),
 },
 Records: []*timestreamwrite.Record{
 ×treamwrite.Record{
 MeasureName: aws.String("cpu_utilization"),
 MeasureValue: aws.String("13.5"),
 },
 ×treamwrite.Record{
 MeasureName: aws.String("memory_utilization"),
 MeasureValue: aws.String("40"),
 },
 },
}

_, err = writeSvc.WriteRecords(writeRecordsCommonAttributesInput)

if err != nil {
 fmt.Println("Error:")
 fmt.Println(err)
} else {
 fmt.Println("Ingest records is successful")
}

Python

 def write_records_with_common_attributes(self):
 print("Writing records extracting common attributes")

Write data 143

Amazon Timestream Developer Guide

 current_time = self._current_milli_time()

 dimensions = [
 {'Name': 'region', 'Value': 'us-east-1'},
 {'Name': 'az', 'Value': 'az1'},
 {'Name': 'hostname', 'Value': 'host1'}
]

 common_attributes = {
 'Dimensions': dimensions,
 'MeasureValueType': 'DOUBLE',
 'Time': current_time
 }

 cpu_utilization = {
 'MeasureName': 'cpu_utilization',
 'MeasureValue': '13.5'
 }

 memory_utilization = {
 'MeasureName': 'memory_utilization',
 'MeasureValue': '40'
 }

 records = [cpu_utilization, memory_utilization]

 try:
 result = self.client.write_records(DatabaseName=Constant.DATABASE_NAME,
 TableName=Constant.TABLE_NAME,
 Records=records, CommonAttributes=common_attributes)
 print("WriteRecords Status: [%s]" % result['ResponseMetadata']
['HTTPStatusCode'])
 except self.client.exceptions.RejectedRecordsException as err:
 self._print_rejected_records_exceptions(err)
 except Exception as err:
 print("Error:", err)

 @staticmethod
 def _print_rejected_records_exceptions(err):
 print("RejectedRecords: ", err)
 for rr in err.response["RejectedRecords"]:
 print("Rejected Index " + str(rr["RecordIndex"]) + ": " + rr["Reason"])
 if "ExistingVersion" in rr:
 print("Rejected record existing version: ", rr["ExistingVersion"])

Write data 144

Amazon Timestream Developer Guide

 @staticmethod
 def _current_milli_time():
 return str(int(round(time.time() * 1000)))

Node.js

The following snippet uses the Amazon SDK for JavaScript V2 style. It is based on the sample
application at Node.js sample Amazon Timestream for LiveAnalytics application on GitHub.

async function writeRecordsWithCommonAttributes() {
 console.log("Writing records with common attributes");
 const currentTime = Date.now().toString(); // Unix time in milliseconds

 const dimensions = [
 {'Name': 'region', 'Value': 'us-east-1'},
 {'Name': 'az', 'Value': 'az1'},
 {'Name': 'hostname', 'Value': 'host1'}
];

 const commonAttributes = {
 'Dimensions': dimensions,
 'MeasureValueType': 'DOUBLE',
 'Time': currentTime.toString()
 };

 const cpuUtilization = {
 'MeasureName': 'cpu_utilization',
 'MeasureValue': '13.5'
 };

 const memoryUtilization = {
 'MeasureName': 'memory_utilization',
 'MeasureValue': '40'
 };

 const records = [cpuUtilization, memoryUtilization];

 const params = {
 DatabaseName: constants.DATABASE_NAME,
 TableName: constants.TABLE_NAME,
 Records: records,
 CommonAttributes: commonAttributes

Write data 145

https://github.com/awslabs/amazon-timestream-tools/tree/mainline/sample_apps/js

Amazon Timestream Developer Guide

 };

 const request = writeClient.writeRecords(params);

 await request.promise().then(
 (data) => {
 console.log("Write records successful");
 },
 (err) => {
 console.log("Error writing records:", err);
 if (err.code === 'RejectedRecordsException') {
 const responsePayload =
 JSON.parse(request.response.httpResponse.body.toString());
 console.log("RejectedRecords: ", responsePayload.RejectedRecords);
 console.log("Other records were written successfully. ");
 }
 }
);
}

.NET

 public async Task WriteRecordsWithCommonAttributes()
 {
 Console.WriteLine("Writing records with common attributes");

 DateTimeOffset now = DateTimeOffset.UtcNow;
 string currentTimeString = (now.ToUnixTimeMilliseconds()).ToString();

 List<Dimension> dimensions = new List<Dimension>{
 new Dimension { Name = "region", Value = "us-east-1" },
 new Dimension { Name = "az", Value = "az1" },
 new Dimension { Name = "hostname", Value = "host1" }
 };

 var commonAttributes = new Record
 {
 Dimensions = dimensions,
 MeasureValueType = MeasureValueType.DOUBLE,
 Time = currentTimeString
 };

 var cpuUtilization = new Record

Write data 146

Amazon Timestream Developer Guide

 {
 MeasureName = "cpu_utilization",
 MeasureValue = "13.6"
 };

 var memoryUtilization = new Record
 {
 MeasureName = "memory_utilization",
 MeasureValue = "40"
 };

 List<Record> records = new List<Record>();
 records.Add(cpuUtilization);
 records.Add(memoryUtilization);

 try
 {
 var writeRecordsRequest = new WriteRecordsRequest
 {
 DatabaseName = Constants.DATABASE_NAME,
 TableName = Constants.TABLE_NAME,
 Records = records,
 CommonAttributes = commonAttributes
 };
 WriteRecordsResponse response = await
 writeClient.WriteRecordsAsync(writeRecordsRequest);
 Console.WriteLine($"Write records status code:
 {response.HttpStatusCode.ToString()}");
 }
 catch (RejectedRecordsException e) {
 Console.WriteLine("RejectedRecordsException:" + e.ToString());
 foreach (RejectedRecord rr in e.RejectedRecords) {
 Console.WriteLine("RecordIndex " + rr.RecordIndex + " : " + rr.Reason);
 }
 Console.WriteLine("Other records were written successfully. ");
 }
 catch (Exception e)
 {
 Console.WriteLine("Write records failure:" + e.ToString());
 }
 }

Write data 147

Amazon Timestream Developer Guide

Upserting records

While the default writes in Amazon Timestream follow the first writer wins semantics, where data
is stored as append only and duplicate records are rejected, there are applications that require
the ability to write data into Amazon Timestream using the last writer wins semantics, where the
record with the highest version is stored in the system. There are also applications that require the
ability to update existing records. To address these scenarios, Amazon Timestream provides the
ability to upsert data. Upsert is an operation that inserts a record in to the system when the record
does not exist or updates the record, when one exists.

You can upsert records by including the Version in record definition while sending a
WriteRecords request. Amazon Timestream will store the record with the record with highest
Version. The code sample below shows how you can upsert data:

Note

These code snippets are based on full sample applications on GitHub. For more information
about how to get started with the sample applications, see Sample application.

Java

 public void writeRecordsWithUpsert() {
 System.out.println("Writing records with upsert");
 // Specify repeated values for all records
 List<Record> records = new ArrayList<>();
 final long time = System.currentTimeMillis();
 // To achieve upsert (last writer wins) semantic, one example is to use current
 time as the version if you are writing directly from the data source
 long version = System.currentTimeMillis();

 List<Dimension> dimensions = new ArrayList<>();
 final Dimension region = new Dimension().withName("region").withValue("us-
east-1");
 final Dimension az = new Dimension().withName("az").withValue("az1");
 final Dimension hostname = new
 Dimension().withName("hostname").withValue("host1");

 dimensions.add(region);
 dimensions.add(az);
 dimensions.add(hostname);

Write data 148

https://github.com/awslabs/amazon-timestream-tools/blob/master/sample_apps

Amazon Timestream Developer Guide

 Record commonAttributes = new Record()
 .withDimensions(dimensions)
 .withMeasureValueType(MeasureValueType.DOUBLE)
 .withTime(String.valueOf(time))
 .withVersion(version);

 Record cpuUtilization = new Record()
 .withMeasureName("cpu_utilization")
 .withMeasureValue("13.5");
 Record memoryUtilization = new Record()
 .withMeasureName("memory_utilization")
 .withMeasureValue("40");

 records.add(cpuUtilization);
 records.add(memoryUtilization);

 WriteRecordsRequest writeRecordsRequest = new WriteRecordsRequest()
 .withDatabaseName(DATABASE_NAME)
 .withTableName(TABLE_NAME)
 .withCommonAttributes(commonAttributes);
 writeRecordsRequest.setRecords(records);

 // write records for first time
 try {
 WriteRecordsResult writeRecordsResult =
 amazonTimestreamWrite.writeRecords(writeRecordsRequest);
 System.out.println("WriteRecords Status for first time: " +
 writeRecordsResult.getSdkHttpMetadata().getHttpStatusCode());
 } catch (RejectedRecordsException e) {
 printRejectedRecordsException(e);
 } catch (Exception e) {
 System.out.println("Error: " + e);
 }

 // Successfully retry same writeRecordsRequest with same records and versions,
 because writeRecords API is idempotent.
 try {
 WriteRecordsResult writeRecordsResult =
 amazonTimestreamWrite.writeRecords(writeRecordsRequest);
 System.out.println("WriteRecords Status for retry: " +
 writeRecordsResult.getSdkHttpMetadata().getHttpStatusCode());
 } catch (RejectedRecordsException e) {
 printRejectedRecordsException(e);

Write data 149

Amazon Timestream Developer Guide

 } catch (Exception e) {
 System.out.println("Error: " + e);
 }

 // upsert with lower version, this would fail because a higher version is
 required to update the measure value.
 version -= 1;
 commonAttributes.setVersion(version);

 cpuUtilization.setMeasureValue("14.5");
 memoryUtilization.setMeasureValue("50");

 List<Record> upsertedRecords = new ArrayList<>();
 upsertedRecords.add(cpuUtilization);
 upsertedRecords.add(memoryUtilization);

 WriteRecordsRequest writeRecordsUpsertRequest = new WriteRecordsRequest()
 .withDatabaseName(DATABASE_NAME)
 .withTableName(TABLE_NAME)
 .withCommonAttributes(commonAttributes);
 writeRecordsUpsertRequest.setRecords(upsertedRecords);

 try {
 WriteRecordsResult writeRecordsUpsertResult =
 amazonTimestreamWrite.writeRecords(writeRecordsUpsertRequest);
 System.out.println("WriteRecords Status for upsert with lower version: " +
 writeRecordsUpsertResult.getSdkHttpMetadata().getHttpStatusCode());
 } catch (RejectedRecordsException e) {
 System.out.println("WriteRecords Status for upsert with lower version: ");
 printRejectedRecordsException(e);
 } catch (Exception e) {
 System.out.println("Error: " + e);
 }

 // upsert with higher version as new data in generated
 version = System.currentTimeMillis();
 commonAttributes.setVersion(version);

 writeRecordsUpsertRequest = new WriteRecordsRequest()
 .withDatabaseName(DATABASE_NAME)
 .withTableName(TABLE_NAME)
 .withCommonAttributes(commonAttributes);
 writeRecordsUpsertRequest.setRecords(upsertedRecords);

Write data 150

Amazon Timestream Developer Guide

 try {
 WriteRecordsResult writeRecordsUpsertResult =
 amazonTimestreamWrite.writeRecords(writeRecordsUpsertRequest);
 System.out.println("WriteRecords Status for upsert with higher version: " +
 writeRecordsUpsertResult.getSdkHttpMetadata().getHttpStatusCode());
 } catch (RejectedRecordsException e) {
 printRejectedRecordsException(e);
 } catch (Exception e) {
 System.out.println("Error: " + e);
 }
 }

Java v2

 public void writeRecordsWithUpsert() {
 System.out.println("Writing records with upsert");
 // Specify repeated values for all records
 List<Record> records = new ArrayList<>();
 final long time = System.currentTimeMillis();
 // To achieve upsert (last writer wins) semantic, one example is to use current
 time as the version if you are writing directly from the data source
 long version = System.currentTimeMillis();

 List<Dimension> dimensions = new ArrayList<>();
 final Dimension region = Dimension.builder().name("region").value("us-
east-1").build();
 final Dimension az = Dimension.builder().name("az").value("az1").build();
 final Dimension hostname =
 Dimension.builder().name("hostname").value("host1").build();

 dimensions.add(region);
 dimensions.add(az);
 dimensions.add(hostname);

 Record commonAttributes = Record.builder()
 .dimensions(dimensions)
 .measureValueType(MeasureValueType.DOUBLE)
 .time(String.valueOf(time))
 .version(version)
 .build();

 Record cpuUtilization = Record.builder()
 .measureName("cpu_utilization")

Write data 151

Amazon Timestream Developer Guide

 .measureValue("13.5").build();
 Record memoryUtilization = Record.builder()
 .measureName("memory_utilization")
 .measureValue("40").build();

 records.add(cpuUtilization);
 records.add(memoryUtilization);

 WriteRecordsRequest writeRecordsRequest = WriteRecordsRequest.builder()
 .databaseName(DATABASE_NAME)
 .tableName(TABLE_NAME)
 .commonAttributes(commonAttributes)
 .records(records).build();

 // write records for first time
 try {
 WriteRecordsResponse writeRecordsResponse =
 timestreamWriteClient.writeRecords(writeRecordsRequest);
 System.out.println("WriteRecords Status for first time: " +
 writeRecordsResponse.sdkHttpResponse().statusCode());
 } catch (RejectedRecordsException e) {
 printRejectedRecordsException(e);
 } catch (Exception e) {
 System.out.println("Error: " + e);
 }

 // Successfully retry same writeRecordsRequest with same records and versions,
 because writeRecords API is idempotent.
 try {
 WriteRecordsResponse writeRecordsResponse =
 timestreamWriteClient.writeRecords(writeRecordsRequest);
 System.out.println("WriteRecords Status for retry: " +
 writeRecordsResponse.sdkHttpResponse().statusCode());
 } catch (RejectedRecordsException e) {
 printRejectedRecordsException(e);
 } catch (Exception e) {
 System.out.println("Error: " + e);
 }

 // upsert with lower version, this would fail because a higher version is
 required to update the measure value.
 version -= 1;
 commonAttributes = Record.builder()
 .dimensions(dimensions)

Write data 152

Amazon Timestream Developer Guide

 .measureValueType(MeasureValueType.DOUBLE)
 .time(String.valueOf(time))
 .version(version)
 .build();

 cpuUtilization = Record.builder()
 .measureName("cpu_utilization")
 .measureValue("14.5").build();
 memoryUtilization = Record.builder()
 .measureName("memory_utilization")
 .measureValue("50").build();

 List<Record> upsertedRecords = new ArrayList<>();
 upsertedRecords.add(cpuUtilization);
 upsertedRecords.add(memoryUtilization);

 WriteRecordsRequest writeRecordsUpsertRequest = WriteRecordsRequest.builder()
 .databaseName(DATABASE_NAME)
 .tableName(TABLE_NAME)
 .commonAttributes(commonAttributes)
 .records(upsertedRecords).build();

 try {
 WriteRecordsResponse writeRecordsResponse =
 timestreamWriteClient.writeRecords(writeRecordsUpsertRequest);
 System.out.println("WriteRecords Status for upsert with lower version: " +
 writeRecordsResponse.sdkHttpResponse().statusCode());
 } catch (RejectedRecordsException e) {
 System.out.println("WriteRecords Status for upsert with lower version: ");
 printRejectedRecordsException(e);
 } catch (Exception e) {
 System.out.println("Error: " + e);
 }

 // upsert with higher version as new data in generated
 version = System.currentTimeMillis();
 commonAttributes = Record.builder()
 .dimensions(dimensions)
 .measureValueType(MeasureValueType.DOUBLE)
 .time(String.valueOf(time))
 .version(version)
 .build();

 writeRecordsUpsertRequest = WriteRecordsRequest.builder()

Write data 153

Amazon Timestream Developer Guide

 .databaseName(DATABASE_NAME)
 .tableName(TABLE_NAME)
 .commonAttributes(commonAttributes)
 .records(upsertedRecords).build();

 try {
 WriteRecordsResponse writeRecordsUpsertResponse =
 timestreamWriteClient.writeRecords(writeRecordsUpsertRequest);
 System.out.println("WriteRecords Status for upsert with higher version: " +
 writeRecordsUpsertResponse.sdkHttpResponse().statusCode());
 } catch (RejectedRecordsException e) {
 printRejectedRecordsException(e);
 } catch (Exception e) {
 System.out.println("Error: " + e);
 }
 }

Go

// Below code will ingest and upsert cpu_utilization and memory_utilization metric
 for a host on
// region=us-east-1, az=az1, and hostname=host1
fmt.Println("Ingesting records and set version as currentTimeInMills, hit enter to
 continue")
reader.ReadString('\n')

// Get current time in seconds.
now = time.Now()
currentTimeInSeconds = now.Unix()
// To achieve upsert (last writer wins) semantic, one example is to use current time
 as the version if you are writing directly from the data source
version := time.Now().Round(time.Millisecond).UnixNano() / 1e6 // set version as
 currentTimeInMills

writeRecordsCommonAttributesUpsertInput := ×treamwrite.WriteRecordsInput{
 DatabaseName: aws.String(*databaseName),
 TableName: aws.String(*tableName),
 CommonAttributes: ×treamwrite.Record{
 Dimensions: []*timestreamwrite.Dimension{
 ×treamwrite.Dimension{
 Name: aws.String("region"),
 Value: aws.String("us-east-1"),
 },

Write data 154

Amazon Timestream Developer Guide

 ×treamwrite.Dimension{
 Name: aws.String("az"),
 Value: aws.String("az1"),
 },
 ×treamwrite.Dimension{
 Name: aws.String("hostname"),
 Value: aws.String("host1"),
 },
 },
 MeasureValueType: aws.String("DOUBLE"),
 Time: aws.String(strconv.FormatInt(currentTimeInSeconds, 10)),
 TimeUnit: aws.String("SECONDS"),
 Version: &version,
 },
 Records: []*timestreamwrite.Record{
 ×treamwrite.Record{
 MeasureName: aws.String("cpu_utilization"),
 MeasureValue: aws.String("13.5"),
 },
 ×treamwrite.Record{
 MeasureName: aws.String("memory_utilization"),
 MeasureValue: aws.String("40"),
 },
 },
}

// write records for first time
_, err = writeSvc.WriteRecords(writeRecordsCommonAttributesUpsertInput)

if err != nil {
 fmt.Println("Error:")
 fmt.Println(err)
} else {
 fmt.Println("Frist-time write records is successful")
}

fmt.Println("Retry same writeRecordsRequest with same records and versions. Because
 writeRecords API is idempotent, this will success. hit enter to continue")
reader.ReadString('\n')

_, err = writeSvc.WriteRecords(writeRecordsCommonAttributesUpsertInput)

if err != nil {
 fmt.Println("Error:")

Write data 155

Amazon Timestream Developer Guide

 fmt.Println(err)
} else {
 fmt.Println("Retry write records for same request is successful")
}

fmt.Println("Upsert with lower version, this would fail because a higher version is
 required to update the measure value. hit enter to continue")
reader.ReadString('\n')
version -= 1
writeRecordsCommonAttributesUpsertInput.CommonAttributes.Version = &version

updated_cpu_utilization := ×treamwrite.Record{
 MeasureName: aws.String("cpu_utilization"),
 MeasureValue: aws.String("14.5"),
}
updated_memory_utilization := ×treamwrite.Record{
 MeasureName: aws.String("memory_utilization"),
 MeasureValue: aws.String("50"),
}

writeRecordsCommonAttributesUpsertInput.Records = []*timestreamwrite.Record{
 updated_cpu_utilization,
 updated_memory_utilization,
}

_, err = writeSvc.WriteRecords(writeRecordsCommonAttributesUpsertInput)

if err != nil {
 fmt.Println("Error:")
 fmt.Println(err)
} else {
 fmt.Println("Write records with lower version is successful")
}

fmt.Println("Upsert with higher version as new data in generated, this would
 success. hit enter to continue")
reader.ReadString('\n')

version = time.Now().Round(time.Millisecond).UnixNano() / 1e6 // set version as
 currentTimeInMills
writeRecordsCommonAttributesUpsertInput.CommonAttributes.Version = &version

_, err = writeSvc.WriteRecords(writeRecordsCommonAttributesUpsertInput)

Write data 156

Amazon Timestream Developer Guide

if err != nil {
 fmt.Println("Error:")
 fmt.Println(err)
} else {
 fmt.Println("Write records with higher version is successful")
}

Python

 def write_records_with_upsert(self):
 print("Writing records with upsert")
 current_time = self._current_milli_time()
 # To achieve upsert (last writer wins) semantic, one example is to use current
 time as the version if you are writing directly from the data source
 version = int(self._current_milli_time())

 dimensions = [
 {'Name': 'region', 'Value': 'us-east-1'},
 {'Name': 'az', 'Value': 'az1'},
 {'Name': 'hostname', 'Value': 'host1'}
]

 common_attributes = {
 'Dimensions': dimensions,
 'MeasureValueType': 'DOUBLE',
 'Time': current_time,
 'Version': version
 }

 cpu_utilization = {
 'MeasureName': 'cpu_utilization',
 'MeasureValue': '13.5'
 }

 memory_utilization = {
 'MeasureName': 'memory_utilization',
 'MeasureValue': '40'
 }

 records = [cpu_utilization, memory_utilization]

 # write records for first time

Write data 157

Amazon Timestream Developer Guide

 try:
 result = self.client.write_records(DatabaseName=Constant.DATABASE_NAME,
 TableName=Constant.TABLE_NAME,
 Records=records, CommonAttributes=common_attributes)
 print("WriteRecords Status for first time: [%s]" % result['ResponseMetadata']
['HTTPStatusCode'])
 except self.client.exceptions.RejectedRecordsException as err:
 self._print_rejected_records_exceptions(err)
 except Exception as err:
 print("Error:", err)

 # Successfully retry same writeRecordsRequest with same records and versions,
 because writeRecords API is idempotent.
 try:
 result = self.client.write_records(DatabaseName=Constant.DATABASE_NAME,
 TableName=Constant.TABLE_NAME,
 Records=records, CommonAttributes=common_attributes)
 print("WriteRecords Status for retry: [%s]" % result['ResponseMetadata']
['HTTPStatusCode'])
 except self.client.exceptions.RejectedRecordsException as err:
 self._print_rejected_records_exceptions(err)
 except Exception as err:
 print("Error:", err)

 # upsert with lower version, this would fail because a higher version is
 required to update the measure value.
 version -= 1
 common_attributes["Version"] = version

 cpu_utilization["MeasureValue"] = '14.5'
 memory_utilization["MeasureValue"] = '50'

 upsertedRecords = [cpu_utilization, memory_utilization]

 try:
 upsertedResult =
 self.client.write_records(DatabaseName=Constant.DATABASE_NAME,
 TableName=Constant.TABLE_NAME,
 Records=upsertedRecords,
 CommonAttributes=common_attributes)
 print("WriteRecords Status for upsert with lower version: [%s]" %
 upsertedResult['ResponseMetadata']['HTTPStatusCode'])
 except self.client.exceptions.RejectedRecordsException as err:
 self._print_rejected_records_exceptions(err)

Write data 158

Amazon Timestream Developer Guide

 except Exception as err:
 print("Error:", err)

 # upsert with higher version as new data is generated
 version = int(self._current_milli_time())
 common_attributes["Version"] = version

 try:
 upsertedResult =
 self.client.write_records(DatabaseName=Constant.DATABASE_NAME,
 TableName=Constant.TABLE_NAME,
 Records=upsertedRecords,
 CommonAttributes=common_attributes)
 print("WriteRecords Upsert Status: [%s]" % upsertedResult['ResponseMetadata']
['HTTPStatusCode'])
 except self.client.exceptions.RejectedRecordsException as err:
 self._print_rejected_records_exceptions(err)
 except Exception as err:
 print("Error:", err)

 @staticmethod
 def _current_milli_time():
 return str(int(round(time.time() * 1000)))

Node.js

The following snippet uses the Amazon SDK for JavaScript V2 style. It is based on the sample
application at Node.js sample Amazon Timestream for LiveAnalytics application on GitHub.

async function writeRecordsWithUpsert() {
 console.log("Writing records with upsert");
 const currentTime = Date.now().toString(); // Unix time in milliseconds
 // To achieve upsert (last writer wins) semantic, one example is to use current
 time as the version if you are writing directly from the data source
 let version = Date.now();

 const dimensions = [
 {'Name': 'region', 'Value': 'us-east-1'},
 {'Name': 'az', 'Value': 'az1'},
 {'Name': 'hostname', 'Value': 'host1'}
];

Write data 159

https://github.com/awslabs/amazon-timestream-tools/tree/mainline/sample_apps/js

Amazon Timestream Developer Guide

 const commonAttributes = {
 'Dimensions': dimensions,
 'MeasureValueType': 'DOUBLE',
 'Time': currentTime.toString(),
 'Version': version
 };

 const cpuUtilization = {
 'MeasureName': 'cpu_utilization',
 'MeasureValue': '13.5'
 };

 const memoryUtilization = {
 'MeasureName': 'memory_utilization',
 'MeasureValue': '40'
 };

 const records = [cpuUtilization, memoryUtilization];

 const params = {
 DatabaseName: constants.DATABASE_NAME,
 TableName: constants.TABLE_NAME,
 Records: records,
 CommonAttributes: commonAttributes
 };

 const request = writeClient.writeRecords(params);

 // write records for first time
 await request.promise().then(
 (data) => {
 console.log("Write records successful for first time.");
 },
 (err) => {
 console.log("Error writing records:", err);
 if (err.code === 'RejectedRecordsException') {
 printRejectedRecordsException(request);
 }
 }
);

 // Successfully retry same writeRecordsRequest with same records and versions,
 because writeRecords API is idempotent.
 await request.promise().then(

Write data 160

Amazon Timestream Developer Guide

 (data) => {
 console.log("Write records successful for retry.");
 },
 (err) => {
 console.log("Error writing records:", err);
 if (err.code === 'RejectedRecordsException') {
 printRejectedRecordsException(request);
 }
 }
);

 // upsert with lower version, this would fail because a higher version is required
 to update the measure value.
 version--;

 const commonAttributesWithLowerVersion = {
 'Dimensions': dimensions,
 'MeasureValueType': 'DOUBLE',
 'Time': currentTime.toString(),
 'Version': version
 };

 const updatedCpuUtilization = {
 'MeasureName': 'cpu_utilization',
 'MeasureValue': '14.5'
 };

 const updatedMemoryUtilization = {
 'MeasureName': 'memory_utilization',
 'MeasureValue': '50'
 };

 const upsertedRecords = [updatedCpuUtilization, updatedMemoryUtilization];

 const upsertedParamsWithLowerVersion = {
 DatabaseName: constants.DATABASE_NAME,
 TableName: constants.TABLE_NAME,
 Records: upsertedRecords,
 CommonAttributes: commonAttributesWithLowerVersion
 };

 const upsertRequestWithLowerVersion =
 writeClient.writeRecords(upsertedParamsWithLowerVersion);

Write data 161

Amazon Timestream Developer Guide

 await upsertRequestWithLowerVersion.promise().then(
 (data) => {
 console.log("Write records for upsert with lower version successful");
 },
 (err) => {
 console.log("Error writing records:", err);
 if (err.code === 'RejectedRecordsException') {
 printRejectedRecordsException(upsertRequestWithLowerVersion);
 }
 }
);

 // upsert with higher version as new data in generated
 version = Date.now();

 const commonAttributesWithHigherVersion = {
 'Dimensions': dimensions,
 'MeasureValueType': 'DOUBLE',
 'Time': currentTime.toString(),
 'Version': version
 };

 const upsertedParamsWithHigherVerion = {
 DatabaseName: constants.DATABASE_NAME,
 TableName: constants.TABLE_NAME,
 Records: upsertedRecords,
 CommonAttributes: commonAttributesWithHigherVersion
 };

 const upsertRequestWithHigherVersion =
 writeClient.writeRecords(upsertedParamsWithHigherVerion);

 await upsertRequestWithHigherVersion.promise().then(
 (data) => {
 console.log("Write records upsert successful with higher version");
 },
 (err) => {
 console.log("Error writing records:", err);
 if (err.code === 'RejectedRecordsException') {
 printRejectedRecordsException(upsertedParamsWithHigherVerion);
 }
 }
);

Write data 162

Amazon Timestream Developer Guide

}

.NET

 public async Task WriteRecordsWithUpsert()
 {
 Console.WriteLine("Writing records with upsert");

 DateTimeOffset now = DateTimeOffset.UtcNow;
 string currentTimeString = (now.ToUnixTimeMilliseconds()).ToString();
 // To achieve upsert (last writer wins) semantic, one example is to use current
 time as the version if you are writing directly from the data source
 long version = now.ToUnixTimeMilliseconds();

 List<Dimension> dimensions = new List<Dimension>{
 new Dimension { Name = "region", Value = "us-east-1" },
 new Dimension { Name = "az", Value = "az1" },
 new Dimension { Name = "hostname", Value = "host1" }
 };

 var commonAttributes = new Record
 {
 Dimensions = dimensions,
 MeasureValueType = MeasureValueType.DOUBLE,
 Time = currentTimeString,
 Version = version
 };

 var cpuUtilization = new Record
 {
 MeasureName = "cpu_utilization",
 MeasureValue = "13.6"
 };

 var memoryUtilization = new Record
 {
 MeasureName = "memory_utilization",
 MeasureValue = "40"
 };

 List<Record> records = new List<Record>();
 records.Add(cpuUtilization);

Write data 163

Amazon Timestream Developer Guide

 records.Add(memoryUtilization);

 // write records for first time
 try
 {
 var writeRecordsRequest = new WriteRecordsRequest
 {
 DatabaseName = Constants.DATABASE_NAME,
 TableName = Constants.TABLE_NAME,
 Records = records,
 CommonAttributes = commonAttributes
 };
 WriteRecordsResponse response = await
 writeClient.WriteRecordsAsync(writeRecordsRequest);
 Console.WriteLine($"WriteRecords Status for first time:
 {response.HttpStatusCode.ToString()}");
 }
 catch (RejectedRecordsException e) {
 PrintRejectedRecordsException(e);
 }
 catch (Exception e)
 {
 Console.WriteLine("Write records failure:" + e.ToString());
 }

 // Successfully retry same writeRecordsRequest with same records and versions,
 because writeRecords API is idempotent.
 try
 {
 var writeRecordsRequest = new WriteRecordsRequest
 {
 DatabaseName = Constants.DATABASE_NAME,
 TableName = Constants.TABLE_NAME,
 Records = records,
 CommonAttributes = commonAttributes
 };
 WriteRecordsResponse response = await
 writeClient.WriteRecordsAsync(writeRecordsRequest);
 Console.WriteLine($"WriteRecords Status for retry:
 {response.HttpStatusCode.ToString()}");
 }
 catch (RejectedRecordsException e) {
 PrintRejectedRecordsException(e);
 }

Write data 164

Amazon Timestream Developer Guide

 catch (Exception e)
 {
 Console.WriteLine("Write records failure:" + e.ToString());
 }

 // upsert with lower version, this would fail because a higher version is
 required to update the measure value.
 version--;
 Type recordType = typeof(Record);
 recordType.GetProperty("Version").SetValue(commonAttributes, version);
 recordType.GetProperty("MeasureValue").SetValue(cpuUtilization, "14.6");
 recordType.GetProperty("MeasureValue").SetValue(memoryUtilization, "50");

 List<Record> upsertedRecords = new List<Record> {
 cpuUtilization,
 memoryUtilization
 };

 try
 {
 var writeRecordsUpsertRequest = new WriteRecordsRequest
 {
 DatabaseName = Constants.DATABASE_NAME,
 TableName = Constants.TABLE_NAME,
 Records = upsertedRecords,
 CommonAttributes = commonAttributes
 };
 WriteRecordsResponse upsertResponse = await
 writeClient.WriteRecordsAsync(writeRecordsUpsertRequest);
 Console.WriteLine($"WriteRecords Status for upsert with lower version:
 {upsertResponse.HttpStatusCode.ToString()}");
 }
 catch (RejectedRecordsException e) {
 PrintRejectedRecordsException(e);
 }
 catch (Exception e)
 {
 Console.WriteLine("Write records failure:" + e.ToString());
 }

 // upsert with higher version as new data in generated
 now = DateTimeOffset.UtcNow;
 version = now.ToUnixTimeMilliseconds();
 recordType.GetProperty("Version").SetValue(commonAttributes, version);

Write data 165

Amazon Timestream Developer Guide

 try
 {
 var writeRecordsUpsertRequest = new WriteRecordsRequest
 {
 DatabaseName = Constants.DATABASE_NAME,
 TableName = Constants.TABLE_NAME,
 Records = upsertedRecords,
 CommonAttributes = commonAttributes
 };
 WriteRecordsResponse upsertResponse = await
 writeClient.WriteRecordsAsync(writeRecordsUpsertRequest);
 Console.WriteLine($"WriteRecords Status for upsert with higher version:
 {upsertResponse.HttpStatusCode.ToString()}");
 }
 catch (RejectedRecordsException e) {
 PrintRejectedRecordsException(e);
 }
 catch (Exception e)
 {
 Console.WriteLine("Write records failure:" + e.ToString());
 }
 }

Multi-measure attribute example

This example illustrates writing multi-mearure attributes. Multi-measure attributes are useful
when a device or an application you are tracking emits multiple metrics or events at the same
timestamp..

Note

These code snippets are based on full sample applications on GitHub. For more information
about how to get started with the sample applications, see Sample application.

Java

package com.amazonaws.services.timestream;

import static com.amazonaws.services.timestream.Main.DATABASE_NAME;

Write data 166

https://github.com/awslabs/amazon-timestream-tools/blob/master/sample_apps

Amazon Timestream Developer Guide

import static com.amazonaws.services.timestream.Main.REGION;
import static com.amazonaws.services.timestream.Main.TABLE_NAME;

import java.util.ArrayList;
import java.util.List;

import com.amazonaws.services.timestreamwrite.AmazonTimestreamWrite;
import com.amazonaws.services.timestreamwrite.model.Dimension;
import com.amazonaws.services.timestreamwrite.model.MeasureValue;
import com.amazonaws.services.timestreamwrite.model.MeasureValueType;
import com.amazonaws.services.timestreamwrite.model.Record;
import com.amazonaws.services.timestreamwrite.model.RejectedRecordsException;
import com.amazonaws.services.timestreamwrite.model.WriteRecordsRequest;
import com.amazonaws.services.timestreamwrite.model.WriteRecordsResult;

public class multimeasureAttributeExample {
 AmazonTimestreamWrite timestreamWriteClient;

 public multimeasureAttributeExample(AmazonTimestreamWrite client) {
 this.timestreamWriteClient = client;
 }

 public void writeRecordsMultiMeasureValueSingleRecord() {
 System.out.println("Writing records with multi value attributes");

 List<Record> records = new ArrayList<>();
 final long time = System.currentTimeMillis();
 long version = System.currentTimeMillis();

 List<Dimension> dimensions = new ArrayList<>();
 final Dimension region = new Dimension().withName("region").withValue(REGION);
 final Dimension az = new Dimension().withName("az").withValue("az1");
 final Dimension hostname = new
 Dimension().withName("hostname").withValue("host1");

 dimensions.add(region);
 dimensions.add(az);
 dimensions.add(hostname);

 Record commonAttributes = new Record()
 .withDimensions(dimensions)
 .withTime(String.valueOf(time))
 .withVersion(version);

Write data 167

Amazon Timestream Developer Guide

 MeasureValue cpuUtilization = new MeasureValue()
 .withName("cpu_utilization")
 .withType(MeasureValueType.DOUBLE)
 .withValue("13.5");
 MeasureValue memoryUtilization = new MeasureValue()
 .withName("memory_utilization")
 .withType(MeasureValueType.DOUBLE)
 .withValue("40");
 Record computationalResources = new Record()
 .withMeasureName("cpu_memory")
 .withMeasureValues(cpuUtilization, memoryUtilization)
 .withMeasureValueType(MeasureValueType.MULTI);

 records.add(computationalResources);

 WriteRecordsRequest writeRecordsRequest = new WriteRecordsRequest()
 .withDatabaseName(DATABASE_NAME)
 .withTableName(TABLE_NAME)
 .withCommonAttributes(commonAttributes)
 .withRecords(records);

 // write records for first time
 try {
 WriteRecordsResult writeRecordResult =
 timestreamWriteClient.writeRecords(writeRecordsRequest);
 System.out.println(
 "WriteRecords Status for multi value attributes: " + writeRecordResult
 .getSdkHttpMetadata().getHttpStatusCode());
 } catch (RejectedRecordsException e) {
 printRejectedRecordsException(e);
 } catch (Exception e) {
 System.out.println("Error: " + e);
 }
 }

 public void writeRecordsMultiMeasureValueMultipleRecords() {
 System.out.println(
 "Writing records with multi value attributes mixture type");

 List<Record> records = new ArrayList<>();
 final long time = System.currentTimeMillis();
 long version = System.currentTimeMillis();

Write data 168

Amazon Timestream Developer Guide

 List<Dimension> dimensions = new ArrayList<>();
 final Dimension region = new Dimension().withName("region").withValue(REGION);
 final Dimension az = new Dimension().withName("az").withValue("az1");
 final Dimension hostname = new
 Dimension().withName("hostname").withValue("host1");

 dimensions.add(region);
 dimensions.add(az);
 dimensions.add(hostname);

 Record commonAttributes = new Record()
 .withDimensions(dimensions)
 .withTime(String.valueOf(time))
 .withVersion(version);

 MeasureValue cpuUtilization = new MeasureValue()
 .withName("cpu_utilization")
 .withType(MeasureValueType.DOUBLE)
 .withValue("13");
 MeasureValue memoryUtilization =new MeasureValue()
 .withName("memory_utilization")
 .withType(MeasureValueType.DOUBLE)
 .withValue("40");
 MeasureValue activeCores = new MeasureValue()
 .withName("active_cores")
 .withType(MeasureValueType.BIGINT)
 .withValue("4");

 Record computationalResources = new Record()
 .withMeasureName("computational_utilization")
 .withMeasureValues(cpuUtilization, memoryUtilization, activeCores)
 .withMeasureValueType(MeasureValueType.MULTI);

 records.add(computationalResources);

 WriteRecordsRequest writeRecordsRequest = new WriteRecordsRequest()
 .withDatabaseName(DATABASE_NAME)
 .withTableName(TABLE_NAME)
 .withCommonAttributes(commonAttributes)
 .withRecords(records);

 // write records for first time
 try {

Write data 169

Amazon Timestream Developer Guide

 WriteRecordsResult writeRecordResult =
 timestreamWriteClient.writeRecords(writeRecordsRequest);
 System.out.println(
 "WriteRecords Status for multi value attributes: " + writeRecordResult
 .getSdkHttpMetadata().getHttpStatusCode());
 } catch (RejectedRecordsException e) {
 printRejectedRecordsException(e);
 } catch (Exception e) {
 System.out.println("Error: " + e);
 }
 }

 private void printRejectedRecordsException(RejectedRecordsException e) {
 System.out.println("RejectedRecords: " + e);
 e.getRejectedRecords().forEach(System.out::println);
 }
}

Java v2

package com.amazonaws.services.timestream;

import java.util.ArrayList;
import java.util.List;

import software.amazon.awssdk.services.timestreamwrite.TimestreamWriteClient;
import software.amazon.awssdk.services.timestreamwrite.model.Dimension;
import software.amazon.awssdk.services.timestreamwrite.model.MeasureValue;
import software.amazon.awssdk.services.timestreamwrite.model.MeasureValueType;
import software.amazon.awssdk.services.timestreamwrite.model.Record;
import
 software.amazon.awssdk.services.timestreamwrite.model.RejectedRecordsException;
import software.amazon.awssdk.services.timestreamwrite.model.WriteRecordsRequest;
import software.amazon.awssdk.services.timestreamwrite.model.WriteRecordsResponse;

import static com.amazonaws.services.timestream.Main.DATABASE_NAME;
import static com.amazonaws.services.timestream.Main.TABLE_NAME;

public class multimeasureAttributeExample {

 TimestreamWriteClient timestreamWriteClient;

Write data 170

Amazon Timestream Developer Guide

 public multimeasureAttributeExample(TimestreamWriteClient client) {
 this.timestreamWriteClient = client;
 }

 public void writeRecordsMultiMeasureValueSingleRecord() {
 System.out.println("Writing records with multi value attributes");

 List<Record> records = new ArrayList<>();
 final long time = System.currentTimeMillis();
 long version = System.currentTimeMillis();

 List<Dimension> dimensions = new ArrayList<>();
 final Dimension region =
 Dimension.builder().name("region").value("us-east-1").build();
 final Dimension az = Dimension.builder().name("az").value("az1").build();
 final Dimension hostname =
 Dimension.builder().name("hostname").value("host1").build();

 dimensions.add(region);
 dimensions.add(az);
 dimensions.add(hostname);

 Record commonAttributes = Record.builder()
 .dimensions(dimensions)
 .time(String.valueOf(time))
 .version(version)
 .build();

 MeasureValue cpuUtilization = MeasureValue.builder()
 .name("cpu_utilization")
 .type(MeasureValueType.DOUBLE)
 .value("13.5").build();
 MeasureValue memoryUtilization = MeasureValue.builder()
 .name("memory_utilization")
 .type(MeasureValueType.DOUBLE)
 .value("40").build();
 Record computationalResources = Record
 .builder()
 .measureName("cpu_memory")
 .measureValues(cpuUtilization, memoryUtilization)
 .measureValueType(MeasureValueType.MULTI)
 .build();

 records.add(computationalResources);

Write data 171

Amazon Timestream Developer Guide

 WriteRecordsRequest writeRecordsRequest = WriteRecordsRequest.builder()
 .databaseName(DATABASE_NAME)
 .tableName(TABLE_NAME)
 .commonAttributes(commonAttributes)
 .records(records).build();

 // write records for first time
 try {
 WriteRecordsResponse writeRecordsResponse =
 timestreamWriteClient.writeRecords(writeRecordsRequest);
 System.out.println(
 "WriteRecords Status for multi value attributes: " + writeRecordsResponse
 .sdkHttpResponse()
 .statusCode());
 } catch (RejectedRecordsException e) {
 printRejectedRecordsException(e);
 } catch (Exception e) {
 System.out.println("Error: " + e);
 }
 }

 public void writeRecordsMultiMeasureValueMultipleRecords() {
 System.out.println(
 "Writing records with multi value attributes mixture type");

 List<Record> records = new ArrayList<>();
 final long time = System.currentTimeMillis();
 long version = System.currentTimeMillis();

 List<Dimension> dimensions = new ArrayList<>();
 final Dimension region =
 Dimension.builder().name("region").value("us-east-1").build();
 final Dimension az = Dimension.builder().name("az").value("az1").build();
 final Dimension hostname =
 Dimension.builder().name("hostname").value("host1").build();

 dimensions.add(region);
 dimensions.add(az);
 dimensions.add(hostname);

 Record commonAttributes = Record.builder()
 .dimensions(dimensions)
 .time(String.valueOf(time))

Write data 172

Amazon Timestream Developer Guide

 .version(version)
 .build();

 MeasureValue cpuUtilization = MeasureValue.builder()
 .name("cpu_utilization")
 .type(MeasureValueType.DOUBLE)
 .value("13.5").build();
 MeasureValue memoryUtilization = MeasureValue.builder()
 .name("memory_utilization")
 .type(MeasureValueType.DOUBLE)
 .value("40").build();
 MeasureValue activeCores = MeasureValue.builder()
 .name("active_cores")
 .type(MeasureValueType.BIGINT)
 .value("4").build();

 Record computationalResources = Record
 .builder()
 .measureName("computational_utilization")
 .measureValues(cpuUtilization, memoryUtilization, activeCores)
 .measureValueType(MeasureValueType.MULTI)
 .build();

 records.add(computationalResources);

 WriteRecordsRequest writeRecordsRequest = WriteRecordsRequest.builder()
 .databaseName(DATABASE_NAME)
 .tableName(TABLE_NAME)
 .commonAttributes(commonAttributes)
 .records(records).build();

 // write records for first time
 try {
 WriteRecordsResponse writeRecordsResponse =
 timestreamWriteClient.writeRecords(writeRecordsRequest);
 System.out.println(
 "WriteRecords Status for multi value attributes: " + writeRecordsResponse
 .sdkHttpResponse()
 .statusCode());
 } catch (RejectedRecordsException e) {
 printRejectedRecordsException(e);
 } catch (Exception e) {
 System.out.println("Error: " + e);

Write data 173

Amazon Timestream Developer Guide

 }
 }

 private void printRejectedRecordsException(RejectedRecordsException e) {
 System.out.println("RejectedRecords: " + e);
 e.rejectedRecords().forEach(System.out::println);
 }
}

Go

 now := time.Now()
 currentTimeInSeconds := now.Unix()
 writeRecordsInput := ×treamwrite.WriteRecordsInput{
 DatabaseName: aws.String(*databaseName),
 TableName: aws.String(*tableName),
 Records: []*timestreamwrite.Record{
 ×treamwrite.Record{
 Dimensions: []*timestreamwrite.Dimension{
 ×treamwrite.Dimension{
 Name: aws.String("region"),
 Value: aws.String("us-east-1"),
 },
 ×treamwrite.Dimension{
 Name: aws.String("az"),
 Value: aws.String("az1"),
 },
 ×treamwrite.Dimension{
 Name: aws.String("hostname"),
 Value: aws.String("host1"),
 },
 },
 MeasureName: aws.String("metrics"),
 MeasureValueType: aws.String("MULTI"),
 Time: aws.String(strconv.FormatInt(currentTimeInSeconds, 10)),
 TimeUnit: aws.String("SECONDS"),
 MeasureValues: []*timestreamwrite.MeasureValue{
 ×treamwrite.MeasureValue{
 Name: aws.String("cpu_utilization"),
 Value: aws.String("13.5"),
 Type: aws.String("DOUBLE"),
 },
 ×treamwrite.MeasureValue{

Write data 174

Amazon Timestream Developer Guide

 Name: aws.String("memory_utilization"),
 Value: aws.String("40"),
 Type: aws.String("DOUBLE"),
 },
 },
 },
 },
 }

 _, err = writeSvc.WriteRecords(writeRecordsInput)

 if err != nil {
 fmt.Println("Error:")
 fmt.Println(err)
 } else {
 fmt.Println("Write records is successful")
 }

Python

import time
import boto3
import psutil
import os

from botocore.config import Config

DATABASE_NAME = os.environ['DATABASE_NAME']
TABLE_NAME = os.environ['TABLE_NAME']

COUNTRY = "UK"
CITY = "London"
HOSTNAME = "MyHostname" # You can make it dynamic using socket.gethostname()

INTERVAL = 1 # Seconds

def prepare_common_attributes():
 common_attributes = {
 'Dimensions': [
 {'Name': 'country', 'Value': COUNTRY},
 {'Name': 'city', 'Value': CITY},
 {'Name': 'hostname', 'Value': HOSTNAME}
],

Write data 175

Amazon Timestream Developer Guide

 'MeasureName': 'utilization',
 'MeasureValueType': 'MULTI'
 }
 return common_attributes

def prepare_record(current_time):
 record = {
 'Time': str(current_time),
 'MeasureValues': []
 }
 return record

def prepare_measure(measure_name, measure_value):
 measure = {
 'Name': measure_name,
 'Value': str(measure_value),
 'Type': 'DOUBLE'
 }
 return measure

def write_records(records, common_attributes):
 try:
 result = write_client.write_records(DatabaseName=DATABASE_NAME,
 TableName=TABLE_NAME,
 CommonAttributes=common_attributes,
 Records=records)
 status = result['ResponseMetadata']['HTTPStatusCode']
 print("Processed %d records. WriteRecords HTTPStatusCode: %s" %
 (len(records), status))
 except Exception as err:
 print("Error:", err)

if __name__ == '__main__':

 print("writing data to database {} table {}".format(
 DATABASE_NAME, TABLE_NAME))

 session = boto3.Session()
 write_client = session.client('timestream-write', config=Config(
 read_timeout=20, max_pool_connections=5000, retries={'max_attempts': 10}))

Write data 176

Amazon Timestream Developer Guide

 query_client = session.client('timestream-query') # Not used

 common_attributes = prepare_common_attributes()

 records = []

 while True:

 current_time = int(time.time() * 1000)
 cpu_utilization = psutil.cpu_percent()
 memory_utilization = psutil.virtual_memory().percent
 swap_utilization = psutil.swap_memory().percent
 disk_utilization = psutil.disk_usage('/').percent

 record = prepare_record(current_time)
 record['MeasureValues'].append(prepare_measure('cpu', cpu_utilization))
 record['MeasureValues'].append(prepare_measure('memory', memory_utilization))
 record['MeasureValues'].append(prepare_measure('swap', swap_utilization))
 record['MeasureValues'].append(prepare_measure('disk', disk_utilization))

 records.append(record)

 print("records {} - cpu {} - memory {} - swap {} - disk {}".format(
 len(records), cpu_utilization, memory_utilization,
 swap_utilization, disk_utilization))

 if len(records) == 100:
 write_records(records, common_attributes)
 records = []

 time.sleep(INTERVAL)

Node.js

The following snippet uses the Amazon SDK for JavaScript V2 style. It is based on the sample
application at Node.js sample Amazon Timestream for LiveAnalytics application on GitHub.

 async function writeRecords() {
 console.log("Writing records");
 const currentTime = Date.now().toString(); // Unix time in milliseconds

 const dimensions = [
 {'Name': 'region', 'Value': 'us-east-1'},

Write data 177

https://github.com/awslabs/amazon-timestream-tools/tree/mainline/sample_apps/js

Amazon Timestream Developer Guide

 {'Name': 'az', 'Value': 'az1'},
 {'Name': 'hostname', 'Value': 'host1'}
];

 const record = {
 'Dimensions': dimensions,
 'MeasureName': 'metrics',
 'MeasureValues': [
 {
 'Name': 'cpu_utilization',
 'Value': '40',
 'Type': 'DOUBLE',
 },
 {
 'Name': 'memory_utilization',
 'Value': '13.5',
 'Type': 'DOUBLE',
 },
],
 'MeasureValueType': 'MULTI',
 'Time': currentTime.toString()
 }

 const records = [record];

 const params = {
 DatabaseName: 'DatabaseName',
 TableName: 'TableName',
 Records: records
 };

 const response = await writeClient.writeRecords(params);

 console.log(response);
 }

.NET

using System;
using System.IO;
using System.Collections.Generic;
using Amazon.TimestreamWrite;
using Amazon.TimestreamWrite.Model;

Write data 178

Amazon Timestream Developer Guide

using System.Threading.Tasks;

namespace TimestreamDotNetSample
{
 static class MultiMeasureValueConstants
 {
 public const string MultiMeasureValueSampleDb = "multiMeasureValueSampleDb";
 public const string MultiMeasureValueSampleTable =
 "multiMeasureValueSampleTable";
 }

 public class MultiValueAttributesExample
 {
 private readonly AmazonTimestreamWriteClient writeClient;

 public MultiValueAttributesExample(AmazonTimestreamWriteClient writeClient)
 {
 this.writeClient = writeClient;
 }

 public async Task WriteRecordsMultiMeasureValueSingleRecord()
 {
 Console.WriteLine("Writing records with multi value attributes");

 DateTimeOffset now = DateTimeOffset.UtcNow;
 string currentTimeString = (now.ToUnixTimeMilliseconds()).ToString();

 List<Dimension> dimensions = new List<Dimension>{
 new Dimension { Name = "region", Value = "us-east-1" },
 new Dimension { Name = "az", Value = "az1" },
 new Dimension { Name = "hostname", Value = "host1" }
 };

 var commonAttributes = new Record
 {
 Dimensions = dimensions,
 Time = currentTimeString
 };

 var cpuUtilization = new MeasureValue
 {
 Name = "cpu_utilization",
 Value = "13.6",
 Type = "DOUBLE"

Write data 179

Amazon Timestream Developer Guide

 };

 var memoryUtilization = new MeasureValue
 {
 Name = "memory_utilization",
 Value = "40",
 Type = "DOUBLE"
 };

 var computationalRecord = new Record
 {
 MeasureName = "cpu_memory",
 MeasureValues = new List<MeasureValue> {cpuUtilization, memoryUtilization},
 MeasureValueType = "MULTI"
 };

 List<Record> records = new List<Record>();
 records.Add(computationalRecord);

 try
 {
 var writeRecordsRequest = new WriteRecordsRequest
 {
 DatabaseName = MultiMeasureValueConstants.MultiMeasureValueSampleDb,
 TableName = MultiMeasureValueConstants.MultiMeasureValueSampleTable,
 Records = records,
 CommonAttributes = commonAttributes
 };
 WriteRecordsResponse response = await
 writeClient.WriteRecordsAsync(writeRecordsRequest);
 Console.WriteLine($"Write records status code:
 {response.HttpStatusCode.ToString()}");
 }
 catch (Exception e)
 {
 Console.WriteLine("Write records failure:" + e.ToString());
 }
 }

 public async Task WriteRecordsMultiMeasureValueMultipleRecords()
 {
 Console.WriteLine("Writing records with multi value attributes mixture type");

Write data 180

Amazon Timestream Developer Guide

 DateTimeOffset now = DateTimeOffset.UtcNow;
 string currentTimeString = (now.ToUnixTimeMilliseconds()).ToString();

 List<Dimension> dimensions = new List<Dimension>{
 new Dimension { Name = "region", Value = "us-east-1" },
 new Dimension { Name = "az", Value = "az1" },
 new Dimension { Name = "hostname", Value = "host1" }
 };

 var commonAttributes = new Record
 {
 Dimensions = dimensions,
 Time = currentTimeString
 };

 var cpuUtilization = new MeasureValue
 {
 Name = "cpu_utilization",
 Value = "13.6",
 Type = "DOUBLE"
 };

 var memoryUtilization = new MeasureValue
 {
 Name = "memory_utilization",
 Value = "40",
 Type = "DOUBLE"
 };

 var activeCores = new MeasureValue
 {
 Name = "active_cores",
 Value = "4",
 Type = "BIGINT"
 };

 var computationalRecord = new Record
 {
 MeasureName = "computational_utilization",
 MeasureValues = new List<MeasureValue> {cpuUtilization, memoryUtilization,
 activeCores},
 MeasureValueType = "MULTI"
 };

Write data 181

Amazon Timestream Developer Guide

 var aliveRecord = new Record
 {
 MeasureName = "is_healthy",
 MeasureValue = "true",
 MeasureValueType = "BOOLEAN"
 };

 List<Record> records = new List<Record>();
 records.Add(computationalRecord);
 records.Add(aliveRecord);

 try
 {
 var writeRecordsRequest = new WriteRecordsRequest
 {
 DatabaseName = MultiMeasureValueConstants.MultiMeasureValueSampleDb,
 TableName = MultiMeasureValueConstants.MultiMeasureValueSampleTable,
 Records = records,
 CommonAttributes = commonAttributes
 };
 WriteRecordsResponse response = await
 writeClient.WriteRecordsAsync(writeRecordsRequest);
 Console.WriteLine($"Write records status code:
 {response.HttpStatusCode.ToString()}");
 }
 catch (Exception e)
 {
 Console.WriteLine("Write records failure:" + e.ToString());
 }
 }
 }
}

Handling write failures

Writes in Amazon Timestream can fail for one or more of the following reasons:

• There are records with timestamps that lie outside the retention duration of the memory store.

• There are records containing dimensions and/or measures that exceed the Timestream defined
limits.

Write data 182

Amazon Timestream Developer Guide

• Amazon Timestream has detected duplicate records. Records are marked as duplicate, when
there are multiple records with the same dimensions, timestamps, and measure names but:

• Measure values are different.

• Version is not present in the request or the value of version in the new record is equal to
or lower than the existing value. If Amazon Timestream rejects data for this reason, the
ExistingVersion field in the RejectedRecords will contain the record's current version as
stored in Amazon Timestream. To force an update, you can resend the request with a version
for the record set to a value greater than the ExistingVersion.

For more information about errors and rejected records, see Errors and RejectedRecord.

If your application receives a RejectedRecordsException when attempting to write records to
Timestream, you can parse the rejected records to learn more about the write failures as shown
below.

Note

These code snippets are based on full sample applications on GitHub. For more information
about how to get started with the sample applications, see Sample application.

Java

 try {
 WriteRecordsResult writeRecordsResult =
 amazonTimestreamWrite.writeRecords(writeRecordsRequest);
 System.out.println("WriteRecords Status: " +
 writeRecordsResult.getSdkHttpMetadata().getHttpStatusCode());
 } catch (RejectedRecordsException e) {
 System.out.println("RejectedRecords: " + e);
 for (RejectedRecord rejectedRecord : e.getRejectedRecords()) {
 System.out.println("Rejected Index " + rejectedRecord.getRecordIndex() + ": "
 + rejectedRecord.getReason());
 }
 System.out.println("Other records were written successfully. ");
 } catch (Exception e) {
 System.out.println("Error: " + e);
 }

Write data 183

https://docs.amazonaws.cn/timestream/latest/developerguide/API_WriteRecords.html#API_WriteRecords_Errors
https://docs.amazonaws.cn/timestream/latest/developerguide/API_RejectedRecord.html
https://github.com/awslabs/amazon-timestream-tools/blob/master/sample_apps

Amazon Timestream Developer Guide

Java v2

 try {
 WriteRecordsResponse writeRecordsResponse =
 timestreamWriteClient.writeRecords(writeRecordsRequest);
 System.out.println("writeRecordsWithCommonAttributes Status: " +
 writeRecordsResponse.sdkHttpResponse().statusCode());
 } catch (RejectedRecordsException e) {
 System.out.println("RejectedRecords: " + e);
 for (RejectedRecord rejectedRecord : e.rejectedRecords()) {
 System.out.println("Rejected Index " + rejectedRecord.recordIndex() + ": "
 + rejectedRecord.reason());
 }
 System.out.println("Other records were written successfully. ");
 } catch (Exception e) {
 System.out.println("Error: " + e);
 }

Go

_, err = writeSvc.WriteRecords(writeRecordsInput)

if err != nil {
 fmt.Println("Error:")
 fmt.Println(err)
} else {
 fmt.Println("Write records is successful")
}

Python

try:
 result = self.client.write_records(DatabaseName=Constant.DATABASE_NAME,
 TableName=Constant.TABLE_NAME, Records=records, CommonAttributes=common_attributes)
 print("WriteRecords Status: [%s]" % result['ResponseMetadata']['HTTPStatusCode'])
except self.client.exceptions.RejectedRecordsException as err:
 print("RejectedRecords: ", err)
 for rr in err.response["RejectedRecords"]:
 print("Rejected Index " + str(rr["RecordIndex"]) + ": " + rr["Reason"])
 print("Other records were written successfully. ")
except Exception as err:
 print("Error:", err)

Write data 184

Amazon Timestream Developer Guide

Node.js

The following snippet uses the Amazon SDK for JavaScript V2 style. It is based on the sample
application at Node.js sample Amazon Timestream for LiveAnalytics application on GitHub.

await request.promise().then(
 (data) => {
 console.log("Write records successful");
 },
 (err) => {
 console.log("Error writing records:", err);
 if (err.code === 'RejectedRecordsException') {
 const responsePayload =
 JSON.parse(request.response.httpResponse.body.toString());
 console.log("RejectedRecords: ", responsePayload.RejectedRecords);
 console.log("Other records were written successfully. ");
 }
 }
);

.NET

 try
 {
 var writeRecordsRequest = new WriteRecordsRequest
 {
 DatabaseName = Constants.DATABASE_NAME,
 TableName = Constants.TABLE_NAME,
 Records = records,
 CommonAttributes = commonAttributes
 };
 WriteRecordsResponse response = await
 writeClient.WriteRecordsAsync(writeRecordsRequest);
 Console.WriteLine($"Write records status code:
 {response.HttpStatusCode.ToString()}");
 }
 catch (RejectedRecordsException e) {
 Console.WriteLine("RejectedRecordsException:" + e.ToString());
 foreach (RejectedRecord rr in e.RejectedRecords) {
 Console.WriteLine("RecordIndex " + rr.RecordIndex + " : " + rr.Reason);
 }
 Console.WriteLine("Other records were written successfully. ");
 }

Write data 185

https://github.com/awslabs/amazon-timestream-tools/tree/mainline/sample_apps/js

Amazon Timestream Developer Guide

 catch (Exception e)
 {
 Console.WriteLine("Write records failure:" + e.ToString());
 }

Run query

Topics

• Paginating results

• Parsing result sets

• Accessing the query status

Paginating results

When you run a query, Timestream returns the result set in a paginated manner to optimize the
responsiveness of your applications. The code snippet below shows how you can paginate through
the result set. You must loop through all the result set pages until you encounter a null value.
Pagination tokens expire 3 hours after being issued by Timestream for LiveAnalytics.

Note

These code snippets are based on full sample applications on GitHub. For more information
about how to get started with the sample applications, see Sample application.

Java

 private void runQuery(String queryString) {
 try {
 QueryRequest queryRequest = new QueryRequest();
 queryRequest.setQueryString(queryString);
 QueryResult queryResult = queryClient.query(queryRequest);
 while (true) {
 parseQueryResult(queryResult);
 if (queryResult.getNextToken() == null) {
 break;
 }
 queryRequest.setNextToken(queryResult.getNextToken());

Run query 186

https://github.com/awslabs/amazon-timestream-tools/blob/master/sample_apps

Amazon Timestream Developer Guide

 queryResult = queryClient.query(queryRequest);
 }
 } catch (Exception e) {
 // Some queries might fail with 500 if the result of a sequence function
 has more than 10000 entries
 e.printStackTrace();
 }
 }

Java v2

 private void runQuery(String queryString) {
 try {
 QueryRequest queryRequest =
 QueryRequest.builder().queryString(queryString).build();
 final QueryIterable queryResponseIterator =
 timestreamQueryClient.queryPaginator(queryRequest);
 for(QueryResponse queryResponse : queryResponseIterator) {
 parseQueryResult(queryResponse);
 }
 } catch (Exception e) {
 // Some queries might fail with 500 if the result of a sequence function
 has more than 10000 entries
 e.printStackTrace();
 }
 }

Go

func runQuery(queryPtr *string, querySvc *timestreamquery.TimestreamQuery, f
 *os.File) {
 queryInput := ×treamquery.QueryInput{
 QueryString: aws.String(*queryPtr),
 }
 fmt.Println("QueryInput:")
 fmt.Println(queryInput)
 // execute the query
 err := querySvc.QueryPages(queryInput,
 func(page *timestreamquery.QueryOutput, lastPage bool) bool {
 // process query response
 queryStatus := page.QueryStatus
 fmt.Println("Current query status:", queryStatus)
 // query response metadata

Run query 187

Amazon Timestream Developer Guide

 // includes column names and types
 metadata := page.ColumnInfo
 // fmt.Println("Metadata:")
 fmt.Println(metadata)
 header := ""
 for i := 0; i < len(metadata); i++ {
 header += *metadata[i].Name
 if i != len(metadata)-1 {
 header += ", "
 }
 }
 write(f, header)

 // query response data
 fmt.Println("Data:")
 // process rows
 rows := page.Rows
 for i := 0; i < len(rows); i++ {
 data := rows[i].Data
 value := processRowType(data, metadata)
 fmt.Println(value)
 write(f, value)
 }
 fmt.Println("Number of rows:", len(page.Rows))
 return true
 })
 if err != nil {
 fmt.Println("Error:")
 fmt.Println(err)
 }
}

Python

 def run_query(self, query_string):
 try:
 page_iterator = self.paginator.paginate(QueryString=query_string)
 for page in page_iterator:
 self._parse_query_result(page)
 except Exception as err:
 print("Exception while running query:", err)

Run query 188

Amazon Timestream Developer Guide

Node.js

The following snippet uses the Amazon SDK for JavaScript V2 style. It is based on the sample
application at Node.js sample Amazon Timestream for LiveAnalytics application on GitHub.

async function getAllRows(query, nextToken) {
 const params = {
 QueryString: query
 };

 if (nextToken) {
 params.NextToken = nextToken;
 }

 await queryClient.query(params).promise()
 .then(
 (response) => {
 parseQueryResult(response);
 if (response.NextToken) {
 getAllRows(query, response.NextToken);
 }
 },
 (err) => {
 console.error("Error while querying:", err);
 });
}

.NET

 private async Task RunQueryAsync(string queryString)
 {
 try
 {
 QueryRequest queryRequest = new QueryRequest();
 queryRequest.QueryString = queryString;
 QueryResponse queryResponse = await
 queryClient.QueryAsync(queryRequest);
 while (true)
 {
 ParseQueryResult(queryResponse);
 if (queryResponse.NextToken == null)
 {
 break;

Run query 189

https://github.com/awslabs/amazon-timestream-tools/tree/mainline/sample_apps/js

Amazon Timestream Developer Guide

 }
 queryRequest.NextToken = queryResponse.NextToken;
 queryResponse = await queryClient.QueryAsync(queryRequest);
 }
 } catch(Exception e)
 {
 // Some queries might fail with 500 if the result of a sequence
 function has more than 10000 entries
 Console.WriteLine(e.ToString());
 }
 }

Parsing result sets

You can use the following code snippets to extract data from the result set. Query results are
accessible for up to 24 hours after a query completes.

Note

These code snippets are based on full sample applications on GitHub. For more information
about how to get started with the sample applications, see Sample application.

Java

 private static final DateTimeFormatter TIMESTAMP_FORMATTER =
 DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss.SSSSSSSSS");
 private static final DateTimeFormatter DATE_FORMATTER =
 DateTimeFormatter.ofPattern("yyyy-MM-dd");
 private static final DateTimeFormatter TIME_FORMATTER =
 DateTimeFormatter.ofPattern("HH:mm:ss.SSSSSSSSS");

 private static final long ONE_GB_IN_BYTES = 1073741824L;

 private void parseQueryResult(QueryResult response) {
 final QueryStatus currentStatusOfQuery = queryResult.getQueryStatus();

 System.out.println("Query progress so far: " +
 currentStatusOfQuery.getProgressPercentage() + "%");

Run query 190

https://github.com/awslabs/amazon-timestream-tools/blob/master/sample_apps

Amazon Timestream Developer Guide

 double bytesScannedSoFar = ((double)
 currentStatusOfQuery.getCumulativeBytesScanned() / ONE_GB_IN_BYTES);
 System.out.println("Bytes scanned so far: " + bytesScannedSoFar + " GB");

 double bytesMeteredSoFar = ((double)
 currentStatusOfQuery.getCumulativeBytesMetered() / ONE_GB_IN_BYTES);
 System.out.println("Bytes metered so far: " + bytesMeteredSoFar + " GB");

 List<ColumnInfo> columnInfo = response.getColumnInfo();
 List<Row> rows = response.getRows();

 System.out.println("Metadata: " + columnInfo);
 System.out.println("Data: ");

 // iterate every row
 for (Row row : rows) {
 System.out.println(parseRow(columnInfo, row));
 }
 }

 private String parseRow(List<ColumnInfo> columnInfo, Row row) {
 List<Datum> data = row.getData();
 List<String> rowOutput = new ArrayList<>();
 // iterate every column per row
 for (int j = 0; j < data.size(); j++) {
 ColumnInfo info = columnInfo.get(j);
 Datum datum = data.get(j);
 rowOutput.add(parseDatum(info, datum));
 }
 return String.format("{%s}",
 rowOutput.stream().map(Object::toString).collect(Collectors.joining(",")));
 }

 private String parseDatum(ColumnInfo info, Datum datum) {
 if (datum.isNullValue() != null && datum.isNullValue()) {
 return info.getName() + "=" + "NULL";
 }
 Type columnType = info.getType();
 // If the column is of TimeSeries Type
 if (columnType.getTimeSeriesMeasureValueColumnInfo() != null) {
 return parseTimeSeries(info, datum);
 }
 // If the column is of Array Type
 else if (columnType.getArrayColumnInfo() != null) {

Run query 191

Amazon Timestream Developer Guide

 List<Datum> arrayValues = datum.getArrayValue();
 return info.getName() + "=" +
 parseArray(info.getType().getArrayColumnInfo(), arrayValues);
 }
 // If the column is of Row Type
 else if (columnType.getRowColumnInfo() != null) {
 List<ColumnInfo> rowColumnInfo = info.getType().getRowColumnInfo();
 Row rowValues = datum.getRowValue();
 return parseRow(rowColumnInfo, rowValues);
 }
 // If the column is of Scalar Type
 else {
 return parseScalarType(info, datum);
 }
 }

 private String parseTimeSeries(ColumnInfo info, Datum datum) {
 List<String> timeSeriesOutput = new ArrayList<>();
 for (TimeSeriesDataPoint dataPoint : datum.getTimeSeriesValue()) {
 timeSeriesOutput.add("{time=" + dataPoint.getTime() + ", value=" +
 parseDatum(info.getType().getTimeSeriesMeasureValueColumnInfo(),
 dataPoint.getValue()) + "}");
 }
 return String.format("[%s]",
 timeSeriesOutput.stream().map(Object::toString).collect(Collectors.joining(",")));
 }

 private String parseScalarType(ColumnInfo info, Datum datum) {
 switch (ScalarType.fromValue(info.getType().getScalarType())) {
 case VARCHAR:
 return parseColumnName(info) + datum.getScalarValue();
 case BIGINT:
 Long longValue = Long.valueOf(datum.getScalarValue());
 return parseColumnName(info) + longValue;
 case INTEGER:
 Integer intValue = Integer.valueOf(datum.getScalarValue());
 return parseColumnName(info) + intValue;
 case BOOLEAN:
 Boolean booleanValue = Boolean.valueOf(datum.getScalarValue());
 return parseColumnName(info) + booleanValue;
 case DOUBLE:
 Double doubleValue = Double.valueOf(datum.getScalarValue());
 return parseColumnName(info) + doubleValue;
 case TIMESTAMP:

Run query 192

Amazon Timestream Developer Guide

 return parseColumnName(info) +
 LocalDateTime.parse(datum.getScalarValue(), TIMESTAMP_FORMATTER);
 case DATE:
 return parseColumnName(info) +
 LocalDate.parse(datum.getScalarValue(), DATE_FORMATTER);
 case TIME:
 return parseColumnName(info) +
 LocalTime.parse(datum.getScalarValue(), TIME_FORMATTER);
 case INTERVAL_DAY_TO_SECOND:
 case INTERVAL_YEAR_TO_MONTH:
 return parseColumnName(info) + datum.getScalarValue();
 case UNKNOWN:
 return parseColumnName(info) + datum.getScalarValue();
 default:
 throw new IllegalArgumentException("Given type is not valid: " +
 info.getType().getScalarType());
 }
 }

 private String parseColumnName(ColumnInfo info) {
 return info.getName() == null ? "" : info.getName() + "=";
 }

 private String parseArray(ColumnInfo arrayColumnInfo, List<Datum> arrayValues) {
 List<String> arrayOutput = new ArrayList<>();
 for (Datum datum : arrayValues) {
 arrayOutput.add(parseDatum(arrayColumnInfo, datum));
 }
 return String.format("[%s]",
 arrayOutput.stream().map(Object::toString).collect(Collectors.joining(",")));
 }

Java v2

 private static final long ONE_GB_IN_BYTES = 1073741824L;

 private void parseQueryResult(QueryResponse response) {
 final QueryStatus currentStatusOfQuery = response.queryStatus();

 System.out.println("Query progress so far: " +
 currentStatusOfQuery.progressPercentage() + "%");

Run query 193

Amazon Timestream Developer Guide

 double bytesScannedSoFar = ((double)
 currentStatusOfQuery.cumulativeBytesScanned() / ONE_GB_IN_BYTES);
 System.out.println("Bytes scanned so far: " + bytesScannedSoFar + " GB");

 double bytesMeteredSoFar = ((double)
 currentStatusOfQuery.cumulativeBytesMetered() / ONE_GB_IN_BYTES);
 System.out.println("Bytes metered so far: " + bytesMeteredSoFar + " GB");

 List<ColumnInfo> columnInfo = response.columnInfo();
 List<Row> rows = response.rows();

 System.out.println("Metadata: " + columnInfo);
 System.out.println("Data: ");

 // iterate every row
 for (Row row : rows) {
 System.out.println(parseRow(columnInfo, row));
 }
 }

 private String parseRow(List<ColumnInfo> columnInfo, Row row) {
 List<Datum> data = row.data();
 List<String> rowOutput = new ArrayList<>();
 // iterate every column per row
 for (int j = 0; j < data.size(); j++) {
 ColumnInfo info = columnInfo.get(j);
 Datum datum = data.get(j);
 rowOutput.add(parseDatum(info, datum));
 }
 return String.format("{%s}",
 rowOutput.stream().map(Object::toString).collect(Collectors.joining(",")));
 }

 private String parseDatum(ColumnInfo info, Datum datum) {
 if (datum.nullValue() != null && datum.nullValue()) {
 return info.name() + "=" + "NULL";
 }
 Type columnType = info.type();
 // If the column is of TimeSeries Type
 if (columnType.timeSeriesMeasureValueColumnInfo() != null) {
 return parseTimeSeries(info, datum);
 }
 // If the column is of Array Type
 else if (columnType.arrayColumnInfo() != null) {

Run query 194

Amazon Timestream Developer Guide

 List<Datum> arrayValues = datum.arrayValue();
 return info.name() + "=" + parseArray(info.type().arrayColumnInfo(),
 arrayValues);
 }
 // If the column is of Row Type
 else if (columnType.rowColumnInfo() != null &&
 columnType.rowColumnInfo().size() > 0) {
 List<ColumnInfo> rowColumnInfo = info.type().rowColumnInfo();
 Row rowValues = datum.rowValue();
 return parseRow(rowColumnInfo, rowValues);
 }
 // If the column is of Scalar Type
 else {
 return parseScalarType(info, datum);
 }
 }

 private String parseTimeSeries(ColumnInfo info, Datum datum) {
 List<String> timeSeriesOutput = new ArrayList<>();
 for (TimeSeriesDataPoint dataPoint : datum.timeSeriesValue()) {
 timeSeriesOutput.add("{time=" + dataPoint.time() + ", value=" +
 parseDatum(info.type().timeSeriesMeasureValueColumnInfo(),
 dataPoint.value()) + "}");
 }
 return String.format("[%s]",
 timeSeriesOutput.stream().map(Object::toString).collect(Collectors.joining(",")));
 }

 private String parseScalarType(ColumnInfo info, Datum datum) {
 return parseColumnName(info) + datum.scalarValue();
 }

 private String parseColumnName(ColumnInfo info) {
 return info.name() == null ? "" : info.name() + "=";
 }

 private String parseArray(ColumnInfo arrayColumnInfo, List<Datum> arrayValues) {
 List<String> arrayOutput = new ArrayList<>();
 for (Datum datum : arrayValues) {
 arrayOutput.add(parseDatum(arrayColumnInfo, datum));
 }
 return String.format("[%s]",
 arrayOutput.stream().map(Object::toString).collect(Collectors.joining(",")));

Run query 195

Amazon Timestream Developer Guide

 }

Go

func processScalarType(data *timestreamquery.Datum) string {
 return *data.ScalarValue
}

func processTimeSeriesType(data []*timestreamquery.TimeSeriesDataPoint, columnInfo
 *timestreamquery.ColumnInfo) string {
 value := ""
 for k := 0; k < len(data); k++ {
 time := data[k].Time
 value += *time + ":"
 if columnInfo.Type.ScalarType != nil {
 value += processScalarType(data[k].Value)
 } else if columnInfo.Type.ArrayColumnInfo != nil {
 value += processArrayType(data[k].Value.ArrayValue,
 columnInfo.Type.ArrayColumnInfo)
 } else if columnInfo.Type.RowColumnInfo != nil {
 value += processRowType(data[k].Value.RowValue.Data,
 columnInfo.Type.RowColumnInfo)
 } else {
 fail("Bad data type")
 }
 if k != len(data)-1 {
 value += ", "
 }
 }
 return value
}

func processArrayType(datumList []*timestreamquery.Datum, columnInfo
 *timestreamquery.ColumnInfo) string {
 value := ""
 for k := 0; k < len(datumList); k++ {
 if columnInfo.Type.ScalarType != nil {
 value += processScalarType(datumList[k])
 } else if columnInfo.Type.TimeSeriesMeasureValueColumnInfo != nil {
 value += processTimeSeriesType(datumList[k].TimeSeriesValue,
 columnInfo.Type.TimeSeriesMeasureValueColumnInfo)
 } else if columnInfo.Type.ArrayColumnInfo != nil {
 value += "["

Run query 196

Amazon Timestream Developer Guide

 value += processArrayType(datumList[k].ArrayValue,
 columnInfo.Type.ArrayColumnInfo)
 value += "]"
 } else if columnInfo.Type.RowColumnInfo != nil {
 value += "["
 value += processRowType(datumList[k].RowValue.Data,
 columnInfo.Type.RowColumnInfo)
 value += "]"
 } else {
 fail("Bad column type")
 }

 if k != len(datumList)-1 {
 value += ", "
 }
 }
 return value
}

func processRowType(data []*timestreamquery.Datum, metadata
 []*timestreamquery.ColumnInfo) string {
 value := ""
 for j := 0; j < len(data); j++ {
 if metadata[j].Type.ScalarType != nil {
 // process simple data types
 value += processScalarType(data[j])
 } else if metadata[j].Type.TimeSeriesMeasureValueColumnInfo != nil {
 // fmt.Println("Timeseries measure value column info")
 // fmt.Println(metadata[j].Type.TimeSeriesMeasureValueColumnInfo.Type)
 datapointList := data[j].TimeSeriesValue
 value += "["
 value += processTimeSeriesType(datapointList,
 metadata[j].Type.TimeSeriesMeasureValueColumnInfo)
 value += "]"
 } else if metadata[j].Type.ArrayColumnInfo != nil {
 columnInfo := metadata[j].Type.ArrayColumnInfo
 // fmt.Println("Array column info")
 // fmt.Println(columnInfo)
 datumList := data[j].ArrayValue
 value += "["
 value += processArrayType(datumList, columnInfo)
 value += "]"
 } else if metadata[j].Type.RowColumnInfo != nil {
 columnInfo := metadata[j].Type.RowColumnInfo

Run query 197

Amazon Timestream Developer Guide

 datumList := data[j].RowValue.Data
 value += "["
 value += processRowType(datumList, columnInfo)
 value += "]"
 } else {
 panic("Bad column type")
 }
 // comma seperated column values
 if j != len(data)-1 {
 value += ", "
 }
 }
 return value
}

Python

 def _parse_query_result(self, query_result):
 query_status = query_result["QueryStatus"]

 progress_percentage = query_status["ProgressPercentage"]
 print(f"Query progress so far: {progress_percentage}%")

 bytes_scanned = float(query_status["CumulativeBytesScanned"]) /
 ONE_GB_IN_BYTES
 print(f"Data scanned so far: {bytes_scanned} GB")

 bytes_metered = float(query_status["CumulativeBytesMetered"]) /
 ONE_GB_IN_BYTES
 print(f"Data metered so far: {bytes_metered} GB")

 column_info = query_result['ColumnInfo']

 print("Metadata: %s" % column_info)
 print("Data: ")
 for row in query_result['Rows']:
 print(self._parse_row(column_info, row))

 def _parse_row(self, column_info, row):
 data = row['Data']
 row_output = []
 for j in range(len(data)):
 info = column_info[j]

Run query 198

Amazon Timestream Developer Guide

 datum = data[j]
 row_output.append(self._parse_datum(info, datum))

 return "{%s}" % str(row_output)

 def _parse_datum(self, info, datum):
 if datum.get('NullValue', False):
 return "%s=NULL" % info['Name'],

 column_type = info['Type']

 # If the column is of TimeSeries Type
 if 'TimeSeriesMeasureValueColumnInfo' in column_type:
 return self._parse_time_series(info, datum)

 # If the column is of Array Type
 elif 'ArrayColumnInfo' in column_type:
 array_values = datum['ArrayValue']
 return "%s=%s" % (info['Name'], self._parse_array(info['Type']
['ArrayColumnInfo'], array_values))

 # If the column is of Row Type
 elif 'RowColumnInfo' in column_type:
 row_column_info = info['Type']['RowColumnInfo']
 row_values = datum['RowValue']
 return self._parse_row(row_column_info, row_values)

 # If the column is of Scalar Type
 else:
 return self._parse_column_name(info) + datum['ScalarValue']

 def _parse_time_series(self, info, datum):
 time_series_output = []
 for data_point in datum['TimeSeriesValue']:
 time_series_output.append("{time=%s, value=%s}"
 % (data_point['Time'],
 self._parse_datum(info['Type']
['TimeSeriesMeasureValueColumnInfo'],
 data_point['Value'])))
 return "[%s]" % str(time_series_output)

 def _parse_array(self, array_column_info, array_values):
 array_output = []
 for datum in array_values:

Run query 199

Amazon Timestream Developer Guide

 array_output.append(self._parse_datum(array_column_info, datum))

 return "[%s]" % str(array_output)

 @staticmethod
 def _parse_column_name(info):
 if 'Name' in info:
 return info['Name'] + "="
 else:
 return ""

Node.js

The following snippet uses the Amazon SDK for JavaScript V2 style. It is based on the sample
application at Node.js sample Amazon Timestream for LiveAnalytics application on GitHub.

function parseQueryResult(response) {
 const queryStatus = response.QueryStatus;
 console.log("Current query status: " + JSON.stringify(queryStatus));

 const columnInfo = response.ColumnInfo;
 const rows = response.Rows;

 console.log("Metadata: " + JSON.stringify(columnInfo));
 console.log("Data: ");

 rows.forEach(function (row) {
 console.log(parseRow(columnInfo, row));
 });
}

function parseRow(columnInfo, row) {
 const data = row.Data;
 const rowOutput = [];

 var i;
 for (i = 0; i < data.length; i++) {
 info = columnInfo[i];
 datum = data[i];
 rowOutput.push(parseDatum(info, datum));
 }

 return `{${rowOutput.join(", ")}}`

Run query 200

https://github.com/awslabs/amazon-timestream-tools/tree/mainline/sample_apps/js

Amazon Timestream Developer Guide

}

function parseDatum(info, datum) {
 if (datum.NullValue != null && datum.NullValue === true) {
 return `${info.Name}=NULL`;
 }

 const columnType = info.Type;

 // If the column is of TimeSeries Type
 if (columnType.TimeSeriesMeasureValueColumnInfo != null) {
 return parseTimeSeries(info, datum);
 }
 // If the column is of Array Type
 else if (columnType.ArrayColumnInfo != null) {
 const arrayValues = datum.ArrayValue;
 return `${info.Name}=${parseArray(info.Type.ArrayColumnInfo, arrayValues)}`;
 }
 // If the column is of Row Type
 else if (columnType.RowColumnInfo != null) {
 const rowColumnInfo = info.Type.RowColumnInfo;
 const rowValues = datum.RowValue;
 return parseRow(rowColumnInfo, rowValues);
 }
 // If the column is of Scalar Type
 else {
 return parseScalarType(info, datum);
 }
}

function parseTimeSeries(info, datum) {
 const timeSeriesOutput = [];
 datum.TimeSeriesValue.forEach(function (dataPoint) {
 timeSeriesOutput.push(`{time=${dataPoint.Time}, value=
${parseDatum(info.Type.TimeSeriesMeasureValueColumnInfo, dataPoint.Value)}}`)
 });

 return `[${timeSeriesOutput.join(", ")}]`
}

function parseScalarType(info, datum) {
 return parseColumnName(info) + datum.ScalarValue;
}

Run query 201

Amazon Timestream Developer Guide

function parseColumnName(info) {
 return info.Name == null ? "" : `${info.Name}=`;
}

function parseArray(arrayColumnInfo, arrayValues) {
 const arrayOutput = [];
 arrayValues.forEach(function (datum) {
 arrayOutput.push(parseDatum(arrayColumnInfo, datum));
 });
 return `[${arrayOutput.join(", ")}]`
}

.NET

 private void ParseQueryResult(QueryResponse response)
 {
 List<ColumnInfo> columnInfo = response.ColumnInfo;
 var options = new JsonSerializerOptions
 {
 IgnoreNullValues = true
 };
 List<String> columnInfoStrings = columnInfo.ConvertAll(x =>
 JsonSerializer.Serialize(x, options));
 List<Row> rows = response.Rows;

 QueryStatus queryStatus = response.QueryStatus;
 Console.WriteLine("Current Query status:" +
 JsonSerializer.Serialize(queryStatus, options));

 Console.WriteLine("Metadata:" + string.Join(",", columnInfoStrings));
 Console.WriteLine("Data:");

 foreach (Row row in rows)
 {
 Console.WriteLine(ParseRow(columnInfo, row));
 }
 }

 private string ParseRow(List<ColumnInfo> columnInfo, Row row)
 {
 List<Datum> data = row.Data;
 List<string> rowOutput = new List<string>();
 for (int j = 0; j < data.Count; j++)

Run query 202

Amazon Timestream Developer Guide

 {
 ColumnInfo info = columnInfo[j];
 Datum datum = data[j];
 rowOutput.Add(ParseDatum(info, datum));
 }
 return $"{{{string.Join(",", rowOutput)}}}";
 }

 private string ParseDatum(ColumnInfo info, Datum datum)
 {
 if (datum.NullValue)
 {
 return $"{info.Name}=NULL";
 }

 Amazon.TimestreamQuery.Model.Type columnType = info.Type;
 if (columnType.TimeSeriesMeasureValueColumnInfo != null)
 {
 return ParseTimeSeries(info, datum);
 }
 else if (columnType.ArrayColumnInfo != null)
 {
 List<Datum> arrayValues = datum.ArrayValue;
 return $"{info.Name}={ParseArray(info.Type.ArrayColumnInfo,
 arrayValues)}";
 }
 else if (columnType.RowColumnInfo != null &&
 columnType.RowColumnInfo.Count > 0)
 {
 List<ColumnInfo> rowColumnInfo = info.Type.RowColumnInfo;
 Row rowValue = datum.RowValue;
 return ParseRow(rowColumnInfo, rowValue);
 }
 else
 {
 return ParseScalarType(info, datum);
 }
 }

 private string ParseTimeSeries(ColumnInfo info, Datum datum)
 {
 var timeseriesString = datum.TimeSeriesValue
 .Select(value => $"{{time={value.Time},
 value={ParseDatum(info.Type.TimeSeriesMeasureValueColumnInfo, value.Value)}}}")

Run query 203

Amazon Timestream Developer Guide

 .Aggregate((current, next) => current + "," + next);

 return $"[{timeseriesString}]";
 }

 private string ParseScalarType(ColumnInfo info, Datum datum)
 {
 return ParseColumnName(info) + datum.ScalarValue;
 }

 private string ParseColumnName(ColumnInfo info)
 {
 return info.Name == null ? "" : (info.Name + "=");
 }

 private string ParseArray(ColumnInfo arrayColumnInfo, List<Datum>
 arrayValues)
 {
 return $"[{arrayValues.Select(value => ParseDatum(arrayColumnInfo,
 value)).Aggregate((current, next) => current + "," + next)}]";
 }

Accessing the query status

You can access the query status through QueryResponse, which contains information about
progress of a query, the bytes scanned by a query and the bytes metered by a query. The
bytesMetered and bytesScanned values are cumulative and continuously updated while paging
query results. You can use this information to understand the bytes scanned by an individual query
and also use it to make certain decisions. For example, assuming that the query price is $0.01 per
GB scanned, you may want to cancel queries that exceed $25 per query, or X GB. The code snippet
below shows how this can be done.

Note

These code snippets are based on full sample applications on GitHub. For more information
about how to get started with the sample applications, see Sample application.

Run query 204

https://github.com/awslabs/amazon-timestream-tools/blob/master/sample_apps

Amazon Timestream Developer Guide

Java

 private static final long ONE_GB_IN_BYTES = 1073741824L;
 private static final double QUERY_COST_PER_GB_IN_DOLLARS = 0.01; // Assuming the
 price of query is $0.01 per GB

 public void cancelQueryBasedOnQueryStatus() {
 System.out.println("Starting query: " + SELECT_ALL_QUERY);
 QueryRequest queryRequest = new QueryRequest();
 queryRequest.setQueryString(SELECT_ALL_QUERY);
 QueryResult queryResult = queryClient.query(queryRequest);

 while (true) {
 final QueryStatus currentStatusOfQuery = queryResult.getQueryStatus();
 System.out.println("Query progress so far: " +
 currentStatusOfQuery.getProgressPercentage() + "%");
 double bytesMeteredSoFar = ((double)
 currentStatusOfQuery.getCumulativeBytesMetered() / ONE_GB_IN_BYTES);
 System.out.println("Bytes metered so far: " + bytesMeteredSoFar + "
 GB");
 // Cancel query if its costing more than 1 cent
 if (bytesMeteredSoFar * QUERY_COST_PER_GB_IN_DOLLARS > 0.01) {
 cancelQuery(queryResult);
 break;
 }

 if (queryResult.getNextToken() == null) {
 break;
 }
 queryRequest.setNextToken(queryResult.getNextToken());
 queryResult = queryClient.query(queryRequest);
 }
 }

Java v2

 private static final long ONE_GB_IN_BYTES = 1073741824L;
 private static final double QUERY_COST_PER_GB_IN_DOLLARS = 0.01; // Assuming the
 price of query is $0.01 per GB

 public void cancelQueryBasedOnQueryStatus() {
 System.out.println("Starting query: " + SELECT_ALL_QUERY);

Run query 205

Amazon Timestream Developer Guide

 QueryRequest queryRequest =
 QueryRequest.builder().queryString(SELECT_ALL_QUERY).build();

 final QueryIterable queryResponseIterator =
 timestreamQueryClient.queryPaginator(queryRequest);
 for(QueryResponse queryResponse : queryResponseIterator) {
 final QueryStatus currentStatusOfQuery = queryResponse.queryStatus();
 System.out.println("Query progress so far: " +
 currentStatusOfQuery.progressPercentage() + "%");
 double bytesMeteredSoFar = ((double)
 currentStatusOfQuery.cumulativeBytesMetered() / ONE_GB_IN_BYTES);
 System.out.println("Bytes metered so far: " + bytesMeteredSoFar + "GB");
 // Cancel query if its costing more than 1 cent
 if (bytesMeteredSoFar * QUERY_COST_PER_GB_IN_DOLLARS > 0.01) {
 cancelQuery(queryResponse);
 break;
 }
 }
 }

Go

const OneGbInBytes = 1073741824
// Assuming the price of query is $0.01 per GB
const QueryCostPerGbInDollars = 0.01

func cancelQueryBasedOnQueryStatus(queryPtr *string, querySvc
 *timestreamquery.TimestreamQuery, f *os.File) {
 queryInput := ×treamquery.QueryInput{
 QueryString: aws.String(*queryPtr),
 }
 fmt.Println("QueryInput:")
 fmt.Println(queryInput)
 // execute the query
 err := querySvc.QueryPages(queryInput,
 func(page *timestreamquery.QueryOutput, lastPage bool) bool {
 // process query response
 queryStatus := page.QueryStatus
 fmt.Println("Current query status:", queryStatus)
 bytes_metered := float64(*queryStatus.CumulativeBytesMetered) /
 float64(ONE_GB_IN_BYTES)
 if bytes_metered * QUERY_COST_PER_GB_IN_DOLLARS > 0.01 {
 cancelQuery(page, querySvc)

Run query 206

Amazon Timestream Developer Guide

 return true
 }
 // query response metadata
 // includes column names and types
 metadata := page.ColumnInfo
 // fmt.Println("Metadata:")
 fmt.Println(metadata)
 header := ""
 for i := 0; i < len(metadata); i++ {
 header += *metadata[i].Name
 if i != len(metadata)-1 {
 header += ", "
 }
 }
 write(f, header)

 // query response data
 fmt.Println("Data:")
 // process rows
 rows := page.Rows
 for i := 0; i < len(rows); i++ {
 data := rows[i].Data
 value := processRowType(data, metadata)
 fmt.Println(value)
 write(f, value)
 }
 fmt.Println("Number of rows:", len(page.Rows))
 return true
 })
 if err != nil {
 fmt.Println("Error:")
 fmt.Println(err)
 }
}

Python

ONE_GB_IN_BYTES = 1073741824
Assuming the price of query is $0.01 per GB
QUERY_COST_PER_GB_IN_DOLLARS = 0.01

 def cancel_query_based_on_query_status(self):
 try:

Run query 207

Amazon Timestream Developer Guide

 print("Starting query: " + self.SELECT_ALL)
 page_iterator = self.paginator.paginate(QueryString=self.SELECT_ALL)
 for page in page_iterator:
 query_status = page["QueryStatus"]
 progress_percentage = query_status["ProgressPercentage"]
 print("Query progress so far: " + str(progress_percentage) + "%")
 bytes_metered = query_status["CumulativeBytesMetered"] /
 self.ONE_GB_IN_BYTES
 print("Bytes Metered so far: " + str(bytes_metered) + " GB")
 if bytes_metered * self.QUERY_COST_PER_GB_IN_DOLLARS > 0.01:
 self.cancel_query_for(page)
 break
 except Exception as err:
 print("Exception while running query:", err)
 traceback.print_exc(file=sys.stderr)

Node.js

The following snippet uses the Amazon SDK for JavaScript V2 style. It is based on the sample
application at Node.js sample Amazon Timestream for LiveAnalytics application on GitHub.

function parseQueryResult(response) {
 const queryStatus = response.QueryStatus;
 console.log("Current query status: " + JSON.stringify(queryStatus));

 const columnInfo = response.ColumnInfo;
 const rows = response.Rows;

 console.log("Metadata: " + JSON.stringify(columnInfo));
 console.log("Data: ");

 rows.forEach(function (row) {
 console.log(parseRow(columnInfo, row));
 });
}

function parseRow(columnInfo, row) {
 const data = row.Data;
 const rowOutput = [];

 var i;
 for (i = 0; i < data.length; i++) {
 info = columnInfo[i];

Run query 208

https://github.com/awslabs/amazon-timestream-tools/tree/mainline/sample_apps/js

Amazon Timestream Developer Guide

 datum = data[i];
 rowOutput.push(parseDatum(info, datum));
 }

 return `{${rowOutput.join(", ")}}`
}

function parseDatum(info, datum) {
 if (datum.NullValue != null && datum.NullValue === true) {
 return `${info.Name}=NULL`;
 }

 const columnType = info.Type;

 // If the column is of TimeSeries Type
 if (columnType.TimeSeriesMeasureValueColumnInfo != null) {
 return parseTimeSeries(info, datum);
 }
 // If the column is of Array Type
 else if (columnType.ArrayColumnInfo != null) {
 const arrayValues = datum.ArrayValue;
 return `${info.Name}=${parseArray(info.Type.ArrayColumnInfo, arrayValues)}`;
 }
 // If the column is of Row Type
 else if (columnType.RowColumnInfo != null) {
 const rowColumnInfo = info.Type.RowColumnInfo;
 const rowValues = datum.RowValue;
 return parseRow(rowColumnInfo, rowValues);
 }
 // If the column is of Scalar Type
 else {
 return parseScalarType(info, datum);
 }
}

function parseTimeSeries(info, datum) {
 const timeSeriesOutput = [];
 datum.TimeSeriesValue.forEach(function (dataPoint) {
 timeSeriesOutput.push(`{time=${dataPoint.Time}, value=
${parseDatum(info.Type.TimeSeriesMeasureValueColumnInfo, dataPoint.Value)}}`)
 });

 return `[${timeSeriesOutput.join(", ")}]`
}

Run query 209

Amazon Timestream Developer Guide

function parseScalarType(info, datum) {
 return parseColumnName(info) + datum.ScalarValue;
}

function parseColumnName(info) {
 return info.Name == null ? "" : `${info.Name}=`;
}

function parseArray(arrayColumnInfo, arrayValues) {
 const arrayOutput = [];
 arrayValues.forEach(function (datum) {
 arrayOutput.push(parseDatum(arrayColumnInfo, datum));
 });
 return `[${arrayOutput.join(", ")}]`
}

.NET

private static readonly long ONE_GB_IN_BYTES = 1073741824L;
private static readonly double QUERY_COST_PER_GB_IN_DOLLARS = 0.01; // Assuming the
 price of query is $0.01 per GB

private async Task CancelQueryBasedOnQueryStatus(string queryString)
{
 try
 {
 QueryRequest queryRequest = new QueryRequest();
 queryRequest.QueryString = queryString;
 QueryResponse queryResponse = await queryClient.QueryAsync(queryRequest);
 while (true)
 {
 QueryStatus queryStatus = queryResponse.QueryStatus;
 double bytesMeteredSoFar = ((double)
 queryStatus.CumulativeBytesMetered / ONE_GB_IN_BYTES);
 // Cancel query if its costing more than 1 cent
 if (bytesMeteredSoFar * QUERY_COST_PER_GB_IN_DOLLARS > 0.01)
 {
 await CancelQuery(queryResponse);
 break;
 }

 ParseQueryResult(queryResponse);

Run query 210

Amazon Timestream Developer Guide

 if (queryResponse.NextToken == null)
 {
 break;
 }
 queryRequest.NextToken = queryResponse.NextToken;
 queryResponse = await queryClient.QueryAsync(queryRequest);
 }
 } catch(Exception e)
 {
 // Some queries might fail with 500 if the result of a sequence function has
 more than 10000 entries
 Console.WriteLine(e.ToString());
 }
}

For additional details on how to cancel a query, see Cancel query.

Run UNLOAD query

The following code examples call an UNLOAD query. For information about UNLOAD, see Using
UNLOAD to export query results to S3 from Timestream for LiveAnalytics. For examples of UNLOAD
queries, see Example use case for UNLOAD from Timestream for LiveAnalytics.

Topics

• Build and run an UNLOAD query

• Parse UNLOAD response, and get row count, manifest link, and metadata link

• Read and parse manifest content

• Read and parse metadata content

Build and run an UNLOAD query

Java

// When you have a SELECT like below

String QUERY_1 = "SELECT user_id, ip_address, event, session_id, measure_name, time,
 query, quantity, product_id, channel FROM "
 + DATABASE_NAME + "." + UNLOAD_TABLE_NAME
 + " WHERE time BETWEEN ago(2d) AND now()";

Run UNLOAD query 211

Amazon Timestream Developer Guide

// You can construct UNLOAD query as follows
UnloadQuery unloadQuery = UnloadQuery.builder()
 .selectQuery(QUERY_1)
 .bucketName("timestream-sample-<region>-<accountId>")
 .resultsPrefix("without_partition")
 .format(CSV)
 .compression(UnloadQuery.Compression.GZIP)
 .build();
QueryResult unloadResult = runQuery(unloadQuery.getUnloadQuery());

// Run UNLOAD query (Similar to how you run SELECT query)
// https://docs.aws.amazon.com/timestream/latest/developerguide/code-samples.run-
query.html#code-samples.run-query.pagination
 private QueryResult runQuery(String queryString) {
 QueryResult queryResult = null;
 try {
 QueryRequest queryRequest = new QueryRequest();
 queryRequest.setQueryString(queryString);
 queryResult = queryClient.query(queryRequest);
 while (true) {
 parseQueryResult(queryResult);
 if (queryResult.getNextToken() == null) {
 break;
 }
 queryRequest.setNextToken(queryResult.getNextToken());
 queryResult = queryClient.query(queryRequest);
 }
 } catch (Exception e) {
 // Some queries might fail with 500 if the result of a sequence function
 has more than 10000 entries
 e.printStackTrace();
 }
 return queryResult;
 }

// Utility that helps to construct UNLOAD query

@Builder
static class UnloadQuery {
 private String selectQuery;
 private String bucketName;
 private String resultsPrefix;
 private Format format;

Run UNLOAD query 212

Amazon Timestream Developer Guide

 private Compression compression;
 private EncryptionType encryptionType;
 private List<String> partitionColumns;
 private String kmsKey;
 private Character csvFieldDelimiter;
 private Character csvEscapeCharacter;

 public String getUnloadQuery() {
 String destination = constructDestination();
 String withClause = constructOptionalParameters();
 return String.format("UNLOAD (%s) TO '%s' %s", selectQuery, destination,
 withClause);
 }

 private String constructDestination() {
 return "s3://" + this.bucketName + "/" + this.resultsPrefix + "/";
 }

 private String constructOptionalParameters() {
 boolean isOptionalParametersPresent = Objects.nonNull(format)
 || Objects.nonNull(compression)
 || Objects.nonNull(encryptionType)
 || Objects.nonNull(partitionColumns)
 || Objects.nonNull(kmsKey)
 || Objects.nonNull(csvFieldDelimiter)
 || Objects.nonNull(csvEscapeCharacter);

 String withClause = "";
 if (isOptionalParametersPresent) {
 StringJoiner optionalParameters = new StringJoiner(",");
 if (Objects.nonNull(format)) {
 optionalParameters.add("format = '" + format + "'");
 }
 if (Objects.nonNull(compression)) {
 optionalParameters.add("compression = '" + compression + "'");
 }
 if (Objects.nonNull(encryptionType)) {
 optionalParameters.add("encryption = '" + encryptionType + "'");
 }
 if (Objects.nonNull(kmsKey)) {
 optionalParameters.add("kms_key = '" + kmsKey + "'");
 }
 if (Objects.nonNull(csvFieldDelimiter)) {

Run UNLOAD query 213

Amazon Timestream Developer Guide

 optionalParameters.add("field_delimiter = '" + csvFieldDelimiter +
 "'");
 }
 if (Objects.nonNull(csvEscapeCharacter)) {
 optionalParameters.add("escaped_by = '" + csvEscapeCharacter + "'");
 }
 if (Objects.nonNull(partitionColumns) && !partitionColumns.isEmpty()) {
 final StringJoiner partitionedByList = new StringJoiner(",");
 partitionColumns.forEach(column -> partitionedByList.add("'" +
 column + "'"));
 optionalParameters.add(String.format("partitioned_by = ARRAY[%s]",
 partitionedByList));
 }
 withClause = String.format("WITH (%s)", optionalParameters);
 }
 return withClause;
 }

 public enum Format {
 CSV, PARQUET
 }

 public enum Compression {
 GZIP, NONE
 }

 public enum EncryptionType {
 SSE_S3, SSE_KMS
 }

 @Override
 public String toString() {
 return getUnloadQuery();
 }
}

Java v2

// When you have a SELECT like below

String QUERY_1 = "SELECT user_id, ip_address, event, session_id, measure_name, time,
 query, quantity, product_id, channel FROM "
 + DATABASE_NAME + "." + UNLOAD_TABLE_NAME

Run UNLOAD query 214

Amazon Timestream Developer Guide

 + " WHERE time BETWEEN ago(2d) AND now()";

//You can construct UNLOAD query as follows
UnloadQuery unloadQuery = UnloadQuery.builder()
 .selectQuery(QUERY_1)
 .bucketName("timestream-sample-<region>-<accountId>")
 .resultsPrefix("without_partition")
 .format(CSV)
 .compression(UnloadQuery.Compression.GZIP)
 .build();

QueryResponse unloadResponse = runQuery(unloadQuery.getUnloadQuery());

// Run UNLOAD query (Similar to how you run SELECT query)
// https://docs.aws.amazon.com/timestream/latest/developerguide/code-samples.run-
query.html#code-samples.run-query.pagination
private QueryResponse runQuery(String queryString) {
 QueryResponse finalResponse = null;
 try {
 QueryRequest queryRequest =
 QueryRequest.builder().queryString(queryString).build();
 final QueryIterable queryResponseIterator =
 timestreamQueryClient.queryPaginator(queryRequest);
 for(QueryResponse queryResponse : queryResponseIterator) {
 parseQueryResult(queryResponse);
 finalResponse = queryResponse;
 }
 } catch (Exception e) {
 // Some queries might fail with 500 if the result of a sequence function has
 more than 10000 entries
 e.printStackTrace();
 }
 return finalResponse;
}

// Utility that helps to construct UNLOAD query
@Builder
static class UnloadQuery {
 private String selectQuery;
 private String bucketName;
 private String resultsPrefix;
 private Format format;
 private Compression compression;

Run UNLOAD query 215

Amazon Timestream Developer Guide

 private EncryptionType encryptionType;
 private List<String> partitionColumns;
 private String kmsKey;
 private Character csvFieldDelimiter;
 private Character csvEscapeCharacter;

 public String getUnloadQuery() {
 String destination = constructDestination();
 String withClause = constructOptionalParameters();
 return String.format("UNLOAD (%s) TO '%s' %s", selectQuery, destination,
 withClause);
 }

 private String constructDestination() {
 return "s3://" + this.bucketName + "/" + this.resultsPrefix + "/";
 }

 private String constructOptionalParameters() {
 boolean isOptionalParametersPresent = Objects.nonNull(format)
 || Objects.nonNull(compression)
 || Objects.nonNull(encryptionType)
 || Objects.nonNull(partitionColumns)
 || Objects.nonNull(kmsKey)
 || Objects.nonNull(csvFieldDelimiter)
 || Objects.nonNull(csvEscapeCharacter);

 String withClause = "";
 if (isOptionalParametersPresent) {
 StringJoiner optionalParameters = new StringJoiner(",");
 if (Objects.nonNull(format)) {
 optionalParameters.add("format = '" + format + "'");
 }
 if (Objects.nonNull(compression)) {
 optionalParameters.add("compression = '" + compression + "'");
 }
 if (Objects.nonNull(encryptionType)) {
 optionalParameters.add("encryption = '" + encryptionType + "'");
 }
 if (Objects.nonNull(kmsKey)) {
 optionalParameters.add("kms_key = '" + kmsKey + "'");
 }
 if (Objects.nonNull(csvFieldDelimiter)) {
 optionalParameters.add("field_delimiter = '" + csvFieldDelimiter +
 "'");

Run UNLOAD query 216

Amazon Timestream Developer Guide

 }
 if (Objects.nonNull(csvEscapeCharacter)) {
 optionalParameters.add("escaped_by = '" + csvEscapeCharacter + "'");
 }
 if (Objects.nonNull(partitionColumns) && !partitionColumns.isEmpty()) {
 final StringJoiner partitionedByList = new StringJoiner(",");
 partitionColumns.forEach(column -> partitionedByList.add("'" +
 column + "'"));
 optionalParameters.add(String.format("partitioned_by = ARRAY[%s]",
 partitionedByList));
 }
 withClause = String.format("WITH (%s)", optionalParameters);
 }
 return withClause;
 }

 public enum Format {
 CSV, PARQUET
 }

 public enum Compression {
 GZIP, NONE
 }

 public enum EncryptionType {
 SSE_S3, SSE_KMS
 }

 @Override
 public String toString() {
 return getUnloadQuery();
 }
}

Go

// When you have a SELECT like below
var Query = "SELECT user_id, ip_address, event, session_id, measure_name, time,
 query, quantity, product_id, channel FROM "
+ *databaseName + "." + *tableName + " WHERE time BETWEEN ago(2d) AND now()"

// You can construct UNLOAD query as follows
var unloadQuery = UnloadQuery{

Run UNLOAD query 217

Amazon Timestream Developer Guide

 Query: "SELECT user_id, ip_address, session_id, measure_name, time, query,
 quantity, product_id, channel, event FROM " + *databaseName + "." + *tableName +
 " WHERE time BETWEEN ago(2d) AND now()",
 Partitioned_by: []string{},
 Compression: "GZIP",
 Format: "CSV",
 S3Location: bucketName,
 ResultPrefix: "without_partition",
}

// Run UNLOAD query (Similar to how you run SELECT query)
// https://docs.aws.amazon.com/timestream/latest/developerguide/code-samples.run-
query.html#code-samples.run-query.pagination

queryInput := ×treamquery.QueryInput{
 QueryString: build_query(unloadQuery),
}

err := querySvc.QueryPages(queryInput,
 func(page *timestreamquery.QueryOutput, lastPage bool) bool {
 if (lastPage) {
 var response = parseQueryResult(page)
 var unloadFiles = getManifestAndMetadataFiles(s3Svc, response)
 displayColumns(unloadFiles, unloadQuery.Partitioned_by)
 displayResults(s3Svc, unloadFiles)
 }
 return true
 })

if err != nil {
 fmt.Println("Error:")
 fmt.Println(err)
}

// Utility that helps to construct UNLOAD query
type UnloadQuery struct {
 Query string
 Partitioned_by []string
 Format string
 S3Location string
 ResultPrefix string
 Compression string
}

Run UNLOAD query 218

Amazon Timestream Developer Guide

func build_query(unload_query UnloadQuery) *string {
 var query_results_s3_path = "'s3://" + unload_query.S3Location + "/" +
 unload_query.ResultPrefix + "/'"
 var query = "UNLOAD(" + unload_query.Query + ") TO " + query_results_s3_path + "
 WITH ("
 if (len(unload_query.Partitioned_by) > 0) {
 query = query + "partitioned_by=ARRAY["
 for i, column := range unload_query.Partitioned_by {
 if i == 0 {
 query = query + "'" + column + "'"
 } else {
 query = query + ",'" + column + "'"
 }
 }
 query = query + "],"
 }
 query = query + " format='" + unload_query.Format + "', "
 query = query + " compression='" + unload_query.Compression + "')"
 fmt.Println(query)
 return aws.String(query)
}

Python

When you have a SELECT like below
QUERY_1 = "SELECT user_id, ip_address, event, session_id, measure_name, time, query,
 quantity, product_id, channel FROM "
 + database_name + "." + table_name + " WHERE time BETWEEN ago(2d) AND now()"
You can construct UNLOAD query as follows
UNLOAD_QUERY_1 = UnloadQuery(QUERY_1, "timestream-sample-<region>-<accountId>",
 "without_partition", "CSV", "GZIP", "")

Run UNLOAD query (Similar to how you run SELECT query)
https://docs.aws.amazon.com/timestream/latest/developerguide/code-samples.run-
query.html#code-samples.run-query.pagination
def run_query(self, query_string):
 try:
 page_iterator = self.paginator.paginate(QueryString=UNLOAD_QUERY_1)
 except Exception as err:
 print("Exception while running query:", err)

Utility that helps to construct UNLOAD query

Run UNLOAD query 219

Amazon Timestream Developer Guide

class UnloadQuery:
 def __init__(self, query, s3_bucket_location, results_prefix, format,
 compression , partition_by):
 self.query = query
 self.s3_bucket_location = s3_bucket_location
 self.results_prefix = results_prefix
 self.format = format
 self.compression = compression
 self.partition_by = partition_by

 def build_query(self):
 query_results_s3_path = "'s3://" + self.s3_bucket_location + "/" +
 self.results_prefix + "/'"
 unload_query = "UNLOAD("
 unload_query = unload_query + self.query
 unload_query = unload_query + ") "
 unload_query = unload_query + " TO " + query_results_s3_path
 unload_query = unload_query + " WITH ("

 if(len(self.partition_by) > 0) :
 unload_query = unload_query + " partitioned_by = ARRAY" +
 str(self.partition_by) + ","

 unload_query = unload_query + " format='" + self.format + "', "
 unload_query = unload_query + " compression='" + self.compression + "')"

 return unload_query

Node.js

// When you have a SELECT like below
QUERY_1 = "SELECT user_id, ip_address, event, session_id, measure_name, time, query,
 quantity, product_id, channel FROM "
 + database_name + "." + table_name + " WHERE time BETWEEN ago(2d) AND now()"
// You can construct UNLOAD query as follows
UNLOAD_QUERY_1 = new UnloadQuery(QUERY_1, "timestream-sample-<region>-<accountId>",
 "without_partition", "CSV", "GZIP", "")

// Run UNLOAD query (Similar to how you run SELECT query)
// https://docs.aws.amazon.com/timestream/latest/developerguide/code-samples.run-
query.html#code-samples.run-query.pagination

Run UNLOAD query 220

Amazon Timestream Developer Guide

async runQuery(query = UNLOAD_QUERY_1, nextToken) {
 const params = new QueryCommand({
 QueryString: query
 });

 if (nextToken) {
 params.NextToken = nextToken;
 }

 await queryClient.send(params).then(
 (response) => {
 if (response.NextToken) {
 runQuery(queryClient, query, response.NextToken);
 } else {
 await parseAndDisplayResults(response);
 }
 },
 (err) => {
 console.error("Error while querying:", err);
 });
}

class UnloadQuery {
 constructor(query, s3_bucket_location, results_prefix, format, compression ,
 partition_by) {
 this.query = query;
 this.s3_bucket_location = s3_bucket_location
 this.results_prefix = results_prefix
 this.format = format
 this.compression = compression
 this.partition_by = partition_by
 }

 buildQuery() {
 const query_results_s3_path = "'s3://" + this.s3_bucket_location + "/" +
 this.results_prefix + "/'"
 let unload_query = "UNLOAD("
 unload_query = unload_query + this.query
 unload_query = unload_query + ") "
 unload_query = unload_query + " TO " + query_results_s3_path
 unload_query = unload_query + " WITH ("

 if(this.partition_by.length > 0) {

Run UNLOAD query 221

Amazon Timestream Developer Guide

 let partitionBy = ""
 this.partition_by.forEach((str, i) => {
 partitionBy = partitionBy + (i ? ",'" : "'") + str + "'"
 })
 unload_query = unload_query + " partitioned_by = ARRAY[" + partitionBy +
 "],"
 }
 unload_query = unload_query + " format='" + this.format + "', "
 unload_query = unload_query + " compression='" + this.compression + "')"

 return unload_query
 }
}

Parse UNLOAD response, and get row count, manifest link, and metadata link

Java

// Parsing UNLOAD query response is similar to how you parse SELECT query response:
// https://docs.aws.amazon.com/timestream/latest/developerguide/code-samples.run-
query.html#code-samples.run-query.parsing

// But unlike SELECT, UNLOAD only has 1 row * 3 columns outputed
// (rows, metadataFile, manifestFile) => (BIGINT, VARCHAR, VARCHAR)

public UnloadResponse parseResult(QueryResult queryResult) {
 Map<String, String> outputMap = new HashMap<>();
 for (int i = 0; i < queryResult.getColumnInfo().size(); i++) {
 outputMap.put(queryResult.getColumnInfo().get(i).getName(),
 queryResult.getRows().get(0).getData().get(i).getScalarValue());

 }
 return new UnloadResponse(outputMap);
}

@Getter
class UnloadResponse {
 private final String metadataFile;
 private final String manifestFile;
 private final int rows;

 public UnloadResponse(Map<String, String> unloadResponse) {

Run UNLOAD query 222

Amazon Timestream Developer Guide

 this.metadataFile = unloadResponse.get("metadataFile");
 this.manifestFile = unloadResponse.get("manifestFile");
 this.rows = Integer.parseInt(unloadResponse.get("rows"));
 }
}

Java v2

// Parsing UNLOAD query response is similar to how you parse SELECT query response:
// https://docs.aws.amazon.com/timestream/latest/developerguide/code-samples.run-
query.html#code-samples.run-query.parsing

// But unlike SELECT, UNLOAD only has 1 row * 3 columns outputed
// (rows, metadataFile, manifestFile) => (BIGINT, VARCHAR, VARCHAR)

public UnloadResponse parseResult(QueryResponse queryResponse) {
 Map<String, String> outputMap = new HashMap<>();
 for (int i = 0; i < queryResponse.columnInfo().size(); i++) {
 outputMap.put(queryResponse.columnInfo().get(i).name(),
 queryResponse.rows().get(0).data().get(i).scalarValue());

 }
 return new UnloadResponse(outputMap);
}

@Getter
class UnloadResponse {
 private final String metadataFile;
 private final String manifestFile;
 private final int rows;

 public UnloadResponse(Map<String, String> unloadResponse) {
 this.metadataFile = unloadResponse.get("metadataFile");
 this.manifestFile = unloadResponse.get("manifestFile");
 this.rows = Integer.parseInt(unloadResponse.get("rows"));
 }
}

Go

// Parsing UNLOAD query response is similar to how you parse SELECT query response:
// https://docs.aws.amazon.com/timestream/latest/developerguide/code-samples.run-
query.html#code-samples.run-query.parsing

Run UNLOAD query 223

Amazon Timestream Developer Guide

// But unlike SELECT, UNLOAD only has 1 row * 3 columns outputed
// (rows, metadataFile, manifestFile) => (BIGINT, VARCHAR, VARCHAR)

func parseQueryResult(queryOutput *timestreamquery.QueryOutput) map[string]string {
 var columnInfo = queryOutput.ColumnInfo;
 fmt.Println("ColumnInfo", columnInfo)
 fmt.Println("QueryId", queryOutput.QueryId)
 fmt.Println("QueryStatus", queryOutput.QueryStatus)
 return parseResponse(columnInfo, queryOutput.Rows[0])
}

func parseResponse(columnInfo []*timestreamquery.ColumnInfo, row
 *timestreamquery.Row) map[string]string {
 var datum = row.Data
 response := make(map[string]string)
 for i, column := range columnInfo {
 response[*column.Name] = *datum[i].ScalarValue
 }
 return response
}

Python

Parsing UNLOAD query response is similar to how you parse SELECT query response:
https://docs.aws.amazon.com/timestream/latest/developerguide/code-samples.run-
query.html#code-samples.run-query.parsing

But unlike SELECT, UNLOAD only has 1 row * 3 columns outputed
(rows, metadataFile, manifestFile) => (BIGINT, VARCHAR, VARCHAR)

for page in page_iterator:
 last_page = page
response = self._parse_unload_query_result(last_page)

def _parse_unload_query_result(self, query_result):
 column_info = query_result['ColumnInfo']

 print("ColumnInfo: %s" % column_info)
 print("QueryId: %s" % query_result['QueryId'])
 print("QueryStatus:%s" % query_result['QueryStatus'])
 return self.parse_unload_response(column_info, query_result['Rows'][0])

Run UNLOAD query 224

Amazon Timestream Developer Guide

def parse_unload_response(self, column_info, row):
 response = {}
 data = row['Data']
 for i, column in enumerate(column_info):
 response[column['Name']] = data[i]['ScalarValue']
 print("Rows: %s" % response['rows'])
 print("Metadata File location: %s" % response['metadataFile'])
 print("Manifest File location: %s" % response['manifestFile'])
 return response

Node.js

Parsing UNLOAD query response is similar to how you parse SELECT query response:
https://docs.aws.amazon.com/timestream/latest/developerguide/code-samples.run-
query.html#code-samples.run-query.parsing

But unlike SELECT, UNLOAD only has 1 row * 3 columns outputed
(rows, metadataFile, manifestFile) => (BIGINT, VARCHAR, VARCHAR)

async parseAndDisplayResults(data, query) {
 const columnInfo = data['ColumnInfo'];
 console.log("ColumnInfo:", columnInfo)
 console.log("QueryId: %s", data['QueryId'])
 console.log("QueryStatus:", data['QueryStatus'])
 await this.parseResponse(columnInfo, data['Rows'][0], query)
}

async parseResponse(columnInfo, row, query) {
 let response = {}
 const data = row['Data']
 columnInfo.forEach((column, i) => {
 response[column['Name']] = data[i]['ScalarValue']
 })

 console.log("Manifest file", response['manifestFile']);
 console.log("Metadata file", response['metadataFile']);

 return response
}

Run UNLOAD query 225

Amazon Timestream Developer Guide

Read and parse manifest content

Java

// Read and parse manifest content
public UnloadManifest getUnloadManifest(UnloadResponse unloadResponse) throws
 IOException {
 AmazonS3URI s3URI = new AmazonS3URI(unloadResponse.getManifestFile());
 S3Object s3Object = s3Client.getObject(s3URI.getBucket(), s3URI.getKey());
 String manifestFileContent = new
 String(IOUtils.toByteArray(s3Object.getObjectContent()), StandardCharsets.UTF_8);
 return new Gson().fromJson(manifestFileContent, UnloadManifest.class);
}

class UnloadManifest {
 @Getter
 public class FileMetadata {
 long content_length_in_bytes;
 long row_count;
 }

 @Getter
 public class ResultFile {
 String url;
 FileMetadata file_metadata;
 }

 @Getter
 public class QueryMetadata {
 long total_content_length_in_bytes;
 long total_row_count;
 String result_format;
 String result_version;
 }

 @Getter
 public class Author {
 String name;
 String manifest_file_version;
 }

 @Getter
 private List<ResultFile> result_files;

Run UNLOAD query 226

Amazon Timestream Developer Guide

 @Getter
 private QueryMetadata query_metadata;
 @Getter
 private Author author;
}

Java v2

// Read and parse manifest content
public UnloadManifest getUnloadManifest(UnloadResponse unloadResponse) throws
 URISyntaxException {
 // Space needs to encoded to use S3 parseUri function
 S3Uri s3Uri =
 s3Utilities.parseUri(URI.create(unloadResponse.getManifestFile().replace(" ",
 "%20")));
 ResponseBytes<GetObjectResponse> objectBytes =
 s3Client.getObjectAsBytes(GetObjectRequest.builder()
 .bucket(s3Uri.bucket().orElseThrow(() -> new
 URISyntaxException(unloadResponse.getManifestFile(), "Invalid S3 URI")))
 .key(s3Uri.key().orElseThrow(() -> new
 URISyntaxException(unloadResponse.getManifestFile(), "Invalid S3 URI")))
 .build());
 String manifestFileContent = new String(objectBytes.asByteArray(),
 StandardCharsets.UTF_8);
 return new Gson().fromJson(manifestFileContent, UnloadManifest.class);
}

class UnloadManifest {
 @Getter
 public class FileMetadata {
 long content_length_in_bytes;
 long row_count;
 }

 @Getter
 public class ResultFile {
 String url;
 FileMetadata file_metadata;
 }

 @Getter
 public class QueryMetadata {
 long total_content_length_in_bytes;

Run UNLOAD query 227

Amazon Timestream Developer Guide

 long total_row_count;
 String result_format;
 String result_version;
 }

 @Getter
 public class Author {
 String name;
 String manifest_file_version;
 }

 @Getter
 private List<ResultFile> result_files;
 @Getter
 private QueryMetadata query_metadata;
 @Getter
 private Author author;
}

Go

// Read and parse manifest content

func getManifestFile(s3Svc *s3.S3, response map[string]string) Manifest {
 var manifestBuf = getObject(s3Svc, response["manifestFile"])
 var manifest Manifest
 json.Unmarshal(manifestBuf.Bytes(), &manifest)
 return manifest
}

func getObject(s3Svc *s3.S3, s3Uri string) *bytes.Buffer {
 u,_ := url.Parse(s3Uri)
 getObjectInput := &s3.GetObjectInput{
 Key: aws.String(u.Path),
 Bucket: aws.String(u.Host),
 }
 getObjectOutput, err := s3Svc.GetObject(getObjectInput)
 if err != nil {
 fmt.Println("Error: %s\n", err.Error())
 }
 buf := new(bytes.Buffer)
 buf.ReadFrom(getObjectOutput.Body)
 return buf

Run UNLOAD query 228

Amazon Timestream Developer Guide

}

// Unload's Manifest structure

type Manifest struct {
 Author interface{}
 Query_metadata map[string]any
 Result_files []struct {
 File_metadata interface{}
 Url string
 }
}}

Python

def __get_manifest_file(self, response):
 manifest = self.get_object(response['manifestFile']).read().decode('utf-8')
 parsed_manifest = json.loads(manifest)
 print("Manifest contents: \n%s" % parsed_manifest)

def get_object(self, uri):
 try:
 bucket, key = uri.replace("s3://", "").split("/", 1)
 s3_client = boto3.client('s3', region_name=<region>)
 response = s3_client.get_object(Bucket=bucket, Key=key)
 return response['Body']
 except Exception as err:
 print("Failed to get the object for URI:", uri)
 raise err

Node.js

// Read and parse manifest content

async getManifestFile(response) {
 let manifest;
 await this.getS3Object(response['manifestFile']).then(
 (data) => {
 manifest = JSON.parse(data);
 }
);
 return manifest;
}

Run UNLOAD query 229

Amazon Timestream Developer Guide

async getS3Object(uri) {
 const {bucketName, key} = this.getBucketAndKey(uri);
 const params = new GetObjectCommand({
 Bucket: bucketName,
 Key: key
 })
 const response = await this.s3Client.send(params);
 return await response.Body.transformToString();
}

getBucketAndKey(uri) {
 const [bucketName] = uri.replace("s3://", "").split("/", 1);
 const key = uri.replace("s3://", "").split('/').slice(1).join('/');
 return {bucketName, key};
}

Read and parse metadata content

Java

// Read and parse metadata content
public UnloadMetadata getUnloadMetadata(UnloadResponse unloadResponse) throws
 IOException {
 AmazonS3URI s3URI = new AmazonS3URI(unloadResponse.getMetadataFile());
 S3Object s3Object = s3Client.getObject(s3URI.getBucket(), s3URI.getKey());
 String metadataFileContent = new
 String(IOUtils.toByteArray(s3Object.getObjectContent()), StandardCharsets.UTF_8);
 final Gson gson = new GsonBuilder()
 .setFieldNamingPolicy(FieldNamingPolicy.UPPER_CAMEL_CASE)
 .create();
 return gson.fromJson(metadataFileContent, UnloadMetadata.class);
}

class UnloadMetadata {
 @JsonProperty("ColumnInfo")
 List<ColumnInfo> columnInfo;
 @JsonProperty("Author")
 Author author;

 @Data
 public class Author {

Run UNLOAD query 230

Amazon Timestream Developer Guide

 @JsonProperty("Name")
 String name;
 @JsonProperty("MetadataFileVersion")
 String metadataFileVersion;
 }
}

Java v2

// Read and parse metadata content

public UnloadMetadata getUnloadMetadata(UnloadResponse unloadResponse) throws
 URISyntaxException {
 // Space needs to encoded to use S3 parseUri function
 S3Uri s3Uri =
 s3Utilities.parseUri(URI.create(unloadResponse.getMetadataFile().replace(" ",
 "%20")));
 ResponseBytes<GetObjectResponse> objectBytes =
 s3Client.getObjectAsBytes(GetObjectRequest.builder()
 .bucket(s3Uri.bucket().orElseThrow(() -> new
 URISyntaxException(unloadResponse.getMetadataFile(), "Invalid S3 URI")))
 .key(s3Uri.key().orElseThrow(() -> new
 URISyntaxException(unloadResponse.getMetadataFile(), "Invalid S3 URI")))
 .build());
 String metadataFileContent = new String(objectBytes.asByteArray(),
 StandardCharsets.UTF_8);
 final Gson gson = new GsonBuilder()
 .setFieldNamingPolicy(FieldNamingPolicy.UPPER_CAMEL_CASE)
 .create();
 return gson.fromJson(metadataFileContent, UnloadMetadata.class);
}

class UnloadMetadata {
 @JsonProperty("ColumnInfo")
 List<ColumnInfo> columnInfo;
 @JsonProperty("Author")
 Author author;

 @Data
 public class Author {
 @JsonProperty("Name")
 String name;
 @JsonProperty("MetadataFileVersion")

Run UNLOAD query 231

Amazon Timestream Developer Guide

 String metadataFileVersion;
 }
}

Go

// Read and parse metadata content

func getMetadataFile(s3Svc *s3.S3, response map[string]string) Metadata {
 var metadataBuf = getObject(s3Svc, response["metadataFile"])
 var metadata Metadata
 json.Unmarshal(metadataBuf.Bytes(), &metadata)
 return metadata
}

func getObject(s3Svc *s3.S3, s3Uri string) *bytes.Buffer {
 u,_ := url.Parse(s3Uri)
 getObjectInput := &s3.GetObjectInput{
 Key: aws.String(u.Path),
 Bucket: aws.String(u.Host),
 }
 getObjectOutput, err := s3Svc.GetObject(getObjectInput)
 if err != nil {
 fmt.Println("Error: %s\n", err.Error())
 }
 buf := new(bytes.Buffer)
 buf.ReadFrom(getObjectOutput.Body)
 return buf
}

// Unload's Metadata structure

type Metadata struct {
 Author interface{}
 ColumnInfo []struct {
 Name string
 Type map[string]string
 }
}

Python

def __get_metadata_file(self, response):

Run UNLOAD query 232

Amazon Timestream Developer Guide

 metadata = self.get_object(response['metadataFile']).read().decode('utf-8')
 parsed_metadata = json.loads(metadata)
 print("Metadata contents: \n%s" % parsed_metadata)

def get_object(self, uri):
 try:
 bucket, key = uri.replace("s3://", "").split("/", 1)
 s3_client = boto3.client('s3', region_name=<region>)
 response = s3_client.get_object(Bucket=bucket, Key=key)
 return response['Body']
 except Exception as err:
 print("Failed to get the object for URI:", uri)
 raise err

Node.js

// Read and parse metadata content
async getMetadataFile(response) {
 let metadata;
 await this.getS3Object(response['metadataFile']).then(
 (data) => {
 metadata = JSON.parse(data);
 }
);
 return metadata;
}

async getS3Object(uri) {
 const {bucketName, key} = this.getBucketAndKey(uri);
 const params = new GetObjectCommand({
 Bucket: bucketName,
 Key: key
 })
 const response = await this.s3Client.send(params);
 return await response.Body.transformToString();
}

getBucketAndKey(uri) {
 const [bucketName] = uri.replace("s3://", "").split("/", 1);
 const key = uri.replace("s3://", "").split('/').slice(1).join('/');
 return {bucketName, key};

Run UNLOAD query 233

Amazon Timestream Developer Guide

}

Cancel query

You can use the following code snippets to cancel a query.

Note

These code snippets are based on full sample applications on GitHub. For more information
about how to get started with the sample applications, see Sample application.

Java

 public void cancelQuery() {
 System.out.println("Starting query: " + SELECT_ALL_QUERY);
 QueryRequest queryRequest = new QueryRequest();
 queryRequest.setQueryString(SELECT_ALL_QUERY);
 QueryResult queryResult = queryClient.query(queryRequest);

 System.out.println("Cancelling the query: " + SELECT_ALL_QUERY);
 final CancelQueryRequest cancelQueryRequest = new CancelQueryRequest();
 cancelQueryRequest.setQueryId(queryResult.getQueryId());
 try {
 queryClient.cancelQuery(cancelQueryRequest);
 System.out.println("Query has been successfully cancelled");
 } catch (Exception e) {
 System.out.println("Could not cancel the query: " + SELECT_ALL_QUERY + "
 = " + e);
 }
 }

Java v2

 public void cancelQuery() {
 System.out.println("Starting query: " + SELECT_ALL_QUERY);
 QueryRequest queryRequest =
 QueryRequest.builder().queryString(SELECT_ALL_QUERY).build();
 QueryResponse queryResponse = timestreamQueryClient.query(queryRequest);

Cancel query 234

https://github.com/awslabs/amazon-timestream-tools/blob/master/sample_apps

Amazon Timestream Developer Guide

 System.out.println("Cancelling the query: " + SELECT_ALL_QUERY);
 final CancelQueryRequest cancelQueryRequest = CancelQueryRequest.builder()
 .queryId(queryResponse.queryId()).build();
 try {
 timestreamQueryClient.cancelQuery(cancelQueryRequest);
 System.out.println("Query has been successfully cancelled");
 } catch (Exception e) {
 System.out.println("Could not cancel the query: " + SELECT_ALL_QUERY + "
 = " + e);
 }
 }

Go

cancelQueryInput := ×treamquery.CancelQueryInput{
 QueryId: aws.String(*queryOutput.QueryId),
 }

 fmt.Println("Submitting cancellation for the query")
 fmt.Println(cancelQueryInput)

 // submit the query
 cancelQueryOutput, err := querySvc.CancelQuery(cancelQueryInput)

 if err != nil {
 fmt.Println("Error:")
 fmt.Println(err)
 } else {
 fmt.Println("Query has been cancelled successfully")
 fmt.Println(cancelQueryOutput)
 }

Python

 def cancel_query(self):
 print("Starting query: " + self.SELECT_ALL)
 result = self.client.query(QueryString=self.SELECT_ALL)
 print("Cancelling query: " + self.SELECT_ALL)
 try:
 self.client.cancel_query(QueryId=result['QueryId'])
 print("Query has been successfully cancelled")
 except Exception as err:
 print("Cancelling query failed:", err)

Cancel query 235

Amazon Timestream Developer Guide

Node.js

The following snippet uses the Amazon SDK for JavaScript V2 style. It is based on the sample
application at Node.js sample Amazon Timestream for LiveAnalytics application on GitHub.

async function tryCancelQuery() {
 const params = {
 QueryString: SELECT_ALL_QUERY
 };
 console.log(`Running query: ${SELECT_ALL_QUERY}`);

 await queryClient.query(params).promise()
 .then(
 async (response) => {
 await cancelQuery(response.QueryId);
 },
 (err) => {
 console.error("Error while executing select all query:", err);
 });
}

async function cancelQuery(queryId) {
 const cancelParams = {
 QueryId: queryId
 };
 console.log(`Sending cancellation for query: ${SELECT_ALL_QUERY}`);
 await queryClient.cancelQuery(cancelParams).promise()
 .then(
 (response) => {
 console.log("Query has been cancelled successfully");
 },
 (err) => {
 console.error("Error while cancelling select all:", err);
 });
}

.NET

 public async Task CancelQuery()
 {
 Console.WriteLine("Starting query: " + SELECT_ALL_QUERY);
 QueryRequest queryRequest = new QueryRequest();
 queryRequest.QueryString = SELECT_ALL_QUERY;

Cancel query 236

https://github.com/awslabs/amazon-timestream-tools/tree/mainline/sample_apps/js

Amazon Timestream Developer Guide

 QueryResponse queryResponse = await
 queryClient.QueryAsync(queryRequest);

 Console.WriteLine("Cancelling query: " + SELECT_ALL_QUERY);
 CancelQueryRequest cancelQueryRequest = new CancelQueryRequest();
 cancelQueryRequest.QueryId = queryResponse.QueryId;

 try
 {
 await queryClient.CancelQueryAsync(cancelQueryRequest);
 Console.WriteLine("Query has been successfully cancelled.");
 } catch(Exception e)
 {
 Console.WriteLine("Could not cancel the query: " + SELECT_ALL_QUERY
 + " = " + e);
 }
 }

Create batch load task

You can use the following code snippets to create batch load tasks.

Java

package com.example.tryit;

import java.util.Arrays;

import
 software.amazon.awssdk.services.timestreamwrite.model.CreateBatchLoadTaskRequest;
import
 software.amazon.awssdk.services.timestreamwrite.model.CreateBatchLoadTaskResponse;
import software.amazon.awssdk.services.timestreamwrite.model.DataModel;
import software.amazon.awssdk.services.timestreamwrite.model.DataModelConfiguration;
import
 software.amazon.awssdk.services.timestreamwrite.model.DataSourceConfiguration;
import
 software.amazon.awssdk.services.timestreamwrite.model.DataSourceS3Configuration;
import software.amazon.awssdk.services.timestreamwrite.model.DimensionMapping;
import
 software.amazon.awssdk.services.timestreamwrite.model.MultiMeasureAttributeMapping;
import software.amazon.awssdk.services.timestreamwrite.model.MultiMeasureMappings;

Create batch load task 237

Amazon Timestream Developer Guide

import software.amazon.awssdk.services.timestreamwrite.model.ReportConfiguration;
import software.amazon.awssdk.services.timestreamwrite.model.ReportS3Configuration;
import software.amazon.awssdk.services.timestreamwrite.model.ScalarMeasureValueType;
import software.amazon.awssdk.services.timestreamwrite.model.TimeUnit;
import software.amazon.awssdk.services.timestreamwrite.TimestreamWriteClient;

public class BatchLoadExample {
 public static final String DATABASE_NAME = <database name>;
 public static final String TABLE_NAME = <table name>;
 public static final String INPUT_BUCKET = <S3 location>;
 public static final String INPUT_OBJECT_KEY_PREFIX = <CSV filename>;
 public static final String REPORT_BUCKET = <S3 location>;
 public static final long HT_TTL_HOURS = 24L;
 public static final long CT_TTL_DAYS = 7L;

 TimestreamWriteClient amazonTimestreamWrite;

 public BatchLoadExample(TimestreamWriteClient client) {
 this.amazonTimestreamWrite = client;
 }

 public String createBatchLoadTask() {
 System.out.println("Creating batch load task");

 CreateBatchLoadTaskRequest request = CreateBatchLoadTaskRequest.builder()
 .dataModelConfiguration(DataModelConfiguration.builder()
 .dataModel(DataModel.builder()
 .timeColumn("timestamp")
 .timeUnit(TimeUnit.SECONDS)
 .dimensionMappings(Arrays.asList(
 DimensionMapping.builder()
 .sourceColumn("vehicle")
 .build(),
 DimensionMapping.builder()
 .sourceColumn("registration")
 .destinationColumn("license")
 .build()))
 .multiMeasureMappings(MultiMeasureMappings.builder()
 .targetMultiMeasureName("mva_measure_name")

 .multiMeasureAttributeMappings(Arrays.asList(

 MultiMeasureAttributeMapping.builder()
 .sourceColumn("wgt")

Create batch load task 238

Amazon Timestream Developer Guide

 .targetMultiMeasureAttributeName("weight")

 .measureValueType(ScalarMeasureValueType.DOUBLE)
 .build(),

 MultiMeasureAttributeMapping.builder()
 .sourceColumn("spd")

 .targetMultiMeasureAttributeName("speed")

 .measureValueType(ScalarMeasureValueType.DOUBLE)
 .build(),

 MultiMeasureAttributeMapping.builder()
 .sourceColumn("fuel")

 .measureValueType(ScalarMeasureValueType.DOUBLE)
 .build(),

 MultiMeasureAttributeMapping.builder()
 .sourceColumn("miles")

 .measureValueType(ScalarMeasureValueType.DOUBLE)
 .build()))
 .build())
 .build())
 .build())
 .dataSourceConfiguration(DataSourceConfiguration.builder()
 .dataSourceS3Configuration(
 DataSourceS3Configuration.builder()
 .bucketName(INPUT_BUCKET)
 .objectKeyPrefix(INPUT_OBJECT_KEY_PREFIX)
 .build())
 .dataFormat("CSV")
 .build())
 .reportConfiguration(ReportConfiguration.builder()
 .reportS3Configuration(ReportS3Configuration.builder()
 .bucketName(REPORT_BUCKET)
 .build())
 .build())
 .targetDatabaseName(DATABASE_NAME)
 .targetTableName(TABLE_NAME)
 .build();

Create batch load task 239

Amazon Timestream Developer Guide

 try {
 final CreateBatchLoadTaskResponse createBatchLoadTaskResponse =
 amazonTimestreamWrite.createBatchLoadTask(request);
 String taskId = createBatchLoadTaskResponse.taskId();
 System.out.println("Successfully created batch load task: " + taskId);
 return taskId;
 } catch (Exception e) {
 System.out.println("Failed to create batch load task: " + e);
 throw e;
 }
 }
}

Go

package main

import (
 "fmt"
 "context"
 "log"
 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/timestreamwrite"
 "github.com/aws/aws-sdk-go-v2/service/timestreamwrite/types"
)

func main() {
 customResolver := aws.EndpointResolverWithOptionsFunc(func(service, region string,
 options ...interface{})(aws.Endpoint, error) {
 if service == timestreamwrite.ServiceID && region == "us-west-2" {
 return aws.Endpoint{
 PartitionID: "aws",
 URL: <URL>,
 SigningRegion: "us-west-2",
 }, nil
 }
 return aws.Endpoint{}, & aws.EndpointNotFoundError{}
 })

 cfg, err := config.LoadDefaultConfig(context.TODO(),
 config.WithEndpointResolverWithOptions(customResolver), config.WithRegion("us-
west-2"))

Create batch load task 240

Amazon Timestream Developer Guide

 if err != nil {
 log.Fatalf("failed to load configuration, %v", err)
 }

 client := timestreamwrite.NewFromConfig(cfg)

 response, err := client.CreateBatchLoadTask(context.TODO(), &
 timestreamwrite.CreateBatchLoadTaskInput{
 TargetDatabaseName: aws.String("BatchLoadExampleDatabase"),
 TargetTableName: aws.String("BatchLoadExampleTable"),
 RecordVersion: aws.Int64(1),
 DataModelConfiguration: & types.DataModelConfiguration{
 DataModel: & types.DataModel{
 TimeColumn: aws.String("timestamp"),
 TimeUnit: types.TimeUnitMilliseconds,
 DimensionMappings: []types.DimensionMapping{
 {
 SourceColumn: aws.String("registration"),
 DestinationColumn: aws.String("license"),
 },
 },
 MultiMeasureMappings: & types.MultiMeasureMappings{
 TargetMultiMeasureName: aws.String("mva_measure_name"),
 MultiMeasureAttributeMappings:
 []types.MultiMeasureAttributeMapping{
 {
 SourceColumn: aws.String("wgt"),
 TargetMultiMeasureAttributeName:
 aws.String("weight"),
 MeasureValueType:
 types.ScalarMeasureValueTypeDouble,
 },
 {
 SourceColumn: aws.String("spd"),
 TargetMultiMeasureAttributeName:
 aws.String("speed"),
 MeasureValueType:
 types.ScalarMeasureValueTypeDouble,
 },
 {
 SourceColumn: aws.String("fuel_consumption"),
 TargetMultiMeasureAttributeName: aws.String("fuel"),

Create batch load task 241

Amazon Timestream Developer Guide

 MeasureValueType:
 types.ScalarMeasureValueTypeDouble,
 },
 },
 },
 },
 },
 DataSourceConfiguration: & types.DataSourceConfiguration{
 DataSourceS3Configuration: & types.DataSourceS3Configuration{
 BucketName: aws.String("test-batch-load-west-2"),
 ObjectKeyPrefix: aws.String("sample.csv"),
 },
 DataFormat: types.BatchLoadDataFormatCsv,
 },
 ReportConfiguration: & types.ReportConfiguration{
 ReportS3Configuration: & types.ReportS3Configuration{
 BucketName: aws.String("test-batch-load-report-west-2"),
 EncryptionOption: types.S3EncryptionOptionSseS3,
 },
 },
 })

 fmt.Println(aws.ToString(response.TaskId))
}

Python

import boto3
from botocore.config import Config

INGEST_ENDPOINT = "<URL>"
REGION = "us-west-2"
HT_TTL_HOURS = 24
CT_TTL_DAYS = 7
DATABASE_NAME = "<database name>"
TABLE_NAME = "<table name>"
INPUT_BUCKET_NAME = "<S3 location>"
INPUT_OBJECT_KEY_PREFIX = "<CSV file name>"
REPORT_BUCKET_NAME = "<S3 location>"

def create_batch_load_task(client, database_name, table_name, input_bucket_name,
 input_object_key_prefix, report_bucket_name):

Create batch load task 242

Amazon Timestream Developer Guide

 try:
 result = client.create_batch_load_task(TargetDatabaseName=database_name,
 TargetTableName=table_name,
 DataModelConfiguration={"DataModel":
 {
 "TimeColumn": "timestamp",
 "TimeUnit": "SECONDS",
 "DimensionMappings": [
 {
 "SourceColumn": "vehicle"
 },
 {
 "SourceColumn":
 "registration",
 "DestinationColumn":
 "license"
 }
],
 "MultiMeasureMappings": {
 "TargetMultiMeasureName":
 "metrics",

 "MultiMeasureAttributeMappings": [
 {
 "SourceColumn":
 "wgt",
 "MeasureValueType":
 "DOUBLE"
 },
 {
 "SourceColumn":
 "spd",
 "MeasureValueType":
 "DOUBLE"
 },
 {
 "SourceColumn":
 "fuel_consumption",

 "TargetMultiMeasureAttributeName": "fuel",
 "MeasureValueType":
 "DOUBLE"
 },
 {

Create batch load task 243

Amazon Timestream Developer Guide

 "SourceColumn":
 "miles",
 "MeasureValueType":
 "DOUBLE"
 }
]}
 }
 },
 DataSourceConfiguration={
 "DataSourceS3Configuration": {
 "BucketName":
 input_bucket_name,
 "ObjectKeyPrefix":
 input_object_key_prefix
 },
 "DataFormat": "CSV"
 },
 ReportConfiguration={
 "ReportS3Configuration": {
 "BucketName":
 report_bucket_name,
 "EncryptionOption": "SSE_S3"
 }
 }
)

 task_id = result["TaskId"]
 print("Successfully created batch load task: ", task_id)
 return task_id
 except Exception as err:
 print("Create batch load task job failed:", err)
 return None

if __name__ == '__main__':
 session = boto3.Session()

 write_client = session.client('timestream-write',
 endpoint_url=INGEST_ENDPOINT, region_name=REGION,
 config=Config(read_timeout=20,
 max_pool_connections=5000, retries={'max_attempts': 10}))

 task_id = create_batch_load_task(write_client, DATABASE_NAME, TABLE_NAME,

Create batch load task 244

Amazon Timestream Developer Guide

 INPUT_BUCKET_NAME, INPUT_OBJECT_KEY_PREFIX,
 REPORT_BUCKET_NAME)

Node.js

The following snippet uses Amazon SDK for JavaScript v3. For more information about how to
install the client and usage, see Timestream Write Client - Amazon SDK for JavaScript v3.

For API details, see Class CreateBatchLoadCommand and CreateBatchLoadTask.

import { TimestreamWriteClient, CreateBatchLoadTaskCommand } from "@aws-sdk/client-
timestream-write";
const writeClient = new TimestreamWriteClient({ region: "us-west-2", endpoint:
 "https://gamma-ingest-cell3.timestream.us-west-2.amazonaws.com" });

const params = {
 TargetDatabaseName: "BatchLoadExampleDatabase",
 TargetTableName: "BatchLoadExampleTable",
 RecordVersion: 1,
 DataModelConfiguration: {
 DataModel: {
 TimeColumn: "timestamp",
 TimeUnit: "MILLISECONDS",
 DimensionMappings: [
 {
 SourceColumn: "registration",
 DestinationColumn: "license"
 }
],
 MultiMeasureMappings: {
 TargetMultiMeasureName: "mva_measure_name",
 MultiMeasureAttributeMappings: [
 {
 SourceColumn: "wgt",
 TargetMultiMeasureAttributeName: "weight",
 MeasureValueType: "DOUBLE"
 },
 {
 SourceColumn: "spd",
 TargetMultiMeasureAttributeName: "speed",
 MeasureValueType: "DOUBLE"
 },
 {
 SourceColumn: "fuel_consumption",

Create batch load task 245

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/clients/client-timestream-write/index.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/clients/client-timestream-write/classes/createbatchloadtaskcommand.html
https://docs.amazonaws.cn/timestream/latest/developerguide/API_CreateBatchLoadTask.html

Amazon Timestream Developer Guide

 TargetMultiMeasureAttributeName: "fuel",
 MeasureValueType: "DOUBLE"
 }
]
 }
 }
 },
 DataSourceConfiguration: {
 DataSourceS3Configuration: {
 BucketName: "test-batch-load-west-2",
 ObjectKeyPrefix: "sample.csv"
 },
 DataFormat: "CSV"
 },
 ReportConfiguration: {
 ReportS3Configuration: {
 BucketName: "test-batch-load-report-west-2",
 EncryptionOption: "SSE_S3"
 }
 }
};

const command = new CreateBatchLoadTaskCommand(params);

try {
 const data = await writeClient.send(command);
 console.log(`Created batch load task ` + data.TaskId);
} catch (error) {
 console.log("Error creating table. ", error);
 throw error;
}

.NET

using System;
using System.IO;
using System.Collections.Generic;
using Amazon.TimestreamWrite;
using Amazon.TimestreamWrite.Model;
using System.Threading.Tasks;

namespace TimestreamDotNetSample
{

Create batch load task 246

Amazon Timestream Developer Guide

 public class CreateBatchLoadTaskExample
 {
 public const string DATABASE_NAME = "<database name>";
 public const string TABLE_NAME = "<table name>";
 public const string INPUT_BUCKET = "<input bucket name>";
 public const string INPUT_OBJECT_KEY_PREFIX = "<CSV file name>";
 public const string REPORT_BUCKET = "<report bucket name>";
 public const long HT_TTL_HOURS = 24L;
 public const long CT_TTL_DAYS = 7L;
 private readonly AmazonTimestreamWriteClient writeClient;

 public CreateBatchLoadTaskExample(AmazonTimestreamWriteClient writeClient)
 {
 this.writeClient = writeClient;
 }

 public async Task CreateBatchLoadTask()
 {
 try
 {
 var createBatchLoadTaskRequest = new CreateBatchLoadTaskRequest
 {
 DataModelConfiguration = new DataModelConfiguration
 {
 DataModel = new DataModel
 {
 TimeColumn = "timestamp",
 TimeUnit = TimeUnit.SECONDS,
 DimensionMappings = new List<DimensionMapping>()
 {
 new()
 {
 SourceColumn = "vehicle"
 },
 new()
 {
 SourceColumn = "registration",
 DestinationColumn = "license"
 }
 },
 MultiMeasureMappings = new MultiMeasureMappings
 {
 TargetMultiMeasureName = "mva_measure_name",

Create batch load task 247

Amazon Timestream Developer Guide

 MultiMeasureAttributeMappings = new
 List<MultiMeasureAttributeMapping>()
 {
 new()
 {
 SourceColumn = "wgt",
 TargetMultiMeasureAttributeName =
 "weight",
 MeasureValueType =
 ScalarMeasureValueType.DOUBLE
 },
 new()
 {
 SourceColumn = "spd",
 TargetMultiMeasureAttributeName =
 "speed",
 MeasureValueType =
 ScalarMeasureValueType.DOUBLE
 },
 new()
 {
 SourceColumn = "fuel",
 TargetMultiMeasureAttributeName =
 "fuel",
 MeasureValueType =
 ScalarMeasureValueType.DOUBLE
 },
 new()
 {
 SourceColumn = "miles",
 TargetMultiMeasureAttributeName =
 "miles",
 MeasureValueType =
 ScalarMeasureValueType.DOUBLE
 }
 }
 }
 }
 },
 DataSourceConfiguration = new DataSourceConfiguration
 {
 DataSourceS3Configuration = new DataSourceS3Configuration
 {
 BucketName = INPUT_BUCKET,

Create batch load task 248

Amazon Timestream Developer Guide

 ObjectKeyPrefix = INPUT_OBJECT_KEY_PREFIX
 },
 DataFormat = "CSV"
 },
 ReportConfiguration = new ReportConfiguration
 {
 ReportS3Configuration = new ReportS3Configuration
 {
 BucketName = REPORT_BUCKET
 }
 },
 TargetDatabaseName = DATABASE_NAME,
 TargetTableName = TABLE_NAME
 };

 CreateBatchLoadTaskResponse response = await
 writeClient.CreateBatchLoadTaskAsync(createBatchLoadTaskRequest);
 Console.WriteLine($"Task created: " + response.TaskId);
 }
 catch (Exception e)
 {
 Console.WriteLine("Create batch load task failed:" + e.ToString());
 }
 }
 }
}

using Amazon.TimestreamWrite;
using Amazon.TimestreamWrite.Model;
using Amazon;
using Amazon.TimestreamQuery;
using System.Threading.Tasks;
using System;
using CommandLine;
static class Constants
{

}
namespace TimestreamDotNetSample
{
 class MainClass
 {
 public class Options

Create batch load task 249

Amazon Timestream Developer Guide

 {

 }
 public static void Main(string[] args)
 {
 Parser.Default.ParseArguments<Options>(args)
 .WithParsed<Options>(o => {
 MainAsync().GetAwaiter().GetResult();
 });
 }

 static async Task MainAsync()
 {
 var writeClientConfig = new AmazonTimestreamWriteConfig
 {
 ServiceURL = "<service URL>",
 Timeout = TimeSpan.FromSeconds(20),
 MaxErrorRetry = 10
 };

 var writeClient = new AmazonTimestreamWriteClient(writeClientConfig);
 var example = new CreateBatchLoadTaskExample(writeClient);
 await example.CreateBatchLoadTask();
 }
 }
}

Describe batch load task

You can use the following code snippets to describe batch load tasks.

Java

 public void describeBatchLoadTask(String taskId) {
 final DescribeBatchLoadTaskResponse batchLoadTaskResponse =
 amazonTimestreamWrite

 .describeBatchLoadTask(DescribeBatchLoadTaskRequest.builder()
 .taskId(taskId)
 .build());

Describe batch load task 250

Amazon Timestream Developer Guide

 System.out.println("Task id: " +
 batchLoadTaskResponse.batchLoadTaskDescription().taskId());
 System.out.println("Status: " +
 batchLoadTaskResponse.batchLoadTaskDescription().taskStatusAsString());
 System.out.println("Records processed: "
 +
 batchLoadTaskResponse.batchLoadTaskDescription().progressReport().recordsProcessed());
 }

Go

package main

import (
 "fmt"
 "context"
 "log"
 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/timestreamwrite"
)

func main() {
 customResolver := aws.EndpointResolverWithOptionsFunc(func(service, region string,
 options ...interface{}) (aws.Endpoint, error) {
 if service == timestreamwrite.ServiceID && region == "us-west-2" {
 return aws.Endpoint{
 PartitionID: "aws",
 URL: <URL>,
 SigningRegion: "us-west-2",
 }, nil
 }
 return aws.Endpoint{}, &aws.EndpointNotFoundError{}
 })

 cfg, err := config.LoadDefaultConfig(context.TODO(),
 config.WithEndpointResolverWithOptions(customResolver), config.WithRegion("us-
west-2"))

 if err != nil {
 log.Fatalf("failed to load configuration, %v", err)
 }

Describe batch load task 251

Amazon Timestream Developer Guide

 client := timestreamwrite.NewFromConfig(cfg)

 response, err := client.DescribeBatchLoadTask(context.TODO(),
 ×treamwrite.DescribeBatchLoadTaskInput{
 TaskId: aws.String("<TaskId>"),
 })

 fmt.Println(aws.ToString(response.BatchLoadTaskDescription.TaskId))
}

Python

import boto3
from botocore.config import Config

INGEST_ENDPOINT="<url>"
REGION="us-west-2"
HT_TTL_HOURS = 24
CT_TTL_DAYS = 7
TASK_ID = "<task id>"

def describe_batch_load_task(client, task_id):
 try:
 result = client.describe_batch_load_task(TaskId=task_id)
 print("Successfully described batch load task: ", result)
 except Exception as err:
 print("Describe batch load task job failed:", err)

if __name__ == '__main__':
 session = boto3.Session()

 write_client = session.client('timestream-write', \
 endpoint_url=INGEST_ENDPOINT, region_name=REGION, \
 config=Config(read_timeout=20, max_pool_connections = 5000,
 retries={'max_attempts': 10}))

 describe_batch_load_task(write_client, TASK_ID)

Node.js

The following snippet uses Amazon SDK for JavaScript v3. For more information about how to
install the client and usage, see Timestream Write Client - Amazon SDK for JavaScript v3.

Describe batch load task 252

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/clients/client-timestream-write/index.html

Amazon Timestream Developer Guide

For API details, see Class DescribeBatchLoadCommand and DescribeBatchLoadTask.

import { TimestreamWriteClient, DescribeBatchLoadTaskCommand } from "@aws-sdk/
client-timestream-write";
const writeClient = new TimestreamWriteClient({ region: "<region>", endpoint:
 "<endpoint>" });

const params = {
 TaskId: "<TaskId>"
};

const command = new DescribeBatchLoadTaskCommand(params);

try {
 const data = await writeClient.send(command);
 console.log(`Batch load task has id ` + data.BatchLoadTaskDescription.TaskId);
} catch (error) {
 if (error.code === 'ResourceNotFoundException') {
 console.log("Batch load task doesn't exist.");
 } else {
 console.log("Describe batch load task failed.", error);
 throw error;
 }
}

.NET

using System;
using System.IO;
using System.Collections.Generic;
using Amazon.TimestreamWrite;
using Amazon.TimestreamWrite.Model;
using System.Threading.Tasks;

namespace TimestreamDotNetSample
{
 public class DescribeBatchLoadTaskExample
 {
 private readonly AmazonTimestreamWriteClient writeClient;

 public DescribeBatchLoadTaskExample(AmazonTimestreamWriteClient writeClient)
 {
 this.writeClient = writeClient;

Describe batch load task 253

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/clients/client-timestream-write/classes/describebatchloadtaskcommand.html
https://docs.amazonaws.cn/timestream/latest/developerguide/API_DescribeBatchLoadTask.html

Amazon Timestream Developer Guide

 }

 public async Task DescribeBatchLoadTask(String taskId)
 {
 try
 {
 var describeBatchLoadTaskRequest = new DescribeBatchLoadTaskRequest
 {
 TaskId = taskId
 };
 DescribeBatchLoadTaskResponse response = await
 writeClient.DescribeBatchLoadTaskAsync(describeBatchLoadTaskRequest);
 Console.WriteLine($"Task has id:
{response.BatchLoadTaskDescription.TaskId}");
 }
 catch (ResourceNotFoundException)
 {
 Console.WriteLine("Batch load task does not exist.");
 }
 catch (Exception e)
 {
 Console.WriteLine("Describe batch load task failed:" +
 e.ToString());
 }
 }
 }
}

using Amazon.TimestreamWrite;
using Amazon.TimestreamWrite.Model;
using Amazon;
using Amazon.TimestreamQuery;
using System.Threading.Tasks;
using System;
using CommandLine;
static class Constants
{

}
namespace TimestreamDotNetSample
{
 class MainClass
 {

Describe batch load task 254

Amazon Timestream Developer Guide

 public class Options
 {

 }
 public static void Main(string[] args)
 {
 Parser.Default.ParseArguments<Options>(args)
 .WithParsed<Options>(o => {
 MainAsync().GetAwaiter().GetResult();
 });
 }

 static async Task MainAsync()
 {
 var writeClientConfig = new AmazonTimestreamWriteConfig
 {
 ServiceURL = "<service URL>",
 Timeout = TimeSpan.FromSeconds(20),
 MaxErrorRetry = 10
 };

 var writeClient = new AmazonTimestreamWriteClient(writeClientConfig);
 var example = new DescribeBatchLoadTaskExample(writeClient);
 await example.DescribeBatchLoadTask("<batch load task id>");
 }
 }
}

List batch load tasks

You can use the following code snippets to list batch load tasks.

Java

 public void listBatchLoadTasks() {
 final ListBatchLoadTasksResponse listBatchLoadTasksResponse =
 amazonTimestreamWrite
 .listBatchLoadTasks(ListBatchLoadTasksRequest.builder()
 .maxResults(15)
 .build());

List batch load tasks 255

Amazon Timestream Developer Guide

 for (BatchLoadTask batchLoadTask :
 listBatchLoadTasksResponse.batchLoadTasks()) {
 System.out.println(batchLoadTask.taskId());
 }
 }

Go

package main

import (
 "fmt"
 "context"
 "log"
 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/timestreamwrite"
)

func main() {
 customResolver := aws.EndpointResolverWithOptionsFunc(func(service, region string,
 options ...interface{}) (aws.Endpoint, error) {
 if service == timestreamwrite.ServiceID && region == "us-west-2" {
 return aws.Endpoint{
 PartitionID: "aws",
 URL: <URL>,
 SigningRegion: "us-west-2",
 }, nil
 }
 return aws.Endpoint{}, &aws.EndpointNotFoundError{}
 })

 cfg, err := config.LoadDefaultConfig(context.TODO(),
 config.WithEndpointResolverWithOptions(customResolver), config.WithRegion("us-
west-2"))

 if err != nil {
 log.Fatalf("failed to load configuration, %v", err)
 }

 client := timestreamwrite.NewFromConfig(cfg)
 listBatchLoadTasksMaxResult := int32(15)

List batch load tasks 256

Amazon Timestream Developer Guide

 response, err := client.ListBatchLoadTasks(context.TODO(),
 ×treamwrite.ListBatchLoadTasksInput{
 MaxResults: &listBatchLoadTasksMaxResult,
 })

 for i, task := range response.BatchLoadTasks {
 fmt.Println(i, aws.ToString(task.TaskId))
 }
}

Python

import boto3
from botocore.config import Config

INGEST_ENDPOINT = "<url>"
REGION = "us-west-2"
HT_TTL_HOURS = 24
CT_TTL_DAYS = 7

def print_batch_load_tasks(batch_load_tasks):
 for batch_load_task in batch_load_tasks:
 print(batch_load_task['TaskId'])

def list_batch_load_tasks(client):
 print("\nListing batch load tasks")
 try:
 response = client.list_batch_load_tasks(MaxResults=10)
 print_batch_load_tasks(response['BatchLoadTasks'])
 next_token = response.get('NextToken', None)
 while next_token:
 response = client.list_batch_load_tasks(
 NextToken=next_token, MaxResults=10)
 print_batch_load_tasks(response['BatchLoadTasks'])
 next_token = response.get('NextToken', None)
 except Exception as err:
 print("List batch load tasks failed:", err)
 raise err

if __name__ == '__main__':

List batch load tasks 257

Amazon Timestream Developer Guide

 session = boto3.Session()

 write_client = session.client('timestream-write',
 endpoint_url=INGEST_ENDPOINT, region_name=REGION,
 config=Config(read_timeout=20,
 max_pool_connections=5000, retries={'max_attempts': 10}))

 list_batch_load_tasks(write_client)

Node.js

The following snippet uses Amazon SDK for JavaScript v3. For more information about how to
install the client and usage, see Timestream Write Client - Amazon SDK for JavaScript v3.

For API details, see Class DescribeBatchLoadCommand and DescribeBatchLoadTask.

import { TimestreamWriteClient, ListBatchLoadTasksCommand } from "@aws-sdk/client-
timestream-write";
const writeClient = new TimestreamWriteClient({ region: "<region>", endpoint:
 "<endpoint>" });

const params = {
 MaxResults: <15>
};

const command = new ListBatchLoadTasksCommand(params);

getBatchLoadTasksList(null);

async function getBatchLoadTasksList(nextToken) {
 if (nextToken) {
 params.NextToken = nextToken;
 }

 try {
 const data = await writeClient.send(command);

 data.BatchLoadTasks.forEach(function (task) {
 console.log(task.TaskId);
 });

 if (data.NextToken) {
 return getBatchLoadTasksList(data.NextToken);
 }

List batch load tasks 258

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/clients/client-timestream-write/index.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/clients/client-timestream-write/classes/listbatchloadtaskscommand.html
https://docs.amazonaws.cn/timestream/latest/developerguide/API_DescribeBatchLoadTask.html

Amazon Timestream Developer Guide

 } catch (error) {
 console.log("Error while listing batch load tasks", error);
 }
}

.NET

using System;
using System.IO;
using System.Collections.Generic;
using Amazon.TimestreamWrite;
using Amazon.TimestreamWrite.Model;
using System.Threading.Tasks;

namespace TimestreamDotNetSample
{
 public class ListBatchLoadTasksExample
 {
 private readonly AmazonTimestreamWriteClient writeClient;

 public ListBatchLoadTasksExample(AmazonTimestreamWriteClient writeClient)
 {
 this.writeClient = writeClient;
 }

 public async Task ListBatchLoadTasks()
 {
 Console.WriteLine("Listing batch load tasks");

 try
 {
 var listBatchLoadTasksRequest = new ListBatchLoadTasksRequest
 {
 MaxResults = 15
 };

 ListBatchLoadTasksResponse response = await
 writeClient.ListBatchLoadTasksAsync(listBatchLoadTasksRequest);

 PrintBatchLoadTasks(response.BatchLoadTasks);
 var nextToken = response.NextToken;

 while (nextToken != null)

List batch load tasks 259

Amazon Timestream Developer Guide

 {
 listBatchLoadTasksRequest.NextToken = nextToken;
 response = await
 writeClient.ListBatchLoadTasksAsync(listBatchLoadTasksRequest);
 PrintBatchLoadTasks(response.BatchLoadTasks);
 nextToken = response.NextToken;
 }
 }
 catch (Exception e)
 {
 Console.WriteLine("List batch load tasks failed:" + e.ToString());
 }
 }

 private void PrintBatchLoadTasks(List<BatchLoadTask> tasks)
 {
 foreach (BatchLoadTask task in tasks)
 Console.WriteLine($"Task:{task.TaskId}");
 }
 }
}

using Amazon.TimestreamWrite;
using Amazon.TimestreamWrite.Model;
using Amazon;
using Amazon.TimestreamQuery;
using System.Threading.Tasks;
using System;
using CommandLine;
static class Constants
{

}
namespace TimestreamDotNetSample
{
 class MainClass
 {
 public class Options
 {

 }
 public static void Main(string[] args)
 {

List batch load tasks 260

Amazon Timestream Developer Guide

 Parser.Default.ParseArguments<Options>(args)
 .WithParsed<Options>(o => {
 MainAsync().GetAwaiter().GetResult();
 });
 }

 static async Task MainAsync()
 {
 var writeClientConfig = new AmazonTimestreamWriteConfig
 {
 ServiceURL = "<service URL>",
 Timeout = TimeSpan.FromSeconds(20),
 MaxErrorRetry = 10
 };

 var writeClient = new AmazonTimestreamWriteClient(writeClientConfig);
 var example = new ListBatchLoadTasksExample(writeClient);
 await example.ListBatchLoadTasks();
 }
 }
}

Resume batch load task

You can use the following code snippets to resume batch load tasks.

Java

 public void resumeBatchLoadTask(String taskId) {
 try {
 amazonTimestreamWrite

 .resumeBatchLoadTask(ResumeBatchLoadTaskRequest.builder()
 .taskId(taskId)
 .build());

 System.out.println("Successfully resumed batch load task.");
 } catch (ValidationException validationException) {
 System.out.println(validationException.getMessage());
 }
 }

Resume batch load task 261

Amazon Timestream Developer Guide

Go

package main

import (
 "fmt"
 "context"
 "log"
 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/timestreamwrite"
)

func main() {
 customResolver := aws.EndpointResolverWithOptionsFunc(func(service, region string,
 options ...interface{}) (aws.Endpoint, error) {
 if service == timestreamwrite.ServiceID && region == "us-west-2" {
 return aws.Endpoint{
 PartitionID: "aws",
 URL: <URL>,
 SigningRegion: "us-west-2",
 }, nil
 }
 return aws.Endpoint{}, &aws.EndpointNotFoundError{}
 })

 cfg, err := config.LoadDefaultConfig(context.TODO(),
 config.WithEndpointResolverWithOptions(customResolver), config.WithRegion("us-
west-2"))

 if err != nil {
 log.Fatalf("failed to load configuration, %v", err)
 }

 client := timestreamwrite.NewFromConfig(cfg)

 response, err := client.ResumeBatchLoadTask(context.TODO(),
 ×treamwrite.ResumeBatchLoadTaskInput{
 TaskId: aws.String("TaskId"),
 })

 if err != nil {
 fmt.Println("Error:")
 fmt.Println(err)

Resume batch load task 262

Amazon Timestream Developer Guide

 } else {
 fmt.Println("Resume batch load task is successful")
 fmt.Println(response)
 }
}

Python

import boto3
from botocore.config import Config

INGEST_ENDPOINT="<url>"
REGION="us-west-2"
HT_TTL_HOURS = 24
CT_TTL_DAYS = 7
TASK_ID = "<TaskId>"

def resume_batch_load_task(client, task_id):
 try:
 result = client.resume_batch_load_task(TaskId=task_id)
 print("Successfully resumed batch load task: ", result)
 except Exception as err:
 print("Resume batch load task failed:", err)

if __name__ == '__main__':
 session = boto3.Session()

 write_client = session.client('timestream-write', \
 endpoint_url=INGEST_ENDPOINT, region_name=REGION, \
 config=Config(read_timeout=20, max_pool_connections = 5000,
 retries={'max_attempts': 10}))

 resume_batch_load_task(write_client, TASK_ID)

Node.js

The following snippet uses Amazon SDK for JavaScript v3. For more information about how to
install the client and usage, see Timestream Write Client - Amazon SDK for JavaScript v3.

For API details, see Class CreateBatchLoadCommand and CreateBatchLoadTask.

Resume batch load task 263

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/clients/client-timestream-write/index.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/clients/client-timestream-write/classes/describebatchloadtaskcommand.html
https://docs.amazonaws.cn/timestream/latest/developerguide/API_CreateBatchLoadTask.html

Amazon Timestream Developer Guide

import { TimestreamWriteClient, ResumeBatchLoadTaskCommand } from "@aws-sdk/client-
timestream-write";
const writeClient = new TimestreamWriteClient({ region: "<region>", endpoint:
 "<endpoint>" });

const params = {
 TaskId: "<TaskId>"
};

const command = new ResumeBatchLoadTaskCommand(params);

try {
 const data = await writeClient.send(command);
 console.log("Resumed batch load task");
} catch (error) {
 console.log("Resume batch load task failed.", error);
 throw error;
}

.NET

using System;
using System.IO;
using System.Collections.Generic;
using Amazon.TimestreamWrite;
using Amazon.TimestreamWrite.Model;
using System.Threading.Tasks;

namespace TimestreamDotNetSample
{
 public class ResumeBatchLoadTaskExample
 {
 private readonly AmazonTimestreamWriteClient writeClient;

 public ResumeBatchLoadTaskExample(AmazonTimestreamWriteClient writeClient)
 {
 this.writeClient = writeClient;
 }

 public async Task ResumeBatchLoadTask(String taskId)
 {
 try
 {

Resume batch load task 264

Amazon Timestream Developer Guide

 var resumeBatchLoadTaskRequest = new ResumeBatchLoadTaskRequest
 {
 TaskId = taskId
 };
 ResumeBatchLoadTaskResponse response = await
 writeClient.ResumeBatchLoadTaskAsync(resumeBatchLoadTaskRequest);
 Console.WriteLine("Successfully resumed batch load task.");
 }
 catch (ResourceNotFoundException)
 {
 Console.WriteLine("Batch load task does not exist.");
 }
 catch (Exception e)
 {
 Console.WriteLine("Resume batch load task failed: " + e.ToString());
 }
 }
 }
}

Create scheduled query

You can use the following code snippets to create a scheduled query with multi-measure mapping.

Java

public static String DATABASE_NAME = "devops_sample_application";
public static String TABLE_NAME = "host_metrics_sample_application";
public static String HOSTNAME = "host-24Gju";
public static String SQ_NAME = "daily-sample";
public static String SCHEDULE_EXPRESSION = "cron(0/2 * * * ? *)";

// Find the average, p90, p95, and p99 CPU utilization for a specific EC2 host over
 the past 2 hours.
public static String QUERY = "SELECT region, az, hostname, BIN(time, 15s) AS
 binned_timestamp, " +
"ROUND(AVG(cpu_utilization), 2) AS avg_cpu_utilization, " +
"ROUND(APPROX_PERCENTILE(cpu_utilization, 0.9), 2) AS p90_cpu_utilization, " +
"ROUND(APPROX_PERCENTILE(cpu_utilization, 0.95), 2) AS p95_cpu_utilization, " +
"ROUND(APPROX_PERCENTILE(cpu_utilization, 0.99), 2) AS p99_cpu_utilization " +
"FROM " + DATABASE_NAME + "." + TABLE_NAME + " " +
"WHERE measure_name = 'metrics' " +

Create scheduled query 265

Amazon Timestream Developer Guide

"AND hostname = '" + HOSTNAME + "' " +
"AND time > ago(2h) " +
"GROUP BY region, hostname, az, BIN(time, 15s) " +
"ORDER BY binned_timestamp ASC " +
"LIMIT 5";

public String createScheduledQuery(String topic_arn,
 String role_arn,
 String database_name,
 String table_name) {
 System.out.println("Creating Scheduled Query");

 List<Pair<String, MeasureValueType>> sourceColToMeasureValueTypes =
 Arrays.asList(
 Pair.of("avg_cpu_utilization", DOUBLE),
 Pair.of("p90_cpu_utilization", DOUBLE),
 Pair.of("p95_cpu_utilization", DOUBLE),
 Pair.of("p99_cpu_utilization", DOUBLE));

 CreateScheduledQueryRequest createScheduledQueryRequest = new
 CreateScheduledQueryRequest()
 .withName(SQ_NAME)
 .withQueryString(QUERY)
 .withScheduleConfiguration(new ScheduleConfiguration()
 .withScheduleExpression(SCHEDULE_EXPRESSION))
 .withNotificationConfiguration(new NotificationConfiguration()
 .withSnsConfiguration(new SnsConfiguration()
 .withTopicArn(topic_arn)))
 .withTargetConfiguration(new
 TargetConfiguration().withTimestreamConfiguration(new TimestreamConfiguration()
 .withDatabaseName(database_name)
 .withTableName(table_name)
 .withTimeColumn("binned_timestamp")
 .withDimensionMappings(Arrays.asList(
 new DimensionMapping()
 .withName("region")
 .withDimensionValueType("VARCHAR"),
 new DimensionMapping()
 .withName("az")
 .withDimensionValueType("VARCHAR"),
 new DimensionMapping()
 .withName("hostname")
 .withDimensionValueType("VARCHAR")

Create scheduled query 266

Amazon Timestream Developer Guide

))
 .withMultiMeasureMappings(new MultiMeasureMappings()
 .withTargetMultiMeasureName("multi-metrics")
 .withMultiMeasureAttributeMappings(
 sourceColToMeasureValueTypes.stream()
 .map(pair -> new MultiMeasureAttributeMapping()
 .withMeasureValueType(pair.getValue().name())
 .withSourceColumn(pair.getKey()))
 .collect(Collectors.toList())))))
 .withErrorReportConfiguration(new ErrorReportConfiguration()
 .withS3Configuration(new S3Configuration()

 .withBucketName(timestreamDependencyHelper.getS3ErrorReportBucketName())))
 .withScheduledQueryExecutionRoleArn(role_arn);

 try {
 final CreateScheduledQueryResult createScheduledQueryResult =
 queryClient.createScheduledQuery(createScheduledQueryRequest);
 final String scheduledQueryArn = createScheduledQueryResult.getArn();
 System.out.println("Successfully created scheduled query : " +
 scheduledQueryArn);
 return scheduledQueryArn;
 }
 catch (Exception e) {
 System.out.println("Scheduled Query creation failed: " + e);
 throw e;
 }
}

Java v2

public static String DATABASE_NAME = "testJavaV2DB";
public static String TABLE_NAME = "testJavaV2Table";
public static String HOSTNAME = "host-24Gju";
public static String SQ_NAME = "daily-sample";
public static String SCHEDULE_EXPRESSION = "cron(0/2 * * * ? *)";

// Find the average, p90, p95, and p99 CPU utilization for a specific EC2 host over
 the past 2 hours.
public static String VALID_QUERY = "SELECT region, az, hostname, BIN(time, 15s) AS
 binned_timestamp, " +
"ROUND(AVG(cpu_utilization), 2) AS avg_cpu_utilization, " +
"ROUND(APPROX_PERCENTILE(cpu_utilization, 0.9), 2) AS p90_cpu_utilization, " +

Create scheduled query 267

Amazon Timestream Developer Guide

"ROUND(APPROX_PERCENTILE(cpu_utilization, 0.95), 2) AS p95_cpu_utilization, " +
"ROUND(APPROX_PERCENTILE(cpu_utilization, 0.99), 2) AS p99_cpu_utilization " +
"FROM " + DATABASE_NAME + "." + TABLE_NAME + " " +
"WHERE measure_name = 'metrics' " +
"AND hostname = '" + HOSTNAME + "' " +
"AND time > ago(2h) " +
"GROUP BY region, hostname, az, BIN(time, 15s) " +
"ORDER BY binned_timestamp ASC " +
"LIMIT 5";

private String createScheduledQueryHelper(String topicArn, String roleArn,
 String s3ErrorReportBucketName, String query,
 TargetConfiguration targetConfiguration) {
 System.out.println("Creating Scheduled Query");

 CreateScheduledQueryRequest createScheduledQueryRequest =
 CreateScheduledQueryRequest.builder()
 .name(SQ_NAME)
 .queryString(query)
 .scheduleConfiguration(ScheduleConfiguration.builder()
 .scheduleExpression(SCHEDULE_EXPRESSION)
 .build())
 .notificationConfiguration(NotificationConfiguration.builder()
 .snsConfiguration(SnsConfiguration.builder()
 .topicArn(topicArn)
 .build())
 .build())
 .targetConfiguration(targetConfiguration)
 .errorReportConfiguration(ErrorReportConfiguration.builder()
 .s3Configuration(S3Configuration.builder()
 .bucketName(s3ErrorReportBucketName)
 .objectKeyPrefix(SCHEDULED_QUERY_EXAMPLE)
 .build())
 .build())
 .scheduledQueryExecutionRoleArn(roleArn)
 .build();

 try {
 final CreateScheduledQueryResponse response =
 queryClient.createScheduledQuery(createScheduledQueryRequest);
 final String scheduledQueryArn = response.arn();
 System.out.println("Successfully created scheduled query : " +
 scheduledQueryArn);

Create scheduled query 268

Amazon Timestream Developer Guide

 return scheduledQueryArn;
 }
 catch (Exception e) {
 System.out.println("Scheduled Query creation failed: " + e);
 throw e;
 }
}

public String createScheduledQuery(String topicArn, String roleArn,
 String databaseName, String tableName, String s3ErrorReportBucketName) {
 List<Pair<String, MeasureValueType>> sourceColToMeasureValueTypes =
 Arrays.asList(
 Pair.of("avg_cpu_utilization", DOUBLE),
 Pair.of("p90_cpu_utilization", DOUBLE),
 Pair.of("p95_cpu_utilization", DOUBLE),
 Pair.of("p99_cpu_utilization", DOUBLE));

 TargetConfiguration targetConfiguration = TargetConfiguration.builder()
 .timestreamConfiguration(TimestreamConfiguration.builder()
 .databaseName(databaseName)
 .tableName(tableName)
 .timeColumn("binned_timestamp")
 .dimensionMappings(Arrays.asList(
 DimensionMapping.builder()
 .name("region")
 .dimensionValueType("VARCHAR")
 .build(),
 DimensionMapping.builder()
 .name("az")
 .dimensionValueType("VARCHAR")
 .build(),
 DimensionMapping.builder()
 .name("hostname")
 .dimensionValueType("VARCHAR")
 .build()
))
 .multiMeasureMappings(MultiMeasureMappings.builder()
 .targetMultiMeasureName("multi-metrics")
 .multiMeasureAttributeMappings(
 sourceColToMeasureValueTypes.stream()
 .map(pair ->
 MultiMeasureAttributeMapping.builder()

 .measureValueType(pair.getValue().name())

Create scheduled query 269

Amazon Timestream Developer Guide

 .sourceColumn(pair.getKey())
 .build())
 .collect(Collectors.toList()))
 .build())
 .build())
 .build();

 return createScheduledQueryHelper(topicArn, roleArn, s3ErrorReportBucketName,
 VALID_QUERY, targetConfiguration);
}}

Go

SQ_ERROR_CONFIGURATION_S3_BUCKET_NAME_PREFIX = "sq-error-configuration-sample-s3-
bucket-"
HOSTNAME = "host-24Gju"
SQ_NAME = "daily-sample"
SCHEDULE_EXPRESSION = "cron(0/1 * * * ? *)"
QUERY = "SELECT region, az, hostname, BIN(time, 15s) AS
 binned_timestamp, " +
 "ROUND(AVG(cpu_utilization), 2) AS avg_cpu_utilization, " +
 "ROUND(APPROX_PERCENTILE(cpu_utilization, 0.9), 2) AS p90_cpu_utilization, " +
 "ROUND(APPROX_PERCENTILE(cpu_utilization, 0.95), 2) AS p95_cpu_utilization, " +
 "ROUND(APPROX_PERCENTILE(cpu_utilization, 0.99), 2) AS p99_cpu_utilization " +
 "FROM %s.%s " +
 "WHERE measure_name = 'metrics' " +
 "AND hostname = '" + HOSTNAME + "' " +
 "AND time > ago(2h) " +
 "GROUP BY region, hostname, az, BIN(time, 15s) " +
 "ORDER BY binned_timestamp ASC " +
 "LIMIT 5"
s3BucketName = utils.SQ_ERROR_CONFIGURATION_S3_BUCKET_NAME_PREFIX +
 generateRandomStringWithSize(5)

func generateRandomStringWithSize(size int) string {
 rand.Seed(time.Now().UnixNano())
 alphaNumericList := []rune("abcdefghijklmnopqrstuvwxyz0123456789")
 randomPrefix := make([]rune, size)
 for i := range randomPrefix {
 randomPrefix[i] = alphaNumericList[rand.Intn(len(alphaNumericList))]
 }
 return string(randomPrefix)
 }

Create scheduled query 270

Amazon Timestream Developer Guide

func (timestreamBuilder TimestreamBuilder) createScheduledQuery(topicArn string,
 roleArn string, s3ErrorReportBucketName string,
query string, targetConfiguration timestreamquery.TargetConfiguration) (string,
 error) {

createScheduledQueryInput := ×treamquery.CreateScheduledQueryInput{
 Name: aws.String(SQ_NAME),
 QueryString: aws.String(query),
 ScheduleConfiguration: ×treamquery.ScheduleConfiguration{
 ScheduleExpression: aws.String(SCHEDULE_EXPRESSION),
 },
 NotificationConfiguration: ×treamquery.NotificationConfiguration{
 SnsConfiguration: ×treamquery.SnsConfiguration{
 TopicArn: aws.String(topicArn),
 },
 },
 TargetConfiguration: &targetConfiguration,
 ErrorReportConfiguration: ×treamquery.ErrorReportConfiguration{
 S3Configuration: ×treamquery.S3Configuration{
 BucketName: aws.String(s3ErrorReportBucketName),
 },
 },
 ScheduledQueryExecutionRoleArn: aws.String(roleArn),
}

createScheduledQueryOutput, err :=
 timestreamBuilder.QuerySvc.CreateScheduledQuery(createScheduledQueryInput)

if err != nil {
 fmt.Printf("Error: %s", err.Error())
} else {
 fmt.Println("createScheduledQueryResult is successful")
 return *createScheduledQueryOutput.Arn, nil
}
return "", err
}

 func (timestreamBuilder TimestreamBuilder) CreateValidScheduledQuery(topicArn
 string, roleArn string, s3ErrorReportBucketName string,
 sqDatabaseName string, sqTableName string, databaseName string, tableName
 string) (string, error) {

 targetConfiguration := timestreamquery.TargetConfiguration{

Create scheduled query 271

Amazon Timestream Developer Guide

 TimestreamConfiguration: ×treamquery.TimestreamConfiguration{
 DatabaseName: aws.String(sqDatabaseName),
 TableName: aws.String(sqTableName),
 TimeColumn: aws.String("binned_timestamp"),
 DimensionMappings: []*timestreamquery.DimensionMapping{
 {
 Name: aws.String("region"),
 DimensionValueType: aws.String("VARCHAR"),
 },
 {
 Name: aws.String("az"),
 DimensionValueType: aws.String("VARCHAR"),
 },
 {
 Name: aws.String("hostname"),
 DimensionValueType: aws.String("VARCHAR"),
 },
 },
 MultiMeasureMappings: ×treamquery.MultiMeasureMappings{
 TargetMultiMeasureName: aws.String("multi-metrics"),
 MultiMeasureAttributeMappings:
 []*timestreamquery.MultiMeasureAttributeMapping{
 {
 SourceColumn: aws.String("avg_cpu_utilization"),
 MeasureValueType:
 aws.String(timestreamquery.MeasureValueTypeDouble),
 },
 {
 SourceColumn: aws.String("p90_cpu_utilization"),
 MeasureValueType:
 aws.String(timestreamquery.MeasureValueTypeDouble),
 },
 {
 SourceColumn: aws.String("p95_cpu_utilization"),
 MeasureValueType:
 aws.String(timestreamquery.MeasureValueTypeDouble),
 },
 {
 SourceColumn: aws.String("p99_cpu_utilization"),
 MeasureValueType:
 aws.String(timestreamquery.MeasureValueTypeDouble),
 },
 },
 },

Create scheduled query 272

Amazon Timestream Developer Guide

 },
 }
 return timestreamBuilder.createScheduledQuery(topicArn, roleArn,
 s3ErrorReportBucketName,
 fmt.Sprintf(QUERY, databaseName, tableName), targetConfiguration)
 }

Python

HOSTNAME = "host-24Gju"
SQ_NAME = "daily-sample"
ERROR_BUCKET_NAME = "scheduledquerysamplerrorbucket" +
 ''.join([choice(ascii_lowercase) for _ in range(5)])
QUERY = \
 "SELECT region, az, hostname, BIN(time, 15s) AS binned_timestamp, " \
 " ROUND(AVG(cpu_utilization), 2) AS avg_cpu_utilization, " \
 " ROUND(APPROX_PERCENTILE(cpu_utilization, 0.9), 2) AS p90_cpu_utilization, "
 \
 " ROUND(APPROX_PERCENTILE(cpu_utilization, 0.95), 2) AS p95_cpu_utilization,
 " \
 " ROUND(APPROX_PERCENTILE(cpu_utilization, 0.99), 2) AS p99_cpu_utilization "
 \
 "FROM " + database_name + "." + table_name + " " \
 "WHERE measure_name = 'metrics' " \
 "AND hostname = '" + self.HOSTNAME + "' " \
 "AND time > ago(2h) " \
 "GROUP BY region, hostname, az, BIN(time, 15s) " \
 "ORDER BY binned_timestamp ASC " \
 "LIMIT 5"

def create_scheduled_query_helper(self, topic_arn, role_arn, query,
 target_configuration):
 print("\nCreating Scheduled Query")
 schedule_configuration = {
 'ScheduleExpression': 'cron(0/2 * * * ? *)'
 }
 notification_configuration = {
 'SnsConfiguration': {
 'TopicArn': topic_arn
 }
 }
 error_report_configuration = {
 'S3Configuration': {

Create scheduled query 273

Amazon Timestream Developer Guide

 'BucketName': ERROR_BUCKET_NAME
 }
 }

 try:
 create_scheduled_query_response = \
 query_client.create_scheduled_query(Name=self.SQ_NAME,
 QueryString=query,
 ScheduleConfiguration=schedule_configuration,
 NotificationConfiguration=notification_configuration,
 TargetConfiguration=target_configuration,
 ScheduledQueryExecutionRoleArn=role_arn,
 ErrorReportConfiguration=error_report_configuration
)
 print("Successfully created scheduled query : ",
 create_scheduled_query_response['Arn'])
 return create_scheduled_query_response['Arn']
 except Exception as err:
 print("Scheduled Query creation failed:", err)
 raise err

def create_valid_scheduled_query(self, topic_arn, role_arn):
 target_configuration = {
 'TimestreamConfiguration': {
 'DatabaseName': self.sq_database_name,
 'TableName': self.sq_table_name,
 'TimeColumn': 'binned_timestamp',
 'DimensionMappings': [
 {'Name': 'region', 'DimensionValueType': 'VARCHAR'},
 {'Name': 'az', 'DimensionValueType': 'VARCHAR'},
 {'Name': 'hostname', 'DimensionValueType': 'VARCHAR'}
],
 'MultiMeasureMappings': {
 'TargetMultiMeasureName': 'target_name',
 'MultiMeasureAttributeMappings': [
 {'SourceColumn': 'avg_cpu_utilization', 'MeasureValueType':
 'DOUBLE',
 'TargetMultiMeasureAttributeName': 'avg_cpu_utilization'},
 {'SourceColumn': 'p90_cpu_utilization', 'MeasureValueType':
 'DOUBLE',
 'TargetMultiMeasureAttributeName': 'p90_cpu_utilization'},
 {'SourceColumn': 'p95_cpu_utilization', 'MeasureValueType':
 'DOUBLE',
 'TargetMultiMeasureAttributeName': 'p95_cpu_utilization'},

Create scheduled query 274

Amazon Timestream Developer Guide

 {'SourceColumn': 'p99_cpu_utilization', 'MeasureValueType':
 'DOUBLE',
 'TargetMultiMeasureAttributeName': 'p99_cpu_utilization'},
]
 }
 }
 }

 return self.create_scheduled_query_helper(topic_arn, role_arn, QUERY,
 target_configuration)

Node.js

The following snippet uses the Amazon SDK for JavaScript V2 style. It is based on the sample
application at Node.js sample Amazon Timestream for LiveAnalytics application on GitHub.

const DATABASE_NAME = 'devops_sample_application';
const TABLE_NAME = 'host_metrics_sample_application';
const SQ_DATABASE_NAME = 'sq_result_database';
const SQ_TABLE_NAME = 'sq_result_table';
const HOSTNAME = "host-24Gju";
const SQ_NAME = "daily-sample";
const SCHEDULE_EXPRESSION = "cron(0/1 * * * ? *)";

// Find the average, p90, p95, and p99 CPU utilization for a specific EC2 host over
 the past 2 hours.
const VALID_QUERY = "SELECT region, az, hostname, BIN(time, 15s) AS
 binned_timestamp, " +
 " ROUND(AVG(cpu_utilization), 2) AS avg_cpu_utilization, " +
 " ROUND(APPROX_PERCENTILE(cpu_utilization, 0.9), 2) AS p90_cpu_utilization, " +
 " ROUND(APPROX_PERCENTILE(cpu_utilization, 0.95), 2) AS p95_cpu_utilization, " +
 " ROUND(APPROX_PERCENTILE(cpu_utilization, 0.99), 2) AS p99_cpu_utilization " +
 "FROM " + DATABASE_NAME + "." + TABLE_NAME + " " +
 "WHERE measure_name = 'metrics' " +
 " AND hostname = '" + HOSTNAME + "' " +
 " AND time > ago(2h) " +
 "GROUP BY region, hostname, az, BIN(time, 15s) " +
 "ORDER BY binned_timestamp ASC " +
 "LIMIT 5";

async function createScheduledQuery(topicArn, roleArn, s3ErrorReportBucketName) {
 console.log("Creating Valid Scheduled Query");
 const DimensionMappingList = [{

Create scheduled query 275

https://github.com/awslabs/amazon-timestream-tools/blob/mainline/sample_apps_reinvent2021/js/schedule-query-example.js

Amazon Timestream Developer Guide

 'Name': 'region',
 'DimensionValueType': 'VARCHAR'
 },
 {
 'Name': 'az',
 'DimensionValueType': 'VARCHAR'
 },
 {
 'Name': 'hostname',
 'DimensionValueType': 'VARCHAR'
 }
];

 const MultiMeasureMappings = {
 TargetMultiMeasureName: "multi-metrics",
 MultiMeasureAttributeMappings: [{
 'SourceColumn': 'avg_cpu_utilization',
 'MeasureValueType': 'DOUBLE'
 },
 {
 'SourceColumn': 'p90_cpu_utilization',
 'MeasureValueType': 'DOUBLE'
 },
 {
 'SourceColumn': 'p95_cpu_utilization',
 'MeasureValueType': 'DOUBLE'
 },
 {
 'SourceColumn': 'p99_cpu_utilization',
 'MeasureValueType': 'DOUBLE'
 },
]
 }

 const timestreamConfiguration = {
 DatabaseName: SQ_DATABASE_NAME,
 TableName: SQ_TABLE_NAME,
 TimeColumn: "binned_timestamp",
 DimensionMappings: DimensionMappingList,
 MultiMeasureMappings: MultiMeasureMappings
 }

 const createScheduledQueryRequest = {
 Name: SQ_NAME,

Create scheduled query 276

Amazon Timestream Developer Guide

 QueryString: VALID_QUERY,
 ScheduleConfiguration: {
 ScheduleExpression: SCHEDULE_EXPRESSION
 },
 NotificationConfiguration: {
 SnsConfiguration: {
 TopicArn: topicArn
 }
 },
 TargetConfiguration: {
 TimestreamConfiguration: timestreamConfiguration
 },
 ScheduledQueryExecutionRoleArn: roleArn,
 ErrorReportConfiguration: {
 S3Configuration: {
 BucketName: s3ErrorReportBucketName
 }
 }
 };
 try {
 const data = await
 queryClient.createScheduledQuery(createScheduledQueryRequest).promise();
 console.log("Successfully created scheduled query: " + data.Arn);
 return data.Arn;
 } catch (err) {
 console.log("Scheduled Query creation failed: ", err);
 throw err;
 }
}

.NET

public const string Hostname = "host-24Gju";
public const string SqName = "timestream-sample";
public const string SqDatabaseName = "sq_result_database";
public const string SqTableName = "sq_result_table";

public const string ErrorConfigurationS3BucketNamePrefix = "error-configuration-
sample-s3-bucket-";
public const string ScheduleExpression = "cron(0/2 * * * ? *)";

// Find the average, p90, p95, and p99 CPU utilization for a specific EC2 host over
 the past 2 hours.

Create scheduled query 277

Amazon Timestream Developer Guide

public const string ValidQuery = "SELECT region, az, hostname, BIN(time, 15s) AS
 binned_timestamp, " +
 "ROUND(AVG(cpu_utilization), 2) AS avg_cpu_utilization, " +
 "ROUND(APPROX_PERCENTILE(cpu_utilization, 0.9), 2) AS p90_cpu_utilization, " +
 "ROUND(APPROX_PERCENTILE(cpu_utilization, 0.95), 2) AS p95_cpu_utilization, "
 +
 "ROUND(APPROX_PERCENTILE(cpu_utilization, 0.99), 2) AS p99_cpu_utilization " +
 "FROM " + Constants.DATABASE_NAME + "." + Constants.TABLE_NAME + " " +
 "WHERE measure_name = 'metrics' " +
 "AND hostname = '" + Hostname + "' " +
 "AND time > ago(2h) " +
 "GROUP BY region, hostname, az, BIN(time, 15s) " +
 "ORDER BY binned_timestamp ASC " +
 "LIMIT 5";

private async Task<String> CreateValidScheduledQuery(string topicArn, string
 roleArn,
 string databaseName, string tableName, string s3ErrorReportBucketName)
 {
 List<MultiMeasureAttributeMapping> sourceColToMeasureValueTypes =
 new List<MultiMeasureAttributeMapping>()
 {
 new()
 {
 SourceColumn = "avg_cpu_utilization",
 MeasureValueType = MeasureValueType.DOUBLE.Value
 },
 new()
 {
 SourceColumn = "p90_cpu_utilization",
 MeasureValueType = MeasureValueType.DOUBLE.Value
 },
 new()
 {
 SourceColumn = "p95_cpu_utilization",
 MeasureValueType = MeasureValueType.DOUBLE.Value
 },
 new()
 {
 SourceColumn = "p99_cpu_utilization",
 MeasureValueType = MeasureValueType.DOUBLE.Value
 }
 };

Create scheduled query 278

Amazon Timestream Developer Guide

 TargetConfiguration targetConfiguration = new TargetConfiguration()
 {
 TimestreamConfiguration = new TimestreamConfiguration()
 {
 DatabaseName = databaseName,
 TableName = tableName,
 TimeColumn = "binned_timestamp",
 DimensionMappings = new List<DimensionMapping>()
 {
 new()
 {
 Name = "region",
 DimensionValueType = "VARCHAR"
 },
 new()
 {
 Name = "az",
 DimensionValueType = "VARCHAR"
 },
 new()
 {
 Name = "hostname",
 DimensionValueType = "VARCHAR"
 }
 },
 MultiMeasureMappings = new MultiMeasureMappings()
 {
 TargetMultiMeasureName = "multi-metrics",
 MultiMeasureAttributeMappings = sourceColToMeasureValueTypes
 }
 }
 };
 return await CreateScheduledQuery(topicArn, roleArn, s3ErrorReportBucketName,
 ScheduledQueryConstants.ValidQuery, targetConfiguration);
 }

private async Task<String> CreateScheduledQuery(string topicArn, string roleArn,
 string s3ErrorReportBucketName, string query, TargetConfiguration
 targetConfiguration)
 {
 try
 {
 Console.WriteLine("Creating Scheduled Query");

Create scheduled query 279

Amazon Timestream Developer Guide

 CreateScheduledQueryResponse response = await
 _amazonTimestreamQuery.CreateScheduledQueryAsync(
 new CreateScheduledQueryRequest()
 {
 Name = ScheduledQueryConstants.SqName,
 QueryString = query,
 ScheduleConfiguration = new ScheduleConfiguration()
 {
 ScheduleExpression = ScheduledQueryConstants.ScheduleExpression
 },
 NotificationConfiguration = new NotificationConfiguration()
 {
 SnsConfiguration = new SnsConfiguration()
 {
 TopicArn = topicArn
 }
 },
 TargetConfiguration = targetConfiguration,
 ErrorReportConfiguration = new ErrorReportConfiguration()
 {
 S3Configuration = new S3Configuration()
 {
 BucketName = s3ErrorReportBucketName
 }
 },
 ScheduledQueryExecutionRoleArn = roleArn
 });
 Console.WriteLine($"Successfully created scheduled query :
 {response.Arn}");
 return response.Arn;
 }
 catch (Exception e)
 {
 Console.WriteLine($"Scheduled Query creation failed: {e}");
 throw;
 }
 }

List scheduled query

You can use the following code snippets to list your scheduled queries.

List scheduled query 280

Amazon Timestream Developer Guide

Java

public void listScheduledQueries() {
 System.out.println("Listing Scheduled Query");
 try {
 String nextToken = null;
 List<String> scheduledQueries = new ArrayList<>();

 do {
 ListScheduledQueriesResult listScheduledQueriesResult =
 queryClient.listScheduledQueries(new
 ListScheduledQueriesRequest()
 .withNextToken(nextToken).withMaxResults(10));
 List<ScheduledQuery> scheduledQueryList =
 listScheduledQueriesResult.getScheduledQueries();

 printScheduledQuery(scheduledQueryList);
 nextToken = listScheduledQueriesResult.getNextToken();
 } while (nextToken != null);
 }
 catch (Exception e) {
 System.out.println("List Scheduled Query failed: " + e);
 throw e;
 }
}

public void printScheduledQuery(List<ScheduledQuery> scheduledQueryList) {
 for (ScheduledQuery scheduledQuery: scheduledQueryList) {
 System.out.println(scheduledQuery.getArn());
 }
}

Java v2

public void listScheduledQueries() {
 System.out.println("Listing Scheduled Query");
 try {
 String nextToken = null;

 do {
 ListScheduledQueriesResponse listScheduledQueriesResult =

 queryClient.listScheduledQueries(ListScheduledQueriesRequest.builder()

List scheduled query 281

Amazon Timestream Developer Guide

 .nextToken(nextToken).maxResults(10)
 .build());
 List<ScheduledQuery> scheduledQueryList =
 listScheduledQueriesResult.scheduledQueries();

 printScheduledQuery(scheduledQueryList);
 nextToken = listScheduledQueriesResult.nextToken();
 } while (nextToken != null);
 }
 catch (Exception e) {
 System.out.println("List Scheduled Query failed: " + e);
 throw e;
 }
}

public void printScheduledQuery(List<ScheduledQuery> scheduledQueryList) {
 for (ScheduledQuery scheduledQuery: scheduledQueryList) {
 System.out.println(scheduledQuery.arn());
 }
}

Go

func (timestreamBuilder TimestreamBuilder) ListScheduledQueries()
 ([]*timestreamquery.ScheduledQuery, error) {

 var nextToken *string = nil
 var scheduledQueries []*timestreamquery.ScheduledQuery
 for ok := true; ok; ok = nextToken != nil {
 listScheduledQueriesInput := ×treamquery.ListScheduledQueriesInput{
 MaxResults: aws.Int64(15),
 }
 if nextToken != nil {
 listScheduledQueriesInput.NextToken = aws.String(*nextToken)
 }

 listScheduledQueriesOutput, err :=
 timestreamBuilder.QuerySvc.ListScheduledQueries(listScheduledQueriesInput)
 if err != nil {
 fmt.Printf("Error: %s", err.Error())
 return nil, err
 }

List scheduled query 282

Amazon Timestream Developer Guide

 scheduledQueries = append(scheduledQueries,
 listScheduledQueriesOutput.ScheduledQueries...)
 nextToken = listScheduledQueriesOutput.NextToken
 }
 return scheduledQueries, nil
 }

Python

def list_scheduled_queries(self):
 print("\nListing Scheduled Queries")
 try:
 response = self.query_client.list_scheduled_queries(MaxResults=10)
 self.print_scheduled_queries(response['ScheduledQueries'])
 next_token = response.get('NextToken', None)
 while next_token:
 response =
 self.query_client.list_scheduled_queries(NextToken=next_token, MaxResults=10)
 self.print_scheduled_queries(response['ScheduledQueries'])
 next_token = response.get('NextToken', None)
 except Exception as err:
 print("List scheduled queries failed:", err)
 raise err

@staticmethod
def print_scheduled_queries(scheduled_queries):
 for scheduled_query in scheduled_queries:
 print(scheduled_query['Arn'])

Node.js

The following snippet uses the Amazon SDK for JavaScript V2 style. It is based on the sample
application at Node.js sample Amazon Timestream for LiveAnalytics application on GitHub.

async function listScheduledQueries() {
 console.log("Listing Scheduled Query");
 try {
 var nextToken = null;
 do {
 var params = {
 MaxResults: 10,
 NextToken: nextToken
 }

List scheduled query 283

https://github.com/awslabs/amazon-timestream-tools/blob/mainline/sample_apps_reinvent2021/js/schedule-query-example.js

Amazon Timestream Developer Guide

 var data = await queryClient.listScheduledQueries(params).promise();
 var scheduledQueryList = data.ScheduledQueries;
 printScheduledQuery(scheduledQueryList);
 nextToken = data.NextToken;
 }
 while (nextToken != null);
 } catch (err) {
 console.log("List Scheduled Query failed: ", err);
 throw err;
 }
 }

 async function printScheduledQuery(scheduledQueryList) {
 scheduledQueryList.forEach(element => console.log(element.Arn));
 }

.NET

private async Task ListScheduledQueries()
 {
 try
 {
 Console.WriteLine("Listing Scheduled Query");
 string nextToken;
 do
 {
 ListScheduledQueriesResponse response =
 await _amazonTimestreamQuery.ListScheduledQueriesAsync(new
 ListScheduledQueriesRequest());
 foreach (var scheduledQuery in response.ScheduledQueries)
 {
 Console.WriteLine($"{scheduledQuery.Arn}");
 }

 nextToken = response.NextToken;
 } while (nextToken != null);
 }
 catch (Exception e)
 {
 Console.WriteLine($"List Scheduled Query failed: {e}");
 throw;
 }
 }

List scheduled query 284

Amazon Timestream Developer Guide

Describe scheduled query

You can use the following code snippets to describe a scheduled query.

Java

public void describeScheduledQueries(String scheduledQueryArn) {
 System.out.println("Describing Scheduled Query");
 try {
 DescribeScheduledQueryResult describeScheduledQueryResult =
 queryClient.describeScheduledQuery(new
 DescribeScheduledQueryRequest().withScheduledQueryArn(scheduledQueryArn));
 System.out.println(describeScheduledQueryResult);
 }
 catch (ResourceNotFoundException e) {
 System.out.println("Scheduled Query doesn't exist");
 throw e;
 }
 catch (Exception e) {
 System.out.println("Describe Scheduled Query failed: " + e);
 throw e;
 }
}

Java v2

public void describeScheduledQueries(String scheduledQueryArn) {
 System.out.println("Describing Scheduled Query");
 try {
 DescribeScheduledQueryResponse describeScheduledQueryResult =

 queryClient.describeScheduledQuery(DescribeScheduledQueryRequest.builder()
 .scheduledQueryArn(scheduledQueryArn)
 .build());
 System.out.println(describeScheduledQueryResult);
 }
 catch (ResourceNotFoundException e) {
 System.out.println("Scheduled Query doesn't exist");
 throw e;
 }
 catch (Exception e) {
 System.out.println("Describe Scheduled Query failed: " + e);
 throw e;

Describe scheduled query 285

Amazon Timestream Developer Guide

 }
}

Go

func (timestreamBuilder TimestreamBuilder) DescribeScheduledQuery(scheduledQueryArn
 string) error {

 describeScheduledQueryInput := ×treamquery.DescribeScheduledQueryInput{
 ScheduledQueryArn: aws.String(scheduledQueryArn),
 }
 describeScheduledQueryOutput, err :=
 timestreamBuilder.QuerySvc.DescribeScheduledQuery(describeScheduledQueryInput)

 if err != nil {
 if aerr, ok := err.(awserr.Error); ok {
 switch aerr.Code() {
 case timestreamquery.ErrCodeResourceNotFoundException:
 fmt.Println(timestreamquery.ErrCodeResourceNotFoundException,
 aerr.Error())
 default:
 fmt.Printf("Error: %s", err.Error())
 }
 } else {
 fmt.Printf("Error: %s", aerr.Error())
 }
 return err
 } else {
 fmt.Println("DescribeScheduledQuery is successful, below is the output:")
 fmt.Println(describeScheduledQueryOutput.ScheduledQuery)
 return nil
 }
 }

Python

def describe_scheduled_query(self, scheduled_query_arn):
 print("\nDescribing Scheduled Query")
 try:
 response =
 self.query_client.describe_scheduled_query(ScheduledQueryArn=scheduled_query_arn)
 if 'ScheduledQuery' in response:
 response = response['ScheduledQuery']

Describe scheduled query 286

Amazon Timestream Developer Guide

 for key in response:
 print("{} :{}".format(key, response[key]))
 except self.query_client.exceptions.ResourceNotFoundException as err:
 print("Scheduled Query doesn't exist")
 raise err
 except Exception as err:
 print("Scheduled Query describe failed:", err)
 raise err

Node.js

The following snippet uses the Amazon SDK for JavaScript V2 style. It is based on the sample
application at Node.js sample Amazon Timestream for LiveAnalytics application on GitHub.

async function describeScheduledQuery(scheduledQueryArn) {
 console.log("Describing Scheduled Query");
 var params = {
 ScheduledQueryArn: scheduledQueryArn
 }
 try {
 const data = await queryClient.describeScheduledQuery(params).promise();
 console.log(data.ScheduledQuery);
 } catch (err) {
 console.log("Describe Scheduled Query failed: ", err);
 throw err;
 }
 }

.NET

private async Task DescribeScheduledQuery(string scheduledQueryArn)
 {
 try
 {
 Console.WriteLine("Describing Scheduled Query");
 DescribeScheduledQueryResponse response = await
 _amazonTimestreamQuery.DescribeScheduledQueryAsync(
 new DescribeScheduledQueryRequest()
 {
 ScheduledQueryArn = scheduledQueryArn
 });

 Console.WriteLine($"{JsonConvert.SerializeObject(response.ScheduledQuery)}");

Describe scheduled query 287

https://github.com/awslabs/amazon-timestream-tools/blob/mainline/sample_apps_reinvent2021/js/schedule-query-example.js

Amazon Timestream Developer Guide

 }
 catch (ResourceNotFoundException e)
 {
 Console.WriteLine($"Scheduled Query doesn't exist: {e}");
 throw;
 }
 catch (Exception e)
 {
 Console.WriteLine($"Describe Scheduled Query failed: {e}");
 throw;
 }
 }

Execute scheduled query

You can use the following code snippets to run a scheduled query.

Java

public void executeScheduledQueries(String scheduledQueryArn, Date invocationTime) {
 System.out.println("Executing Scheduled Query");
 try {
 ExecuteScheduledQueryResult executeScheduledQueryResult =
 queryClient.executeScheduledQuery(new ExecuteScheduledQueryRequest()
 .withScheduledQueryArn(scheduledQueryArn)
 .withInvocationTime(invocationTime)
);

 }
 catch (ResourceNotFoundException e) {
 System.out.println("Scheduled Query doesn't exist");
 throw e;
 }
 catch (Exception e) {
 System.out.println("Execution Scheduled Query failed: " + e);
 throw e;
 }
}

Execute scheduled query 288

Amazon Timestream Developer Guide

Java v2

public void executeScheduledQuery(String scheduledQueryArn) {
 System.out.println("Executing Scheduled Query");
 try {
 ExecuteScheduledQueryResponse executeScheduledQueryResult =
 queryClient.executeScheduledQuery(ExecuteScheduledQueryRequest.builder()
 .scheduledQueryArn(scheduledQueryArn)
 .invocationTime(Instant.now())
 .build()
);

 System.out.println("Execute ScheduledQuery response code: " +
 executeScheduledQueryResult.sdkHttpResponse().statusCode());

 }
 catch (ResourceNotFoundException e) {
 System.out.println("Scheduled Query doesn't exist");
 throw e;
 }
 catch (Exception e) {
 System.out.println("Execution Scheduled Query failed: " + e);
 throw e;
 }
}

Go

func (timestreamBuilder TimestreamBuilder) ExecuteScheduledQuery(scheduledQueryArn
 string, invocationTime time.Time) error {

 executeScheduledQueryInput := ×treamquery.ExecuteScheduledQueryInput{
 ScheduledQueryArn: aws.String(scheduledQueryArn),
 InvocationTime: aws.Time(invocationTime),
 }
 executeScheduledQueryOutput, err :=
 timestreamBuilder.QuerySvc.ExecuteScheduledQuery(executeScheduledQueryInput)

 if err != nil {
 if aerr, ok := err.(awserr.Error); ok {
 switch aerr.Code() {
 case timestreamquery.ErrCodeResourceNotFoundException:

Execute scheduled query 289

Amazon Timestream Developer Guide

 fmt.Println(timestreamquery.ErrCodeResourceNotFoundException,
 aerr.Error())
 default:
 fmt.Printf("Error: %s", aerr.Error())
 }
 } else {
 fmt.Printf("Error: %s", err.Error())
 }
 return err
 } else {
 fmt.Println("ExecuteScheduledQuery is successful, below is the output:")
 fmt.Println(executeScheduledQueryOutput.GoString())
 return nil
 }
 }

Python

def execute_scheduled_query(self, scheduled_query_arn, invocation_time):
 print("\nExecuting Scheduled Query")
 try:

 self.query_client.execute_scheduled_query(ScheduledQueryArn=scheduled_query_arn,
 InvocationTime=invocation_time)
 print("Successfully started executing scheduled query")
 except self.query_client.exceptions.ResourceNotFoundException as err:
 print("Scheduled Query doesn't exist")
 raise err
 except Exception as err:
 print("Scheduled Query execution failed:", err)
 raise err

Node.js

The following snippet uses the Amazon SDK for JavaScript V2 style. It is based on the sample
application at Node.js sample Amazon Timestream for LiveAnalytics application on GitHub.

async function executeScheduledQuery(scheduledQueryArn, invocationTime) {
 console.log("Executing Scheduled Query");
 var params = {
 ScheduledQueryArn: scheduledQueryArn,
 InvocationTime: invocationTime
 }

Execute scheduled query 290

https://github.com/awslabs/amazon-timestream-tools/blob/mainline/sample_apps_reinvent2021/js/schedule-query-example.js

Amazon Timestream Developer Guide

 try {
 await queryClient.executeScheduledQuery(params).promise();
 } catch (err) {
 console.log("Execute Scheduled Query failed: ", err);
 throw err;
 }
 }

.NET

private async Task ExecuteScheduledQuery(string scheduledQueryArn, DateTime
 invocationTime)
 {
 try
 {
 Console.WriteLine("Running Scheduled Query");
 await _amazonTimestreamQuery.ExecuteScheduledQueryAsync(new
 ExecuteScheduledQueryRequest()
 {
 ScheduledQueryArn = scheduledQueryArn,
 InvocationTime = invocationTime
 });
 Console.WriteLine("Successfully started manual run of scheduled query");
 }
 catch (ResourceNotFoundException e)
 {
 Console.WriteLine($"Scheduled Query doesn't exist: {e}");
 throw;
 }
 catch (Exception e)
 {
 Console.WriteLine($"Execute Scheduled Query failed: {e}");
 throw;
 }
 }

Update scheduled query

You can use the following code snippets to update a scheduled query.

Update scheduled query 291

Amazon Timestream Developer Guide

Java

public void updateScheduledQueries(String scheduledQueryArn) {
 System.out.println("Updating Scheduled Query");
 try {
 queryClient.updateScheduledQuery(new UpdateScheduledQueryRequest()
 .withScheduledQueryArn(scheduledQueryArn)
 .withState(ScheduledQueryState.DISABLED));
 System.out.println("Successfully update scheduled query state");
 }
 catch (ResourceNotFoundException e) {
 System.out.println("Scheduled Query doesn't exist");
 throw e;
 }
 catch (Exception e) {
 System.out.println("Execution Scheduled Query failed: " + e);
 throw e;
 }
}

Java v2

public void updateScheduledQuery(String scheduledQueryArn, ScheduledQueryState
 state) {
 System.out.println("Updating Scheduled Query");
 try {
 queryClient.updateScheduledQuery(UpdateScheduledQueryRequest.builder()
 .scheduledQueryArn(scheduledQueryArn)
 .state(state)
 .build());
 System.out.println("Successfully update scheduled query state");
 }
 catch (ResourceNotFoundException e) {
 System.out.println("Scheduled Query doesn't exist");
 throw e;
 }
 catch (Exception e) {
 System.out.println("Execution Scheduled Query failed: " + e);
 throw e;
 }
}

Update scheduled query 292

Amazon Timestream Developer Guide

Go

func (timestreamBuilder TimestreamBuilder) UpdateScheduledQuery(scheduledQueryArn
 string) error {

 updateScheduledQueryInput := ×treamquery.UpdateScheduledQueryInput{
 ScheduledQueryArn: aws.String(scheduledQueryArn),
 State: aws.String(timestreamquery.ScheduledQueryStateDisabled),
 }
 _, err :=
 timestreamBuilder.QuerySvc.UpdateScheduledQuery(updateScheduledQueryInput)

 if err != nil {
 if aerr, ok := err.(awserr.Error); ok {
 switch aerr.Code() {
 case timestreamquery.ErrCodeResourceNotFoundException:
 fmt.Println(timestreamquery.ErrCodeResourceNotFoundException,
 aerr.Error())
 default:
 fmt.Printf("Error: %s", aerr.Error())
 }
 } else {
 fmt.Printf("Error: %s", err.Error())
 }
 return err
 } else {
 fmt.Println("UpdateScheduledQuery is successful")
 return nil
 }
 }

Python

def update_scheduled_query(self, scheduled_query_arn, state):
 print("\nUpdating Scheduled Query")
 try:

 self.query_client.update_scheduled_query(ScheduledQueryArn=scheduled_query_arn,
 State=state)
 print("Successfully update scheduled query state to", state)
 except self.query_client.exceptions.ResourceNotFoundException as err:
 print("Scheduled Query doesn't exist")
 raise err

Update scheduled query 293

Amazon Timestream Developer Guide

 except Exception as err:
 print("Scheduled Query deletion failed:", err)
 raise err

Node.js

The following snippet uses the Amazon SDK for JavaScript V2 style. It is based on the sample
application at Node.js sample Amazon Timestream for LiveAnalytics application on GitHub.

async function updateScheduledQueries(scheduledQueryArn) {
 console.log("Updating Scheduled Query");
 var params = {
 ScheduledQueryArn: scheduledQueryArn,
 State: "DISABLED"
 }
 try {
 await queryClient.updateScheduledQuery(params).promise();
 console.log("Successfully update scheduled query state");
 } catch (err) {
 console.log("Update Scheduled Query failed: ", err);
 throw err;
 }
 }

.NET

private async Task UpdateScheduledQuery(string scheduledQueryArn,
 ScheduledQueryState state)
 {
 try
 {
 Console.WriteLine("Updating Scheduled Query");
 await _amazonTimestreamQuery.UpdateScheduledQueryAsync(new
 UpdateScheduledQueryRequest()
 {
 ScheduledQueryArn = scheduledQueryArn,
 State = state
 });
 Console.WriteLine("Successfully update scheduled query state");
 }
 catch (ResourceNotFoundException e)
 {
 Console.WriteLine($"Scheduled Query doesn't exist: {e}");

Update scheduled query 294

https://github.com/awslabs/amazon-timestream-tools/blob/mainline/sample_apps_reinvent2021/js/schedule-query-example.js

Amazon Timestream Developer Guide

 throw;
 }
 catch (Exception e)
 {
 Console.WriteLine($"Update Scheduled Query failed: {e}");
 throw;
 }
 }

Delete scheduled query

You can use the following code snippets to delete a scheduled query.

Java

public void deleteScheduledQuery(String scheduledQueryArn) {
 System.out.println("Deleting Scheduled Query");

 try {
 queryClient.deleteScheduledQuery(new
 DeleteScheduledQueryRequest().withScheduledQueryArn(scheduledQueryArn));
 System.out.println("Successfully deleted scheduled query");
 }
 catch (Exception e) {
 System.out.println("Scheduled Query deletion failed: " + e);
 }
}

Java v2

public void deleteScheduledQuery(String scheduledQueryArn) {
 System.out.println("Deleting Scheduled Query");

 try {
 queryClient.deleteScheduledQuery(DeleteScheduledQueryRequest.builder()
 .scheduledQueryArn(scheduledQueryArn).build());
 System.out.println("Successfully deleted scheduled query");
 }
 catch (Exception e) {
 System.out.println("Scheduled Query deletion failed: " + e);
 }

Delete scheduled query 295

Amazon Timestream Developer Guide

}

Go

func (timestreamBuilder TimestreamBuilder) DeleteScheduledQuery(scheduledQueryArn
 string) error {

 deleteScheduledQueryInput := ×treamquery.DeleteScheduledQueryInput{
 ScheduledQueryArn: aws.String(scheduledQueryArn),
 }
 _, err :=
 timestreamBuilder.QuerySvc.DeleteScheduledQuery(deleteScheduledQueryInput)

 if err != nil {
 fmt.Println("Error:")
 if aerr, ok := err.(awserr.Error); ok {
 switch aerr.Code() {
 case timestreamquery.ErrCodeResourceNotFoundException:
 fmt.Println(timestreamquery.ErrCodeResourceNotFoundException,
 aerr.Error())
 default:
 fmt.Printf("Error: %s", aerr.Error())
 }
 } else {
 fmt.Printf("Error: %s", err.Error())
 }
 return err
 } else {
 fmt.Println("DeleteScheduledQuery is successful")
 return nil
 }
 }

Python

def delete_scheduled_query(self, scheduled_query_arn):
 print("\nDeleting Scheduled Query")
 try:

 self.query_client.delete_scheduled_query(ScheduledQueryArn=scheduled_query_arn)
 print("Successfully deleted scheduled query :", scheduled_query_arn)
 except Exception as err:
 print("Scheduled Query deletion failed:", err)

Delete scheduled query 296

Amazon Timestream Developer Guide

 raise err

Node.js

The following snippet uses the Amazon SDK for JavaScript V2 style. It is based on the sample
application at Node.js sample Amazon Timestream for LiveAnalytics application on GitHub.

async function deleteScheduleQuery(scheduledQueryArn) {
 console.log("Deleting Scheduled Query");
 const params = {
 ScheduledQueryArn: scheduledQueryArn
 }
 try {
 await queryClient.deleteScheduledQuery(params).promise();
 console.log("Successfully deleted scheduled query");
 } catch (err) {
 console.log("Scheduled Query deletion failed: ", err);
 }
 }

.NET

private async Task DeleteScheduledQuery(string scheduledQueryArn)
 {
 try
 {
 Console.WriteLine("Deleting Scheduled Query");
 await _amazonTimestreamQuery.DeleteScheduledQueryAsync(new
 DeleteScheduledQueryRequest()
 {
 ScheduledQueryArn = scheduledQueryArn
 });
 Console.WriteLine($"Successfully deleted scheduled query :
 {scheduledQueryArn}");
 }
 catch (Exception e)
 {
 Console.WriteLine($"Scheduled Query deletion failed: {e}");
 throw;
 }
 }

Delete scheduled query 297

https://github.com/awslabs/amazon-timestream-tools/blob/mainline/sample_apps_reinvent2021/js/schedule-query-example.js

Amazon Timestream Developer Guide

Using batch load in Timestream for LiveAnalytics

With batch load for Amazon Timestream for LiveAnalytics, you can ingest CSV files stored in
Amazon S3 into Timestream in batches. With this new functionality, you can have your data in
Timestream for LiveAnalytics without having to rely on other tools or write custom code. You can
use batch load for backfilling data with flexible wait times, such as data that isn't immediately
required for querying or analysis.

You can create batch load tasks by using the Amazon Web Services Management Console, the
Amazon CLI, and the Amazon SDKs. For more information, see Using batch load with the console,
Using batch load with the Amazon CLI, and Using batch load with the Amazon SDKs.

In addition to batch load, you can write multiple records at the same time with the WriteRecords
API operation. For guidance about which to use, see Choosing between the WriteRecords API
operation and batch load.

Topics

• Batch load concepts in Timestream

• Batch load prerequisites

• Batch load best practices

• Preparing a batch load data file

• Data model mappings for batch load

• Using batch load with the console

• Using batch load with the Amazon CLI

• Using batch load with the Amazon SDKs

• Using batch load error reports

Batch load concepts in Timestream

Review the following concepts to better understand batch load functionality.

Batch load task – The task that defines your source data and destination in Amazon Timestream.
You specify additional configuration such as the data model when you create the batch load task.
You can create batch load tasks through the Amazon Web Services Management Console, the
Amazon CLI, and the Amazon SDKs.

Using batch load 298

Amazon Timestream Developer Guide

Import destination – The destination database and table in Timestream. For information about
creating databases and tables, see Create a database and Create a table.

Data source – The source CSV file that is stored in an S3 bucket. For information about preparing
the data file, see Preparing a batch load data file. For information about S3 pricing, see Amazon S3
pricing.

Batch load error report – A report that stores information about the errors of a batch load task.
You define the S3 location for batch load error reports as part of a batch load task. For information
about information in the reports, see Using batch load error reports.

Data model mapping – A batch load mapping for time, dimensions, and measures that is from a
data source in an S3 location to a target Timestream for LiveAnalytics table. For more information,
see Data model mappings for batch load.

Batch load prerequisites

This is a list of prerequisites for using batch load. For best practices, see Batch load best practices.

• Batch load source data is stored in Amazon S3 in CSV format with headers.

• For each Amazon S3 source bucket, you must have the following permissions in an attached
policy:

"s3:GetObject",
"s3:GetBucketAcl"
"s3:ListBucket"

Similarly, for each Amazon S3 output bucket where reports are written, you must have the
following permissions in an attached policy:

"s3:PutObject",
"s3:GetBucketAcl"

For example:

{
 "Version": "2012-10-17",
 "Statement": [
 {

Prerequisites 299

https://www.amazonaws.cn/s3/pricing/
https://www.amazonaws.cn/s3/pricing/

Amazon Timestream Developer Guide

 "Action": [
 "s3:GetObject",
 "s3:GetBucketAcl",
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-source-bucket1”,
 "arn:aws:s3:::amzn-s3-demo-source-bucket2”
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "s3:PutObject",
 "s3:GetBucketAcl"
],
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-destination-bucket”
]
 "Effect": "Allow"
 }
]
}

• Timestream for LiveAnalytics parses the CSV by mapping information that's provided in the data
model to CSV headers. The data must have a column that represents the timestamp, at least one
dimension column, and at least one measure column.

• The S3 buckets used with batch load must be in the same region and from the same account as
the Timestream for LiveAnalytics table that is used in batch load.

• The timestamp column must be a long data type that represents the time since the Unix epoch.
For example, the timestamp 2021-03-25T08:45:21Z would be represented as 1616661921.
Timestream supports seconds, milliseconds, microseconds, and nanoseconds for the timestamp
precision. When using the query language, you can convert between formats with functions such
as to_unixtime. For more information, see Date / time functions.

• Timestream supports the string data type for dimension values. It supports long, double, string,
and boolean data types for measure columns.

For batch load limits and quotas, see Batch load.

Prerequisites 300

Amazon Timestream Developer Guide

Batch load best practices

Batch load works best (high throughput) when adhering to the following conditions and
recommendations:

1. CSV files submitted for ingestion are small, specifically with a file size of 100 MB–1 GB, to
improve parallelism and speed of ingestion.

2. Avoid simultaneously ingesting data into the same table (e.g. using the WriteRecords API
operation, or a scheduled query) when the batch load is in progress. This might lead to throttles,
and the batch load task will fail.

3. Do not add, modify, or remove files from the S3 bucket used in batch load while the batch load
task is running.

4. Do not delete or revoke permissions from tables or source, or report S3 buckets that have
scheduled or in-progress batch load tasks.

5. When ingesting data with a high cardinality set of dimension values, follow guidance at
Recommendations for partitioning multi-measure records.

6. Make sure you test the data for correctness by submitting a small file. You will be charged for
any data submitted to batch load regardless of correctness. For more information about pricing,
see Amazon Timestream pricing.

7. Do not resume a batch load task unless ActiveMagneticStorePartitions are below 250.
The job may be throttled and fail. Submiting multiple jobs at the same time for the same
database should reduce the number.

The following are console best practices:

1. Use the builder only for simpler data modeling that uses only one measure name for multi-
measure records.

2. For more complex data modeling, use JSON. For example, use JSON when you use multiple
measure names when using multi-measure records.

For additional Timestream for LiveAnalytics best practices, see Best practices.

Preparing a batch load data file

A source data file has delimiter-separated values. The more specific term, comma-separated
values (CSV) is used generically. Valid column separators include commas and pipes. Records are

Best practices 301

https://www.amazonaws.cn/timestream/pricing/

Amazon Timestream Developer Guide

separated by new lines. Files must be stored in Amazon S3. When you create a new batch load
task, the location of the source data is specified by an ARN for the file. A file contains headers. One
column represents the timestamp. At least one other column represents a measure.

The S3 buckets used with batch load must be in the same Region as the Timestream for
LiveAnalytics table that is used in batch load. Don't add or remove files from the S3 bucket used in
batch load after the batch load task has been submitted. For information about working with S3
buckets, see Getting started with Amazon S3.

Note

CSV files that are generated by some applications such as Excel might contain a byte order
mark (BOM) that conflicts with the expected encoding. Timestream for LiveAnalytics batch
load tasks that reference a CSV file with a BOM throw an error when they're processed
programmatically. To avoid this, you can remove the BOM, which is an invisible character.
For example, you can save the file from an application such as Notepad++ that lets you
specify a new encoding. You can also use a programmatic option that reads the first line,
removes the character from the line, and writes the new value over the first line in the file.
When saving from Excel, there are multiple CSV options. Saving with a different CSV option
might prevent the described issue. But you should check the result because a change in
encoding can affect some characters.

CSV format parameters

You use escape characters when you're representing a value that is otherwise reserved by the
format parameters. For example, if the quote character is a double quote, to represent a double
quote in the data, place the escape character before the double quote.

For information about when to specify these when creating a batch load task, see Create a batch
load task.

Parameter Options

Column separator (Comma (',') | Pipe ('|') | Semicolon (';') | Tab ('/
t') | Blank space (' '))

Escape character none

Preparing a batch load data file 302

https://docs.amazonaws.cn/AmazonS3/latest/userguide/GetStartedWithS3.html

Amazon Timestream Developer Guide

Parameter Options

Quote character Console: (Double quote (") | Single quote ('))

Null value Blank space (' ')

Trim white space Console: (No | Yes)

Data model mappings for batch load

The following discusses the schema for data model mappings and gives and example.

Data model mappings schema

The CreateBatchLoadTask request syntax and a BatchLoadTaskDescription object returned
by a call to DescribeBatchLoadTask include a DataModelConfiguration object that includes
the DataModel for batch loading. The DataModel defines mappings from source data that's
stored in CSV format in an S3 location to a target Timestream for LiveAnalytics database and table.

The TimeColumn field indicates the source data's location for the value to be mapped to the
destination table's time column in Timestream for LiveAnalytics. The TimeUnit specifies the
unit for the TimeColumn, and can be one of MILLISECONDS, SECONDS, MICROSECONDS, or
NANOSECONDS. There are also mappings for dimensions and measures. Dimension mappings are
composed of source columns and target fields.

For more information, see DimensionMapping. The mappings for measures have two options,
MixedMeasureMappings and MultiMeasureMappings.

To summarize, a DataModel contains mappings from a data source in an S3 location to a target
Timestream for LiveAnalytics table for the following.

• Time

• Dimensions

• Measures

If possible, we recommend that you map measure data to multi-measure records in Timestream
for LiveAnalytics. For information about the benefits of multi-measure records, see Multi-measure
records.

Data model mappings 303

https://docs.amazonaws.cn/timestream/latest/developerguide/API_DimensionMapping

Amazon Timestream Developer Guide

If multiple measures in the source data are stored in one row, you can map those
multiple measures to multi-measure records in Timestream for LiveAnalytics using
MultiMeasureMappings. If there are values that must map to a single-measure record, you can
use MixedMeasureMappings.

MixedMeasureMappings and MultiMeasureMappings both include
MultiMeasureAttributeMappings. Multi-measure records are supported regardless of whether
single-measure records are needed.

If only multi-measure target records are needed in Timestream for LiveAnalytics, you can define
measure mappings in the following structure.

CreateBatchLoadTask
 MeasureNameColumn
 MultiMeasureMappings
 TargetMultiMeasureName
 MultiMeasureAttributeMappings array

Note

We recommend using MultiMeasureMappings whenever possible.

If single-measure target records are needed in Timestream for LiveAnalytics, you can define
measure mappings in the following structure.

CreateBatchLoadTask
 MeasureNameColumn
 MixedMeasureMappings array
 MixedMeasureMapping
 MeasureName
 MeasureValueType
 SourceColumn
 TargetMeasureName
 MultiMeasureAttributeMappings array

When you use MultiMeasureMappings, the MultiMeasureAttributeMappings array is
always required. When you use the MixedMeasureMappings array, if the MeasureValueType is
MULTI for a given MixedMeasureMapping, MultiMeasureAttributeMappings is required for

Data model mappings 304

Amazon Timestream Developer Guide

that MixedMeasureMapping. Otherwise, MeasureValueType indicates the measure type for the
single-measure record.

Either way, there is an array of MultiMeasureAttributeMapping available. You define the
mappings to multi-measure records in each MultiMeasureAttributeMapping as follows:

SourceColumn

The column in the source data that is located in Amazon S3.

TargetMultiMeasureAttributeName

The name of the target multi-measure name in the destination table. This input is required
when MeasureNameColumn is not provided. If MeasureNameColumn is provided, the value
from that column is used as the multi-measure name.

MeasureValueType

One of DOUBLE, BIGINT BOOLEAN, VARCHAR, or TIMESTAMP.

Data model mappings with MultiMeasureMappings example

This example demonstrates mapping to multi-measure records, the preferred approach, which
store each measure value in a dedicated column. You can download a sample CSV at sample
CSV. The sample has the following headings to map to a target column in a Timestream for
LiveAnalytics table.

• time

• measure_name

• region

• location

• hostname

• memory_utilization

• cpu_utilization

Identify the time and measure_name columns in the CSV file. In this case these map directly to
the Timestream for LiveAnalytics table columns of the same names.

Data model mappings 305

samples/batch-load-sample-file.csv.zip
samples/batch-load-sample-file.csv.zip

Amazon Timestream Developer Guide

• time maps to time

• measure_name maps to measure_name (or your chosen value)

When using the API, you specify time in the TimeColumn field and a supported time unit value
such as MILLISECONDS in the TimeUnit field. These correspond to Source columnn name and
Timestamp time input in the console. You can group or partition records using measure_name
which is defined with the MeasureNameColumn key.

In the sample, region, location, and hostname are dimensions. Dimensions are mapped in an
array of DimensionMapping objects.

For measures, the value TargetMultiMeasureAttributeName will become a column in the
Timestream for LiveAnalytics table. You can keep the same name such as in this example. Or you
can specify a new one. MeasureValueType is one of DOUBLE, BIGINT, BOOLEAN, VARCHAR, or
TIMESTAMP.

{
 "TimeColumn": "time",
 "TimeUnit": "MILLISECONDS",
 "DimensionMappings": [
 {
 "SourceColumn": "region",
 "DestinationColumn": "region"
 },
 {
 "SourceColumn": "location",
 "DestinationColumn": "location"
 },
 {
 "SourceColumn": "hostname",
 "DestinationColumn": "hostname"
 }
],
 "MeasureNameColumn": "measure_name",
 "MultiMeasureMappings": {
 "MultiMeasureAttributeMappings": [
 {
 "SourceColumn": "memory_utilization",
 "TargetMultiMeasureAttributeName": "memory_utilization",
 "MeasureValueType": "DOUBLE"
 },

Data model mappings 306

Amazon Timestream Developer Guide

 {
 "SourceColumn": "cpu_utilization",
 "TargetMultiMeasureAttributeName": "cpu_utilization",
 "MeasureValueType": "DOUBLE"
 }
]
 }
}

Data model mappings with MixedMeasureMappings example

We recommend that you only use this approach when you need to map to single-measure records
in Timestream for LiveAnalytics.

Using batch load with the console

Following are steps for using batch load with the Amazon Web Services Management Console. You
can download a sample CSV at sample CSV.

Topics

• Access batch load

• Create a batch load task

• Resume a batch load task

• Using the visual builder

Using batch load with the console 307

samples/batch-load-sample-file.csv.zip

Amazon Timestream Developer Guide

Access batch load

Follow these steps to access batch load using the Amazon Web Services Management Console.

1. Open the Amazon Timestream console.

2. In the navigation pane, choose Management Tools, and then choose Batch load tasks.

3. From here, you can view the list of batch load tasks and drill into a given task for more details.
You can also create and resume tasks.

Create a batch load task

Follow these steps to create a batch load task using the Amazon Web Services Management
Console.

1. Open the Amazon Timestream console.

2. In the navigation pane, choose Management Tools, and then choose Batch load tasks.

3. Choose Create batch load task.

4. In Import destination, choose the following.

• Target database – Select the name of the database created in Create a database.

• Target table – Select the name of the table created in Create a table.

If necessary, you can add a table from this panel with the Create new table button.

5. From Data source S3 location in Data source, select the S3 bucket where the source data is
stored. Use the Browse S3 button to view S3 resources the active Amazon account has access
to, or enter the S3 location URL. The data source must be located in the same region.

6. In File format settings (expandable section), you can use the default settings to parse
input data. You can also choose Advanced settings. From there you can choose CSV format
parameters, and select parameters to parse input data. For information about these
parameters, see CSV format parameters.

7. From Configure data model mapping, configure the data model. For additional data model
guidance, see Data model mappings for batch load

• From Data model mapping, choose Mapping configuration input, and choose one of the
following.

Using batch load with the console 308

https://console.aws.amazon.com/timestream
https://console.aws.amazon.com/timestream

Amazon Timestream Developer Guide

• Visual builder – To map data visually, choose TargetMultiMeasureName or
MeasureNameColumn. Then from Visual builder, map the columns.

Visual builder automatically detects and loads the source column headers from the data
source file when a single CSV file is selected as the data source. Choose the attribute and
data type to create your mapping.

For information about using the visual builder, see Using the visual builder.

• JSON editor – A freeform JSON editor for configuring your data model. Choose this
option if you're familiar with Timestream for LiveAnalytics and want to build advanced
data model mappings.

• JSON file from S3 – Select a JSON model file you have stored in S3. Choose this option if
you've already configured a data model and want to reuse it for additional batch loads.

8. From Error logs S3 location in Error log report, select the S3 location that will be used to
report errors. For information about how to use this report, see Using batch load error reports.

9. For Encryption key type, choose one of the following.

• Amazon S3-managed key (SSE-S3) – An encryption key that Amazon S3 creates, manages,
and uses for you.

• Amazon KMS key (SSE-KMS) – An encryption key protected by Amazon Key Management
Service (Amazon KMS).

10. Choose Next.

11. On the Review and create page, review the settings and edit as necessary.

Note

You can't change batch load task settings after the task has been created. Task
completion times will vary based on the amount of data being imported.

12. Choose Create batch load task.

Resume a batch load task

When you select a batch load task with a status of "Progress stopped" which is still resumable, you
are prompted to resume the task. There is also a banner with a Resume task button when you view

Using batch load with the console 309

Amazon Timestream Developer Guide

the details for those tasks. Resumable tasks have a "resume by" date. After that date expires, tasks
cannot be resumed.

Using the visual builder

You can use the visual builder to map source data columns one or more CSV file(s) stored in an S3
bucket to destination columns in a Timestream for LiveAnalytics table.

Note

Your role will need the SelectObjectContent permission for the file. Without this, you
will need to add and delete columns manually.

Auto load source columns mode

Timestream for LiveAnalytics can automatically scan the source CSV file for column names if you
specify one bucket only. When there are no existing mappings, you can choose Import source
columns.

1. With the Visual builder option selected from the Mapping configuration input settings, set
the Timestamp time input. Milliseconds is the default setting.

2. Click the Load source columns button to import the column headers found in the source data
file. The table will be populated with the source column header names from the data source
file.

3. Choose the Target table column name, Timestream attribute type, and Data type for each
source column.

For details about these columns and possible values, see Mapping fields.

4. Use the drag-to-fill feature to set the value for multiple columns at once.

Manually add source columns

If you're using a bucket or CSV prefix and not a single CSV, you can add and delete column
mappings from the visual editor with the Add column mapping and Delete column mapping
buttons. There is also a button to reset mappings.

Using batch load with the console 310

Amazon Timestream Developer Guide

Mapping fields

• Source column name – The name of a column in the source file that represents a measure to
import. Timestream for LiveAnalytics can populate this value automatically when you use Import
source columns.

• Target table column name – Optional input that indicates the column name for the measure in
the target table.

• Timestream attribute type – The attribute type of the data in the specified source column such
as DIMENSION.

• TIMESTAMP – Specifies when a measure was collected.

• MULTI – Multiple measures are represented.

• DIMENSION – Time series metadata.

• MEASURE_NAME – For single-measure records, this is the measure name.

• Data type – The type of Timestream column, such as BOOLEAN.

• BIGINT – A 64-bit integer.

• BOOLEAN – The two truth values of logic—true and false.

• DOUBLE – 64-bit variable-precision number.

• TIMESTAMP – An instance in time that uses nanosecond precision time in UTC, and tracks the
time since the Unix epoch.

Using batch load with the Amazon CLI

Setup

To start using batch load, go through the following steps.

1. Install the Amazon CLI using the instructions at Accessing Amazon Timestream for
LiveAnalytics using the Amazon CLI.

2. Run the following command to verify that the Timestream CLI commands have been updated.
Verify that create-batch-load-task is in the list.

aws timestream-write help

3. Prepare a data source using the instructions at Preparing a batch load data file.

4. Create a database and table using the instructions at Accessing Amazon Timestream for
LiveAnalytics using the Amazon CLI.

Using batch load with the CLI 311

Amazon Timestream Developer Guide

5. Create an S3 bucket for report output. The bucket must be in the same Region. For more
information about buckets, see Creating, configuring, and working with Amazon S3 buckets.

6. Create a batch load task. For steps, see Create a batch load task.

7. Confirm the status of the task. For steps, see Describe batch load task.

Create a batch load task

You can create a batch load task with the create-batch-load-task command. When you
create a batch load task using the CLI, you can use a JSON parameter, cli-input-json, which
lets you aggregate the parameters into a single JSON fragment. You can also break those details
apart using several other parameters including data-model-configuration, data-source-
configuration, report-configuration, target-database-name, and target-table-
name.

For an example, see Create batch load task example

Describe batch load task

You can retrieve a batch load task description as follows.

aws timestream-write describe-batch-load-task --task-id <value>

Following is an example response.

{
 "BatchLoadTaskDescription": {
 "TaskId": "<TaskId>",
 "DataSourceConfiguration": {
 "DataSourceS3Configuration": {
 "BucketName": "test-batch-load-west-2",
 "ObjectKeyPrefix": "sample.csv"
 },
 "CsvConfiguration": {},
 "DataFormat": "CSV"
 },
 "ProgressReport": {
 "RecordsProcessed": 2,
 "RecordsIngested": 0,
 "FileParseFailures": 0,
 "RecordIngestionFailures": 2,

Using batch load with the CLI 312

https://docs.amazonaws.cn/AmazonS3/latest/userguide/creating-buckets-s3.html

Amazon Timestream Developer Guide

 "FileFailures": 0,
 "BytesIngested": 119
 },
 "ReportConfiguration": {
 "ReportS3Configuration": {
 "BucketName": "test-batch-load-west-2",
 "ObjectKeyPrefix": "<ObjectKeyPrefix>",
 "EncryptionOption": "SSE_S3"
 }
 },
 "DataModelConfiguration": {
 "DataModel": {
 "TimeColumn": "timestamp",
 "TimeUnit": "SECONDS",
 "DimensionMappings": [
 {
 "SourceColumn": "vehicle",
 "DestinationColumn": "vehicle"
 },
 {
 "SourceColumn": "registration",
 "DestinationColumn": "license"
 }
],
 "MultiMeasureMappings": {
 "TargetMultiMeasureName": "test",
 "MultiMeasureAttributeMappings": [
 {
 "SourceColumn": "wgt",
 "TargetMultiMeasureAttributeName": "weight",
 "MeasureValueType": "DOUBLE"
 },
 {
 "SourceColumn": "spd",
 "TargetMultiMeasureAttributeName": "speed",
 "MeasureValueType": "DOUBLE"
 },
 {
 "SourceColumn": "fuel",
 "TargetMultiMeasureAttributeName": "fuel",
 "MeasureValueType": "DOUBLE"
 },
 {
 "SourceColumn": "miles",

Using batch load with the CLI 313

Amazon Timestream Developer Guide

 "TargetMultiMeasureAttributeName": "miles",
 "MeasureValueType": "DOUBLE"
 }
]
 }
 }
 },
 "TargetDatabaseName": "BatchLoadExampleDatabase",
 "TargetTableName": "BatchLoadExampleTable",
 "TaskStatus": "FAILED",
 "RecordVersion": 1,
 "CreationTime": 1677167593.266,
 "LastUpdatedTime": 1677167602.38
 }
}

List batch load tasks

You can list batch load tasks as follows.

aws timestream-write list-batch-load-tasks

An output appears as follows.

{
 "BatchLoadTasks": [
 {
 "TaskId": "<TaskId>",
 "TaskStatus": "FAILED",
 "DatabaseName": "BatchLoadExampleDatabase",
 "TableName": "BatchLoadExampleTable",
 "CreationTime": 1677167593.266,
 "LastUpdatedTime": 1677167602.38
 }
]
}

Resume batch load task

You can resume a batch load task as follows.

aws timestream-write resume-batch-load-task --task-id <value>

Using batch load with the CLI 314

Amazon Timestream Developer Guide

A response can indicate success or contain error information.

Create batch load task example

Example

1. Create a Timestream for LiveAnalytics database named BatchLoad and a
table named BatchLoadTest. Verify and, if necessary, adjust the values for
MemoryStoreRetentionPeriodInHours and MagneticStoreRetentionPeriodInDays.

aws timestream-write create-database --database-name BatchLoad \

aws timestream-write create-table --database-name BatchLoad \
--table-name BatchLoadTest \
--retention-properties "{\"MemoryStoreRetentionPeriodInHours\": 12,
 \"MagneticStoreRetentionPeriodInDays\": 100}"

2. Using the console, create an S3 bucket and copy the sample.csv file to that location. You can
download a sample CSV at sample CSV.

3. Using the console create an S3 bucket for Timestream for LiveAnalytics to write a report if the
batch load task completes with errors.

4. Create a batch load task. Make sure to replace $INPUT_BUCKET and $REPORT_BUCKET with the
buckets that you created in the preceding steps.

aws timestream-write create-batch-load-task \
--data-model-configuration "{\
 \"DataModel\": {\
 \"TimeColumn\": \"timestamp\",\
 \"TimeUnit\": \"SECONDS\",\
 \"DimensionMappings\": [\
 {\
 \"SourceColumn\": \"vehicle\"\
 },\
 {\
 \"SourceColumn\": \"registration\",\
 \"DestinationColumn\": \"license\"\
 }\
],
 \"MultiMeasureMappings\": {\
 \"TargetMultiMeasureName\": \"mva_measure_name\",\
 \"MultiMeasureAttributeMappings\": [\

Using batch load with the CLI 315

samples/batch-load-sample-file.csv.zip

Amazon Timestream Developer Guide

 {\
 \"SourceColumn\": \"wgt\",\
 \"TargetMultiMeasureAttributeName\": \"weight\",\
 \"MeasureValueType\": \"DOUBLE\"\
 },\
 {\
 \"SourceColumn\": \"spd\",\
 \"TargetMultiMeasureAttributeName\": \"speed\",\
 \"MeasureValueType\": \"DOUBLE\"\
 },\
 {\
 \"SourceColumn\": \"fuel_consumption\",\
 \"TargetMultiMeasureAttributeName\": \"fuel\",\
 \"MeasureValueType\": \"DOUBLE\"\
 },\
 {\
 \"SourceColumn\": \"miles\",\
 \"MeasureValueType\": \"BIGINT\"\
 }\
]\
 }\
 }\
 }" \
--data-source-configuration "{
 \"DataSourceS3Configuration\": {\
 \"BucketName\": \"$INPUT_BUCKET\",\
 \"ObjectKeyPrefix\": \"$INPUT_OBJECT_KEY_PREFIX\"
 },\
 \"DataFormat\": \"CSV\"\
 }" \
--report-configuration "{\
 \"ReportS3Configuration\": {\
 \"BucketName\": \"$REPORT_BUCKET\",\
 \"EncryptionOption\": \"SSE_S3\"\
 }\
 }" \
--target-database-name BatchLoad \
--target-table-name BatchLoadTest

The preceding command returns the following output.

{
 "TaskId": "TaskId "

Using batch load with the CLI 316

Amazon Timestream Developer Guide

}

5. Check on the progress of the task. Make sure you replace $TASK_ID with the task id that was
returned in the preceding step.

aws timestream-write describe-batch-load-task --task-id $TASK_ID

Example output

{
 "BatchLoadTaskDescription": {
 "ProgressReport": {
 "BytesIngested": 1024,
 "RecordsIngested": 2,
 "FileFailures": 0,
 "RecordIngestionFailures": 0,
 "RecordsProcessed": 2,
 "FileParseFailures": 0
 },
 "DataModelConfiguration": {
 "DataModel": {
 "DimensionMappings": [
 {
 "SourceColumn": "vehicle",
 "DestinationColumn": "vehicle"
 },
 {
 "SourceColumn": "registration",
 "DestinationColumn": "license"
 }
],
 "TimeUnit": "SECONDS",
 "TimeColumn": "timestamp",
 "MultiMeasureMappings": {
 "MultiMeasureAttributeMappings": [
 {
 "TargetMultiMeasureAttributeName": "weight",
 "SourceColumn": "wgt",
 "MeasureValueType": "DOUBLE"
 },
 {
 "TargetMultiMeasureAttributeName": "speed",

Using batch load with the CLI 317

Amazon Timestream Developer Guide

 "SourceColumn": "spd",
 "MeasureValueType": "DOUBLE"
 },
 {
 "TargetMultiMeasureAttributeName": "fuel",
 "SourceColumn": "fuel_consumption",
 "MeasureValueType": "DOUBLE"
 },
 {
 "TargetMultiMeasureAttributeName": "miles",
 "SourceColumn": "miles",
 "MeasureValueType": "DOUBLE"
 }
],
 "TargetMultiMeasureName": "mva_measure_name"
 }
 }
 },
 "TargetDatabaseName": "BatchLoad",
 "CreationTime": 1672960381.735,
 "TaskStatus": "SUCCEEDED",
 "RecordVersion": 1,
 "TaskId": "TaskId ",
 "TargetTableName": "BatchLoadTest",
 "ReportConfiguration": {
 "ReportS3Configuration": {
 "EncryptionOption": "SSE_S3",
 "ObjectKeyPrefix": "ObjectKeyPrefix ",
 "BucketName": "amzn-s3-demo-bucket"
 }
 },
 "DataSourceConfiguration": {
 "DataSourceS3Configuration": {
 "ObjectKeyPrefix": "sample.csv",
 "BucketName": "amzn-s3-demo-source-bucket"
 },
 "DataFormat": "CSV",
 "CsvConfiguration": {}
 },
 "LastUpdatedTime": 1672960387.334
 }
}

Using batch load with the CLI 318

Amazon Timestream Developer Guide

Using batch load with the Amazon SDKs

For examples of how to create, describe, and list batch load tasks with the Amazon SDKs, see
Create batch load task, Describe batch load task, List batch load tasks, and Resume batch load task.

Using batch load error reports

Batch load tasks have one of the following status values:

• CREATED (Created) – Task is created.

• IN_PROGRESS (In progress) – Task is in progress.

• FAILED (Failed) – Task has completed. But one or more errors was detected.

• SUCCEEDED (Completed) – Task has completed with no errors.

• PROGRESS_STOPPED (Progress stopped) – Task has stopped but not completed. You can
attempt to resume the task.

• PENDING_RESUME (Pending resume) – The task is pending to resume.

When there are errors, an error log report is created in the S3 bucket defined for that. Errors are
categorized as taskErrors or fileErrors in separate arrays. Following is an example error report.

{
 "taskId": "9367BE28418C5EF902676482220B631C",
 "taskErrors": [],
 "fileErrors": [
 {
 "fileName": "example.csv",
 "errors": [
 {
 "reason": "The record timestamp is outside the time range of the
 data ingestion window.",
 "lineRanges": [
 [
 2,
 3
]
]
 }
]
 }

Using batch load with the SDKs 319

Amazon Timestream Developer Guide

]
}

Using scheduled queries in Timestream for LiveAnalytics

The scheduled query feature in Amazon Timestream for LiveAnalytics is a fully managed,
serverless, and scalable solution for calculating and storing aggregates, rollups, and other forms
of preprocessed data typically used for operational dashboards, business reports, ad-hoc analytics,
and other applications. Scheduled queries make real-time analytics more performant and cost-
effective, so you can derive additional insights from your data, and can continue to make better
business decisions.

With scheduled queries, you define the real-time analytics queries that compute aggregates,
rollups, and other operations on the data—and Amazon Timestream for LiveAnalytics periodically
and automatically runs these queries and reliably writes the query results into a separate table. The
data is typically calculated and updated into these tables within a few minutes.

You can then point your dashboards and reports to query the tables that contain aggregated data
instead of querying the considerably larger source tables. This leads to performance and cost gains
that can exceed orders of magnitude. This is because the tables with aggregated data contain much
less data than the source tables, so they offer faster queries and cheaper data storage.

Additionally, tables with scheduled queries offer all of the existing functionality of a Timestream
for LiveAnalytics table. For example, you can query the tables using SQL. You can visualize the data
stored in the tables using Grafana. You can also ingest data into the table using Amazon Kinesis,
Amazon MSK, Amazon IoT Core, and Telegraf. You can configure data retention policies on these
tables for automatic data lifecycle management.

Because the data retention of the tables that contain aggregated data is fully decoupled from that
of source tables, you can also choose to reduce the data retention of the source tables and keep
the aggregate data for a much longer duration, at a fraction of the data storage cost. Scheduled
queries make real-time analytics faster, cheaper, and therefore more accessible to many more
customers, so they can monitor their applications and drive better data-driven business decisions.

Topics

• Scheduled query benefits

• Scheduled query use cases

Using scheduled queries 320

Amazon Timestream Developer Guide

• Example: Using real-time analytics to detect fraudulent payments and make better business
decisions

• Scheduled query concepts

• Schedule expressions for scheduled queries

• Data model mappings for scheduled queries

• Scheduled query notification messages

• Scheduled query error reports

• Scheduled query patterns and examples

Scheduled query benefits

The following are the benefits of scheduled queries:

• Operational ease – Scheduled queries are serverless and fully managed.

• Performance and cost – Because scheduled queries precompute the aggregates, rollups, or
other real-time analytics operations for your data and store the results in a table, queries that
access tables populated by scheduled queries contain less data than the source tables. Therefore,
queries that are run on these tables are faster and cheaper. Tables populated by scheduled
computations contain less data than their source tables, and therefore help reduce the storage
cost. You can also retain this data for a longer duration in the memory store at a fraction of the
cost of retaining the source data in the memory store.

• Interoperability – Tables populated by scheduled queries offer all of the existing functionality of
Timestream for LiveAnalytics tables and can be used with all of the services and tools that work
with Timestream for LiveAnalytics. See Working with Other Services for details.

Scheduled query use cases

You can use scheduled queries for business reports that summarize the end-user activity from
your applications, so you can train machine learning models for personalization. You can also use
scheduled queries for alarms that detect anomalies, network intrusions, or fraudulent activity, so
you can take immediate remedial actions.

Additionally, you can use scheduled queries for more effective data governance. You can do
this by granting source table access exclusively to the scheduled queries, and providing your

Benefits 321

https://docs.amazonaws.cn/timestream/latest/developerguide/OtherServices.html

Amazon Timestream Developer Guide

developers access to only the tables populated by scheduled queries. This minimizes the impact of
unintentional, long-running queries.

Example: Using real-time analytics to detect fraudulent payments and
make better business decisions

Consider a payment system that processes transactions sent from multiple point-of-sale terminals
distributed across major metropolitan cities in the United States. You want to use Amazon
Timestream for LiveAnalytics to store and analyze the transaction data, so you can detect
fraudulent transactions and run real-time analytics queries. These queries can help you answer
business questions such as identifying the busiest and least used point-of-sale terminals per hour,
the busiest hour of the day for each city, and the city with most transactions per hour.

The system process ~100K transactions per minute. Each transaction stored in Amazon Timestream
for LiveAnalytics is 100 bytes. You've configured 10 queries that run every minute to detect various
kinds of fraudulent payments. You've also created 25 queries that aggregate and slice/dice your
data along various dimensions to help answer your business questions. Each of these queries
processes the last hour's data.

You've created a dashboard to display the data generated by these queries. The dashboard contains
25 widgets, it is refreshed every hour, and it is typically accessed by 10 users at any given time.
Finally, your memory store is configured with a 2-hour data retention period and the magnetic
store is configured to have a 6-month data retention period.

In this case, you can use real-time analytics queries that recompute the data every time the
dashboard is accessed and refreshed, or use derived tables for the dashboard. The query cost
for dashboards based on real-time analytics queries will be $120.70 per month. In contrast, the
cost of dashboarding queries powered by derived tables will be $12.27 per month (see Amazon
Timestream for LiveAnalytics pricing). In this case, using derived tables reduces the query cost by
~10 times.

Scheduled query concepts

Query string - This is the query whose result you are pre-computing and storing in another
Timestream for LiveAnalytics table. You can define a scheduled query using the full SQL surface
area of Timestream for LiveAnalytics, which provides you the flexibility of writing queries with
common table expressions, nested queries, window functions, or any kind of aggregate and scalar
functions that are supported by Timestream for LiveAnalytics query language.

Example 322

https://www.amazonaws.cn/timestream/pricing/
https://www.amazonaws.cn/timestream/pricing/
https://docs.amazonaws.cn/timestream/latest/developerguide/reference.html

Amazon Timestream Developer Guide

Schedule expression - Allows you to specify when your scheduled query instances are run. You
can specify the expressions using a cron expression (such as run at 8 AM UTC every day) or rate
expression (such as run every 10 minutes).

Target configuration - Allows you to specify how you map the result of a scheduled query into the
destination table where the results of this scheduled query will be stored.

Notification configuration -Timestream for LiveAnalytics automatically runs instances of a
scheduled query based on your schedule expression. You receive a notification for every such
query run on an SNS topic that you configure when you create a scheduled query. This notification
specifies whether the instance was successfully run or encountered any errors. In addition, it
provides information such as the bytes metered, data written to the target table, next invocation
time, and so on.

The following is an example of this kind of notification message.

{
 "type":"AUTO_TRIGGER_SUCCESS",
 "arn":"arn:aws:timestream:us-east-1:123456789012:scheduled-query/
 PT1mPerMinutePerRegionMeasureCount-9376096f7309",
 "nextInvocationEpochSecond":1637302500,
 "scheduledQueryRunSummary":
 {
 "invocationEpochSecond":1637302440,
 "triggerTimeMillis":1637302445697,
 "runStatus":"AUTO_TRIGGER_SUCCESS",
 "executionStats":
 {
 "executionTimeInMillis":21669,
 "dataWrites":36864,
 "bytesMetered":13547036820,
 "recordsIngested":1200,
 "queryResultRows":1200
 }
 }
}

In this notification message, bytesMetered is the bytes that the query scanned on the source
table, and dataWrites is the bytes written to the target table.

Concepts 323

Amazon Timestream Developer Guide

Note

If you are consuming these notifications programmatically, be aware that new fields could
be added to the notification message in the future.

Error report location - Scheduled queries asynchronously run and store data in the target table. If
an instance encounters any errors (for example, invalid data which could not be stored), the records
that encountered errors are written to an error report in the error report location you specify at
creation of a scheduled query. You specify the S3 bucket and prefix for the location. Timestream
for LiveAnalytics appends the scheduled query name and invocation time to this prefix to help you
identify the errors associated with a specific instance of a scheduled query.

Tagging - You can optionally specify tags that you can associate with a scheduled query. For more
details, see Tagging Timestream for LiveAnalytics Resources.

Example

In the following example, you compute a simple aggregate using a scheduled query:

SELECT region, bin(time, 1m) as minute,
 SUM(CASE WHEN measure_name = 'metrics' THEN 20 ELSE 5 END) as numDataPoints
FROM raw_data.devops
WHERE time BETWEEN @scheduled_runtime - 10m AND @scheduled_runtime + 1m
GROUP BY bin(time, 1m), region

@scheduled_runtime parameter - In this example, you will notice the query accepting a
special named parameter @scheduled_runtime. This is a special parameter (of type Timestamp)
that the service sets when invoking a specific instance of a scheduled query so that you can
deterministically control the time range for which a specific instance of a scheduled query analyzes
the data in the source table. You can use @scheduled_runtime in your query in any location
where a Timestamp type is expected.

Consider an example where you set a schedule expression: cron(0/5 * * * ? *) where the scheduled
query will run at minute 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 of every hour. For the instance
that is triggered at 2021-12-01 00:05:00, the @scheduled_runtime parameter is initialized to this
value, such that the instance at this time operates on data in the range 2021-11-30 23:55:00 to
2021-12-01 00:06:00.

Concepts 324

https://docs.amazonaws.cn/timestream/latest/developerguide/tagging-keyspaces.html

Amazon Timestream Developer Guide

Instances with overlapping time ranges - As you will see in this example, two subsequent
instances of a scheduled query can overlap in their time ranges. This is something you can control
based on your requirements, the time predicates you specify, and the schedule expression. In
this case, this overlap allows these computations to update the aggregates based on any data
whose arrival was slightly delayed, up to 10 minutes in this example. The query run triggered at
2021-12-01 00:00:00 will cover the time range 2021-11-30 23:50:00 to 2021-12-30 00:01:00
and the query run triggered at 2021-12-01 00:05:00 will cover the range 2021-11-30 23:55:00 to
2021-12-01 00:06:00.

To ensure correctness and to make sure that the aggregates stored in the target table match
the aggregates computed from the source table, Timestream for LiveAnalytics ensures that the
computation at 2021-12-01 00:05:00 will be performed only after the computation at 2021-12-01
00:00:00 has completed. The results of the latter computations can update any previously
materialized aggregate if a newer value is generated. Internally, Timestream for LiveAnalytics
uses record versions where records generated by latter instances of a scheduled query will be
assigned a higher version number. Therefore, the aggregates computed by the invocation at
2021-12-01 00:05:00 can update the aggregates computed by the invocation at 2021-12-01
00:00:00, assuming newer data is available on the source table.

Automatic triggers vs. manual triggers - After a scheduled query is created, Timestream for
LiveAnalytics will automatically run the instances based on the specified schedule. Such automated
triggers are managed entirely by the service.

However, there might be scenarios where you might want to manually initiate some instances
of a scheduled query. Examples include if a specific instance failed in a query run, if there was
late-arriving data or updates in the source table after the automated schedule run, or if you want
to update the target table for time ranges that are not covered by automated query runs (for
example, for time ranges before creation of a scheduled query).

You can use the ExecuteScheduledQuery API to manually initiate a specific instance of a
scheduled query by passing the InvocationTime parameter, which is a value used for the
@scheduled_runtime parameter. The following are a few important considerations when using the
ExecuteScheduledQuery API:

• If you are triggering multiple of these invocations, you need to make sure that these invocations
do not generate results in overlapping time ranges. If you cannot ensure non-overlapping time
ranges, then make sure that these query runs are initiated sequentially one after the other. If
you concurrently initiate multiple query runs that overlap in their time ranges, then you can see
trigger failures where you might see version conflicts in the error reports for these query runs.

Concepts 325

Amazon Timestream Developer Guide

• You can initiate the invocations with any timestamp value for @scheduled_runtime. So it is your
responsibility to appropriately set the values so the appropriate time ranges are updated in the
target table corresponding to the ranges where data was updated in the source table.

• The ExecuteScheduledQuery API operates asynchronously. Upon a successful call, the service
sends a 200 response and proceeds to execute the query. However, if there are multiple
scheduled query executions concurrently running, anticipate potential delays in executing
manually triggered scheduled executions.

Schedule expressions for scheduled queries

You can create scheduled queries on an automated schedule by using Amazon Timestream for
LiveAnalytics scheduled queries that use cron or rate expressions. All scheduled queries use the
UTC time zone, and the minimum possible precision for schedules is 1 minute.

Two ways to specify the schedule expressions are cron and rate. Cron expressions offer more fine
grained schedule control, while rate expressions are simpler to express but lack the fine-grained
control.

For example, with a cron expression, you can define a scheduled query that gets triggered at a
specified time on a certain day of each week or month, or a specified minute every hour only on
Monday - Friday, and so on. In contrast, rate expressions initiate a scheduled query at a regular
rate, such as once every minute, hour, or day, starting from the exact time when the scheduled
query is created.

Cron expression

• Syntax

cron(fields)

Cron expressions have six required fields, which are separated by white space.

Field Values Wildcards

Minutes 0-59 , - * /

Hours 0-23 , - * /

Schedule expressions 326

Amazon Timestream Developer Guide

Field Values Wildcards

Day-of-month 1-31 , - * ? / L W

Month 1-12 or JAN-DEC , - * /

Day-of-week 1-7 or SUN-SAT , - * ? L #

Year 1970-2199 , - * /

Wildcard characters

• The *,* (comma) wildcard includes additional values. In the Month field, JAN,FEB,MAR would
include January, February, and March.

• The *-* (dash) wildcard specifies ranges. In the Day field, 1-15 would include days 1 through 15
of the specified month.

• The *** (asterisk) wildcard includes all values in the field. In the Hours field, *** would include
every hour. You cannot use *** in both the Day-of-month and Day-of-week fields. If you use it
in one, you must use *?* in the other.

• The */* (forward slash) wildcard specifies increments. In the Minutes field, you could enter
1/10 to specify every 10th minute, starting from the first minute of the hour (for example, the
11th, 21st, and 31st minute, and so on).

• The *?* (question mark) wildcard specifies one or another. In the Day-of-month field you could
enter *7* and if you didn't care what day of the week the 7th was, you could enter *?* in the
Day-of-week field.

• The *L* wildcard in the Day-of-month or Day-of-week fields specifies the last day of the month
or week.

• The W wildcard in the Day-of-month field specifies a weekday. In the Day-of-month field, 3W
specifies the weekday closest to the third day of the month.

• The *#* wildcard in the Day-of-week field specifies a certain instance of the specified day of
the week within a month. For example, 3#2 would be the second Tuesday of the month: the 3
refers to Tuesday because it is the third day of each week, and the 2 refers to the second day of
that type within the month.

Schedule expressions 327

Amazon Timestream Developer Guide

Note

If you use a '#' character, you can define only one expression in the day-of-week field. For
example, "3#1,6#3" is not valid because it is interpreted as two expressions.

Limitations

• You can't specify the Day-of-month and Day-of-week fields in the same cron expression. If you
specify a value (or a *) in one of the fields, you must use a *?* (question mark) in the other.

• Cron expressions that lead to rates faster than 1 minute are not supported.

Examples

Minutes Hours Day of
month

Month Day of
week

Year Meaning

0 10 * * ? * Run at
10:00
am (UTC)
every day.

15 12 * * ? * Run at
12:15
pm (UTC)
every day.

0 18 ? * MON-FRI * Run at
6:00 pm
(UTC)
every
Monday
through
Friday.

Schedule expressions 328

Amazon Timestream Developer Guide

Minutes Hours Day of
month

Month Day of
week

Year Meaning

0 8 1 * ? * Run at
8:00 am
(UTC)
every first
day of the
month.

0/15 * * * ? * Run
every 15
minutes.

0/10 * * * MON-FRI * Run
every 10
minutes
Monday
through
Friday.

0/5 8-17 ? * MON-FRI * Run every
5 minutes
Monday
through
Friday
between
8:00 am
and 5:55
pm (UTC).

Rate expressions

• A rate expression starts when you create the scheduled event rule, and then runs on its defined
schedule. Rate expressions have two required fields. Fields are separated by white space.

Syntax

Schedule expressions 329

Amazon Timestream Developer Guide

rate(value unit)

• value: A positive number.

• unit: The unit of time. Different units are required for values of 1 (for example, minute) and
values over 1 (for example, minutes). Valid values: minute | minutes | hour | hours | day | days

Data model mappings for scheduled queries

Timestream for LiveAnalytics supports flexible modeling of data in its tables and this same
flexibility applies to results of scheduled queries that are materialized into another Timestream for
LiveAnalytics table. With scheduled queries, you can query any table, whether it has data in multi-
measure records or single-measure records and write the query results using either multi-measure
or single-measure records.

You use the TargetConfiguration in the specification of a scheduled query to map the query results
to the appropriate columns in the destination derived table. The following sections describe the
different ways of specifying this TargetConfiguration to achieve different data models in the
derived table. Specifically, you will see:

• How to write to multi-measure records when the query result does not have a measure name and
you specify the target measure name in the TargetConfiguration.

• How you use measure name in the query result to write multi-measure records.

• How you can define a model to write multiple records with different multi-measure attributes.

• How you can define a model to write to single-measure records in the derived table.

• How you can query single-measure records and/or multi-measure records in a scheduled query
and have the results materialized to either a single-measure record or a multi-measure record,
which allows you to choose the flexibility of data models.

Example: Target measure name for multi-measure records

In this example, you will see that the query is reading data from a table with multi-
measure data and is writing the results into another table using multi-measure records. The
scheduled query result does not have a natural measure name column. Here, you specify
the measure name in the derived table using the TargetMultiMeasureName property in the
TargetConfiguration.TimestreamConfiguration.

Data model mappings 330

Amazon Timestream Developer Guide

{
 "Name" : "CustomMultiMeasureName",
 "QueryString" : "SELECT region, bin(time, 1h) as hour, AVG(memory_cached)
 as avg_mem_cached_1h, MIN(memory_free) as min_mem_free_1h, MAX(memory_used) as
 max_mem_used_1h, SUM(disk_io_writes) as sum_1h, AVG(disk_used) as avg_disk_used_1h,
 AVG(disk_free) as avg_disk_free_1h, MAX(cpu_user) as max_cpu_user_1h, MIN(cpu_idle) as
 min_cpu_idle_1h, MAX(cpu_system) as max_cpu_system_1h FROM raw_data.devops_multi WHERE
 time BETWEEN bin(@scheduled_runtime, 1h) - 14h AND bin(@scheduled_runtime, 1h) - 2h
 AND measure_name = 'metrics' GROUP BY region, bin(time, 1h)",
 "ScheduleConfiguration" : {
 "ScheduleExpression" : "cron(0 0/1 * * ? *)"
 },
 "NotificationConfiguration" : {
 "SnsConfiguration" : {
 "TopicArn" : "******"
 }
 },
 "ScheduledQueryExecutionRoleArn": "******",
 "TargetConfiguration": {
 "TimestreamConfiguration": {
 "DatabaseName" : "derived",
 "TableName" : "dashboard_metrics_1h_agg_1",
 "TimeColumn" : "hour",
 "DimensionMappings" : [
 {
 "Name": "region",
 "DimensionValueType" : "VARCHAR"
 }
],
 "MultiMeasureMappings" : {
 "TargetMultiMeasureName": "dashboard-metrics",
 "MultiMeasureAttributeMappings" : [
 {
 "SourceColumn" : "avg_mem_cached_1h",
 "MeasureValueType" : "DOUBLE",
 "TargetMultiMeasureAttributeName" : "avgMemCached"
 },
 {
 "SourceColumn" : "min_mem_free_1h",
 "MeasureValueType" : "DOUBLE"
 },
 {
 "SourceColumn" : "max_mem_used_1h",

Data model mappings 331

Amazon Timestream Developer Guide

 "MeasureValueType" : "DOUBLE"
 },
 {
 "SourceColumn" : "sum_1h",
 "MeasureValueType" : "DOUBLE",
 "TargetMultiMeasureAttributeName" : "totalDiskWrites"
 },
 {
 "SourceColumn" : "avg_disk_used_1h",
 "MeasureValueType" : "DOUBLE"
 },
 {
 "SourceColumn" : "avg_disk_free_1h",
 "MeasureValueType" : "DOUBLE"
 },
 {
 "SourceColumn" : "max_cpu_user_1h",
 "MeasureValueType" : "DOUBLE",
 "TargetMultiMeasureAttributeName" : "CpuUserP100"
 },
 {
 "SourceColumn" : "min_cpu_idle_1h",
 "MeasureValueType" : "DOUBLE"
 },
 {
 "SourceColumn" : "max_cpu_system_1h",
 "MeasureValueType" : "DOUBLE",
 "TargetMultiMeasureAttributeName" : "CpuSystemP100"
 }
]
 }
 }
 },
 "ErrorReportConfiguration": {
 "S3Configuration" : {
 "BucketName" : "******",
 "ObjectKeyPrefix": "errors",
 "EncryptionOption": "SSE_S3"
 }
 }
}

Data model mappings 332

Amazon Timestream Developer Guide

The mapping in this example creates one multi-measure record with measure name dashboard-
metrics and attribute names avgMemCached, min_mem_free_1h, max_mem_used_1h,
totalDiskWrites, avg_disk_used_1h, avg_disk_free_1h, CpuUserP100, min_cpu_idle_1h,
CpuSystemP100. Notice the optional use of TargetMultiMeasureAttributeName to rename the
query output columns to a different attribute name used for result materialization.

The following is the schema for the destination table once this scheduled query is materialized. As
you can see from the Timestream for LiveAnalytics attribute type in the following result, the results
are materialized into a multi-measure record with a single-measure name dashboard-metrics,
as shown in the measure schema.

Column Type Timestream for LiveAnalytics
attribute type

region varchar DIMENSION

measure_name varchar MEASURE_NAME

time timestamp TIMESTAMP

CpuSystemP100 double MULTI

avgMemCached double MULTI

min_cpu_idle_1h double MULTI

avg_disk_free_1h double MULTI

avg_disk_used_1h double MULTI

totalDiskWrites double MULTI

max_mem_used_1h double MULTI

min_mem_free_1h double MULTI

CpuUserP100 double MULTI

The following are the corresponding measures obtained with a SHOW MEASURES query.

Data model mappings 333

Amazon Timestream Developer Guide

measure_name data_type Dimensions

dashboard-metrics multi [{'dimension_name': 'region',
'data_type': 'varchar'}]

Example: Using measure name from scheduled query in multi-measure records

In this example, you will see a query reading from a table with single-measure records and
materializing the results into multi-measure records. In this case, the scheduled query result
has a column whose values can be used as measure names in the target table where the
results of the scheduled query is materialized. Then you can specify the measure name for
the multi-measure record in the derived table using the MeasureNameColumn property in
TargetConfiguration.TimestreamConfiguration.

{
 "Name" : "UsingMeasureNameFromQueryResult",
 "QueryString" : "SELECT region, bin(time, 1h) as hour, measure_name, AVG(CASE WHEN
 measure_name IN ('memory_cached', 'disk_used', 'disk_free') THEN measure_value::double
 ELSE NULL END) as avg_1h, MIN(CASE WHEN measure_name IN ('memory_free', 'cpu_idle')
 THEN measure_value::double ELSE NULL END) as min_1h, SUM(CASE WHEN measure_name
 IN ('disk_io_writes') THEN measure_value::double ELSE NULL END) as sum_1h,
 MAX(CASE WHEN measure_name IN ('memory_used', 'cpu_user', 'cpu_system') THEN
 measure_value::double ELSE NULL END) as max_1h FROM raw_data.devops WHERE time
 BETWEEN bin(@scheduled_runtime, 1h) - 14h AND bin(@scheduled_runtime, 1h) - 2h AND
 measure_name IN ('memory_free', 'memory_used', 'memory_cached', 'disk_io_writes',
 'disk_used', 'disk_free', 'cpu_user', 'cpu_system', 'cpu_idle') GROUP BY region,
 measure_name, bin(time, 1h)",
 "ScheduleConfiguration" : {
 "ScheduleExpression" : "cron(0 0/1 * * ? *)"
 },
 "NotificationConfiguration" : {
 "SnsConfiguration" : {
 "TopicArn" : "******"
 }
 },
 "ScheduledQueryExecutionRoleArn": "******",
 "TargetConfiguration": {
 "TimestreamConfiguration": {
 "DatabaseName" : "derived",
 "TableName" : "dashboard_metrics_1h_agg_2",

Data model mappings 334

Amazon Timestream Developer Guide

 "TimeColumn" : "hour",
 "DimensionMappings" : [
 {
 "Name": "region",
 "DimensionValueType" : "VARCHAR"
 }
],
 "MeasureNameColumn" : "measure_name",
 "MultiMeasureMappings" : {
 "MultiMeasureAttributeMappings" : [
 {
 "SourceColumn" : "avg_1h",
 "MeasureValueType" : "DOUBLE"
 },
 {
 "SourceColumn" : "min_1h",
 "MeasureValueType" : "DOUBLE",
 "TargetMultiMeasureAttributeName": "p0_1h"
 },
 {
 "SourceColumn" : "sum_1h",
 "MeasureValueType" : "DOUBLE"
 },
 {
 "SourceColumn" : "max_1h",
 "MeasureValueType" : "DOUBLE",
 "TargetMultiMeasureAttributeName": "p100_1h"
 }
]
 }
 }
 },
 "ErrorReportConfiguration": {
 "S3Configuration" : {
 "BucketName" : "******",
 "ObjectKeyPrefix": "errors",
 "EncryptionOption": "SSE_S3"
 }
 }
}

The mapping in this example will create multi-measure records with attributes avg_1h, p0_1h,
sum_1h, p100_1h and will use the values of the measure_name column in the query result as

Data model mappings 335

Amazon Timestream Developer Guide

the measure name for the multi-measure records in the destination table. Additionally note that
the previous examples optionally use the TargetMultiMeasureAttributeName with a subset of the
mappings to rename the attributes. For instance, min_1h was renamed to p0_1h and max_1h is
renamed to p100_1h.

The following is the schema for the destination table once this scheduled query is materialized.
As you can see from the Timestream for LiveAnalytics attribute type in the following result, the
results are materialized into a multi-measure record. If you look at the measure schema, there were
nine different measure names that were ingested which correspond to the values seen in the query
results.

Column Type Timestream for LiveAnalytics
attribute type

region varchar DIMENSION

measure_name varchar MEASURE_NAME

time timestamp TIMESTAMP

sum_1h double MULTI

p100_1h double MULTI

p0_1h double MULTI

avg_1h double MULTI

The following are corresponding measures obtained with a SHOW MEASURES query.

measure_name data_type Dimensions

cpu_idle multi [{'dimension_name': 'region',
'data_type': 'varchar'}]

cpu_system multi [{'dimension_name': 'region',
'data_type': 'varchar'}]

Data model mappings 336

Amazon Timestream Developer Guide

measure_name data_type Dimensions

cpu_user multi [{'dimension_name': 'region',
'data_type': 'varchar'}]

disk_free multi [{'dimension_name': 'region',
'data_type': 'varchar'}]

disk_io_writes multi [{'dimension_name': 'region',
'data_type': 'varchar'}]

disk_used multi [{'dimension_name': 'region',
'data_type': 'varchar'}]

memory_cached multi [{'dimension_name': 'region',
'data_type': 'varchar'}]

memory_free multi [{'dimension_name': 'region',
'data_type': 'varchar'}]

memory_free multi [{'dimension_name': 'region',
'data_type': 'varchar'}]

Example: Mapping results to different multi-measure records with different
attributes

The following example shows how you can map different columns in your query result into
different multi-measure records with different measure names. If you see the following
scheduled query definition, the result of the query has the following columns: region, hour,
avg_mem_cached_1h, min_mem_free_1h, max_mem_used_1h, total_disk_io_writes_1h,
avg_disk_used_1h, avg_disk_free_1h, max_cpu_user_1h, max_cpu_system_1h,
min_cpu_system_1h. region is mapped to dimension, and hour is mapped to the time column.

The MixedMeasureMappings property in TargetConfiguration.TimestreamConfiguration specifies
how to map the measures to multi-measure records in the derived table.

In this specific example, avg_mem_cached_1h, min_mem_free_1h, max_mem_used_1h are used
in one multi-measure record with measure name of mem_aggregates, total_disk_io_writes_1h,
avg_disk_used_1h, avg_disk_free_1h are used in another multi-measure record with measure name

Data model mappings 337

Amazon Timestream Developer Guide

of disk_aggregates, and finally max_cpu_user_1h, max_cpu_system_1h, min_cpu_system_1h are
used in another multi-measure record with measure name cpu_aggregates.

In these mappings, you can also optionally use TargetMultiMeasureAttributeName to rename the
query result column to have a different attribute name in the destination table. For instance, the
result column avg_mem_cached_1h gets renamed to avgMemCached, total_disk_io_writes_1h gets
renamed to totalIOWrites, etc.

When you're defining the mappings for multi-measure records, Timestream for LiveAnalytics
inspects every row in the query results and automatically ignores the column values that have
NULL values. As a result, in the case of mappings with multiple measures names, if all the column
values for that group in the mapping are NULL for a given row, then no value for that measure
name is ingested for that row.

For example, in the following mapping, avg_mem_cached_1h, min_mem_free_1h, and
max_mem_used_1h are mapped to measure name mem_aggregates. If for a given row of the query
result, all these of the column values are NULL, Timestream for LiveAnalytics won't ingest the
measure mem_aggregates for that row. If all nine columns for a given row are NULL, then you will
see an user error reported in your error report.

{
 "Name" : "AggsInDifferentMultiMeasureRecords",
 "QueryString" : "SELECT region, bin(time, 1h) as hour, AVG(CASE WHEN measure_name
 = 'memory_cached' THEN measure_value::double ELSE NULL END) as avg_mem_cached_1h,
 MIN(CASE WHEN measure_name = 'memory_free' THEN measure_value::double ELSE
 NULL END) as min_mem_free_1h, MAX(CASE WHEN measure_name = 'memory_used' THEN
 measure_value::double ELSE NULL END) as max_mem_used_1h, SUM(CASE WHEN measure_name =
 'disk_io_writes' THEN measure_value::double ELSE NULL END) as total_disk_io_writes_1h,
 AVG(CASE WHEN measure_name = 'disk_used' THEN measure_value::double ELSE NULL END) as
 avg_disk_used_1h, AVG(CASE WHEN measure_name = 'disk_free' THEN measure_value::double
 ELSE NULL END) as avg_disk_free_1h, MAX(CASE WHEN measure_name = 'cpu_user' THEN
 measure_value::double ELSE NULL END) as max_cpu_user_1h, MAX(CASE WHEN measure_name
 = 'cpu_system' THEN measure_value::double ELSE NULL END) as max_cpu_system_1h,
 MIN(CASE WHEN measure_name = 'cpu_idle' THEN measure_value::double ELSE NULL END)
 as min_cpu_system_1h FROM raw_data.devops WHERE time BETWEEN bin(@scheduled_runtime,
 1h) - 14h AND bin(@scheduled_runtime, 1h) - 2h AND measure_name IN ('memory_cached',
 'memory_free', 'memory_used', 'disk_io_writes', 'disk_used', 'disk_free', 'cpu_user',
 'cpu_system', 'cpu_idle') GROUP BY region, bin(time, 1h)",
 "ScheduleConfiguration" : {
 "ScheduleExpression" : "cron(0 0/1 * * ? *)"
 },
 "NotificationConfiguration" : {

Data model mappings 338

Amazon Timestream Developer Guide

 "SnsConfiguration" : {
 "TopicArn" : "******"
 }
 },
 "ScheduledQueryExecutionRoleArn": "******",
 "TargetConfiguration": {
 "TimestreamConfiguration": {
 "DatabaseName" : "derived",
 "TableName" : "dashboard_metrics_1h_agg_3",
 "TimeColumn" : "hour",
 "DimensionMappings" : [
 {
 "Name": "region",
 "DimensionValueType" : "VARCHAR"
 }
],
 "MixedMeasureMappings" : [
 {
 "MeasureValueType" : "MULTI",
 "TargetMeasureName" : "mem_aggregates",
 "MultiMeasureAttributeMappings" : [
 {
 "SourceColumn" : "avg_mem_cached_1h",
 "MeasureValueType" : "DOUBLE",
 "TargetMultiMeasureAttributeName": "avgMemCached"
 },
 {
 "SourceColumn" : "min_mem_free_1h",
 "MeasureValueType" : "DOUBLE"
 },
 {
 "SourceColumn" : "max_mem_used_1h",
 "MeasureValueType" : "DOUBLE",
 "TargetMultiMeasureAttributeName": "maxMemUsed"
 }
]
 },
 {
 "MeasureValueType" : "MULTI",
 "TargetMeasureName" : "disk_aggregates",
 "MultiMeasureAttributeMappings" : [
 {
 "SourceColumn" : "total_disk_io_writes_1h",
 "MeasureValueType" : "DOUBLE",

Data model mappings 339

Amazon Timestream Developer Guide

 "TargetMultiMeasureAttributeName": "totalIOWrites"
 },
 {
 "SourceColumn" : "avg_disk_used_1h",
 "MeasureValueType" : "DOUBLE"
 },
 {
 "SourceColumn" : "avg_disk_free_1h",
 "MeasureValueType" : "DOUBLE"
 }
]
 },
 {
 "MeasureValueType" : "MULTI",
 "TargetMeasureName" : "cpu_aggregates",
 "MultiMeasureAttributeMappings" : [
 {
 "SourceColumn" : "max_cpu_user_1h",
 "MeasureValueType" : "DOUBLE"
 },
 {
 "SourceColumn" : "max_cpu_system_1h",
 "MeasureValueType" : "DOUBLE"
 },
 {
 "SourceColumn" : "min_cpu_idle_1h",
 "MeasureValueType" : "DOUBLE",
 "TargetMultiMeasureAttributeName": "minCpuIdle"
 }
]
 }
]
 }
 },
 "ErrorReportConfiguration": {
 "S3Configuration" : {
 "BucketName" : "******",
 "ObjectKeyPrefix": "errors",
 "EncryptionOption": "SSE_S3"
 }
 }
}

Data model mappings 340

Amazon Timestream Developer Guide

The following is the schema for the destination table once this scheduled query is materialized.

Column Type Timestream for LiveAnalytics
attribute type

region varchar DIMENSION

measure_name varchar MEASURE_NAME

time timestamp TIMESTAMP

minCpuIdle double MULTI

max_cpu_system_1h double MULTI

max_cpu_user_1h double MULTI

avgMemCached double MULTI

maxMemUsed double MULTI

min_mem_free_1h double MULTI

avg_disk_free_1h double MULTI

avg_disk_used_1h double MULTI

totalIOWrites double MULTI

The following are the corresponding measures obtained with a SHOW MEASURES query.

measure_name data_type Dimensions

cpu_aggregates multi [{'dimension_name': 'region',
'data_type': 'varchar'}]

disk_aggregates multi [{'dimension_name': 'region',
'data_type': 'varchar'}]

Data model mappings 341

Amazon Timestream Developer Guide

measure_name data_type Dimensions

mem_aggregates multi [{'dimension_name': 'region',
'data_type': 'varchar'}]

Example: Mapping results to single-measure records with measure name from
query results

The following is an example of a scheduled query whose results are materialized into single-
measure records. In this example, the query result has the measure_name column whose values
will be used as measure names in the target table. You use the MixedMeasureMappings attribute
in the TargetConfiguration.TimestreamConfiguration to specify the mapping of the query result
column to the scalar measure in the target table.

In the following example definition, the query result is expected to nine distinct measure_name
values. You list out all these measure names in the mapping and specify which column to use for
the single-measure value for that measure name. For example, in this mapping, if measure name
of memory_cached is seen for a given result row, then the value in the avg_1h column is used as
the value for the measure when the data is written to the target table. You can optionally use
TargetMeasureName to provide a new measure name for this value.

{
 "Name" : "UsingMeasureNameColumnForSingleMeasureMapping",
 "QueryString" : "SELECT region, bin(time, 1h) as hour, measure_name, AVG(CASE WHEN
 measure_name IN ('memory_cached', 'disk_used', 'disk_free') THEN measure_value::double
 ELSE NULL END) as avg_1h, MIN(CASE WHEN measure_name IN ('memory_free', 'cpu_idle')
 THEN measure_value::double ELSE NULL END) as min_1h, SUM(CASE WHEN measure_name
 IN ('disk_io_writes') THEN measure_value::double ELSE NULL END) as sum_1h,
 MAX(CASE WHEN measure_name IN ('memory_used', 'cpu_user', 'cpu_system') THEN
 measure_value::double ELSE NULL END) as max_1h FROM raw_data.devops WHERE time
 BETWEEN bin(@scheduled_runtime, 1h) - 14h AND bin(@scheduled_runtime, 1h) - 2h AND
 measure_name IN ('memory_free', 'memory_used', 'memory_cached', 'disk_io_writes',
 'disk_used', 'disk_free', 'cpu_user', 'cpu_system', 'cpu_idle') GROUP BY region,
 bin(time, 1h), measure_name",
 "ScheduleConfiguration" : {
 "ScheduleExpression" : "cron(0 0/1 * * ? *)"
 },
 "NotificationConfiguration" : {
 "SnsConfiguration" : {
 "TopicArn" : "******"

Data model mappings 342

Amazon Timestream Developer Guide

 }
 },
 "ScheduledQueryExecutionRoleArn": "******",
 "TargetConfiguration": {
 "TimestreamConfiguration": {
 "DatabaseName" : "derived",
 "TableName" : "dashboard_metrics_1h_agg_4",
 "TimeColumn" : "hour",
 "DimensionMappings" : [
 {
 "Name": "region",
 "DimensionValueType" : "VARCHAR"
 }
],
 "MeasureNameColumn" : "measure_name",
 "MixedMeasureMappings" : [
 {
 "MeasureName" : "memory_cached",
 "MeasureValueType" : "DOUBLE",
 "SourceColumn" : "avg_1h",
 "TargetMeasureName" : "AvgMemCached"
 },
 {
 "MeasureName" : "disk_used",
 "MeasureValueType" : "DOUBLE",
 "SourceColumn" : "avg_1h"
 },
 {
 "MeasureName" : "disk_free",
 "MeasureValueType" : "DOUBLE",
 "SourceColumn" : "avg_1h"
 },
 {
 "MeasureName" : "memory_free",
 "MeasureValueType" : "DOUBLE",
 "SourceColumn" : "min_1h",
 "TargetMeasureName" : "MinMemFree"
 },
 {
 "MeasureName" : "cpu_idle",
 "MeasureValueType" : "DOUBLE",
 "SourceColumn" : "min_1h"
 },
 {

Data model mappings 343

Amazon Timestream Developer Guide

 "MeasureName" : "disk_io_writes",
 "MeasureValueType" : "DOUBLE",
 "SourceColumn" : "sum_1h",
 "TargetMeasureName" : "total-disk-io-writes"
 },
 {
 "MeasureName" : "memory_used",
 "MeasureValueType" : "DOUBLE",
 "SourceColumn" : "max_1h",
 "TargetMeasureName" : "maxMemUsed"
 },
 {
 "MeasureName" : "cpu_user",
 "MeasureValueType" : "DOUBLE",
 "SourceColumn" : "max_1h"
 },
 {
 "MeasureName" : "cpu_system",
 "MeasureValueType" : "DOUBLE",
 "SourceColumn" : "max_1h"
 }
]
 }
 },
 "ErrorReportConfiguration": {
 "S3Configuration" : {
 "BucketName" : "******",
 "ObjectKeyPrefix": "errors",
 "EncryptionOption": "SSE_S3"
 }
 }
}

The following is the schema for the destination table once this scheduled query is materialized.
As you can see from the schema, the table is using single-measure records. If you list the measure
schema for the table, you will see the nine measures written to based on the mapping provided in
the specification.

Column Type Timestream for LiveAnalytics
attribute type

region varchar DIMENSION

Data model mappings 344

Amazon Timestream Developer Guide

Column Type Timestream for LiveAnalytics
attribute type

measure_name varchar MEASURE_NAME

time timestamp TIMESTAMP

measure_value::double double MEASURE_VALUE

The following are the corresponding measures obtained with a SHOW MEASURES query.

measure_name data_type Dimensions

AvgMemCached double [{'dimension_name': 'region',
'data_type': 'varchar'}]

MinMemFree double [{'dimension_name': 'region',
'data_type': 'varchar'}]

cpu_idle double [{'dimension_name': 'region',
'data_type': 'varchar'}]

cpu_system double [{'dimension_name': 'region',
'data_type': 'varchar'}]

cpu_user double [{'dimension_name': 'region',
'data_type': 'varchar'}]

disk_free double [{'dimension_name': 'region',
'data_type': 'varchar'}]

disk_used double [{'dimension_name': 'region',
'data_type': 'varchar'}]

maxMemUsed double [{'dimension_name': 'region',
'data_type': 'varchar'}]

total-disk-io-writes double [{'dimension_name': 'region',
'data_type': 'varchar'}]

Data model mappings 345

Amazon Timestream Developer Guide

Example: Mapping results to single-measure records with query result columns as
measure names

In this example, you have a query whose results do not have a measure name column. Instead, you
want the query result column name as the measure name when mapping the output to single-
measure records. Earlier there was an example where a similar result was written to a multi-
measure record. In this example, you will see how to map it to single-measure records if that fits
your application scenario.

Again, you specify this mapping using the MixedMeasureMappings property in
TargetConfiguration.TimestreamConfiguration. In the following example, you see that the query
result has nine columns. You use the result columns as measure names and the values as the
single-measure values.

For example, for a given row in the query result, the column name avg_mem_cached_1h is used
as the column name and value associated with column, and avg_mem_cached_1h is used as
the measure value for the single-measure record. You can also use TargetMeasureName to use
a different measure name in the target table. For instance, for values in column sum_1h, the
mapping specifies to use total_disk_io_writes_1h as the measure name in the target table. If any
column's value is NULL, then the corresponding measure is ignored.

{
 "Name" : "SingleMeasureMappingWithoutMeasureNameColumnInQueryResult",
 "QueryString" : "SELECT region, bin(time, 1h) as hour, AVG(CASE WHEN measure_name
 = 'memory_cached' THEN measure_value::double ELSE NULL END) as avg_mem_cached_1h,
 AVG(CASE WHEN measure_name = 'disk_used' THEN measure_value::double ELSE NULL END) as
 avg_disk_used_1h, AVG(CASE WHEN measure_name = 'disk_free' THEN measure_value::double
 ELSE NULL END) as avg_disk_free_1h, MIN(CASE WHEN measure_name = 'memory_free' THEN
 measure_value::double ELSE NULL END) as min_mem_free_1h, MIN(CASE WHEN measure_name =
 'cpu_idle' THEN measure_value::double ELSE NULL END) as min_cpu_idle_1h, SUM(CASE WHEN
 measure_name = 'disk_io_writes' THEN measure_value::double ELSE NULL END) as sum_1h,
 MAX(CASE WHEN measure_name = 'memory_used' THEN measure_value::double ELSE NULL END)
 as max_mem_used_1h, MAX(CASE WHEN measure_name = 'cpu_user' THEN measure_value::double
 ELSE NULL END) as max_cpu_user_1h, MAX(CASE WHEN measure_name = 'cpu_system' THEN
 measure_value::double ELSE NULL END) as max_cpu_system_1h FROM raw_data.devops WHERE
 time BETWEEN bin(@scheduled_runtime, 1h) - 14h AND bin(@scheduled_runtime, 1h) - 2h
 AND measure_name IN ('memory_free', 'memory_used', 'memory_cached', 'disk_io_writes',
 'disk_used', 'disk_free', 'cpu_user', 'cpu_system', 'cpu_idle') GROUP BY region,
 bin(time, 1h)",
 "ScheduleConfiguration" : {
 "ScheduleExpression" : "cron(0 0/1 * * ? *)"

Data model mappings 346

Amazon Timestream Developer Guide

 },
 "NotificationConfiguration" : {
 "SnsConfiguration" : {
 "TopicArn" : "******"
 }
 },
 "ScheduledQueryExecutionRoleArn": "******",
 "TargetConfiguration": {
 "TimestreamConfiguration": {
 "DatabaseName" : "derived",
 "TableName" : "dashboard_metrics_1h_agg_5",
 "TimeColumn" : "hour",
 "DimensionMappings" : [
 {
 "Name": "region",
 "DimensionValueType" : "VARCHAR"
 }
],
 "MixedMeasureMappings" : [
 {
 "MeasureValueType" : "DOUBLE",
 "SourceColumn" : "avg_mem_cached_1h"
 },
 {
 "MeasureValueType" : "DOUBLE",
 "SourceColumn" : "avg_disk_used_1h"
 },
 {
 "MeasureValueType" : "DOUBLE",
 "SourceColumn" : "avg_disk_free_1h"
 },
 {
 "MeasureValueType" : "DOUBLE",
 "SourceColumn" : "min_mem_free_1h"
 },
 {
 "MeasureValueType" : "DOUBLE",
 "SourceColumn" : "min_cpu_idle_1h"
 },
 {
 "MeasureValueType" : "DOUBLE",
 "SourceColumn" : "sum_1h",
 "TargetMeasureName" : "total_disk_io_writes_1h"
 },

Data model mappings 347

Amazon Timestream Developer Guide

 {
 "MeasureValueType" : "DOUBLE",
 "SourceColumn" : "max_mem_used_1h"
 },
 {
 "MeasureValueType" : "DOUBLE",
 "SourceColumn" : "max_cpu_user_1h"
 },
 {
 "MeasureValueType" : "DOUBLE",
 "SourceColumn" : "max_cpu_system_1h"
 }
]
 }
 },
 "ErrorReportConfiguration": {
 "S3Configuration" : {
 "BucketName" : "******",
 "ObjectKeyPrefix": "errors",
 "EncryptionOption": "SSE_S3"
 }
 }
}

The following is the schema for the destination table once this scheduled query is materialized.
As you can see that the target table is storing records with single-measure values of type double.
Similarly, the measure schema for the table shows the nine measure names. Also notice that
the measure name total_disk_io_writes_1h is present since the mapping renamed sum_1h to
total_disk_io_writes_1h.

Column Type Timestream for LiveAnalytics
attribute type

region varchar DIMENSION

measure_name varchar MEASURE_NAME

time timestamp TIMESTAMP

measure_value::double double MEASURE_VALUE

Data model mappings 348

Amazon Timestream Developer Guide

The following are the corresponding measures obtained with a SHOW MEASURES query.

measure_name data_type Dimensions

avg_disk_free_1h double [{'dimension_name': 'region',
'data_type': 'varchar'}]

avg_disk_used_1h double [{'dimension_name': 'region',
'data_type': 'varchar'}]

avg_mem_cached_1h double [{'dimension_name': 'region',
'data_type': 'varchar'}]

max_cpu_system_1h double [{'dimension_name': 'region',
'data_type': 'varchar'}]

max_cpu_user_1h double [{'dimension_name': 'region',
'data_type': 'varchar'}]

max_mem_used_1h double [{'dimension_name': 'region',
'data_type': 'varchar'}]

min_cpu_idle_1h double [{'dimension_name': 'region',
'data_type': 'varchar'}]

min_mem_free_1h double [{'dimension_name': 'region',
'data_type': 'varchar'}]

total-disk-io-writes double [{'dimension_name': 'region',
'data_type': 'varchar'}]

Scheduled query notification messages

This section describes the messages sent by Timestream for LiveAnalytics when creating, deleting,
running, or updating the state of a scheduled query.

Notification messages 349

Amazon Timestream Developer Guide

Notification message name Structure Description

CreatingNotificationMessage CreatingNotificati
onMessage {
 String arn;
 NotificationType
 type;
}

This notification message
is sent before sending the
response for CreateSch
eduledQuery . The
scheduled query is enabled
after sending this notification.

arn - The ARN of the
scheduled query that is being
created.

type - SCHEDULED
_QUERY_CREATING

UpdateNotificationMessage UpdateNotification
Message {
 String arn;
 NotificationType
 type;
 QueryState state;
}

This notification message is
sent when a scheduled query
is updated. Timestream for
LiveAnalytics can disable the
scheduled query, automatic
ally, in case non-recoverable
error is encountered, such as:

• AssumeRole failure

• Any 4xx errors encounter
ed when communicating
with KMS when a customer
managed KMS key is
specified.

• Any 4xx errors encounter
ed during running of the
scheduled query.

• Any 4xx errors encountered
during ingestion of query
results

Notification messages 350

Amazon Timestream Developer Guide

Notification message name Structure Description

arn - The ARN of the
scheduled query that is being
updated.

type - SCHEDULED
_QUERY_UPDATE

state - ENABLED or DISABLED

DeleteNotificationMessage DeletionNotificati
onMessage {
 String arn;
 NotificationType
 type;
}

This notification message is
sent when a scheduled query
has been deleted.

arn - The ARN of the
scheduled query that is being
created.

type - SCHEDULED
_QUERY_DELETED

Notification messages 351

Amazon Timestream Developer Guide

Notification message name Structure Description

SuccessNotificationMessage SuccessNotificatio
nMessage {
 NotificationType
 type;
 String arn;
 Date nextInvoc
ationEpochSecond;
 ScheduledQueryRunS
ummary runSummary;
}

ScheduledQueryRunSumm
ary {
 Date invocatio
nTime;
 Date triggerTime;
 String runStatus;
 ExecutionStats
 executionstats;
 ErrorReportLocatio
n errorReportLocatio
n;
 String failureRe
ason;
}

ExecutionStats {
 Long bytesMetered;
 Long dataWrites;
 Long queryResu
ltRows;
 Long recordsIn
gested;
 Long execution
TimeInMillis;
}

ErrorReportLocation {

This notification message
is sent after the scheduled
query is run and the results
are successfully ingested.

ARN - The ARN of the
scheduled query that is being
deleted.

NotificationType -
AUTO_TRIGGER_SUCCESS or
MANUAL_TRIGGER_SUCCESS.

nextInvocationEpochSecond
- The next time Timestream
for LiveAnalytics will run the
scheduled query.

runSummary - Information
about the scheduled query
run.

Notification messages 352

Amazon Timestream Developer Guide

Notification message name Structure Description

 S3ReportLocation
 s3ReportLocation;
}

S3ReportLocation {
 String bucketName;
 String objectKey;
}

Notification messages 353

Amazon Timestream Developer Guide

Notification message name Structure Description

FailureNotificationMessage FailureNotificatio
nMessage {
 NotificationType
 type;
 String arn;
 ScheduledQueryRunS
ummary runSummary;
}

ScheduledQueryRunSumm
ary {
 Date invocatio
nTime;
 Date triggerTime;
 String runStatus;
 ExecutionStats
 executionstats;
 ErrorReportLocatio
n errorReportLocatio
n;
 String failureRe
ason;
}

ExecutionStats {
 Long bytesMetered;
 Long dataWrites;
 Long queryResu
ltRows;
 Long recordsIn
gested;
 Long execution
TimeInMillis;
}

ErrorReportLocation {
 S3ReportLocation
 s3ReportLocation;
}

This notification message
is sent when a failure is
encountered during a
scheduled query run or when
ingesting the query results.

arn - The ARN of the
scheduled query that is being
run.

type - AUTO_TRIGGER_FAILU
RE or MANUAL_TRIGGER_FAI
LURE.

runSummary - Information
about the scheduled query
run.

Notification messages 354

Amazon Timestream Developer Guide

Notification message name Structure Description

S3ReportLocation {
 String bucketName;
 String objectKey;
}

Scheduled query error reports

This section describes the location, format, and reasons for error reports generated by Timestream
for LiveAnalytics when errors are encountered by running scheduled queries.

Topics

• Scheduled query error reports reasons

• Scheduled query error reports location

• Scheduled query error reports format

• Scheduled query error types

• Scheduled query error reports example

Scheduled query error reports reasons

Error reports are generated for recoverable errors. Error reports are not generated for non-
recoverable errors. Timestream for LiveAnalytics can disable the scheduled queries automatically
when non-recoverable errors are encountered. These include:

• AssumeRole failure

• Any 4xx errors encountered when communicating with KMS when a customer-managed KMS key
is specified

• Any 4xx errors encountered when a scheduled query runs

• Any 4xx errors encountered during ingestion of query results

Error reports 355

Amazon Timestream Developer Guide

For non-recoverable errors, Timestream for LiveAnalytics sends a failure notification with a non-
recoverable error message. An update notification is also sent which indicates that the scheduled
query is disabled.

Scheduled query error reports location

A scheduled query error report location has the following naming convention:

s3://customer-bucket/customer-prefix/

Following is an example scheduled query ARN:

arn:aws:timestream:us-east-1:000000000000:scheduled-query/test-query-hd734tegrgfd

s3://customer-bucket/customer-prefix/test-query-hd734tegrgfd/<InvocationTime>/<Auto or
 Manual>/<Actual Trigger Time>

Auto indicates scheduled queries automatically scheduled by Timestream for LiveAnalytics and
Manual indicates scheduled queries manually triggered by a user via ExecuteScheduledQuery
API action in Amazon Timestream for LiveAnalytics Query. For more information about
ExecuteScheduledQuery, see ExecuteScheduledQuery.

Scheduled query error reports format

The error reports have the following JSON format:

{
 "reportId": <String>, // A unique string ID for all error reports
 belonging to a particular scheduled query run
 "errors": [<Error>, ...], // One or more errors
}

Scheduled query error types

The Error object can be one of three types:

• Records Ingestion Errors

{
 "reason": <String>, // The error message String
 "records": [<Record>, ...], // One or more rejected records)

Error reports 356

https://docs.amazonaws.cn/timestream/latest/developerguide/API_query_ExecuteScheduledQuery.html

Amazon Timestream Developer Guide

}

• Row Parse and Validation Errors

{
 "reason": <String>, // The error message String
 "rawLine": <String>, // [Optional] The raw line String that is being parsed
 into record(s) to be ingested. This line has encountered the above-mentioned parse
 error.
}

• General Errors

{
 "reason": <String>, // The error message
}

Scheduled query error reports example

The following is an example of an error report that was produced due to ingestion errors.

{
 "reportId": "C9494AABE012D1FBC162A67EA2C18255",
 "errors": [
 {
 "reason": "The record timestamp is outside the time range
 [2021-11-12T14:18:13.354Z, 2021-11-12T16:58:13.354Z) of the memory store.",
 "records": [
 {
 "dimensions": [
 {
 "name": "dim0",
 "value": "d0_1",
 "dimensionValueType": null
 },
 {
 "name": "dim1",
 "value": "d1_1",
 "dimensionValueType": null
 }
],
 "measureName": "random_measure_value",

Error reports 357

Amazon Timestream Developer Guide

 "measureValue": "3.141592653589793",
 "measureValues": null,
 "measureValueType": "DOUBLE",
 "time": "1637166175635000000",
 "timeUnit": "NANOSECONDS",
 "version": null
 },
 {
 "dimensions": [
 {
 "name": "dim0",
 "value": "d0_2",
 "dimensionValueType": null
 },
 {
 "name": "dim1",
 "value": "d1_2",
 "dimensionValueType": null
 }
],
 "measureName": "random_measure_value",
 "measureValue": "6.283185307179586",
 "measureValues": null,
 "measureValueType": "DOUBLE",
 "time": "1637166175636000000",
 "timeUnit": "NANOSECONDS",
 "version": null
 },
 {
 "dimensions": [
 {
 "name": "dim0",
 "value": "d0_3",
 "dimensionValueType": null
 },
 {
 "name": "dim1",
 "value": "d1_3",
 "dimensionValueType": null
 }
],
 "measureName": "random_measure_value",
 "measureValue": "9.42477796076938",
 "measureValues": null,

Error reports 358

Amazon Timestream Developer Guide

 "measureValueType": "DOUBLE",
 "time": "1637166175637000000",
 "timeUnit": "NANOSECONDS",
 "version": null
 },
 {
 "dimensions": [
 {
 "name": "dim0",
 "value": "d0_4",
 "dimensionValueType": null
 },
 {
 "name": "dim1",
 "value": "d1_4",
 "dimensionValueType": null
 }
],
 "measureName": "random_measure_value",
 "measureValue": "12.566370614359172",
 "measureValues": null,
 "measureValueType": "DOUBLE",
 "time": "1637166175638000000",
 "timeUnit": "NANOSECONDS",
 "version": null
 }
]
 }
]
}

Scheduled query patterns and examples

This section describes the usage patterns for scheduled queries as well as end-to-end examples.

Topics

• Scheduled queries sample schema

• Scheduled query patterns

• Scheduled query examples

Patterns and examples 359

Amazon Timestream Developer Guide

Scheduled queries sample schema

In this example we will use a sample application mimicking a DevOps scenario monitoring metrics
from a large fleet of servers. Users want to alert on anomalous resource usage, create dashboards
on aggregate fleet behavior and utilization, and perform sophisticated analysis on recent and
historical data to find correlations. The following diagram provides an illustration of the setup
where a set of monitored instances emit metrics to Timestream for LiveAnalytics. Another set
of concurrent users issues queries for alerts, dashboards, or ad-hoc analysis, where queries and
ingestion run in parallel.

The application being monitored is modeled as a highly scaled-out service that is deployed in
several regions across the globe. Each region is further subdivided into a number of scaling units
called cells that have a level of isolation in terms of infrastructure within the region. Each cell
is further subdivided into silos, which represent a level of software isolation. Each silo has five

Patterns and examples 360

Amazon Timestream Developer Guide

microservices that comprise one isolated instance of the service. Each microservice has several
servers with different instance types and OS versions, which are deployed across three availability
zones. These attributes that identify the servers emitting the metrics are modeled as dimensions
in Timestream for LiveAnalytics. In this architecture, we have a hierarchy of dimensions (such as
region, cell, silo, and microservice_name) and other dimensions that cut across the hierarchy (such
as instance_type and availability_zone).

The application emits a variety of metrics (such as cpu_user and memory_free) and events (such
as task_completed and gc_reclaimed). Each metric or event is associated with eight dimensions
(such as region or cell) that uniquely identify the server emitting it. Data is written with the 20
metrics stored together in a multi-measure record with measure name metrics and all the 5 events
are stored together in another multi-measure record with measure name events. The data model,
schema, and data generation can be found in the open-sourced data generator. In addition to the
schema and data distributions, the data generator provides an example of using multiple writers
to ingest data in parallel, using the ingestion scaling of Timestream for LiveAnalytics to ingest
millions of measurements per second. Below we show the schema (table and measure schema) and
some sample data from the data set.

Topics

• Multi-measure records

• Single-measure records

Multi-measure records

Table Schema

Below is the table schema once the data is ingested using multi-measure records. It is the output of
DESCRIBE query. Assuming the data is ingested into a database raw_data and table devops, below
is the query.

DESCRIBE "raw_data"."devops"

Column Type Timestream for LiveAnalytics
attribute type

availability_zone varchar DIMENSION

Patterns and examples 361

https://docs.amazonaws.cn/timestream/latest/developerguide/concepts.html
https://github.com/awslabs/amazon-timestream-tools/tree/mainline/tools/python/perf-scale-workload

Amazon Timestream Developer Guide

Column Type Timestream for LiveAnalytics
attribute type

microservice_name varchar DIMENSION

instance_name varchar DIMENSION

process_name varchar DIMENSION

os_version varchar DIMENSION

jdk_version varchar DIMENSION

cell varchar DIMENSION

region varchar DIMENSION

silo varchar DIMENSION

instance_type varchar DIMENSION

measure_name varchar MEASURE_NAME

time timestamp TIMESTAMP

memory_free double MULTI

cpu_steal double MULTI

cpu_iowait double MULTI

cpu_user double MULTI

memory_cached double MULTI

disk_io_reads double MULTI

cpu_hi double MULTI

latency_per_read double MULTI

network_bytes_out double MULTI

Patterns and examples 362

Amazon Timestream Developer Guide

Column Type Timestream for LiveAnalytics
attribute type

cpu_idle double MULTI

disk_free double MULTI

memory_used double MULTI

cpu_system double MULTI

file_descriptors_in_use double MULTI

disk_used double MULTI

cpu_nice double MULTI

disk_io_writes double MULTI

cpu_si double MULTI

latency_per_write double MULTI

network_bytes_in double MULTI

task_end_state varchar MULTI

gc_pause double MULTI

task_completed bigint MULTI

gc_reclaimed double MULTI

Measure Schema

Below is the measure schema returned by the SHOW MEASURES query.

SHOW MEASURES FROM "raw_data"."devops"

Patterns and examples 363

Amazon Timestream Developer Guide

measure_name data_type Dimensions

events multi [{"data_type":"varchar","di
mension_name":"availability
_zone"},{"data_type":"varch
ar","dimension_name":"micro
service_name"},{"data_type"
:"varchar","dimension_name"
:"instance_name"},{"data_ty
pe":"varchar","dimension_na
me":"process_name"},{"data_
type":"varchar","dimension_
name":"jdk_version"},{"data
_type":"varchar","dimension
_name":"cell"},{"data_type"
:"varchar","dimension_name"
:"region"},{"data_type":"va
rchar","dimension_name":"si
lo"}]

metrics multi [{"data_type":"varchar","di
mension_name":"availability
_zone"},{"data_type":"varch
ar","dimension_name":"micro
service_name"},{"data_type"
:"varchar","dimension_name"
:"instance_name"},{"data_ty
pe":"varchar","dimension_na
me":"os_version"},{"data_ty
pe":"varchar","dimension_na
me":"cell"},{"data_type":"v
archar","dimension_name":"r
egion"},{"data_type":"varch
ar","dimension_name":"silo"
},{"data_type":"varchar","d

Patterns and examples 364

Amazon Timestream Developer Guide

measure_name data_type Dimensions

imension_name":"instance_ty
pe"}]

Example Data

regionCellSiloavailabil
ity_zone

microserv
ice_name

instance_
name

instance_
type

os_versio
n

process_n
ame

jdk_versi
on

measure_n
ame

Timecpu_usercpu_syste
m

cpu_idlecpu_stealcpu_iowai
t

cpu_nicecpu_hicpu_simemory_us
ed

memory_ca
ched

disk_io_r
eads

latency_p
er_read

disk_io_w
rites

latency_p
er_write

disk_useddisk_freenetwork_b
ytes_in

network_b
ytes_out

file_desc
riptors_i
n_use

memory_fr
ee

task_end_
state

gc_pausetask_comp
leted

gc_reclai
med

us-
east-2

us-
east-2
-
cell-1

us-
east-2
-
cell-1-
s
ilo-2

us-
east-2
-1

athenai-
zaZswmJ
k-
athena-
us-
east-2
-
cell-1-
s
ilo-2-000
00216.ama
zonaws.co
m

m5.8xlarg
e

AL2012 metrics11/12/202
1
12:43

62.80.40834.20.9720.08770.1030.5670.84457.688.952.691.931.72.2563.529.285.349.832.357.6

us-
east-2

us-
east-2
-
cell-1

us-
east-2
-
cell-1-
s
ilo-2

us-
east-2
-1

athenai-
zaZswmJ
k-
athena-
us-
east-2
-
cell-1-
s
ilo-2-000
00216.ama

m5.8xlarg
e

AL2012 metrics11/12/202
1
12:41

560.92339.90.7990.5320.6550.8510.31790.531.956.637.12593.352.233.17.1453.765.920.4

Patterns and examples 365

Amazon Timestream Developer Guide

regionCellSiloavailabil
ity_zone

microserv
ice_name

instance_
name

instance_
type

os_versio
n

process_n
ame

jdk_versi
on

measure_n
ame

Timecpu_usercpu_syste
m

cpu_idlecpu_stealcpu_iowai
t

cpu_nicecpu_hicpu_simemory_us
ed

memory_ca
ched

disk_io_r
eads

latency_p
er_read

disk_io_w
rites

latency_p
er_write

disk_useddisk_freenetwork_b
ytes_in

network_b
ytes_out

file_desc
riptors_i
n_use

memory_fr
ee

task_end_
state

gc_pausetask_comp
leted

gc_reclai
med

zonaws.co
m

us-
east-2

us-
east-2
-
cell-1

us-
east-2
-
cell-1-
s
ilo-2

us-
east-2
-1

athenai-
zaZswmJ
k-
athena-
us-
east-2
-
cell-1-
s
ilo-2-000
00216.ama
zonaws.co
m

m5.8xlarg
e

AL2012 metrics11/12/202
1
12:39

48.50.80148.20.180.9430.03160.8440.5497.441.455.132.786.233.772.761.580.85.1544.38.5

us-
east-2

us-
east-2
-
cell-1

us-
east-2
-
cell-1-
s
ilo-2

us-
east-2
-1

athenai-
zaZswmJ
k-
athena-
us-
east-2
-
cell-1-
s
ilo-2-000
00216.ama
zonaws.co
m

m5.8xlarg
e

AL2012 metrics11/12/202
1
12:38

37.50.72358.80.3170.6080.8590.7910.3934.8478.920.341.446.83.8784.660.621.111.82.7610

Patterns and examples 366

Amazon Timestream Developer Guide

regionCellSiloavailabil
ity_zone

microserv
ice_name

instance_
name

instance_
type

os_versio
n

process_n
ame

jdk_versi
on

measure_n
ame

Timecpu_usercpu_syste
m

cpu_idlecpu_stealcpu_iowai
t

cpu_nicecpu_hicpu_simemory_us
ed

memory_ca
ched

disk_io_r
eads

latency_p
er_read

disk_io_w
rites

latency_p
er_write

disk_useddisk_freenetwork_b
ytes_in

network_b
ytes_out

file_desc
riptors_i
n_use

memory_fr
ee

task_end_
state

gc_pausetask_comp
leted

gc_reclai
med

us-
east-2

us-
east-2
-
cell-1

us-
east-2
-
cell-1-
s
ilo-2

us-
east-2
-1

athenai-
zaZswmJ
k-
athena-
us-
east-2
-
cell-1-
s
ilo-2-000
00216.ama
zonaws.co
m

m5.8xlarg
e

AL2012 metrics11/12/202
1
12:36

580.78638.70.2190.4360.8290.3310.7345136.881.850.577.917.882.3647.6966.556.231.3

us-
east-2

us-
east-2
-
cell-1

us-
east-2
-
cell-1-
s
ilo-2

us-
east-2
-1

athenai-
zaZswmJ
k-
athena-
us-
east-2
-
cell-1-
s
ilo-2-000
00216.ama
zonaws.co
m

 host_mana
ger

JDK_8events11/12/202
1
12:43

 75.8SUCCESS_W
ITH_NO_RE
SULT

85.534864.8

Patterns and examples 367

Amazon Timestream Developer Guide

regionCellSiloavailabil
ity_zone

microserv
ice_name

instance_
name

instance_
type

os_versio
n

process_n
ame

jdk_versi
on

measure_n
ame

Timecpu_usercpu_syste
m

cpu_idlecpu_stealcpu_iowai
t

cpu_nicecpu_hicpu_simemory_us
ed

memory_ca
ched

disk_io_r
eads

latency_p
er_read

disk_io_w
rites

latency_p
er_write

disk_useddisk_freenetwork_b
ytes_in

network_b
ytes_out

file_desc
riptors_i
n_use

memory_fr
ee

task_end_
state

gc_pausetask_comp
leted

gc_reclai
med

us-
east-2

us-
east-2
-
cell-1

us-
east-2
-
cell-1-
s
ilo-2

us-
east-2
-1

athenai-
zaZswmJ
k-
athena-
us-
east-2
-
cell-1-
s
ilo-2-000
00216.ama
zonaws.co
m

 host_mana
ger

JDK_8events11/12/202
1
12:41

 7.47SUCCESS_W
ITH_RESUL
T

22.8427.45

us-
east-2

us-
east-2
-
cell-1

us-
east-2
-
cell-1-
s
ilo-2

us-
east-2
-1

athenai-
zaZswmJ
k-
athena-
us-
east-2
-
cell-1-
s
ilo-2-000
00216.ama
zonaws.co
m

 host_mana
ger

JDK_8events11/12/202
1
12:39

 64.1SUCCESS_W
ITH_RESUL
T

6.7724972.3

Patterns and examples 368

Amazon Timestream Developer Guide

regionCellSiloavailabil
ity_zone

microserv
ice_name

instance_
name

instance_
type

os_versio
n

process_n
ame

jdk_versi
on

measure_n
ame

Timecpu_usercpu_syste
m

cpu_idlecpu_stealcpu_iowai
t

cpu_nicecpu_hicpu_simemory_us
ed

memory_ca
ched

disk_io_r
eads

latency_p
er_read

disk_io_w
rites

latency_p
er_write

disk_useddisk_freenetwork_b
ytes_in

network_b
ytes_out

file_desc
riptors_i
n_use

memory_fr
ee

task_end_
state

gc_pausetask_comp
leted

gc_reclai
med

us-
east-2

us-
east-2
-
cell-1

us-
east-2
-
cell-1-
s
ilo-2

us-
east-2
-1

athenai-
zaZswmJ
k-
athena-
us-
east-2
-
cell-1-
s
ilo-2-000
00216.ama
zonaws.co
m

 host_mana
ger

JDK_8events11/12/202
1
12:38

 23SUCCESS_W
ITH_RESUL
T

53.313899

us-
east-2

us-
east-2
-
cell-1

us-
east-2
-
cell-1-
s
ilo-2

us-
east-2
-1

athenai-
zaZswmJ
k-
athena-
us-
east-2
-
cell-1-
s
ilo-2-000
00216.ama
zonaws.co
m

 host_mana
ger

JDK_8events11/12/202
1
12:36

 39.4SUCCESS_W
ITH_NO_RE
SULT

79.625482.9

Single-measure records

Timestream for LiveAnalytics also allows you to ingest the data with one measure per time series
record. Below are the schema details when ingested using single measure records.

Patterns and examples 369

Amazon Timestream Developer Guide

Table Schema

Below is the table schema once the data is ingested using multi-measure records. It is the output of
DESCRIBE query. Assuming the data is ingested into a database raw_data and table devops, below
is the query.

DESCRIBE "raw_data"."devops_single"

Column Type Timestream for LiveAnalytics
attribute type

availability_zone varchar DIMENSION

microservice_name varchar DIMENSION

instance_name varchar DIMENSION

process_name varchar DIMENSION

os_version varchar DIMENSION

jdk_version varchar DIMENSION

cell varchar DIMENSION

region varchar DIMENSION

silo varchar DIMENSION

instance_type varchar DIMENSION

measure_name varchar MEASURE_NAME

time timestamp TIMESTAMP

measure_value::double double MEASURE_VALUE

measure_value::bigint bigint MEASURE_VALUE

measure_value::varchar varchar MEASURE_VALUE

Patterns and examples 370

Amazon Timestream Developer Guide

Measure Schema

Below is the measure schema returned by the SHOW MEASURES query.

SHOW MEASURES FROM "raw_data"."devops_single"

measure_name data_type Dimensions

cpu_hi double [{'dimension_name': 'availabi
lity_zone', 'data_type':
'varchar'}, {'dimension_name':
'microservice_name',
'data_type': 'varchar'},
{'dimension_name': 'instance
_name', 'data_type': 'varchar'
}, {'dimension_name': 'os_versi
on', 'data_type': 'varchar'},
{'dimension_name': 'cell',
'data_type': 'varchar'},
{'dimension_name': 'region',
'data_type': 'varchar'},
{'dimension_name': 'silo',
'data_type': 'varchar'},
{'dimension_name': 'instance
_type', 'data_type': 'varchar'}]

cpu_idle double [{'dimension_name': 'availabi
lity_zone', 'data_type':
'varchar'}, {'dimension_name':
'microservice_name',
'data_type': 'varchar'},
{'dimension_name': 'instance
_name', 'data_type': 'varchar'
}, {'dimension_name': 'os_versi
on', 'data_type': 'varchar'},
{'dimension_name': 'cell',
'data_type': 'varchar'},

Patterns and examples 371

Amazon Timestream Developer Guide

measure_name data_type Dimensions

{'dimension_name': 'region',
'data_type': 'varchar'},
{'dimension_name': 'silo',
'data_type': 'varchar'},
{'dimension_name': 'instance
_type', 'data_type': 'varchar'}]

cpu_iowait double [{'dimension_name': 'availabi
lity_zone', 'data_type':
'varchar'}, {'dimension_name':
'microservice_name',
'data_type': 'varchar'},
{'dimension_name': 'instance
_name', 'data_type': 'varchar'
}, {'dimension_name': 'os_versi
on', 'data_type': 'varchar'},
{'dimension_name': 'cell',
'data_type': 'varchar'},
{'dimension_name': 'region',
'data_type': 'varchar'},
{'dimension_name': 'silo',
'data_type': 'varchar'},
{'dimension_name': 'instance
_type', 'data_type': 'varchar'}]

Patterns and examples 372

Amazon Timestream Developer Guide

measure_name data_type Dimensions

cpu_nice double [{'dimension_name': 'availabi
lity_zone', 'data_type':
'varchar'}, {'dimension_name':
'microservice_name',
'data_type': 'varchar'},
{'dimension_name': 'instance
_name', 'data_type': 'varchar'
}, {'dimension_name': 'os_versi
on', 'data_type': 'varchar'},
{'dimension_name': 'cell',
'data_type': 'varchar'},
{'dimension_name': 'region',
'data_type': 'varchar'},
{'dimension_name': 'silo',
'data_type': 'varchar'},
{'dimension_name': 'instance
_type', 'data_type': 'varchar'}]

Patterns and examples 373

Amazon Timestream Developer Guide

measure_name data_type Dimensions

cpu_si double [{'dimension_name': 'availabi
lity_zone', 'data_type':
'varchar'}, {'dimension_name':
'microservice_name',
'data_type': 'varchar'},
{'dimension_name': 'instance
_name', 'data_type': 'varchar'
}, {'dimension_name': 'os_versi
on', 'data_type': 'varchar'},
{'dimension_name': 'cell',
'data_type': 'varchar'},
{'dimension_name': 'region',
'data_type': 'varchar'},
{'dimension_name': 'silo',
'data_type': 'varchar'},
{'dimension_name': 'instance
_type', 'data_type': 'varchar'}]

Patterns and examples 374

Amazon Timestream Developer Guide

measure_name data_type Dimensions

cpu_steal double [{'dimension_name': 'availabi
lity_zone', 'data_type':
'varchar'}, {'dimension_name':
'microservice_name',
'data_type': 'varchar'},
{'dimension_name': 'instance
_name', 'data_type': 'varchar'
}, {'dimension_name': 'os_versi
on', 'data_type': 'varchar'},
{'dimension_name': 'cell',
'data_type': 'varchar'},
{'dimension_name': 'region',
'data_type': 'varchar'},
{'dimension_name': 'silo',
'data_type': 'varchar'},
{'dimension_name': 'instance
_type', 'data_type': 'varchar'}]

Patterns and examples 375

Amazon Timestream Developer Guide

measure_name data_type Dimensions

cpu_system double [{'dimension_name': 'availabi
lity_zone', 'data_type':
'varchar'}, {'dimension_name':
'microservice_name',
'data_type': 'varchar'},
{'dimension_name': 'instance
_name', 'data_type': 'varchar'
}, {'dimension_name': 'os_versi
on', 'data_type': 'varchar'},
{'dimension_name': 'cell',
'data_type': 'varchar'},
{'dimension_name': 'region',
'data_type': 'varchar'},
{'dimension_name': 'silo',
'data_type': 'varchar'},
{'dimension_name': 'instance
_type', 'data_type': 'varchar'}]

Patterns and examples 376

Amazon Timestream Developer Guide

measure_name data_type Dimensions

cpu_user double [{'dimension_name': 'availabi
lity_zone', 'data_type':
'varchar'}, {'dimension_name':
'microservice_name',
'data_type': 'varchar'},
{'dimension_name': 'instance
_name', 'data_type': 'varchar'
}, {'dimension_name': 'os_versi
on', 'data_type': 'varchar'},
{'dimension_name': 'cell',
'data_type': 'varchar'},
{'dimension_name': 'region',
'data_type': 'varchar'},
{'dimension_name': 'silo',
'data_type': 'varchar'},
{'dimension_name': 'instance
_type', 'data_type': 'varchar'}]

Patterns and examples 377

Amazon Timestream Developer Guide

measure_name data_type Dimensions

disk_free double [{'dimension_name': 'availabi
lity_zone', 'data_type':
'varchar'}, {'dimension_name':
'microservice_name',
'data_type': 'varchar'},
{'dimension_name': 'instance
_name', 'data_type': 'varchar'
}, {'dimension_name': 'os_versi
on', 'data_type': 'varchar'},
{'dimension_name': 'cell',
'data_type': 'varchar'},
{'dimension_name': 'region',
'data_type': 'varchar'},
{'dimension_name': 'silo',
'data_type': 'varchar'},
{'dimension_name': 'instance
_type', 'data_type': 'varchar'}]

Patterns and examples 378

Amazon Timestream Developer Guide

measure_name data_type Dimensions

disk_io_reads double [{'dimension_name': 'availabi
lity_zone', 'data_type':
'varchar'}, {'dimension_name':
'microservice_name',
'data_type': 'varchar'},
{'dimension_name': 'instance
_name', 'data_type': 'varchar'
}, {'dimension_name': 'os_versi
on', 'data_type': 'varchar'},
{'dimension_name': 'cell',
'data_type': 'varchar'},
{'dimension_name': 'region',
'data_type': 'varchar'},
{'dimension_name': 'silo',
'data_type': 'varchar'},
{'dimension_name': 'instance
_type', 'data_type': 'varchar'}]

Patterns and examples 379

Amazon Timestream Developer Guide

measure_name data_type Dimensions

disk_io_writes double [{'dimension_name': 'availabi
lity_zone', 'data_type':
'varchar'}, {'dimension_name':
'microservice_name',
'data_type': 'varchar'},
{'dimension_name': 'instance
_name', 'data_type': 'varchar'
}, {'dimension_name': 'os_versi
on', 'data_type': 'varchar'},
{'dimension_name': 'cell',
'data_type': 'varchar'},
{'dimension_name': 'region',
'data_type': 'varchar'},
{'dimension_name': 'silo',
'data_type': 'varchar'},
{'dimension_name': 'instance
_type', 'data_type': 'varchar'}]

Patterns and examples 380

Amazon Timestream Developer Guide

measure_name data_type Dimensions

disk_used double [{'dimension_name': 'availabi
lity_zone', 'data_type':
'varchar'}, {'dimension_name':
'microservice_name',
'data_type': 'varchar'},
{'dimension_name': 'instance
_name', 'data_type': 'varchar'
}, {'dimension_name': 'os_versi
on', 'data_type': 'varchar'},
{'dimension_name': 'cell',
'data_type': 'varchar'},
{'dimension_name': 'region',
'data_type': 'varchar'},
{'dimension_name': 'silo',
'data_type': 'varchar'},
{'dimension_name': 'instance
_type', 'data_type': 'varchar'}]

Patterns and examples 381

Amazon Timestream Developer Guide

measure_name data_type Dimensions

file_descriptors_in_use double [{'dimension_name': 'availabi
lity_zone', 'data_type':
'varchar'}, {'dimension_name':
'microservice_name',
'data_type': 'varchar'},
{'dimension_name': 'instance
_name', 'data_type': 'varchar'
}, {'dimension_name': 'os_versi
on', 'data_type': 'varchar'},
{'dimension_name': 'cell',
'data_type': 'varchar'},
{'dimension_name': 'region',
'data_type': 'varchar'},
{'dimension_name': 'silo',
'data_type': 'varchar'},
{'dimension_name': 'instance
_type', 'data_type': 'varchar'}]

Patterns and examples 382

Amazon Timestream Developer Guide

measure_name data_type Dimensions

gc_pause double [{'dimension_name': 'availabi
lity_zone', 'data_type':
'varchar'}, {'dimension_name':
'microservice_name',
'data_type': 'varchar'},
{'dimension_name': 'instance
_name', 'data_type': 'varchar'},
{'dimension_name': 'process_
name', 'data_type': 'varchar'},
{'dimension_name': 'jdk_vers
ion', 'data_type': 'varchar'
}, {'dimension_name': 'cell',
'data_type': 'varchar'},
{'dimension_name': 'region',
'data_type': 'varchar'},
{'dimension_name': 'silo',
'data_type': 'varchar'}]

Patterns and examples 383

Amazon Timestream Developer Guide

measure_name data_type Dimensions

gc_reclaimed double [{'dimension_name': 'availabi
lity_zone', 'data_type':
'varchar'}, {'dimension_name':
'microservice_name',
'data_type': 'varchar'},
{'dimension_name': 'instance
_name', 'data_type': 'varchar'},
{'dimension_name': 'process_
name', 'data_type': 'varchar'},
{'dimension_name': 'jdk_vers
ion', 'data_type': 'varchar'
}, {'dimension_name': 'cell',
'data_type': 'varchar'},
{'dimension_name': 'region',
'data_type': 'varchar'},
{'dimension_name': 'silo',
'data_type': 'varchar'}]

Patterns and examples 384

Amazon Timestream Developer Guide

measure_name data_type Dimensions

latency_per_read double [{'dimension_name': 'availabi
lity_zone', 'data_type':
'varchar'}, {'dimension_name':
'microservice_name',
'data_type': 'varchar'},
{'dimension_name': 'instance
_name', 'data_type': 'varchar'
}, {'dimension_name': 'os_versi
on', 'data_type': 'varchar'},
{'dimension_name': 'cell',
'data_type': 'varchar'},
{'dimension_name': 'region',
'data_type': 'varchar'},
{'dimension_name': 'silo',
'data_type': 'varchar'},
{'dimension_name': 'instance
_type', 'data_type': 'varchar'}]

Patterns and examples 385

Amazon Timestream Developer Guide

measure_name data_type Dimensions

latency_per_write double [{'dimension_name': 'availabi
lity_zone', 'data_type':
'varchar'}, {'dimension_name':
'microservice_name',
'data_type': 'varchar'},
{'dimension_name': 'instance
_name', 'data_type': 'varchar'
}, {'dimension_name': 'os_versi
on', 'data_type': 'varchar'},
{'dimension_name': 'cell',
'data_type': 'varchar'},
{'dimension_name': 'region',
'data_type': 'varchar'},
{'dimension_name': 'silo',
'data_type': 'varchar'},
{'dimension_name': 'instance
_type', 'data_type': 'varchar'}]

Patterns and examples 386

Amazon Timestream Developer Guide

measure_name data_type Dimensions

memory_cached double [{'dimension_name': 'availabi
lity_zone', 'data_type':
'varchar'}, {'dimension_name':
'microservice_name',
'data_type': 'varchar'},
{'dimension_name': 'instance
_name', 'data_type': 'varchar'
}, {'dimension_name': 'os_versi
on', 'data_type': 'varchar'},
{'dimension_name': 'cell',
'data_type': 'varchar'},
{'dimension_name': 'region',
'data_type': 'varchar'},
{'dimension_name': 'silo',
'data_type': 'varchar'},
{'dimension_name': 'instance
_type', 'data_type': 'varchar'}]

Patterns and examples 387

Amazon Timestream Developer Guide

measure_name data_type Dimensions

memory_free double [{'dimension_name': 'availabi
lity_zone', 'data_type':
'varchar'}, {'dimension_name':
'microservice_name',
'data_type': 'varchar'},
{'dimension_name': 'instance
_name', 'data_type': 'varchar'},
{'dimension_name': 'process_
name', 'data_type': 'varchar'},
{'dimension_name': 'os_versi
on', 'data_type': 'varchar'},
{'dimension_name': 'jdk_vers
ion', 'data_type': 'varchar'
}, {'dimension_name': 'cell',
'data_type': 'varchar'},
{'dimension_name': 'region',
'data_type': 'varchar'},
{'dimension_name': 'silo',
'data_type': 'varchar'},
{'dimension_name': 'instance
_type', 'data_type': 'varchar'}]

Patterns and examples 388

Amazon Timestream Developer Guide

measure_name data_type Dimensions

memory_used double [{'dimension_name': 'availabi
lity_zone', 'data_type':
'varchar'}, {'dimension_name':
'microservice_name',
'data_type': 'varchar'},
{'dimension_name': 'instance
_name', 'data_type': 'varchar'
}, {'dimension_name': 'os_versi
on', 'data_type': 'varchar'},
{'dimension_name': 'cell',
'data_type': 'varchar'},
{'dimension_name': 'region',
'data_type': 'varchar'},
{'dimension_name': 'silo',
'data_type': 'varchar'},
{'dimension_name': 'instance
_type', 'data_type': 'varchar'}]

Patterns and examples 389

Amazon Timestream Developer Guide

measure_name data_type Dimensions

network_bytes_in double [{'dimension_name': 'availabi
lity_zone', 'data_type':
'varchar'}, {'dimension_name':
'microservice_name',
'data_type': 'varchar'},
{'dimension_name': 'instance
_name', 'data_type': 'varchar'
}, {'dimension_name': 'os_versi
on', 'data_type': 'varchar'},
{'dimension_name': 'cell',
'data_type': 'varchar'},
{'dimension_name': 'region',
'data_type': 'varchar'},
{'dimension_name': 'silo',
'data_type': 'varchar'},
{'dimension_name': 'instance
_type', 'data_type': 'varchar'}]

Patterns and examples 390

Amazon Timestream Developer Guide

measure_name data_type Dimensions

network_bytes_out double [{'dimension_name': 'availabi
lity_zone', 'data_type':
'varchar'}, {'dimension_name':
'microservice_name',
'data_type': 'varchar'},
{'dimension_name': 'instance
_name', 'data_type': 'varchar'
}, {'dimension_name': 'os_versi
on', 'data_type': 'varchar'},
{'dimension_name': 'cell',
'data_type': 'varchar'},
{'dimension_name': 'region',
'data_type': 'varchar'},
{'dimension_name': 'silo',
'data_type': 'varchar'},
{'dimension_name': 'instance
_type', 'data_type': 'varchar'}]

Patterns and examples 391

Amazon Timestream Developer Guide

measure_name data_type Dimensions

task_completed bigint [{'dimension_name': 'availabi
lity_zone', 'data_type':
'varchar'}, {'dimension_name':
'microservice_name',
'data_type': 'varchar'},
{'dimension_name': 'instance
_name', 'data_type': 'varchar'},
{'dimension_name': 'process_
name', 'data_type': 'varchar'},
{'dimension_name': 'jdk_vers
ion', 'data_type': 'varchar'
}, {'dimension_name': 'cell',
'data_type': 'varchar'},
{'dimension_name': 'region',
'data_type': 'varchar'},
{'dimension_name': 'silo',
'data_type': 'varchar'}]

Patterns and examples 392

Amazon Timestream Developer Guide

measure_name data_type Dimensions

task_end_state varchar [{'dimension_name': 'availabi
lity_zone', 'data_type':
'varchar'}, {'dimension_name':
'microservice_name',
'data_type': 'varchar'},
{'dimension_name': 'instance
_name', 'data_type': 'varchar'},
{'dimension_name': 'process_
name', 'data_type': 'varchar'},
{'dimension_name': 'jdk_vers
ion', 'data_type': 'varchar'
}, {'dimension_name': 'cell',
'data_type': 'varchar'},
{'dimension_name': 'region',
'data_type': 'varchar'},
{'dimension_name': 'silo',
'data_type': 'varchar'}]

Example Data

availabil
ity_zone

microserv
ice_name

instance_
name

process_n
ame

os_versio
n

jdk_versi
on

Cell regionSilo instance_
type

measure_n
ame

Time measure_v
alue::dou
ble

measure_v
alue::big
int

measure_v
alue::var
char

eu-
west-1
-1

herculesi-
zaZswmJ
k-
hercule
s-
eu-
west
-1-
cell-9
-

 AL2012 eu-
west-1
-
cell-9

eu-
west-1

eu-
west-1
-
cell-9-
s
ilo-2

r5.4xlarg
e

cpu_hi34:57.20.87169

Patterns and examples 393

Amazon Timestream Developer Guide

availabil
ity_zone

microserv
ice_name

instance_
name

process_n
ame

os_versio
n

jdk_versi
on

Cell regionSilo instance_
type

measure_n
ame

Time measure_v
alue::dou
ble

measure_v
alue::big
int

measure_v
alue::var
char

silo-2-0
0000027.a
mazonaws.
com

eu-
west-1
-1

herculesi-
zaZswmJ
k-
hercule
s-
eu-
west
-1-
cell-9
-
silo-2-0
0000027.a
mazonaws.
com

 AL2012 eu-
west-1
-
cell-9

eu-
west-1

eu-
west-1
-
cell-9-
s
ilo-2

r5.4xlarg
e

cpu_idle34:57.23.46266

Patterns and examples 394

Amazon Timestream Developer Guide

availabil
ity_zone

microserv
ice_name

instance_
name

process_n
ame

os_versio
n

jdk_versi
on

Cell regionSilo instance_
type

measure_n
ame

Time measure_v
alue::dou
ble

measure_v
alue::big
int

measure_v
alue::var
char

eu-
west-1
-1

herculesi-
zaZswmJ
k-
hercule
s-
eu-
west
-1-
cell-9
-
silo-2-0
0000027.a
mazonaws.
com

 AL2012 eu-
west-1
-
cell-9

eu-
west-1

eu-
west-1
-
cell-9-
s
ilo-2

r5.4xlarg
e

cpu_iowai
t

34:57.20.10226

eu-
west-1
-1

herculesi-
zaZswmJ
k-
hercule
s-
eu-
west
-1-
cell-9
-
silo-2-0
0000027.a
mazonaws.
com

 AL2012 eu-
west-1
-
cell-9

eu-
west-1

eu-
west-1
-
cell-9-
s
ilo-2

r5.4xlarg
e

cpu_nice34:57.20.63013

Patterns and examples 395

Amazon Timestream Developer Guide

availabil
ity_zone

microserv
ice_name

instance_
name

process_n
ame

os_versio
n

jdk_versi
on

Cell regionSilo instance_
type

measure_n
ame

Time measure_v
alue::dou
ble

measure_v
alue::big
int

measure_v
alue::var
char

eu-
west-1
-1

herculesi-
zaZswmJ
k-
hercule
s-
eu-
west
-1-
cell-9
-
silo-2-0
0000027.a
mazonaws.
com

 AL2012 eu-
west-1
-
cell-9

eu-
west-1

eu-
west-1
-
cell-9-
s
ilo-2

r5.4xlarg
e

cpu_si 34:57.20.16441

eu-
west-1
-1

herculesi-
zaZswmJ
k-
hercule
s-
eu-
west
-1-
cell-9
-
silo-2-0
0000027.a
mazonaws.
com

 AL2012 eu-
west-1
-
cell-9

eu-
west-1

eu-
west-1
-
cell-9-
s
ilo-2

r5.4xlarg
e

cpu_steal34:57.20.10729

Patterns and examples 396

Amazon Timestream Developer Guide

availabil
ity_zone

microserv
ice_name

instance_
name

process_n
ame

os_versio
n

jdk_versi
on

Cell regionSilo instance_
type

measure_n
ame

Time measure_v
alue::dou
ble

measure_v
alue::big
int

measure_v
alue::var
char

eu-
west-1
-1

herculesi-
zaZswmJ
k-
hercule
s-
eu-
west
-1-
cell-9
-
silo-2-0
0000027.a
mazonaws.
com

 AL2012 eu-
west-1
-
cell-9

eu-
west-1

eu-
west-1
-
cell-9-
s
ilo-2

r5.4xlarg
e

cpu_syste
m

34:57.20.45709

eu-
west-1
-1

herculesi-
zaZswmJ
k-
hercule
s-
eu-
west
-1-
cell-9
-
silo-2-0
0000027.a
mazonaws.
com

 AL2012 eu-
west-1
-
cell-9

eu-
west-1

eu-
west-1
-
cell-9-
s
ilo-2

r5.4xlarg
e

cpu_user34:57.294.20448

Patterns and examples 397

Amazon Timestream Developer Guide

availabil
ity_zone

microserv
ice_name

instance_
name

process_n
ame

os_versio
n

jdk_versi
on

Cell regionSilo instance_
type

measure_n
ame

Time measure_v
alue::dou
ble

measure_v
alue::big
int

measure_v
alue::var
char

eu-
west-1
-1

herculesi-
zaZswmJ
k-
hercule
s-
eu-
west
-1-
cell-9
-
silo-2-0
0000027.a
mazonaws.
com

 AL2012 eu-
west-1
-
cell-9

eu-
west-1

eu-
west-1
-
cell-9-
s
ilo-2

r5.4xlarg
e

disk_free34:57.272.51895

eu-
west-1
-1

herculesi-
zaZswmJ
k-
hercule
s-
eu-
west
-1-
cell-9
-
silo-2-0
0000027.a
mazonaws.
com

 AL2012 eu-
west-1
-
cell-9

eu-
west-1

eu-
west-1
-
cell-9-
s
ilo-2

r5.4xlarg
e

disk_io_r
eads

34:57.281.73383

Patterns and examples 398

Amazon Timestream Developer Guide

availabil
ity_zone

microserv
ice_name

instance_
name

process_n
ame

os_versio
n

jdk_versi
on

Cell regionSilo instance_
type

measure_n
ame

Time measure_v
alue::dou
ble

measure_v
alue::big
int

measure_v
alue::var
char

eu-
west-1
-1

herculesi-
zaZswmJ
k-
hercule
s-
eu-
west
-1-
cell-9
-
silo-2-0
0000027.a
mazonaws.
com

 AL2012 eu-
west-1
-
cell-9

eu-
west-1

eu-
west-1
-
cell-9-
s
ilo-2

r5.4xlarg
e

disk_io_w
rites

34:57.277.11665

eu-
west-1
-1

herculesi-
zaZswmJ
k-
hercule
s-
eu-
west
-1-
cell-9
-
silo-2-0
0000027.a
mazonaws.
com

 AL2012 eu-
west-1
-
cell-9

eu-
west-1

eu-
west-1
-
cell-9-
s
ilo-2

r5.4xlarg
e

disk_used34:57.289.42235

Patterns and examples 399

Amazon Timestream Developer Guide

availabil
ity_zone

microserv
ice_name

instance_
name

process_n
ame

os_versio
n

jdk_versi
on

Cell regionSilo instance_
type

measure_n
ame

Time measure_v
alue::dou
ble

measure_v
alue::big
int

measure_v
alue::var
char

eu-
west-1
-1

herculesi-
zaZswmJ
k-
hercule
s-
eu-
west
-1-
cell-9
-
silo-2-0
0000027.a
mazonaws.
com

 AL2012 eu-
west-1
-
cell-9

eu-
west-1

eu-
west-1
-
cell-9-
s
ilo-2

r5.4xlarg
e

file_desc
riptors_i
n_use

34:57.230.08254

eu-
west-1
-1

herculesi-
zaZswmJ
k-
hercule
s-
eu-
west
-1-
cell-9
-
silo-2-0
0000027.a
mazonaws.
com

server JDK_8 eu-
west-1
-
cell-9

eu-
west-1

eu-
west-1
-
cell-9-
s
ilo-2

 gc_pause34:57.260.28679

Patterns and examples 400

Amazon Timestream Developer Guide

availabil
ity_zone

microserv
ice_name

instance_
name

process_n
ame

os_versio
n

jdk_versi
on

Cell regionSilo instance_
type

measure_n
ame

Time measure_v
alue::dou
ble

measure_v
alue::big
int

measure_v
alue::var
char

eu-
west-1
-1

herculesi-
zaZswmJ
k-
hercule
s-
eu-
west
-1-
cell-9
-
silo-2-0
0000027.a
mazonaws.
com

server JDK_8 eu-
west-1
-
cell-9

eu-
west-1

eu-
west-1
-
cell-9-
s
ilo-2

 gc_reclai
med

34:57.275.28839

eu-
west-1
-1

herculesi-
zaZswmJ
k-
hercule
s-
eu-
west
-1-
cell-9
-
silo-2-0
0000027.a
mazonaws.
com

 AL2012 eu-
west-1
-
cell-9

eu-
west-1

eu-
west-1
-
cell-9-
s
ilo-2

r5.4xlarg
e

latency_p
er_read

34:57.28.07605

Patterns and examples 401

Amazon Timestream Developer Guide

availabil
ity_zone

microserv
ice_name

instance_
name

process_n
ame

os_versio
n

jdk_versi
on

Cell regionSilo instance_
type

measure_n
ame

Time measure_v
alue::dou
ble

measure_v
alue::big
int

measure_v
alue::var
char

eu-
west-1
-1

herculesi-
zaZswmJ
k-
hercule
s-
eu-
west
-1-
cell-9
-
silo-2-0
0000027.a
mazonaws.
com

 AL2012 eu-
west-1
-
cell-9

eu-
west-1

eu-
west-1
-
cell-9-
s
ilo-2

r5.4xlarg
e

latency_p
er_write

34:57.258.11223

eu-
west-1
-1

herculesi-
zaZswmJ
k-
hercule
s-
eu-
west
-1-
cell-9
-
silo-2-0
0000027.a
mazonaws.
com

 AL2012 eu-
west-1
-
cell-9

eu-
west-1

eu-
west-1
-
cell-9-
s
ilo-2

r5.4xlarg
e

memory_ca
ched

34:57.287.56481

Patterns and examples 402

Amazon Timestream Developer Guide

availabil
ity_zone

microserv
ice_name

instance_
name

process_n
ame

os_versio
n

jdk_versi
on

Cell regionSilo instance_
type

measure_n
ame

Time measure_v
alue::dou
ble

measure_v
alue::big
int

measure_v
alue::var
char

eu-
west-1
-1

herculesi-
zaZswmJ
k-
hercule
s-
eu-
west
-1-
cell-9
-
silo-2-0
0000027.a
mazonaws.
com

server JDK_8 eu-
west-1
-
cell-9

eu-
west-1

eu-
west-1
-
cell-9-
s
ilo-2

 memory_fr
ee

34:57.218.95768

eu-
west-1
-1

herculesi-
zaZswmJ
k-
hercule
s-
eu-
west
-1-
cell-9
-
silo-2-0
0000027.a
mazonaws.
com

 AL2012 eu-
west-1
-
cell-9

eu-
west-1

eu-
west-1
-
cell-9-
s
ilo-2

r5.4xlarg
e

memory_fr
ee

34:57.297.20523

Patterns and examples 403

Amazon Timestream Developer Guide

availabil
ity_zone

microserv
ice_name

instance_
name

process_n
ame

os_versio
n

jdk_versi
on

Cell regionSilo instance_
type

measure_n
ame

Time measure_v
alue::dou
ble

measure_v
alue::big
int

measure_v
alue::var
char

eu-
west-1
-1

herculesi-
zaZswmJ
k-
hercule
s-
eu-
west
-1-
cell-9
-
silo-2-0
0000027.a
mazonaws.
com

 AL2012 eu-
west-1
-
cell-9

eu-
west-1

eu-
west-1
-
cell-9-
s
ilo-2

r5.4xlarg
e

memory_us
ed

34:57.212.37723

eu-
west-1
-1

herculesi-
zaZswmJ
k-
hercule
s-
eu-
west
-1-
cell-9
-
silo-2-0
0000027.a
mazonaws.
com

 AL2012 eu-
west-1
-
cell-9

eu-
west-1

eu-
west-1
-
cell-9-
s
ilo-2

r5.4xlarg
e

network_b
ytes_in

34:57.231.02065

Patterns and examples 404

Amazon Timestream Developer Guide

availabil
ity_zone

microserv
ice_name

instance_
name

process_n
ame

os_versio
n

jdk_versi
on

Cell regionSilo instance_
type

measure_n
ame

Time measure_v
alue::dou
ble

measure_v
alue::big
int

measure_v
alue::var
char

eu-
west-1
-1

herculesi-
zaZswmJ
k-
hercule
s-
eu-
west
-1-
cell-9
-
silo-2-0
0000027.a
mazonaws.
com

 AL2012 eu-
west-1
-
cell-9

eu-
west-1

eu-
west-1
-
cell-9-
s
ilo-2

r5.4xlarg
e

network_b
ytes_out

34:57.20.51424

eu-
west-1
-1

herculesi-
zaZswmJ
k-
hercule
s-
eu-
west
-1-
cell-9
-
silo-2-0
0000027.a
mazonaws.
com

server JDK_8 eu-
west-1
-
cell-9

eu-
west-1

eu-
west-1
-
cell-9-
s
ilo-2

 task_comp
leted

34:57.2 69

Patterns and examples 405

Amazon Timestream Developer Guide

availabil
ity_zone

microserv
ice_name

instance_
name

process_n
ame

os_versio
n

jdk_versi
on

Cell regionSilo instance_
type

measure_n
ame

Time measure_v
alue::dou
ble

measure_v
alue::big
int

measure_v
alue::var
char

eu-
west-1
-1

herculesi-
zaZswmJ
k-
hercule
s-
eu-
west
-1-
cell-9
-
silo-2-0
0000027.a
mazonaws.
com

server JDK_8 eu-
west-1
-
cell-9

eu-
west-1

eu-
west-1
-
cell-9-
s
ilo-2

 task_end_
state

34:57.2 SUCCESS_W
ITH_RESUL
T

Scheduled query patterns

In this section you will find some common patterns of how you can use Amazon Timestream for
LiveAnalytics Scheduled Queries to optimize your dashboards to load faster and at reduced costs.
The examples below use a DevOps application scenario to illustrate the key concepts which apply
to scheduled queries in general, irrespective of the application scenario.

Scheduled Queries in Timestream for LiveAnalytics allow you to express your queries using the
full SQL surface area of Timestream for LiveAnalytics. Your query can include one or more source
tables, perform aggregations or any other query allowed by Timestream for LiveAnalytics's SQL
language, and then materialize the results of the query in another destination table in Timestream
for LiveAnalytics. For ease of exposition, this section refers to this target table of a scheduled query
as a derived table.

The following are the key points that are covered in this section.

• Using a simple fleet-level aggregate to explain how you can define a scheduled query and
understand some basic concepts.

Patterns and examples 406

Amazon Timestream Developer Guide

• How you can combine results from the target of a scheduled query (the derived table) with the
results from the source table to get the cost and performance benefits of scheduled query.

• What are your trade-offs when configuring the refresh period of the scheduled queries.

• Using scheduled queries for some common scenarios.

• Tracking the last data point from every instance before a specific date.

• Distinct values for a dimension to use for populating variables in a dashboard.

• How you handle late arriving data in the context of scheduled queries.

• How you can use one-off manual executions to handle a variety of scenarios not directly covered
by automated triggers for scheduled queries.

Topics

• Scenario

• Simple fleet-level aggregates

• Last point from each device

• Unique dimension values

• Handling late-arriving data

• Back-filling historical pre-computations

Scenario

The following examples use a DevOps monitoring scenario which is outlined in Scheduled queries
sample schema.

The examples provide the scheduled query definition where you can plug in the appropriate
configurations for where to receive execution status notifications for scheduled queries, where to
receive reports for errors encountered during execution of a scheduled query, and the IAM role the
scheduled query uses to perform its operations.

You can create these scheduled queries after filling in the preceding options, creating the target
(or derived) table, and executing the through the Amazon CLI. For example, assume that a
scheduled query definition is stored in a file, scheduled_query_example.json. You can create
the query using the CLI command.

aws timestream-query create-scheduled-query --cli-input-json file://
scheduled_query_example.json --profile aws_profile --region us-east-1

Patterns and examples 407

https://docs.amazonaws.cn/timestream/latest/developerguide/code-samples.create-table.html

Amazon Timestream Developer Guide

In the preceding command, the profile passed using the --profile option must have the appropriate
permissions to create scheduled queries. See Identity-based policies for Scheduled Queries for
detailed instructions for the policies and permissions.

Simple fleet-level aggregates

This first example walks you through some of the basic concepts when working with scheduled
queries using a simple example computing fleet-level aggregates. Using this example, you will
learn the following.

• How to take your dashboard query that is used to obtain aggregate statistics and map it to a
scheduled query.

• How Timestream for LiveAnalytics manages the execution of the different instances of your
scheduled query.

• How you can have different instances of scheduled queries overlap in time ranges and how the
correctness of data is maintained on the target table to ensure that your dashboard using the
results of the scheduled query gives you results that match with the same aggregate computed
on the raw data.

• How to set the time range and refresh cadence for your scheduled query.

• How you can self-serve track the results of the scheduled queries to tune them so that the
execution latency for the query instances are within the acceptable delays of refreshing your
dashboards.

Topics

• Aggregate from source tables

• Scheduled query to pre-compute aggregates

• Aggregate from derived table

• Aggregate combining source and derived tables

• Aggregate from frequently refreshed scheduled computation

Aggregate from source tables

In this example, you are tracking the number of metrics emitted by the servers within a given
region in every minute. The graph below is an example plotting this time series for the region us-
east-1.

Patterns and examples 408

https://docs.amazonaws.cn/timestream/latest/developerguide/security_iam_id-based-policy-examples.html#security_iam_id-based-policy-examples-sheduledqueries

Amazon Timestream Developer Guide

Below is an example query to compute this aggregate from the raw data. It filters the rows for
the region us-east-1 and then computes the per minute sum by accounting for the 20 metrics
(if measure_name is metrics) or 5 events (if measure_name is events). In this example, the graph
illustration shows that the number of metrics emitted vary between 1.5 Million to 6 Million per
minute. When plotting this time series for several hours (past 12 hours in this figure), this query
over the raw data analyzes hundreds of millions of rows.

WITH grouped_data AS (
 SELECT region, bin(time, 1m) as minute, SUM(CASE WHEN measure_name = 'metrics' THEN
 20 ELSE 5 END) as numDataPoints
 FROM "raw_data"."devops"
 WHERE time BETWEEN from_milliseconds(1636699996445) AND
 from_milliseconds(1636743196445)
 AND region = 'us-east-1'
 GROUP BY region, measure_name, bin(time, 1m)
)
SELECT minute, SUM(numDataPoints) AS numDataPoints
FROM grouped_data
GROUP BY minute
ORDER BY 1 desc, 2 desc

Scheduled query to pre-compute aggregates

If you would like to optimize your dashboards to load faster and lower your costs by scanning
less data, you can use a scheduled query to pre-compute these aggregates. Scheduled queries
in Timestream for LiveAnalytics allows you to materialize these pre-computations in another
Timestream for LiveAnalytics table, which you can subsequently use for your dashboards.

Patterns and examples 409

Amazon Timestream Developer Guide

The first step in creating a scheduled query is to identify the query you want to pre-compute.
Note that the preceding dashboard was drawn for region us-east-1. However, a different user may
want the same aggregate for a different region, say us-west-2 or eu-west-1. To avoid creating a
scheduled query for each such query, you can pre-compute the aggregate for each region and
materialize the per-region aggregates in another Timestream for LiveAnalytics table.

The query below provides an example of the corresponding pre-computation. As you can see, it is
similar to the common table expression grouped_data used in the query on the raw data, except
for two differences: 1) it does not use a region predicate, so that we can use one query to pre-
compute for all regions; and 2) it uses a parameterized time predicate with a special parameter
@scheduled_runtime which is explained in details below.

SELECT region, bin(time, 1m) as minute,
 SUM(CASE WHEN measure_name = 'metrics' THEN 20 ELSE 5 END) as numDataPoints
FROM raw_data.devops
WHERE time BETWEEN @scheduled_runtime - 10m AND @scheduled_runtime + 1m
GROUP BY bin(time, 1m), region

The preceding query can be converted into a scheduled query using the following
specification. The scheduled query is assigned a Name, which is a user-friendly mnemonic.
It then includes the QueryString, a ScheduleConfiguration, which is a cron expression. It
specifies the TargetConfiguration which maps the query results to the destination table in
Timestream for LiveAnalytics. Finally, it specifies a number of other configurations, such as the
NotificationConfiguration, where notifications are sent for individual executions of the query,
ErrorReportConfiguration where a report is written in case the query encounters any errors,
and the ScheduledQueryExecutionRoleArn, which is the role used to perform operations for the
scheduled query.

{
 "Name": "MultiPT5mPerMinutePerRegionMeasureCount",
 "QueryString": "SELECT region, bin(time, 1m) as minute, SUM(CASE WHEN measure_name
 = 'metrics' THEN 20 ELSE 5 END) as numDataPoints FROM raw_data.devops WHERE time
 BETWEEN @scheduled_runtime - 10m AND @scheduled_runtime + 1m GROUP BY bin(time, 1m),
 region",
 "ScheduleConfiguration": {
 "ScheduleExpression": "cron(0/5 * * * ? *)"
 },
 "NotificationConfiguration": {
 "SnsConfiguration": {
 "TopicArn": "******"

Patterns and examples 410

https://docs.amazonaws.cn/timestream/latest/developerguide/scheduledqueries-schedule.html

Amazon Timestream Developer Guide

 }
 },
 "TargetConfiguration": {
 "TimestreamConfiguration": {
 "DatabaseName": "derived",
 "TableName": "per_minute_aggs_pt5m",
 "TimeColumn": "minute",
 "DimensionMappings": [
 {
 "Name": "region",
 "DimensionValueType": "VARCHAR"
 }
],
 "MultiMeasureMappings": {
 "TargetMultiMeasureName": "numDataPoints",
 "MultiMeasureAttributeMappings": [
 {
 "SourceColumn": "numDataPoints",
 "MeasureValueType": "BIGINT"
 }
]
 }
 }
 },
 "ErrorReportConfiguration": {
 "S3Configuration" : {
 "BucketName" : "******",
 "ObjectKeyPrefix": "errors",
 "EncryptionOption": "SSE_S3"
 }
 },
 "ScheduledQueryExecutionRoleArn": "******"
}

In the example, the ScheduleExpression cron(0/5 * * * ? *) implies that the query is executed once
every 5 minutes at the 5th, 10th, 15th, .. minutes of every hour of every day. These timestamps
when a specific instance of this query is triggered is what translates to the @scheduled_runtime
parameter used in the query. For instance, consider the instance of this scheduled query executing
on 2021-12-01 00:00:00. For this instance, the @scheduled_runtime parameter is initialized to
the timestamp 2021-12-01 00:00:00 when invoking the query. Therefore, this specific instance
will execute at timestamp 2021-12-01 00:00:00 and will compute the per-minute aggregates
from time range 2021-11-30 23:50:00 to 2021-12-01 00:01:00. Similarly, the next instance of this

Patterns and examples 411

Amazon Timestream Developer Guide

query is triggered at timestamp 2021-12-01 00:05:00 and in that case, the query will compute per-
minute aggregates from the time range 2021-11-30 23:55:00 to 2021-12-01 00:06:00. Hence, the
@scheduled_runtime parameter provides a scheduled query to pre-compute the aggregates for the
configured time ranges using the invocation time for the queries.

Note that two subsequent instances of the query overlap in their time ranges. This is something
you can control based on your requirements. In this case, this overlap allows these queries to
update the aggregates based on any data whose arrival was slightly delayed, up to 5 minutes in
this example. To ensure correctness of the materialized queries, Timestream for LiveAnalytics
ensures that the query at 2021-12-01 00:05:00 will be performed only after the query at
2021-12-01 00:00:00 has completed and the results of the latter queries can update any previously
materialized aggregate using if a newer value is generated. For example, if some data at timestamp
2021-11-30 23:59:00 arrived after the query for 2021-12-01 00:00:00 executed but before the
query for 2021-12-01 00:05:00, then the execution at 2021-12-01 00:05:00 will recompute the
aggregates for the minute 2021-11-30 23:59:00 and this will result in the previous aggregate
being updated with the newly-computed value. You can rely on these semantics of the scheduled
queries to strike a trade-off between how quickly you update your pre-computations versus how
you can gracefully handle some data with delayed arrival. Additional considerations are discussed
below on how you trade-off this refresh cadence with freshness of the data and how you address
updating the aggregates for data that arrives even more delayed or if your source of the scheduled
computation has updated values which would require the aggregates to be recomputed.

Every scheduled computation has a notification configuration where Timestream for LiveAnalytics
sends notification of every execution of a scheduled configuration. You can configure an SNS topic
for to receive notifications for each invocation. In addition to the success or failure status of a
specific instance, it also has several statistics such as the time this computation took to execute, the
number of bytes the computation scanned, and the number of bytes the computation wrote to its
destination table. You can use these statistics to further tune your query, schedule configuration,
or track the spend for your scheduled queries. One aspect worth noting is the execution time
for an instance. In this example, the scheduled computation is configured to execute the every
5 minutes. The execution time will determine the delay with which the pre-computation will be
available, which will also define the lag in your dashboard when you're using the pre-computed
data in your dashboards. Furthermore, if this delay is consistently higher than the refresh interval,
for example, if the execution time is more than 5 minutes for a computation configured to refresh
every 5 minutes, it is important to tune your computation to run faster to avoid further lag in your
dashboards.

Patterns and examples 412

Amazon Timestream Developer Guide

Aggregate from derived table

Now that you have set up the scheduled queries and the aggregates are pre-computed and
materialized to another Timestream for LiveAnalytics table specified in the target configuration
of the scheduled computation, you can use the data in that table to write SQL queries to power
your dashboards. Below is an equivalent of the query that uses the materialized pre-aggregates to
generate the per minute data point count aggregate for us-east-1.

SELECT bin(time, 1m) as minute, SUM(numDataPoints) as numDatapoints
FROM "derived"."per_minute_aggs_pt5m"
WHERE time BETWEEN from_milliseconds(1636699996445) AND
 from_milliseconds(1636743196445)
 AND region = 'us-east-1'
GROUP BY bin(time, 1m)
ORDER BY 1 desc

The previous figure plots the aggregate computed from the aggregate table. Comparing this
panel with the panel computed from the raw source data, you will notice that they match up
exactly, albeit these aggregates are delayed by a few minute, controlled by the refresh interval you
configured for the scheduled computation plus the time to execute it.

This query over the pre-computed data scans several orders of magnitude lesser data compared to
the aggregates computed over the raw source data. Depending on the granularity of aggregations,
this reduction can easily result in 100X lower cost and query latency. There is a cost to executing
this scheduled computation. However, depending on how frequently these dashboards are
refreshed and how many concurrent users load these dashboards, you end up significantly reducing

Patterns and examples 413

Amazon Timestream Developer Guide

your overall costs by using these pre-computations. And this is on top of 10-100X faster load times
for the dashboards.

Aggregate combining source and derived tables

Dashboards created using the derived tables can have a lag. If your application scenario requires
the dashboards to have the most recent data, then you can use the power and flexibility of
Timestream for LiveAnalytics's SQL support to combine the latest data from the source table with
the historical aggregates from the derived table to form a merged view. This merged view uses
the union semantics of SQL and non-overlapping time ranges from the source and the derived
table. In the example below, we are using the "derived"."per_minute_aggs_pt5m" derived table.
Since the scheduled computation for that derived table refreshes once every 5 minutes (per the
schedule expression specification), this query below uses the most recent 15 minutes of data from
the source table, and any data older than 15 minutes from the derived table and then unions
the results to create the merged view that has the best of both worlds: the economics and low
latency by reading older pre-computed aggregates from the derived table and the freshness of the
aggregates from the source table to power your real time analytics use cases.

Note that this union approach will have slightly higher query latency compared to only querying
the derived table and also have slightly higher data scanned, since it is aggregating the raw data in
real time to fill in the most recent time interval. However, this merged view will still be significantly
faster and cheaper compared to aggregating on the fly from the source table, especially for
dashboards rendering days or weeks of data. You can tune the time ranges for this example to suite
your application's refresh needs and delay tolerance.

WITH aggregated_source_data AS (
 SELECT bin(time, 1m) as minute, SUM(CASE WHEN measure_name = 'metrics' THEN 20 ELSE
 5 END) as numDatapoints
 FROM "raw_data"."devops"
 WHERE time BETWEEN bin(from_milliseconds(1636743196439), 1m) - 15m AND
 from_milliseconds(1636743196439)
 AND region = 'us-east-1'
 GROUP BY bin(time, 1m)
), aggregated_derived_data AS (
 SELECT bin(time, 1m) as minute, SUM(numDataPoints) as numDatapoints
 FROM "derived"."per_minute_aggs_pt5m"
 WHERE time BETWEEN from_milliseconds(1636699996439) AND
 bin(from_milliseconds(1636743196439), 1m) - 15m
 AND region = 'us-east-1'
 GROUP BY bin(time, 1m)

Patterns and examples 414

Amazon Timestream Developer Guide

)
SELECT minute, numDatapoints
FROM (
 (
 SELECT *
 FROM aggregated_derived_data
)
 UNION
 (
 SELECT *
 FROM aggregated_source_data
)
)
ORDER BY 1 desc

Below is the dashboard panel with this unified merged view. As you can see, the dashboard looks
almost identical to the view computed from the derived table, except for that it will have the most
up-to-date aggregate at the rightmost tip.

Aggregate from frequently refreshed scheduled computation

Depending on how frequently your dashboards are loaded and how much latency you want
for your dashboard, there is another approach to obtaining fresher results in your dashboard:
having the scheduled computation refresh the aggregates more frequently. For instance, below is
configuration of the same scheduled computation, except that it refreshes once every minute (note
the schedule express cron(0/1 * * * ? *)). With this setup, the derived table per_minute_aggs_pt1m
will have much more recent aggregates compared to the scenario where the computation specified
a refresh schedule of once every 5 minutes.

Patterns and examples 415

Amazon Timestream Developer Guide

{
 "Name": "MultiPT1mPerMinutePerRegionMeasureCount",
 "QueryString": "SELECT region, bin(time, 1m) as minute, SUM(CASE WHEN measure_name
 = 'metrics' THEN 20 ELSE 5 END) as numDataPoints FROM raw_data.devops WHERE time
 BETWEEN @scheduled_runtime - 10m AND @scheduled_runtime + 1m GROUP BY bin(time, 1m),
 region",
 "ScheduleConfiguration": {
 "ScheduleExpression": "cron(0/1 * * * ? *)"
 },
 "NotificationConfiguration": {
 "SnsConfiguration": {
 "TopicArn": "******"
 }
 },
 "TargetConfiguration": {
 "TimestreamConfiguration": {
 "DatabaseName": "derived",
 "TableName": "per_minute_aggs_pt1m",
 "TimeColumn": "minute",
 "DimensionMappings": [
 {
 "Name": "region",
 "DimensionValueType": "VARCHAR"
 }
],
 "MultiMeasureMappings": {
 "TargetMultiMeasureName": "numDataPoints",
 "MultiMeasureAttributeMappings": [
 {
 "SourceColumn": "numDataPoints",
 "MeasureValueType": "BIGINT"
 }
]
 }
 }
 },
 "ErrorReportConfiguration": {
 "S3Configuration" : {
 "BucketName" : "******",
 "ObjectKeyPrefix": "errors",
 "EncryptionOption": "SSE_S3"
 }
 },

Patterns and examples 416

Amazon Timestream Developer Guide

 "ScheduledQueryExecutionRoleArn": "******"
}

SELECT bin(time, 1m) as minute, SUM(numDataPoints) as numDatapoints
FROM "derived"."per_minute_aggs_pt1m"
WHERE time BETWEEN from_milliseconds(1636699996446) AND
 from_milliseconds(1636743196446)
 AND region = 'us-east-1'
GROUP BY bin(time, 1m), region
ORDER BY 1 desc

Since the derived table has more recent aggregates, you can now directly query the derived table
per_minute_aggs_pt1m to get fresher aggregates, as can be seen from the previous query and the
dashboard snapshot below.

Note that refreshing the scheduled computation at a faster schedule (say 1 minute compared to
5 minutes) will increase the maintenance costs for the scheduled computation. The notification
message for every computation's execution provides statistics for how much data was scanned
and how much was written to the derived table. Similarly, if you use the merged view to union the
derived table, you query costs on the merged view and the dashboard load latency will be higher
compared to only querying the derived table. Therefore, the approach you pick will depend on how
frequently your dashboards are refreshed and the maintenance costs for the scheduled queries. If
you have tens of users refreshing the dashboards once every minute or so, having a more frequent
refresh of your derived table will likely result in overall lower costs.

Patterns and examples 417

Amazon Timestream Developer Guide

Last point from each device

Your application may require you to read the last measurement emitted by a device. There can be
more general use cases to obtain the last measurement for a device before a given date/time or
the first measurement for a device after a given date/time. When you have millions of devices and
years of data, this search might require scanning large amounts of data.

Below you will see an example of how you can use scheduled queries to optimize searching for the
last point emitted by a device. You can use the same pattern to optimize the first point query as
well if your application needs them.

Topics

• Computed from source table

• Derived table to precompute at daily granularity

• Computed from derived table

• Combining from source and derived table

Computed from source table

Below is an example query to find the last measurement emitted by the services in a specific
deployment (for example, servers for a given micro-service within a given region, cell, silo, and
availability_zone). In the example application, this query will return the last measurement for
hundreds of servers. Also note that this query has an unbounded time predicate and looks for any
data older than a given timestamp.

Note

For information about the max and max_by functions, see Aggregate functions.

SELECT instance_name, MAX(time) AS time, MAX_BY(gc_pause, time) AS last_measure
FROM "raw_data"."devops"
WHERE time < from_milliseconds(1636685271872)
 AND measure_name = 'events'
 AND region = 'us-east-1'
 AND cell = 'us-east-1-cell-10'
 AND silo = 'us-east-1-cell-10-silo-3'
 AND availability_zone = 'us-east-1-1'
 AND microservice_name = 'hercules'

Patterns and examples 418

Amazon Timestream Developer Guide

GROUP BY region, cell, silo, availability_zone, microservice_name,
 instance_name, process_name, jdk_version
ORDER BY instance_name, time DESC

Derived table to precompute at daily granularity

You can convert the preceding use case into a scheduled computation. If your application
requirements are such that you may need to obtain these values for your entire fleet across
multiple regions, cells, silos, availability zones and microservices, you can use one schedule
computation to pre-compute the values for your entire fleet. That is the power of Timestream
for LiveAnalytics's serverless scheduled queries that allows these queries to scale with your
application's scaling requirements.

Below is a query to pre-compute the last point across all the servers for a given day. Note that the
query only has a time predicate and not a predicate on the dimensions. The time predicate limits
the query to the past day from the time when the computation is triggered based on the specified
schedule expression.

SELECT region, cell, silo, availability_zone, microservice_name,
 instance_name, process_name, jdk_version,
 MAX(time) AS time, MAX_BY(gc_pause, time) AS last_measure
FROM raw_data.devops
WHERE time BETWEEN bin(@scheduled_runtime, 1d) - 1d AND bin(@scheduled_runtime, 1d)
 AND measure_name = 'events'
GROUP BY region, cell, silo, availability_zone, microservice_name,
 instance_name, process_name, jdk_version

Below is a configuration for the scheduled computation using the preceding query which executes
that query at 01:00 hrs UTC every day to compute the aggregate for the past day. The schedule
expression cron(0 1 * * ? *) controls this behavior and runs an hour after the day has ended to
consider any data arriving up to a day late.

{
 "Name": "PT1DPerInstanceLastpoint",
 "QueryString": "SELECT region, cell, silo, availability_zone, microservice_name,
 instance_name, process_name, jdk_version, MAX(time) AS time, MAX_BY(gc_pause, time)
 AS last_measure FROM raw_data.devops WHERE time BETWEEN bin(@scheduled_runtime, 1d) -
 1d AND bin(@scheduled_runtime, 1d) AND measure_name = 'events' GROUP BY region, cell,
 silo, availability_zone, microservice_name, instance_name, process_name, jdk_version",
 "ScheduleConfiguration": {
 "ScheduleExpression": "cron(0 1 * * ? *)"

Patterns and examples 419

Amazon Timestream Developer Guide

 },
 "NotificationConfiguration": {
 "SnsConfiguration": {
 "TopicArn": "******"
 }
 },
 "TargetConfiguration": {
 "TimestreamConfiguration": {
 "DatabaseName": "derived",
 "TableName": "per_timeseries_lastpoint_pt1d",
 "TimeColumn": "time",
 "DimensionMappings": [
 {
 "Name": "region",
 "DimensionValueType": "VARCHAR"
 },
 {
 "Name": "cell",
 "DimensionValueType": "VARCHAR"
 },
 {
 "Name": "silo",
 "DimensionValueType": "VARCHAR"
 },
 {
 "Name": "availability_zone",
 "DimensionValueType": "VARCHAR"
 },
 {
 "Name": "microservice_name",
 "DimensionValueType": "VARCHAR"
 },
 {
 "Name": "instance_name",
 "DimensionValueType": "VARCHAR"
 },
 {
 "Name": "process_name",
 "DimensionValueType": "VARCHAR"
 },
 {
 "Name": "jdk_version",
 "DimensionValueType": "VARCHAR"
 }

Patterns and examples 420

Amazon Timestream Developer Guide

],
 "MultiMeasureMappings": {
 "TargetMultiMeasureName": "last_measure",
 "MultiMeasureAttributeMappings": [
 {
 "SourceColumn": "last_measure",
 "MeasureValueType": "DOUBLE"
 }
]
 }
 }
 },
 "ErrorReportConfiguration": {
 "S3Configuration" : {
 "BucketName" : "******",
 "ObjectKeyPrefix": "errors",
 "EncryptionOption": "SSE_S3"
 }
 },
 "ScheduledQueryExecutionRoleArn": "******"
}

Computed from derived table

Once you define the derived table using the preceding configuration and at least one instance of
the scheduled query has materialized data into the derived table, you can now query the derived
table to get the latest measurement. Below is an example query on the derived table.

SELECT instance_name, MAX(time) AS time, MAX_BY(last_measure, time) AS last_measure
FROM "derived"."per_timeseries_lastpoint_pt1d"
WHERE time < from_milliseconds(1636746715649)
 AND measure_name = 'last_measure'
 AND region = 'us-east-1'
 AND cell = 'us-east-1-cell-10'
 AND silo = 'us-east-1-cell-10-silo-3'
 AND availability_zone = 'us-east-1-1'
 AND microservice_name = 'hercules'
GROUP BY region, cell, silo, availability_zone, microservice_name,
 instance_name, process_name, jdk_version
ORDER BY instance_name, time DESC

Patterns and examples 421

Amazon Timestream Developer Guide

Combining from source and derived table

Similar to the previous example, any data from the derived table will not have the most recent
writes. Therefore, you can again use a similar pattern as earlier to merge the data from the derived
table for the older data and use the source data for the remaining tip. Below is an example of such
a query using the similar UNION approach. Since the application requirement is to find the latest
measurement before a time period, and this start time can be in past, the way you write this query
is to use the provided time, use the source data for up to a day old from the specified time, and
then use the derived table on the older data. As you can see from the query example below, the
time predicate on the source data is bounded. That ensures efficient processing on the source table
which has significantly higher volume of data, and then the unbounded time predicate is on the
derived table.

WITH last_point_derived AS (
 SELECT instance_name, MAX(time) AS time, MAX_BY(last_measure, time) AS last_measure
 FROM "derived"."per_timeseries_lastpoint_pt1d"
 WHERE time < from_milliseconds(1636746715649)
 AND measure_name = 'last_measure'
 AND region = 'us-east-1'
 AND cell = 'us-east-1-cell-10'
 AND silo = 'us-east-1-cell-10-silo-3'
 AND availability_zone = 'us-east-1-1'
 AND microservice_name = 'hercules'
 GROUP BY region, cell, silo, availability_zone, microservice_name,
 instance_name, process_name, jdk_version
), last_point_source AS (
 SELECT instance_name, MAX(time) AS time, MAX_BY(gc_pause, time) AS last_measure
 FROM "raw_data"."devops"
 WHERE time < from_milliseconds(1636746715649) AND time >
 from_milliseconds(1636746715649) - 26h
 AND measure_name = 'events'
 AND region = 'us-east-1'
 AND cell = 'us-east-1-cell-10'
 AND silo = 'us-east-1-cell-10-silo-3'
 AND availability_zone = 'us-east-1-1'
 AND microservice_name = 'hercules'
 GROUP BY region, cell, silo, availability_zone, microservice_name,
 instance_name, process_name, jdk_version
)
SELECT instance_name, MAX(time) AS time, MAX_BY(last_measure, time) AS last_measure
FROM (
 SELECT * FROM last_point_derived

Patterns and examples 422

Amazon Timestream Developer Guide

 UNION
 SELECT * FROM last_point_source
)
GROUP BY instance_name
ORDER BY instance_name, time DESC

The previous is just one illustration of how you can structure the derived tables. If you have years
of data, you can use more levels of aggregations. For instance, you can have monthly aggregates
on top of daily aggregates, and you can have hourly aggregates before the daily. So you can merge
together the most recent to fill in the last hour, the hourly to fill in the last day, the daily to fill in
the last month, and monthly to fill in the older. The number of levels you set up vs. the refresh
schedule will be depending on your requirements of how frequently these queries are issues and
how many users are concurrently issuing these queries.

Unique dimension values

You may have a use case where you have dashboards which you want to use the unique values of
dimensions as variables to drill down on the metrics corresponding to a specific slice of data. The
snapshot below is an example where the dashboard pre-populates the unique values of several
dimensions such as region, cell, silo, microservice, and availability_zone. Here we show an example
of how you can use scheduled queries to significantly speed up computing these distinct values of
these variables from the metrics you are tracking.

Topics

• On raw data

• Pre-compute unique dimension values

• Computing the variables from derived table

On raw data

You can use SELECT DISTINCT to compute the distinct values seen from your data. For instance, if
you want to obtain the distinct values of region, you can use the query of this form.

SELECT DISTINCT region
FROM "raw_data"."devops"
WHERE time > ago(1h)
ORDER BY 1

Patterns and examples 423

Amazon Timestream Developer Guide

You may be tracking millions of devices and billions of time series. However, in most cases, these
interesting variables are for lower cardinality dimensions, where you have a few to tens of values.
Computing DISTINCT from raw data can require scanning large volumes of data.

Pre-compute unique dimension values

You want these variables to load fast so that your dashboards are interactive. Moreover, these
variables are often computed on every dashboard load, so you want them to be cost-effective as
well. You can optimize finding these variables using scheduled queries and materializing them in a
derived table.

First, you need to identify the dimensions for which you need to compute the DISTINCT values or
columns which you will use in the predicates when computing the DISTINCT value.

In this example, you can see that the dashboard is populating distinct values for the dimensions
region, cell, silo, availability_zone and microservice. So you can use the query below to pre-
compute these unique values.

SELECT region, cell, silo, availability_zone, microservice_name,
 min(@scheduled_runtime) AS time, COUNT(*) as numDataPoints
FROM raw_data.devops
WHERE time BETWEEN @scheduled_runtime - 15m AND @scheduled_runtime
GROUP BY region, cell, silo, availability_zone, microservice_name

There are a few important things to note here.

• You can use one scheduled computation to pre-compute values for many different queries. For
instance, you are using the preceding query to pre-compute values for five different variables.
So you don't need one for each variable. You can use this same pattern to identify shared
computation across multiple panels to optimize the number of scheduled queries you need to
maintain.

• The unique values of the dimensions isn't inherently time series data. So you convert this to time
series using the @scheduled_runtime. By associating this data with the @scheduled_runtime
parameter, you can also track which unique values appeared at a given point in time, thus
creating time series data out of it.

• In the previous example, you will see a metric value being tracked. This example uses COUNT(*).
You can compute other meaningful aggregates if you want to track them for your dashboards.

Patterns and examples 424

Amazon Timestream Developer Guide

Below is a configuration for a scheduled computation using the previous query. In this example, it
is configured to refresh once every 15 mins using the schedule expression cron(0/15 * * * ? *).

{
 "Name": "PT15mHighCardPerUniqueDimensions",
 "QueryString": "SELECT region, cell, silo, availability_zone, microservice_name,
 min(@scheduled_runtime) AS time, COUNT(*) as numDataPoints FROM raw_data.devops WHERE
 time BETWEEN @scheduled_runtime - 15m AND @scheduled_runtime GROUP BY region, cell,
 silo, availability_zone, microservice_name",
 "ScheduleConfiguration": {
 "ScheduleExpression": "cron(0/15 * * * ? *)"
 },
 "NotificationConfiguration": {
 "SnsConfiguration": {
 "TopicArn": "******"
 }
 },
 "TargetConfiguration": {
 "TimestreamConfiguration": {
 "DatabaseName": "derived",
 "TableName": "hc_unique_dimensions_pt15m",
 "TimeColumn": "time",
 "DimensionMappings": [
 {
 "Name": "region",
 "DimensionValueType": "VARCHAR"
 },
 {
 "Name": "cell",
 "DimensionValueType": "VARCHAR"
 },
 {
 "Name": "silo",
 "DimensionValueType": "VARCHAR"
 },
 {
 "Name": "availability_zone",
 "DimensionValueType": "VARCHAR"
 },
 {
 "Name": "microservice_name",
 "DimensionValueType": "VARCHAR"
 }

Patterns and examples 425

Amazon Timestream Developer Guide

],
 "MultiMeasureMappings": {
 "TargetMultiMeasureName": "count_multi",
 "MultiMeasureAttributeMappings": [
 {
 "SourceColumn": "numDataPoints",
 "MeasureValueType": "BIGINT"
 }
]
 }
 }
 },
 "ErrorReportConfiguration": {
 "S3Configuration" : {
 "BucketName" : "******",
 "ObjectKeyPrefix": "errors",
 "EncryptionOption": "SSE_S3"
 }
 },
 "ScheduledQueryExecutionRoleArn": "******"
}

Computing the variables from derived table

Once the scheduled computation pre-materializes the unique values in the derived table
hc_unique_dimensions_pt15m, you can use the derived table to efficiently compute the unique
values of the dimensions. Below are example queries for how to compute the unique values, and
how you can use other variables as predicates in these unique value queries.

Region

SELECT DISTINCT region
FROM "derived"."hc_unique_dimensions_pt15m"
WHERE time > ago(1h)
ORDER BY 1

Cell

SELECT DISTINCT cell
FROM "derived"."hc_unique_dimensions_pt15m"
WHERE time > ago(1h)
 AND region = '${region}'

Patterns and examples 426

Amazon Timestream Developer Guide

ORDER BY 1

Silo

SELECT DISTINCT silo
FROM "derived"."hc_unique_dimensions_pt15m"
WHERE time > ago(1h)
 AND region = '${region}' AND cell = '${cell}'
ORDER BY 1

Microservice

SELECT DISTINCT microservice_name
FROM "derived"."hc_unique_dimensions_pt15m"
WHERE time > ago(1h)
 AND region = '${region}' AND cell = '${cell}'
ORDER BY 1

Availability Zone

SELECT DISTINCT availability_zone
FROM "derived"."hc_unique_dimensions_pt15m"
WHERE time > ago(1h)
 AND region = '${region}' AND cell = '${cell}' AND silo = '${silo}'
ORDER BY 1

Handling late-arriving data

You may have scenarios where you can have data that arrives significantly late, for example,
the time when the data was ingested into Timestream for LiveAnalytics is significantly delayed
compared to the timestamp associated to the rows that are ingested. In the previous examples,
you have seen how you can use the time ranges defined by the @scheduled_runtime parameter to
account for some late arriving data. However, if you have use cases where data can be delayed by
hours or days, you may need a different pattern to make sure your pre-computations in the derived
table are appropriately updated to reflect such late-arriving data. For general information about
late-arriving data, see Writing data (inserts and upserts).

In the following you will see two different ways to address this late arriving data.

• If you have predictable delays in your data arrival, then you can use another "catch-up"
scheduled computation to update your aggregates for late arriving data.

Patterns and examples 427

Amazon Timestream Developer Guide

• If you have un-predictable delays or occasional late-arrival data, you can use manual executions
to update the derived tables.

This discussion covers scenarios for late data arrival. However, the same principles apply for data
corrections, where you have modified the data in your source table and you want to update the
aggregates in your derived tables.

Topics

• Scheduled catch-up queries

• Manual executions for unpredictable late arriving data

Scheduled catch-up queries

Query aggregating data that arrived in time

Below is a pattern you will see how you can use an automated way to update your aggregates
if you have predictable delays in your data arrival. Consider one of the previous examples of a
scheduled computation on real-time data below. This scheduled computation refreshes the derived
table once every 30 minutes and already accounts for data up to an hour delayed.

{
 "Name": "MultiPT30mPerHrPerTimeseriesDPCount",
 "QueryString": "SELECT region, cell, silo, availability_zone, microservice_name,
 instance_type, os_version, instance_name, process_name, jdk_version, bin(time,
 1h) as hour, SUM(CASE WHEN measure_name = 'metrics' THEN 20 ELSE 5 END) as
 numDataPoints FROM raw_data.devops WHERE time BETWEEN bin(@scheduled_runtime, 1h)
 - 1h AND @scheduled_runtime + 1h GROUP BY region, cell, silo, availability_zone,
 microservice_name, instance_type, os_version, instance_name, process_name,
 jdk_version, bin(time, 1h)",
 "ScheduleConfiguration": {
 "ScheduleExpression": "cron(0/30 * * * ? *)"
 },
 "NotificationConfiguration": {
 "SnsConfiguration": {
 "TopicArn": "******"
 }
 },
 "TargetConfiguration": {
 "TimestreamConfiguration": {
 "DatabaseName": "derived",

Patterns and examples 428

Amazon Timestream Developer Guide

 "TableName": "dp_per_timeseries_per_hr",
 "TimeColumn": "hour",
 "DimensionMappings": [
 {
 "Name": "region",
 "DimensionValueType": "VARCHAR"
 },
 {
 "Name": "cell",
 "DimensionValueType": "VARCHAR"
 },
 {
 "Name": "silo",
 "DimensionValueType": "VARCHAR"
 },
 {
 "Name": "availability_zone",
 "DimensionValueType": "VARCHAR"
 },
 {
 "Name": "microservice_name",
 "DimensionValueType": "VARCHAR"
 },
 {
 "Name": "instance_type",
 "DimensionValueType": "VARCHAR"
 },
 {
 "Name": "os_version",
 "DimensionValueType": "VARCHAR"
 },
 {
 "Name": "instance_name",
 "DimensionValueType": "VARCHAR"
 },
 {
 "Name": "process_name",
 "DimensionValueType": "VARCHAR"
 },
 {
 "Name": "jdk_version",
 "DimensionValueType": "VARCHAR"
 }
],

Patterns and examples 429

Amazon Timestream Developer Guide

 "MultiMeasureMappings": {
 "TargetMultiMeasureName": "numDataPoints",
 "MultiMeasureAttributeMappings": [
 {
 "SourceColumn": "numDataPoints",
 "MeasureValueType": "BIGINT"
 }
]
 }
 }
 },
 "ErrorReportConfiguration": {
 "S3Configuration" : {
 "BucketName" : "******",
 "ObjectKeyPrefix": "errors",
 "EncryptionOption": "SSE_S3"
 }
 },
 "ScheduledQueryExecutionRoleArn": "******"
}

Catch-up query updating the aggregates for late arriving data

Now if you consider the case that your data can be delayed by about 12 hours. Below is a variant of
the same query. However, the difference is that it computes the aggregates on data that is delayed
by up to 12 hours compared to when the scheduled computation is being triggered. For instance,
you see the query in the example below, the time range this query is targeting is between 2h to
14h before when the query is triggered. Moreover, if you notice the schedule expression cron(0
0,12 * * ? *), it will trigger the computation at 00:00 UTC and 12:00 UTC every day. Therefore,
when the query is triggered on 2021-12-01 00:00:00, then the query updates aggregates in
the time range 2021-11-30 10:00:00 to 2021-11-30 22:00:00. Scheduled queries use upsert
semantics similar to Timestream for LiveAnalytics's writes where this catch-up query will update
the aggregate values with newer values if there is late arriving data in the window or if newer
aggregates are found (e.g., a new grouping shows up in this aggregate which was not present when
the original scheduled computation was triggered), then the new aggregate will be inserted into
the derived table. Similarly, when the next instance is triggered on 2021-12-01 12:00:00, then that
instance will update aggregates in the range 2021-11-30 22:00:00 to 2021-12-01 10:00:00.

 {
 "Name": "MultiPT12HPerHrPerTimeseriesDPCountCatchUp",

Patterns and examples 430

Amazon Timestream Developer Guide

 "QueryString": "SELECT region, cell, silo, availability_zone, microservice_name,
 instance_type, os_version, instance_name, process_name, jdk_version, bin(time, 1h)
 as hour, SUM(CASE WHEN measure_name = 'metrics' THEN 20 ELSE 5 END) as numDataPoints
 FROM raw_data.devops WHERE time BETWEEN bin(@scheduled_runtime, 1h) - 14h AND
 bin(@scheduled_runtime, 1h) - 2h GROUP BY region, cell, silo, availability_zone,
 microservice_name, instance_type, os_version, instance_name, process_name,
 jdk_version, bin(time, 1h)",
 "ScheduleConfiguration": {
 "ScheduleExpression": "cron(0 0,12 * * ? *)"
 },
 "NotificationConfiguration": {
 "SnsConfiguration": {
 "TopicArn": "******"
 }
 },
 "TargetConfiguration": {
 "TimestreamConfiguration": {
 "DatabaseName": "derived",
 "TableName": "dp_per_timeseries_per_hr",
 "TimeColumn": "hour",
 "DimensionMappings": [
 {
 "Name": "region",
 "DimensionValueType": "VARCHAR"
 },
 {
 "Name": "cell",
 "DimensionValueType": "VARCHAR"
 },
 {
 "Name": "silo",
 "DimensionValueType": "VARCHAR"
 },
 {
 "Name": "availability_zone",
 "DimensionValueType": "VARCHAR"
 },
 {
 "Name": "microservice_name",
 "DimensionValueType": "VARCHAR"
 },
 {
 "Name": "instance_type",
 "DimensionValueType": "VARCHAR"

Patterns and examples 431

Amazon Timestream Developer Guide

 },
 {
 "Name": "os_version",
 "DimensionValueType": "VARCHAR"
 },
 {
 "Name": "instance_name",
 "DimensionValueType": "VARCHAR"
 },
 {
 "Name": "process_name",
 "DimensionValueType": "VARCHAR"
 },
 {
 "Name": "jdk_version",
 "DimensionValueType": "VARCHAR"
 }
],
 "MultiMeasureMappings": {
 "TargetMultiMeasureName": "numDataPoints",
 "MultiMeasureAttributeMappings": [
 {
 "SourceColumn": "numDataPoints",
 "MeasureValueType": "BIGINT"
 }
]
 }
 }
 },
 "ErrorReportConfiguration": {
 "S3Configuration" : {
 "BucketName" : "******",
 "ObjectKeyPrefix": "errors",
 "EncryptionOption": "SSE_S3"
 }
 },
 "ScheduledQueryExecutionRoleArn": "******"
}

This preceding example is an illustration assuming your late arrival is bounded to 12 hours and it
is okay to update the derived table once every 12 hours for data arriving later than the real time
window. You can adapt this pattern to update your derived table once every hour so your derived

Patterns and examples 432

Amazon Timestream Developer Guide

table reflects the late arriving data sooner. Similarly, you can adapt the time range to be older than
12 hours, e.g., a day or even a week or more, to handle predictable late-arriving data.

Manual executions for unpredictable late arriving data

There can be instances where you have unpredictable late arriving data or you made changes to
the source data and updated some values after the fact. In all such cases, you can manually trigger
scheduled queries to update the derived table. Below is an example on how you can achieve this.

Assume that you have the use case where you have the computation written to the derived
table dp_per_timeseries_per_hr. Your base data in the table devops was updated in the time
range 2021-11-30 23:00:00 - 2021-12-01 00:00:00. There are two different scheduled queries
that can be used to update this derived table: MultiPT30mPerHrPerTimeseriesDPCount and
MultiPT12HPerHrPerTimeseriesDPCountCatchUp. Each scheduled computation you create in
Timestream for LiveAnalytics has a unique ARN which you obtain when you create the computation
or when you perform a list operation. You can use the ARN for the computation and a value for the
parameter @scheduled_runtime taken by the query to perform this operation.

Assume that the computation for MultiPT30mPerHrPerTimeseriesDPCount has an ARN arn_1 and
you want to use this computation to update the derived table. Since the preceding scheduled
computation updates the aggregates 1h before and 1hr after the @scheduled_runtime value,
you can cover the time range for the update (2021-11-30 23:00:00 - 2021-12-01 00:00:00)
using a value of 2021-12-01 00:00:00 for the @scheduled_runtime parameter. You can use the
ExecuteScheduledQuery API to pass the ARN of this computation and the time parameter value
in epoch seconds (in UTC) to achieve this. Below is an example using the Amazon CLI and you can
follow the same pattern using any of the SDKs supported by Timestream for LiveAnalytics.

aws timestream-query execute-scheduled-query --scheduled-query-arn arn_1 --invocation-
time 1638316800 --profile profile --region us-east-1

In the previous example, profile is the Amazon profile which has the appropriate privileges to make
this API call and 1638316800 corresponds to the epoch second for 2021-12-01 00:00:00. This
manual trigger behaves almost like the automated trigger assuming the system triggered this
invocation at the desired time period.

If you had an update in a longer time period, say the base data was updated for 2021-11-30
23:00:00 - 2021-12-01 11:00:00, then you can trigger the preceding queries multiple times to
cover this entire time range. For instance, you could do six different execution as follows.

Patterns and examples 433

Amazon Timestream Developer Guide

aws timestream-query execute-scheduled-query --scheduled-query-arn arn_1 --invocation-
time 1638316800 --profile profile --region us-east-1

aws timestream-query execute-scheduled-query --scheduled-query-arn arn_1 --invocation-
time 1638324000 --profile profile --region us-east-1

aws timestream-query execute-scheduled-query --scheduled-query-arn arn_1 --invocation-
time 1638331200 --profile profile --region us-east-1

aws timestream-query execute-scheduled-query --scheduled-query-arn arn_1 --invocation-
time 1638338400 --profile profile --region us-east-1

aws timestream-query execute-scheduled-query --scheduled-query-arn arn_1 --invocation-
time 1638345600 --profile profile --region us-east-1

aws timestream-query execute-scheduled-query --scheduled-query-arn arn_1 --invocation-
time 1638352800 --profile profile --region us-east-1

The previous six commands correspond to the scheduled computation invoked at 2021-12-01
00:00:00, 2021-12-01 02:00:00, 2021-12-01 04:0:00, 2021-12-01 06:00:00, 2021-12-01 08:00:00,
and 2021-12-01 10:00:

Alternatively, you can use the computation MultiPT12HPerHrPerTimeseriesDPCountCatchUp
triggered at 2021-12-01 13:00:00 for one execution to update the aggregates for the entire
12 hour time range. For instance, if arn_2 is the ARN for that computation, you can execute the
following command from CLI.

aws timestream-query execute-scheduled-query --scheduled-query-arn arn_2 --invocation-
time 1638363600 --profile profile --region us-east-1

It is worth noting that for a manual trigger, you can use a timestamp for the invocation-time
parameter that does not need to be aligned with that automated trigger timestamps. For instance,
in the previous example, you triggered the computation at time 2021-12-01 13:00:00 even though
the automated schedule only triggers at timestamps 2021-12-01 10:00:00, 2021-12-01 12:00:00,
and 2021-12-02 00:00:00. Timestream for LiveAnalytics provides you with the flexibility to trigger
it with appropriate values as needed for your manual operations.

Following are a few important considerations when using the ExecuteScheduledQuery API.

• If you are triggering multiple of these invocations, you need to make sure that these invocations
do not generate results in overlapping time ranges. For instance, in the previous examples, there

Patterns and examples 434

Amazon Timestream Developer Guide

were six invocations. Each invocation covers 2 hours of time range, and hence the invocation
timestamps were spread out by two hours each to avoid any overlap in the updates. This ensures
that the data in the derived table ends up in a state that matches are aggregates from the
source table. If you cannot ensure non-overlapping time ranges, then make sure these the
executions are triggered sequentially one after the other. If you trigger multiple executions
concurrently which overlap in their time ranges, then you can see trigger failures where you
might see version conflicts in the error reports for these executions. Results generated by a
scheduled query invocation are assigned a version based on when the invocation was triggered.
Therefore, rows generated by newer invocations have higher versions. A higher version record
can overwrite a lower version record. For automatically-triggered scheduled queries, Timestream
for LiveAnalytics automatically manages the schedules so that you don't see these issues even if
the subsequent invocations have overlapping time ranges.

• noted earlier, you can trigger the invocations with any timestamp value for @scheduled_runtime.
So it is your responsibility to appropriately set the values so the appropriate time ranges are
updated in the derived table corresponding to the ranges where data was updated in the source
table.

• You can also use these manual trigger for scheduled queries that are in the DISABLED state. This
allows you to define special queries that are not executed in an automated schedule, since they
are in the DISABLED state. Rather, you can use the manual triggers on them to manage data
corrections or late arrival use cases.

Back-filling historical pre-computations

When you create a scheduled computation, Timestream for LiveAnalytics manages executions of
the queries moving forward where the refresh is governed by the schedule expression you provide.
Depending of how much historical data your source table, you may want to update your derived
table with aggregates corresponding to the historical data. You can use the preceding logic for
manual triggers to back-fill the historical aggregates.

For instance, if we consider the derived table per_timeseries_lastpoint_pt1d, then the scheduled
computation is updated once a day for the past day. If your source table has a year of data, you
can use the ARN for this scheduled computation and trigger it manually for every day up to a year
old so that the derived table has all the historical queries populated. Notes that all the caveats
for manual triggers apply here. Moreover, if the derived table is set up in a way that the historical
ingestion will write to magnetic store on the derived table, be aware of the best practices and
limits for writes to the magnetic store.

Patterns and examples 435

https://docs.amazonaws.cn/timestream/latest/developerguide/best-practices.html
https://docs.amazonaws.cn/timestream/latest/developerguide/ts-limits.html

Amazon Timestream Developer Guide

Scheduled query examples

This section contains examples of how you can use Timestream for LiveAnalytics's Scheduled
Queries to optimize the costs and dashboard load times when visualizing fleet-wide statistics
effectively monitor your fleet of devices. Scheduled Queries in Timestream for LiveAnalytics allow
you to express your queries using the full SQL surface area of Timestream for LiveAnalytics. Your
query can include one or more source tables, perform aggregations or any other query allowed by
Timestream for LiveAnalytics's SQL language, and then store the results of the query in another
destination table in Timestream for LiveAnalytics.

This section refers to the target table of a scheduled query as a derived table.

As an example, we will use a DevOps application where you are monitoring a large fleet of
servers that are deployed across multiple deployments (such as regions, cells, and silos), multiple
microservices, and you're tracking the fleet-wide statistics using Timestream for LiveAnalytics. The
example schema we will use is described in Scheduled Queries Sample Schema.

The following scenarios will be described.

• How to convert a dashboard, plotting aggregated statistics from the raw data you ingest into
Timestream for LiveAnalytics into a scheduled query and then how to use your pre-computed
aggregates to create a new dashboard showing aggregate statistics.

• How to combine scheduled queries to get an aggregate view and the raw granular data, to
drill down into details. This allows you to store and analyze the raw data while optimizing your
common fleet-wide operations using scheduled queries.

• How to optimize costs using scheduled queries by finding which aggregates are used in multiple
dashboards and have the same scheduled query populate multiple panels in the same or
multiple dashboards.

Topics

• Converting an aggregate dashboard to scheduled query

• Using scheduled queries and raw data for drill downs

• Optimizing costs by sharing scheduled query across dashboards

• Comparing a query on a base table with a query of scheduled query results

Patterns and examples 436

https://docs.amazonaws.cn/timestream/latest/developerguide/scheduledqueries-common-schema-example.html

Amazon Timestream Developer Guide

Converting an aggregate dashboard to scheduled query

Assume you are computing the fleet-wide statistics such as host counts in the fleet by the five
microservices and by the six regions where your service is deployed. From the snapshot below, you
can see there are 500K servers emitting metrics, and some of the bigger regions (e.g., us-east-1)
have >200K servers.

Computing these aggregates, where you are computing distinct instance names over hundreds of
gigabytes of data can result in query latency of tens of seconds, in addition to the cost of scanning
the data.

Original dashboard query

The aggregate shown in the dasboard panel is computed, from raw data, using the query below.
The query uses multiple SQL constructs, such as distinct counts and multiple aggregation
functions.

SELECT CASE WHEN microservice_name = 'apollo' THEN num_instances ELSE NULL END AS
 apollo,
 CASE WHEN microservice_name = 'athena' THEN num_instances ELSE NULL END AS athena,
 CASE WHEN microservice_name = 'demeter' THEN num_instances ELSE NULL END AS
 demeter,
 CASE WHEN microservice_name = 'hercules' THEN num_instances ELSE NULL END AS
 hercules,
 CASE WHEN microservice_name = 'zeus' THEN num_instances ELSE NULL END AS zeus
FROM (
 SELECT microservice_name, SUM(num_instances) AS num_instances
 FROM (
 SELECT microservice_name, COUNT(DISTINCT instance_name) as num_instances
 FROM "raw_data"."devops"
 WHERE time BETWEEN from_milliseconds(1636526171043) AND
 from_milliseconds(1636612571043)
 AND measure_name = 'metrics'
 GROUP BY region, cell, silo, availability_zone, microservice_name
)
 GROUP BY microservice_name

Patterns and examples 437

Amazon Timestream Developer Guide

)

Converting to a scheduled query

The previous query can be converted into a scheduled query as follows. You first compute
the distinct host names within a given deployment in a region, cell, silo, availability zone and
microservice. Then you add up the hosts to compute a per hour per microservice host count.
By using the @scheduled_runtime parameter supported by the scheduled queries, you can
recompute it for the past hour when the query is invoked. The bin(@scheduled_runtime, 1h)
in the WHERE clause of the inner query ensures that even if the query is scheduled at a time in the
middle of the hour, you still get the data for the full hour.

Even though the query computes hourly aggregates, as you will see in the scheduled computation
configuration, it is set up to refresh every half hour so that you get updates in your derived table
sooner. You can tune that based on your freshness requirements, e.g., recompute the aggregates
every 15 minutes or recompute it at the hour boundaries.

SELECT microservice_name, hour, SUM(num_instances) AS num_instances
FROM (
 SELECT microservice_name, bin(time, 1h) AS hour,
 COUNT(DISTINCT instance_name) as num_instances
 FROM raw_data.devops
 WHERE time BETWEEN bin(@scheduled_runtime, 1h) - 1h AND @scheduled_runtime

 AND measure_name = 'metrics'
 GROUP BY region, cell, silo, availability_zone, microservice_name, bin(time, 1h)

)
GROUP BY microservice_name, hour

{
 "Name": "MultiPT30mHostCountMicroservicePerHr",
 "QueryString": "SELECT microservice_name, hour, SUM(num_instances) AS num_instances
 FROM (SELECT microservice_name, bin(time, 1h) AS hour, COUNT(DISTINCT
 instance_name) as num_instances FROM raw_data.devops WHERE time BETWEEN
 bin(@scheduled_runtime, 1h) - 1h AND @scheduled_runtime AND measure_name
 = 'metrics' GROUP BY region, cell, silo, availability_zone, microservice_name,
 bin(time, 1h)) GROUP BY microservice_name, hour",
 "ScheduleConfiguration": {
 "ScheduleExpression": "cron(0/30 * * * ? *)"
 },

Patterns and examples 438

Amazon Timestream Developer Guide

 "NotificationConfiguration": {
 "SnsConfiguration": {
 "TopicArn": "******"
 }
 },
 "TargetConfiguration": {
 "TimestreamConfiguration": {
 "DatabaseName": "derived",
 "TableName": "host_count_pt1h",
 "TimeColumn": "hour",
 "DimensionMappings": [
 {
 "Name": "microservice_name",
 "DimensionValueType": "VARCHAR"
 }
],
 "MultiMeasureMappings": {
 "TargetMultiMeasureName": "num_instances",
 "MultiMeasureAttributeMappings": [
 {
 "SourceColumn": "num_instances",
 "MeasureValueType": "BIGINT"
 }
]
 }
 }
 },
 "ErrorReportConfiguration": {
 "S3Configuration" : {
 "BucketName" : "******",
 "ObjectKeyPrefix": "errors",
 "EncryptionOption": "SSE_S3"
 }
 },
 "ScheduledQueryExecutionRoleArn": "******"
}

Using the pre-computed results in a new dashboard

You will now see how to create your aggregate view dashboard using the derived table from the
scheduled query you created. From the dashboard snapshot, you will also be able to validate that
the aggregates computed from the derived table and the base table also match. Once you create
the dashboards using the derived tables, you will notice the significantly faster load time and lower

Patterns and examples 439

Amazon Timestream Developer Guide

costs of using the derived tables compared to computing these aggregates from the raw data.
Below is a snapshot of the dashboard using pre-computed data, and the query used to render this
panel using pre-computed data stored in the table "derived"."host_count_pt1h". Note that the
structure of the query is very similar to the query that was used in the dashboard on raw data,
except that is it using the derived table which already computes the distinct counts which this
query is aggregating.

SELECT CASE WHEN microservice_name = 'apollo' THEN num_instances ELSE NULL END AS
 apollo,
 CASE WHEN microservice_name = 'athena' THEN num_instances ELSE NULL END AS athena,
 CASE WHEN microservice_name = 'demeter' THEN num_instances ELSE NULL END AS
 demeter,
 CASE WHEN microservice_name = 'hercules' THEN num_instances ELSE NULL END AS
 hercules,
 CASE WHEN microservice_name = 'zeus' THEN num_instances ELSE NULL END AS zeus
FROM (
 SELECT microservice_name, AVG(num_instances) AS num_instances
 FROM (
 SELECT microservice_name, bin(time, 1h), SUM(num_instances) as num_instances
 FROM "derived"."host_count_pt1h"
 WHERE time BETWEEN from_milliseconds(1636567785421) AND
 from_milliseconds(1636654185421)
 AND measure_name = 'num_instances'
 GROUP BY microservice_name, bin(time, 1h)
)
 GROUP BY microservice_name
)

Using scheduled queries and raw data for drill downs

You can use the aggregated statistics across your fleet to identify areas that need drill downs and
then use the raw data to drill down into granular data to get deeper insights.

In this example, you will see how you can use aggregate dashboard to identify any deployment (a
deployment is for a given microservice within a given region, cell, silo, and availability zone) which

Patterns and examples 440

Amazon Timestream Developer Guide

seems to have higher CPU utilization compared to other deployments. You can then drill down to
get a better understanding using the raw data. Since these drill downs might be infrequent and
only access data relevant to the deployment, you can use the raw data for this analysis and do not
need to use scheduled queries.

Per deployment drill down

The dashboard below provides drill down into more granular and server-level statistics within a
given deployment. To help you drill down into the different parts of your fleet, this dashboard
uses variables such as region, cell, silo, microservice, and availability_zone. It then shows some
aggregate statistics for that deployment.

In the query below, you can see that the values chosen in the drop down of the variables are
used as predicates in the WHERE clause of the query, which allows you to only focus on the data
for the deployment. And then the panel plots the aggregated CPU metrics for instances in that
deployment. You can use the raw data to perform this drill down with interactive query latency to
derive deeper insights.

SELECT bin(time, 5m) as minute,
 ROUND(AVG(cpu_user), 2) AS avg_value,
 ROUND(APPROX_PERCENTILE(cpu_user, 0.9), 2) AS p90_value,
 ROUND(APPROX_PERCENTILE(cpu_user, 0.95), 2) AS p95_value,
 ROUND(APPROX_PERCENTILE(cpu_user, 0.99), 2) AS p99_value
FROM "raw_data"."devops"
WHERE time BETWEEN from_milliseconds(1636527099476) AND
 from_milliseconds(1636613499476)
 AND region = 'eu-west-1'
 AND cell = 'eu-west-1-cell-10'
 AND silo = 'eu-west-1-cell-10-silo-1'
 AND microservice_name = 'demeter'
 AND availability_zone = 'eu-west-1-3'
 AND measure_name = 'metrics'

Patterns and examples 441

Amazon Timestream Developer Guide

GROUP BY bin(time, 5m)
ORDER BY 1

Instance-level statistics

This dashboard further computes another variable that also lists the servers/instances with high
CPU utilization, sorted in descending order of utilization. The query used to compute this variable
is displayed below.

WITH microservice_cell_avg AS (
 SELECT AVG(cpu_user) AS microservice_avg_metric
 FROM "raw_data"."devops"
 WHERE $__timeFilter
 AND measure_name = 'metrics'
 AND region = '${region}'
 AND cell = '${cell}'
 AND silo = '${silo}'
 AND availability_zone = '${availability_zone}'
 AND microservice_name = '${microservice}'
), instance_avg AS (
 SELECT instance_name,
 AVG(cpu_user) AS instance_avg_metric
 FROM "raw_data"."devops"
 WHERE $__timeFilter
 AND measure_name = 'metrics'
 AND region = '${region}'
 AND cell = '${cell}'
 AND silo = '${silo}'
 AND microservice_name = '${microservice}'
 AND availability_zone = '${availability_zone}'
 GROUP BY availability_zone, instance_name
)
SELECT i.instance_name
FROM instance_avg i CROSS JOIN microservice_cell_avg m
WHERE i.instance_avg_metric > (1 + ${utilization_threshold}) *
 m.microservice_avg_metric
ORDER BY i.instance_avg_metric DESC

In the preceding query, the variable is dynamically recalculated depending on the values chosen
for the other variables. Once the variable is populated for a deployment, you can pick individual
instances from the list to further visualize the metrics from that instance. You can pick the different
instances from the drop down of the instance names as seen from the snapshot below.

Patterns and examples 442

Amazon Timestream Developer Guide

Preceding panels show the statistics for the instance that is selected and below are the queries
used to fetch these statistics.

SELECT BIN(time, 30m) AS time_bin,
 AVG(cpu_user) AS avg_cpu,
 ROUND(APPROX_PERCENTILE(cpu_user, 0.99), 2) as p99_cpu

Patterns and examples 443

Amazon Timestream Developer Guide

FROM "raw_data"."devops"
WHERE time BETWEEN from_milliseconds(1636527099477) AND
 from_milliseconds(1636613499477)
 AND measure_name = 'metrics'
 AND region = 'eu-west-1' AND cell = 'eu-west-1-cell-10' AND silo = 'eu-west-1-
cell-10-silo-1'
 AND availability_zone = 'eu-west-1-3' AND microservice_name = 'demeter'
 AND instance_name = 'i-zaZswmJk-demeter-eu-west-1-cell-10-
silo-1-00000272.amazonaws.com'
GROUP BY BIN(time, 30m)
ORDER BY time_bin desc

SELECT BIN(time, 30m) AS time_bin,
 AVG(memory_used) AS avg_memory,
 ROUND(APPROX_PERCENTILE(memory_used, 0.99), 2) as p99_memory
FROM "raw_data"."devops"
WHERE time BETWEEN from_milliseconds(1636527099477) AND
 from_milliseconds(1636613499477)
 AND measure_name = 'metrics'
 AND region = 'eu-west-1' AND cell = 'eu-west-1-cell-10' AND silo = 'eu-west-1-
cell-10-silo-1'
 AND availability_zone = 'eu-west-1-3' AND microservice_name = 'demeter'
 AND instance_name = 'i-zaZswmJk-demeter-eu-west-1-cell-10-
silo-1-00000272.amazonaws.com'
GROUP BY BIN(time, 30m)
ORDER BY time_bin desc

SELECT COUNT(gc_pause)
FROM "raw_data"."devops"
WHERE time BETWEEN from_milliseconds(1636527099477) AND
 from_milliseconds(1636613499478)
 AND measure_name = 'events'
 AND region = 'eu-west-1' AND cell = 'eu-west-1-cell-10' AND silo = 'eu-west-1-
cell-10-silo-1'
 AND availability_zone = 'eu-west-1-3' AND microservice_name = 'demeter'
 AND instance_name = 'i-zaZswmJk-demeter-eu-west-1-cell-10-
silo-1-00000272.amazonaws.com'

SELECT avg(gc_pause) as avg, round(approx_percentile(gc_pause, 0.99), 2) as p99
FROM "raw_data"."devops"
WHERE time BETWEEN from_milliseconds(1636527099478) AND
 from_milliseconds(1636613499478)

Patterns and examples 444

Amazon Timestream Developer Guide

 AND measure_name = 'events'
 AND region = 'eu-west-1' AND cell = 'eu-west-1-cell-10' AND silo = 'eu-west-1-
cell-10-silo-1'
 AND availability_zone = 'eu-west-1-3' AND microservice_name = 'demeter'
 AND instance_name = 'i-zaZswmJk-demeter-eu-west-1-cell-10-
silo-1-00000272.amazonaws.com'

SELECT BIN(time, 30m) AS time_bin,
 AVG(disk_io_reads) AS avg,
 ROUND(APPROX_PERCENTILE(disk_io_reads, 0.99), 2) as p99
FROM "raw_data"."devops"
WHERE time BETWEEN from_milliseconds(1636527099478) AND
 from_milliseconds(1636613499478)
 AND measure_name = 'metrics'
 AND region = 'eu-west-1' AND cell = 'eu-west-1-cell-10' AND silo = 'eu-west-1-
cell-10-silo-1'
 AND availability_zone = 'eu-west-1-3' AND microservice_name = 'demeter'
 AND instance_name = 'i-zaZswmJk-demeter-eu-west-1-cell-10-
silo-1-00000272.amazonaws.com'
GROUP BY BIN(time, 30m)
ORDER BY time_bin desc

Optimizing costs by sharing scheduled query across dashboards

In this example, we will see a scenario where multiple dashboard panels display variations of
similar information (finding high CPU hosts and fraction of fleet with high CPU utilization) and how
you can use the same scheduled query to pre-compute results which are then used to populate
multiple panels. This reuse further optimizes your costs where instead of using different scheduled
queries, one for each panel, you use only owner.

Dashboard panels with raw data

CPU utilization per region per microservice

The first panel computes the instances whose avg CPU utilization is a threshold below or above
the above CPU utilization for given deployment within a region, cell, silo, availability zone, and
microservice. It then sorts the region and microservice which has the highest percentage of hosts
with high utilization. It helps identify how hot the servers of a specific deployment are running,
and then subsequently drill down to better understand the issues.

Patterns and examples 445

Amazon Timestream Developer Guide

The query for the panel demonstrates the flexibility of Timestream for LiveAnalytics's SQL support
to perform complex analytical tasks with common table expressions, window functions, joins, and
so on.

Query:

WITH microservice_cell_avg AS (
 SELECT region, cell, silo, availability_zone, microservice_name, AVG(cpu_user) AS
 microservice_avg_metric
 FROM "raw_data"."devops"
 WHERE time BETWEEN from_milliseconds(1636526593876) AND
 from_milliseconds(1636612993876)
 AND measure_name = 'metrics'
 GROUP BY region, cell, silo, availability_zone, microservice_name
), instance_avg AS (
 SELECT region, cell, silo, availability_zone, microservice_name, instance_name,
 AVG(cpu_user) AS instance_avg_metric
 FROM "raw_data"."devops"
 WHERE time BETWEEN from_milliseconds(1636526593876) AND
 from_milliseconds(1636612993876)
 AND measure_name = 'metrics'
 GROUP BY region, cell, silo, availability_zone, microservice_name, instance_name
), instances_above_threshold AS (
 SELECT i.*,
 CASE WHEN i.instance_avg_metric > (1 + 0.2) * m.microservice_avg_metric THEN 1 ELSE
 0 END AS high_utilization,
 CASE WHEN i.instance_avg_metric < (1 - 0.2) * m.microservice_avg_metric THEN 1 ELSE
 0 END AS low_utilization
 FROM instance_avg i INNER JOIN microservice_cell_avg m
 ON i.region = m.region AND i.cell = m.cell AND i.silo = m.silo AND
 i.availability_zone = m.availability_zone
 AND m.microservice_name = i.microservice_name
), per_deployment_high AS (

Patterns and examples 446

Amazon Timestream Developer Guide

SELECT region, microservice_name, COUNT(*) AS num_hosts, SUM(high_utilization) AS
 high_utilization_hosts, SUM(low_utilization) AS low_utilization_hosts,
 ROUND(SUM(high_utilization) * 100.0 / COUNT(*), 0) AS
 percent_high_utilization_hosts,
 ROUND(SUM(low_utilization) * 100.0 / COUNT(*), 0) AS percent_low_utilization_hosts
FROM instances_above_threshold
GROUP BY region, microservice_name
), per_region_ranked AS (
 SELECT *,
 DENSE_RANK() OVER (PARTITION BY region ORDER BY percent_high_utilization_hosts
 DESC, high_utilization_hosts DESC) AS rank
 FROM per_deployment_high
)
SELECT *
FROM per_region_ranked
WHERE rank <= 2
ORDER BY percent_high_utilization_hosts desc, rank asc

Drill down into a microservice to find hot spots

The next dashboard allows you to drill deeper into one of the microservices to find out the specific
region, cell, and silo for that microservice is running what fraction of fraction of its fleet at higher
CPU utilization. For instance, in the fleet wide dashboard you saw the microservice demeter
show up in the top few ranked positions, so in this dashboard, you want to drill deeper into that
microservice.

This dashboard uses a variable to pick microservice to drill down into, and the values of the
variable is populated using unique values of the dimension. Once you pick the microservice, the
rest of the dashboard refreshes.

As you see below, the first panel plots the percentage of hosts in a deployment (a region, cell, and
silo for a microservice) over time, and the corresponding query which is used to plot the dashboard.
This plot itself identifies a specific deployment having higher percentage of hosts with high CPU.

Patterns and examples 447

Amazon Timestream Developer Guide

Query:

WITH microservice_cell_avg AS (
 SELECT region, cell, silo, availability_zone, microservice_name, bin(time, 1h) as
 hour, AVG(cpu_user) AS microservice_avg_metric
 FROM "raw_data"."devops"
 WHERE time BETWEEN from_milliseconds(1636526898831) AND
 from_milliseconds(1636613298831)
 AND measure_name = 'metrics'
 AND microservice_name = 'demeter'
 GROUP BY region, cell, silo, availability_zone, microservice_name, bin(time, 1h)
), instance_avg AS (
 SELECT region, cell, silo, availability_zone, microservice_name, instance_name,
 bin(time, 1h) as hour,
 AVG(cpu_user) AS instance_avg_metric
 FROM "raw_data"."devops"
 WHERE time BETWEEN from_milliseconds(1636526898831) AND
 from_milliseconds(1636613298831)
 AND measure_name = 'metrics'
 AND microservice_name = 'demeter'
 GROUP BY region, cell, silo, availability_zone, microservice_name, instance_name,
 bin(time, 1h)
), instances_above_threshold AS (
 SELECT i.*,
 CASE WHEN i.instance_avg_metric > (1 + 0.2) * m.microservice_avg_metric THEN 1 ELSE
 0 END AS high_utilization
 FROM instance_avg i INNER JOIN microservice_cell_avg m
 ON i.region = m.region AND i.cell = m.cell AND i.silo = m.silo AND
 i.availability_zone = m.availability_zone

Patterns and examples 448

Amazon Timestream Developer Guide

 AND m.microservice_name = i.microservice_name AND m.hour = i.hour
), high_utilization_percent AS (
 SELECT region, cell, silo, microservice_name, hour, COUNT(*) AS num_hosts,
 SUM(high_utilization) AS high_utilization_hosts,
 ROUND(SUM(high_utilization) * 100.0 / COUNT(*), 0) AS
 percent_high_utilization_hosts
 FROM instances_above_threshold
 GROUP BY region, cell, silo, microservice_name, hour
), high_utilization_ranked AS (
 SELECT region, cell, silo, microservice_name,
 DENSE_RANK() OVER (PARTITION BY region ORDER BY
 AVG(percent_high_utilization_hosts) desc, AVG(high_utilization_hosts) desc) AS rank
 FROM high_utilization_percent
 GROUP BY region, cell, silo, microservice_name
)
SELECT hup.silo, CREATE_TIME_SERIES(hour, hup.percent_high_utilization_hosts) AS
 percent_high_utilization_hosts
FROM high_utilization_percent hup INNER JOIN high_utilization_ranked hur
 ON hup.region = hur.region AND hup.cell = hur.cell AND hup.silo = hur.silo AND
 hup.microservice_name = hur.microservice_name
WHERE rank <= 2
GROUP BY hup.region, hup.cell, hup.silo
ORDER BY hup.silo

Converting into a single scheduled query enabling reuse

It is important to note that a similar computation is done across the different panels across the two
dashboards. You can define a separate scheduled query for each panel. Here you will see how you
can further optimize your costs by defining one scheduled query who results can be used to render
all the three panels.

Following is the query that captures the aggregates that are computed and used for all the
different panels. You will observe several important aspects in the definition of this scheduled
query.

• The flexibility and the power of the SQL surface area supported by scheduled queries, where you
can use common table expressions, joins, case statements, etc.

• You can using one scheduled query to compute the statistics at a finer granularity than a specific
dashboard might need, and for all values that a dashboard might use for different variables. For
instance, you will see the aggregates are computed across a region, cell, silo, and microservice.
Therefore, you can combine these to create region-level, or region, and microservice-level

Patterns and examples 449

Amazon Timestream Developer Guide

aggregates. Similarly, the same query computes the aggregates for all regions, cells, silos, and
microservices. It allows you to apply filters on these columns to obtain the aggregates for a
subset of the values. For instance, you can compute the aggregates for any one region, say us-
east-1, or any one microservice say demeter or drill down into a specific deployment within a
region, cell, silo, and microservice. This approach further optimizes your costs of maintaining the
pre-computed aggregates.

WITH microservice_cell_avg AS (
 SELECT region, cell, silo, availability_zone, microservice_name, bin(time, 1h) as
 hour, AVG(cpu_user) AS microservice_avg_metric
 FROM raw_data.devops
 WHERE time BETWEEN bin(@scheduled_runtime, 1h) - 1h AND bin(@scheduled_runtime, 1h)
 + 1h
 AND measure_name = 'metrics'
 GROUP BY region, cell, silo, availability_zone, microservice_name, bin(time, 1h)

), instance_avg AS (
 SELECT region, cell, silo, availability_zone, microservice_name, instance_name,
 bin(time, 1h) as hour,
 AVG(cpu_user) AS instance_avg_metric
 FROM raw_data.devops
 WHERE time BETWEEN bin(@scheduled_runtime, 1h) - 1h AND bin(@scheduled_runtime, 1h)
 + 1h
 AND measure_name = 'metrics'
 GROUP BY region, cell, silo, availability_zone, microservice_name, instance_name,
 bin(time, 1h)
), instances_above_threshold AS (
 SELECT i.*,
 CASE WHEN i.instance_avg_metric > (1 + 0.2) * m.microservice_avg_metric THEN 1
 ELSE 0 END AS high_utilization,
 CASE WHEN i.instance_avg_metric < (1 - 0.2) * m.microservice_avg_metric THEN 1
 ELSE 0 END AS low_utilization
 FROM instance_avg i INNER JOIN microservice_cell_avg m
 ON i.region = m.region AND i.cell = m.cell AND i.silo = m.silo AND
 i.availability_zone = m.availability_zone
 AND m.microservice_name = i.microservice_name AND m.hour = i.hour
)
SELECT region, cell, silo, microservice_name, hour,
 COUNT(*) AS num_hosts, SUM(high_utilization) AS high_utilization_hosts,
 SUM(low_utilization) AS low_utilization_hosts
FROM instances_above_threshold GROUP BY region, cell, silo, microservice_name, hour

Patterns and examples 450

Amazon Timestream Developer Guide

The following is a scheduled query definition for the previous query. The schedule expression,
it is configured to refresh every 30 mins, and refreshes the data for up to an hour back, again
using the bin(@scheduled_runtime, 1h) construct to get the full hour's events. Depending on your
application's freshness requirements, you can configure it to refresh more or less frequently. By
using WHERE time BETWEEN bin(@scheduled_runtime, 1h) - 1h AND bin(@scheduled_runtime,
1h) + 1h, we can ensure that even if you are refreshing once every 15 minutes, you will get the full
hour's data for the current hour and the previous hour.

Later on, you will see how the three panels use these aggregates written to table
deployment_cpu_stats_per_hr to visualize the metrics that are relevant to the panel.

{
 "Name": "MultiPT30mHighCpuDeploymentsPerHr",
 "QueryString": "WITH microservice_cell_avg AS (SELECT region, cell,
 silo, availability_zone, microservice_name, bin(time, 1h) as hour, AVG(cpu_user)
 AS microservice_avg_metric FROM raw_data.devops WHERE time BETWEEN
 bin(@scheduled_runtime, 1h) - 1h AND bin(@scheduled_runtime, 1h) + 1h AND
 measure_name = 'metrics' GROUP BY region, cell, silo, availability_zone,
 microservice_name, bin(time, 1h)), instance_avg AS (SELECT region,
 cell, silo, availability_zone, microservice_name, instance_name, bin(time, 1h)
 as hour, AVG(cpu_user) AS instance_avg_metric FROM raw_data.devops
 WHERE time BETWEEN bin(@scheduled_runtime, 1h) - 1h AND bin(@scheduled_runtime,
 1h) + 1h AND measure_name = 'metrics' GROUP BY region, cell, silo,
 availability_zone, microservice_name, instance_name, bin(time, 1h)),
 instances_above_threshold AS (SELECT i.*, CASE WHEN i.instance_avg_metric >
 (1 + 0.2) * m.microservice_avg_metric THEN 1 ELSE 0 END AS high_utilization, CASE
 WHEN i.instance_avg_metric < (1 - 0.2) * m.microservice_avg_metric THEN 1 ELSE 0 END
 AS low_utilization FROM instance_avg i INNER JOIN microservice_cell_avg m ON
 i.region = m.region AND i.cell = m.cell AND i.silo = m.silo AND i.availability_zone
 = m.availability_zone AND m.microservice_name = i.microservice_name AND m.hour =
 i.hour) SELECT region, cell, silo, microservice_name, hour, COUNT(*)
 AS num_hosts, SUM(high_utilization) AS high_utilization_hosts, SUM(low_utilization) AS
 low_utilization_hosts FROM instances_above_threshold GROUP BY region, cell, silo,
 microservice_name, hour",
 "ScheduleConfiguration": {
 "ScheduleExpression": "cron(0/30 * * * ? *)"
 },
 "NotificationConfiguration": {
 "SnsConfiguration": {
 "TopicArn": "******"
 }
 },

Patterns and examples 451

Amazon Timestream Developer Guide

 "TargetConfiguration": {
 "TimestreamConfiguration": {
 "DatabaseName": "derived",
 "TableName": "deployment_cpu_stats_per_hr",
 "TimeColumn": "hour",
 "DimensionMappings": [
 {
 "Name": "region",
 "DimensionValueType": "VARCHAR"
 },
 {
 "Name": "cell",
 "DimensionValueType": "VARCHAR"
 },
 {
 "Name": "silo",
 "DimensionValueType": "VARCHAR"
 },
 {
 "Name": "microservice_name",
 "DimensionValueType": "VARCHAR"
 }
],
 "MultiMeasureMappings": {
 "TargetMultiMeasureName": "cpu_user",
 "MultiMeasureAttributeMappings": [
 {
 "SourceColumn": "num_hosts",
 "MeasureValueType": "BIGINT"
 },
 {
 "SourceColumn": "high_utilization_hosts",
 "MeasureValueType": "BIGINT"
 },
 {
 "SourceColumn": "low_utilization_hosts",
 "MeasureValueType": "BIGINT"
 }
]
 }
 }
 },
 "ErrorReportConfiguration": {
 "S3Configuration" : {

Patterns and examples 452

Amazon Timestream Developer Guide

 "BucketName" : "******",
 "ObjectKeyPrefix": "errors",
 "EncryptionOption": "SSE_S3"
 }
 },
 "ScheduledQueryExecutionRoleArn": "******"
}

Dashboard from pre-computed results

High CPU utilization hosts

For the high utilization hosts, you will see how the different panels use the data from
deployment_cpu_stats_per_hr to compute different aggregates necessary for the panels. For
instance, this panels provides region-level information, so it reports aggregates grouped by region
and microservice, without filtering any region or microservice.

WITH per_deployment_hosts AS (
 SELECT region, cell, silo, microservice_name,
 AVG(num_hosts) AS num_hosts,
 AVG(high_utilization_hosts) AS high_utilization_hosts,
 AVG(low_utilization_hosts) AS low_utilization_hosts
 FROM "derived"."deployment_cpu_stats_per_hr"
 WHERE time BETWEEN from_milliseconds(1636567785437) AND
 from_milliseconds(1636654185437)
 AND measure_name = 'cpu_user'
 GROUP BY region, cell, silo, microservice_name
), per_deployment_high AS (
 SELECT region, microservice_name,
 SUM(num_hosts) AS num_hosts,
 ROUND(SUM(high_utilization_hosts), 0) AS high_utilization_hosts,
 ROUND(SUM(low_utilization_hosts),0) AS low_utilization_hosts,
 ROUND(SUM(high_utilization_hosts) * 100.0 / SUM(num_hosts)) AS
 percent_high_utilization_hosts,

Patterns and examples 453

Amazon Timestream Developer Guide

 ROUND(SUM(low_utilization_hosts) * 100.0 / SUM(num_hosts)) AS
 percent_low_utilization_hosts
 FROM per_deployment_hosts
 GROUP BY region, microservice_name
),
per_region_ranked AS (
 SELECT *,
 DENSE_RANK() OVER (PARTITION BY region ORDER BY percent_high_utilization_hosts
 DESC, high_utilization_hosts DESC) AS rank
 FROM per_deployment_high
)
SELECT *
FROM per_region_ranked
WHERE rank <= 2
ORDER BY percent_high_utilization_hosts desc, rank asc

Drill down into a microservice to find high CPU usage deploymentss

This next example again uses the deployment_cpu_stats_per_hr derived table, but now applies a
filter for a specific microservice (demeter in this example, since it reported high utilization hosts in
the aggregate dashboard). This panel tracks the percentage of high CPU utilization hosts over time.

WITH high_utilization_percent AS (
 SELECT region, cell, silo, microservice_name, bin(time, 1h) AS hour, MAX(num_hosts)
 AS num_hosts,
 MAX(high_utilization_hosts) AS high_utilization_hosts,
 ROUND(MAX(high_utilization_hosts) * 100.0 / MAX(num_hosts)) AS
 percent_high_utilization_hosts
 FROM "derived"."deployment_cpu_stats_per_hr"

Patterns and examples 454

Amazon Timestream Developer Guide

 WHERE time BETWEEN from_milliseconds(1636525800000) AND
 from_milliseconds(1636612200000)
 AND measure_name = 'cpu_user'
 AND microservice_name = 'demeter'
 GROUP BY region, cell, silo, microservice_name, bin(time, 1h)
), high_utilization_ranked AS (
 SELECT region, cell, silo, microservice_name,
 DENSE_RANK() OVER (PARTITION BY region ORDER BY
 AVG(percent_high_utilization_hosts) desc, AVG(high_utilization_hosts) desc) AS rank
 FROM high_utilization_percent
 GROUP BY region, cell, silo, microservice_name
)
SELECT hup.silo, CREATE_TIME_SERIES(hour, hup.percent_high_utilization_hosts) AS
 percent_high_utilization_hosts
FROM high_utilization_percent hup INNER JOIN high_utilization_ranked hur
 ON hup.region = hur.region AND hup.cell = hur.cell AND hup.silo = hur.silo AND
 hup.microservice_name = hur.microservice_name
WHERE rank <= 2
GROUP BY hup.region, hup.cell, hup.silo
ORDER BY hup.silo

Comparing a query on a base table with a query of scheduled query results

In this Timestream query example, we use the following schema, example queries, and outputs
to compare a query on a base table with a query on a derived table of scheduled query results.
With a well-planned scheduled query, you can get a derived table with fewer rows and other
characteristics that can lead to faster queries than would be possible on the original base table.

For a video that describes this scenario, see Improve query performance and reduce cost using
scheduled queries in Amazon Timestream for LiveAnalytics.

For this example, we use the following scenario:

• Region – us-east-1

• Base table – "clickstream"."shopping"

• Derived table – "clickstream"."aggregate"

Base table

The following describes the schema for the base table.

Patterns and examples 455

https://youtu.be/x8AgLhAydzY
https://youtu.be/x8AgLhAydzY

Amazon Timestream Developer Guide

Column Type Timestream for LiveAnalytics
attribute type

channel varchar MULTI

description varchar MULTI

event varchar DIMENSION

ip_address varchar DIMENSION

measure_name varchar MEASURE_NAME

product varchar MULTI

product_id varchar MULTI

quantity double MULTI

query varchar MULTI

session_id varchar DIMENSION

user_group varchar DIMENSION

user_id varchar DIMENSION

The following describes the measures for the base table. A base table refers to a table in
Timestream that scheduled query is run on.

• measure_name – metrics

• data – multi

• dimensions:

[(user_group, varchar),(user_id, varchar),(session_id, varchar),(ip_address,
 varchar),(event, varchar)]

Patterns and examples 456

Amazon Timestream Developer Guide

Query on a base table

The following is an ad-hoc query that gathers counts by a 5-minute aggregate in a given time
range.

SELECT BIN(time, 5m) as time,
channel,
product_id,
SUM(quantity) as product_quantity
FROM "clickstream"."shopping"
WHERE BIN(time, 5m) BETWEEN '2023-05-11 10:10:00.000000000' AND '2023-05-11
 10:30:00.000000000'
AND channel = 'Social media'
and product_id = '431412'
GROUP BY BIN(time, 5m),channel,product_id

Output:

duration:1.745 sec
Bytes scanned: 29.89 MB
Query Id: AEBQEANMHG7MHHBHCKJ3BSOE3QUGIDBGWCCP5I6J6YUW5CVJZ2M3JCJ27QRMM7A
Row count:5

Scheduled query

The following is a scheduled query that runs every 5 minutes.

SELECT BIN(time, 5m) as time, channel as measure_name, product_id, product,
SUM(quantity) as product_quantity
FROM "clickstream"."shopping"
WHERE time BETWEEN BIN(@scheduled_runtime, 5m) - 10m AND BIN(@scheduled_runtime, 5m) -
 5m
AND channel = 'Social media'
GROUP BY BIN(time, 5m), channel, product_id, product

Query on a derived table

The following is an ad-hoc query on a derived table. A derived table refers to a Timestream table
that contains the results of a scheduled query.

SELECT time, measure_name, product_id,product_quantity

Patterns and examples 457

Amazon Timestream Developer Guide

FROM "clickstream"."aggregate"
WHERE time BETWEEN '2023-05-11 10:10:00.000000000' AND '2023-05-11 10:30:00.000000000'
AND measure_name = 'Social media'
and product_id = '431412'

Output:

duration: 0.2960 sec
Bytes scanned: 235.00 B
QueryID: AEBQEANMHHAAQU4FFTT6CFM6UYXTL4SMLZV22MFP4KV2Z7IRVOPLOMLDD6BR33Q
Row count: 5

Comparison

The following is a comparison of the results of a query on a base table with a query on a derived
table. The same query on a derived table that has aggregated results done through a scheduled
query completes faster with fewer scanned bytes.

These results show the value of using scheduled queries to aggregate data for faster queries.

 Query on base table Query on derived table

Duration 1.745 sec 0.2960 sec

Bytes scanned 29.89 MB 235 bytes

Row count 5 5

Using UNLOAD to export query results to S3 from Timestream
for LiveAnalytics

Amazon Timestream for LiveAnalytics now enables you to export your query results to Amazon
S3 in a cost-effective and secure way using the UNLOAD statement. Using the UNLOAD statement,
you can now export time series data to selected S3 buckets in either Apache Parquet or Comma
Separated Values (CSV) format, which provides flexibility to store, combine, and analyze your
time series data with other services. The UNLOAD statement allows you to export the data in a
compressed manner, which reduces the data transferred and storage space required. UNLOAD

Using UNLOAD 458

Amazon Timestream Developer Guide

also supports partitioning based on selected attributes when exporting the data, improving
performance and reducing the processing time of downstream services accessing the data. In
addition, you can use Amazon S3 managed keys (SSE-S3) or Amazon Key Management Service
(Amazon KMS) managed keys (SSE-KMS) to encrypt your exported data.

Benefits of UNLOAD from Timestream for LiveAnalytics

The key benefits of using the UNLOAD statement are as follows.

• Operational ease – With the UNLOAD statement, you can export gigabytes of data in a single
query request in either Apache Parquet or CSV format, providing flexibility to select the best
suited format for your downstream processing needs and making it easier to build data lakes.

• Secure and Cost effective – UNLOAD statement provides the capability to export your data to
an S3 bucket in a compressed manner and to encrypt (SSE-KMS or SSE_S3) your data using
customer managed keys, reducing the data storage costs and protecting against unauthorized
access.

• Performance – Using the UNLOAD statement, you can partition the data when exporting to an
S3 bucket. Partitioning the data enables downstream services to process the data in parallel,
reducing their processing time. In addition, downstream services can process only the data they
need, reducing the processing resources required and thereby costs associated.

Use cases for UNLOAD from Timestream for LiveAnalytics

You can use the UNLOAD statement to write data to your S3 bucket to the following.

• Build Data Warehouse – You can export gigabytes of query results into S3 bucket and more
easily add time series data into your data lake. You can use services such as Amazon Athena and
Amazon Redshift to combine your time series data with other relevant data to derive complex
business insights.

• Build AI and ML data pipelines – The UNLOAD statement enables you to easily build data
pipelines for your machine learning models that access time series data, making it easier to use
time series data with services such as Amazon SageMaker and Amazon EMR.

• Simplify ETL Processing – Exporting data into S3 buckets can simplify the process of performing
Extract, Transform, Load (ETL) operations on the data, enabling you to seamlessly use third-party
tools or Amazon services such as Amazon Glue to process and transform the data.

Benefits 459

Amazon Timestream Developer Guide

UNLOAD Concepts

Syntax

UNLOAD (SELECT statement)
 TO 's3://bucket-name/folder'
 WITH (option = expression [, ...])

where option is

{ partitioned_by = ARRAY[col_name[,…]]
 | format = ['{ CSV | PARQUET }']
 | compression = ['{ GZIP | NONE }']
 | encryption = ['{ SSE_KMS | SSE_S3 }']
 | kms_key = '<string>'
 | field_delimiter ='<character>'
 | escaped_by = '<character>'
 | include_header = ['{true, false}']
 | max_file_size = '<value>'
 | }

Parameters

SELECT statement

The query statement used to select and retrieve data from one or more Timestream for
LiveAnalytics tables.

(SELECT column 1, column 2, column 3 from database.table
 where measure_name = "ABC" and timestamp between ago (1d) and now())

TO clause

TO 's3://bucket-name/folder'

or

TO 's3://access-point-alias/folder'

Concepts 460

Amazon Timestream Developer Guide

The TO clause in the UNLOAD statement specifies the destination for the output of the query
results. You need to provide the full path, including either Amazon S3 bucket-name or Amazon
S3 access-point-alias with folder location on Amazon S3 where Timestream for LiveAnalytics
writes the output file objects. The S3 bucket should be owned by the same account and in
the same region. In addition to the query result set, Timestream for LiveAnalytics writes the
manifest and metadata files to specified destination folder.

PARTITIONED_BY clause

partitioned_by = ARRAY [col_name[,…] , (default: none)

The partitioned_by clause is used in queries to group and analyze data at a granular
level. When you export your query results to the S3 bucket, you can choose to partition the
data based on one or more columns in the select query. When partitioning the data, the
exported data is divided into subsets based on the partition column and each subset is stored
in a separate folder. Within the results folder that contains your exported data, a sub-folder
folder/results/partition column = partition value/ is automatically created.
However, note that partitioned columns are not included in the output file.

partitioned_by is not a mandatory clause in the syntax. If you choose to export the data
without any partitioning, you can exclude the clause in the syntax.

Example

Assuming you are monitoring clickstream data of your website and have 5 channels of traffic
namely direct, Social Media, Organic Search, Other, and Referral. When exporting
the data, you can choose to partition the data using the column Channel. Within your data
folder, s3://bucketname/results, you will have five folders each with their respective
channel name, for instance, s3://bucketname/results/channel=Social Media/.
Within this folder you will find the data of all the customers that landed on your website
through the Social Media channel. Similarly, you will have other folders for the remaining
channels.

Exported data partitioned by Channel column

Concepts 461

Amazon Timestream Developer Guide

FORMAT

format = ['{ CSV | PARQUET }' , default: CSV

The keywords to specify the format of the query results written to your S3 bucket. You can
export the data either as a comma separated value (CSV) using a comma (,) as the default
delimiter or in the Apache Parquet format, an efficient open columnar storage format for
analytics.

COMPRESSION

compression = ['{ GZIP | NONE }'], default: GZIP

You can compress the exported data using compression algorithm GZIP or have it
uncompressed by specifying the NONE option.

ENCRYPTION

encryption = ['{ SSE_KMS | SSE_S3 }'], default: SSE_S3

The output files on Amazon S3 are encrypted using your selected encryption option. In addition
to your data, the manifest and metadata files are also encrypted based on your selected
encryption option. We currently support SSE_S3 and SSE_KMS encryption. SSE_S3 is a server-
side encryption with Amazon S3 encrypting the data using 256-bit advanced encryption
standard (AES) encryption. SSE_KMS is a server-side encryption to encrypt data using customer-
managed keys.

Concepts 462

Amazon Timestream Developer Guide

KMS_KEY

kms_key = '<string>'

KMS Key is a customer-defined key to encrypt exported query results. KMS Key is securely
managed by Amazon Key Management Service (Amazon KMS) and used to encrypt data files on
Amazon S3.

FIELD_DELIMITER

field_delimiter ='<character>' , default: (,)

When exporting the data in CSV format, this field specifies a single ASCII character that is
used to separate fields in the output file, such as pipe character (|), a comma (,), or tab (/t). The
default delimiter for CSV files is a comma character. If a value in your data contains the chosen
delimiter, the delimiter will be quoted with a quote character. For instance, if the value in your
data contains Time,stream, then this value will be quoted as "Time,stream" in the exported
data. The quote character used by Timestream for LiveAnalytics is double quotes (").

Avoid specifying the carriage return character (ASCII 13, hex 0D, text '\r') or the line break
character (ASCII 10, hex 0A, text '\n') as the FIELD_DELIMITER if you want to include headers
in the CSV, since that will prevent many parsers from being able to parse the headers correctly
in the resulting CSV output.

ESCAPED_BY

escaped_by = '<character>', default: (\)

When exporting the data in CSV format, this field specifies the character that should be treated
as an escape character in the data file written to S3 bucket. Escaping happens in the following
scenarios:

1. If the value itself contains the quote character (") then it will be escaped using an escape
character. For example, if the value is Time"stream, where (\) is the configured escape
character, then it will be escaped as Time\"stream.

2. If the value contains the configured escape character, it will be escaped. For example, if the
value is Time\stream, then it will be escaped as Time\\stream.

Concepts 463

Amazon Timestream Developer Guide

Note

If the exported output contains complex data type in the like Arrays, Rows or
Timeseries, it will be serialized as a JSON string. Following is an example.

Data type Actual value How the value is escaped
in CSV format [serialized
JSON string]

Array [23,24,25] "[23,24,25]"

Row (x=23.0, y=hello) "{\"x\":23.0,\"y\":
\"hello\"}"

Timeseries [(time=1970-01-01
00:00:00.000000010
, value=100.0),
(time=1970-01-01
00:00:00.000000012,
value=120.0)]

"[{\"time\":\"1970
-01-01 00:00:00.
000000010Z\",\"val
ue\":100.0},{\"tim
e\":\"1970-01-01
00:00:00.000000012
Z\",\"value\":120.
0}]"

INCLUDE_HEADER

include_header = 'true' , default: 'false'

When exporting the data in CSV format, this field lets you include column names as the first
row of the exported CSV data files.

The accepted values are 'true' and 'false' and the default value is 'false'. Text transformation
options such as escaped_by and field_delimiter apply to headers as well.

Concepts 464

Amazon Timestream Developer Guide

Note

When including headers, it is important that you not select a carriage return character
(ASCII 13, hex 0D, text '\r') or a line break character (ASCII 10, hex 0A, text '\n') as the
FIELD_DELIMITER, since that will prevent many parsers from being able to parse the
headers correctly in the resulting CSV output.

MAX_FILE_SIZE

max_file_size = 'X[MB|GB]' , default: '78GB'

This field specifies the maximum size of the files that the UNLOAD statement creates in Amazon
S3. The UNLOAD statement can create multiple files but the maximum size of each file written
to Amazon S3 will be approximately what is specified in this field.

The value of the field must be between 16 MB and 78 GB, inclusive. You can specify it in integer
such as 12GB, or in decimals such as 0.5GB or 24.7MB. The default value is 78 GB.

The actual file size is approximated when the file is being written, so the actual maximum size
may not be exactly equal to the number you specify.

What is written to my S3 bucket?

For every successfully executed UNLOAD query, Timestream for LiveAnalytics writes your query
results, metadata file and manifest file into the S3 bucket. If you have partitioned the data, you
have all the partition folders in the results folder. Manifest file contains a list of the files that
were written by the UNLOAD command. Metadata file contains information that describes the
characteristics, properties, and attributes of the written data.

What is the exported file name?

The exported file name contains two components, the first component is the queryID and the
second component is a unique identifier.

CSV files

S3://bucket_name/results/<queryid>_<UUID>.csv

Concepts 465

Amazon Timestream Developer Guide

S3://bucket_name/results/<partitioncolumn>=<partitionvalue>/<queryid>_<UUID>.csv

Compressed CSV file

S3://bucket_name/results/<partitioncolumn>=<partitionvalue>/<queryid>_<UUID>.gz

Parquet file

S3://bucket_name/results/<partitioncolumn>=<partitionvalue>/<queryid>_<UUID>.parquet

Metadata and Manifest files

S3://bucket_name/<queryid>_<UUID>_manifest.json
S3://bucket_name/<queryid>_<UUID>_metadata.json

As the data in CSV format is stored at a file level, when you compress the data when exporting to
S3, the file will have a “.gz” extension. However, the data in Parquet is compressed at column level
so even when you compress the data while exporting, the file will still have .parquet extension.

What information does each file contain?

Manifest file

The manifest file provides information on the list of files that are exported with the UNLOAD
execution. The manifest file is available in the provided S3 bucket with a file name: s3://
<bucket_name>/<queryid>_<UUID>_manifest.json. The manifest file will contain the url of
the files in the results folder, the number of records and size of the respective files, and the query
metadata (which is total bytes and total rows exported to S3 for the query).

{
 "result_files": [
 {
 "url":"s3://my_timestream_unloads/ec2_metrics/
AEDAGANLHLBH4OLISD3CVOZZRWPX5GV2XCXRBKCVD554N6GWPWWXBP7LSG74V2Q_1448466917_szCL4YgVYzGXj2lS.gz",
 "file_metadata":
 {
 "content_length_in_bytes": 32295,
 "row_count": 10
 }
 },
 {

Concepts 466

Amazon Timestream Developer Guide

 "url":"s3://my_timestream_unloads/ec2_metrics/
AEDAGANLHLBH4OLISD3CVOZZRWPX5GV2XCXRBKCVD554N6GWPWWXBP7LSG74V2Q_1448466917_szCL4YgVYzGXj2lS.gz",
 "file_metadata":
 {
 "content_length_in_bytes": 62295,
 "row_count": 20
 }
 },
],
 "query_metadata":
 {
 "content_length_in_bytes": 94590,
 "total_row_count": 30,
 "result_format": "CSV",
 "result_version": "Amazon Timestream version 1.0.0"
 },
 "author": {
 "name": "Amazon Timestream",
 "manifest_file_version": "1.0"
 }
}

Metadata

The metadata file provides additional information about the data set such as column name,
column type, and schema. The metadata file is available in the provided S3 bucket with a file name:
S3://bucket_name/<queryid>_<UUID>_metadata.json

Following is an example of a metadata file.

{
 "ColumnInfo": [
 {
 "Name": "hostname",
 "Type": {
 "ScalarType": "VARCHAR"
 }
 },
 {
 "Name": "region",
 "Type": {
 "ScalarType": "VARCHAR"
 }

Concepts 467

Amazon Timestream Developer Guide

 },
 {
 "Name": "measure_name",
 "Type": {
 "ScalarType": "VARCHAR"
 }
 },
 {
 "Name": "cpu_utilization",
 "Type": {
 "TimeSeriesMeasureValueColumnInfo": {
 "Type": {
 "ScalarType": "DOUBLE"
 }
 }
 }
 }
],
 "Author": {
 "Name": "Amazon Timestream",
 "MetadataFileVersion": "1.0"
 }
}

The column information shared in the metadata file has same structure as ColumnInfo sent in
Query API response for SELECT queries.

Results

Results folder contains your exported data in either Apache Parquet or CSV format.

Example

When you submit an UNLOAD query like below via Query API,

UNLOAD(SELECT user_id, ip_address, event, session_id, measure_name, time, query,
 quantity, product_id, channel
 FROM sample_clickstream.sample_shopping WHERE time BETWEEN ago(2d)
 AND now())
 TO 's3://my_timestream_unloads/withoutpartition/' WITH (format='CSV',
 compression='GZIP')

UNLOAD query response will have 1 row * 3 columns. Those 3 columns are:

Concepts 468

Amazon Timestream Developer Guide

• rows of type BIGINT - indicating the number of rows exported

• metadataFile of type VARCHAR - which is the S3 URI of metadata file exported

• manifestFile of type VARCHAR - which is the S3 URI of manifest file exported

You will get the following response from Query API:

{
 "Rows": [
 {
 "Data": [
 {
 "ScalarValue": "20" # No of rows in output across all files
 },
 {
 "ScalarValue": "s3://my_timestream_unloads/withoutpartition/
AEDAAANGH3D7FYHOBQGQQMEAISCJ45B42OWWJMOT4N6RRJICZUA7R25VYVOHJIY_<UUID>_metadata.json"
 #Metadata file
 },
 {
 "ScalarValue": "s3://my_timestream_unloads/withoutpartition/
AEDAAANGH3D7FYHOBQGQQMEAISCJ45B42OWWJMOT4N6RRJICZUA7R25VYVOHJIY_<UUID>_manifest.json"
 #Manifest file
 }
]
 }
],
 "ColumnInfo": [
 {
 "Name": "rows",
 "Type": {
 "ScalarType": "BIGINT"
 }
 },
 {
 "Name": "metadataFile",
 "Type": {
 "ScalarType": "VARCHAR"
 }
 },
 {
 "Name": "manifestFile",
 "Type": {

Concepts 469

Amazon Timestream Developer Guide

 "ScalarType": "VARCHAR"
 }
 }
],
 "QueryId": "AEDAAANGH3D7FYHOBQGQQMEAISCJ45B42OWWJMOT4N6RRJICZUA7R25VYVOHJIY",
 "QueryStatus": {
 "ProgressPercentage": 100.0,
 "CumulativeBytesScanned": 1000,
 "CumulativeBytesMetered": 10000000
 }
}

Data types

The UNLOAD statement supports all data types of Timestream for LiveAnalytics’s query language
described in Supported data types except time and unknown.

Prerequisites for UNLOAD from Timestream for LiveAnalytics

Following are prerequisites for writing data to S3 using UNLOAD from Timestream for LiveAnalytics.

• You must have permission to read data from the Timestream for LiveAnalytics table(s) to be used
in an UNLOAD command.

• You must have an Amazon S3 bucket in the same Amazon Region as your Timestream for
LiveAnalytics resources.

• For the selected S3 bucket, ensure that the S3 bucket policy also has permissions to allow
Timestream for LiveAnalytics to export the data.

• The credentials used to execute UNLOAD query must have necessary Amazon Identity and Access
Management (IAM) permissions that allows Timestream for LiveAnalytics to write the data to S3.
An example policy would be as follows:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "timestream:Select",
 "timestream:ListMeasures",
 "timestream:WriteRecords",
 "timestream:Unload"

Prerequisites 470

https://docs.amazonaws.cn/AmazonS3/latest/userguide/example-bucket-policies.html

Amazon Timestream Developer Guide

],
 "Resource": "arn:aws:timestream:<region>:<account_id>:database/
<database_name>/table/<table_name>"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetBucketAcl",
 "s3:PutObject",
 "s3:GetObjectMetadata",
 "s3:AbortMultipartUpload"
],
 "Resource": [
 "arn:aws:s3:::<S3_Bucket_Created>",
 "arn:aws:s3:::<S3_Bucket_Created>/*"
]
 }
]
}

For additional context on these S3 write permissions, refer to the Amazon Simple Storage Service
guide. If you are using a KMS key for encrypting the exported data, see the following for the
additional IAM policies required.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kms:DescribeKey",
 "kms:Decrypt",
 "kms:GenerateDataKey*"
],
 "Resource": "<account_id>-arn:aws:kms:<region>:<account_id>:key/*",
 "Condition": {
 "ForAnyValue:StringLike": {
 "kms:ResourceAliases": "alias/<Alias_For_Generated_Key>"
 }
 }
 }, {
 "Effect": "Allow",
 "Action": [

Prerequisites 471

https://docs.amazonaws.cn/AmazonS3/latest/userguide/mpuoverview.html#mpuAndPermissions
https://docs.amazonaws.cn/AmazonS3/latest/userguide/mpuoverview.html#mpuAndPermissions

Amazon Timestream Developer Guide

 "kms:CreateGrant"
],
 "Resource": "<account_id>-arn:aws:kms:<region>:<account_id>:key/*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "kms:EncryptionContextKeys": "aws:timestream:<database_name>"
 },
 "Bool": {
 "kms:GrantIsForAWSResource": true
 },
 "StringLike": {
 "kms:ViaService": "timestream.<region>.amazonaws.com"
 },
 "ForAnyValue:StringLike": {
 "kms:ResourceAliases": "alias/<Alias_For_Generated_Key>"
 }
 }
 }
]
}

Best practices for UNLOAD from Timestream for LiveAnalytics

Following are best practices related to the UNLOAD command.

• The amount of data that can be exported to S3 bucket using the UNLOAD command is not
bounded. However, the query times out in 60 minutes and we recommend exporting no more
than 60GB of data in a single query. If you need to export more than 60GB of data, split the job
across multiple queries.

• While you can send thousands of requests to S3 to upload the data, it is recommended to
parallelize the write operations to multiple S3 prefixes. Refer to documentation here. S3 API call
rate could be throttled when multiple readers/writers access the same folder.

• Given the limit on S3 key length for defining a prefix, we recommend having bucket and folder
names within 10-15 characters, especially when using partitioned_by clause.

• When you receive a 4XX or 5XX for queries containing the UNLOAD statement, it is possible that
partial results are written into the S3 bucket. Timestream for LiveAnalytics does not delete
any data from your bucket. Before executing another UNLOAD query with same S3 destination,
we recommend to manually delete the files created by the failed query. You can identify the
files written by a failed query with the corresponding QueryExecutionId. For failed queries,
Timestream for LiveAnalytics does not export a manifest file to the S3 bucket.

Best practices 472

https://docs.amazonaws.cn/AmazonS3/latest/userguide/optimizing-performance.html

Amazon Timestream Developer Guide

• Timestream for LiveAnalytics uses multi-part upload to export query results to S3. When you
receive a 4XX or 5XX from Timestream for LiveAnalytics for queries containing an UNLOAD
statement, Timestream for LiveAnalytics does a best-effort abortion of multi-part upload but
it is possible that some incomplete parts are left behind. Hence, we recommended to set up an
auto cleanup of incomplete multi-part uploads in your S3 bucket by following the guidelines
here.

Recommendations for accessing the data in CSV format using CSV parser

• CSV parsers don’t allow you to have same character in delimiter, escape, and quote character.

• Some CSV parsers cannot interpret complex data types such as Arrays, we recommend
interpreting those through JSON deserializer.

Recommendations for accessing the data in Parquet format

1. If your use case requires UTF-8 character support in schema aka column name, we recommend
using Parquet-mr library.

2. The timestamp in your results is represented as a 12 byte integer (INT96)

3. Timeseries will be represented as array<row<time, value>>, other nested structures will use
corresponding datatypes supported in Parquet format

Using partition_by clause

• The column used in the partitioned_by field should be the last column in the select query.
If more than one column is used in the partitioned_by field, the columns should be the last
columns in the select query and in the same order as used in the partition_by field.

• The column values used to partition the data (partitioned_by field) can contain only ASCII
characters. While Timestream for LiveAnalytics allows UTF-8 characters in the values, S3
supports only ASCII characters as object keys.

Example use case for UNLOAD from Timestream for LiveAnalytics

Assume you are monitoring user session metrics, traffic sources, and product purchases of your e-
commerce website. You are using Timestream for LiveAnalytics to derive real-time insights into

Example use case 473

https://aws.amazon.com/blogs/aws-cloud-financial-management/discovering-and-deleting-incomplete-multipart-uploads-to-lower-amazon-s3-costs/
https://github.com/apache/parquet-mr

Amazon Timestream Developer Guide

user behavior, product sales, and perform marketing analytics on traffic channels (organic search,
social media, direct traffic, paid campaigns and others) that drive customers to the website.

Topics

• Exporting the data without any partitions

• Partitioning data by channel

• Partitioning data by event

• Partitioning data by both channel and event

• Manifest and metadata files

• Using Glue crawlers to build Glue Data Catalog

Exporting the data without any partitions

You want to export the last two days of your data in CSV format.

UNLOAD(SELECT user_id, ip_address, event, session_id, measure_name, time,
query, quantity, product_id, channel
FROM sample_clickstream.sample_shopping
WHERE time BETWEEN ago(2d) AND now())
TO 's3://<bucket_name>/withoutpartition'
WITH (format='CSV',
compression='GZIP')

Partitioning data by channel

You want to export the last two days of data in CSV format but would like to have the data from
each traffic channel in a separate folder. To do this, you need to partition the data using the
channel column as shown in the following.

UNLOAD(SELECT user_id, ip_address, event, session_id, measure_name, time,
query, quantity, product_id, channel
FROM sample_clickstream.sample_shopping
WHERE time BETWEEN ago(2d) AND now())
TO 's3://<bucket_name>/partitionbychannel/'
WITH (
partitioned_by = ARRAY ['channel'],
format='CSV',
compression='GZIP')

Example use case 474

Amazon Timestream Developer Guide

Partitioning data by event

You want to export the last two days of data in CSV format but would like to have the data for
each event in a separate folder. To do this, you need to partition the data using the event column
as shown in the following.

UNLOAD(SELECT user_id, ip_address, channel, session_id, measure_name, time,
query, quantity, product_id, event
FROM sample_clickstream.sample_shopping
WHERE time BETWEEN ago(2d) AND now())
TO 's3://<bucket_name>/partitionbyevent/'
WITH (
partitioned_by = ARRAY ['event'],
format='CSV',
compression='GZIP')

Partitioning data by both channel and event

You want to export the last two days of data in CSV format but would like to have the data for
each channel and within channel store each event in a separate folder. To do this, you need to
partition the data using both channel and event column as shown in the following.

UNLOAD(SELECT user_id, ip_address, session_id, measure_name, time,
query, quantity, product_id, channel,event
FROM sample_clickstream.sample_shopping
WHERE time BETWEEN ago(2d) AND now())
TO 's3://<bucket_name>/partitionbychannelevent/'
WITH (
partitioned_by = ARRAY ['channel','event'],
format='CSV',
compression='GZIP')

Manifest and metadata files

Manifest file

The manifest file provides information on the list of files that are exported with the UNLOAD
execution. The manifest file is available in the provided S3 bucket with a file name: S3://
bucket_name/<queryid>_<UUID>_manifest.json. The manifest file will contain the url of
the files in the results folder, the number of records and size of the respective files, and the query
metadata (which is total bytes and total rows exported to S3 for the query).

Example use case 475

Amazon Timestream Developer Guide

{
 "result_files": [
 {
 "url":"s3://my_timestream_unloads/ec2_metrics/
AEDAGANLHLBH4OLISD3CVOZZRWPX5GV2XCXRBKCVD554N6GWPWWXBP7LSG74V2Q_1448466917_szCL4YgVYzGXj2lS.gz",
 "file_metadata":
 {
 "content_length_in_bytes": 32295,
 "row_count": 10
 }
 },
 {
 "url":"s3://my_timestream_unloads/ec2_metrics/
AEDAGANLHLBH4OLISD3CVOZZRWPX5GV2XCXRBKCVD554N6GWPWWXBP7LSG74V2Q_1448466917_szCL4YgVYzGXj2lS.gz",
 "file_metadata":
 {
 "content_length_in_bytes": 62295,
 "row_count": 20
 }
 },
],
 "query_metadata":
 {
 "content_length_in_bytes": 94590,
 "total_row_count": 30,
 "result_format": "CSV",
 "result_version": "Amazon Timestream version 1.0.0"
 },
 "author": {
 "name": "Amazon Timestream",
 "manifest_file_version": "1.0"
 }
}

Metadata

The metadata file provides additional information about the data set such as column name,
column type, and schema. The metadata file is available in the provided S3 bucket with a file name:
S3://bucket_name/<queryid>_<UUID>_metadata.json

Following is an example of a metadata file.

{

Example use case 476

Amazon Timestream Developer Guide

 "ColumnInfo": [
 {
 "Name": "hostname",
 "Type": {
 "ScalarType": "VARCHAR"
 }
 },
 {
 "Name": "region",
 "Type": {
 "ScalarType": "VARCHAR"
 }
 },
 {
 "Name": "measure_name",
 "Type": {
 "ScalarType": "VARCHAR"
 }
 },
 {
 "Name": "cpu_utilization",
 "Type": {
 "TimeSeriesMeasureValueColumnInfo": {
 "Type": {
 "ScalarType": "DOUBLE"
 }
 }
 }
 }
],
 "Author": {
 "Name": "Amazon Timestream",
 "MetadataFileVersion": "1.0"
 }
}

The column information shared in the metadata file has same structure as ColumnInfo sent in
Query API response for SELECT queries.

Using Glue crawlers to build Glue Data Catalog

1. Login to your account with Admin credentials for the following validation.

Example use case 477

Amazon Timestream Developer Guide

2. Create a Crawler for Glue Database using the guidelines provided here. Please note that the
S3 folder to be provided in the datasource should be the UNLOAD result folder such as s3://
my_timestream_unloads/results.

3. Run the crawler following the guidelines here.

4. View the Glue table.

• Go to Amazon Glue → Tables.

• You will see a new table created with table prefix provided while creating the crawler.

• You can see the schema and partition information by clicking the table details view.

The following are other Amazon services and open-source projects that use the Amazon Glue Data
Catalog.

• Amazon Athena – For more information, see Understanding tables, databases, and data catalogs
in the Amazon Athena User Guide.

• Amazon Redshift Spectrum – For more information, see Querying external data using Amazon
Redshift Spectrum in the Amazon Redshift Database Developer Guide.

• Amazon EMR – For more information, see Use resource-based policies for Amazon EMR access to
Amazon Glue Data Catalog in the Amazon EMR Management Guide.

• Amazon Glue Data Catalog client for Apache Hive metastore – For more information about this
GitHub project, see Amazon Glue Data Catalog Client for Apache Hive Metastore.

Limits for UNLOAD from Timestream for LiveAnalytics

Following are limits related to the UNLOAD command.

• Concurrency for queries using the UNLOAD statement is 1 query per second (QPS). Exceeding the
query rate might result in throttling.

• Queries containing UNLOAD statement can export at most 100 partitions per query. We
recommend to check the distinct count of the selected column before using it to partition the
exported data.

• Queries containing UNLOAD statement time out after 60 minutes.

• The maximum size of the files that the UNLOAD statement creates in Amazon S3 is 78 GB.

For other limits for Timestream for LiveAnalytics, see Quotas

Limits 478

https://docs.amazonaws.cn/glue/latest/ug/tutorial-add-crawler.html
https://docs.amazonaws.cn/glue/latest/ug/tutorial-add-crawler.html#tutorial-add-crawler-step2
https://docs.amazonaws.cn/athena/latest/ug/understanding-tables-databases-and-the-data-catalog.html
https://docs.amazonaws.cn/redshift/latest/dg/c-using-spectrum.html
https://docs.amazonaws.cn/redshift/latest/dg/c-using-spectrum.html
https://docs.amazonaws.cn/emr/latest/ManagementGuide/emr-iam-roles-glue.html
https://docs.amazonaws.cn/emr/latest/ManagementGuide/emr-iam-roles-glue.html
https://github.com/awslabs/aws-glue-data-catalog-client-for-apache-hive-metastore

Amazon Timestream Developer Guide

Using query insights to optimize queries in Amazon
Timestream

Query insights is a performance tuning feature that helps you optimize your queries, improve their
performance, and reduce costs. With query insights, you can assess the temporal, time-based, and
spatial partition key-based pruning efficiency of your queries. Using query insights, you can also
identify areas for improvement to enhance query performance. In addition, with query insights,
you can evaluate how effectively your queries use time-based and partition key-based indexing
to optimize data retrieval. To optimize query performance, it's essential to fine-tune both the
temporal and spatial parameters that govern query execution.

Topics

• Benefits of query insights

• Optimizing data access in Amazon Timestream

• Enabling query insights in Amazon Timestream

• Optimizing queries using query insights response

Benefits of query insights

The following are the key benefits of using query insights:

• Identifying inefficient queries – Query insights provides information on the time-based and
attribute-based pruning of the tables accessed by the query. This information helps you identify
the tables that are sub-optimally accessed.

• Optimizing your data model and partitioning – You can use the query insights information to
access and fine-tune your data model and partitioning strategy.

• Tuning queries – Query insights highlights opportunities to use indexes more effectively.

Optimizing data access in Amazon Timestream

You can optimize the data access patterns in Amazon Timestream using the Timestream
partitioning scheme or data organization techniques.

Topics

• Timestream partitioning scheme

Using query insights 479

Amazon Timestream Developer Guide

• Data organization

Timestream partitioning scheme

Amazon Timestream uses a highly scalable partitioning scheme where each Timestream table can
have hundreds, thousands, or even millions of independent partitions. A highly available partition
tracking and indexing service manages the partitioning, minimizing the impact of failures and
making the system more resilient.

Data organization

Timestream stores each data point it ingests in a single partition. As you ingest data into a
Timestream table, Timestream automatically creates partitions based on the timestamps, partition
key, and other context attributes in the data. In addition to partitioning the data on time (temporal
partitioning), Timestream also partitions the data based on the selected partitioning key and other
dimensions (spatial partitioning). This approach is designed to distribute write traffic and allow for
effective pruning of data for queries.

Optimizing data access 480

Amazon Timestream Developer Guide

The query insights feature provides valuable insights into the pruning efficiency of the query,
which includes query spatial coverage and query temporal coverage.

Topics

• QuerySpatialCoverage

• QueryTemporalCoverage

QuerySpatialCoverage

The QuerySpatialCoverage metric provides insights into the spatial coverage of the executed query
and the table with the most inefficient spatial pruning. This information can help you identify
areas of improvement in the partitioning strategy to enhance spatial pruning. The value for the
QuerySpatialCoverage metric ranges between 0 and 1. The lower the value of the metric, the
more optimal the query pruning on the spatial axis. For example, a value of 0.1 indicates that the
query scans 10% of the spatial axis. A value of 1 indicates that the query scans 100% of the spatial
axis.

Example Using query insights to analyze a query's spatial coverage

Say that you've a Timestream database that stores weather data. Assume that the temperature is
recorded every hour from weather stations located across different states in United States. Imagine
that you choose State as the customer-defined partitioning key (CDPK) to partition the data by
state.

Suppose that you execute a query to retrieve the average temperature for all weather stations in
California between 2 PM and 4 PM on a specific day. The following example shows the query for
this scenario.

SELECT AVG(temperature)
FROM "weather_data"."hourly_weather"
WHERE time >= '2024-10-01 14:00:00' AND time < '2024-10-01 16:00:00'
 AND state = 'CA';

Using the query insights feature, you can analyze the query's spatial coverage. Imagine that the
QuerySpatialCoverage metric returns a value of 0.02. This means that the query only scanned
2% of the spatial axis, which is efficient. In this case, the query was able to effectively prune the
spatial range, only retrieving data from California and ignoring data from other states.

Optimizing data access 481

https://docs.amazonaws.cn/timestream/latest/developerguide/API_query_QuerySpatialCoverage.html

Amazon Timestream Developer Guide

On the contrary, if the QuerySpatialCoverage metric returned a value of 0.8, it would indicate
that the query scanned 80% of the spatial axis, which is less efficient. This might suggest that the
partitioning strategy needs to be refined to improve spatial pruning. For example, you can select
the partition key as city or region instead of a state. By analyzing the QuerySpatialCoverage
metric, you can identify opportunities to optimize your partitioning strategy and improve the
performance of your queries.

The following image shows poor spatial pruning.

To improve spatial pruning efficiency, you can do one or both of the following:

• Add measure_name, the default paritioning key, or use the CDPK predicates in your query.

• If you've already added the attributes mentioned in the previous point, remove functions around
these attributes or clauses, such as LIKE.

Optimizing data access 482

Amazon Timestream Developer Guide

QueryTemporalCoverage

The QueryTemporalCoverage metric provides insights into the temporal range scanned by
the executed query, including the table with the largest time range scanned. The value for the
QueryTemporalCoverage metric is time range represented in nanoseconds. The lower the value
of this metric, the more optimal the query pruning on the temporal range. For example, a query
scanning last few minutes of data is more performant than a query scanning the entire time range
of the table.

Example

Say that you've a Timestream database that stores IoT sensor data, with measurements taken every
minute from devices located in a manufacturing plant. Assume that you've partitioned your data by
device_ID.

Suppose that you execute a query to retrieve the average sensor reading for a specific device over
the last 30 minutes. The following example shows the query for this scenario.

SELECT AVG(sensor_reading)
FROM "sensor_data"."factory_1"
WHERE device_id = 'DEV_123'
 AND time >= NOW() - INTERVAL 30 MINUTE and time < NOW();

Using the query insights feature, you can analyze the temporal range scanned by the query.
Imagine the QueryTemporalCoverage metric returns a value of 1800000000000 nanoseconds
(30 minutes). This means that the query only scanned the last 30 minutes of data, which is a
relatively narrow temporal range. This is a good sign because it indicates that the query was able to
effectively prune the temporal partitioning and only retrieved the requested data.

On the contrary, if the QueryTemporalCoverage metric returned a value of 1 year in
nanoseconds, it indicates that the query scanned one year of time range in the table, which is less
efficient. This might suggest that the query is not optimized for temporal pruning, and you could
improve it by adding time filters.

The following image shows poor temporal pruning.

Optimizing data access 483

Amazon Timestream Developer Guide

To improve temporal pruning, we recommend that you do one or all of the following:

• Add the missing time predicates in the query and make sure that the time predicates are pruning
the desired time window.

• Remove functions, such as MAX(), around the time predicates.

• Add time predicates to all the sub queries. This is important if your sub queries are joining large
tables or performing complex operations.

Enabling query insights in Amazon Timestream

You can enable query insights for your queries with insights delivered directly through the query
response. Enabling query insights doesn't require additional infrastructure or incur any additional
costs. When you enable query insights, it returns query performance related metadata fields in
addition to query results as part of your query response. You can use this information to tune your
queries to improve query performance and reduce query cost.

For information about enabling query insights, see Run a query.

To view examples of the responses returned by enabling query insights, see Examples for
scheduled queries.

Enabling query insights in Amazon Timestream 484

https://docs.amazonaws.cn/timestream/latest/developerguide/API_query_ExecuteScheduledQuery.html#API_query_ExecuteScheduledQuery_Examples
https://docs.amazonaws.cn/timestream/latest/developerguide/API_query_ExecuteScheduledQuery.html#API_query_ExecuteScheduledQuery_Examples

Amazon Timestream Developer Guide

Note

• When you enable query insights, it rate limits the query to 1 query per second (QPS). To
avoid performance impacts, we strongly recommend that you enable query insights only
during the evaluation phase of your queries, before deploying them to production.

• The insights provided in query insights are eventually consistent, which means they
might change as new data is continuously ingested into the tables.

Optimizing queries using query insights response

Say that you're using Amazon Timestream for LiveAnalytics to monitor energy consumption across
various locations. Imagine that you've two tables in your database named raw-metrics and
aggregate-metrics.

The raw-metrics table stores detailed energy data at the device level and contains the following
columns:

• Timestamp

• State, for example, Washington

• Device ID

• Energy consumption

The data for this table is collected and stored at a minute-by-minute granularity. The table uses
State as the CDPK.

The aggregate-metrics table stores the result of a scheduled query to aggregate the energy
consumption data across all devices hourly. This table contains the following columns:

• Timestamp

• State, for example, Washington

• Total energy consumption

The aggregate-metrics table stores this data at an hourly granularity. The table uses State as
the CDPK.

Optimizing queries 485

Amazon Timestream Developer Guide

Topics

• Querying energy consumption for the last 24 hours

• Optimizing the query for temporal range

• Optimizing the query for spatial coverage

• Improved query performance

Querying energy consumption for the last 24 hours

Say that you want to extract the total energy consumed in Washington over the last 24 hours. To
find this data, you can leverage the strengths of both the tables: raw-metrics and aggregate-
metrics. The aggregate-metrics table provides hourly energy consumption data for the last
23 hours, while the raw-metrics table offers minute-granular data for the last one hour. By
querying across both tables, you can get a complete and accurate picture of energy consumption in
Washington over the last 24 hours.

SELECT am.time, am.state, am.total_energy_consumption,
rm.time, rm.state, rm.device_id, rm.energy_consumption
FROM
 "metrics"."aggregate-metrics" am
 LEFT JOIN "metrics"."raw-metrics" rm ON am.state = rm.state
WHERE rm.time >= ago(1h) and rm.time < now()

This example query is provided for illustrative purposes only and might not work as is. It's intended
to demonstrate the concept, but you might need to modify it to fit your specific use case or
environment.

After executing this query, you might notice that the query response time is slower than expected.
To identify the root cause of this performance issue, you can use the query insights feature to
analyze the query's performance and optimize its execution.

The following example shows the query insights response.

queryInsightsResponse={
 QuerySpatialCoverage: {
 Max: {
 Value: 1.0,
 TableArn: arn:aws-cn:timestream:us-
east-1:123456789012:database/metrics/table/raw-metrics,
 PartitionKey: [State]

Optimizing queries 486

Amazon Timestream Developer Guide

 }
 },
 QueryTemporalRange: {
 Max: {
 Value:31540000000000000 //365 days,
 TableArn: arn:aws-cn:timestream:us-
east-1:123456789012:database/metrics/table/aggregate-metrics
 }
 },
 QueryTableCount: 2,
 OutputRows: 83,
 OutputBytes: 590

The query insights response provides the following information:

• Temporal range: The query scanned an excessive 365-day temporal range for the aggregate-
metrics table. This indicates an inefficient use of temporal filtering.

• Spatial coverage: The query scanned the entire spatial range (100%) of the raw-metrics table.
This suggests that the spatial filtering isn't being utilized effectively.

If your query accesses more than one table, query insights provides the metrics for the table with
most sub-optimal access pattern.

Optimizing the query for temporal range

Based on the query insights response, you can optimize the query for temporal range as shown in
the following example.

SELECT am.time, am.state, am.total_energy_consumption,
rm.time, rm.state, rm.device_id, rm.energy_consumption
FROM
 "metrics"."aggregate-metrics" am
 LEFT JOIN "metrics"."raw-metrics" rm ON am.state = rm.state
WHERE
 am.time >= ago(23h) and am.time < now()
 AND rm.time >= ago(1h) and rm.time < now()
 AND rm.state = 'Washington'

If you run the QueryInsights command again, it returns the following response.

queryInsightsResponse={

Optimizing queries 487

Amazon Timestream Developer Guide

 QuerySpatialCoverage: {
 Max: {
 Value: 1.0,
 TableArn: arn:aws-cn:timestream:us-
east-1:123456789012:database/metrics/table/aggregate-metrics,
 PartitionKey: [State]
 }
 },
 QueryTemporalRange: {
 Max: {
 Value: 82800000000000 //23 hours,
 TableArn: arn:aws-cn:timestream:us-
east-1:123456789012:database/metrics/table/aggregate-metrics
 }
 },
 QueryTableCount: 2,
 OutputRows: 83,
 OutputBytes: 590

This response shows that the spatial coverage for the aggregate-metrics table is still 100%,
which is inefficient. The following section shows how to optimze the query for spatial coverage.

Optimizing the query for spatial coverage

Based on the query insights response, you can optimize the query for spatial coverage as shown in
the following example.

SELECT am.time, am.state, am.total_energy_consumption,
rm.time, rm.state, rm.device_id, rm.energy_consumption
FROM
 "metrics"."aggregate-metrics" am
 LEFT JOIN "metrics"."raw-metrics" rm ON am.state = rm.state
WHERE
 am.time >= ago(23h) and am.time < now()
 AND am.state ='Washington'
 AND rm.time >= ago(1h) and rm.time < now()
 AND rm.state = 'Washington'

If you run the QueryInsights command again, it returns the following response.

queryInsightsResponse={
 QuerySpatialCoverage: {

Optimizing queries 488

Amazon Timestream Developer Guide

 Max: {
 Value: 0.02,
 TableArn: arn:aws-cn:timestream:us-
east-1:123456789012:database/metrics/table/aggregate-metrics,
 PartitionKey: [State]
 }
 },
 QueryTemporalRange: {
 Max: {
 Value: 82800000000000 //23 hours,
 TableArn: arn:aws-cn:timestream:us-
east-1:123456789012:database/metrics/table/aggregate-metrics
 }
 },
 QueryTableCount: 2,
 OutputRows: 83,
 OutputBytes: 590

Improved query performance

After optimizing the query, query insights provides the following information:

• Temporal pruning for the aggregate-metrics table is 23 hours. This indicates that only 23
hours of the temporal range is scanned.

• Spatial pruning for aggregate-metrics table is 0.02. This indicates that only 2% of the table's
spatial range data is being scanned. The query scans a very small portion of the tables leading
to fast performance and reduced resource utilization. The improved pruning efficiency indicates
that the query is now optimized for performance.

Working with Amazon Backup

The data protection functionality in Amazon Timestream for LiveAnalytics is a fully managed
solution to help you meet your regulatory compliance and business continuity requirements. The
functionality is enabled through native integration with Amazon Backup, a unified backup service
designed to simplify the creation, migration, restoration, and deletion of backups, while providing
improved reporting and auditing. Through integration with Amazon Backup, you can use a fully
managed, policy-driven centralized data protection solution to create immutable backups and
centrally manage data protection of your application data spanning Timestream and other Amazon
services supported by Amazon Backup.

Working with Amazon Backup 489

Amazon Timestream Developer Guide

To use the functionality, you must opt-in to allow Amazon Backup to protect your Timestream
resources. Opt-in choices apply to the specific account and Amazon Region, so you might have to
opt in to multiple Regions using the same account. For more information on Amazon Backup, see
the Amazon Backup Developer Guide.

Data Protection functionality available through Amazon Backup includes the following.

Scheduled backups—You can set up regularly scheduled backups of your Timestream for
LiveAnalytics tables using backup plans.

Cross-account and cross-Region copying—You can automatically copy your backups to another
backup vault in a different Amazon Region or account, which allows you to support your data
protection requirements.

Cold storage tiering—You can configure your backups to implement life cycle rules to delete or
transition backups to colder storage. This can help you optimize your backup costs.

Tags—You can automatically tag your backups for billing and cost allocation purposes.

Encryption—Your backup data is stored in the Amazon Backup vault. This allows you to encrypt
and secure your backups by using an Amazon KMS key that is independent from your Timestream
for LiveAnalytics table encryption key.

Secure backups using the WORM model—You can use Amazon Backup Vault Lock to enable a
write-once-read-many (WORM) setting for your backups. With Amazon Backup Vault Lock, you
can add an additional layer of defense that protects backups from inadvertent or malicious delete
operations, changes to backup retention periods, and updates to lifecycle settings. To learn more,
see Amazon Backup Vault Lock.

The data protection functionality is available in all regions To learn more about the functionality,
see the Amazon Backup Developer Guide.

Backing up and restoring Timestream tables: How it works

You can create backups of your Amazon Timestream tables. This section provides an overview of
what happens during the backup and restore process.

Topics

• Backups

• Restores

How it works 490

https://docs.amazonaws.cn/aws-backup/latest/devguide/service-opt-in.html
https://docs.amazonaws.cn/aws-backup/latest/devguide/whatisbackup.html
https://docs.amazonaws.cn/aws-backup/latest/devguide/vault-lock.html
https://docs.amazonaws.cn/aws-backup/latest/devguide/whatisbackup.html

Amazon Timestream Developer Guide

Backups

You can use the on-demand backup feature to create full backups of your Amazon Timestream for
LiveAnalytics tables. This section provides an overview of what happens during the backup and
restore process.

You can create a backup of your Timestream data at a table granularity. You can initiate a backup
of the selected table using either Timestream console, or Amazon Backup console, SDK, or CLI. The
backup is created asynchronously and all the data in the table until the backup initiation time is
included in the backup. However, there is a possibility that some of the data ingested into the table
while the backup is in progress might also be included in the backup. To protect your data, you can
either create a one-time on-demand backup or schedule a recurring backup of your table.

While a backup is in progress, you cannot do the following.

• Pause or cancel the backup operation.

• Delete the source table of the backup.

• Disable backups on a table if a backup for that table is in progress.

Once configured, Amazon Backup provides automated backup schedules, retention management,
and lifecycle management, removing the need for custom scripts and manual processes. For more
information, see the Amazon Backup Developer Guide

All Timestream for LiveAnalytics backups are incremental in nature, implying that the first backup
of a table is a full backup and every subsequent backup of the same table is an incremental
backup, copying only the changes to the data since the last backup. As the data in Timestream
for LiveAnalytics is stored in a collection of partitions, all the partitions that changed either due
to ingesting new data or updates to the existing data since the last backup are copied during
subsequent backups.

If you are using Timestream for LiveAnalytics console, the backups created for all the resources
in the account are listed in the Backups tab. Additionally, the backups are also listed in the Table
details.

Restores

You can restore a table from the Timestream for LiveAnalytics console, or Amazon Backup console,
SDK, or Amazon CLI. You can either restore the entire data from your backup, or configure the

How it works 491

https://docs.amazonaws.cn/aws-backup/latest/devguide/whatisbackup.html

Amazon Timestream Developer Guide

table retention settings to restore select data. When you initiate a restore, you can configure the
following table settings.

• Database Name

• Table Name

• Memory store retention

• Magnetic store retention

• Enable Magnetic storage writes

• S3 error logs location (optional)

• IAM role that Amazon Backup will assume when restoring the backup

The preceding configurations are independent of the source table. To restore all the data in your
backup, we recommend that you configure the new table settings such that the sum of memory
store retention period and magnetic store retention period is greater than the difference between
the oldest timestamp and now. When you select a backup that is incremental to restore, all data
(incremental + underlying full data) is restored. Upon successful restore, the table is in active
state and you can perform ingestion and/or query operations on the restored table. However, you
cannot perform these operations while the restore is in progress. Once restored, the table is similar
to any other table in your account.

Example Restore the all data from a backup

This example has the following assumptions.

Oldest timestamp—August 1, 2021 0:00:00

• Now—November 9, 2022 0:00:00

To restore all data from a backup, enter and compare values as follows.

1. Enter Memory store retention and Magnetic store retention. For example, assume these values.

• Memory store retention—12 hours

• Magnetic store retention—500 days

2. Find the sum of Memory store retention and Magnetic store retention.

12 hours + (500 * 24 hours) =

How it works 492

Amazon Timestream Developer Guide

12 hours + 12,000 hours =
12,012 hours

3. Find the difference between Oldest timestamp and now.

November 9, 2022 0:00:00 - August 1, 2021 0:00:00 =
465 days =
465 * 24 hours =
11,160 hours

4. Ensure the sum of retention values in the second step is greater than difference of times in the
third step. Adjust the retention times if necessary.

12,012 > 11,160
true

Example Restore select data from a backup

This example has the following assumption.

• Now—November 9, 2022 0:00:00

To restore only select data from a backup, enter and compare values as follows.

1. Determine the earliest timestamp required. For example, assume December 4, 2021
0:00:00.

2. Find the difference between the earliest timestamp required and now.

November 9, 2022 0:00:00 - December 4, 2021 0:00:00 =
340 days =
340 * 24 hours =
8,160 hours

3. Enter the desired value for Memory store retention. For example, enter 12 hours.

4. Subtract the value from the difference in the second step.

8,160 hours - 12 hours =
8148 hours

5. Enter that value for Magnetic store retention.

How it works 493

Amazon Timestream Developer Guide

You can copy a backup of your Timestream for LiveAnalytics table data to a different Amazon
Region and then restore it in that new Region. You can copy and then restore backups between
Amazon commercial Regions, and Amazon GovCloud (US) Regions. You pay only for the data you
copy from the source Region and the data you restore to a new table in the destination Region.

Once the table is restored, you must manually set up the following on the restored table.

• Amazon Identity and Access Management (IAM) policies

• Tags

• Scheduled Queries

Restore times are directly related to the configuration of your tables. These include the size of
your tables, the number of underlying partitions, the amount of data restored to memory store,
and other variables. A best practice when planning for disaster recovery is to regularly document
average restore completion times and establish how these times affect your overall Recovery Time
Objective (RTO).

All backup and restore console and API actions are captured and recorded in Amazon CloudTrail for
logging, continuous monitoring, and auditing.

Creating backups of Amazon Timestream tables

This section describes how to enable Amazon Backup and create on-demand and scheduled
backups for Amazon Timestream.

Topics

• Enabling Amazon Backup to protect Timestream for LiveAnalytics data

• Creating on-demand backups

• Scheduled backups

Enabling Amazon Backup to protect Timestream for LiveAnalytics data

You must enable Amazon Backup to use it with Timestream for LiveAnalytics.

To enable Amazon Backup in the Timestream for LiveAnalytics console, perform the following
steps.

1. Sign in to the Amazon Management Console.

Creating backups 494

https://console.aws.amazon.com/timestream

Amazon Timestream Developer Guide

2. A pop-up banner appears at the top of your Timestream for LiveAnalytics dashboard page to
enable Amazon Backup to support Timestream for LiveAnalytics data. Otherwise, from the
navigation pane, choose Backups.

3. In the Backup window, you will see the banner to enable Amazon Backup. Choose Enable.

Data Protection through Amazon Backup is now available for your Timestream for LiveAnalytics
tables.

To enable through Amazon Backup, refer to Amazon Backup documentation to enable via console
and programmatically.

If you choose to disable Amazon Backup from protection your Timestream for LiveAnalytics data
after those have been enabled, log in through Amazon Backup console and move the toggle to the
left.

If you can’t enable or disable the Amazon Backup features, your Amazon admin may need to
perform those actions.

Creating on-demand backups

To create an on-demand backup of a Timestream for LiveAnalytics table, follow these steps.

1. Sign in to the Amazon Management Console.

2. In the navigation pane on the left side of the console, choose Backups.

3. Choose Create on-demand backup.

4. Continue to select the settings in the backup window.

5. You can either create a backup now, initiates a backup immediately, or select a backup window
to start the backup.

6. Select the lifecycle management policy of your backup. You can transition your backup data
into cold storage where you have to retain the backup for a minimum of 90 days. You can set
the required retention period for your backup You can either select an existing vault or or select
create new backup vault to navigate to Amazon Backup console and create a new backup vault
<documentation link on creating a new backup vault here>

7. Select the appropriate IAM role.

8. If you want to assign one or more tags to your on-demand backup, enter a key and optional
value, and choose Add tag.

Creating backups 495

https://console.aws.amazon.com/timestream

Amazon Timestream Developer Guide

9. Choose to create an on-demand backup. This takes you to the Backup page, where you will see a
list of jobs.

10.Choose the Backup job ID for the resource that you chose to back up to see the details of that
job.

Scheduled backups

To schedule a backup, refer to Create a scheduled backup.

Restoring a backup of an Amazon Timestream table

This section describes how to restore a backup of an Amazon Timestream table.

Topics

• Restoring a Timestream for LiveAnalytics table from Amazon Backup

• Restoring a Timestream for LiveAnalytics table to another Region or account

Restoring a Timestream for LiveAnalytics table from Amazon Backup

To restore your Timestream for LiveAnalytics table from Amazon Backup using Timestream for
LiveAnalytics console, follow these steps.

1. Sign in to the Amazon Management Console.

2. In the navigation pane on the left side of the console, choose Backups.

3. To restore a resource, choose the radio button next to the recovery point ID of the resource. In
the upper-right corner of the pane, choose Restore.

4. Enter the table configuration settings, namely Database name and Table Name. Please note,
the restored table name should be different from the original source table name.

5. Configure the memory and magnetic store retention settings.

6. For Restore role, choose the IAM role that Amazon Backup will assume for this restore.

7. Choose Restore backup. A message at the top of the page provides information about the
restore job.

Restoring backups 496

https://docs.amazonaws.cn/aws-backup/latest/devguide/create-a-scheduled-backup.html
https://console.aws.amazon.com/timestream

Amazon Timestream Developer Guide

Note

You are charged for restoring the entire backup irrespective of the configured memory and
magnetic store retention periods. However, once the restore is completed, your restored
table will only contain the data within the configured retention periods.

Restoring a Timestream for LiveAnalytics table to another Region or account

To restore a Timestream for LiveAnalytics table to another Region or account, you will first need to
copy the backup to that new Region or account. In order to copy to another account, that account
must first grant you permission. After you have copied your Timestream for LiveAnalytics backup
to the new Region or account, it can be restored with the process in the previous section.

Copying a backup of a Amazon Timestream table

You can make a copy of a current backup. You can copy backups to multiple Amazon accounts or
Amazon Regions on demand or automatically as part of a scheduled backup plan. Cross-Region
replication is especially valuable if you have business continuity or compliance requirements to
store backups a minimum distance away from your production data.

Cross-account backups are useful for securely copying your backups to one or more Amazon
accounts in your organization for operational or security reasons. If your original backup is
inadvertently deleted, you can copy the backup from its destination account to its source account,
and then start the restore. Before you can do this, you must have two accounts that belong to the
same organization in the Organizations service and required permissions for the accounts. When
you copy an incremental backup into another account or Region, the associated full backup is also
copied.

Copies inherit the source backup's configuration unless you specify otherwise. There is one
exception. If you specify your new copy to "Never" expire. With this setting, the new copy still
inherits its source expiration date. If you want your new backup copy to be permanent, either set
your source backups to never expire, or specify your new copy to expire 100 years after its creation.

To copy a backup from Timestream console, follow these steps.

1. Sign in to the Amazon Management Console.

2. In the navigation pane on the left side of the console, choose Backups.

Copying backups 497

https://console.aws.amazon.com/timestream

Amazon Timestream Developer Guide

3. Choose the radio button next to the recovery point ID of the resource. In the upper-right corner
of the pane, select Actions and choose Copy.

4. Select Continue to Amazon Backup and follow the steps for Cross account backup.

Copying on-demand and scheduled backups across accounts and Regions is not natively supported
in the Timestream for LiveAnalytics console currently and you have to navigate to Amazon Backup
to perform the operation.

Deleting backups

This section describes how to delete a backup of a Timestream for LiveAnalytics table.

To delete a backup from Timestream console, follow these steps.

1. Sign in to the Amazon Management Console.

2. In the navigation pane on the left side of the console, choose Backups.

3. Choose the radio button next to the recovery point ID of the resource. In the upper-right corner
of the pane, select Actions and choose Delete.

4. Select Continue to Amazon Backup and follow the steps for deleting backups at Deleting
backups.

Note

When you delete a backup that is incremental, only the incremental backup is deleted and
the underlying full backup is not deleted.

Quota and limits

Amazon Backup limits the backups to one concurrent backup per resource. Therefore, additional
scheduled or on-demand backup requests for the resource are queued and will start only after the
existing backup job is completed. If the backup job is not started or completed within the backup
window, the request fails. For more information about Amazon Backup limits, see Amazon Backup
Limits in the Amazon Backup Developer Guide.

When creating a backup, you can execute up to four concurrent backups per account. Similarly,
you can execute one concurrent restore per account. When you initiate more than four backup

Deleting backups 498

https://docs.amazonaws.cn/aws-backup/latest/devguide/cross-region-backup.html
https://console.aws.amazon.com/timestream
https://docs.amazonaws.cn/aws-backup/latest/devguide/deleting-backups.html
https://docs.amazonaws.cn/aws-backup/latest/devguide/deleting-backups.html
https://docs.amazonaws.cn/aws-backup/latest/devguide/aws-backup-limits.html
https://docs.amazonaws.cn/aws-backup/latest/devguide/aws-backup-limits.html

Amazon Timestream Developer Guide

jobs simultaneously, only four backup jobs are initiated and the remaining jobs will be periodically
retried. Once initiated, if the backup job is not completed within the configured backup window
duration, the backup job fails. If the failed backup job is an on-demand backup, you can retry the
backup and for scheduled backups, the job is attempted in the following schedule.

Customer-defined partition keys

Amazon Timestream for LiveAnalytics customer-defined partition keys is a feature in Timestream
for LiveAnalytics that enables customers to define their own partition keys for their tables.
Partitioning is a technique used to distribute data across multiple physical storage units, allowing
for faster and more efficient data retrieval. With customer-defined partition keys, customers can
create a partitioning schema that better aligns with their query patterns and use cases.

With Timestream for LiveAnalytics customer-defined partition keys, customers can choose one
dimension names as a partition key for their tables. This allows for more flexibility in defining the
partitioning schema for their data. By selecting the right partition key, customers can optimize
their data model, improving their query performance, and reduce query latency.

Topics

• Using customer-defined partition keys

• Getting started with customer-defined partition keys

• Checking partitioning schema configuration

• Updating partitioning schema configuration

• Advantages of customer-defined partition keys

• Limitations of customer-defined partition keys

• Customer-defined partition keys and low cardinality dimensions

• Creating partition keys for existing tables

• Timestream for LiveAnalytics schema validation with custom composite partition keys

Using customer-defined partition keys

If you have a well-defined query pattern with high cardinality dimensions and require low query
latency, a Timestream for LiveAnalytics customer-defined partition key can be a useful tool to
enhance your data model. For instance, if you are a retail company tracking customer interactions
on your website, the main access patterns would likely be by customer ID and timestamp. By

Customer-defined partition keys 499

Amazon Timestream Developer Guide

defining customer ID as the partition key, your data can be distributed evenly, allowing for reduced
latency, ultimately improving the user experience.

Another example is in the healthcare industry, where wearable devices collect sensor data to track
patients' vital signs. The main access pattern would be by Device ID and timestamp, with high
cardinality on both dimensions. By defining Device ID as the partition key, can optimize your query
execution and ensure a sustained long term query performance.

In summary, Timestream for LiveAnalytics customer-defined partition keys are most useful when
you have a clear query pattern, high cardinality dimensions, and need low latency for your queries.
By defining a partition key that aligns with your query pattern, you can optimize your query
execution and ensure a sustained long term performance query performance.

Getting started with customer-defined partition keys

From the console, choose Tables and create a new table. You can also use an SDK to access the
CreateTable action to create new tables that can include a customer-defined partition key.

Create a table with a dimension type partition key

You can use the following code snippets to create a table with a dimension type partition key.

Java

public void createTableWithDimensionTypePartitionKeyExample() {
 System.out.println("Creating table");
 CreateTableRequest createTableRequest = new CreateTableRequest();
 createTableRequest.setDatabaseName(DATABASE_NAME);
 createTableRequest.setTableName(TABLE_NAME);
 final RetentionProperties retentionProperties = new RetentionProperties()
 .withMemoryStoreRetentionPeriodInHours(HT_TTL_HOURS)
 .withMagneticStoreRetentionPeriodInDays(CT_TTL_DAYS);
 createTableRequest.setRetentionProperties(retentionProperties);

 // Can specify enforcement level with OPTIONAL or REQUIRED
 final List<PartitionKey> partitionKeyWithDimensionAndOptionalEnforcement =
 Collections.singletonList(new PartitionKey()
 .withName(COMPOSITE_PARTITION_KEY_DIM_NAME)
 .withType(PartitionKeyType.DIMENSION)
 .withEnforcementInRecord(PartitionKeyEnforcementLevel.OPTIONAL));
 Schema schema = new Schema();

Getting started with customer-defined partition keys 500

Amazon Timestream Developer Guide

 schema.setCompositePartitionKey(partitionKeyWithDimensionAndOptionalEnforcement);
 createTableRequest.setSchema(schema);

 try {
 writeClient.createTable(createTableRequest);
 System.out.println("Table [" + TABLE_NAME + "] successfully created.");
 } catch (ConflictException e) {
 System.out.println("Table [" + TABLE_NAME + "] exists on database [" +
 DATABASE_NAME + "] . Skipping database creation");
 }
 }

Java v2

public void createTableWithDimensionTypePartitionKeyExample() {
 System.out.println("Creating table");
 final RetentionProperties retentionProperties =
 RetentionProperties.builder()
 .memoryStoreRetentionPeriodInHours(HT_TTL_HOURS)
 .magneticStoreRetentionPeriodInDays(CT_TTL_DAYS)
 .build();
 // Can specify enforcement level with OPTIONAL or REQUIRED
 final List<PartitionKey> partitionKeyWithDimensionAndOptionalEnforcement =
 Collections.singletonList(PartitionKey
 .builder()
 .name(COMPOSITE_PARTITION_KEY_DIM_NAME)
 .type(PartitionKeyType.DIMENSION)
 .enforcementInRecord(PartitionKeyEnforcementLevel.OPTIONAL)
 .build());
 final Schema schema = Schema.builder()

 .compositePartitionKey(partitionKeyWithDimensionAndOptionalEnforcement).build();
 final CreateTableRequest createTableRequest = CreateTableRequest.builder()
 .databaseName(DATABASE_NAME)
 .tableName(TABLE_NAME)
 .retentionProperties(retentionProperties)
 .schema(schema)
 .build();

 try {
 writeClient.createTable(createTableRequest);
 System.out.println("Table [" + TABLE_NAME + "] successfully created.");

Getting started with customer-defined partition keys 501

Amazon Timestream Developer Guide

 } catch (ConflictException e) {
 System.out.println("Table [" + TABLE_NAME + "] exists on database [" +
 DATABASE_NAME + "] . Skipping database creation");
 }
 }

Go v1

func createTableWithDimensionTypePartitionKeyExample(){
 // Can specify enforcement level with OPTIONAL or REQUIRED
 partitionKeyWithDimensionAndOptionalEnforcement :=
 []*timestreamwrite.PartitionKey{
 {
 Name: aws.String(CompositePartitionKeyDimName),
 EnforcementInRecord: aws.String("OPTIONAL"),
 Type: aws.String("DIMENSION"),
 },
 }
 createTableInput := ×treamwrite.CreateTableInput{
 DatabaseName: aws.String(*databaseName),
 TableName: aws.String(*tableName),
 // Enable MagneticStoreWrite for Table
 MagneticStoreWriteProperties:
 ×treamwrite.MagneticStoreWriteProperties{
 EnableMagneticStoreWrites: aws.Bool(true),
 // Persist MagneticStoreWrite rejected records in S3
 MagneticStoreRejectedDataLocation:
 ×treamwrite.MagneticStoreRejectedDataLocation{
 S3Configuration: ×treamwrite.S3Configuration{
 BucketName: aws.String("timestream-sample-bucket"),
 ObjectKeyPrefix: aws.String("TimeStreamCustomerSampleGo"),
 EncryptionOption: aws.String("SSE_S3"),
 },
 },
 },
 Schema: ×treamwrite.Schema{
 CompositePartitionKey:
 partitionKeyWithDimensionAndOptionalEnforcement,
 }
 }
 _, err := writeSvc.CreateTable(createTableInput)
 }

Getting started with customer-defined partition keys 502

Amazon Timestream Developer Guide

Go v2

 func (timestreamBuilder TimestreamBuilder)
 CreateTableWithDimensionTypePartitionKeyExample() error {
 partitionKeyWithDimensionAndOptionalEnforcement := []types.PartitionKey{
 {
 Name: aws.String(CompositePartitionKeyDimName),
 EnforcementInRecord: types.PartitionKeyEnforcementLevelOptional,
 Type: types.PartitionKeyTypeDimension,
 },
 }
 _, err := timestreamBuilder.WriteSvc.CreateTable(context.TODO(),
 ×treamwrite.CreateTableInput{
 DatabaseName: aws.String(databaseName),
 TableName: aws.String(tableName),
 MagneticStoreWriteProperties: &types.MagneticStoreWriteProperties{
 EnableMagneticStoreWrites: aws.Bool(true),
 // Persist MagneticStoreWrite rejected records in S3
 MagneticStoreRejectedDataLocation:
 &types.MagneticStoreRejectedDataLocation{
 S3Configuration: &types.S3Configuration{
 BucketName: aws.String(s3BucketName),
 EncryptionOption: "SSE_S3",
 },
 },
 },
 Schema: &types.Schema{
 CompositePartitionKey:
 partitionKeyWithDimensionAndOptionalEnforcement,
 },
 })

 if err != nil {
 fmt.Println("Error:")
 fmt.Println(err)
 } else {
 fmt.Println("Create table is successful")
 }
 return err
 }

Getting started with customer-defined partition keys 503

Amazon Timestream Developer Guide

Python

def create_table_with_measure_name_type_partition_key(self):
 print("Creating table")
 retention_properties = {
 'MemoryStoreRetentionPeriodInHours': HT_TTL_HOURS,
 'MagneticStoreRetentionPeriodInDays': CT_TTL_DAYS
 }
 partitionKey_with_measure_name = [
 {'Type': 'MEASURE'}
]
 schema = {
 'CompositePartitionKey': partitionKey_with_measure_name
 }
 try:
 self.client.create_table(DatabaseName=DATABASE_NAME,
 TableName=TABLE_NAME,
 RetentionProperties=retention_properties,
 Schema=schema)
 print("Table [%s] successfully created." % TABLE_NAME)
 except self.client.exceptions.ConflictException:
 print("Table [%s] exists on database [%s]. Skipping table creation" % (
 TABLE_NAME, DATABASE_NAME))
 except Exception as err:
 print("Create table failed:", err)

Checking partitioning schema configuration

You can check how a table configuration for partitioning schema in a couple of ways. From the
console, choose Databases and choose the table to check. You can also use an SDK to access the
DescribeTable action.

Describe a table with a partition key

You can use the following code snippets to describe a table with a partition key.

Java

 public void describeTable() {
 System.out.println("Describing table");
 final DescribeTableRequest describeTableRequest = new
 DescribeTableRequest();

Checking partitioning schema configuration 504

Amazon Timestream Developer Guide

 describeTableRequest.setDatabaseName(DATABASE_NAME);
 describeTableRequest.setTableName(TABLE_NAME);
 try {
 DescribeTableResult result =
 amazonTimestreamWrite.describeTable(describeTableRequest);
 String tableId = result.getTable().getArn();
 System.out.println("Table " + TABLE_NAME + " has id " + tableId);
 // If table is created with composite partition key, it can be described
 with
 //
 System.out.println(result.getTable().getSchema().getCompositePartitionKey());
 } catch (final Exception e) {
 System.out.println("Table " + TABLE_NAME + " doesn't exist = " + e);
 throw e;
 }
 }

The following is an example output.

1. Table has dimension type partition key

[{Type: DIMENSION,Name: hostId,EnforcementInRecord: OPTIONAL}]

2. Table has measure name type partition key

[{Type: MEASURE,}]

3. Getting composite partition key from a table created without specifying composite partition
key

[{Type: MEASURE,}]

Java v2

 public void describeTable() {
 System.out.println("Describing table");
 final DescribeTableRequest describeTableRequest =
 DescribeTableRequest.builder()
 .databaseName(DATABASE_NAME).tableName(TABLE_NAME).build();
 try {

Checking partitioning schema configuration 505

Amazon Timestream Developer Guide

 DescribeTableResponse response =
 writeClient.describeTable(describeTableRequest);
 String tableId = response.table().arn();
 System.out.println("Table " + TABLE_NAME + " has id " + tableId);
 // If table is created with composite partition key, it can be described
 with
 //
 System.out.println(response.table().schema().compositePartitionKey());
 } catch (final Exception e) {
 System.out.println("Table " + TABLE_NAME + " doesn't exist = " + e);
 throw e;
 }
 }

The following is an example output.

1. Table has dimension type partition key

[PartitionKey(Type=DIMENSION, Name=hostId, EnforcementInRecord=OPTIONAL)]

2. Table has measure name type partition key

[PartitionKey(Type=MEASURE)]

3. Getting composite partition key from a table created without specifying composite partition
key will return

[PartitionKey(Type=MEASURE)]

Go v1

 <tablistentry>
 <tabname> Go </tabname>
 <tabcontent>
 <programlisting language="go"></programlisting>
 </tabcontent>
 </tablistentry>

The following is an example output.

{

Checking partitioning schema configuration 506

Amazon Timestream Developer Guide

 Table: {
 Arn: "arn:aws:timestream:us-west-2:533139590831:database/devops/table/
host_metrics_dim_pk_1",
 CreationTime: 2023-05-31 01:52:00.511 +0000 UTC,
 DatabaseName: "devops",
 LastUpdatedTime: 2023-05-31 01:52:00.511 +0000 UTC,
 MagneticStoreWriteProperties: {
 EnableMagneticStoreWrites: true,
 MagneticStoreRejectedDataLocation: {
 S3Configuration: {
 BucketName: "timestream-sample-bucket-west",
 EncryptionOption: "SSE_S3",
 ObjectKeyPrefix: "TimeStreamCustomerSampleGo"
 }
 }
 },
 RetentionProperties: {
 MagneticStoreRetentionPeriodInDays: 73000,
 MemoryStoreRetentionPeriodInHours: 6
 },
 Schema: {
 CompositePartitionKey: [{
 EnforcementInRecord: "OPTIONAL",
 Name: "hostId",
 Type: "DIMENSION"
 }]
 },
 TableName: "host_metrics_dim_pk_1",
 TableStatus: "ACTIVE"
 }
}

Go v2

 func (timestreamBuilder TimestreamBuilder) DescribeTable()
 (*timestreamwrite.DescribeTableOutput, error) {
 describeTableInput := ×treamwrite.DescribeTableInput{
 DatabaseName: aws.String(databaseName),
 TableName: aws.String(tableName),
 }
 describeTableOutput, err :=
 timestreamBuilder.WriteSvc.DescribeTable(context.TODO(), describeTableInput)

Checking partitioning schema configuration 507

Amazon Timestream Developer Guide

 if err != nil {
 fmt.Printf("Failed to describe table with Error: %s", err.Error())
 } else {
 fmt.Printf("Describe table is successful : %s\n",
 JsonMarshalIgnoreError(*describeTableOutput))
 // If table is created with composite partition key, it will be included
 in the output
 }

 return describeTableOutput, err
 }

The following is an example output.

{
 "Table": {
 "Arn":"arn:aws:timestream:us-east-1:351861611069:database/cdpk-wr-db/table/
host_metrics_dim_pk",
 "CreationTime":"2023-05-31T22:36:10.66Z",
 "DatabaseName":"cdpk-wr-db",
 "LastUpdatedTime":"2023-05-31T22:36:10.66Z",
 "MagneticStoreWriteProperties":{
 "EnableMagneticStoreWrites":true,
 "MagneticStoreRejectedDataLocation":{
 "S3Configuration":{
 "BucketName":"error-configuration-sample-s3-bucket-cq8my",
 "EncryptionOption":"SSE_S3",
 "KmsKeyId":null,"ObjectKeyPrefix":null
 }
 }
 },
 "RetentionProperties":{
 "MagneticStoreRetentionPeriodInDays":73000,
 "MemoryStoreRetentionPeriodInHours":6
 },
 "Schema":{
 "CompositePartitionKey":[{
 "Type":"DIMENSION",
 "EnforcementInRecord":"OPTIONAL",
 "Name":"hostId"
 }]
 },
 "TableName":"host_metrics_dim_pk",

Checking partitioning schema configuration 508

Amazon Timestream Developer Guide

 "TableStatus":"ACTIVE"
 },
 "ResultMetadata":{}
}

Python

 def describe_table(self):
 print('Describing table')
 try:
 result = self.client.describe_table(DatabaseName=DATABASE_NAME,
 TableName=TABLE_NAME)
 print("Table [%s] has id [%s]" % (TABLE_NAME, result['Table']['Arn']))
 # If table is created with composite partition key, it can be described
 with
 # print(result['Table']['Schema'])
 except self.client.exceptions.ResourceNotFoundException:
 print("Table doesn't exist")
 except Exception as err:
 print("Describe table failed:", err)

The following is an example output.

1. Table has dimension type partition key

[{'CompositePartitionKey': [{'Type': 'DIMENSION', 'Name': 'hostId',
 'EnforcementInRecord': 'OPTIONAL'}]}]

2. Table has measure name type partition key

[{'CompositePartitionKey': [{'Type': 'MEASURE'}]}]

3. Getting composite partition key from a table created without specifying composite partition
key

[{'CompositePartitionKey': [{'Type': 'MEASURE'}]}]

Checking partitioning schema configuration 509

Amazon Timestream Developer Guide

Updating partitioning schema configuration

You can update table configuration for partitioning schema with an SDK with access the
UpdateTable action.

Update a table with a partition key

You can use the following code snippets to update a table with a partition key.

Java

 public void updateTableCompositePartitionKeyEnforcement() {
 System.out.println("Updating table");

 UpdateTableRequest updateTableRequest = new UpdateTableRequest();
 updateTableRequest.setDatabaseName(DATABASE_NAME);
 updateTableRequest.setTableName(TABLE_NAME);

 // Can update enforcement level for dimension type partition key with
 OPTIONAL or REQUIRED enforcement
 final List<PartitionKey> partitionKeyWithDimensionAndRequiredEnforcement =
 Collections.singletonList(new PartitionKey()
 .withName(COMPOSITE_PARTITION_KEY_DIM_NAME)
 .withType(PartitionKeyType.DIMENSION)
 .withEnforcementInRecord(PartitionKeyEnforcementLevel.REQUIRED));
 Schema schema = new Schema();

 schema.setCompositePartitionKey(partitionKeyWithDimensionAndRequiredEnforcement);
 updateTableRequest.withSchema(schema);

 writeClient.updateTable(updateTableRequest);
 System.out.println("Table updated");

Java v2

 public void updateTableCompositePartitionKeyEnforcement() {
 System.out.println("Updating table");
 // Can update enforcement level for dimension type partition key with
 OPTIONAL or REQUIRED enforcement
 final List<PartitionKey> partitionKeyWithDimensionAndRequiredEnforcement =
 Collections.singletonList(PartitionKey
 .builder()
 .name(COMPOSITE_PARTITION_KEY_DIM_NAME)

Updating partitioning schema configuration 510

Amazon Timestream Developer Guide

 .type(PartitionKeyType.DIMENSION)
 .enforcementInRecord(PartitionKeyEnforcementLevel.REQUIRED)
 .build());
 final Schema schema = Schema.builder()

 .compositePartitionKey(partitionKeyWithDimensionAndRequiredEnforcement).build();
 final UpdateTableRequest updateTableRequest = UpdateTableRequest.builder()

 .databaseName(DATABASE_NAME).tableName(TABLE_NAME).schema(schema).build();

 writeClient.updateTable(updateTableRequest);
 System.out.println("Table updated");

Go v1

 // Update table partition key enforcement attribute
 updateTableInput := ×treamwrite.UpdateTableInput{
 DatabaseName: aws.String(*databaseName),
 TableName: aws.String(*tableName),
 // Can update enforcement level for dimension type partition key with
 OPTIONAL or REQUIRED enforcement
 Schema: ×treamwrite.Schema{
 CompositePartitionKey: []*timestreamwrite.PartitionKey{
 {
 Name:
 aws.String(CompositePartitionKeyDimName),
 EnforcementInRecord: aws.String("REQUIRED"),
 Type: aws.String("DIMENSION"),
 },
 }},
 }
 updateTableOutput, err := writeSvc.UpdateTable(updateTableInput)
 if err != nil {
 fmt.Println("Error:")
 fmt.Println(err)
 } else {
 fmt.Println("Update table is successful, below is the output:")
 fmt.Println(updateTableOutput)
 }

Go v2

 // Update table partition key enforcement attribute

Updating partitioning schema configuration 511

Amazon Timestream Developer Guide

 updateTableInput := ×treamwrite.UpdateTableInput{
 DatabaseName: aws.String(*databaseName),
 TableName: aws.String(*tableName),
 // Can update enforcement level for dimension type partition key with
 OPTIONAL or REQUIRED enforcement
 Schema: &types.Schema{
 CompositePartitionKey: []types.PartitionKey{
 {
 Name:
 aws.String(CompositePartitionKeyDimName),
 EnforcementInRecord:
 types.PartitionKeyEnforcementLevelRequired,
 Type: types.PartitionKeyTypeDimension,
 },
 }},
 }
 updateTableOutput, err :=
 timestreamBuilder.WriteSvc.UpdateTable(context.TODO(), updateTableInput)
 if err != nil {
 fmt.Println("Error:")
 fmt.Println(err)
 } else {
 fmt.Println("Update table is successful, below is the output:")
 fmt.Println(updateTableOutput)
 }

Python

 def update_table(self):
 print('Updating table')
 try:
 # Can update enforcement level for dimension type partition key with
 OPTIONAL or REQUIRED enforcement
 partition_key_with_dimension_and_required_enforcement = [
 {
 'Type': 'DIMENSION',
 'Name': COMPOSITE_PARTITION_KEY_DIM_NAME,
 'EnforcementInRecord': 'REQUIRED'
 }
]
 schema = {
 'CompositePartitionKey':
 partition_key_with_dimension_and_required_enforcement

Updating partitioning schema configuration 512

Amazon Timestream Developer Guide

 }
 self.client.update_table(DatabaseName=DATABASE_NAME,
 TableName=TABLE_NAME,
 Schema=schema)
 print('Table updated.')
 except Exception as err:
 print('Update table failed:', err)

Advantages of customer-defined partition keys

Enhanced query performance: Customer-defined partition keys enable you to optimize your query
execution and improve overall query performance. By defining partition keys that align with your
query patterns, you can minimize data scanning and optimize data pruning, resulting in lower
query latency.

Better long term performance predictability: Customer-defined partition keys allow customers
to distribute data evenly across partitions, improving the efficiency of data management. This will
ensure that your query performance remains stable as your data stored scales over time.

Limitations of customer-defined partition keys

As a Timestream for LiveAnalytics user, it's important to keep in mind the limitations around
a customer partition key. Firstly, it requires a good understanding of your workload and query
patterns. This means that you should have a clear idea of which dimensions are most frequently
use as main filtering conditions in queries and have high cardinality to make the most effective use
of partition keys.

Secondly, partition keys need to be defined at the time of table creation and cannot be added to
existing tables. This means that you should carefully consider your partitioning strategy before
creating a table to ensure that it aligns with your business needs.

Lastly, it's important to note that once the table has been created, you cannot change the partition
key afterwards. This means that you should thoroughly test and evaluate your partitioning strategy
before committing to it. With these limitations in mind, Timestream's customer-defined partition
key can greatly improve query performance and long term satisfaction.

Customer-defined partition keys and low cardinality dimensions

If you decide to use a partition key with very low cardinality, such as a specific region or state, it is
important to note that the data for for other entities such as customerID, ProductCategory,

Advantages of customer-defined partition keys 513

Amazon Timestream Developer Guide

and others, could end up spread across too many partitions sometimes with little or no data
present. This can lead to inefficient query execution and decreased performance.

To avoid this, we recommend you choose dimensions that are not only part of your key filtering
condition but have higher cardinality. This will help ensure that the data is evenly distributed across
the partitions and improve query performance.

Creating partition keys for existing tables

If you already have tables in Timestream for LiveAnalytics and want to use customer-defined
partition keys, you will need to migrate your data into a new table with the desired partitioning
schema definition. This can be done using export to S3 and batch load together, which involves
exporting the data from the existing table to S3, modifying the data to include the partition key (if
necessary) and adding headers to your CSV files, and then importing the data into a new table with
the desired partitioning schema defined. Keep in mind that this method can be time consuming
and costly, especially for large tables.

Alternatively, you can use scheduled queries to migrate your data to a new table with the desired
partitioning schema. This method involves creating a scheduled query that reads from the existing
table and writes to the new table. The scheduled query can be set up to run on a regular basis until
all the data has been migrated. Keep in mind that you will be charged for reading and writing the
data during the migration process.

Timestream for LiveAnalytics schema validation with custom composite
partition keys

Schema validation in Timestream for LiveAnalytics helps ensure that data ingested into the
database complies with the specified schema, minimizing ingestion errors and improving data
quality. In particular, schema validation is especially useful when adopting customer-defined
partition key with the goal of optimizing your query performance.

What is Timestream for LiveAnalytics schema validation with customer-defined
partition keys?

Timestream for LiveAnalytics schema validation is a feature that validates data being ingested into
a Timestream for LiveAnalytics table based on a predefined schema. This schema defines the data
model, including partition key, data types, and constraints for the records being inserted.

Creating partition keys for existing tables 514

Amazon Timestream Developer Guide

When using a customer-defined partition key, schema validation becomes even more crucial.
Partition keys allow you to specify a partition key, which determines how your data is stored in
Timestream for LiveAnalytics. By validating the incoming data against the schema with a custom
partition key, you can enforce data consistency, detect errors early, and improve the overall quality
of the data stored in Timestream for LiveAnalytics.

How to Use Timestream for LiveAnalytics schema validation with custom
composite partition keys

To use Timestream for LiveAnalytics schema validation with custom composite partition keys,
follow these steps:

Think about what your query patterns will look like: To properly choose and define the schema
for your Timestream for LiveAnalytics table you should start with your query requirements.

Specify custom composite partition keys: When creating the table, specify a custom partition
key. This key determines the attribute that will be used to partition the table data. You can choose
between dimension keys and measure keys for partitioning. A dimension key partitions data based
on a dimension name, while a measure key partitions data based on the measure name.

Set enforcement levels: To ensure proper data partitioning and the benefits that come with it,
Amazon Timestream for LiveAnalytics allows you to set enforcement levels for each partition key
in your schema. The enforcement level determines whether the partition key dimension is required
or optional when ingesting records. You can choose between two options: REQUIRED, which means
the partition key must be present in the ingested record, and OPTIONAL, which means the partition
key doesn't have to be present. It is recommended that you use the REQUIRED enforcement
level when using a customer-defined partition to ensure that your data is properly partitioned
and you get the full benefits of this feature. Additionally, you can change the enforcement level
configuration at any time after the schema creation to adjust to your data ingestion requirements.

Ingest data: When ingesting data into the Timestream for LiveAnalytics table, the schema
validation process will check the records against the defined schema with custom composite
partition keys. If the records do not adhere to the schema, Timestream for LiveAnalytics will return
a validation error.

Handle validation errors: In case of validation errors, Timestream for LiveAnalytics will return a
ValidationException or a RejectedRecordsException, depending on the type of error.
Make sure to handle these exceptions in your application and take appropriate action, such as
fixing the incorrect records and retrying the ingestion.

Timestream for LiveAnalytics schema validation with custom composite partition keys 515

Amazon Timestream Developer Guide

Update enforcement levels: If necessary, you can update the enforcement level of partition keys
after table creation using the UpdateTable action. However, it's important to note that some
aspects of the partition key configuration, such as the name, and type, cannot be changed after
table creation. If you change the enforcement level from REQUIRED to OPTIONAL, all records will
be accepted regardless of the presence of the attribute selected as the customer-defined partition
key. Conversely, if you change the enforcement level from OPTIONAL to REQUIRED, you may start
seeing 4xx write errors for records that don't meet this condition. Therefore, it's essential to choose
the appropriate enforcement level for your use case when creating your table, based on your data's
partitioning requirements.

When to use Timestream for LiveAnalytics schema validation with custom
composite partition keys

Timestream for LiveAnalytics schema validation with custom composite partition keys should
be used in scenarios where data consistency, quality, and optimized partitioning are crucial. By
enforcing a schema during data ingestion, you can prevent errors and inconsistencies that might
lead to incorrect analysis or loss of valuable insights.

Interaction with batch load jobs

When setting up a batch load job to import data into a table with a customer-defined partition key,
there are a few scenarios that could affect the process:

1. If the enforcement level is set to OPTIONAL, an alert will be displayed on the console during
the creation flow if the partition key is not mapped during job configuration. This alert will not
appear when using the API or CLI.

2. If the enforcement level is set to REQUIRED, the job creation will be rejected unless the partition
key is mapped to a source data column.

3. If the enforcement level is changed to REQUIRED after the job is created, the job will continue
to execute, but any records that do not have the proper mapping for the partition key will be
rejected with a 4xx error.

Interaction with scheduled query

When setting up a scheduled query job for calculating and storing aggregates, rollups, and other
forms of preprocessed data into a table with a customer-defined partition key, there are a few
scenarios that could affect the process:

Timestream for LiveAnalytics schema validation with custom composite partition keys 516

Amazon Timestream Developer Guide

1. If the enforcement level is set to OPTIONAL, an alert will be displayed if the partition key is not
mapped during job configuration. This alert will not appear when using the API or CLI.

2. If the enforcement level is set to REQUIRED, the job creation will be rejected unless the partition
key is mapped to a source data column.

3. If the enforcement level is changed to REQUIRED after the job is created and the scheduled
query results does not contain the partition key dimension, all the next iterations of the job will
fail.

Adding tags and labels to resources

You can label Amazon Timestream for LiveAnalytics resources using tags. Tags let you categorize
your resources in different ways—for example, by purpose, owner, environment, or other criteria.
Tags can help you do the following:

• Quickly identify a resource based on the tags that you assigned to it.

• See Amazon bills broken down by tags.

Tagging is supported by Amazon services like Amazon Elastic Compute Cloud (Amazon EC2),
Amazon Simple Storage Service (Amazon S3), Timestream for LiveAnalytics, and more. Efficient
tagging can provide cost insights by enabling you to create reports across services that carry a
specific tag.

To get started with tagging, do the following:

1. Understand Tagging restrictions.

2. Create tags by using Tagging operations.

Finally, it is good practice to follow optimal tagging strategies. For information, see Amazon
Tagging Strategies.

Tagging restrictions

Each tag consists of a key and a value, both of which you define. The following restrictions apply:

• Each Timestream for LiveAnalytics table can have only one tag with the same key. If you try to
add an existing tag, the existing tag value is updated to the new value.

Tagging resources 517

https://docs.amazonaws.cn/timestream/latest/developerguide/TaggingRestrictions.html
https://docs.amazonaws.cn/timestream/latest/developerguide/Tagging.Operations.html
https://d0.awsstatic.com/aws-answers/AWS_Tagging_Strategies.pdf
https://d0.awsstatic.com/aws-answers/AWS_Tagging_Strategies.pdf

Amazon Timestream Developer Guide

• A value acts as a descriptor within a tag category. In Timestream for LiveAnalytics the value
cannot be empty or null.

• Tag keys and values are case sensitive.

• The maximum key length is 128 Unicode characters.

• The maximum value length is 256 Unicode characters.

• The allowed characters are letters, white space, and numbers, plus the following special
characters: + - = . _ : /

• The maximum number of tags per resource is 50.

• AWS-assigned tag names and values are automatically assigned the aws: prefix, which you can't
assign. AWS-assigned tag names don't count toward the tag limit of 50. User-assigned tag names
have the prefix user: in the cost allocation report.

• You can't backdate the application of a tag.

Tagging operations

You can add, list, edit, or delete tags for databases and tables using the Amazon Timestream for
LiveAnalytics console, query language, or the Amazon Command Line Interface (Amazon CLI).

Topics

• Adding tags to new or existing databases and tables using the console

Adding tags to new or existing databases and tables using the console

You can use the Timestream for LiveAnalytics console to add tags to new databases, tables and
scheduled queries when you create them. You can also add, edit, or delete tags for existing tables.

To tag databases when creating them (console)

1. Open the Timestream console at https://console.aws.amazon.com/timestream.

2. In the navigation pane, choose Databases, and then choose Create database.

3. On the Create database page, provide a name for the database. Enter a key and value for the
tag, and then choose Add new tag.

4. Choose Create database.

Tagging operations 518

https://console.aws.amazon.com/timestream

Amazon Timestream Developer Guide

To tag tables when creating them (console)

1. Open the Timestream console at https://console.aws.amazon.com/timestream.

2. In the navigation pane, choose Tables, and then choose Create table.

3. On the Create Timestream for LiveAnalytics table page, provide a name for the table. Enter a
key and value for the tag, and choose Add new tag.

4. Choose Create table.

To tag scheduled queries when creating them (console)

1. Open the Timestream console at https://console.aws.amazon.com/timestream.

2. In the navigation pane, choose Scheduled queries, and then choose Create scheduled query.

3. On the Step 3. Configure query settings page, choose Add new tag. Enter a key and value for
the tag. Choose Add new tag to add additional tags.

4. Choose Next.

To tag existing resources (console)

1. Open the Timestream console at https://console.aws.amazon.com/timestream.

2. In the navigation pane, choose Databases, Tables or Scheduled queries.

3. Choose a database or table in the list. Then choose Manage tags to add, edit, or delete your
tags.

For information about tag structure, see Tagging restrictions.

Security in Timestream for LiveAnalytics

Cloud security at Amazon is the highest priority. As an Amazon customer, you benefit from a
data center and network architecture that is built to meet the requirements of the most security-
sensitive organizations.

Security is a shared responsibility between Amazon and you. The shared responsibility model
describes this as security of the cloud and security in the cloud:

• Security of the cloud – Amazon is responsible for protecting the infrastructure that runs
Amazon services in the Amazon Cloud. Amazon also provides you with services that you can use

Security 519

https://console.aws.amazon.com/timestream
https://console.aws.amazon.com/timestream
https://console.aws.amazon.com/timestream
http://www.amazonaws.cn/compliance/shared-responsibility-model/

Amazon Timestream Developer Guide

securely. The effectiveness of our security is regularly tested and verified by third-party auditors
as part of the Amazon compliance programs. To learn about the compliance programs that apply
to Timestream for LiveAnalytics, see Amazon Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the Amazon service that you
use. You are also responsible for other factors including the sensitivity of your data, your
organization's requirements, and applicable laws and regulations.

This documentation will help you understand how to apply the shared responsibility model when
using Timestream for LiveAnalytics. The following topics show you how to configure Timestream
for LiveAnalytics to meet your security and compliance objectives. You'll also learn how to use
other Amazon services that can help you to monitor and secure your Timestream for LiveAnalytics
resources.

Topics

• Data protection in Timestream for LiveAnalytics

• Identity and access management for Amazon Timestream for LiveAnalytics

• Logging and monitoring in Timestream for LiveAnalytics

• Resilience in Amazon Timestream Live Analytics

• Infrastructure security in Amazon Timestream Live Analytics

• Configuration and vulnerability analysis in Timestream

• Incident response in Timestream for LiveAnalytics

• VPC endpoints (Amazon PrivateLink)

• Security best practices for Amazon Timestream for LiveAnalytics

Data protection in Timestream for LiveAnalytics

The Amazon shared responsibility model applies to data protection in Amazon Timestream Live
Analytics. As described in this model, Amazon is responsible for protecting the global infrastructure
that runs all of the Amazon Web Services Cloud. You are responsible for maintaining control
over your content that is hosted on this infrastructure. You are also responsible for the security
configuration and management tasks for the Amazon Web Services services that you use. For more
information about data privacy, see the Data Privacy FAQ.

For data protection purposes, we recommend that you protect Amazon Web Services account
credentials and set up individual users with Amazon IAM Identity Center or Amazon Identity and

Data protection 520

https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://www.amazonaws.cn/compliance/data-privacy-faq/

Amazon Timestream Developer Guide

Access Management (IAM). That way, each user is given only the permissions necessary to fulfill
their job duties. We also recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with Amazon resources. We require TLS 1.2 and recommend TLS
1.3.

• Set up API and user activity logging with Amazon CloudTrail. For information about using
CloudTrail trails to capture Amazon activities, see Working with CloudTrail trails in the Amazon
CloudTrail User Guide.

• Use Amazon encryption solutions, along with all default security controls within Amazon Web
Services services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-3 validated cryptographic modules when accessing Amazon through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-3.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with Timestream Live Analytics or other Amazon Web Services services using the
console, API, Amazon CLI, or Amazon SDKs. Any data that you enter into tags or free-form text
fields used for names may be used for billing or diagnostic logs. If you provide a URL to an external
server, we strongly recommend that you do not include credentials information in the URL to
validate your request to that server.

For more detailed information on Timestream for LiveAnalytics data protection topics like
Encryption at Rest and Key Management, select any of the available topics below.

Topics

• Encryption at rest

• Encryption in transit

• Key management

Data protection 521

https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-trails.html
https://www.amazonaws.cn/compliance/fips/

Amazon Timestream Developer Guide

Encryption at rest

Timestream for LiveAnalytics encryption at rest provides enhanced security by encrypting all your
data at rest using encryption keys stored in Amazon Key Management Service (Amazon KMS).
This functionality helps reduce the operational burden and complexity involved in protecting
sensitive data. With encryption at rest, you can build security-sensitive applications that meet strict
encryption compliance and regulatory requirements.

• Encryption is turned on by default on your Timestream for LiveAnalytics database, and cannot
be turned off. The industry standard AES-256 encryption algorithm is the default encryption
algorithm used.

• Amazon KMS is required for encryption at rest in Timestream for LiveAnalytics.

• You cannot encrypt only a subset of items in a table.

• You don't need to modify your database client applications to use encryption.

If you do not provide a key, Timestream for LiveAnalytics creates and uses an Amazon KMS key
named alias/aws/timestream in your account.

You may use your own customer managed key in KMS to encrypt your Timestream for LiveAnalytics
data. For more information on keys in Timestream for LiveAnalytics, see Key management.

Timestream for LiveAnalytics stores your data in two storage tiers, memory store and magnetic
store. Memory store data is encrypted using a Timestream for LiveAnalytics service key. Magnetic
store data is encrypted using your Amazon KMS key.

The Timestream Query service requires credentials to access your data. These credentials are
encrypted using your KMS key.

Note

Timestream for LiveAnalytics doesn't call Amazon KMS for every Decrypt operation.
Instead, it maintains a local cache of keys for 5 minutes with active traffic. Any permission
changes are propagated through the Timestream for LiveAnalytics system with eventual
consistency within at most 5 minutes.

Data protection 522

https://aws.amazon.com/kms/

Amazon Timestream Developer Guide

Encryption in transit

All your Timestream Live Analytics data is encrypted in transit. By default, all communications
to and from Timestream for LiveAnalytics are protected by using Transport Layer Security (TLS)
encryption.

Key management

You can manage keys for Amazon Timestream Live Analytics using the Amazon Key Management
Service (Amazon KMS). Timestream Live Analytics requires the use of KMS to encrypt your data.
You have the following options for key management, depending on how much control you require
over your keys:

Database and table resources

• Timestream Live Analytics-managed key: If you do not provide a key, Timestream Live Analytics
will create a alias/aws/timestream key using KMS.

• Customer managed key: KMS customer managed keys are supported. Choose this option if you
require more control over the permissions and lifecycle of your keys, including the ability to have
them automatically rotated on an annual basis.

Scheduled query resource

• Timestream Live Analytics-owned key: If you do not provide a key, Timestream Live Analytics will
use its own a KMS key to encrypt the Query resource, this key is present in timestream account.
See Amazon owned keys in the KMS developer guide for more details.

• Customer managed key: KMS customer managed keys are supported. Choose this option if you
require more control over the permissions and lifecycle of your keys, including the ability to have
them automatically rotated on an annual basis.

KMS keys in an external key store (XKS) are not supported.

Identity and access management for Amazon Timestream for
LiveAnalytics

Amazon Identity and Access Management (IAM) is an Amazon Web Services service that helps an
administrator securely control access to Amazon resources. IAM administrators control who can be

Identity and access management 523

https://docs.amazonaws.cn/kms/latest/developerguide/
https://docs.amazonaws.cn/kms/latest/developerguide/
https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#aws-owned-cmk

Amazon Timestream Developer Guide

authenticated (signed in) and authorized (have permissions) to use Timestream for LiveAnalytics
resources. IAM is an Amazon Web Services service that you can use with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How Amazon Timestream for LiveAnalytics works with IAM

• Amazon managed policies for Amazon Timestream Live Analytics

• Amazon Timestream for LiveAnalytics identity-based policy examples

• Troubleshooting Amazon Timestream for LiveAnalytics identity and access

Audience

How you use Amazon Identity and Access Management (IAM) differs, depending on the work that
you do in Timestream for LiveAnalytics.

Service user – If you use the Timestream for LiveAnalytics service to do your job, then your
administrator provides you with the credentials and permissions that you need. As you use more
Timestream for LiveAnalytics features to do your work, you might need additional permissions.
Understanding how access is managed can help you request the right permissions from your
administrator. If you cannot access a feature in Timestream for LiveAnalytics, see Troubleshooting
Amazon Timestream for LiveAnalytics identity and access.

Service administrator – If you're in charge of Timestream for LiveAnalytics resources at your
company, you probably have full access to Timestream for LiveAnalytics. It's your job to determine
which Timestream for LiveAnalytics features and resources your service users should access. You
must then submit requests to your IAM administrator to change the permissions of your service
users. Review the information on this page to understand the basic concepts of IAM. To learn
more about how your company can use IAM with Timestream for LiveAnalytics, see How Amazon
Timestream for LiveAnalytics works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how you
can write policies to manage access to Timestream for LiveAnalytics. To view example Timestream
for LiveAnalytics identity-based policies that you can use in IAM, see Amazon Timestream for
LiveAnalytics identity-based policy examples.

Identity and access management 524

Amazon Timestream Developer Guide

Authenticating with identities

Authentication is how you sign in to Amazon using your identity credentials. You must be
authenticated (signed in to Amazon) as the Amazon Web Services account root user, as an IAM user,
or by assuming an IAM role.

If you access Amazon programmatically, Amazon provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use Amazon tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Amazon Signature Version 4 for API requests
in the IAM User Guide.

Regardless of the authentication method that you use, you might be required to provide
additional security information. For example, Amazon recommends that you use multi-factor
authentication (MFA) to increase the security of your account. To learn more, see Amazon Multi-
factor authentication in IAM in the IAM User Guide.

IAM users and groups

An IAM user is an identity within your Amazon Web Services account that has specific permissions
for a single person or application. Where possible, we recommend relying on temporary credentials
instead of creating IAM users who have long-term credentials such as passwords and access keys.
However, if you have specific use cases that require long-term credentials with IAM users, we
recommend that you rotate access keys. For more information, see Rotate access keys regularly for
use cases that require long-term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see Use cases for IAM users in
the IAM User Guide.

IAM roles

An IAM role is an identity within your Amazon Web Services account that has specific permissions.
It is similar to an IAM user, but is not associated with a specific person. To temporarily assume an

Identity and access management 525

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_sigv.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_groups.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/gs-identities-iam-users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles.html

Amazon Timestream Developer Guide

IAM role in the Amazon Web Services Management Console, you can switch from a user to an IAM
role (console). You can assume a role by calling an Amazon CLI or Amazon API operation or by
using a custom URL. For more information about methods for using roles, see Methods to assume a
role in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Create a role for a third-party identity provider
(federation) in the IAM User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some Amazon Web Services services, you can attach a policy
directly to a resource (instead of using a role as a proxy). To learn the difference between roles
and resource-based policies for cross-account access, see Cross account resource access in IAM in
the IAM User Guide.

• Cross-service access – Some Amazon Web Services services use features in other Amazon Web
Services services. For example, when you make a call in a service, it's common for that service to
run applications in Amazon EC2 or store objects in Amazon S3. A service might do this using the
calling principal's permissions, using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
Amazon, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an Amazon Web Services service, combined with the requesting Amazon Web
Services service to make requests to downstream services. FAS requests are only made when a
service receives a request that requires interactions with other Amazon Web Services services
or resources to complete. In this case, you must have permissions to perform both actions. For
policy details when making FAS requests, see Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM.
For more information, see Create a role to delegate permissions to an Amazon Web Services
service in the IAM User Guide.

Identity and access management 526

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Timestream Developer Guide

• Service-linked role – A service-linked role is a type of service role that is linked to an Amazon
Web Services service. The service can assume the role to perform an action on your behalf.
Service-linked roles appear in your Amazon Web Services account and are owned by the
service. An IAM administrator can view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making Amazon CLI or
Amazon API requests. This is preferable to storing access keys within the EC2 instance. To assign
an Amazon role to an EC2 instance and make it available to all of its applications, you create
an instance profile that is attached to the instance. An instance profile contains the role and
enables programs that are running on the EC2 instance to get temporary credentials. For more
information, see Use an IAM role to grant permissions to applications running on Amazon EC2
instances in the IAM User Guide.

Managing access using policies

You control access in Amazon by creating policies and attaching them to Amazon identities or
resources. A policy is an object in Amazon that, when associated with an identity or resource,
defines their permissions. Amazon evaluates these policies when a principal (user, root user, or role
session) makes a request. Permissions in the policies determine whether the request is allowed or
denied. Most policies are stored in Amazon as JSON documents. For more information about the
structure and contents of JSON policy documents, see Overview of JSON policies in the IAM User
Guide.

Administrators can use Amazon JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform
the operation. For example, suppose that you have a policy that allows the iam:GetRole action.
A user with that policy can get role information from the Amazon Web Services Management
Console, the Amazon CLI, or the Amazon API.

Identity and access management 527

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html#access_policies-json

Amazon Timestream Developer Guide

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Define custom IAM permissions with customer managed policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your Amazon Web Services
account. Managed policies include Amazon managed policies and customer managed policies. To
learn how to choose between a managed policy or an inline policy, see Choose between managed
policies and inline policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal in
a resource-based policy. Principals can include accounts, users, roles, federated users, or Amazon
Web Services services.

Resource-based policies are inline policies that are located in that service. You can't use Amazon
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, Amazon WAF, and Amazon VPC are examples of services that support ACLs. To learn
more about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service
Developer Guide.

Other policy types

Amazon supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

Identity and access management 528

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/acl-overview.html

Amazon Timestream Developer Guide

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in Amazon Organizations. Amazon Organizations
is a service for grouping and centrally managing multiple Amazon Web Services accounts that
your business owns. If you enable all features in an organization, then you can apply service
control policies (SCPs) to any or all of your accounts. The SCP limits permissions for entities in
member accounts, including each Amazon Web Services account root user. For more information
about Organizations and SCPs, see Service control policies in the Amazon Organizations User
Guide.

• Resource control policies (RCPs) – RCPs are JSON policies that you can use to set the maximum
available permissions for resources in your accounts without updating the IAM policies attached
to each resource that you own. The RCP limits permissions for resources in member accounts and
can impact the effective permissions for identities, including the Amazon Web Services account
root user, regardless of whether they belong to your organization. For more information about
Organizations and RCPs, including a list of Amazon Web Services services that support RCPs, see
Resource control policies (RCPs) in the Amazon Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how Amazon determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

Identity and access management 529

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.amazonaws.cn/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.amazonaws.cn/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

Amazon Timestream Developer Guide

How Amazon Timestream for LiveAnalytics works with IAM

Before you use IAM to manage access to Timestream for LiveAnalytics, you should understand what
IAM features are available to use with Timestream for LiveAnalytics. To get a high-level view of
how Timestream for LiveAnalytics and other Amazon services work with IAM, see Amazon Services
That Work with IAM in the IAM User Guide.

Topics

• Timestream for LiveAnalytics identity-based policies

• Timestream for LiveAnalytics resource-based policies

• Authorization based on Timestream for LiveAnalytics tags

• Timestream for LiveAnalytics IAM roles

Timestream for LiveAnalytics identity-based policies

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. Timestream for LiveAnalytics supports
specific actions and resources, and condition keys. To learn about all of the elements that you use
in a JSON policy, see IAM JSON Policy Elements Reference in the IAM User Guide.

Actions

Administrators can use Amazon JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated Amazon API
operation. There are some exceptions, such as permission-only actions that don't have a matching
API operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

You can specify the following actions in the Action element of an IAM policy statement. Use
policies to grant permissions to perform an operation in Amazon. When you use an action in a
policy, you usually allow or deny access to the API operation, CLI command or SQL command with
the same name.

Identity and access management 530

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements.html

Amazon Timestream Developer Guide

In some cases, a single action controls access to an API operation as well as SQL command.
Alternatively, some operations require several different actions.

For a list of supported Timestream for LiveAnalytics Action's, see the table below:

Note

For all database-specific Actions, you can specify a database ARN to limit the action to a
particular database.

Actions Description Access level Resource types
(*required)

DescribeEndpoints Returns the
Timestream endpoint
that subsequent
requests must be
made to.

All *

Select Run queries on
Timestream that
select data from
one or more tables.
See this note for a
detailed explanation

Read table*

CancelQuery Cancel a query. Read *

ListTables Get the list of tables. List database*

ListDatabases Get the list of
databases.

List *

ListMeasures Get the list of
measures.

Read table*

DescribeTable Get the table
description.

Read table*

Identity and access management 531

Amazon Timestream Developer Guide

Actions Description Access level Resource types
(*required)

DescribeDatabase Get the database
description.

Read database*

SelectValues Run queries that
do not require a
particular resource to
be specified. See this
note for a detailed
explanation.

Read *

WriteRecords Insert data into
Timestream.

Write table*

CreateTable Create a table. Write database*

CreateDatabase Create a database. Write *

DeleteDatabase Delete a database. Write *

UpdateDatabase Update a database. Write *

DeleteTable Delete a table. Write database*

UpdateTable Update a table. Write database*

SelectValues vs. select:

SelectValues is an Action that is used for queries that do not require a resource. An example of
a query that does not require a resource is as follows:

SELECT 1

Notice that this query does not refer to a particular Timestream for LiveAnalytics resource.
Consider another example:

SELECT now()

Identity and access management 532

Amazon Timestream Developer Guide

This query returns the current timestamp using the now() function, but does not require a
resource to be specified. SelectValues is often used for testing, so that Timestream for
LiveAnalytics can run queries without resources. Now, consider a Select query:

SELECT * FROM database.table

This type of query requires a resource, specifcially an Timestream for LiveAnalytics table , so that
the specified data can be fetched from the table.

Resources

Administrators can use Amazon JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

In Timestream for LiveAnalytics databases and tables can be used in the Resource element of IAM
permissions.

The Timestream for LiveAnalytics database resource has the following ARN:

arn:${Partition}:timestream:${Region}:${Account}:database/${DatabaseName}

The Timestream for LiveAnalytics table resource has the following ARN:

arn:${Partition}:timestream:${Region}:${Account}:database/${DatabaseName}/table/
${TableName}

For more information about the format of ARNs, see Amazon Resource Names (ARNs) and Amazon
Service Namespaces.

Identity and access management 533

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference-arns.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

Amazon Timestream Developer Guide

For example, to specify the database keyspace in your statement, use the following ARN:

"Resource": "arn:aws:timestream:us-east-1:123456789012:database/mydatabase"

To specify all databases that belong to a specific account, use the wildcard (*):

"Resource": "arn:aws:timestream:us-east-1:123456789012:database/*"

Some Timestream for LiveAnalytics actions, such as those for creating resources, cannot be
performed on a specific resource. In those cases, you must use the wildcard (*).

"Resource": "*"

Condition keys

Timestream for LiveAnalytics does not provide any service-specific condition keys, but it does
support using some global condition keys. To see all Amazon global condition keys, see Amazon
Global Condition Context Keys in the IAM User Guide.

Examples

To view examples of Timestream for LiveAnalytics identity-based policies, see Amazon Timestream
for LiveAnalytics identity-based policy examples.

Timestream for LiveAnalytics resource-based policies

Timestream for LiveAnalytics does not support resource-based policies. To view an example of a
detailed resource-based policy page, see https://docs.aws.amazon.com/lambda/latest/dg/access-
control-resource-based.html.

Authorization based on Timestream for LiveAnalytics tags

You can manage access to your Timestream for LiveAnalytics resources by using tags. To manage
resource access based on tags, you provide tag information in the condition element of a
policy using the timestream:ResourceTag/key-name, aws:RequestTag/key-name, or
aws:TagKeys condition keys. For more information about tagging Timestream for LiveAnalytics
resources, see the section called “Tagging resources”.

To view example identity-based policies for limiting access to a resource based on the tags on that
resource, see Timestream for LiveAnalytics resource access based on tags.

Identity and access management 534

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html
https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition.html

Amazon Timestream Developer Guide

Timestream for LiveAnalytics IAM roles

An IAM role is an entity within your Amazon account that has specific permissions.

Using temporary credentials with Timestream for LiveAnalytics

You can use temporary credentials to sign in with federation, assume an IAM role, or to assume
a cross-account role. You obtain temporary security credentials by calling Amazon STS API
operations such as AssumeRole or GetFederationToken.

Service-linked roles

Timestream for LiveAnalytics does not support service-linked roles.

Service roles

Timestream for LiveAnalytics does not support service roles.

Amazon managed policies for Amazon Timestream Live Analytics

An Amazon managed policy is a standalone policy that is created and administered by Amazon.
Amazon managed policies are designed to provide permissions for many common use cases so that
you can start assigning permissions to users, groups, and roles.

Keep in mind that Amazon managed policies might not grant least-privilege permissions for your
specific use cases because they're available for all Amazon customers to use. We recommend that
you reduce permissions further by defining customer managed policies that are specific to your
use cases.

You cannot change the permissions defined in Amazon managed policies. If Amazon updates
the permissions defined in an Amazon managed policy, the update affects all principal identities
(users, groups, and roles) that the policy is attached to. Amazon is most likely to update an Amazon
managed policy when a new Amazon Web Services service is launched or new API operations
become available for existing services.

For more information, see Amazon managed policies in the IAM User Guide.

Topics

Identity and access management 535

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles.html
https://docs.amazonaws.cn/STS/latest/APIReference/API_AssumeRole.html
https://docs.amazonaws.cn/STS/latest/APIReference/API_GetFederationToken.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

Amazon Timestream Developer Guide

• Amazon managed policy: AmazonTimestreamReadOnlyAccess

• Amazon managed policy: AmazonTimestreamConsoleFullAccess

• Amazon managed policy: AmazonTimestreamFullAccess

• Timestream Live Analytics updates to Amazon managed policies

Amazon managed policy: AmazonTimestreamReadOnlyAccess

You can attach AmazonTimestreamReadOnlyAccess to your users, groups, and roles. The policy
provides read-only access to Amazon Timestream.

Permission details

This policy includes the following permission:

• Amazon Timestream – Provides read-only access to Amazon Timestream. This policy also
grants permission to cancel any running query.

To review this policy in JSON format, see AmazonTimestreamReadOnlyAccess.

Amazon managed policy: AmazonTimestreamConsoleFullAccess

You can attach AmazonTimestreamConsoleFullAccess to your users, groups, and roles.

The policy provides full access to manage Amazon Timestream using the Amazon Web Services
Management Console. This policy also grants permissions for certain Amazon KMS operations and
operations to manage your saved queries.

Permission details

This policy includes the following permissions:

• Amazon Timestream – Grants principals full access to Amazon Timestream.

Identity and access management 536

https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AmazonTimestreamReadOnlyAccess.html

Amazon Timestream Developer Guide

• Amazon KMS – Allows principals to list aliases and describe keys.

• Amazon S3 – Allows principals to list all Amazon S3 buckets.

• Amazon SNS – Allows principals to list Amazon SNS topics.

• IAM – Allows principals to list IAM roles.

• DBQMS – Allows principals to access, create, delete, describe, and update queries. The Database
Query Metadata Service (dbqms) is an internal-only service. It provides your recent and saved
queries for the query editor on the Amazon Web Services Management Console for multiple
Amazon Web Services services, including Amazon Timestream.

To review this policy in JSON format, see AmazonTimestreamConsoleFullAccess.

Amazon managed policy: AmazonTimestreamFullAccess

You can attach AmazonTimestreamFullAccess to your users, groups, and roles.

The policy provides full access to Amazon Timestream. This policy also grants permissions for
certain Amazon KMS operations.

Permission details

This policy includes the following permissions:

• Amazon Timestream – Grants principals full access to Amazon Timestream.

• Amazon KMS – Allows principals to list aliases and describe keys.

• Amazon S3 – Allows principals to list all Amazon S3 buckets.

To review this policy in JSON format, see AmazonTimestreamFullAccess.

Timestream Live Analytics updates to Amazon managed policies

View details about updates to Amazon managed policies for Timestream Live Analytics since this
service began tracking these changes. For automatic alerts about changes to this page, subscribe to
the RSS feed on the Timestream Live Analytics Document history page.

Identity and access management 537

https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AmazonTimestreamConsoleFullAccess.html
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AmazonTimestreamFullAccess.html

Amazon Timestream Developer Guide

Change Description Date

AmazonTimestreamRe
adOnlyAccess – Update to an
existing policy

Added the timestrea
m:DescribeAccountS
ettings action to the
existing AmazonTim
estreamReadOnlyAcc
ess managed policy. This
action is used for describin
g Amazon Web Services
account settings.

Timestream Live Analytics has
also updated this managed
policy by adding an Sid field.

The policy update doesn't
impact the usage of the
AmazonTimestreamRe
adOnlyAccess managed
policy.

June 03, 2024

AmazonTimestreamRe
adOnlyAccess – Update to an
existing policy

Added the timestrea
m:DescribeBatchLoa
dTask and timestrea
m:ListBatchLoadTas
ks actions to the existing
AmazonTimestreamRe
adOnlyAccess managed
policy. These actions are used
when listing and describing
batch load tasks.

The policy update doesn't
impact the usage of the
AmazonTimestreamRe

February 24, 2023

Identity and access management 538

Amazon Timestream Developer Guide

Change Description Date

adOnlyAccess managed
policy.

AmazonTimestreamRe
adOnlyAccess – Update to an
existing policy

Added the timestrea
m:DescribeSchedule
dQuery and timestrea
m:ListScheduledQue
ries actions to the existing
AmazonTimestreamRe
adOnlyAccess managed
policy. These actions are used
when listing and describing
existing scheduled queries.

The policy update doesn't
impact the usage of the
AmazonTimestreamRe
adOnlyAccess managed
policy.

November 29, 2021

AmazonTimestreamCo
nsoleFullAccess – Update to
an existing policy

Added the s3:ListAl
lMyBuckets action to
the existing AmazonTim
estreamConsoleFull
Access managed policy.
This action is used when
you specify an Amazon S3
bucket for Timestream to log
magnetic store write errors.

The policy update doesn't
impact the usage of the
AmazonTimestreamCo
nsoleFullAccess
managed policy.

November 29, 2021

Identity and access management 539

Amazon Timestream Developer Guide

Change Description Date

AmazonTimestreamFullAccess
– Update to an existing policy

Added the s3:ListAl
lMyBuckets action to
the existing AmazonTim
estreamFullAccess
managed policy. This action
is used when you specify
an Amazon S3 bucket for
Timestream to log magnetic
store write errors.

The policy update doesn't
impact the usage of the
AmazonTimestreamFu
llAccess managed policy.

November 29, 2021

AmazonTimestreamCo
nsoleFullAccess – Update to
an existing policy

Removed redundant actions
from the existing AmazonTim
estreamConsoleFull
Access managed policy.
Previously, this policy
included a redundant action
dbqms:DescribeQuer
yHistory . The updated
policy removes the redundant
action.

The policy update doesn't
impact the usage of the
AmazonTimestreamCo
nsoleFullAccess
managed policy.

April 23, 2021

Timestream Live Analytics
started tracking changes

Timestream Live Analytics
started tracking changes for
its Amazon managed policies.

April 21, 2021

Identity and access management 540

Amazon Timestream Developer Guide

Amazon Timestream for LiveAnalytics identity-based policy examples

By default, IAM users and roles don't have permission to create or modify Timestream for
LiveAnalytics resources. They also can't perform tasks using the Amazon Web Services
Management Console, CQLSH, Amazon CLI, or Amazon API. An IAM administrator must create IAM
policies that grant users and roles permission to perform specific API operations on the specified
resources they need. The administrator must then attach those policies to the IAM users or groups
that require those permissions.

To learn how to create an IAM identity-based policy using these example JSON policy documents,
see Creating Policies on the JSON Tab in the IAM User Guide.

Topics

• Policy best practices

• Using the Timestream for LiveAnalytics console

• Allow users to view their own permissions

• Common operations in Timestream for LiveAnalytics

• Timestream for LiveAnalytics resource access based on tags

• Scheduled queries

Policy best practices

Identity-based policies determine whether someone can create, access, or delete Timestream
for LiveAnalytics resources in your account. These actions can incur costs for your Amazon Web
Services account. When you create or edit identity-based policies, follow these guidelines and
recommendations:

• Get started with Amazon managed policies and move toward least-privilege permissions
– To get started granting permissions to your users and workloads, use the Amazon managed
policies that grant permissions for many common use cases. They are available in your Amazon
Web Services account. We recommend that you reduce permissions further by defining Amazon
customer managed policies that are specific to your use cases. For more information, see Amazon
managed policies or Amazon managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more

Identity and access management 541

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create.html#access_policies_create-json-editor
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_job-functions.html

Amazon Timestream Developer Guide

information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific Amazon Web Services service, such as Amazon
CloudFormation. For more information, see IAM JSON policy elements: Condition in the IAM
User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see Validate policies with IAM Access Analyzer in the
IAM User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users or a
root user in your Amazon Web Services account, turn on MFA for additional security. To require
MFA when API operations are called, add MFA conditions to your policies. For more information,
see Secure API access with MFA in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Using the Timestream for LiveAnalytics console

Timestream for LiveAnalytics does not require specific permissions to access the Amazon
Timestream for LiveAnalytics console. You need at least read-only permissions to list and view
details about the Timestream for LiveAnalytics resources in your Amazon account. If you create an
identity-based policy that is more restrictive than the minimum required permissions, the console
won't function as intended for entities (IAM users or roles) with that policy.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the Amazon CLI or Amazon API.

{

Identity and access management 542

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html

Amazon Timestream Developer Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws-cn:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

Common operations in Timestream for LiveAnalytics

Below are sample IAM policies that allow for common operations in the Timestream for
LiveAnalytics service.

Topics

• Allowing all operations

• Allowing SELECT operations

• Allowing SELECT operations on multiple resources

• Allowing metadata operations

Identity and access management 543

Amazon Timestream Developer Guide

• Allowing INSERT operations

• Allowing CRUD operations

• Cancel queries and select data without specifying resources

• Create, describe, delete and describe a database

• Limit listed databases by tag{"Owner": "${username}"}

• List all tables in a database

• Create, describe, delete, update and select on a table

• Limit a query by table

Allowing all operations

The following is a sample policy that allows all operations in Timestream for LiveAnalytics.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "timestream:*"
],
 "Resource": "*"
 }
]
}

Allowing SELECT operations

The following sample policy allows SELECT-style queries on a specific resource.

Note

Replace <account_ID> with your Amazon account ID.

{
 "Version": "2012-10-17",
 "Statement": [

Identity and access management 544

Amazon Timestream Developer Guide

 {
 "Effect": "Allow",
 "Action": [
 "timestream:Select",
 "timestream:DescribeTable",
 "timestream:ListMeasures"
],
 "Resource": "arn:aws:timestream:us-east-1:<account_ID>:database/sampleDB/
table/DevOps"
 },
 {
 "Effect": "Allow",
 "Action": [
 "timestream:DescribeEndpoints",
 "timestream:SelectValues",
 "timestream:CancelQuery"
],
 "Resource": "*"
 }
]
}

Allowing SELECT operations on multiple resources

The following sample policy allows SELECT-style queries on multiple resources.

Note

Replace <account_ID> with your Amazon account ID.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "timestream:Select",
 "timestream:DescribeTable",
 "timestream:ListMeasures"
],
 "Resource": [

Identity and access management 545

Amazon Timestream Developer Guide

 "arn:aws:timestream:us-east-1:<account_ID>:database/sampleDB/table/
DevOps",
 "arn:aws:timestream:us-east-1:<account_ID>:database/sampleDB/table/
DevOps1",
 "arn:aws:timestream:us-east-1:<account_ID>:database/sampleDB/table/
DevOps2"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "timestream:DescribeEndpoints",
 "timestream:SelectValues",
 "timestream:CancelQuery"
],
 "Resource": "*"
 }
]
}

Allowing metadata operations

The following sample policy allows the user to perform metadata queries, but does not allow the
user to perform operations that read or write actual data in Timestream for LiveAnalytics.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "timestream:DescribeEndpoints",
 "timestream:DescribeTable",
 "timestream:ListMeasures",
 "timestream:SelectValues",
 "timestream:ListTables",
 "timestream:ListDatabases",
 "timestream:CancelQuery"
],
 "Resource": "*"
 }
]
}

Identity and access management 546

Amazon Timestream Developer Guide

Allowing INSERT operations

The following sample policy allows a user to perform an INSERT operation on database/
sampleDB/table/DevOps in account <account_id>.

Note

Replace <account_ID> with your Amazon account ID.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "timestream:WriteRecords"
],
 "Resource": [
 "arn:aws:timestream:us-east-1:<account_id>:database/sampleDB/table/
DevOps"
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "timestream:DescribeEndpoints"
],
 "Resource": "*",
 "Effect": "Allow"
 }
]
}

Allowing CRUD operations

The following sample policy allows a user to perform CRUD operations in Timestream for
LiveAnalytics.

{
 "Version": "2012-10-17",
 "Statement": [

Identity and access management 547

Amazon Timestream Developer Guide

 {
 "Effect": "Allow",
 "Action": [
 "timestream:DescribeEndpoints",
 "timestream:CreateTable",
 "timestream:DescribeTable",
 "timestream:CreateDatabase",
 "timestream:DescribeDatabase",
 "timestream:ListTables",
 "timestream:ListDatabases",
 "timestream:DeleteTable",
 "timestream:DeleteDatabase",
 "timestream:UpdateTable",
 "timestream:UpdateDatabase"
],
 "Resource": "*"
 }
]
}

Cancel queries and select data without specifying resources

The following sample policy allows a user to cancel queries and perform Select queries on data
that does not require resource specification:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "timestream:SelectValues",
 "timestream:CancelQuery"
],
 "Resource": "*"
 }
]
}

Create, describe, delete and describe a database

The following sample policy allows a user to create, describe, delete and describe database
sampleDB:

Identity and access management 548

Amazon Timestream Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "timestream:CreateDatabase",
 "timestream:DescribeDatabase",
 "timestream:DeleteDatabase",
 "timestream:UpdateDatabase"
],
 "Resource": "arn:aws:timestream:us-east-1:<account_ID>:database/sampleDB"
 }
]
}

Limit listed databases by tag{"Owner": "${username}"}

The following sample policy allows a user to list all databases that that are tagged with key value
pair {"Owner": "${username}"}:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "timestream:ListDatabases"
],
 "Resource": "arn:aws:timestream:us-east-1:<account_ID>:database/*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/Owner": "${aws:username}"
 }
 }
 }
]
}

List all tables in a database

The following sample policy to list all tables in database sampleDB:

Identity and access management 549

Amazon Timestream Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "timestream:ListTables"
],
 "Resource": "arn:aws:timestream:us-east-1:<account_ID>:database/sampleDB/"
 }
]
}

Create, describe, delete, update and select on a table

The following sample policy allows a user to create tables, describe tables, delete tables, update
tables, and perform Select queries on table DevOps in database sampleDB:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "timestream:CreateTable",
 "timestream:DescribeTable",
 "timestream:DeleteTable",
 "timestream:UpdateTable",
 "timestream:Select"
],
 "Resource": "arn:aws:timestream:us-east-1:<account_ID>:database/sampleDB/
table/DevOps"
 }
]
}

Limit a query by table

The following sample policy allows a user to query all tables except DevOps in database
sampleDB:

{

Identity and access management 550

Amazon Timestream Developer Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "timestream:Select"
],
 "Resource": "arn:aws:timestream:us-east-1:<account_ID>:database/sampleDB/
table/*"
 },
 {
 "Effect": "Deny",
 "Action": [
 "timestream:Select"
],
 "Resource": "arn:aws:timestream:us-east-1:<account_ID>:database/sampleDB/
table/DevOps"
 }
]
}

Timestream for LiveAnalytics resource access based on tags

You can use conditions in your identity-based policy to control access to Timestream for
LiveAnalytics resources based on tags. This section provides some examples.

The following example shows how you can create a policy that grants permissions to a user to view
a table if the table's Owner contains the value of that user's user name.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadOnlyAccessTaggedTables",
 "Effect": "Allow",
 "Action": "timestream:Select",
 "Resource": "arn:aws-cn:timestream:us-west-2:111122223333:database/
mydatabase/table/*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/Owner": "${aws:username}"
 }
 }

Identity and access management 551

Amazon Timestream Developer Guide

 }
]
}

You can attach this policy to the IAM users in your account. If a user named richard-
roe attempts to view an Timestream for LiveAnalytics table, the table must be tagged
Owner=richard-roe or owner=richard-roe. Otherwise, he is denied access. The condition tag
key Owner matches both Owner and owner because condition key names are not case-sensitive.
For more information, see IAM JSON Policy Elements: Condition in the IAM User Guide.

The following policy grants permissions to a user to create tables with tags if the tag passed in
request has a key Owner and a value username:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "CreateTagTableUser",
 "Effect": "Allow",
 "Action": [
 "timestream:Create",
 "timestream:TagResource"
],
 "Resource": "arn:aws-cn:timestream:us-west-2:111122223333:database/
mydatabase/table/*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "aws:RequestTag/Owner": "${aws:username}"
 }
 }
 }
]
}

The policy below allows use of the DescribeDatabase API on any Database that has the env tag
set to either dev or test:

{ "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowDescribeEndpoints",
 "Effect": "Allow",

Identity and access management 552

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition.html

Amazon Timestream Developer Guide

 "Action": [
 "timestream:DescribeEndpoints"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowDevTestAccess",
 "Effect": "Allow",
 "Action": [
 "timestream:DescribeDatabase"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "timestream:tag/env": [
 "dev",
 "test"
]
 }
 }
 }
]
}
{ "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowTagAccessForDevResources",
 "Effect": "Allow",
 "Action": [
 "timestream:TagResource"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/env": [
 "test",
 "dev"
]
 }
 }
 }
]
}

Identity and access management 553

Amazon Timestream Developer Guide

This policy uses a Condition key to allow a tag that has the key env and a value of test, qa, or
dev to be added to a resource.

Scheduled queries

List, delete, update, execute ScheduledQuery

The following sample policy allows a user to list, delete, update and execute scheduled queries.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "timestream:DeleteScheduledQuery",
 "timestream:ExecuteScheduledQuery",
 "timestream:UpdateScheduledQuery",
 "timestream:ListScheduledQueries",
 "timestream:DescribeEndpoints"
],
 "Resource": "*"
 }
]
}

CreateScheduledQuery using a customer managed KMS key

The following sample policy allows a user to create a scheduled query that is encrypted using a
customer managed KMS key; <keyid for ScheduledQuery>.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "iam:PassRole"
],
 "Resource": [
 "arn:aws:iam::123456789012:role/ScheduledQueryExecutionRole"
],
 "Effect": "Allow"

Identity and access management 554

Amazon Timestream Developer Guide

 },
 {
 "Action": [
 "timestream:CreateScheduledQuery",
 "timestream:DescribeEndpoints"
],
 "Resource": "*",
 "Effect": "Allow"
 },
 {
 "Action": [
 "kms:DescribeKey",
 "kms:GenerateDataKey"
],
 "Resource": "arn:aws:kms:us-west-2:123456789012:key/<keyid for
 ScheduledQuery>",
 "Effect": "Allow"
 }
]
}

DescribeScheduledQuery using a customer managed KMS key

The following sample policy allows a user to describe a scheduled query that was created using a
customer managed KMS key; <keyid for ScheduledQuery>.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "timestream:DescribeScheduledQuery",
 "timestream:DescribeEndpoints"
],
 "Resource": "*",
 "Effect": "Allow"
 },
 {
 "Action": [
 "kms:Decrypt"
],
 "Resource": "arn:aws:kms:us-west-2:123456789012:key/<keyid for
 ScheduledQuery>",

Identity and access management 555

Amazon Timestream Developer Guide

 "Effect": "Allow"
 }
]
}

Execution role permissions (using a customer managed KMS key for scheduled query and SSE-
KMS for error reports)

Attach the following sample policy to the IAM role specified in the
ScheduledQueryExecutionRoleArn parameter, of the CreateScheduledQuery API that uses
customer managed KMS key for the scheduled query encryption and SSE-KMS encryption for error
reports.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "kms:GenerateDataKey",
],
 "Resource": "arn:aws:kms:us-west-2:123456789012:key/<keyid for
 ScheduledQuery>",
 "Effect": "Allow"
 },
 {
 "Action": [
 "kms:Decrypt"
],
 "Resource": [
 "arn:aws:kms:us-west-2:123456789012:key/<keyid for database-1>",
 "arn:aws:kms:us-west-2:123456789012:key/<keyid for database-n>",
 "arn:aws:kms:us-west-2:123456789012:key/<keyid for ScheduledQuery>"
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "sns:Publish"
],
 "Resource": [
 "arn:aws:sns:us-west-2:123456789012:scheduled-query-notification-topic-
*"
],

Identity and access management 556

Amazon Timestream Developer Guide

 "Effect": "Allow"
 },
 {
 "Action": [
 "timestream:Select",
 "timestream:SelectValues",
 "timestream:WriteRecords"
],
 "Resource": "*",
 "Effect": "Allow"
 },
 {
 "Action": [
 "s3:PutObject",
 "s3:GetBucketAcl"
],
 "Resource": [
 "arn:aws:s3:::scheduled-query-error-bucket",
 "arn:aws:s3:::scheduled-query-error-bucket/*"
],
 "Effect": "Allow"
 }
]
}

Execution role trust relationship

The following is the trust relationship for the IAM role specified in the
ScheduledQueryExecutionRoleArn parameter of the CreateScheduledQuery API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "timestream.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]

Identity and access management 557

Amazon Timestream Developer Guide

}

Allow access to all scheduled queries created within an account

Attach the following sample policy to the IAM role specified in the
ScheduledQueryExecutionRoleArn parameter, of the CreateScheduledQuery API, to allow
access to all scheduled queries created within the an account Account_ID.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "timestream.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "Account_ID"
 },
 "ArnLike": {
 "aws:SourceArn": "arn:aws:timestream:us-
west-2:Account_ID:scheduled-query/*"
 }
 }
 }
]
}

Allow access to all scheduled queries with a specific name

Attach the following sample policy to the IAM role specified in the
ScheduledQueryExecutionRoleArn parameter, of the CreateScheduledQuery API, to allow
access to all scheduled queries with a name that starts with Scheduled_Query_Name, within
account Account_ID.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

Identity and access management 558

Amazon Timestream Developer Guide

 "Principal": {
 "Service": "timestream.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "Account_ID"
 },
 "ArnLike": {
 "aws:SourceArn": "arn:aws:timestream:us-
west-2:Account_ID:scheduled-query/Scheduled_Query_Name*"
 }
 }
 }
]
}

Troubleshooting Amazon Timestream for LiveAnalytics identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with Timestream for LiveAnalytics and IAM.

Topics

• I am not authorized to perform an action in Timestream for LiveAnalytics

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my Amazon account to access my Timestream for LiveAnalytics
resources

I am not authorized to perform an action in Timestream for LiveAnalytics

If the Amazon Web Services Management Console tells you that you're not authorized to perform
an action, then you must contact your administrator for assistance. Your administrator is the
person that provided you with your sign-in credentials.

The following example error occurs when the mateojackson IAM user tries to use the console to
view details about a table but does not have timestream:Select permissions for the table.

User: arn:aws-cn:iam::123456789012:user/mateojackson is not authorized to perform:
 timestream:Select on resource: mytable

Identity and access management 559

Amazon Timestream Developer Guide

In this case, Mateo asks his administrator to update his policies to allow him to access the mytable
resource using the timestream:Select action.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to Timestream for LiveAnalytics.

Some Amazon Web Services services allow you to pass an existing role to that service instead of
creating a new service role or service-linked role. To do this, you must have permissions to pass the
role to the service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in Timestream for LiveAnalytics. However, the action requires the service to
have permissions that are granted by a service role. Mary does not have permissions to pass the
role to the service.

User: arn:aws-cn:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your Amazon administrator. Your administrator is the person who
provided you with your sign-in credentials.

I want to allow people outside of my Amazon account to access my Timestream for
LiveAnalytics resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether Timestream for LiveAnalytics supports these features, see How Amazon
Timestream for LiveAnalytics works with IAM.

• To learn how to provide access to your resources across Amazon Web Services accounts that you
own, see Providing access to an IAM user in another Amazon Web Services account that you own
in the IAM User Guide.

Identity and access management 560

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html

Amazon Timestream Developer Guide

• To learn how to provide access to your resources to third-party Amazon Web Services accounts,
see Providing access to Amazon Web Services accounts owned by third parties in the IAM User
Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see Cross account resource access in IAM in the IAM User Guide.

Logging and monitoring in Timestream for LiveAnalytics

Monitoring is an important part of maintaining the reliability, availability, and performance of
Timestream for LiveAnalytics and your Amazon solutions. You should collect monitoring data from
all of the parts of your Amazon solution so that you can more easily debug a multi-point failure if
one occurs. However, before you start monitoring Timestream for LiveAnalytics, you should create
a monitoring plan that includes answers to the following questions:

• What are your monitoring goals?

• What resources will you monitor?

• How often will you monitor these resources?

• What monitoring tools will you use?

• Who will perform the monitoring tasks?

• Who should be notified when something goes wrong?

The next step is to establish a baseline for normal Timestream for LiveAnalytics performance in
your environment, by measuring performance at various times and under different load conditions.
As you monitor Timestream for LiveAnalytics, store historical monitoring data so that you can
compare it with current performance data, identify normal performance patterns and performance
anomalies, and devise methods to address issues.

To establish a baseline, you should, at a minimum, monitor the following items:

• System errors, so that you can determine whether any requests resulted in an error.

Topics

• Monitoring tools

Logging and monitoring 561

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

Amazon Timestream Developer Guide

• Logging Timestream for LiveAnalytics API calls with Amazon CloudTrail

Monitoring tools

Amazon provides various tools that you can use to monitor Timestream for LiveAnalytics. You can
configure some of these tools to do the monitoring for you, while some of the tools require manual
intervention. We recommend that you automate monitoring tasks as much as possible.

Topics

• Automated monitoring tools

• Manual monitoring tools

Automated monitoring tools

You can use the following automated monitoring tools to watch Timestream for LiveAnalytics and
report when something is wrong:

• Amazon CloudWatch Alarms – Watch a single metric over a time period that you specify, and
perform one or more actions based on the value of the metric relative to a given threshold over
a number of time periods. The action is a notification sent to an Amazon Simple Notification
Service (Amazon SNS) topic or Amazon EC2 Auto Scaling policy. CloudWatch alarms do not
invoke actions simply because they are in a particular state; the state must have changed and
been maintained for a specified number of periods. For more information, see Monitoring with
Amazon CloudWatch.

Manual monitoring tools

Another important part of monitoring Timestream for LiveAnalytics involves manually monitoring
those items that the CloudWatch alarms don't cover. The Timestream for LiveAnalytics,
CloudWatch, Trusted Advisor, and other Amazon Web Services Management Console dashboards
provide an at-a-glance view of the state of your Amazon environment.

• The CloudWatch home page shows the following:

• Current alarms and status

• Graphs of alarms and resources

• Service health status

Logging and monitoring 562

Amazon Timestream Developer Guide

In addition, you can use CloudWatch to do the following:

• Create customized dashboards to monitor the services you care about

• Graph metric data to troubleshoot issues and discover trends

• Search and browse all your Amazon resource metrics

• Create and edit alarms to be notified of problems

Logging Timestream for LiveAnalytics API calls with Amazon CloudTrail

Timestream for LiveAnalytics is integrated with Amazon CloudTrail, a service that provides a record
of actions taken by a user, role, or an Amazon service in Timestream for LiveAnalytics. CloudTrail
captures Data Definition Language (DDL) API calls for Timestream for LiveAnalytics as events.
The calls that are captured include calls from the Timestream for LiveAnalytics console and code
calls to the Timestream for LiveAnalytics API operations. If you create a trail, you can enable
continuous delivery of CloudTrail events to an Amazon Simple Storage Service (Amazon S3) bucket,
including events for Timestream for LiveAnalytics. If you don't configure a trail, you can still view
the most recent events on the CloudTrail console in Event history. Using the information collected
by CloudTrail, you can determine the request that was made to Timestream for LiveAnalytics,
the IP address from which the request was made, who made the request, when it was made, and
additional details.

To learn more about CloudTrail, see the Amazon CloudTrail User Guide.

Timestream for LiveAnalytics information in CloudTrail

CloudTrail is enabled on your Amazon account when you create the account. When activity occurs
in Timestream for LiveAnalytics, that activity is recorded in a CloudTrail event along with other
Amazon service events in Event history. You can view, search, and download recent events in your
Amazon account. For more information, see Viewing Events with CloudTrail Event History.

Warning

Currently, Timestream for LiveAnalytics generates CloudTrail events for all management
and Query API operations, but does not generate events for WriteRecords and
DescribeEndpoints APIs.

Logging and monitoring 563

https://docs.amazonaws.cn/AmazonCloudWatch/latest/DeveloperGuide/CloudWatch_Dashboards.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/view-cloudtrail-events.html

Amazon Timestream Developer Guide

For an ongoing record of events in your Amazon account, including events for Timestream for
LiveAnalytics, create a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket.
By default, when you create a trail in the console, the trail applies to all Amazon Regions. The trail
logs events from all Regions in the Amazon partition and delivers the log files to the Amazon S3
bucket that you specify. Additionally, you can configure other Amazon services to further analyze
and act upon the event data collected in CloudTrail logs.

For more information, see the following topics in the Amazon CloudTrail User Guide:

• Overview for Creating a Trail

• CloudTrail Supported Services and Integrations

• Configuring Amazon SNS Notifications for CloudTrail

• Receiving CloudTrail Log Files from Multiple Regions

• Receiving CloudTrail Log Files from Multiple Accounts

• Logging data events

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or Amazon Identity and Access Management (IAM) user
credentials

• Whether the request was made with temporary security credentials for a role or federated user

• Whether the request was made by another Amazon service

For more information, see the CloudTrail userIdentity Element.

For Query API events:

• Create a trail that receives all events or select events with Timestream for LiveAnalytics resource
type AWS::Timestream::Database or AWS::Timestream::Table.

• Query API requests that do not access any database or table or that result in a validation
exception due to a malformed query string are recorded in CloudTrail with a resource type
AWS::Timestream::Database and an ARN value of:

arn:aws:timestream:(region):(accountId):database/NO_RESOURCE_ACCESSED

Logging and monitoring 564

https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

Amazon Timestream Developer Guide

These events are delivered only to trails that receive events with resource type
AWS::Timestream::Database.

Resilience in Amazon Timestream Live Analytics

The Amazon global infrastructure is built around Amazon Regions and Availability Zones. Amazon
Regions provide multiple physically separated and isolated Availability Zones, which are connected
with low-latency, high-throughput, and highly redundant networking. With Availability Zones, you
can design and operate applications and databases that automatically fail over between zones
without interruption. Availability Zones are more highly available, fault tolerant, and scalable than
traditional single or multiple data center infrastructures.

For more information about Amazon Regions and Availability Zones, see Amazon Global
Infrastructure.

For information about data protection functionality for Timestream available through Amazon
Backup, see Working with Amazon Backup.

Infrastructure security in Amazon Timestream Live Analytics

As a managed service, Amazon Timestream Live Analytics is protected by the Amazon global
network security procedures that are described in the Amazon Web Services: Overview of Security
Processes whitepaper.

You use Amazon published API calls to access Timestream Live Analytics through the network.
Clients must support Transport Layer Security (TLS) 1.0 or later. We recommend TLS 1.2 or later.
Clients must also support cipher suites with perfect forward secrecy (PFS) such as Ephemeral
Diffie-Hellman (DHE) or Elliptic Curve Ephemeral Diffie-Hellman (ECDHE). Most modern systems
such as Java 7 and later support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the Amazon Security Token Service (Amazon STS)
to generate temporary security credentials to sign requests.

Timestream Live Analytics is architected so that your traffic is isolated to the specific Amazon
Region that your Timestream Live Analytics instance resides in.

Resilience 565

https://www.amazonaws.cn/about-aws/global-infrastructure/
https://www.amazonaws.cn/about-aws/global-infrastructure/
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://docs.amazonaws.cn/STS/latest/APIReference/Welcome.html

Amazon Timestream Developer Guide

Configuration and vulnerability analysis in Timestream

Configuration and IT controls are a shared responsibility between Amazon and you, our customer.
For more information, see the Amazon shared responsibility model. In addition to the shared
responsibility model, Timestream for LiveAnalytics users should be aware of the following:

• It is the customer responsibility to patch their client applications with the relevant client side
dependencies.

• Customers should consider penetration testing if appropriate (see https://aws.amazon.com/
security/penetration-testing/.)

Incident response in Timestream for LiveAnalytics

Amazon Timestream for LiveAnalytics service incidents are reported in the Personal Health
Dashboard. You can learn more about the dashboard and Amazon Health here.

Timestream for LiveAnalytics supports reporting using Amazon CloudTrail. For more information,
see Logging Timestream for LiveAnalytics API calls with Amazon CloudTrail.

VPC endpoints (Amazon PrivateLink)

You can establish a private connection between your VPC and Amazon Timestream for
LiveAnalytics by creating an interface VPC endpoint. Interface endpoints are powered by Amazon
PrivateLink, a technology that enables you to privately access Timestream for LiveAnalytics APIs
without an internet gateway, NAT device, VPN connection, or Amazon Direct Connect connection.
Instances in your VPC don't need public IP addresses to communicate with Timestream for
LiveAnalytics APIs. Traffic between your VPC and Timestream for LiveAnalytics does not leave the
Amazon network.

Each interface endpoint is represented by one or more Elastic Network Interfaces in your
subnets. For more information on Interface VPC endpoints, see Interface VPC endpoints (Amazon
PrivateLink) in the Amazon VPC User Guide.

To get started with Timestream for LiveAnalytics and VPC endpoints, we've provided information
on specific considerations for Timestream for LiveAnalytics with VPC endpoints, creating an
interface VPC endpoint for Timestream for LiveAnalytics, creating a VPC endpoint policy for
Timestream for LiveAnalytics, and using the Timestream client (for either the Write or Query SDK)
with VPC endpoints..

Configuration and vulnerability analysis 566

https://www.amazonaws.cn/compliance/shared-responsibility-model/
https://www.amazonaws.cn/security/penetration-testing/
https://www.amazonaws.cn/security/penetration-testing/
https://phd.aws.amazon.com/phd/home#/
https://phd.aws.amazon.com/phd/home#/
https://docs.amazonaws.cn/health/latest/ug/what-is-aws-health.html
https://www.amazonaws.cn/privatelink
https://www.amazonaws.cn/privatelink
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/using-eni.html
https://docs.amazonaws.cn/vpc/latest/userguide/vpce-interface.html
https://docs.amazonaws.cn/vpc/latest/userguide/vpce-interface.html

Amazon Timestream Developer Guide

Topics

• How VPC endpoints work with Timestream

• Creating an interface VPC endpoint for Timestream for LiveAnalytics

• Creating a VPC endpoint policy for Timestream for LiveAnalytics

How VPC endpoints work with Timestream

When you create a VPC endpoint to access either the Timestream Write or Timestream Query
SDK, all requests are routed to endpoints within the Amazon network and do not access the public
internet. More specifically, your requests are routed to the write and query endpoints of the cell
that your account has been mapped to for a given region. To learn more about Timestream's
cellular architecture and cell-specific endpoints, you can refer to Cellular architecture. For example,
suppose that your account has been mapped to cell1 in us-west-2, and you've set up VPC
interface endpoints for writes (ingest-cell1.timestream.us-west-2.amazonaws.com)
and queries (query-cell1.timestream.us-west-2.amazonaws.com). In this case, any write
requests sent using these endpoints will stay entirely within the Amazon network and will not
access the public internet.

Considerations for Timestream VPC endpoints

Consider the following when creating a VPC endpoint for Timestream:

• Before you set up an interface VPC endpoint for Timestream for LiveAnalytics, ensure that you
review Interface endpoint properties and limitations in the Amazon VPC User Guide.

• Timestream for LiveAnalytics supports making calls to all of its API actions from your VPC.

• VPC endpoint policies are supported for Timestream for LiveAnalytics. By default, full access
to Timestream for LiveAnalytics is allowed through the endpoint. For more information, see
Controlling access to services with VPC endpoints in the Amazon VPC User Guide.

• Because of Timestream's architecture, access to both Write and Query actions requires the
creation of two VPC interface endpoints, one for each SDK. Additionally, you must specify a
cell endpoint (you will only be able to create an endpoint for the Timestream cell that you are
mapped to). Detailed information can be found in the create an interface VPC endpoint for
Timestream for LiveAnalytics section of this guide.

Now that you understand how Timestream for LiveAnalytics works with VPC endpoints, create an
interface VPC endpoint for Timestream for LiveAnalytics.

VPC endpoints 567

https://docs.amazonaws.cn/vpc/latest/userguide/vpce-interface.html#vpce-interface-limitations
https://docs.amazonaws.cn/timestream/latest/developerguide/API_Reference.html
https://docs.amazonaws.cn/vpc/latest/userguide/vpc-endpoints-access.html

Amazon Timestream Developer Guide

Creating an interface VPC endpoint for Timestream for LiveAnalytics

You can create an interface VPC endpoint for the Timestream for LiveAnalytics service using either
the Amazon VPC console or the Amazon Command Line Interface (Amazon CLI). To create a VPC
endpoint for Timestream, complete the Timestream-specific steps described below.

Note

Before completing the steps below, ensure that you understand specific considerations for
Timestream VPC endpoints.

Constructing a VPC endpoint service name using your Timestream cell

Because of Timestream's unique architecture, separate VPC interface endpoints must be created
for each SDK (Write and Query). Additionally, you must specify a Timestream cell endpoint (you
will only be able to create an endpoint for the Timestream cell that you are mapped to). To use
Interface VPC Endpoints to directly connect to Timestream from within your VPC, complete the
steps below:

1. First, find an available Timestream cell endpoint. To find an available cell endpoint, use the
DescribeEndpoints action (available through both the Write and Query APIs) to list the cell
endpoints available in your Timestream account. See the example for further details.

2. Once you've selected a cell endpoint to use, create a VPC interface endpoint string for either the
Timestream Write or Query API:

• For the Write API:

com.amazonaws.<region>.timestream.ingest-<cell>

• For the Query API:

com.amazonaws.<region>.timestream.query-<cell>

where <region> is a valid Amazon region code and <cell> is one of the cell endpoint
addresses (such as cell1 or cell2) returned in the Endpoints object by the DescribeEndpoints
action. See the example for further details.

VPC endpoints 568

https://docs.amazonaws.cn/vpc/latest/privatelink/vpce-interface.html
https://docs.amazonaws.cn/timestream/latest/developerguide/API_query_DescribeEndpoints.html
https://docs.amazonaws.cn/general/latest/gr/rande.html
https://docs.amazonaws.cn/timestream/latest/developerguide/API_query_DescribeEndpoints.html#API_query_DescribeEndpoints_ResponseSyntax
https://docs.amazonaws.cn/timestream/latest/developerguide/API_query_DescribeEndpoints.html
https://docs.amazonaws.cn/timestream/latest/developerguide/API_query_DescribeEndpoints.html

Amazon Timestream Developer Guide

3. Now that you have constructed a VPC endpoint service name, create an interface endpoint.
When asked to provide a VPC endpoint service name, use the VPC endpoint service name that
you constructed in Step 2.

Example: Constructing your VPC endpoint service name

In the following example, the DescribeEndpoints action is executed in the Amazon CLI using
the Write API in the us-west-2 region:

aws timestream-write describe-endpoints --region us-west-2

This command will return the following output:

{
 "Endpoints": [
 {
 "Address": "ingest-cell1.timestream.us-west-2.amazonaws.com",
 "CachePeriodInMinutes": 1440
 }
]
}

In this case, cell1 is the <cell> , and us-west-2 is the <region>. So, the resulting VPC
endpoint service name will look like:

com.amazonaws.us-west-2.timestream.ingest-cell1

Now that you've created an interface VPC endpoint for Timestream for LiveAnalytics, create a VPC
endpoint policy for Timestream for LiveAnalytics.

Creating a VPC endpoint policy for Timestream for LiveAnalytics

You can attach an endpoint policy to your VPC endpoint that controls access to Timestream for
LiveAnalytics. The policy specifies the following information:

• The principal that can perform actions.

• The actions that can be performed.

• The resources on which actions can be performed.

VPC endpoints 569

https://docs.amazonaws.cn/vpc/latest/privatelink/vpce-interface.html

Amazon Timestream Developer Guide

For more information, see Controlling access to services with VPC endpoints in the Amazon VPC
User Guide.

Example: VPC endpoint policy for Timestream for LiveAnalytics actions

The following is an example of an endpoint policy for Timestream for LiveAnalytics. When attached
to an endpoint, this policy grants access to the listed Timestream for LiveAnalytics actions (in this
case, ListDatabases) for all principals on all resources.

{
 "Statement":[
 {
 "Principal":"*",
 "Effect":"Allow",
 "Action":[
 "timestream:ListDatabases"
],
 "Resource":"*"
 }
]
}

Security best practices for Amazon Timestream for LiveAnalytics

Amazon Timestream for LiveAnalytics provides a number of security features to consider as
you develop and implement your own security policies. The following best practices are general
guidelines and don't represent a complete security solution. Because these best practices might not
be appropriate or sufficient for your environment, treat them as helpful considerations rather than
prescriptions.

Topics

• Timestream for LiveAnalytics preventative security best practices

Timestream for LiveAnalytics preventative security best practices

The following best practices can help you anticipate and prevent security incidents in Timestream
for LiveAnalytics.

Security best practices 570

https://docs.amazonaws.cn/vpc/latest/userguide/vpc-endpoints-access.html
https://docs.amazonaws.cn/timestream/latest/developerguide/API_ListDatabases.html

Amazon Timestream Developer Guide

Encryption at rest

Timestream for LiveAnalytics encrypts at rest all user data stored in tables using encryption
keys stored in Amazon Key Management Service (Amazon KMS). This provides an additional
layer of data protection by securing your data from unauthorized access to the underlying
storage.

Timestream for LiveAnalytics uses a single service default key (Amazon owned CMK) for
encrypting all of your tables. If this key doesn't exist, it is created for you. Service default keys
can't be disabled. For more information, see Timestream for LiveAnalytics Encryption at Rest.

Use IAM roles to authenticate access to Timestream for LiveAnalytics

For users, applications, and other Amazon services to access Timestream for LiveAnalytics,
they must include valid Amazon credentials in their Amazon API requests. You should not store
Amazon credentials directly in the application or EC2 instance. These are long-term credentials
that are not automatically rotated, and therefore could have significant business impact if they
are compromised. An IAM role enables you to obtain temporary access keys that can be used to
access Amazon services and resources.

For more information, see IAM Roles.

Use IAM policies for Timestream for LiveAnalytics base authorization

When granting permissions, you decide who is getting them, which Timestream for
LiveAnalytics APIs they are getting permissions for, and the specific actions you want to allow
on those resources. Implementing least privilege is key in reducing security risk and the impact
that can result from errors or malicious intent.

Attach permissions policies to IAM identities (that is, users, groups, and roles) and thereby grant
permissions to perform operations on Timestream for LiveAnalytics resources.

You can do this by using the following:

• Amazon managed (predefined) policies

• Customer managed policies

• Tag-based authorization

Consider client-side encryption

If you store sensitive or confidential data in Timestream for LiveAnalytics, you might want to
encrypt that data as close as possible to its origin so that your data is protected throughout its

Security best practices 571

http://www.amazonaws.cn/kms/
https://docs.amazonaws.cn/mcs/latest/devguide/EncryptionAtRest.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies

Amazon Timestream Developer Guide

lifecycle. Encrypting your sensitive data in transit and at rest helps ensure that your plaintext
data isn't available to any third party.

Working with other services

Amazon Timestream for LiveAnalytics integrates with a variety of Amazon services and popular
third-party tools. Currently, Timestream for LiveAnalytics supports integrations with the following:

Topics

• Amazon DynamoDB

• Amazon Lambda

• Amazon IoT Core

• Amazon Managed Service for Apache Flink

• Amazon Kinesis

• Amazon MQ

• Amazon MSK

• Amazon QuickSight

• Amazon SageMaker AI

• Amazon SQS

• Using DBeaver to work with Amazon Timestream

• Grafana

• Using SquaredUp to work with Amazon Timestream

• Open source Telegraf

• JDBC

• ODBC

• VPC endpoints (Amazon PrivateLink)

Amazon DynamoDB

Using EventBridge Pipes to send DynamoDB data to Timestream

You can use EventBridge Pipes to send data from a DynamoDB stream to a Amazon Timestream for
LiveAnalytics table.

Working with other services 572

Amazon Timestream Developer Guide

Pipes are intended for point-to-point integrations between supported sources and targets, with
support for advanced transformations and enrichment. Pipes reduce the need for specialized
knowledge and integration code when developing event-driven architectures. To set up a pipe, you
choose the source, add optional filtering, define optional enrichment, and choose the target for the
event data.

For more information on EventBridge Pipes, see EventBridge Pipes in the EventBridge User Guide.
For information on configuring a pipe to deliver events to a Amazon Timestream for LiveAnalytics
table, see EventBridge Pipes target specifics.

Amazon Lambda

You can create Lambda functions that interact with Timestream for LiveAnalytics. For example, you
can create a Lambda function that runs at regular intervals to execute a query on Timestream and
send an SNS notification based on the query results satisfying one or more criteria. To learn more
about Lambda, see the Amazon Lambda documentation.

Topics

• Build Amazon Lambda functions using Amazon Timestream for LiveAnalytics with Python

• Build Amazon Lambda functions using Amazon Timestream for LiveAnalytics with JavaScript

• Build Amazon Lambda functions using Amazon Timestream for LiveAnalytics with Go

• Build Amazon Lambda functions using Amazon Timestream for LiveAnalytics with C#

Amazon Lambda 573

https://docs.amazonaws.cn/eventbridge/latest/userguide/eb-pipes.html
https://docs.amazonaws.cn/eventbridge/latest/userguide/pipes-targets-specifics.html#pipes-targets-specifics-timestream
https://docs.amazonaws.cn/lambda/latest/dg/welcome.html

Amazon Timestream Developer Guide

Build Amazon Lambda functions using Amazon Timestream for LiveAnalytics with
Python

To build Amazon Lambda functions using Amazon Timestream for LiveAnalytics with Python,
follow the steps below.

1. Create an IAM role for Lambda to assume that will grant the required permissions to access the
Timestream Service, as outlined in Provide Timestream for LiveAnalytics access.

2. Edit the trust relationship of the IAM role to add Lambda service. You can use the commands
below to update an existing role so that Amazon Lambda can assume it:

a. Create the trust policy document:

cat > Lambda-Role-Trust-Policy.json << EOF
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "lambda.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
}
EOF

b. Update the role from previous step with the trust document

aws iam update-assume-role-policy --role-name <name_of_the_role_from_step_1> --
policy-document file://Lambda-Role-Trust-Policy.json

Related references are at TimestreamWrite and TimestreamQuery.

Amazon Lambda 574

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/timestream-write.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/timestream-query.html

Amazon Timestream Developer Guide

Build Amazon Lambda functions using Amazon Timestream for LiveAnalytics with
JavaScript

To build Amazon Lambda functions using Amazon Timestream for LiveAnalytics with JavaScript,
follow the instructions outlined here.

Related references are at Timestream Write Client - Amazon SDK for JavaScript v3 and Timestream
Query Client - Amazon SDK for JavaScript v3.

Build Amazon Lambda functions using Amazon Timestream for LiveAnalytics with
Go

To build Amazon Lambda functions using Amazon Timestream for LiveAnalytics with Go, follow
the instructions outlined here.

Related references are at timestreamwrite and timestreamquery.

Build Amazon Lambda functions using Amazon Timestream for LiveAnalytics with
C#

To build Amazon Lambda functions using Amazon Timestream for LiveAnalytics with C#, follow the
instructions outlined here.

Related references are at Amazon.TimestreamWrite and Amazon.TimestreamQuery.

Amazon IoT Core

You can collect data from IoT devices using Amazon IoT Core and route the data to Amazon
Timestream through IoT Core rule actions. Amazon IoT rule actions specify what to do when a
rule is triggered. You can define actions to send data to an Amazon Timestream table, an Amazon
DynamoDB database, and invoke an Amazon Lambda function.

The Timestream action in IoT Rules is used to insert data from incoming messages directly into
Timestream. The action parses the results of the IoT Core SQL statement and stores data in
Timestream. The names of the fields from returned SQL result set are used as the measure::name
and the value of the field is the measure::value.

For example, consider the SQL statement and the sample message payload:

SELECT temperature, humidity from 'iot/topic'

Amazon IoT Core 575

https://docs.amazonaws.cn/lambda/latest/dg/nodejs-package.html#nodejs-package-dependencies
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/clients/client-timestream-write/index.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/clients/client-timestream-query/index.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/clients/client-timestream-query/index.html
https://docs.amazonaws.cn/lambda/latest/dg/golang-package.html
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/timestreamwrite
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/timestreamquery
https://docs.amazonaws.cn/lambda/latest/dg/csharp-package.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/TimestreamWrite/NTimestreamWrite.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/TimestreamQuery/NTimestreamQuery.html
https://docs.amazonaws.cn/iot/latest/developerguide/iot-gs.html
https://docs.amazonaws.cn/iot/latest/developerguide/iot-sql-reference.html

Amazon Timestream Developer Guide

{
 "dataFormat": 5,
 "rssi": -88,
 "temperature": 24.04,
 "humidity": 43.605,
 "pressure": 101082,
 "accelerationX": 40,
 "accelerationY": -20,
 "accelerationZ": 1016,
 "battery": 3007,
 "txPower": 4,
 "movementCounter": 219,
 "device_id": 46216,
 "device_firmware_sku": 46216
}

If an IoT Core rule action for Timestream is created with the SQL statement above, two records will
be added to Timestream with measure names temperature and humidity and measure values of
24.04 and 43.605, respectively.

You can modify the measure name of a record being added to Timestream by using the AS
operator in the SELECT statement. The SQL statement below will create a record with the message
name temp instead of temperature.

The data type of the measure are inferred from the data type of the value of the message payload.
JSON data types such as integer, double, boolean, and string are mapped to Timestream data types
of BIGINT, DOUBLE, BOOLEAN, and VARCHAR respectively. Data can also be forced to specific data
types using the cast() function. You can specify the timestamp of the measure. If the timestamp is
left blank, the time that the entry was processed is used.

You can refer to the Timestream rules action documentation for additional details

To create an IoT Core rule action to store data in Timestream, follow the steps below:

Topics

• Prerequisites

• Using the console

• Using the CLI

• Sample application

• Video tutorial

Amazon IoT Core 576

https://docs.amazonaws.cn/iot/latest/developerguide/iot-sql-functions.html#iot-sql-function-cast
https://docs.amazonaws.cn/iot/latest/developerguide/timestream-rule-action.html

Amazon Timestream Developer Guide

Prerequisites

1. Create a database in Amazon Timestream using the instructions described in Create a
database.

2. Create a table in Amazon Timestream using the instructions described in Create a table.

Using the console

1. Use the Amazon Management Console for Amazon IoT Core to create a rule by clicking on
Manage > Messsage routing > Rules followed by Create rule.

2. Set the rule name to a name of your choice and the SQL to the text shown below

SELECT temperature as temp, humidity from 'iot/topic'

3. Select Timestream from the Action list

4. Specify the Timestream database, table, and dimension names along with the role to write
data into Timestream. If the role does not exist, you can create one by clicking on Create Roles

5. To test the rule, follow the instructions shown here.

Using the CLI

If you haven't installed the Amazon Command Line Interface (Amazon CLI), do so from here.

1. Save the following rule payload in a JSON file called timestream_rule.json. Replace
arn:aws:iam::123456789012:role/TimestreamRole with your role arn which grants
Amazon IoT access to store data in Amazon Timestream

{
 "actions": [
 {
 "timestream": {
 "roleArn": "arn:aws:iam::123456789012:role/TimestreamRole",
 "tableName": "devices_metrics",
 "dimensions": [
 {
 "name": "device_id",
 "value": "${clientId()}"
 },

Amazon IoT Core 577

https://docs.amazonaws.cn/iot/latest/developerguide/iot-ddb-rule.html#test-db-rule
https://aws.amazon.com/cli/

Amazon Timestream Developer Guide

 {
 "name": "device_firmware_sku",
 "value": "My Static Metadata"
 }
],
 "databaseName": "record_devices"
 }
 }
],
 "sql": "select * from 'iot/topic'",
 "awsIotSqlVersion": "2016-03-23",
 "ruleDisabled": false
}

2. Create a topic rule using the following command

aws iot create-topic-rule --rule-name timestream_test --topic-rule-payload file://
<path/to/timestream_rule.json> --region us-east-1

3. Retrieve details of topic rule using the following command

aws iot get-topic-rule --rule-name timestream_test

4. Save the following message payload in a file called timestream_msg.json

{
 "dataFormat": 5,
 "rssi": -88,
 "temperature": 24.04,
 "humidity": 43.605,
 "pressure": 101082,
 "accelerationX": 40,
 "accelerationY": -20,
 "accelerationZ": 1016,
 "battery": 3007,
 "txPower": 4,
 "movementCounter": 219,
 "device_id": 46216,
 "device_firmware_sku": 46216
}

5. Test the rule using the following command

Amazon IoT Core 578

Amazon Timestream Developer Guide

aws iot-data publish --topic 'iot/topic' --payload file://<path/to/
timestream_msg.json>

Sample application

To help you get started with using Timestream with Amazon IoT Core, we've created a fully
functional sample application that creates the necessary artifacts in Amazon IoT Core and
Timestream for creating a topic rule and a sample application for publishing a data to the topic.

1. Clone the GitHub repository for the sample application for Amazon IoT Core integration
following the instructions from GitHub

2. Follow the instructions in the README to use an Amazon CloudFormation template to create
the necessary artifacts in Amazon Timestream and Amazon IoT Core and to publish sample
messages to the topic.

Video tutorial

This video explains how IoT Core works with Timestream.

Amazon Managed Service for Apache Flink

You can use Apache Flink to transfer your time series data from Amazon Managed Service
for Apache Flink, Amazon MSK, Apache Kafka, and other streaming technologies directly into
Amazon Timestream for LiveAnalytics. We've created an Apache Flink sample data connector for
Timestream. We've also created a sample application for sending data to Amazon Kinesis so that
the data can flow from Kinesis to Managed Service for Apache Flink, and finally on to Amazon
Timestream. All of these artifacts are available to you in GitHub. This video tutorial describes the
setup.

Note

Java 11 is the recommended version for using the Managed Service for Apache Flink
Application. If you have multiple Java versions, ensure that you export Java 11 to your
JAVA_HOME environment variable.

Topics

Amazon Managed Service for Apache Flink 579

https://github.com/awslabs/amazon-timestream-tools/blob/master/integrations/iot_core
https://docs.github.com/en/free-pro-team@latest/github/creating-cloning-and-archiving-repositories/cloning-a-repository
https://github.com/awslabs/amazon-timestream-tools/blob/master/integrations/iot_core
https://youtu.be/00Wersoz2Q4
https://youtu.be/64DSlBvN5lg

Amazon Timestream Developer Guide

• Sample application

• Video tutorial

Sample application

To get started, follow the procedure below:

1. Create a database in Timestream with the name kdaflink following the instructions
described in Create a database.

2. Create a table in Timestream with the name kinesisdata1 following the instructions
described in Create a table.

3. Create an Amazon Kinesis Data Stream with the name TimestreamTestStream following the
instructions described in Creating a Stream.

4. Clone the GitHub repository for the Apache Flink data connector for Timestream following the
instructions from GitHub.

5. To compile, run and use the sample application, follow the instructions in the Apache Flink
sample data connector README.

6. Compile the Managed Service for Apache Flink application following the instructions for
Compiling the Application Code.

7. Upload the Managed Service for Apache Flink application binary following the instructions to
Upload the Apache Flink Streaming Code.

a. After clicking on Create Application, click on the link of the IAM Role for the application.

b. Attach the IAM policies for AmazonKinesisReadOnlyAccess and
AmazonTimestreamFullAccess.

Note

The above IAM policies are not restricted to specific resources and are unsuitable
for production use. For a production system, consider using policies that restrict
access to specific resources.

8. Clone the GitHub repository for the sample application writing data to Kinesis following the
instructions from GitHub.

9. Follow the instructions in the README to run the sample application for writing data to
Kinesis.

Amazon Managed Service for Apache Flink 580

https://docs.amazonaws.cn/streams/latest/dev/amazon-kinesis-streams.html#how-do-i-create-a-stream
https://github.com/awslabs/amazon-timestream-tools/blob/master/integrations/flink_connector
https://docs.github.com/en/free-pro-team@latest/github/creating-cloning-and-archiving-repositories/cloning-a-repository
https://github.com/awslabs/amazon-timestream-tools/blob/master/integrations/flink_connector/README.md
https://github.com/awslabs/amazon-timestream-tools/blob/master/integrations/flink_connector/README.md
https://docs.amazonaws.cn/managed-flink/latest/java/get-started-exercise.html#get-started-exercise-5.5
https://docs.amazonaws.cn/managed-flink/latest/java/get-started-exercise.html#get-started-exercise-6
https://github.com/awslabs/amazon-timestream-tools/tree/mainline/tools/python/kinesis_ingestor
https://docs.github.com/en/free-pro-team@latest/github/creating-cloning-and-archiving-repositories/cloning-a-repository
https://github.com/awslabs/amazon-timestream-tools/blob/mainline/tools/python/kinesis_ingestor/README.md

Amazon Timestream Developer Guide

10. Run one or more queries in Timestream to ensure that data is being sent from Kinesis to
Managed Service for Apache Flink to Timestream following the instructions to Create a table.

Video tutorial

This video explains how to use Timestream with Managed Service for Apache Flink.

Amazon Kinesis

Using Amazon Managed Service for Apache Flink

You can send data from Kinesis Data Streams to Timestream for LiveAnalytics using the sample
Timestream data connector for Managed Service for Apache Flink. Refer to Amazon Managed
Service for Apache Flink for Apache Flink for more information.

Using EventBridge Pipes to send Kinesis data to Timestream

You can use EventBridge Pipes to send data from a Kinesis stream to a Amazon Timestream for
LiveAnalytics table.

Pipes are intended for point-to-point integrations between supported sources and targets, with
support for advanced transformations and enrichment. Pipes reduce the need for specialized
knowledge and integration code when developing event-driven architectures. To set up a pipe, you
choose the source, add optional filtering, define optional enrichment, and choose the target for the
event data.

Amazon Kinesis 581

https://youtu.be/64DSlBvN5lg

Amazon Timestream Developer Guide

This integration enables you to leverage the power of Timestream's time-series data analysis
capabilities, while simplifying your data ingestion pipeline.

Using EventBridge Pipes with Timestream offers the following benefits:

• Real-time Data Ingestion: Stream data from Kinesis directly to Timestream for LiveAnalytics,
enabling real-time analytics and monitoring.

• Seamless Integration: Utilize EventBridge Pipes to manage the flow of data without the need for
complex custom integrations.

• Enhanced Filtering and Transformation: Filter or transform Kinesis records before they are stored
in Timestream to meet your specific data processing requirements.

• Scalability: Handle high-throughput data streams and ensure efficient data processing with built-
in parallelism and batching capabilities.

Configuration

To set up an EventBridge Pipe to stream data from Kinesis to Timestream, follow these steps:

1. Create a Kinesis stream

Ensure you have an active Kinesis data stream from which you want to ingest data.

2. Create a Timestream database and table

Set up your Timestream database and table where the data will be stored.

3. Configure the EventBridge Pipe:

• Source: Select your Kinesis stream as the source.

• Target: Choose Timestream as the target.

• Batching Settings: Define batching window and batch size to optimize data processing and
reduce latency.

Important

When setting up a pipe, we recommend testing the correctness of all configurations by
ingesting a few records. Please note that successful creation of a pipe does not guarantee
that the pipeline is correct and data will flow without errors. There may be runtime errors,

Amazon Kinesis 582

Amazon Timestream Developer Guide

such as incorrect table, incorrect dynamic path parameter, or invalid Timestream record
after applying mapping, that will be discovered when actual data flows through the pipe.

The following configurations determine the rate at which data is ingested:

• BatchSize: The maximum size of the batch that will be sent to Timestream for LiveAnalytics.
Range: 0 - 100. Recommendation is to keep this value as 100 to get maximum throughput.

• MaximumBatchingWindowInSeconds: The maximum time to wait to fill the batchSize before the
batch is sent to Timestream for LiveAnalytics target. Depending on the rate of incoming events,
this configuration will decide the delay of ingestion, recommendation is to keep this value < 10s
to keep sending the data to Timestream in near real-time.

• ParallelizationFactor: The number of batches to process concurrently from each shard.
Recommendation is to use the maximum value of 10 to get maximum throughput and near real-
time ingestion.

If your stream is read by multiple targets, use enhanced fan-out to provide a dedicated consumer
to your pipe to achieve high throughput. For more information, see Developing enhanced fan-
out consumers with the Kinesis Data Streams API in the Kinesis Data Streams User Guide.

Note

The maximum throughput that can be achieved is bounded by concurrent pipe executions
per account.

The following configuration ensures prevention of data loss:

• DeadLetterConfig: Recommendation is to always configure DeadLetterConfig to avoid any data
loss for cases when events could not be ingested to Timestream for LiveAnalytics due to user
errors.

Optimize your pipe's performance with the following configuration settings, which helps prevent
records from causing slowdowns or blockages.

Amazon Kinesis 583

https://docs.amazonaws.cn/streams/latest/dev/building-enhanced-consumers-api.html
https://docs.amazonaws.cn/streams/latest/dev/building-enhanced-consumers-api.html
https://docs.amazonaws.cn/eventbridge/latest/userguide/eb-quota.html#eb-pipes-limits

Amazon Timestream Developer Guide

• MaximumRecordAgeInSeconds: Records older than this will not be processed and will directly get
moved to DLQ. We recommend setting this value to be no higher than the configured Memory
store retention period of the target Timestream table.

• MaximumRetryAttempts: The number of retry attempts for a record before the record is
sent to DeadLetterQueue. Recommendation is to configure this at 10. This should be able
to help address any transient issues and for persistent issues, the record will be moved to
DeadLetterQueue and unblock the rest of the stream.

• OnPartialBatchItemFailure: For sources that support partial batch processing, we recommend
you to enable this and configure it as AUTOMATIC_BISECT for additional retry of failed records
before dropping/sending to DLQ.

Configuration example

Here is an example of how to configure an EventBridge Pipe to stream data from a Kinesis stream
to a Timestream table:

Example IAM policy updates for Timestream

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "timestream:WriteRecords"
],
 "Resource": [
 "arn:aws:timestream:us-east-1:123456789012:database/my-database/table/
my-table"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "timestream:DescribeEndpoints"
],
 "Resource": "*"
 }
]
}

Amazon Kinesis 584

Amazon Timestream Developer Guide

Example Kinesis stream configuration

{
 "Source": "arn:aws:kinesis:us-east-1:123456789012:stream/my-kinesis-stream",
 "SourceParameters": {
 "KinesisStreamParameters": {
 "BatchSize": 100,
 "DeadLetterConfig": {
 "Arn": "arn:aws:sqs:us-east-1:123456789012:my-sqs-queue"
 },
 "MaximumBatchingWindowInSeconds": 5,
 "MaximumRecordAgeInSeconds": 1800,
 "MaximumRetryAttempts": 10,
 "StartingPosition": "LATEST",
 "OnPartialBatchItemFailure": "AUTOMATIC_BISECT"
 }
 }
}

Example Timestream target configuration

{
 "Target": "arn:aws:timestream:us-east-1:123456789012:database/my-database/table/my-
table",
 "TargetParameters": {
 "TimestreamParameters": {
 "DimensionMappings": [
 {
 "DimensionName": "sensor_id",
 "DimensionValue": "$.data.device_id",
 "DimensionValueType": "VARCHAR"
 },
 {
 "DimensionName": "sensor_type",
 "DimensionValue": "$.data.sensor_type",
 "DimensionValueType": "VARCHAR"
 },
 {
 "DimensionName": "sensor_location",
 "DimensionValue": "$.data.sensor_loc",
 "DimensionValueType": "VARCHAR"
 }
],

Amazon Kinesis 585

Amazon Timestream Developer Guide

 "MultiMeasureMappings": [
 {
 "MultiMeasureName": "readings",
 "MultiMeasureAttributeMappings": [
 {
 "MultiMeasureAttributeName": "temperature",
 "MeasureValue": "$.data.temperature",
 "MeasureValueType": "DOUBLE"
 },
 {
 "MultiMeasureAttributeName": "humidity",
 "MeasureValue": "$.data.humidity",
 "MeasureValueType": "DOUBLE"
 },
 {
 "MultiMeasureAttributeName": "pressure",
 "MeasureValue": "$.data.pressure",
 "MeasureValueType": "DOUBLE"
 }
]
 }
],
 "SingleMeasureMappings": [],
 "TimeFieldType": "TIMESTAMP_FORMAT",
 "TimestampFormat": "yyyy-MM-dd HH:mm:ss.SSS",
 "TimeValue": "$.data.time",
 "VersionValue": "$.approximateArrivalTimestamp"
 }
 }
}

Event transformation

EventBridge Pipes allow you to transform data before it reaches Timestream. You can define
transformation rules to modify the incoming Kinesis records, such as changing field names.

Suppose your Kinesis stream contains temperature and humidity data. You can use an EventBridge
transformation to rename these fields before inserting them into Timestream.

Best practices

Batching and Buffering

Amazon Kinesis 586

Amazon Timestream Developer Guide

• Configure the batching window and size to balance between write latency and processing
efficiency.

• Use a batching window to accumulate enough data before processing, reducing the overhead of
frequent small batches.

Parallel Processing

Utilize the ParallelizationFactor setting to increase concurrency, especially for high-throughput
streams. This ensures that multiple batches from each shard can be processed simultaneously.

Data Transformation

Leverage the transformation capabilities of EventBridge Pipes to filter and enhance records before
storing them in Timestream. This can help in aligning the data with your analytical requirements.

Security

• Ensure that the IAM roles used for EventBridge Pipes have the necessary permissions to read
from Kinesis and write to Timestream.

• Use encryption and access control measures to secure data in transit and at rest.

Debugging failures

• Automatic Disabling of Pipes

Pipes will be automatically disabled in about 2 hours if the target does not exist or has
permission issues

• Throttles

Pipes have the capability to automatically back off and retry until the throttles have reduced.

• Enabling Logs

We recommend you enable Logs at ERROR level and include execution data to get more insights
into failed. Upon any failure, these logs will contain request/response sent/received from
Timestream. This helps you understand the error associated and if needed reprocess the records
after fixing it.

Amazon Kinesis 587

Amazon Timestream Developer Guide

Monitoring

We recommend you to set up alarms on the following to detect any issues with data flow:

• Maximum Age of the Record in Source

• GetRecords.IteratorAgeMilliseconds

• Failure metrics in Pipes

• ExecutionFailed

• TargetStageFailed

• Timestream Write API errors

• UserErrors

For additional monitoring metrics, see Monitoring EventBridge in the EventBridge User Guide.

Amazon MQ

Using EventBridge Pipes to send Amazon MQ data to Timestream

You can use EventBridge Pipes to send data from a Amazon MQ broker to a Amazon Timestream
for LiveAnalytics table.

Pipes are intended for point-to-point integrations between supported sources and targets, with
support for advanced transformations and enrichment. Pipes reduce the need for specialized
knowledge and integration code when developing event-driven architectures. To set up a pipe, you
choose the source, add optional filtering, define optional enrichment, and choose the target for the
event data.

Amazon MQ 588

https://docs.amazonaws.cn/eventbridge/latest/userguide/eb-monitoring.html#eb-metrics

Amazon Timestream Developer Guide

For more information on EventBridge Pipes, see EventBridge Pipes in the EventBridge User Guide.
For information on configuring a pipe to deliver events to a Amazon Timestream for LiveAnalytics
table, see EventBridge Pipes target specifics.

Amazon MSK

Using Managed Service for Apache Flink to send Amazon MSK data to Timestream
for LiveAnalytics

You can send data from Amazon MSK to Timestream by building a data connector similar to
the sample Timestream data connector for Managed Service for Apache Flink. Refer to Amazon
Managed Service for Apache Flink for more information.

Using Kafka Connect to send Amazon MSK data to Timestream for LiveAnalytics

You can use Kafka Connect to ingest your time series data from Amazon MSK directly into
Timestream for LiveAnalytics.

We've created a sample Kafka Sink Connector for Timestream. We've also created a sample Apache
jMeter test plan for publishing data to a Kafka topic, so that the data can flow from the topic
through the Timestream Kafka Sink Connector, to an Timestream for LiveAnalytics table. All of
these artifacts are available on GitHub.

Amazon MSK 589

https://docs.amazonaws.cn/eventbridge/latest/userguide/eb-pipes.html
https://docs.amazonaws.cn/eventbridge/latest/userguide/pipes-targets-specifics.html#pipes-targets-specifics-timestream

Amazon Timestream Developer Guide

Note

Java 11 is the recommended version for using the Timestream Kafka Sink Connector.
If you have multiple Java versions, ensure that you export Java 11 to your JAVA_HOME
environment variable.

Creating a sample application

To get started, follow the procedure below.

1. In Timestream for LiveAnalytics, create a database with the name kafkastream.

See the procedure ??? for detailed instructions.

2. In Timestream for LiveAnalytics, create a table with the name purchase_history.

See the procedure ??? for detailed instructions.

3. Follow the instructions shared in the to create the following: , and .

• An Amazon MSK cluster

• An Amazon EC2 instance that is configured as a Kafka producer client machine

• A Kafka topic

See the prerequisites of the kafka_ingestor project for detailed instructions.

4. Clone the Timestream Kafka Sink Connector repository.

See Cloning a repository on GitHub for detailed instructions.

5. Compile the plugin code.

See Connector - Build from source on GitHub for detailed instructions.

6. Upload the following files to an S3 bucket: following the instructions described in .

• The jar file (kafka-connector-timestream->VERSION<-jar-with-dependencies.jar) from the /
target directory

• The sample json schema file, purchase_history.json.

See Uploading objects in the Amazon S3 User Guide for detailed instructions.

Amazon MSK 590

https://github.com/awslabs/amazon-timestream-tools/tree/mainline/tools/java/kafka_ingestor#prerequisites
https://github.com/awslabs/amazon-timestream-tools/tree/mainline/integrations/kafka_connector
https://docs.github.com/en/free-pro-team@latest/github/creating-cloning-and-archiving-repositories/cloning-a-repository
https://github.com/awslabs/amazon-timestream-tools/tree/mainline/integrations/kafka_connector#connector---build-from-source
https://docs.amazonaws.cn/AmazonS3/latest/userguide/upload-objects.html

Amazon Timestream Developer Guide

7. Create two VPC endpoints. These endpoints would be used by the MSK Connector to access
the resources using Amazon PrivateLink.

• One to access the Amazon S3 bucket

• One to access the Timestream for LiveAnalytics table.

See VPC Endpoints for detailed instructions.

8. Create a custom plugin with the uploaded jar file.

See Plugins in the Amazon MSK Developer Guide for detailed instructions.

9. Create a custom worker configuration with the JSON content described in Worker
Configuration parameters. following the instructions described in

See Creating a custom worker configuration in the Amazon MSK Developer Guide for detailed
instructions.

10. Create a service execution IAM role.

See IAM Service Role for detailed instructions.

11. Create an Amazon MSK connector with the custom plugin, custom worker configuration,
and service execution IAM role created in the previous steps and with the Sample Connector
Configuration.

See Creating a connector in the Amazon MSK Developer Guide for detailed instructions.

Make sure to update the values of the below configuration parameters with respective values.
See Connector Configuration parameters for details.

• aws.region

• timestream.schema.s3.bucket.name

• timestream.ingestion.endpoint

The connector creation takes 5–10 minutes to complete. The pipeline is ready when its status
changes to Running.

12. Publish a continuous stream of messages for writing data to the Kafka topic created.

See How to use it for detailed instructions.

Amazon MSK 591

https://github.com/awslabs/amazon-timestream-tools/tree/mainline/integrations/kafka_connector#vpc-endpoints
https://docs.amazonaws.cn/msk/latest/developerguide/msk-connect-plugins.html
https://github.com/awslabs/amazon-timestream-tools/tree/mainline/integrations/kafka_connector#worker-configuration-parameters
https://github.com/awslabs/amazon-timestream-tools/tree/mainline/integrations/kafka_connector#worker-configuration-parameters
https://docs.amazonaws.cn/msk/latest/developerguide/msk-connect-workers.html#msk-connect-create-custom-worker-config
https://github.com/awslabs/amazon-timestream-tools/tree/mainline/integrations/kafka_connector#iam-service-role
https://github.com/awslabs/amazon-timestream-tools/tree/mainline/integrations/kafka_connector#sample-connector-configuration
https://github.com/awslabs/amazon-timestream-tools/tree/mainline/integrations/kafka_connector#sample-connector-configuration
https://docs.amazonaws.cn/msk/latest/developerguide/msk-connect-connectors.html#mkc-create-connector-intro
https://github.com/awslabs/amazon-timestream-tools/tree/mainline/integrations/kafka_connector#connector-configuration-parameters
https://github.com/awslabs/amazon-timestream-tools/tree/mainline/tools/java/kafka_ingestor#how-to-use-it

Amazon Timestream Developer Guide

13. Run one or more queries to ensure that the data is being sent from Amazon MSK to MSK
Connect to the Timestream for LiveAnalytics table.

See the procedure ??? for detailed instructions.

Additional resources

The blog, Real-time serverless data ingestion from your Kafka clusters into Timestream for
LiveAnalytics using Kafka Connect explains setting up an end-to-end pipeline using the
Timestream for LiveAnalytics Kafka Sink Connector, starting from a Kafka producer client machine
that uses the Apache jMeter test plan to publish thousands of sample messages to a Kafka topic to
verifying the ingested records in an Timestream for LiveAnalytics table.

Amazon QuickSight

You can use Amazon QuickSight to analyze and publish data dashboards that contain your
Amazon Timestream data. This section describes how you can create a new QuickSight data source
connection, modify permissions, create new datasets, and perform an analysis. This video tutorial
describes how to work with Timestream and QuickSight.

Note

All datasets in QuickSight are read-only. You can't make any changes to your actual data in
Timestream by using QuickSight to remove the data source, dataset, or fields.

Topics

• Accessing Amazon Timestream from QuickSight

• Create a new QuickSight data source connection for Timestream

• Edit permissions for the QuickSight data source connection for Timestream

• Create a new QuickSight dataset for Timestream

• Create a new analysis for Timestream

• Video tutorial

Amazon QuickSight 592

https://aws.amazon.com/blogs/database/real-time-serverless-data-ingestion-from-your-kafka-clusters-into-amazon-timestream-using-kafka-connect/
https://aws.amazon.com/blogs/database/real-time-serverless-data-ingestion-from-your-kafka-clusters-into-amazon-timestream-using-kafka-connect/
https://youtu.be/TzW4HWl-L8s

Amazon Timestream Developer Guide

Accessing Amazon Timestream from QuickSight

Before you can proceed, Amazon QuickSight needs to be authorized to connect to Amazon
Timestream. If connections are not enabled, you will receive an error when you try to connect.
A QuickSight administrator can authorize connections to Amazon resources. To authorize a
connection from QuickSight to Timestream, follow the procedure at Using Other Amazon Services:
Scoping Down Access, choosing Amazon Timestream in step 5.

Create a new QuickSight data source connection for Timestream

Note

The connection between Amazon QuickSight and Amazon Timestream is encrypted in
transit using SSL (TLS 1.2). You cannot create an unencrypted connection.

1. Ensure you have configured the appropriate permissions for Amazon QuickSight to access
Amazon Timestream, as described in Accessing Amazon Timestream from QuickSight.

2. Begin by creating a new dataset. Choose Datasets from the navigation pane, then choose New
Dataset.

3. Select the Timestream data source card.

4. For Data source name, enter a name for your Timestream data source connection, for example
US Timestream Data.

Note

Because you can create many datasets from a connection to Timestream, it's best to
keep the name simple.

5. Choose Validate connection to check that you can successfully connect to Timestream.

Note

Validate connection only validates that you can connect. However, it doesn't validate a
specific table or query.

6. Choose Create data source to proceed.

Amazon QuickSight 593

https://docs.amazonaws.cn/quicksight/latest/user/scoping-policies-for-access-to-aws-resources.html
https://docs.amazonaws.cn/quicksight/latest/user/scoping-policies-for-access-to-aws-resources.html

Amazon Timestream Developer Guide

7. For Database, choose Select... to view the list of available options. Choose the one you want
to use.

8. Choose Select to continue.

9. Choose one of the following:

• To import your data into QuickSight's in-memory engine (called SPICE), choose Import to
SPICE for quicker analytics.

• To allow QuickSight to run a query against your data each time you refresh the dataset or
use the analysis or dashboard, choose Directly query your data.

10. Choose Edit/Preview and then Save to save your dataset and close it.

Edit permissions for the QuickSight data source connection for Timestream

The following procedure describes how to view, add, and revoke permissions for other QuickSight
users so that they can access the same Timestream data source. The people need to be active users
in QuickSight before you can add them.

Note

In QuickSight, data sources have two permissions levels: user and owner.

• Choose user to allow read access.

• Choose owner to allow that user to edit, share, or delete this QuickSight data source.

1. Ensure you have configured the appropriate permissions for Amazon QuickSight to access
Amazon Timestream, as described in Accessing Amazon Timestream from QuickSight.

2. Choose Datasets at left, then scroll down to find the data source card for your Timestream
connection. For example US Timestream Data.

3. Choose the Timestream data source card.

4. Choose Share data source. A list of current permissions displays.

5. (Optional) To edit permissions, you can choose user or owner.

6. (Optional) To revoke permissions, choose Revoke access. People you revoke can't create
new datasets from this data source. However, their existing datasets will still have access to
this data source.

Amazon QuickSight 594

Amazon Timestream Developer Guide

7. To add permissions, choose Invite users, then follow these steps to add a user:

a. Add people to allow them to use the same data source.

b. For each, choose the Permission that you want to apply.

8. When you are finished, choose Close.

Create a new QuickSight dataset for Timestream

1. Ensure you have configured the appropriate permissions for Amazon QuickSight to access
Amazon Timestream, as described in Accessing Amazon Timestream from QuickSight.

2. Choose Datasets at left, then scroll down to find the data source card for your Timestream
connection. If you have many data sources, you can use the search bar at the top of the page
to find it with a partial match on the name.

3. Choose the Timestream data source card. Then choose Create data set.

4. For Database, choose Select to view the list of available options. Choose the database that you
want to use.

5. For Tables, choose the table that you want to use.

6. Choose Edit/Preview.

7. (Optional) To add more data, choose Add data at top right.

a. Choose Switch data source, and choose a different data source.

b. Follow the UI prompts to finish adding data.

c. After adding new data to the same dataset, choose Configure this join (the two red dots).
Set up a join for each additional table.

d. If you want to add calculated fields, choose Add calculated field.

e. To use Sagemaker, choose Augment with SageMaker. This option is only available in
QuickSight Enterprise edition.

f. Uncheck any fields you want to omit.

g. Update any data types you want to change.

8. When you are done, choose Save to save and close the dataset.

Amazon QuickSight 595

Amazon Timestream Developer Guide

Create a new analysis for Timestream

1. Ensure you have configured the appropriate permissions for Amazon QuickSight to access
Amazon Timestream, as described in Accessing Amazon Timestream from QuickSight.

2. Choose Analyses at left.

3. Choose one of the following:

• To create a new analysis, choose New analysis at right.

• To add the Timestream dataset to an existing analysis, open the analysis you want to edit.
Choose the pencil icon near at top left, then Add data set.

4. Start the first data visualization by choosing fields on the left.

5. For more information, see Working with Analyses - Amazon QuickSight

Video tutorial

This video explains how QuickSight works with Timestream.

Amazon SageMaker AI

You can use Amazon SageMaker Notebooks to integrate your machine learning models with
Amazon Timestream. To help you get started, we have created a sample SageMaker Notebook
that processes data from Timestream. The data is inserted into Timestream from a multi-threaded
Python application continuously sending data. The source code for the sample SageMaker
Notebook and the sample Python application are available in GitHub.

1. Create a database and table following the instructions described in Create a database and
Create a table.

2. Clone the GitHub repository for the multi-threaded Python sample application following the
instructions from GitHub.

3. Clone the GitHub repository for the sample Timestream SageMaker Notebook following the
instructions from GitHub.

4. Run the application for continuously ingesting data into Timestream following the instructions
in the README.

5. Follow the instructions to create an Amazon S3 bucket for Amazon SageMaker as described
here.

Amazon SageMaker AI 596

https://docs.amazonaws.cn/quicksight/latest/user/working-with-analyses.html
https://youtu.be/TzW4HWl-L8s
https://github.com/awslabs/amazon-timestream-tools/tree/mainline/tools/python/continuous-ingestor
https://docs.github.com/en/free-pro-team@latest/github/creating-cloning-and-archiving-repositories/cloning-a-repository
https://github.com/awslabs/amazon-timestream-tools/blob/master/integrations/sagemaker
https://docs.github.com/en/free-pro-team@latest/github/creating-cloning-and-archiving-repositories/cloning-a-repository
https://github.com/awslabs/amazon-timestream-tools/blob/mainline/tools/python/continuous-ingestor/README.md
https://docs.amazonaws.cn/sagemaker/latest/dg/gs-config-permissions.html

Amazon Timestream Developer Guide

6. Create an Amazon SageMaker instance with latest boto3 installed: In addition to the
instructions described here, follow the steps below:

a. On the Create notebook instance page, click on Additional Configuration

b. Click on Lifecycle configuration - optional and select Create a new lifecycle
configuration

c. On the Create lifecycle configuration wizard box, do the following:

i. Fill in a desired name to the configuration, e.g. on-start

ii. In Start Notebook script, copy-paste the script content from Github

iii. Replace PACKAGE=scipy with PACKAGE=boto3 in the pasted script.

7. Click on Create configuration

8. Go to the IAM service in the Amazon Management Console and find the newly created
SageMaker execution role for the notebook instance.

9. Attach the IAM policy for AmazonTimestreamFullAccess to the execution role.

Note

The AmazonTimestreamFullAccess IAM policy is not restricted to specific resources
and is unsuitable for production use. For a production system, consider using policies
that restrict access to specific resources.

10. When the status of the notebook instance is InService, choose Open Jupyter to launch a
SageMaker Notebook for the instance

11. Upload the files timestreamquery.py and Timestream_SageMaker_Demo.ipynb into the
Notebook by selecting the Upload button

12. Choose Timestream_SageMaker_Demo.ipynb

Note

If you see a pop up with Kernel not found, choose conda_python3 and click Set
Kernel.

13. Modify DB_NAME, TABLE_NAME, bucket, and ENDPOINT to match the database name, table
name, S3 bucket name, and region for the training models.

14. Choose the play icon to run the individual cells

Amazon SageMaker AI 597

https://docs.amazonaws.cn/sagemaker/latest/dg/gs-setup-working-env.html
https://github.com/aws-samples/amazon-sagemaker-notebook-instance-lifecycle-config-samples/blob/master/scripts/install-pip-package-single-environment/on-start.sh

Amazon Timestream Developer Guide

15. When you get to the cell Leverage Timestream to find hosts with average CPU
utilization across the fleet, ensure that the output returns at least 2 host names.

Note

If there are less than 2 host names in the output, you may need to rerun the sample
Python application ingesting data into Timestream with a larger number of threads
and host-scale.

16. When you get to the cell Train a Random Cut Forest (RCF) model using the
CPU utilization history, change the train_instance_type based on the resource
requirements for your training job

17. When you get to the cell Deploy the model for inference, change the instance_type
based on the resource requirements for your inference job

Note

It may take a few minutes to train the model. When the training is complete, you will
see the message Completed - Training job completed in the output of the cell.

18. Run the cell Stop and delete the endpoint to clean up resources. You can also stop and
delete the instance from the SageMaker console

Amazon SQS

Using EventBridge Pipes to send Amazon SQS data to Timestream

You can use EventBridge Pipes to send data from a Amazon SQS queue to a Amazon Timestream
for LiveAnalytics table.

Pipes are intended for point-to-point integrations between supported sources and targets, with
support for advanced transformations and enrichment. Pipes reduce the need for specialized
knowledge and integration code when developing event-driven architectures. To set up a pipe, you
choose the source, add optional filtering, define optional enrichment, and choose the target for the
event data.

Amazon SQS 598

Amazon Timestream Developer Guide

For more information on EventBridge Pipes, see EventBridge Pipes in the EventBridge User Guide.
For information on configuring a pipe to deliver events to a Amazon Timestream for LiveAnalytics
table, see EventBridge Pipes target specifics.

Using DBeaver to work with Amazon Timestream

DBeaver is a free universal SQL client that can be used to manage any database that has a JDBC
driver. It is widely used among developers and database administrators because of its robust data
viewing, editing, and management capabilities.

Using DBeaver's cloud connectivity options, you can connect DBeaver to Amazon Timestream
natively. DBeaver provides a comprehensive and intuitive interface to work with time series data
directly from within a DBeaver application. Using your credentials, it also gives you full access to
any queries that you could execute from another query interface. It even lets you create graphs for
better understanding and visualization of query results.

Setting up DBeaver to work with Timestream

Take the following steps to set up DBeaver to work with Timestream:

1. Download and install DBeaver on your local machine.

2. Launch DBeaver, navigate to the database selection area, choose Timeseries in the left pane,
and then select the Timestream icon in the right pane:

DBeaver 599

https://docs.amazonaws.cn/eventbridge/latest/userguide/eb-pipes.html
https://docs.amazonaws.cn/eventbridge/latest/userguide/pipes-targets-specifics.html#pipes-targets-specifics-timestream
https://dbeaver.io/
https://dbeaver.io/download/

Amazon Timestream Developer Guide

3. In the Timestream Connection Settings window, enter all the information necessary to
connect to your Amazon Timestream database. Please ensure that the user keys you enter
have the permissions necessary to access your Timestream database. Also, be sure to keep
the information and keys you input into DBeaver safe and private, as with any sensitive
information.

DBeaver 600

Amazon Timestream Developer Guide

4. Test the connection to ensure that everything is set up correctly:

DBeaver 601

Amazon Timestream Developer Guide

5. If the connection test is successful, you can now interact with your Amazon Timestream
database just as you would with any other database in DBeaver. For example, you can navigate
to the SQL editor or to the ER Diagram view to run queries:

DBeaver 602

Amazon Timestream Developer Guide

6. DBeaver also provides powerful data visualization tools. To use them, run your query, then
select the graph icon to visualize the result set. The graphing tool can help you better
understand data trends over time.

DBeaver 603

Amazon Timestream Developer Guide

Pairing Amazon Timestream with DBeaver creates an effective environment for managing time
series data. You can integrate it seamlessly into your existing workflow to enhance productivity and
efficiency.

Grafana

You can visualize your time series data and create alerts using Grafana. To help you get started
with data visualization, we have created a sample dashboard in Grafana that visualizes data sent to
Timestream from a Python application and a video tutorial that describes the setup.

Topics

• Sample application

• Video tutorial

Sample application

1. Create a database and a table in Timestream following the instructions described in Create a
database for more information.

Note

The default database name and table name for the Grafana dashboard are set to
grafanaDB and grafanaTable respectively. Use these names to minimize setup.

2. Install Python 3.7 or higher.

3. Install and configure the Timestream Python SDK.s

4. Clone the GitHub repository for the multi-thread Python application continuously ingesting
data into Timestream following the instructions from GitHub.

5. Run the application for continuously ingesting data into Timestream following the instructions
in the README.

6. Complete Learn how to create and use Amazon Managed Grafana resources or complete Install
Grafana.

7. If installing Grafana instead of using Amazon Managed Grafana, complete Installing Amazon
Timestream on Grafana Cloud.

8. Open the Grafana dashboard using a browser of your choice. If you've locally installed Grafana,
you can follow the instructions described in the Grafana documentation to log in.

Grafana 604

https://youtu.be/pilkz645cs4
https://www.python.org/downloads/
https://github.com/awslabs/amazon-timestream-tools/tree/mainline/tools/python/continuous-ingestor
https://docs.github.com/en/free-pro-team@latest/github/creating-cloning-and-archiving-repositories/cloning-a-repository
https://github.com/awslabs/amazon-timestream-tools/blob/mainline/tools/python/continuous-ingestor/README.md
https://docs.amazonaws.cn/grafana/latest/userguide/getting-started-with-AMG.html
https://grafana.com/docs/grafana/latest/installation/
https://grafana.com/docs/grafana/latest/installation/
https://grafana.com/grafana/plugins/grafana-timestream-datasource/?tab=installation/
https://grafana.com/grafana/plugins/grafana-timestream-datasource/?tab=installation/
https://grafana.com/docs/grafana/latest/getting-started/getting-started/#log-in-for-the-first-time

Amazon Timestream Developer Guide

9. After launching Grafana, go to Datasources, click on Add Datasource, search for Timestream,
and select the Timestream datasource.

10. Configure the Auth Provider and the region and click Save and Test.

11. Set the default macros.

a. Set $__database to the name of your Timestream database (e.g. grafanaDB).

b. Set $__table to the name of your Timestream table (e.g. grafanaTable).

c. Set $__measure to the most commonly used measure from the table.

12. Click Save and Test.

13. Click on the Dashboards tab.

14. Click on Import to import the dashboard.

15. Double click the Sample Application Dashboard.

16. Click on the dashboard settings.

17. Select Variables.

18. Change dbName and tableName to match the names of the Timestream database and table.

19. Click Save.

20. Refresh the dashboard.

21. To create alerts, follow the instructions described in the Grafana documentation to Configure
Grafana-managed alert rules.

22. To troubleshoot alerts, follow the instructions described in the Grafana documentation for
Troubleshooting.

23. For additional information, see the Grafana documentation.

Video tutorial

This video explains how Grafana works with Timestream.

Using SquaredUp to work with Amazon Timestream

SquaredUp is an observability platform that integrates with Amazon Timestream. You can use
SquaredUp's intuitive dashboard designer to visualize, analyze, and monitor your time-series data.
Dashboards can be shared publicly or privately, and notification channels can be created to alert
you when the health state of a monitor changes.

SquaredUp 605

https://grafana.com/docs/grafana/latest/alerting/alerting-rules/create-grafana-managed-rule/
https://grafana.com/docs/grafana/latest/alerting/alerting-rules/create-grafana-managed-rule/
https://grafana.com/docs/grafana/latest/troubleshooting/
https://grafana.com/docs/
https://youtu.be/pilkz645cs4
https://SquaredUp.com/

Amazon Timestream Developer Guide

Using SquaredUp with Amazon Timestream

1. Sign up for SquaredUp and get started for free.

2. Add an Amazon data source.

3. Create a dashboard tile that uses the Timestream Query data stream.

4. Optionally, enable monitoring for the tile, create a notification channel, or share the
dashboard publicly or privately.

5. Optionally create other tiles to see your Timestream data alongside data from your other
monitoring and observability tools.

Open source Telegraf

You can use the Timestream for LiveAnalytics output plugin for Telegraf to write metrics into
Timestream for LiveAnalytics directly from open source Telegraf.

This section provides an explanation of how to install Telegraf with the Timestream for
LiveAnalytics output plugin, how to run Telegraf with the Timestream for LiveAnalytics output
plugin, and how open source Telegraf works with Timestream for LiveAnalytics.

Topics

• Installing Telegraf with the Timestream for LiveAnalytics output plugin

• Running Telegraf with the Timestream for LiveAnalytics output plugin

• Mapping Telegraf/InfluxDB metrics to the Timestream for LiveAnalytics model

Installing Telegraf with the Timestream for LiveAnalytics output plugin

As of version 1.16, the Timestream for LiveAnalytics output plugin is available in the official
Telegraf release. To install the output plugin on most major operating systems, follow the steps
outlined in the InfluxData Telegraf Documentation. To install on the Amazon Linux 2 OS, follow the
instructions below.

Installing Telegraf with the Timestream for LiveAnalytics output plugin on Amazon Linux 2

To install Telegraf with the Timestream Output Plugin on Amazon Linux 2, perform the following
steps.

1. Install Telegraf using the yum package manager.

Open source Telegraf 606

https://app.squaredup.com/?signup=true
https://squaredup.com/
https://squaredup.com/cloud/pluginsetup-aws
https://squaredup.com/cloud/AWS-Timestream-Query
https://docs.influxdata.com/telegraf/v1.16/introduction/installation/

Amazon Timestream Developer Guide

cat <<EOF | sudo tee /etc/yum.repos.d/influxdb.repo
[influxdb]
name = InfluxDB Repository - RHEL \$releasever
baseurl = https://repos.influxdata.com/rhel/\$releasever/\$basearch/stable
enabled = 1
gpgcheck = 1
gpgkey = https://repos.influxdata.com/influxdb.key
EOF

2. Run the following command.

sudo sed -i "s/\$releasever/$(rpm -E %{rhel})/g" /etc/yum.repos.d/influxdb.repo

3. Install and start Telegraf.

sudo yum install telegraf
sudo service telegraf start

Running Telegraf with the Timestream for LiveAnalytics output plugin

You can follow the instructions below to run Telegraf with the Timestream for LiveAnalytics plugin.

1. Generate an example configuration using Telegraf.

telegraf --section-filter agent:inputs:outputs --input-filter cpu:mem --output-
filter timestream config > example.config

2. Create a database in Timestream using the management console, CLI, or SDKs.

3. In the example.config file, add your database name by editing the following key under the
[[outputs.timestream]] section.

database_name = "yourDatabaseNameHere"

4. By default, Telegraf will create a table. If you wish create a table manually, set
create_table_if_not_exists to false and follow the instructions to create a table using
the management console, CLI, or SDKs.

5. In the example.config file, configure credentials under the [[outputs.timestream]]
section. The credentials should allow the following operations.

Open source Telegraf 607

https://docs.amazonaws.cn/cli/latest/reference/timestream-write/create-database.html
https://docs.amazonaws.cn/cli/latest/reference/timestream-write/create-table.html

Amazon Timestream Developer Guide

timestream:DescribeEndpoints
timestream:WriteRecords

Note

If you leave create_table_if_not_exists set to true, include:

timestream:CreateTable

Note

If you set describe_database_on_start to true, include the following.

timestream:DescribeDatabase

6. You can edit the rest of the configuration according to your preferences.

7. When you have finished editing the config file, run Telegraf with the following.

./telegraf --config example.config

8. Metrics should appear within a few seconds, depending on your agent configuration. You
should also see the new tables, cpu and mem, in the Timestream console.

Mapping Telegraf/InfluxDB metrics to the Timestream for LiveAnalytics model

When writing data from Telegraf to Timestream for LiveAnalytics, the data is mapped as follows.

• The timestamp is written as the time field.

• Tags are written as dimensions.

• Fields are written as measures.

• Measurements are mostly written as table names (more on this below).

Open source Telegraf 608

Amazon Timestream Developer Guide

The Timestream for LiveAnalytics output plugin for Telegraf offers multiple options for organizing
and storing data in Timestream for LiveAnalytics. This can be described with an example which
begins with the data in line protocol format.

weather,location=us-midwest,season=summer temperature=82,humidity=71
1465839830100400200 airquality,location=us-west no2=5,pm25=16
1465839830100400200

The following describes the data.

• The measurement names are weather and airquality.

• The tags are location and season.

• The fields are temperature, humidity, no2, and pm25.

Topics

• Storing the data in multiple tables

• Storing the data in a single table

Storing the data in multiple tables

You can choose to create a separate table per measurement and store each field in a separate row
per table.

The configuration is mapping_mode = "multi-table".

• The Timestream for LiveAnalytics adapter will create two tables, namely, weather and
airquality.

• Each table row will contain a single field only.

The resulting Timestream for LiveAnalytics tables, weather and airquality, will look like this.

weather

time location season measure_name measure_v
alue::bigint

2016-06-13
17:43:50

us-midwest summer temperature 82

Open source Telegraf 609

Amazon Timestream Developer Guide

time location season measure_name measure_v
alue::bigint

2016-06-13
17:43:50

us-midwest summer humidity 71

airquality

time location measure_name measure_value::big
int

2016-06-13 17:43:50 us-midwest no2 5

2016-06-13 17:43:50 us-midwest pm25 16

Storing the data in a single table

You can choose to store all the measurements in a single table and store each field in a separate
table row.

The configuration is mapping_mode = "single-table". There are two
addition configurations when using single-table, single_table_name and
single_table_dimension_name_for_telegraf_measurement_name.

• The Timestream for LiveAnalytics output plugin will create a single table with name
<single_table_name> which includes a
<single_table_dimension_name_for_telegraf_measurement_name> column.

• The table may contain multiple fields in a single table row.

The resulting Timestream for LiveAnalytics table will look like this.

Open source Telegraf 610

Amazon Timestream Developer Guide

weather

time location season <single_t
able_dime
nsion_nam
e_
for_teleg
raf_measu
rement_na
me>

measure_n
ame

measure_v
alue::bigint

2016-06-13
17:43:50

us-midwest summer weather temperature 82

2016-06-13
17:43:50

us-midwest summer weather humidity 71

2016-06-13
17:43:50

us-midwest summer airquality no2 5

2016-06-13
17:43:50

us-midwest summer weather pm25 16

JDBC

You can use a Java Database Connectivity (JDBC) connection to connect Timestream for
LiveAnalytics to your business intelligence tools and other applications, such as SQL Workbench.
The Timestream for LiveAnalytics JDBC driver currently supports SSO with Okta and Microsoft
Azure AD.

Topics

• Configuring the JDBC driver for Timestream for LiveAnalytics

• Connection properties

• JDBC URL examples

• Setting up Timestream for LiveAnalytics JDBC single sign-on authentication with Okta

• Setting up Timestream for LiveAnalytics JDBC single sign-on authentication with Microsoft Azure
AD

JDBC 611

https://www.sql-workbench.eu/

Amazon Timestream Developer Guide

Configuring the JDBC driver for Timestream for LiveAnalytics

Follow the steps below to configure the JDBC driver.

Topics

• Timestream for LiveAnalytics JDBC driver JARs

• Timestream for LiveAnalytics JDBC driver class and URL format

• Sample application

Timestream for LiveAnalytics JDBC driver JARs

You can obtain the Timestream for LiveAnalytics JDBC driver via direct download or by adding the
driver as a Maven dependency.

• As a direct download:. To directly download the Timestream for LiveAnalytics JDBC driver,
complete the following steps:

1. Navigate to https://github.com/awslabs/amazon-timestream-driver-jdbc/releases

2. You can use amazon-timestream-jdbc-1.0.1-shaded.jar directly with your business
intelligence tools and applications

3. Download amazon-timestream-jdbc-1.0.1-javadoc.jar to a directory of your
choice.

4. In the directory where you have downloaded amazon-timestream-jdbc-1.0.1-
javadoc.jar, run the following command to extract the Javadoc HTML files:

jar -xvf amazon-timestream-jdbc-1.0.1-javadoc.jar

• As a Maven dependency: To add the Timestream for LiveAnalytics JDBC driver as a Maven
dependency, complete the following steps:

1. Navigate to and open your application's pom.xml file in an editor of your choice.

2. Add the JDBC driver as a dependency into your application's pom.xml file:

<!-- https://mvnrepository.com/artifact/software.amazon.timestream/amazon-
timestream-jdbc -->
<dependency>
 <groupId>software.amazon.timestream</groupId>
 <artifactId>amazon-timestream-jdbc</artifactId>

JDBC 612

https://github.com/awslabs/amazon-timestream-driver-jdbc/releases

Amazon Timestream Developer Guide

 <version>1.0.1</version>
</dependency>

Timestream for LiveAnalytics JDBC driver class and URL format

The driver class for Timestream for LiveAnalytics JDBC driver is:

software.amazon.timestream.jdbc.TimestreamDriver

The Timestream JDBC driver requires the following JDBC URL format:

jdbc:timestream:

To specify database properties through the JDBC URL, use the following URL format:

jdbc:timestream://

Sample application

To help you get started with using Timestream for LiveAnalytics with JDBC, we've created a fully
functional sample application in GitHub.

1. Create a database with sample data following the instructions described here.

2. Clone the GitHub repository for the sample application for JDBC following the instructions
from GitHub.

3. Follow the instructions in the README to get started with the sample application.

Connection properties

The Timestream for LiveAnalytics JDBC driver supports the following options:

Topics

• Basic authentication options

• Standard client info option

• Driver configuration option

• SDK option

JDBC 613

https://github.com/awslabs/amazon-timestream-tools/tree/mainline/integrations/jdbc
https://docs.github.com/en/free-pro-team@latest/github/creating-cloning-and-archiving-repositories/cloning-a-repository
https://github.com/awslabs/amazon-timestream-tools/tree/mainline/integrations/jdbc/README.md

Amazon Timestream Developer Guide

• Endpoint configuration option

• Credential provider options

• SAML-based authentication options for Okta

• SAML-based authentication options for Azure AD

Note

If none of the properties are provided, the Timestream for LiveAnalytics JDBC driver will
use the default credentials chain to load the credentials.

Note

All property keys are case-sensitive.

Basic authentication options

The following table describes the available Basic Authentication options.

Option Description Default

AccessKeyId The Amazon user access key
id.

NONE

SecretAccessKey The Amazon user secret
access key.

NONE

SessionToken The temporary session token
required to access a database
with multi-factor authentic
ation (MFA) enabled.

NONE

Standard client info option

The following table describes the Standard Client Info Option.

JDBC 614

Amazon Timestream Developer Guide

Option Description Default

ApplicationName The name of the applicati
on currently utilizing the
connection. Applicati
onName is used for
debugging purposes and will
not be communicated to the
Timestream for LiveAnalytics
service.

The application name
detected by the driver.

Driver configuration option

The following table describes the Driver Configuration Option.

Option Description Default

EnableMetaDataPrep
aredStatement

Enables Timestream for
LiveAnalytics JDBC driver
to return metadata for
PreparedStatements

, but this will incur an
additional cost with Timestrea
m for LiveAnalytics when
retrieving the metadata.

FALSE

Region The database's region. us-east-1

SDK option

The following table describes the SDK Option.

Option Description Default

RequestTimeout The time in milliseconds the
Amazon SDK will wait for a

0

JDBC 615

Amazon Timestream Developer Guide

Option Description Default

query request before timing
out. Non-positive value
disables request timeout.

SocketTimeout The time in milliseconds the
Amazon SDK will wait for
data to be transferred over
an open connection before
timing out. Value must be
non-negative. A value of 0
disables socket timeout.

50000

MaxRetryCountClient The maximum number of
retry attempts for retryable
errors with 5XX error codes in
the SDK. The value must be
non-negative.

NONE

MaxConnections The maximum number of
allowed concurrently opened
HTTP connections to the
Timestream for LiveAnalytics
service. The value must be
positive.

50

Endpoint configuration option

The following table describes the Endpoint Configuration Option.

Option Description Default

Endpoint The endpoint for the
Timestream for LiveAnalytics
service.

NONE

JDBC 616

Amazon Timestream Developer Guide

Credential provider options

The following table describes the available Credential Provider options.

Option Description Default

AwsCredentialsProviderClass One of Propertie
sFileCredentialsPr
ovider or InstanceP
rofileCredentialsP
rovider to use for
authentication.

NONE

CustomCredentialsFilePath The path to a properties file
containing Amazon security
credentials accessKey
and secretKey . This is
only required if AwsCreden
tialsProviderClass

 is specified as Propertie
sFileCredentialsPr
ovider .

NONE

SAML-based authentication options for Okta

The following table describes the available SAML-based authentication options for Okta.

Option Description Default

IdpName The Identity Provider (Idp)
name to use for SAML-based
authentication. One of Okta
or AzureAD.

NONE

IdpHost The host name of the
specified Idp.

NONE

JDBC 617

Amazon Timestream Developer Guide

Option Description Default

IdpUserName The user name for the
specified Idp account.

NONE

IdpPassword The password for the
specified Idp account.

NONE

OktaApplicationID The unique Okta-prov
ided ID associated with the
Timestream for LiveAnaly
tics application. AppId can
be found in the entityID
field provided in the applicati
on metadata. Consider the
following example: entityID
= http://www.okta.co
m//IdpAppID

NONE

RoleARN The Amazon Resource Name
(ARN) of the role that the
caller is assuming.

NONE

IdpARN The Amazon Resource Name
(ARN) of the SAML provider in
IAM that describes the Idp.

NONE

SAML-based authentication options for Azure AD

The following table describes the available SAML-based authentication options for Azure AD.

Option Description Default

IdpName The Identity Provider (Idp)
name to use for SAML-based
authentication. One of Okta
or AzureAD .

NONE

JDBC 618

Amazon Timestream Developer Guide

Option Description Default

IdpHost The host name of the
specified Idp.

NONE

IdpUserName The user name for the
specified Idp account.

NONE

IdpPassword The password for the
specified Idp account.

NONE

AADApplicationID The unique id of the registere
d application on Azure AD.

NONE

AADClientSecret The client secret associated
with the registered applicati
on on Azure AD used to
authorize fetching tokens.

NONE

AADTenant The Azure AD Tenant ID. NONE

IdpARN The Amazon Resource Name
(ARN) of the SAML provider in
IAM that describes the Idp.

NONE

JDBC URL examples

This section describes how to create a JDBC connection URL, and provides examples. To specify the
optional connection properties, use the following URL format:

jdbc:timestream://PropertyName1=value1;PropertyName2=value2...

Note

All connection properties are optional. All property keys are case-sensitive.

Below are some examples of JDBC connection URLs.

JDBC 619

Amazon Timestream Developer Guide

Example with basic authentication options and region:

jdbc:timestream://
AccessKeyId=<myAccessKeyId>;SecretAccessKey=<mySecretAccessKey>;SessionToken=<mySessionToken>;Region=us-
east-1

Example with client info, region and SDK options:

jdbc:timestream://ApplicationName=MyApp;Region=us-
east-1;MaxRetryCountClient=10;MaxConnections=5000;RequestTimeout=20000

Connect using the default credential provider chain with Amazon credential set in environment
variables:

jdbc:timestream

Connect using the default credential provider chain with Amazon credential set in the connection
URL:

jdbc:timestream://
AccessKeyId=<myAccessKeyId>;SecretAccessKey=<mySecretAccessKey>;SessionToken=<mySessionToken>

Connect using the PropertiesFileCredentialsProvider as the authentication method:

jdbc:timestream://
AwsCredentialsProviderClass=PropertiesFileCredentialsProvider;CustomCredentialsFilePath=<path
 to properties file>

Connect using the InstanceProfileCredentialsProvider as the authentication method:

jdbc:timestream://AwsCredentialsProviderClass=InstanceProfileCredentialsProvider

Connect using the Okta credentials as the authentication method:

jdbc:timestream://
IdpName=Okta;IdpHost=<host>;IdpUserName=<name>;IdpPassword=<password>;OktaApplicationID=<id>;RoleARN=<roleARN>;IdpARN=<IdpARN>

JDBC 620

Amazon Timestream Developer Guide

Connect using the Azure AD credentials as the authentication method:

jdbc:timestream://
IdpName=AzureAD;IdpUserName=<name>;IdpPassword=<password>;AADApplicationID=<id>;AADClientSecret=<secret>;AADTenant=<tenantID>;IdpARN=<IdpARN>

Connect with a specific endpoint:

jdbc:timestream://Endpoint=abc.us-east-1.amazonaws.com;Region=us-east-1

Setting up Timestream for LiveAnalytics JDBC single sign-on authentication with
Okta

Timestream for LiveAnalytics supports Timestream for LiveAnalytics JDBC single sign-on
authentication with Okta. To use Timestream for LiveAnalytics JDBC single sign-on authentication
with Okta, complete each of the sections listed below.

Topics

• Prerequisites

• Amazon account federation in Okta

• Setting up Okta for SAML

Prerequisites

Ensure that you have met the following prerequisites before using the Timestream for
LiveAnalytics JDBC single sign-on authentication with Okta:

• Admin permissions in Amazon to create the identity provider and the roles.

• An Okta account (Go to https://www.okta.com/login/ to create an account).

• Access to Amazon Timestream for LiveAnalytics.

Now that you have completed the Prerequisites, you may proceed to Amazon account federation in
Okta.

Amazon account federation in Okta

The Timestream for LiveAnalytics JDBC driver supports Amazon Account Federation in Okta. To set
up Amazon Account Federation in Okta, complete the following steps:

JDBC 621

https://www.okta.com/login/

Amazon Timestream Developer Guide

1. Sign in to the Okta Admin dashboard using the following URL:

https://<company-domain-name>-admin.okta.com/admin/apps/active

Note

Replace <company-domain-name> with your domain name.

2. Upon successful sign-in, choose Add Application and search for Amazon Account Federation.

3. Choose Add

4. Change the Login URL to the appropriate URL.

5. Choose Next

6. Choose SAML 2.0 As the Sign-On method

7. Choose Identity Provider metadata to open the metadata XML file. Save the file locally.

8. Leave all other configuration options blank.

9. Choose Done

Now that you have completed Amazon Account Federation in Okta, you may proceed to Setting up
Okta for SAML.

Setting up Okta for SAML

1. Choose the Sign On tab. Choose the View.

2. Choose the Setup Instructions button in the Settings section.

Finding the Okta metadata document

1. To find the document, go to:

https://<domain>-admin.okta.com/admin/apps/active

Note

<domain> is your unique domain name for your Okta account.

2. Choose the Amazon Account Federation application

JDBC 622

Amazon Timestream Developer Guide

3. Choose the Sign On tab

Setting up Timestream for LiveAnalytics JDBC single sign-on authentication with
Microsoft Azure AD

Timestream for LiveAnalytics supports Timestream for LiveAnalytics JDBC single sign-on
authentication with Microsoft Azure AD. To use Timestream for LiveAnalytics JDBC single sign-on
authentication with Microsoft Azure AD, complete each of the sections listed below.

Topics

• Prerequisites

• Setting up Azure AD

• Setting up IAM Identity Provider and roles in Amazon

Prerequisites

Ensure that you have met the following prerequisites before using the Timestream for
LiveAnalytics JDBC single sign-on authentication with Microsoft Azure AD:

• Admin permissions in Amazon to create the identity provider and the roles.

• An Azure Active Directory account (Go to https://azure.microsoft.com/en-ca/services/active-
directory/ to create an account)

• Access to Amazon Timestream for LiveAnalytics.

Setting up Azure AD

1. Sign in to Azure Portal

2. Choose Azure Active Directory in the list of Azure services. This will redirect to the Default
Directory page.

3. Choose Enterprise Applications under the Manage section on the sidebar

4. Choose + New application.

5. Find and select Amazon Web Services.

6. Choose Single Sign-On under the Manage section in the sidebar

7. Choose SAML as the single sign-on method

JDBC 623

https://azure.microsoft.com/en-ca/services/active-directory/
https://azure.microsoft.com/en-ca/services/active-directory/

Amazon Timestream Developer Guide

8. In the Basic SAML Configuration section, enter the following URL for both the Identifier and the
Reply URL:

https://signin.aws.amazon.com/saml

9. Choose Save

10.Download the Federation Metadata XML in the SAML Signing Certificate section. This will be
used when creating the IAM Identity Provider later

11.Return to the Default Directory page and choose App registrations under Manage.

12.Choose Timestream for LiveAnalytics from the All Applications section. The page will be
redirected to the application's Overview page

Note

Note the Application (client) ID and the Directory (tenant) ID. These values are required
for when creating a connection.

13.Choose Certificates and Secrets

14.Under Client secrets, create a new client secret with + New client secret.

Note

Note the generated client secret, as this is required when creating a connection to
Timestream for LiveAnalytics.

15.On the sidebar under Manage, select API permissions

16.In the Configured permissions, use Add a permission to grant Azure AD permission to sign in to
Timestream for LiveAnalytics. Choose Microsoft Graph on the Request API permissions page.

17.Choose Delegated permissions and select the User.Read permission

18.Choose Add permissions

19.Choose Grant admin consent for Default Directory

Setting up IAM Identity Provider and roles in Amazon

Complete each section below to set up IAM for Timestream for LiveAnalytics JDBC single sign-on
authentication with Microsoft Azure AD:

JDBC 624

Amazon Timestream Developer Guide

Topics

• Create a SAML Identity Provider

• Create an IAM role

• Create an IAM policy

• Provisioning

Create a SAML Identity Provider

To create a SAML Identity Provider for the Timestream for LiveAnalytics JDBC single sign-on
authentication with Microsoft Azure AD, complete the following steps:

1. Sign in to the Amazon Management Console

2. Choose Services and select IAM under Security, Identity, & Compliance

3. Choose Identity providers under Access management

4. Choose Create Provider and choose SAML as the provider type. Enter the Provider Name. This
example will use AzureADProvider.

5. Upload the previously downloaded Federation Metadata XML file

6. Choose Next, then choose Create.

7. Upon completion, the page will be redirected back to the Identity providers page

Create an IAM role

To create an IAM role for the Timestream for LiveAnalytics JDBC single sign-on authentication with
Microsoft Azure AD, complete the following steps:

1. On the sidebar select Roles under Access management

2. Choose Create role

3. Choose SAML 2.0 federation as the trusted entity

4. Choose the Azure AD provider

5. Choose Allow programmatic and Amazon Management Console access

6. Choose Next: Permissions

7. Attach permissions policies or continue to Next:Tags

8. Add optional tags or continue to Next:Review

JDBC 625

Amazon Timestream Developer Guide

9. Enter a Role name. This example will use AzureSAMLRole

10.Provide a role description

11.Choose Create Role to complete

Create an IAM policy

To create an IAM policy for the Timestream for LiveAnalytics JDBC single sign-on authentication
with Microsoft Azure AD complete the following steps:

1. On the sidebar, choose Policies under Access management

2. Choose Create policy and select the JSON tab

3. Add the following policy

{
"Version": "2012-10-17",
"Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iam:ListRoles",
 "iam:ListAccountAliases"
],
 "Resource": "*"
 }
]
}

4. Choose Create policy

5. Enter a policy name. This example will use TimestreamAccessPolicy.

6. Choose Create Policy

7. On the sidebar, choose Roles under Access management.

8. Choose the previously created Azure AD role and choose Attach policies under Permissions.

9. Select the previously created access policy.

Provisioning

To provision the identity provider for Timestream for LiveAnalytics JDBC single sign-on
authentication with Microsoft Azure AD, complete the following steps:

JDBC 626

Amazon Timestream Developer Guide

1. Go back to Azure Portal

2. Choose Azure Active Directory in the list of Azure services. This will redirect to the Default
Directory page

3. Choose Enterprise Applications under the Manage section on the sidebar

4. Choose Provisioning

5. Choose Automatic mode for the Provisioning Method

6. Under Admin Credentials, enter your AwsAccessKeyID for clientsecret, and SecretAccessKey for
Secret Token

7. Set the Provisioning Status to On

8. Choose save. This allows Azure AD to load the necessary IAM Roles

9. Once the Current cycle status is completed, choose Users and groups on the sidebar

10.Choose + Add user

11.Choose the Azure AD user to provide access to Timestream for LiveAnalytics

12.Choose the IAM Azure AD role and the corresponding Azure Identity Provider created in Amazon

13.Choose Assign

ODBC

The open-source ODBC driver for Amazon Timestream for LiveAnalytics provides an SQL-
relational interface to Timestream for LiveAnalytics for developers and enables connectivity from
business intelligence (BI) tools such as Power BI Desktop and Microsoft Excel. The Timestream for
LiveAnalytics ODBC driver is currently available on Windows, macOS and Linux, and also supports
SSO with Okta and Microsoft Azure Active Directory (AD).

For more information, see Amazon Timestream for LiveAnalytics ODBC driver documentation on
GitHub.

Topics

• Setting up the Timestream for LiveAnalytics ODBC driver

• Connection string syntax and options for the ODBC driver

• Connection string examples for the Timestream for LiveAnalytics ODBC driver

• Troubleshooting connection with the ODBC driver

ODBC 627

https://github.com/awslabs/amazon-timestream-odbc-driver/tree/main
https://github.com/awslabs/amazon-timestream-odbc-driver/releases
https://github.com/awslabs/amazon-timestream-odbc-driver/blob/main/docs/markdown/index.md
https://github.com/awslabs/amazon-timestream-odbc-driver/blob/main/docs/markdown/index.md

Amazon Timestream Developer Guide

Setting up the Timestream for LiveAnalytics ODBC driver

Set up access to Timestream for LiveAnalytics in your Amazon account

If you haven't already set up your Amazon account to work with Timestream for LiveAnalytics,
follow the insructions in Accessing Timestream for LiveAnalytics.

Install the ODBC driver on your system

Download the appropriate Timestream ODBC driver installer for your system from the ODBC
GitHub repository, and follow the installation instructions that apply to your system:.

• Windows installation guide

• MacOS installation guide

• Linux installation guide

Set up a data source name (DSN) for the ODBC driver

Follow the instructions in the DSN configuration guide for your system:

• Windows DSN configuration

• MacOS DSN configuration

• Linux DSN configuration

Set up your business intelligence (BI) application to work with the ODBC driver

Here are instructions for setting several common BI applications to work with the ODBC driver:

• Setting up Microsoft Power BI.

• Setting up Microsoft Excel

• Setting up Tableau

For other applications

Connection string syntax and options for the ODBC driver

The syntax for specifying connection-string options for the ODBC driver is as follows:

ODBC 628

https://github.com/awslabs/amazon-timestream-odbc-driver/releases
https://github.com/awslabs/amazon-timestream-odbc-driver/releases
https://github.com/awslabs/amazon-timestream-odbc-driver/blob/main/docs/markdown/setup/windows-installation-guide.md
https://github.com/awslabs/amazon-timestream-odbc-driver/blob/main/docs/markdown/setup/macOS-installation-guide.md
https://github.com/awslabs/amazon-timestream-odbc-driver/blob/main/docs/markdown/setup/linux-installation-guide.md
https://github.com/awslabs/amazon-timestream-odbc-driver/blob/main/docs/markdown/setup/windows-dsn-configuration.md
https://github.com/awslabs/amazon-timestream-odbc-driver/blob/main/docs/markdown/setup/macOS-dsn-configuration.md
https://github.com/awslabs/amazon-timestream-odbc-driver/blob/main/docs/markdown/setup/linux-dsn-configuration.md
https://github.com/awslabs/amazon-timestream-odbc-driver/blob/main/docs/markdown/setup/microsoft-power-bi.md
https://github.com/awslabs/amazon-timestream-odbc-driver/blob/main/docs/markdown/setup/microsoft-excel.md
https://github.com/awslabs/amazon-timestream-odbc-driver/blob/main/docs/markdown/setup/tableau.md

Amazon Timestream Developer Guide

DRIVER={Amazon Timestream ODBC Driver};(option)=(value);

Available options are as follows:

Driver connection options

• Driver (required) – The driver being used with ODBC.

The default is Amazon Timestream.

• DSN – The data source name (DSN) to use for configuring the connection.

The default is NONE.

• Auth – The authentication mode. This must be one of the following:

• AWS_PROFILE – Use the default credential chain.

• IAM – Use Amazon IAM credentials.

• AAD – Use the Azure Active Directory (AD) identity provider.

• OKTA – Use the Okta identity provider.

The default is AWS_PROFILE.

Endpoint configuration options

• EndpointOverride – The endpoint override for the Timestream for LiveAnalytics service.
This is an advanced option that overrides the region. For example:

query-cell2.timestream.us-east-1.amazonaws.com

• Region – The signing region for the Timestream for LiveAnalytics service endpoint.

The default is us-east-1.

Credentials provider option

• ProfileName – The profile name in the Amazon config file.

The default is NONE.

ODBC 629

Amazon Timestream Developer Guide

Amazon IAM authentication options

• UID or AccessKeyId – The Amazon user access key id. If both UID and AccessKeyId are
provided in the connection string, the UID value will be used unless it is empty.

The default is NONE.

• PWD or SecretKey – The AWS user secret access key. If both PWD and SecretKey are provided
in the connection string, the PWD value with will be used unless it's empty.

The default is NONE.

• SessionToken – The temporary session token required to access a database with multi-factor
authentication (MFA) enabled. Do not include a trailing = in the input.

The default is NONE.

SAML-based authentication options for Okta

• IdPHost – The hostname of the specified IdP.

The default is NONE.

• UID or IdPUserName – The user name for the specified IdP account. If both UID and
IdPUserName are provided in the connection string, the UID value will be used unless it's empty.

The default is NONE.

• PWD or IdPPassword – The password for the specified IdP account. If both PWD and
IdPPassword are provided in the connection string, the PWD value will be used unless it's empty.

The default is NONE.

• OktaApplicationID – The unique Okta-provided ID associated with the Timestream for
LiveAnalytics application. A place to find the application ID (AppId) is in the entityID field
provided in the application metadata. An example is:

entityID="http://www.okta.com//(IdPAppID)

The default is NONE.

• RoleARN – The Amazon Resource Name (ARN) of the role that the caller is assuming.

The default is NONE.

ODBC 630

Amazon Timestream Developer Guide

• IdPARN – The Amazon Resource Name (ARN) of the SAML provider in IAM that describes the
IdP.

The default is NONE.

SAML-based authentication options for Azure Active Directory

• UID or IdPUserName – The user name for the specified IdP account..

The default is NONE.

• PWD or IdPPassword – The password for the specified IdP account.

The default is NONE.

• AADApplicationID – The unique id of the registered application on Azure AD.

The default is NONE.

• AADClientSecret – The client secret associated with the registered application on Azure AD
used to authorize fetching tokens.

The default is NONE.

• AADTenant – The Azure AD Tenant ID.

The default is NONE.

• RoleARN – The Amazon Resource Name (ARN) of the role that the caller is assuming.

The default is NONE.

• IdPARN – The Amazon Resource Name (ARN) of the SAML provider in IAM that describes the
IdP.

The default is NONE.

Amazon SDK (advanced) Options

• RequestTimeout – The time in milliseconds that the Amazon SDK waits for a query request
before timing out. Any non-positive value disables the request timeout.

The default is 3000.

ODBC 631

Amazon Timestream Developer Guide

• ConnectionTimeout – The time in milliseconds that the Amazon SDK waits for data to be
transferred over an open connection before timing out. A value of 0 disables the connection
timeout. This value must not be negative.

The default is 1000.

• MaxRetryCountClient – The maximum number of retry attempts for retryable errors with
5xx error codes in the SDK. The value must not be negative.

The default is 0.

• MaxConnections – The maximum number of allowed concurrently open HTTP connections to
the Timestream service. The value must be positive.

The default is 25.

ODBC driver logging Options

• LogLevel – The log level for driver logging. Must be one of:

• 0 (OFF).

• 1 (ERROR).

• 2 (WARNING).

• 3 (INFO).

• 4 (DEBUG).

The default is 1 (ERROR).

Warning: personal information could be logged by the driver when using the DEBUG logging
mode.

• LogOutput – Folder in which to store the log file.

The default is:

• Windows: %USERPROFILE%, or if not available, %HOMEDRIVE%%HOMEPATH%.

• macOS and Linux: $HOME, or if not available, the field pw_dir from the function
getpwuid(getuid()) return value.

SDK logging options

ODBC 632

Amazon Timestream Developer Guide

The Amazon SDK log level is separate from the Timestream for LiveAnalytics ODBC driver log level.
Setting one does not affect the other.

The SDK Log Level is set using the environment variable TS_AWS_LOG_LEVEL. Valid values are:

• OFF

• ERROR

• WARN

• INFO

• DEBUG

• TRACE

• FATAL

If TS_AWS_LOG_LEVEL is not set, the SDK log level is set to the default, which is WARN.

Connecting through a proxy

The ODBC driver supports connecting to Amazon Timestream for LiveAnalytics through a proxy. To
use this feature, configure the following environment variables based on your proxy setting:

• TS_PROXY_HOST – the proxy host.

• TS_PROXY_PORT – The proxy port number.

• TS_PROXY_SCHEME – The proxy scheme, either http or https.

• TS_PROXY_USER – The user name for proxy authentication.

• TS_PROXY_PASSWORD – The user password for proxy authentication.

• TS_PROXY_SSL_CERT_PATH – The SSL Certificate file to use for connecting to an HTTPS
proxy.

• TS_PROXY_SSL_CERT_TYPE – The type of the proxy client SSL certificate.

• TS_PROXY_SSL_KEY_PATH – The private key file to use for connecting to an HTTPS proxy.

• TS_PROXY_SSL_KEY_TYPE – The type of the private key file used to connect to an HTTPS
proxy.

• TS_PROXY_SSL_KEY_PASSWORD – The passphrase to the private key file used to connect to
an HTTPS proxy.

ODBC 633

Amazon Timestream Developer Guide

Connection string examples for the Timestream for LiveAnalytics ODBC driver

Example of connecting to the ODBC driver with IAM credentials

Driver={Amazon Timestream ODBC Driver};Auth=IAM;AccessKeyId=(your access key
 ID);secretKey=(your secret key);SessionToken=(your session token);Region=us-east-2;

Example of connecting to the ODBC driver with a profile

Driver={Amazon Timestream ODBC Driver};ProfileName=(the profile name);region=us-west-2;

The driver will attempt to connect using the credentials provided in ~/.aws/credentials, or
if a file is specified in the environment variable AWS_SHARED_CREDENTIALS_FILE, using the
credentials in that file.

Example of connecting to the ODBC driver with Okta

driver={Amazon Timestream ODBC Driver};auth=okta;region=us-west-2;idPHost=(your host at
 Okta);idPUsername=(your user name);idPPassword=(your password);OktaApplicationID=(your
 Okta AppId);roleARN=(your role ARN);idPARN=(your Idp ARN);

Example of connecting to the ODBC driver with Azure Active Directory (AAD)

driver={Amazon Timestream ODBC Driver};auth=aad;region=us-west-2;idPUsername=(your
 user name);idPPassword=(your password);aadApplicationID=(your AAD
 AppId);aadClientSecret=(your AAD client secret);aadTenant=(your AAD
 tenant);roleARN=(your role ARN);idPARN=(your idP ARN);

Example of connecting to the ODBC driver with a specified endpoint and a log level of 2
(WARNING)

Driver={Amazon Timestream ODBC Driver};Auth=IAM;AccessKeyId=(your access
 key ID);secretKey=(your secret key);EndpointOverride=ingest.timestream.us-
west-2.amazonaws.com;Region=us-east-2;LogLevel=2;

ODBC 634

Amazon Timestream Developer Guide

Troubleshooting connection with the ODBC driver

Note

When the username and password are already specified in the DSN, there is no need to
specify them again when the ODBC driver manager asks for them.

An error code of 01S02 with a message, Re-writing (connection string option) (have
you specified it several times? occurs when a connection string option is passed more
than once in the connection string. Specifying an option more than once raises an error. When
making a connection with a DSN and a connection string, if a connection option is already specified
in the DSN, do not specify it again in the connection string.

VPC endpoints (Amazon PrivateLink)

You can establish a private connection between your VPC and Amazon Timestream for
LiveAnalytics by creating an interface VPC endpoint. For more information, see VPC endpoints
(Amazon PrivateLink).

Best practices

To fully realize the benefits of the Amazon Timestream for LiveAnalytics, follow the best practices
described below.

Note

When running proof-of-concept applications, consider the amount of data your application
will accumulate over a few months or years while evaluating the performance and scale
of Timestream for LiveAnalytics. As your data grows over time, you'll notice that the
performance of Timestream for LiveAnalytics remains mostly unchanged because its
serverless architecture can leverage massive amounts of parallelism for processing larger
data volumes and automatically scale to match needs of your application.

Topics

• Data modeling

VPC endpoints 635

Amazon Timestream Developer Guide

• Security

• Configuring Amazon Timestream for LiveAnalytics

• Writes

• Queries

• Scheduled queries

• Client applications and supported integrations

• General

Data modeling

Amazon Timestream for LiveAnalytics is designed to collect, store, and analyze time series
data from applications and devices emitting a sequence of data with a timestamp. For optimal
performance, the data being sent to Timestream for LiveAnalytics must have temporal
characteristics and time must be a quintessential component of the data.

Timestream for LiveAnalytics provides you the flexibility to model your data in different ways to
suit your application's requirements. In this section, we cover several of these patterns and provide
guidelines for you to optimize your costs and performance. Familiarize yourself with key Amazon
Timestream for LiveAnalytics concepts such as dimensions and measures. In this section, you will
learn more about the following when deciding whether to create a single table or multiple tables
to store data:

• Which data to put in the same table vs. when you want to separate data across multiple tables
and databases.

• How to choose between Timestream for LiveAnalytics multi-measure records compared to
single-measure records, and the benefits of modeling using multi-measure records especially
when your application is tracking multiple measurements at the same time instant.

• Which attributes to model as dimensions or as measures.

• How to effectively use the measure name attributes to optimize your query latency.

Topics

• Single table vs. multiple tables

• Multi-measure records vs. single-measure records

• Dimensions and measures

Data modeling 636

Amazon Timestream Developer Guide

• Using measure name with multi-measure records

• Recommendations for partitioning multi-measure records

Single table vs. multiple tables

As you are modeling your data in application, another important aspect is how to model the data
into tables and databases. Databases and tables in Timestream for LiveAnalytics are abstractions
for access control, specifying KMS keys, retention periods, and so on. Timestream for LiveAnalytics
automatically partitions your data and is designed to scale resources to match the ingestion,
storage, and query load and requirements for your applications.

A table in Timestream for LiveAnalytics can scale to petabytes of data stored and tens of gigabytes
per second of data writes. Queries can process hundreds of terabytes per hour. Queries in
Timestream for LiveAnalytics can span multiple tables and databases, providing joins and unions
to provide seamless access to your data across multiple tables and databases. So scale of data or
request volumes are usually not the primary concern when deciding how to organize your data in
Timestream for LiveAnalytics. Below are some important considerations when deciding which data
to co-locate in the same table compared to in different tables, or tables in different databases.

• Data retention policies (memory store retention, magnetic store retention, etc.) are supported at
the granularity of a table. Therefore, data that requires different retention policies needs to be in
different tables.

• Amazon KMS keys that are used to encrypt your data are configured at the database level.
Therefore, different encryption key requirements imply the data will need to be in different
databases.

• Timestream for LiveAnalytics supports resource-based access control at the granularity of tables
and databases. Consider your access control requirements when deciding which data you write to
the same table vs. different tables.

• Be aware of the limits on the number of dimensions, measure names, and multi-measure
attribute names when deciding which data is stored in which table.

• Consider your query workload and access patterns when deciding how you organize your data, as
the query latency and ease of writing your queries will be dependent on that.

• If you store data that you frequently query in the same table, that will generally ease the way
you write your queries so that you can often avoid having to write joins, unions, or common
table expressions. This also usually results in lower query latency. You can use predicates on
dimensions and measure names to filter the data that is relevant to the queries.

Data modeling 637

https://docs.amazonaws.cn/timestream/latest/developerguide/ts-limits.html

Amazon Timestream Developer Guide

For instance, consider a case where you store data from devices located in six continents. If
your queries frequently access data from across continents to get a global aggregated view,
then storing data from these continents in the same table will result in easier to write queries.
On the other hand, if you store data on different tables, you still can combine the data in the
same query, however, you will need to write a query to union the data from across tables.

• Timestream for LiveAnalytics uses adaptive partitioning and indexing on your data so queries
only get charged for data that is relevant to your queries. For instance, if you have a table
storing data from a million devices across six continents, if your query has predicates of the
form WHERE device_id = 'abcdef' or WHERE continent = 'North America', then
queries are only charged for data for the device or for the continent.

• Wherever possible, if you use measure name to separate out data in the same table that
is not emitted at the same time or not frequently queried, then using predicates such as
WHERE measure_name = 'cpu' in your query, not only do you get the metering benefits,
Timestream for LiveAnalytics can also effectively eliminate partitions that do not have the
measure name used in your query predicate. This enables you to store related data with
different measure names in the same table without impacting query latency or costs, and
avoids spreading the data into multiple tables. The measure name is essentially used to
partition the data and prune partitions irrelevant to the query.

Multi-measure records vs. single-measure records

Timestream for LiveAnalytics allows you to write data with multiple measures per record (multi-
measure) or single measure per record (single-measure).

Multi-measure records

In many use cases, a device or an application you are tracking may emit multiple metrics or events
at the same timestamp. In such cases, you can store all the metrics emitted at the same timestamp
in the same multi-measure record. That is, all the measures stored in the same multi-measure
record appear as different columns in the same row of data.

Consider, for instance, that your application is emitting metrics such as cpu, memory, and disk_iops
from a device measured at the same time instant. The following is an example of such a table
where multiple metrics emitted at the same time instant are stored in the same row. You will that
see two hosts are emitting the metrics once every second.

Data modeling 638

Amazon Timestream Developer Guide

Hostname measure_n
ame

Time cpu Memory disk_iops

host-24Gju metrics 2021-12-01
19:00:00

35 54.9 38.2

host-24Gju metrics 2021-12-01
19:00:01

36 58 39

host-28Gju metrics 2021-12-01
19:00:00

15 55 92

host-28Gju metrics 2021-12-01
19:00:01

16 50 40

Single-measure records

The single-measure records are suitable when your devices emit different metrics at different
time periods, or you are using custom processing logic that emits metrics/events at different time
periods (for instance, when a device's reading/state changes). Because every measure has a unique
timestamp, the measures can be stored in their own records in Timestream for LiveAnalytics. For
instance, consider an IoT sensor, which tracks soil temperature and moisture, that emits a record
only when it detects a change from the previous reported entry. The following example provides
an example of such data being emitted using single measure records.

device_id measure_name Time measure_v
alue::double

measure_v
alue::bigint

sensor-sea478 temperature 2021-12-01
19:22:32

35 NULL

sensor-sea478 temperature 2021-12-01
18:07:51

36 NULL

sensor-sea478 moisture 2021-12-01
19:05:30

NULL 21

Data modeling 639

Amazon Timestream Developer Guide

device_id measure_name Time measure_v
alue::double

measure_v
alue::bigint

sensor-sea478 moisture 2021-12-01
19:00:01

NULL 23

Comparing single-measure and multi-measure records

Timestream for LiveAnalytics provides you the flexibility to model your data as single-measure or
multi-measure records depending on your application's requirements and characteristics. A single
table can store both single-measure and multi-measure records if your application requirements
so desire. In general, when your application is emitting multiple measures/events at the same time
instant, then modeling the data as multi-measure records is usually recommended for performant
data access and cost-effective data storage.

For instance, if you consider a DevOps use case tracking metrics and events from hundreds of
thousands of servers, each server periodically emits 20 metrics and 5 events, where the events
and metrics are emitted at the same time instant. That data can be modeled either using single-
measure records or using multi-measure records (see the open-sourced data generator for the
resulting schema). For this use case, modeling the data using multi-measure records compared to
single-measure records results in:

• Ingestion metering - Multi-measure records results in about 40 percent lower ingestion bytes
written.

• Ingestion batching - Multi-measure records result in bigger batches of data being sent, which
implies the clients need fewer threads and fewer CPU to process the ingestion.

• Storage metering - Multi-measure records result in about 8X lower storage, resulting in significant
storage savings for both memory and magnetic store.

• Query latency - Multi-measure records results in lower query latency for most query types when
compared to single-measure records.

• Query metered bytes - For queries scanning less than 10 MB data, both single-measure and multi-
measure records are comparable. For queries accessing a single measure and scanning > 10 MB
data, single measure records usually results in lower bytes metered. For queries referencing three
or more measures, multi-measure records result in lower bytes metered.

Data modeling 640

https://github.com/awslabs/amazon-timestream-tools/tree/mainline/tools/python/perf-scale-workload
https://github.com/awslabs/amazon-timestream-tools/tree/mainline/tools/python/perf-scale-workload

Amazon Timestream Developer Guide

• Ease of expressing multi-measure queries - When your queries reference multiple measures,
modeling your data with multi-measure records results in easier to write and more compact
queries.

The previous factors will vary depending on how many metrics you are tracking, how many
dimensions your data has, etc. While the preceding example provides some concrete data for one
example, we see across many application scenarios and use cases where if your application emits
multiple measures at the same instant, storing data as multi-measure records is more effective.
Moreover, multi-measure records provide you the flexibility of data types and storing multiple
other values as context (for example, storing request IDs, and additional timestamps, which is
discussed later).

Note that a multi-measure record can also model sparse measures such as the previous example
for single-measure records: you can use the measure_name to store the name of the measure and
use a generic multi-measure attribute name, such as value_double to store DOUBLE measures,
value_bigint to store BIGINT measures, value_timestamp to store additional TIMESTAMP
values, and so on.

Dimensions and measures

A table in Timestream for LiveAnalytics allows you to store dimensions (identifying attributes of
the device/data you are storing) and measures (the metrics/values you are tracking); see Amazon
Timestream for LiveAnalytics concepts for more details. As you are modeling your application
on Timestream for LiveAnalytics, how you map your data into dimensions and measures impacts
your ingestion and query latency. The following are guidelines on how to model your data as
dimensions and measures that you can apply to your use case.

Choosing dimensions

Data that identifies the source that is sending the time series data is a natural fit for dimensions,
which are attributes that don't change over time. For instance, if you have a server emitting
metrics, then the attributes identifying the server, such as hostname, Region, rack, and Availability
Zone, are candidates for dimensions. Similarly, for an IoT device with multiple sensors reporting
time series data, attributes such as device ID and sensor ID are candidates for dimensions.

If you are writing data as multi-measure records, dimensions and multi-measure attributes appear
as columns in the table when you do a DESCRIBE or run a SELECT statement on the table.
Therefore, when writing your queries, you can freely use the dimensions and measures in the same

Data modeling 641

Amazon Timestream Developer Guide

query. However, as you construct your write record to ingest data, keep the following in mind as
you choose which attributes are specified as dimensions and which ones are measure values:

• The dimension names, dimension values, measure name, and timestamp uniquely identify the
time series data. Timestream for LiveAnalytics uses this unique identifier to automatically de-
duplicate data. That is, if Timestream for LiveAnalytics receives two data points with the same
values of dimension names, dimension values, measure name, and timestamp, and the values
have the same version number, then Timestream for LiveAnalytics de-duplicates. If the new
write request has a lower version than the data already existing in Timestream for LiveAnalytics,
the write request is rejected. If the new write request has a higher version, then the new value
overwrites the old value. Therefore, how you choose your dimension values will impact this de-
duplication behavior.

• Dimension names and values cannot be updated, but measure value can be. Therefore, any
data that might need updates is better modeled as measure values. For instance, if you have
a machine on the factory floor whose color can change, you can model the color as a measure
value, unless you also want to use the color as an identifying attribute that is needed for de-
duplication. That is, measure values can be used to store attributes that only slowly change over
time.

Note that a table in Timestream for LiveAnalytics does not limit the number of unique
combinations of dimension names and values. For instance, you can have billions of such unique
value combinations stored in a table. However, as you will see with the following examples, careful
choice of dimensions and measures can significantly optimize your request latency, especially for
queries.

Unique IDs in dimensions

If your application scenario requires you to store a unique identifier for every data point (for
example, a request ID, a transaction ID, or a correlation ID), modeling the ID attribute as a measure
value will result in significantly better query latency. When modeling your data with multi-measure
records, the ID appears in the same row in context with your other dimensions and time series
data, so your queries can continue to use them effectively. For instance, considering a DevOps use
case where every data point emitted by a server has a unique request ID attribute, modeling the
request ID as a measure value results in up to 4x lower query latency across different query types,
as opposed to modeling the unique request ID as a dimension.

You can use the similar analogy for attributes that are not entirely unique for every data point,
but have hundreds of thousands or millions of unique values. You can model those attributes both

Data modeling 642

https://github.com/awslabs/amazon-timestream-tools/tree/mainline/tools/python/perf-scale-workload
https://github.com/awslabs/amazon-timestream-tools/tree/mainline/tools/python/perf-scale-workload

Amazon Timestream Developer Guide

as dimensions or measure values. You would want to model it as a dimension if the values are
necessary for de-duplication on the write path as discussed earlier or you often use it as a predicate
(for example, in the WHERE clause with an equality predicate on a value of that attribute such as
device_id = 'abcde' where your application is tracking millions of devices) in your queries.

Richness of data types with multi-measure records

Multi-measure records provide you the flexibility to effectively model your data. Data that you
store in a multi-measure record appear as columns in the table similar to dimensions, thus
providing the same ease of querying for dimension and measure values. You saw some of these
patterns in the examples discussed earlier. Below you will find additional patterns to effectively use
multi-measure records to meet your application's use cases.

Multi-measure records support attributes of data types DOUBLE, BIGINT, VARCHAR, BOOLEAN, and
TIMESTAMP. Therefore, they naturally fit different types of attributes:

• Location information: For instance, if you want to track a location (expressed as latitude and
longitude), then modeling it as a multi-measure attribute will result in lower query latency
compared to storing them as VARCHAR dimensions, especially when you have predicates on the
latitudes and longitudes.

• Multiple timestamps in a record: If your application scenario requires you to track multiple
timestamps for a time series record, you can model them as additional attributes in the
multi-measure record. This pattern can be used to store data with future timestamps or past
timestamps. Note that every record will still use the timestamp in the time column to partition,
index, and uniquely identify a record.

In particular, if you have numeric data or timestamps on which you have predicates in the query,
modeling those attributes as multi-measure attributes as opposed to dimensions will result in
lower query latency. This is because when you model such data using the rich data types supported
in multi-measure records, you can express the predicates using native data types instead of casting
values from VARCHAR to another data type if you modeled such data as dimensions.

Using measure name with multi-measure records

Tables in Timestream for LiveAnalytics support a special attribute (or column) called measure
name. You specify a value for this attribute for every record you write to Timestream for
LiveAnalytics. For single-measure records, it is natural to use the name of your metric (such as CPU
or memory for server metrics, or temperature or pressure for sensor metrics). When using multi-

Data modeling 643

Amazon Timestream Developer Guide

measure records, attributes in a multi-measure record are named and these names become column
names in the table. Therefore, cpu, memory, temperature, and pressure can become multi-measure
attribute names. A natural question is how to effectively use the measure name.

Timestream for LiveAnalytics uses the values in the measure name attribute to partition and index
the data. Therefore, if a table has multiple different measure names, and if the queries use those
values as query predicates, then Timestream for LiveAnalytics can use its custom partitioning
and indexing to prune out data that is not relevant to queries. For instance, if your table has cpu
and memory measure names, and your query has a predicate WHERE measure_name = 'cpu',
Timestream for LiveAnalytics can effectively prune data for measure names not relevant to the
query, for example, rows with measure name memory in this example. This pruning applies even
when using measure names with multi-measure records. You can use the measure name attribute
effectively as a partitioning attribute for a table. Measure name along with dimension names and
values, and time are used to partition the data in a Timestream for LiveAnalytics table. Be aware
of the limits on the number of unique measure names allowed in a Timestream for LiveAnalytics
table. Also note that a measure name is associated with a measure value data type as well. For
example, a single measure name can only be associated with one type of measure value. That type
can be one of DOUBLE, BIGINT, BOOLEAN, VARCHAR, or MULTI. Multi-measure records stored with
a measure name will have the data type of MULTI. Since a single multi-measure record can store
multiple metrics with different data types (DOUBLE, BIGINT, VARCHAR, BOOLEAN, and TIMESTAMP),
you can associate data of different types in a multi-measure record.

The following sections describe a few different examples of how the measure name attribute can
be effectively used to group together different types of data in the same table.

IoT sensors reporting quality and value

Consider you have an application monitoring data from IoT sensors. Each sensor tracks different
measures, such as temperature and pressure. In addition to the actual values, the sensors also
report the quality of the measurements, which is a measure of how accurate the reading is, and a
unit for the measurement. Since quality, unit, and value are emitted together, they can be modeled
as multi-measure records, as shown in the example data below where device_id is a dimension,
and quality, value, and unit are multi-measure attributes:

Data modeling 644

https://docs.amazonaws.cn/timestream/latest/developerguide/ts-limits.html

Amazon Timestream Developer Guide

device_id measure_n
ame

Time Quality Value Unit

sensor-se
a478

temperature 2021-12-01
19:22:32

92 35 c

sensor-se
a478

temperature 2021-12-01
18:07:51

93 34 c

sensor-se
a478

pressure 2021-12-01
19:05:30

98 31 psi

sensor-se
a478

pressure 2021-12-01
19:00:01

24 132 psi

This approach allows you to combine the benefits of multi-measure records along with partitioning
and pruning data using the values of measure name. If queries reference a single measure, such
as temperature, then you can include a measure_name predicate in the query. The following is an
example of such a query, which also projects the unit for measurements whose quality is above 90.

SELECT device_id, time, value AS temperature, unit
FROM db.table
WHERE time > ago(1h)
 AND measure_name = 'temperature'
 AND quality > 90

Using the measure_name predicate on the query enables Timestream for LiveAnalytics to
effectively prune partitions and data that is not relevant to the query, thus improving your query
latency.

It is also possible to have all of the metrics stored in the same multi-measure record if all the
metrics are emitted at the same timestamp and/or multiple metrics are queried together in
the same query. For instance, you can construct a multi-measure record with attributes such as
temperature_quality, temperature_value, temperature_unit, pressure_quality, pressure_value, and
pressure_unit. Many of the points discussed earlier about modeling data using single-measure vs.
multi-measure records apply in your decision of how to model the data. Consider your query access
patterns and how your data is generated to choose a model that optimizes your cost, ingestion and
query latency, and ease of writing your queries.

Data modeling 645

Amazon Timestream Developer Guide

Different types of metrics in the same table

Another use case where you can combine multi-measure records with measure name values is
to model different types of data that are independently emitted from the same device. Consider
the DevOps monitoring use case where servers are emitting two types of data: regularly emitted
metrics and irregular events. An example of this approach is the schema discussed in the data
generator modeling a DevOps use case. In this case, you can store the different types of data
emitted from the same server in the same table by using different measure names. For instance,
all the metrics that are emitted at the same time instant are stored with measure name metrics. All
the events that are emitted at a different time instant from the metrics are stored with measure
name events. The measure schema for the table (for example, output of SHOW MEASURES query) is:

measure_name data_type Dimensions

events multi [{"data_type":"varchar","di
mension_name":"availability
_zone"},{"data_type":"varch
ar","dimension_name":"micro
service_name"},{"data_type"
:"varchar","dimension_name"
:"instance_name"},{"data_ty
pe":"varchar","dimension_na
me":"process_name"},{"data_
type":"varchar","dimension_
name":"jdk_version"},{"data
_type":"varchar","dimension
_name":"cell"},{"data_type"
:"varchar","dimension_name"
:"region"},{"data_type":"va
rchar","dimension_name":"si
lo"}]

metrics multi [{"data_type":"varchar","di
mension_name":"availability
_zone"},{"data_type":"varch
ar","dimension_name":"micro
service_name"},{"data_type"

Data modeling 646

https://github.com/awslabs/amazon-timestream-tools/tree/mainline/tools/python/perf-scale-workload
https://github.com/awslabs/amazon-timestream-tools/tree/mainline/tools/python/perf-scale-workload

Amazon Timestream Developer Guide

measure_name data_type Dimensions

:"varchar","dimension_name"
:"instance_name"},{"data_ty
pe":"varchar","dimension_na
me":"os_version"},{"data_ty
pe":"varchar","dimension_na
me":"cell"},{"data_type":"v
archar","dimension_name":"r
egion"},{"data_type":"varch
ar","dimension_name":"silo"
},{"data_type":"varchar","d
imension_name":"instance_ty
pe"}]

In this case, you can see that the events and metrics also have different sets of dimensions,
where events have different dimensions jdk_version and process_name while metrics have
dimensions instance_type and os_version.

Using different measure names allow you to write queries with predicates such as WHERE
measure_name = 'metrics' to get only the metrics. Also having all the data emitted
from the same instance in the same table implies you can also write a simpler query with the
instance_name predicate to get all data for that instance. For instance, a predicate of the form
WHERE instance_name = 'instance-1234' without a measure_name predicate will return
all data for a specific server instance.

Recommendations for partitioning multi-measure records

Important

This section is deprecated!
These recommendations are out of date. Partitioning is now better controlled using
customer-defined partition keys.

Data modeling 647

Amazon Timestream Developer Guide

We have seen that there is a growing number of workloads in the time series ecosystem that
require ingesting and storing massive amounts of data while simultaneously needing low latency
query responses when accessing data by a high cardinality set of dimension values.

Because of such characteristics, recommendations in this section will be useful for customer
workloads that have the following:

• Adopted or want to adopt multi-measure records.

• Expect to have a high volume of data coming into the system that will be stored for long periods.

• Require low latency response times for their main access (query) patterns.

• Know that the most important queries patterns involve a filtering condition of some sort in the
predicate. This filtering condition is based around a high cardinality dimension. For example,
consider events or aggregations by UserId, DeviceId, ServerID, host-name, and so forth.

In these cases, a single name for all the multi-measure measures will not help since our engine
uses multi-measure names to partition the data and having a single value limits the partition
advantage that you get. The partitioning for these records is mainly based on two dimensions. Let’s
say time is on the x-axis and a hash of dimension names and the measure_name is on the y-axis.
The measure_name in these cases works almost like a partitioning key.

Our recommendation is as follows:

• When modeling your data for use cases like the one we mentioned, use a measure_name that is
a direct derivative of your main query access pattern. For example:

• Your use case requires tracking application performance and QoE from the end user point of
view. This could also be tracking measurements for a single server or IoT device.

• If you are querying and filtering by UserId, then you need, at ingestion time, to find the best
way to associate measure_name to UserId.

• Since a multi-measure table can only hold 8,192 different measure names, whatever formula is
adopted should not generate more that 8,192 different values.

• One approach that we have applied with success for string values is to apply a hashing algorithm
to the string value. Then perform the modulo operation with the absolute value of the hash
result and 8,192.

measure_name = getMeasureName(UserId)
int getMeasureName(value) {
 hash_value = abs(hash(value))

Data modeling 648

Amazon Timestream Developer Guide

 return hash_value % 8192
}

• We also added abs() to remove the sign eliminating the possibility for values to range from
-8,192 to 8,192. This should be performed prior to the modulo operation.

• By using this method your queries can run on a fraction of the time that would take to run on an
unpartitioned data model.

• When querying the data, make sure that you include a filtering condition in the predicate that
uses the newly derived value of the measure_name. For example:

• SELECT * FROM your_database.your_table
WHERE host_name = 'Host-1235' time BETWEEN '2022-09-01'
 AND '2022-09-18'
 AND measure_name = (SELECT
 cast(abs(from_big_endian_64(xxhash64(CAST('HOST-1235' AS varbinary))))%8192 AS
 varchar))

• This will minimize the total number of partitions scanned to get you data that will translate in
faster queries over time.

Keep in mind that if you want to obtain the benefits from this partition schema, the hash needs to
be calculated on the client side and passed to Timestream for LiveAnalytics as a static value to the
query engine. The preceding example provides a way to validate that the generated hash can be
resolved by the engine when needed.

time host_name location server_ty
pe

cpu_usage available
_memory

cpu_temp

2022-09-0
7
21:48:44 .00000000
0

host-1235 us-east1 5.8xl 55 16.2 78

R2022-09-
07
21:48:44 .00000000
0

host-3587 us-west1 5.8xl 62 18.1 81

Data modeling 649

Amazon Timestream Developer Guide

time host_name location server_ty
pe

cpu_usage available
_memory

cpu_temp

2022-09-0
7 21:48:45.
000000000

host-2587
43

eu-central 5.8xl 88 9.4 91

2022-09-0
7
21:48:45 .00000000
0

host-3565
4

us-east2 5.8xl 29 24 54

R2022-09-
07
21:48:45 .00000000
0

host-254 us-west1 5.8xl 44 32 48

To generate the associated measure_name following our recommendation, there are two paths
that depend on your ingestion pattern.

1. For batch ingestion of historical data—You can add the transformation to your write code if you
will use your own code for the batch process.

Building on top of the preceding example.

 List<String> hosts = new ArrayList<>();

 hosts.add("host-1235");
 hosts.add("host-3587");
 hosts.add("host-258743");
 hosts.add("host-35654");
 hosts.add("host-254");

 for (String h: hosts){
 ByteBuffer buf2 = ByteBuffer.wrap(h.getBytes());
 partition = abs(hasher.hash(buf2, 0L)) % 8192;
 System.out.println(h + " - " + partition);

 }

Data modeling 650

Amazon Timestream Developer Guide

Output

host-1235 - 6445
host-3587 - 6399
host-258743 - 640
host-35654 - 2093
host-254 - 7051

Resulting dataset

time host_name location measure_n
ame

server_ty
pe

cpu_usage available
_memory

cpu_temp

2022-09-0
7
21:48:44 .00000000
0

host-1235 us-east1 6445 5.8xl 55 16.2 78

R2022-09-
07
21:48:44 .00000000
0

host-3587 us-west1 6399 5.8xl 62 18.1 81

2022-09-0
7
21:48:45.
000000000

host-2587
43

eu-
central

640 5.8xl 88 9.4 91

2022-09-0
7
21:48:45 .00000000
0

host-3565
4

us-east2 2093 5.8xl 29 24 54

R2022-09-
07
21:48:45 .00000000
0

host-254 us-west1 7051 5.8xl 44 32 48

Data modeling 651

Amazon Timestream Developer Guide

2. For real-time ingestion—You need to generate the measure_name in-flight as data is coming in.

In both cases, we recommend you test your hash generating algorithm at both ends (ingestion and
querying) to make sure you are getting the same results.

Here are some code examples to generate the hashed value based on host_name.

Example Python

>>> import xxhash
>>> from bitstring import BitArray
>>> b=xxhash.xxh64('HOST-ID-1235').digest()
>>> BitArray(b).int % 8192
3195

Example Go

package main

import (
 "bytes"
 "fmt"
 "github.com/cespare/xxhash"
)

func main() {
 buf := bytes.NewBufferString("HOST-ID-1235")
 x := xxhash.New()
 x.Write(buf.Bytes())
 // convert unsigned integer to signed integer before taking mod
 fmt.Printf("%f\n", abs(int64(x.Sum64())) % 8192)
}

func abs(x int64) int64 {
 if (x < 0) {
 return -x
 }
 return x
}

Data modeling 652

Amazon Timestream Developer Guide

Example Java

import java.nio.ByteBuffer;

import net.jpountz.xxhash.XXHash64;

public class test {
 public static void main(String[] args) {
 XXHash64 hasher = net.jpountz.xxhash.XXHashFactory.fastestInstance().hash64();

 String host = "HOST-ID-1235";
 ByteBuffer buf = ByteBuffer.wrap(host.getBytes());

 Long result = Math.abs(hasher.hash(buf, 0L));
 Long partition = result % 8192;

 System.out.println(result);
 System.out.println(partition);
 }
}

Example dependency in Maven

 <dependency>
 <groupId>net.jpountz.lz4</groupId>
 <artifactId>lz4</artifactId>
 <version>1.3.0</version>
 </dependency>

Security

• For continuous access to Timestream for LiveAnalytics, ensure that encryption keys are secured
and are not revoked or made inaccessible.

• Monitor API access logs from Amazon CloudTrail. Audit and revoke any anomalous access pattern
from unauthorized users.

• Follow additional guidelines described in Security best practices for Amazon Timestream for
LiveAnalytics.

Security 653

Amazon Timestream Developer Guide

Configuring Amazon Timestream for LiveAnalytics

Configure the data retention period for the memory store and the magnetic store to match the
data processing, storage, query performance, and cost requirements.

• Set the data retention of the memory store to match your application's requirements for
processing late-arriving data. Late-arriving data is incoming data with a timestamp earlier than
the current time. It is emitted from resources that batch events for a time period before sending
the data to Timestream for LiveAnalytics, and also from resources with intermittent connectivity
e.g. an IoT sensor that is online intermittently.

• If you expect late-arriving data to occasionally arrive with timestamps earlier than the memory
store retention, you should enable magnetic store writes for your table. Once you set the
EnableMagneticStoreWrites in MagneticStoreWritesProperties for a table, the table will accept
data with timestamp earlier than your memory store retention but within your magnetic store
retention period.

• Consider the characteristics of queries that you plan to run on Timestream for LiveAnalytics such
as the types of queries, frequency, time range, and performance requirements. This is because
the memory store and magnetic store are optimized for different scenarios. The memory store
is optimized for fast point-in-time queries that process small amounts of recent data sent to
Timestream for LiveAnalytics. The magnetic store is optimized for fast analytical queries that
process medium to large volumes of data sent to Timestream for LiveAnalytics.

• Your data retention period should also be influenced by the cost requirements of your system.

For example, consider a scenario where the late-arriving data threshold for your application is
2 hours and your applications send many queries that process a day's-worth, week's-worth, or
month's-worth of data. In that case, you may want to configure a smaller retention period for the
memory store (2-3 hours) and allow more data to flow to the magnetic store given the magnetic
store is optimized for fast analytical queries.

Understand the impact of increasing or decreasing the data retention period of the memory store
and the magnetic store of an existing table.

• When you decrease the retention period of the memory store, the data is moved from the
memory store to the magnetic store, and this data transfer is permanent. Timestream for
LiveAnalytics does not retrieve data from the magnetic store to populate the memory store.
When you decrease the retention period of the magnetic store, the data is deleted from the
system, and the data deletion is permanent.

Configuring Timestream for LiveAnalytics 654

Amazon Timestream Developer Guide

• When you increase the retention period of the memory store or the magnetic store, the change
takes effect for data being sent to Timestream for LiveAnalytics from that point onwards.
Timestream for LiveAnalytics does not retrieve data from the magnetic store to populate the
memory store. For example, if the retention period of the memory store was initially set to 2
hours and then increased to 24 hours, it will take 22 hours for the memory store to contain 24
hours worth of data.

Writes

• Ensure that the timestamp of the incoming data is not earlier than data retention configured
for the memory store and no later than the future ingestion period defined in Quotas. Sending
data with a timestamp outside these bounds will result in the data being rejected by Timestream
for LiveAnalytics unless you enable magnetic store writes for your table. If you enable magnetic
store writes, ensure that the timestamp for incoming data is not earlier than data retention
configured for the magnetic store.

• If you expect late arriving data, turn on magnetic store writes for your table. This will allow
ingestion for data with timestamps that fall outside your memory store retention period
but still within your magnetic store retention period. You can set this by updating the
EnableMagneticStoreWrites flag in the MagneticStoreWritesProperties for your
table. This property is false by default. Note that writes to the magnetic store will not be
immediately available to query. They will be available within 6 hours.

• Target high throughput workloads to the memory store by ensuring the timestamps of the
ingested data fall within the memory store retention bounds. Writes to the magnetic store
are limited to a max number of active magnetic store partitions that can receive concurrent
ingestion for a database. You can see this ActiveMagneticStorePartitions metric in
CloudWatch. To reduce active magnetic store partitions, aim to reduce the number of series and
duration of time you ingest into concurrently for magnetic store ingestion.

• While sending data to Timestream for LiveAnalytics, batch multiple records in a single request to
optimize data ingestion performance.

• It is beneficial to batch together records from the same time series and records with the same
measure name.

• Batch as many records as possible in a single request as long as the requests are within the
service limits defined in Quotas.

• Use common attributes where possible to reduce data transfer and ingestion costs. For more
information, see WriteRecords API.

Writes 655

https://docs.amazonaws.cn/timestream/latest/developerguide/API_WriteRecords.html

Amazon Timestream Developer Guide

• If you encounter partial client-side failures while writing data to Timestream for LiveAnalytics,
you can resend the batch of records that failed ingestion after you've addressed the rejection
cause.

• Data ordered by timestamps has better write performance.

• Amazon Timestream for LiveAnalytics is designed to automatically scale to the needs of your
application. When Timestream for LiveAnalytics notices spikes in write requests from your
application, your application may experience some level of initial memory store throttling. If
your application experiences memory store throttling, continue sending data to Timestream
for LiveAnalytics at the same (or increased) rate to enable Timestream for LiveAnalytics
to automatically scale to satisfy the needs of your application. If you see magnetic store
throttling, you should decrease your rate of magnetic store ingestion until your number of
ActiveMagneticStorePartitions falls.

Batch load

Best practices for batch load are described in Batch load best practices.

Queries

Following are suggested best practices for queries with Amazon Timestream for LiveAnalytics.

• Include only the measure and dimension names essential to query. Adding extraneous columns
will increase data scans, which impacts the performance of queries.

• Before deploying your query in production, we recommend that you review query insights to
make sure that the spatial and temporal pruning is optimal. For more information, see Using
query insights to optimize queries in Amazon Timestream.

• Where possible, push the data computation to Timestream for LiveAnalytics using the built-in
aggregates and scalar functions in the SELECT clause and WHERE clause as applicable to improve
query performance and reduce cost. See SELECT and Aggregate functions.

• Where possible, use approximate functions. E.g., use APPROX_DISTINCT instead of
COUNT(DISTINCT column_name) to optimize query performance and reduce the query cost. See
Aggregate functions.

• Use a CASE expression to perform complex aggregations instead of selecting from the same
table multiple times. See The CASE statement.

Queries 656

Amazon Timestream Developer Guide

• Where possible, include a time range in the WHERE clause of your query. This optimizes query
performance and costs. For example, if you only need the last one hour of data in your dataset,
then include a time predicate such as time > ago(1h). See SELECT and Interval and duration.

• When a query accesses a subset of measures in a table, always include the measure names in the
WHERE clause of the query.

• Where possible, use the equality operator when comparing dimensions and measures in the
WHERE clause of a query. An equality predicate on dimensions and measure names allows for
improved query performance and reduced query costs.

• Wherever possible, avoid using functions in the WHERE clause to optimize for cost.

• Refrain from using LIKE clause multiple times. Rather, use regular expressions when you are
filtering for multiple values on a string column. See Regular expression functions.

• Only use the necessary columns in the GROUP BY clause of a query.

• If the query result needs to be in a specific order, explicitly specify that order in the ORDER BY
clause of the outermost query. If your query result does not require ordering, avoid using an
ORDER BY clause to improve query performance.

• Use a LIMIT clause if you only need the first N rows in your query.

• If you are using an ORDER BY clause to look at the top or bottom N values, use a LIMIT clause to
reduce the query costs.

• Use the pagination token from the returned response to retrieve the query results. For more
information, see Query.

• If you've started running a query and realize that the query will not return the results you're
looking for, cancel the query to save cost. For more information, see CancelQuery.

• If your application experiences throttling, continue sending data to Amazon Timestream for
LiveAnalytics at the same rate to enable Amazon Timestream for LiveAnalytics to auto-scale to
the satisfy the query throughput needs of your application.

• If the query concurrency requirements of your applications exceed the default limits of
Timestream for LiveAnalytics, contact Amazon Web Services Support for limit increases.

Scheduled queries

Scheduled queries help you optimize your dashboards by pre-computing some fleet-wide
aggregate statistics. So a natural question to ask is how do you take your use case and identify
which results to pre-compute and how to use these results stored in a derived table to create your

Scheduled queries 657

API_query_Query.html
API_query_CancelQuery.html

Amazon Timestream Developer Guide

dashboard. The first step in this process is to identify which panels to pre-compute. Below are
some high-level guidelines:

• Consider the bytes scanned by the queries that are used to populate the panels, the frequency
of dashboard reload, and number of concurrent users who would load these dashboards. You
should start with the dashboards loaded most frequently and scanning significant amounts of
data. The first two dashboards in the aggregate dashboard example as well as the aggregate
dashboard in the drill down example are good examples of such dashboards.

• Consider which computations are being repeatedly used. While it is possible to create a
scheduled query for every panel and every variable value used in the panel, you can significantly
optimize your costs and the number of scheduled queries by looking for avenues to use one
computation to pre-compute the data necessary for multiple panels.

• Consider the frequency of your scheduled queries to refresh the materialized results in the
derived table. You would want to analyze how frequently a dashboard is refreshed vs. the time
window that is queried in a dashboard vs. the time binning used in the pre-computation as well
as the panels in the dashboards. For instance, if a dashboard that is plotting hourly aggregates
for the past few days is only refreshed once in a few hours, you might want to configure your
scheduled queries to only refresh once every 30 mins or an hour. On the other hand, if you have
a dashboard that plots per minute aggregates and is refreshed every minute or so, you would
want your scheduled queries to refresh the results every minute or few minutes.

• Consider which query patterns can be further optimized (both from a query cost and query
latency perspective) using scheduled queries. For instance, when computing the unique
dimension values frequently used as variables in dashboards, or returning the last data point
emitted from a sensor or the first data point emitted from a sensor after a certain date, etc.
Some of these example patterns are discussed in this guide.

The preceding considerations will have a significant impact on your savings when you move your
dashboard to query the derived tables, the freshness of data in your dashboards, and the cost
incurred by the scheduled queries.

Client applications and supported integrations

Run your client application from the same Region as Timestream for LiveAnalytics to reduce
network latencies and data transfer costs. For more information about working with other services,
see Working with other services. The following are some other helpful links.

• Best Practices for Amazon Development with the Amazon SDK for Java

Client applications and supported integrations 658

https://docs.amazonaws.cn/timestream/latest/developerguide/scheduledqueries-example1.html
https://docs.amazonaws.cn/timestream/latest/developerguide/scheduledqueries-example2.html
https://docs.amazonaws.cn/timestream/latest/developerguide/cheduledqueries-example3.html
https://docs.amazonaws.cn/timestream/latest/developerguide/scheduledqueries-patterns.html
https://docs.amazonaws.cn/sdk-for-java/v1/developer-guide/best-practices.html

Amazon Timestream Developer Guide

• Best practices for working with Amazon Lambda functions

• Best Practices for Amazon Managed Service for Apache Flink

• Best practices for creating dashboards in Grafana

General

• Ensure that you follow the The Amazon Well-Architected Framework when using Timestream for
LiveAnalytics. This whitepaper provides guidance around best practices in operational excellence,
security, reliability, performance efficiency, and cost optimization.

Metering and cost optimization

With Amazon Timestream for LiveAnalytics, you pay only for what you use. Timestream for
LiveAnalytics meters separately for writes, data stored, and data scanned by queries. The price of
each metering dimension is specified on the pricing page. You can estimate your monthly bill using
the Amazon Timestream for LiveAnalytics Pricing Calculator.

This section describes how metering works for writes, storage and queries in Timestream for
LiveAnalytics. Example scenarios and calculations are also provided. In addition, a list of best
practices for cost optimization is included. You can select a topic below:

Topics

• Writes

• Storage

• Queries

• Cost optimization

• Monitoring with Amazon CloudWatch

Writes

The write size of each time series event is calculated as the sum of the size of the timestamp and
one or more dimension names, dimension values, measure names, and measure values. The size of
the timestamp is 8 bytes. The size of dimension names, dimension values, and measure names are
the length of the UTF-8 encoded bytes of the string representing each dimension name, dimension
value, and measure name. The size of the measure value depends on the data type. It is 1 byte for

General 659

https://docs.amazonaws.cn/lambda/latest/dg/best-practices.html
https://docs.amazonaws.cn/kinesisanalytics/latest/dev/best-practices.html
https://grafana.com/docs/grafana/latest/best-practices/best-practices-for-creating-dashboards/
https://wa.aws.amazon.com/index.en.html
https://www.amazonaws.cn/timestream/pricing/
samples/Amazon_Timestream_Pricing_Calculator.zip

Amazon Timestream Developer Guide

the boolean data type, 8 bytes for bigint and double, and the length of the UTF-8 encoded bytes
for strings. Each write is counted in units of 1 KiB.

Two example calculations are provided below:

Topics

• Calculating the write size of a time series event

• Calculating the number of writes

Calculating the write size of a time series event

Consider a time series event representing the CPU utilization of an EC2 instance as shown below:

Time region az vpc Hostname measure_n
ame

measure_v
alue::dou
ble

160298343
523856300
0

us-east-1 1d vpc-1a2b3
c4d

host-24Gju cpu_utili
zation

35.0

The write size of the time series event can be calculated as:

• time = 8 bytes

• first dimension = 15 bytes (region+us-east-1)

• second dimension = 4 bytes (az+1d)

• third dimension = 15 bytes (vpc+vpc-1a2b3c4d)

• fourth dimension = 18 bytes (hostname+host-24Gju)

• name of the measure = 15 bytes (cpu_utilization)

• value of the measure = 8 bytes

Write size of the time series event = 83 bytes

Writes 660

Amazon Timestream Developer Guide

Calculating the number of writes

Now consider 100 EC2 instances, similar to the instance described in Calculating the write size of a
time series event, emitting metrics every 5 seconds. The total monthly writes for the EC2 instances
will vary based on how many time series events exist per write and if common attributes are being
used while batching time series events. An example of calculating total monthly writes is provided
for each of the following scenarios:

Topics

• One time series event per write

• Batching time series events in a write

• Batching time series events and using common attributes in a write

One time series event per write

If each write contains only one time series event, the total monthly writes are calculated as:

• 100 time series events = 100 writes every 5 seconds

• x 12 writes/minute = 1,200 writes

• x 60 minutes/hour = 72,000 writes

• x 24 hours/day = 1,728,000 writes

• x 30 days/month = 51,840,000 writes

Total monthly writes = 51,840,000

Batching time series events in a write

Given each write is measured in units of 1 KB, a write can contain a batch of 12 time series events
(998 bytes) and the total monthly writes are calculated as:

• 100 time series events = 9 writes (12 time series events per write) every 5 seconds

• x 12 writes/minute = 108 writes

• x 60 minutes/hour = 6,480 writes

• x 24 hours/day = 155,520 writes

• x 30 days/month = 4,665,600 writes

Writes 661

Amazon Timestream Developer Guide

Total monthly writes = 4,665,600

Batching time series events and using common attributes in a write

If the region, az, vpc, and measure name are common across 100 EC2 instances, the common
values can be specified just once per write and are referred to as common attributes. In this case,
the size of common attributes is 52 bytes, and the size of the time series events is 27 bytes. Given
each write is measured in units of 1 KiB, a write can contain 36 time series events and common
attributes, and the total monthly writes are calculated as:

• 100 time series events = 3 writes (36 time series events per write) every 5 seconds

• x 12 writes/minute = 36 writes

• x 60 minutes/hour = 2,160 writes

• x 24 hours/day = 51,840 writes

• x 30 days/month = 1,555,200 writes

Total monthly writes = 1,555,200

Note

Due to usage of batching, common attributes and rounding of the writes to units of 1KB,
the storage size of the time series events may be different than write size.

Storage

The storage size of each time series event in the memory store and the magnetic store is calculated
as the sum of the size of the timestamp, dimension names, dimension values, measure names,
and measure values. The size of the timestamp is 8 bytes. The size of dimension names, dimension
values, and measure names are the length of the UTF-8 encoded bytes of each string representing
the dimension name, dimension value, and measure name. The size of the measure value depends
on the data type. It is 1 byte for boolean data types, 8 bytes for bigint and double, and the length
of the UTF-8 encoded bytes for strings. Each measure is stored as a separate record in Amazon
Timestream for LiveAnalytics, i.e. if your time series event has four measures, there will be four
records for that time series event in storage.

Storage 662

Amazon Timestream Developer Guide

Considering the example of the time series event representing the CPU utilization of an EC2
instance (see Calculating the write size of a time series event), the storage size of the time series
event is calculated as:

• time = 8 bytes

• first dimension = 15 bytes (region+us-east-1)

• second dimension = 4 bytes (az+1d)

• third dimension = 15 bytes (vpc+vpc-1a2b3c4d)

• fourth dimension = 18 bytes (hostname+host-24Gju)

• name of the measure = 15 bytes (cpu_utilization)

• value of the measure = 8 bytes

Storage size of the time series event = 83 bytes

Note

The memory store is metered in GB-hour and the magnetic store is metered in GB-month.

Queries

Queries are charged based on the duration of Timestream compute units (TCUs) used by
your application in TCU-hours as specified on the Amazon Timestream pricing page. Amazon
Timestream for LiveAnalytics' query engine prunes irrelevant data while processing a query.
Queries with projections and predicates including time ranges, measure names, and/or dimension
names enable the query processing engine to prune a significant amount of data and help with
lowering query costs.

Cost optimization

To optimize the cost of writes, storage, and queries, use the following best practices with Amazon
Timestream for LiveAnalytics:

• Batch multiple time series events per write to reduce the number of write requests.

• Consider using Multi-measure records, which allows you to write multiple time-series measures
in a single write request and stores your data in a more compact manner. This reduces the
number of write requests as well as data storage cost and query cost.

Queries 663

https://www.amazonaws.cn/timestream/pricing/

Amazon Timestream Developer Guide

• Use common attributes with batching to batch more time series events per write to further
reduce the number of write requests.

• Set the data retention of the memory store to match your application's requirements for
processing late-arriving data. Late-arriving data is incoming data with a timestamp earlier than
the current time and outside the memory store retention period.

• Set the data retention of the magnetic store to match your long term data storage requirements.

• While writing queries, include only the measure and dimension names essential to query. Adding
extraneous columns will increase data scans and therefore will also increase the query cost.
We recommend that you review query insights to assess the pruning efficiency of the included
dimensions and measures.

• Where possible, include a time range in the WHERE clause of your query. For example, if you
only need the last one hour of data in your dataset, include a time predicate such as time >
ago(1h).

• When a query accesses a subset of measures in a table, always include the measure names in the
WHERE clause of the query.

• If you've started running a query and realize that the query will not return the results you're
looking for, cancel the query to save on cost.

Monitoring with Amazon CloudWatch

You can monitor Timestream for LiveAnalytics using Amazon CloudWatch, which collects and
processes raw data from Timestream for LiveAnalytics into readable, near-real-time metrics. It
records these statistics for two weeks so that you can access historical information and gain a
better perspective on how your web application or service is performing. By default, Timestream
for LiveAnalytics metric data is automatically sent to CloudWatch in 1-minute or 15-minute
periods. For more information, see What Is Amazon CloudWatch? in the Amazon CloudWatch User
Guide.

Topics

• How do I use Timestream for LiveAnalytics metrics?

• Timestream for LiveAnalytics metrics and dimensions

• Creating CloudWatch alarms to monitor Timestream for LiveAnalytics

Monitoring with Amazon CloudWatch 664

https://docs.amazonaws.cn/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatch.html

Amazon Timestream Developer Guide

How do I use Timestream for LiveAnalytics metrics?

The metrics reported by Timestream for LiveAnalytics provide information that you can analyze in
different ways. The following list shows some common uses for the metrics. These are suggestions
to get you started, not a comprehensive list.

How can I? Relevant metrics

How can I determine
if any system errors
occurred?

You can monitor SystemErrors to determine whether any
requests resulted in a server error code. Typically, this metric
should be equal to zero. If it isn't, you might want to investiga
te.

How can I monitor the
amount of data in the
memory store?

You can monitor MemoryCumulativeBytesMetered
over the specified time period, to monitor the amount of data
stored in memory store in bytes. This metric is emitted every
hour and you can track the bytes stored at an account as well
as at database granularity. The memory store is metered in
GB-hour (the cost of storing 1GB of data for one hour). So
multiplying the hourly value of MemoryCumulativeBy
tesMetered with GB-hour pricing in your Region will give
you the cost incurred per hour.

Dimensions: Operation (storage), DatabaseName, Metric name

How can I monitor the
amount of data in the
magnetic store?

You can monitor MagneticCumulativeBytesMetered
over the specified time period, to monitor the amount of data
stored in magnetic store in bytes. This metric is emitted every
hour and you can track the bytes stored at an account as well
as at database granularity. The memory store is metered in
GB-month (the cost of storing 1GB of data for one month).
So multiplying the hourly value of MagneticCumulative
BytesMetered with GB-month pricing in your Region will
give you the cost incurred per hour. For example, if the value
of MagneticCumulativeBytesMetered is 107374182
400 bytes (100GB), then the hourly charge of 1GB of data in
magnetic store = (0.03) (us-east-1 pricing) / (30.4*24). Multiplyi

Monitoring with Amazon CloudWatch 665

Amazon Timestream Developer Guide

How can I? Relevant metrics

ng this value with the MagneticCumulativeBytesMete
red in GB will give ~$0.004 for that hour.

Dimensions: Operation (Storage), DatabaseName, Metric name

How can I monitor
the data scanned by
queries?

You can monitor CumulativeBytesMetered over the
specified time period, to monitor the data scanned by queries
(in bytes) sent to Timestream for LiveAnalytics. This metric is
emitted after the query execution and you can track the data
scanned at account and database granularity. You can calculate
the query cost for a particular period by multiplying the value
of the metric with per GB scanned pricing in your Region. The
bytes scanned by scheduled queries are accounted for in this
metric.

Dimensions: Operation (Query), DatabaseName, Metric name

How can I monitor
the data scanned by
scheduled queries?

You can monitor CumulativeBytesMetered over
the specified time period, to monitor the data scanned by
scheduled queries (in bytes) executed by Timestream for
LiveAnalytics. This metric is emitted after the query execution
and you can track the data scanned at account and database
granularity. You can calculate the query cost for a particula
r period by multiplying the value of the metric with per GB
scanned pricing in your Region.

Note

The bytes metered are also accounted for in the query
CumulativeBytesMetered .

Dimensions: Operation (TriggeredScheduledQuery), DatabaseN
ame, Metric name

Monitoring with Amazon CloudWatch 666

Amazon Timestream Developer Guide

How can I? Relevant metrics

How can I monitor
the number of records
ingested?

You can monitor NumberOfRecords over the specified time
period to monitor the number of records ingested. You can
track the bytes stored at an account as well as at database
granularity. You can also use this metric to monitor the writes
made by Scheduled Queries when query results are written
into a separate table.

When using the WriteRecords API, the metric is emitted
for each WriteRecords request, with the CloudWatch
Operation dimension being WriteRecords . When using the
BatchLoad or ScheduledQuery APIs, the metric is emitted
at intervals determined by the service until the task completes
. The CloudWatch Operation dimension for this metric is either
BatchLoad or ScheduledQuery , depending on which API
is used.

Dimensions: Operation (WriteRecords, BatchLoad, or Scheduled
Query), DatabaseName, Metric name

Monitoring with Amazon CloudWatch 667

Amazon Timestream Developer Guide

How can I? Relevant metrics

How can I monitor
the cost of records
ingested?

You can monitor CumulativeBytesMetered to monitor
the number of bytes ingested that accrue cost. You can track
the bytes stored at an account as well as at database granulari
ty. Ingested records are metered in cumulative bytes. Multiplyi
ng the value of CumulativeBytesMetered by Writes
pricing in your Region gives you the ingestion cost incurred.

When using the WriteRecords API, this metric is emitted
for each WriteRecords request, with the CloudWatch
Operation dimension being WriteRecords . When using
the BatchLoad or ScheduledQuery API, the metric is
emitted at intervals determined by the service until the task
completes. The CloudWatch Operation dimension for this
metric is BatchLoad or ScheduledQuery depending on
which API is used..

Dimensions: Operation (WriteRecords, BatchLoad, or Scheduled
Query), DatabaseName, Metric name

How can I monitor the
Timestream Compute
Units (TCUs) used in
my account?

You can monitor QueryTCU over the desired time period, to
monitor the compute units provisioned in your account. This
metric is emitted every 15-minutes.

Units: Count

Valid Statistics: Minimum, Maximum

Metric: ResourceCount

Dimensions: Service: Timestream , Namespace
:Amazon/Usage , Resource: QueryTCU, Type:
Resource, Class: OnDemand

Monitoring with Amazon CloudWatch 668

Amazon Timestream Developer Guide

How can I? Relevant metrics

How can I monitor the
number of provisioned
Timestream Compute
Units (TCUs) used in
my account?

Note

Provisioned TCU is available only in the Asia Pacific
(Mumbai) region.

You can monitor QueryTCU to monitor the number of
provisioned TCUs used for query workload in the account. This
metric is emitted every minute for the during active query
workload from the account.

Units: Count

Valid Statistics: Minimum, Maximum

Metric: ResourceCount

Dimensions: Service: Timestream , Namespace:
Amazon/Usage , Resource: ProvisionedQueryTCU ,
Class: None

Monitoring with Amazon CloudWatch 669

Amazon Timestream Developer Guide

How can I? Relevant metrics

How can I monitor the
provisioned Timestrea
m Compute Units
(TCUs) used in my
account?

Note

Provisioned TCU is available only in the Asia Pacific
(Mumbai) region.

You can monitor QueryTCU over the specified time period,
to monitor the compute units consumed for query workload
in the account. This metric is emitted with maximum and
minimum compute units for every minute during active query
workload from the account.

Units: Count

Valid Statistics: Minimum, Maximum

Metric: ResourceCount

Dimensions: Service: Timestream , Namespace
: Amazon/Usage , Resource: QueryTCU, Class:
Provisioned

Timestream for LiveAnalytics metrics and dimensions

When you interact with Timestream for LiveAnalytics, it sends the following metrics and
dimensions to Amazon CloudWatch. All metrics are aggregated and reported every minute. You can
use the following procedures to view the metrics for Timestream for LiveAnalytics.

To view metrics using the CloudWatch console

Metrics are grouped first by the service namespace, and then by the various dimension
combinations within each namespace.

1. Open the CloudWatch console at https://console.amazonaws.cn/cloudwatch/.

2. If necessary, change the Region. On the navigation bar, choose the Region where your Amazon
resources reside. For more information, see Amazon Service Endpoints.

Monitoring with Amazon CloudWatch 670

https://console.amazonaws.cn/cloudwatch/
http://docs.amazonaws.cn/general/latest/gr/rande.html

Amazon Timestream Developer Guide

3. In the navigation pane, choose Metrics.

4. Under the All metrics tab, choose AWS/Timestream for LiveAnalytics.

To view metrics using the Amazon CLI

• At a command prompt, use the following command.

aws cloudwatch list-metrics --namespace "AWS/Timestream"

Dimensions for Timestream for LiveAnalytics metrics

The metrics for Timestream for LiveAnalytics are qualified by the values for the account, table
name, or operation. You can use the CloudWatch console to retrieve Timestream for LiveAnalytics
data along any of the dimensions in the following table:

Dimension Description

DatabaseName This dimension limits the data to a specific Timestream for
LiveAnalytics database. This value can be any database in the
current Region and the current Amazon account

Operation This dimension limits the data to one of the Timestream for
LiveAnalytics operations, such as Storage, WriteRecords ,
BatchLoad , or ScheduledQuery . See the Timestream for
LiveAnalytics Query API Reference for a list of available values.

TableName This dimension limits the data to a specific table in a Timestrea
m for LiveAnalyticss database.

Important

CumulativeBytesMetered, UserErrors and SystemErrors metrics only have the
Operation dimension. SuccessfulRequestLatency metrics always have Operation
dimension, but may also have the DatabaseName and TableName dimensions too,
depending on the value of Operation. This is because Timestream for LiveAnalytics table-

Monitoring with Amazon CloudWatch 671

Amazon Timestream Developer Guide

level operations have DatabaseName and TableName as dimensions, but account level
operations do not.

Timestream for LiveAnalytics metrics

Note

Amazon CloudWatch aggregates all the following Timestream for LiveAnalytics metrics at
one-minute intervals.

General metrics

Metric Description

SuccessfulRequestLatency The successful requests to Timestream for
LiveAnalytics during the specified time period.
SuccessfulRequestLatency can provide two
different kinds of information:

• The elapsed time for successful requests
(Minimum, Maximum,Sum, or Average).

• The number of successful requests
(SampleCount).

SuccessfulRequestLatency reflects activity
only within Timestream for LiveAnalytics and
does not take into account network latency or
client-side activity.

Units: Milliseconds

Dimensions

• DatabaseName

• TableName

• Operation

Monitoring with Amazon CloudWatch 672

Amazon Timestream Developer Guide

Metric Description

Valid Statistics:

• Minimum

• Maximum

• Average

• SampleCount

• P10

• p50

• p90

• p95

• p99

Writing and storage metrics

Metric Description

MagneticStoreRejectedRecordCount The number of magnetic store written records
that were rejected asynchronously. This can
happen if the new record has a version that is
less than the current version or the new record
has version equal to the current version but
has different data.

Units: Count

Dimensions

• DatabaseName

• TableName

• Operation

Valid Statistics:

• Sum

Monitoring with Amazon CloudWatch 673

Amazon Timestream Developer Guide

Metric Description

• SampleCount

MagneticStoreRejectedUpload
UserFailures

The number of magnetic store rejected record
reports that were not uploaded due to user
errors. This can be due to IAM permissions not
configured correctly or a deleted S3 bucket.

Units: Count

Dimensions

• DatabaseName

• TableName

• Operation

Valid Statistics:

• Sum

• SampleCount

MagneticStoreRejectedUpload
SystemFailures

The number of magnetic store rejected record
reports that were not uploaded due to system
errors.

Units: Count

Dimensions

• DatabaseName

• TableName

• Operation

Valid Statistics:

• Sum

• SampleCount

Monitoring with Amazon CloudWatch 674

Amazon Timestream Developer Guide

Metric Description

ActiveMagneticStorePartitions The number of magnetic store partitions
actively ingesting data at a given time.

Units: Count

Dimensions

• DatabaseName

• Operation

Valid Statistics:

• Sum

• SampleCount

Monitoring with Amazon CloudWatch 675

Amazon Timestream Developer Guide

Metric Description

MagneticStorePendingRecords
Latency

The oldest write to a magnetic store that is
not available for query. Records written to the
magnetic store will be available for querying
within 6 hours.

Units: Milliseconds

Dimensions

• DatabaseName

• TableName

• Operation

Valid Statistics:

• Minimum

• Maximum

• Average

• SampleCount

• P10

• p50

• p90

• p95

• p99

MemoryCumulativeBytesMetered The amount of data stored in memory store,
in bytes

Units: Bytes

Dimensions: Operation

Valid Statistics:

• Average

Monitoring with Amazon CloudWatch 676

Amazon Timestream Developer Guide

Metric Description

MagneticCumulativeBytesMetered The amount of data stored in magnetic store,
in bytes

Units: Bytes

Dimensions: Operation

Valid Statistics:

• Average

CumulativeBytesMetered The amount of data metered by ingestion to
Timestream for LiveAnalytics, in bytes.

Units: Bytes

Dimensions: Operation

Valid Statistics: Sum

NumberOfRecords The number of records ingested into
Timestream for LiveAnalytics.

Units: Count

Dimensions: Operation

Valid Statistics: Sum

Query metrics

Metric Description

CumulativeBytesMetered The amount of data scanned by queries sent
to Timestream for LiveAnalytics, in bytes.

Units: Bytes

Dimensions: Operation

Monitoring with Amazon CloudWatch 677

Amazon Timestream Developer Guide

Metric Description

Valid Statistics:

• Sum

ResourceCount The Timestream Compute Units (TCUs)
consumed for query workload in the account.
This metric is emitted with maximum and
minimum compute units for every minute
during active query workload from the
account.

Units: Count

Valid Statistics: Minimum, Maximum

Dimensions: Service: Timestream ,
Resource: QueryTCU, Type: Resource,
Class: OnDemand

Error metrics

Metric Description

SystemErrors The requests to Timestream for LiveAnaly
tics that generate a SystemError during the
specified time period. A SystemError usually
indicates an internal service error.

Units: Count

Dimensions: Operation

Valid Statistics:

• Sum

• SampleCount

Monitoring with Amazon CloudWatch 678

Amazon Timestream Developer Guide

Metric Description

UserErrors Requests to Timestream for LiveAnalytics
that generate an InvalidRequest error during
the specified time period. An InvalidRequest
usually indicates a client-side error, such as an
invalid combination of parameters, an attempt
to update a nonexistent table, or an incorrect
request signature. UserErrors represents the
aggregate of invalid requests for the current
Amazon Region and the current Amazon
account.

Units: Count

Dimensions: Operation

Valid Statistics:

• Sum

• SampleCount

Important

Not all statistics, such as Average or Sum, are applicable for every metric. However, all of
these values are available through the Timestream for LiveAnalytics console, or by using
the CloudWatch console, Amazon CLI, or Amazon SDKs for all metrics.

Creating CloudWatch alarms to monitor Timestream for LiveAnalytics

You can create an Amazon CloudWatch alarm for Timestream for LiveAnalytics that sends an
Amazon Simple Notification Service (Amazon SNS) message when the alarm changes state. An
alarm watches a single metric over a time period that you specify. It performs one or more actions
based on the value of the metric relative to a given threshold over a number of time periods. The
action is a notification sent to an Amazon SNS topic or Auto Scaling policy.

Monitoring with Amazon CloudWatch 679

Amazon Timestream Developer Guide

Alarms invoke actions for sustained state changes only. CloudWatch alarms do not invoke actions
simply because they are in a particular state. The state must have changed and been maintained
for a specified number of periods.

For more information about creating CloudWatch alarms, see Using Amazon CloudWatch Alarms in
the Amazon CloudWatch User Guide.

Troubleshooting

This section contains information on troubleshooting Timestream for LiveAnalytics.

Topics

• Handling WriteRecords throttles

• Handling rejected records

• Troubleshooting UNLOAD from Timestream for LiveAnalytics

• Timestream for LiveAnalytics specific error codes

Handling WriteRecords throttles

Your memory store write requests to Timestream may be throttled as Timestream scales to
adapt to the data ingestion needs of your application. If your applications encounter throttling
exceptions, you must continue to send data at the same (or higher) throughput to allow
Timestream to automatically scale to your application's needs.

Your magnetic store write requests to Timestream may be throttled if the maximum limit of
magnetic store partitions receiving ingestion. You will see a throttle message directing you to check
the ActiveMagneticStorePartitions Cloudwatch metric for this database. This throttle may
take up to 6 hours to resolve. To avoid this throttle, you should use the memory store for any high
throughput ingestion workload. For magnetic store ingestion, you can target ingesting into fewer
partitions by limiting how many series and the time duration that you ingest into

For more information about data ingestion best practices, see Writes.

Handling rejected records

If Timestream rejects records, you will receive a RejectedRecordsException with details about
the rejection. Please refer to Handling write failure for more information on how to extract this
information from the WriteRecords response.

Troubleshooting 680

https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://docs.amazonaws.cn/timestream/latest/developerguide/code-samples.write.html#code-samples.write.rejectedRecordException

Amazon Timestream Developer Guide

All rejections will be included in this response with the exception of updates to the magnetic
store where the new record's version is less than or equal to the existing record's version. In
this case, Timestream will not update the existing record that has the higher version. Timestream
will reject the new record with lower or equal version and write these errors asynchronously
to your S3 bucket. In order to receive these asynchronous error reports, you should set the
MagneticStoreRejectedDataLocation property in MagneticStoreWriteProperties on
your table.

Troubleshooting UNLOAD from Timestream for LiveAnalytics

Following is guidance for troubleshooting related to the UNLOAD command.

Category Error message How to troubleshoot

UNLOAD result file key when
using the S3 prefix [%s]
provided in the destination
will exceed the S3 allowed
key length. See documenta
tion for more details.

When exporting query
results using the UNLOAD
statement, the S3 key length,
comprising of sum of the
length of S3 bucket name and
prefix exceeds the maximum
supported S3 key length. We
recommend to reduce your
prefix or bucket name length.

UNLOAD result file key when
using partitioned_by [%s] will
exceed the S3 allowed key
length. See documentation
for more details.

When exporting query
results using the UNLOAD
statement, the S3 Key length
using the partitioned_by
column exceeds the maximum
supported S3 key length. We
recommend to partition with
an alternate column or reduce
the length of the partition
ed_column (if feasible).

S3 Key length

UNLOAD result file key when
using the S3 prefix [%s] along
with the partitioned_by [%s]

When exporting query results
using the UNLOAD statement
, the S3 Key length, comprisin

Troubleshooting UNLOAD 681

https://docs.amazonaws.cn/AmazonS3/latest/userguide/using-prefixes.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/using-prefixes.html

Amazon Timestream Developer Guide

Category Error message How to troubleshoot

will exceed the S3 allowed
key length. See documenta
tion for more details.

g of sum of the length of S3
bucket name, the prefix, and
the partitioned_by column
name exceeds the maximum
supported S3 key length. We
recommend to reduce your
prefix, bucket name length,
or use an alternate column to
partition your data.

The generated S3 object
key: %s is too long. See
documentation for more
details.

While processing your query
using the UNLOAD statement
, one of the values in the
partitioned column exceeds
the maximum supported
S3 key length. The partition
column and value can be
found in the object key
generated.

Troubleshooting UNLOAD 682

https://docs.amazonaws.cn/AmazonS3/latest/userguide/using-prefixes.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/using-prefixes.html

Amazon Timestream Developer Guide

Category Error message How to troubleshoot

S3 throttles We have detected that
Amazon S3 is throttling
the writes from UNLOAD
command. See Amazon
Timestream documentation
for more information

Refer to S3 documentation
here. S3 API call rate could
be throttled when multiple
readers/writers access the
same folder. Please audit the
call volume to the bucket
provided. If you are using
same bucket for multiple
concurrent UNLOAD queries,
try using different buckets
for the same. If you are using
same bucket for multiple
operations other than
Timestream for LiveAnaly
tics UNLOAD, consider moving
UNLOAD results to separate
bucket.

Timestream for LiveAnalytics specific error codes

This section contains the specific error codes for Timestream for LiveAnalytics.

Timestream for LiveAnalytics write API errors

InternalServerException

HTTP Status Code: 500

ThrottlingException

HTTP Status Code: 429

ValidationException

HTTP Status Code: 400

ConflictException

HTTP Status Code: 409

Timestream for LiveAnalytics specific error codes 683

https://docs.amazonaws.cn/AmazonS3/latest/userguide/Welcome.html

Amazon Timestream Developer Guide

AccessDeniedException

You do not have sufficient access to perform this action.

HTTP Status Code: 403

ServiceQuotaExceededException

HTTP Status Code: 402

ResourceNotFoundException

HTTP Status Code: 404

RejectedRecordsException

HTTP Status Code: 419

InvalidEndpointException

HTTP Status Code: 421

Timestream for LiveAnalytics query API errors

ValidationException

HTTP Status Code: 400

QueryExecutionException

HTTP Status Code: 400

ConflictException

HTTP Status Code: 409

ThrottlingException

HTTP Status Code: 429

InternalServerException

HTTP Status Code: 500

InvalidEndpointException

HTTP Status Code: 421

Timestream for LiveAnalytics specific error codes 684

Amazon Timestream Developer Guide

Quotas

This topic describes current quotas, also referred to as limits, within Amazon Timestream for
LiveAnalytics. Each quota applies on a per-Region basis unless otherwise specified.

Topics

• Default quotas

• Service limits

• Supported data types

• Batch load

• Naming constraints

• Reserved keywords

• System identifiers

• UNLOAD

Default quotas

The following table contains the Timestream for LiveAnalytics quotas and the default values.

displayName Description defaultValue

Databases per account The maximum number of
databases you can create
per Amazon Web Services
account.

500

Tables per account The maximum number
of tables you can create
per Amazon Web Services
account.

50000

Request rate for CRUD APIs The maximum number
of Create/Update/Delete
requests allowed per second

1

Quotas 685

Amazon Timestream Developer Guide

displayName Description defaultValue

per account, in the current
Region.

Request rate for other APIs The maximum number of
List/Describe/Prepare/
ExecuteScheduledQueryAPI
requests allowed per second
per account, in the current
Region.

5

Scheduled queries per
account

The maximum number of
scheduled queries you can
create per Amazon Web
Services account.

10000

Maximum count of active
magnetic store partitions

The maximum number
of active magnetic store
partitions per database. A
partition might remain active
for up to six hours after
receiving ingestion.

250

Service limits

The following table contains the Timestream for LiveAnalytics service limits and the default values.
To edit data retention for a table from the console, see Edit a table.

displayName Description defaultValue

Future ingestion period in
minutes

The maximum lead time (in
minutes) for your time series
data compared to the current
system time. For example, if
the future ingestion period is
15 minutes, then Timestream

15

Service limits 686

https://docs.amazonaws.cn/timestream/latest/developerguide/console_timestream.html#console_timestream.edit-table.using-console

Amazon Timestream Developer Guide

displayName Description defaultValue

for LiveAnalytics will accept
data that is up to 15 minutes
ahead of the current system
time.

Minimum retention period for
memory store in hours

The minimum duration (in
hours) for which data must be
retained in the memory store
per table.

1

Maximum retention period for
memory store in hours

The maximum duration (in
hours) for which data can be
retained in the memory store
per table.

8766

Minimum retention period for
magnetic store in days

The minimum duration (in
days) for which data must be
retained in the magnetic store
per table.

1

Maximum retention period for
magnetic store in days

The maximum duration (in
days) for which data can be
retained in the magnetic
store. This value is equivalent
to 200 years.

73000

Default retention period for
magnetic store in days

The default value (in days) for
which data is retained in the
magnetic store per table. This
value is equivalent to 200
years.

73000

Default retention period for
memory store in hours

The default duration (in
hours) for which data is
retained in the memory store.

6

Service limits 687

Amazon Timestream Developer Guide

displayName Description defaultValue

Dimensions per table The maximum number of
dimensions per table.

128

Measure names per table The maximum number of
unique measure names per
table.

8192

Dimension name dimension
value pair size per series

The maximum size of
dimension name and
dimension value pair per
series.

2 Kilobytes

Maximum record size The maximum size of a
record.

2 Kilobytes

Records per WriteRecords API
request

The maximum number of
records in a WriteRecords API
request.

100

Dimension name length The maximum number of
bytes for a Dimension name.

60 bytes

Measure name length The maximum number of
bytes for a Measure name.

256 bytes

Database name length The maximum number of
bytes for a Database name.

256 bytes

Table name length The maximum number of
bytes for a Table name.

256 bytes

QueryString length in KiB The maximum length (in KiB)
of a query string in UTF-8
encoded characters for a
query.

256

Service limits 688

Amazon Timestream Developer Guide

displayName Description defaultValue

Execution duration for queries
in hours

The maximum execution
duration (in hours) for a
query. Queries that take
longer will timeout.

1

Query Insights The maximum number of
Query API requests allowed
with query insights enabled
per second per account, in the
current Region.

1

Metadata size for query result The maximum metadata size
for a query result.

100 Kilobytes

Data size for query result The maximum data size for a
query result.

5 Gigabytes

Measures per multi-measure
record

The maximum number of
measures per multi-measure
record.

256

Measure value size per multi-
measure record

The maximum size of
measure values per multi-
measure record.

2048

Unique measures across
multi-measure records per
table

The unique measures in all
the multi-measure records
defined in a single table.

1024

Timestream Compute Units
(TCUs) per account

The default maximum TCUs
per account.

200

Service limits 689

Amazon Timestream Developer Guide

displayName Description defaultValue

Maximum Provisioned
Timestream Compute Units
(TCUs) per account.

Note

Provisioned TCU is
available only in the
Asia Pacific (Mumbai)
region.

The maximum number of
TCUs you can provision in
your account.

1000

maxQueryTCU The maximum query TCUs
you can set for your account.

1000

Supported data types

The following table describes the supported data types for measure and dimension values.

Description Timestream for LiveAnalytics value

Supported data types for
measure values.

Big int, double, string, boolean, MULTI, Timestamp

Supported data types for
dimension values.

String

Batch load

The current quotas, also referred to as limits, within batch load are as follows.

Description Timestream for LiveAnalytics value

Max batch load task size Max batch load task size cannot exceed 100 GB.

Supported data types 690

Amazon Timestream Developer Guide

Description Timestream for LiveAnalytics value

Files quantity A batch load task cannot have more than 100 files.

Maximum file size Maximum file size in a batch load task cannot exceed 5 GB.

CSV file row size A row in a CSV file cannot exceed 16 MB. This is a hard limit which
cannot be increased.

Active batch load tasks A table cannot have more than 5 active batch load tasks and
an account cannot have more than 10 active batch load tasks.
Timestream for LiveAnalytics will throttle new batch load tasks
until more resources are available.

Naming constraints

The following table describes naming constraints.

Description Timestream for LiveAnalytics value

The maximum length of a
dimension name.

60 bytes

The maximum length of a
measure name.

256 bytes

The maximum length of
a table name or database
name.

256 bytes

Table and Database
Name

• We recommend you do not use System identifiers.

• Can contain a-z A-Z 0-9 _ (underscore) - (dash) . (dot).

• All names must be encoded as UTF-8, and are case sensitive.

Naming constraints 691

Amazon Timestream Developer Guide

Description Timestream for LiveAnalytics value

Note

Table and database names are compared using UTF-8
binary representation. This means that comparison for
ASCII characters is case sensitive.

Measure Name • Must not contain System identifiers or colon ':'.

• Must not start with a reserved prefix (ts_, measure_value).

Note

Table and database names are compared using UTF-8
binary representation. This means that comparison for
ASCII characters is case sensitive.

Dimension Name • Must not contain System identifiers, colon ':' or double quote (").

• Must not start with a reserved prefix (ts_, measure_value).

• Must not contain Unicode characters [0,31] listed here or
"\u2028" or "\u2029".

Note

Dimension and measure names are compared using UTF-8
binary representation. This means that comparison for
ASCII characters is case sensitive.

All Column Names Column names can not be duplicated. Since multi-measure records
represent dimensions and measures as columns, the name for a
dimension can not be the same as the name for a measure. Names
are case sensitive.

Naming constraints 692

https://www.asciitable.com/

Amazon Timestream Developer Guide

Reserved keywords

All of the following are reserved keywords:

• ALTER

• AND

• AS

• BETWEEN

• BY

• CASE

• CAST

• CONSTRAINT

• CREATE

• CROSS

• CUBE

• CURRENT_DATE

• CURRENT_TIME

• CURRENT_TIMESTAMP

• CURRENT_USER

• DEALLOCATE

• DELETE

• DESCRIBE

• DISTINCT

• DROP

• ELSE

• END

• ESCAPE

• EXCEPT

• EXECUTE

• EXISTS

Reserved keywords 693

Amazon Timestream Developer Guide

• EXTRACT

• FALSE

• FOR

• FROM

• FULL

• GROUP

• GROUPING

• HAVING

• IN

• INNER

• INSERT

• INTERSECT

• INTO

• IS

• JOIN

• LEFT

• LIKE

• LOCALTIME

• LOCALTIMESTAMP

• NATURAL

• NORMALIZE

• NOT

• NULL

• ON

• OR

• ORDER

• OUTER

• PREPARE

Reserved keywords 694

Amazon Timestream Developer Guide

• RECURSIVE

• RIGHT

• ROLLUP

• SELECT

• TABLE

• THEN

• TRUE

• UESCAPE

• UNION

• UNNEST

• USING

• VALUES

• WHEN

• WHERE

• WITH

System identifiers

We reserve column names "measure_value", "ts_non_existent_col" and "time" to be Timestream
for LiveAnalytics system identifiers. Additionally, column names may not start with "ts_" or
"measure_name". System identifiers are case sensitive. Identifiers compared using UTF-8 binary
representation. This means that comparison for identifiers is case sensitive.

Note

System identifiers may not be used for dimension or measure names. We recommend you
do not use system identifiers for database or table names.

UNLOAD

For limits related to the UNLOAD command, see Using UNLOAD to export query results to S3 from
Timestream.

System identifiers 695

https://docs.amazonaws.cn/timestream/latest/developerguide/export-unload.html
https://docs.amazonaws.cn/timestream/latest/developerguide/export-unload.html

Amazon Timestream Developer Guide

Query language reference

Note

This query language reference includes the following third-party documentation from the
Trino Software Foundation (formerly Presto Software Foundation), which is licensed under
the Apache License, Version 2.0. You may not use this file except in compliance with this
license. To get a copy of the Apache License, Version 2.0, see the Apache website.

Timestream for LiveAnalytics supports a rich query language for working with your data. You can
see the available data types, operators, functions and constructs below.

You can also get started right away with Timestream's query language in the Sample queries
section.

Topics

• Supported data types

• Built-in time series functionality

• SQL support

• Logical operators

• Comparison operators

• Comparison functions

• Conditional expressions

• Conversion functions

• Mathematical operators

• Mathematical functions

• String operators

• String functions

• Array operators

• Array functions

• Bitwise functions

• Regular expression functions

• Date / time operators

Query language reference 696

https://trino.io/foundation.html
http://www.apache.org/licenses/LICENSE-2.0

Amazon Timestream Developer Guide

• Date / time functions

• Aggregate functions

• Window functions

• Sample queries

Supported data types

Timestream for LiveAnalytics's query language supports the following data types.

Note

Data types supported for writes are described in Data types.

Data type Description

int Represents a 32-bit integer.

bigint Represents a 64-bit signed integer.

boolean One of the two truth values of logic, True and False.

double Represents a 64-bit variable-precision data type. Implements
IEEE Standard 754 for Binary Floating-Point Arithmetic.

Note

The query language is for reading data. There are
functions for Infinity and NaN double values which
can be used in queries. But you cannot write those
values to Timestream.

varchar Variable length character data with a maximum size of 2KB.

array[T,...] Contains one or more elements of a specified data type T,
where T can be any of the data types supported in Timestrea
m.

Supported data types 697

https://docs.amazonaws.cn/timestream/latest/developerguide/writes.html#writes.data-types
https://standards.ieee.org/standard/754-2019.html

Amazon Timestream Developer Guide

Data type Description

row(T,...) Contains one or more named fields of data type T. The fields
may be of any data type supported by Timestream, and are
accessed with the dot field reference operator:

.

date Represents a date in the form YYYY-MM-DD. where YYYY is
the year, MM is the month, and DD is the day, respectively. The
supported range is from 1970-01-01 to 2262-04-11 .

Example:

1971-02-03

time Represents the time of day in UTC. The time datatype is
represented in the form HH.MM.SS.sssssssss . Supports
nanosecond precision.

Example:

17:02:07.496000000

timestamp Represents an instance in time using nanosecond precision
time in UTC.

YYYY-MM-DD hh:mm:ss.sssssssss

Query supports timestamps in the range 1677-09-21
00:12:44.000000000 to 2262-04-11 23:47:16.
854775807 .

Supported data types 698

https://en.wikipedia.org/wiki/Coordinated_Universal_Time

Amazon Timestream Developer Guide

Data type Description

interval Represents an interval of time as a string literal Xt, composed
of two parts, X and t.

X is an numeric value greater than or equal to 0, and t is
a unit of time like second or hour. The unit is not pluralize
d. The unit of time t is must be one of the following string
literals:

• nanosecond

• microsecond

• millisecond

• second

• minute

• hour

• day

• ns (same as nanosecond)

• us (same as microsecond)

• ms (same as millisecond)

• s (same as second)

• m (same as minute)

• h (same as hour)

• d (same as day)

Examples:

17s

12second

21hour

Supported data types 699

Amazon Timestream Developer Guide

Data type Description

2d

timeseries[row(tim
estamp, T,...)]

Represents the values of a measure recorded over a time
interval as an array composed of row objects. Each row
contains a timestamp and one or more measure values of
data type T, where T can be any one of bigint, boolean,
double, or varchar. Rows are assorted in ascending order
by timestamp . The timeseries datatype represents the
values of a measure over time.

unknown Represents null data.

Built-in time series functionality

Timestream for LiveAnalytics provides built-in time series functionality that treat time series data
as a first class concept.

Built-in time series functionality can be divided into two categories: views and functions.

You can read about each construct below.

Topics

• Timeseries views

• Time series functions

Timeseries views

Timestream for LiveAnalytics supports the following functions for transforming your data to the
timeseries data type:

Topics

• CREATE_TIME_SERIES

• UNNEST

Built-in time series functionality 700

Amazon Timestream Developer Guide

CREATE_TIME_SERIES

CREATE_TIME_SERIES is an aggregation function that takes all the raw measurements of a time
series (time and measure values) and returns a timeseries data type. The syntax of this function is
as follows:

CREATE_TIME_SERIES(time, measure_value::<data_type>)

where <data_type> is the data type of the measure value and can be one of bigint, boolean,
double, or varchar. The second parameter cannot be null.

Consider the CPU utilization of EC2 instances stored in a table named metrics as shown below:

Time region az vpc instance_
id

measure_n
ame

measure_v
alue::dou
ble

2019-12-0
4 19:00:00.
000000000

us-east-1 us-east-1d vpc-1a2b3
c4d

i-1234567
890abcdef
0

cpu_utili
zation

35.0

2019-12-0
4 19:00:01.
000000000

us-east-1 us-east-1d vpc-1a2b3
c4d

i-1234567
890abcdef
0

cpu_utili
zation

38.2

2019-12-0
4 19:00:02.
000000000

us-east-1 us-east-1d vpc-1a2b3
c4d

i-1234567
890abcdef
0

cpu_utili
zation

45.3

2019-12-0
4 19:00:00.
000000000

us-east-1 us-east-1d vpc-1a2b3
c4d

i-1234567
890abcdef
1

cpu_utili
zation

54.1

2019-12-0
4 19:00:01.
000000000

us-east-1 us-east-1d vpc-1a2b3
c4d

i-1234567
890abcdef
1

cpu_utili
zation

42.5

Built-in time series functionality 701

Amazon Timestream Developer Guide

Time region az vpc instance_
id

measure_n
ame

measure_v
alue::dou
ble

2019-12-0
4 19:00:02.
000000000

us-east-1 us-east-1d vpc-1a2b3
c4d

i-1234567
890abcdef
1

cpu_utili
zation

33.7

Running the query:

SELECT region, az, vpc, instance_id, CREATE_TIME_SERIES(time, measure_value::double) as
 cpu_utilization FROM metrics
 WHERE measure_name=’cpu_utilization’
 GROUP BY region, az, vpc, instance_id

will return all series that have cpu_utilization as a measure value. In this case, we have two
series:

region az vpc instance_id cpu_utilization

us-east-1 us-east-1d vpc-1a2b3c4d i-1234567
890abcdef0

[{time:
2019-12-0
4 19:00:00.
000000000
, measure_v
alue::double:
35.0}, {time:
2019-12-0
4 19:00:01.
000000000
, measure_v
alue::double:
38.2}, {time:
2019-12-0
4 19:00:02.
000000000
, measure_v

Built-in time series functionality 702

Amazon Timestream Developer Guide

region az vpc instance_id cpu_utilization

alue::double:
45.3}]

us-east-1 us-east-1d vpc-1a2b3c4d i-1234567
890abcdef1

[{time:
2019-12-0
4 19:00:00.
000000000
, measure_v
alue::double:
35.1}, {time:
2019-12-0
4 19:00:01.
000000000
, measure_v
alue::double:
38.5}, {time:
2019-12-0
4 19:00:02.
000000000
, measure_v
alue::double:
45.7}]

UNNEST

UNNEST is a table function that enables you to transform timeseries data into the flat model.
The syntax is as follows:

UNNEST transforms a timeseries into two columns, namely, time and value. You can also use
aliases with UNNEST as shown below:

UNNEST(timeseries) AS <alias_name> (time_alias, value_alias)

where <alias_name> is the alias for the flat table, time_alias is the alias for the time column
and value_alias is the alias for the value column.

Built-in time series functionality 703

Amazon Timestream Developer Guide

For example, consider the scenario where some of the EC2 instances in your fleet are configured to
emit metrics at a 5 second interval, others emit metrics at a 15 second interval, and you need the
average metrics for all instances at a 10 second granularity for the past 6 hours. To get this data,
you transform your metrics to the time series model using CREATE_TIME_SERIES. You can then use
INTERPOLATE_LINEAR to get the missing values at 10 second granularity. Next, you transform the
data back to the flat model using UNNEST, and then use AVG to get the average metrics across all
instances.

WITH interpolated_timeseries AS (
 SELECT region, az, vpc, instance_id,
 INTERPOLATE_LINEAR(
 CREATE_TIME_SERIES(time, measure_value::double),
 SEQUENCE(ago(6h), now(), 10s)) AS interpolated_cpu_utilization
 FROM timestreamdb.metrics
 WHERE measure_name= ‘cpu_utilization’ AND time >= ago(6h)
 GROUP BY region, az, vpc, instance_id
)
SELECT region, az, vpc, instance_id, avg(t.cpu_util)
FROM interpolated_timeseries
CROSS JOIN UNNEST(interpolated_cpu_utilization) AS t (time, cpu_util)
GROUP BY region, az, vpc, instance_id

The query above demonstrates the use of UNNEST with an alias. Below is an example of the same
query without using an alias for UNNEST:

WITH interpolated_timeseries AS (
 SELECT region, az, vpc, instance_id,
 INTERPOLATE_LINEAR(
 CREATE_TIME_SERIES(time, measure_value::double),
 SEQUENCE(ago(6h), now(), 10s)) AS interpolated_cpu_utilization
 FROM timestreamdb.metrics
 WHERE measure_name= ‘cpu_utilization’ AND time >= ago(6h)
 GROUP BY region, az, vpc, instance_id
)
SELECT region, az, vpc, instance_id, avg(value)
FROM interpolated_timeseries
CROSS JOIN UNNEST(interpolated_cpu_utilization)
GROUP BY region, az, vpc, instance_id

Built-in time series functionality 704

Amazon Timestream Developer Guide

Time series functions

Amazon Timestream for LiveAnalytics supports timeseries functions, such as derivatives, integrals,
and correlations, as well as others, to derive deeper insights from your time series data. This section
provides usage information for each of these functions, as well as sample queries. Select a topic
below to learn more.

Topics

• Interpolation functions

• Derivatives functions

• Integral functions

• Correlation functions

• Filter and reduce functions

Interpolation functions

If your time series data is missing values for events at certain points in time, you can estimate the
values of those missing events using interpolation. Amazon Timestream supports four variants
of interpolation: linear interpolation, cubic spline interpolation, last observation carried forward
(locf) interpolation, and constant interpolation. This section provides usage information for the
Timestream for LiveAnalytics interpolation functions, as well as sample queries.

Usage information

Function Output data type Description

interpolate_linear
(timeseries,
array[timestamp])

timeseries Fills in missing data using
linear interpolation.

interpolate_linear
(timeseries,
timestamp)

double Fills in missing data using
linear interpolation.

Built-in time series functionality 705

https://wikipedia.org/wiki/Linear_interpolation
https://wikipedia.org/wiki/Linear_interpolation

Amazon Timestream Developer Guide

Function Output data type Description

interpolate_spline
_cubic(timeseries,
array[timestamp])

timeseries Fills in missing data using
cubic spline interpolation.

interpolate_spline
_cubic(timeseries,
timestamp)

double Fills in missing data using
cubic spline interpolation.

interpolate_locf(t
imeseries, array[tim
estamp])

timeseries Fills in missing data using the
last sampled value.

interpolate_locf(t
imeseries, timestamp
)

double Fills in missing data using the
last sampled value.

interpolate_fill(t
imeseries, array[tim
estamp], double)

timeseries Fills in missing data using a
constant value.

interpolate_fill(t
imeseries, timestamp
, double)

double Fills in missing data using a
constant value.

Query examples

Example

Find the average CPU utilization binned at 30 second intervals for a specific EC2 host over the past
2 hours, filling in the missing values using linear interpolation:

WITH binned_timeseries AS (
SELECT hostname, BIN(time, 30s) AS binned_timestamp, ROUND(AVG(measure_value::double),
 2) AS avg_cpu_utilization
FROM "sampleDB".DevOps
WHERE measure_name = 'cpu_utilization'
 AND hostname = 'host-Hovjv'

Built-in time series functionality 706

https://wikiversity.org/wiki/Cubic_Spline_Interpolation#:~:text=Cubic%20spline%20interpolation%20is%20a,Lagrange%20polynomial%20and%20Newton%20polynomial.
https://wikiversity.org/wiki/Cubic_Spline_Interpolation#:~:text=Cubic%20spline%20interpolation%20is%20a,Lagrange%20polynomial%20and%20Newton%20polynomial.

Amazon Timestream Developer Guide

 AND time > ago(2h)
GROUP BY hostname, BIN(time, 30s)
), interpolated_timeseries AS (
SELECT hostname,
 INTERPOLATE_LINEAR(
 CREATE_TIME_SERIES(binned_timestamp, avg_cpu_utilization),
 SEQUENCE(min(binned_timestamp), max(binned_timestamp), 15s)) AS
 interpolated_avg_cpu_utilization
FROM binned_timeseries
GROUP BY hostname
)
SELECT time, ROUND(value, 2) AS interpolated_cpu
FROM interpolated_timeseries
CROSS JOIN UNNEST(interpolated_avg_cpu_utilization)

Example

Find the average CPU utilization binned at 30 second intervals for a specific EC2 host over the
past 2 hours, filling in the missing values using interpolation based on the last observation carried
forward:

WITH binned_timeseries AS (
SELECT hostname, BIN(time, 30s) AS binned_timestamp, ROUND(AVG(measure_value::double),
 2) AS avg_cpu_utilization
FROM "sampleDB".DevOps
WHERE measure_name = 'cpu_utilization'
 AND hostname = 'host-Hovjv'
 AND time > ago(2h)
GROUP BY hostname, BIN(time, 30s)
), interpolated_timeseries AS (
SELECT hostname,
 INTERPOLATE_LOCF(
 CREATE_TIME_SERIES(binned_timestamp, avg_cpu_utilization),
 SEQUENCE(min(binned_timestamp), max(binned_timestamp), 15s)) AS
 interpolated_avg_cpu_utilization
FROM binned_timeseries
GROUP BY hostname
)
SELECT time, ROUND(value, 2) AS interpolated_cpu
FROM interpolated_timeseries
CROSS JOIN UNNEST(interpolated_avg_cpu_utilization)

Built-in time series functionality 707

Amazon Timestream Developer Guide

Derivatives functions

Derivatives are used calculate the rate of change for a given metric and can be used to proactively
respond to an event. For example, suppose you calculate the derivative of the CPU utilization of
EC2 instances over the past 5 minutes, and you notice a significant positive derivative. This can be
indicative of increased demand on your workload, so you may decide want to spin up more EC2
instances to better handle your workload.

Amazon Timestream supports two variants of derivative functions. This section provides usage
information for the Timestream for LiveAnalytics derivative functions, as well as sample queries.

Usage information

Function Output data type Description

derivative_linear(
timeseries,
interval)

timeseries Calculates the derivativ
e of each point in the
timeseries for the
specified interval.

non_negative_deriv
ative_linear(times
eries, interval)

timeseries Same as derivativ
e_linear(timeserie
s, interval) , but only
returns positive values.

Query examples

Example

Find the rate of change in the CPU utilization every 5 minutes over the past 1 hour:

SELECT DERIVATIVE_LINEAR(CREATE_TIME_SERIES(time, measure_value::double), 5m) AS
 result
FROM “sampleDB”.DevOps
WHERE measure_name = 'cpu_utilization'
AND hostname = 'host-Hovjv' and time > ago(1h)
GROUP BY hostname, measure_name

Built-in time series functionality 708

https://wikipedia.org/wiki/Derivative
https://wikipedia.org/wiki/Derivative

Amazon Timestream Developer Guide

Example

Calculate the rate of increase in errors generated by one or more microservices:

WITH binned_view as (
 SELECT bin(time, 5m) as binned_timestamp, ROUND(AVG(measure_value::double), 2) as
 value
 FROM “sampleDB”.DevOps
 WHERE micro_service = 'jwt'
 AND time > ago(1h)
 AND measure_name = 'service_error'
 GROUP BY bin(time, 5m)
)
SELECT non_negative_derivative_linear(CREATE_TIME_SERIES(binned_timestamp, value), 1m)
 as rateOfErrorIncrease
FROM binned_view

Integral functions

You can use integrals to find the area under the curve per unit of time for your time series events.
As an example, suppose you're tracking the volume of requests received by your application per
unit of time. In this scenario, you can use the integral function to determine the total volume of
requests served per specified interval over a specific time period.

Amazon Timestream supports one variant of integral functions. This section provides usage
information for the Timestream for LiveAnalytics integral function, as well as sample queries.

Usage information

Function Output data type Description

integral_trapezoid
al(timeseries(doub
le))

integral_trapezoid
al(timeseries(doub
le), interval day to
second)

double Approximates the integral
per the specified interval
day to second for the
timeseries provided,
using the trapezoidal rule.
The interval day to second
parameter is optional and
the default is 1s. For more

Built-in time series functionality 709

https://wikipedia.org/wiki/Integral
https://wikipedia.org/wiki/Trapezoidal_rule

Amazon Timestream Developer Guide

Function Output data type Description

integral_trapezoid
al(timeseries(bigi
nt))

integral_trapezoid
al(timeseries(bigi
nt), interval day to
second)

integral_trapezoid
al(timeseries(inte
ger), interval day to
second)

integral_trapezoid
al(timeseries(inte
ger))

information about intervals,
see Interval and duration.

Query examples

Example

Calculate the total volume of requests served per five minutes over the past hour by a specific host:

SELECT INTEGRAL_TRAPEZOIDAL(CREATE_TIME_SERIES(time, measure_value::double), 5m) AS
 result FROM sample.DevOps
WHERE measure_name = 'request'
AND hostname = 'host-Hovjv'
AND time > ago (1h)
GROUP BY hostname, measure_name

Correlation functions

Given two similar length time series, correlation functions provide a correlation coefficient, which
explains how the two time series trend over time. The correlation coefficient ranges from -1.0 to
1.0. -1.0 indicates that the two time series trend in opposite directions at the same rate. whereas
1.0 indicates that the two timeseries trend in the same direction at the same rate. A value of 0

Built-in time series functionality 710

Amazon Timestream Developer Guide

indicates no correlation between the two time series. For example, if the price of oil increases,
and the stock price of an oil company increases, the trend of the price increase of oil and the price
increase of the oil company will have a positive correlation coefficient. A high positive correlation
coefficient would indicate that the two prices trend at a similar rate. Similarly, the correlation
coefficient between bond prices and bond yields is negative, indicating that these two values
trends in the opposite direction over time.

Amazon Timestream supports two variants of correlation functions. This section provides usage
information for the Timestream for LiveAnalytics correlation functions, as well as sample queries.

Usage information

Function Output data type Description

correlate_pearson(
timeseries,
timeseries)

double Calculates Pearson's correlati
on coefficient for the two
timeseries . The timeserie
s must have the same
timestamps.

correlate_spearman
(timeseries,
timeseries)

double Calculates Spearman's
correlation coefficient for
the two timeseries . The
timeseries must have the
same timestamps.

Query examples

Example

WITH cte_1 AS (
 SELECT INTERPOLATE_LINEAR(
 CREATE_TIME_SERIES(time, measure_value::double),
 SEQUENCE(min(time), max(time), 10m)) AS result
 FROM sample.DevOps
 WHERE measure_name = 'cpu_utilization'
 AND hostname = 'host-Hovjv' AND time > ago(1h)
 GROUP BY hostname, measure_name

Built-in time series functionality 711

https://wikipedia.org/wiki/Pearson_correlation_coefficient
https://wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient

Amazon Timestream Developer Guide

),
cte_2 AS (
 SELECT INTERPOLATE_LINEAR(
 CREATE_TIME_SERIES(time, measure_value::double),
 SEQUENCE(min(time), max(time), 10m)) AS result
 FROM sample.DevOps
 WHERE measure_name = 'cpu_utilization'
 AND hostname = 'host-Hovjv' AND time > ago(1h)
 GROUP BY hostname, measure_name
)
SELECT correlate_pearson(cte_1.result, cte_2.result) AS result
FROM cte_1, cte_2

Filter and reduce functions

Amazon Timestream supports functions for performing filter and reduce operations on time series
data. This section provides usage information for the Timestream for LiveAnalytics filter and
reduce functions, as well as sample queries.

Usage information

Function Output data type Description

filter(timeseries(
T), function(T,
Boolean))

timeseries(T) Constructs a time series from
an the input time series, using
values for which the passed
function returns true.

reduce(timeseries(
T), initialState S,
inputFunction(S, T,
S), outputFunction(S,
R))

R Returns a single value,
reduced from the time series.
The inputFunction will
be invoked on each element
in timeseries in order. In
addition to taking the current
element, inputFunction takes
the current state (initiall
y initialState) and
returns the new state. The
outputFunction will be

Built-in time series functionality 712

Amazon Timestream Developer Guide

Function Output data type Description

invoked to turn the final state
into the result value. The
outputFunction can be an
identity function.

Query examples

Example

Construct a time series of CPU utilization of a host and filter points with measurement greater than
70:

WITH time_series_view AS (
 SELECT INTERPOLATE_LINEAR(
 CREATE_TIME_SERIES(time, ROUND(measure_value::double,2)),
 SEQUENCE(ago(15m), ago(1m), 10s)) AS cpu_user
 FROM sample.DevOps
 WHERE hostname = 'host-Hovjv' and measure_name = 'cpu_utilization'
 AND time > ago(30m)
 GROUP BY hostname
)
SELECT FILTER(cpu_user, x -> x.value > 70.0) AS cpu_above_threshold
from time_series_view

Example

Construct a time series of CPU utilization of a host and determine the sum squared of the
measurements:

WITH time_series_view AS (
 SELECT INTERPOLATE_LINEAR(
 CREATE_TIME_SERIES(time, ROUND(measure_value::double,2)),
 SEQUENCE(ago(15m), ago(1m), 10s)) AS cpu_user
 FROM sample.DevOps
 WHERE hostname = 'host-Hovjv' and measure_name = 'cpu_utilization'
 AND time > ago(30m)
 GROUP BY hostname
)
SELECT REDUCE(cpu_user,

Built-in time series functionality 713

Amazon Timestream Developer Guide

 DOUBLE '0.0',
 (s, x) -> x.value * x.value + s,
 s -> s)
from time_series_view

Example

Construct a time series of CPU utilization of a host and determine the fraction of samples that are
above the CPU threshold:

WITH time_series_view AS (
 SELECT INTERPOLATE_LINEAR(
 CREATE_TIME_SERIES(time, ROUND(measure_value::double,2)),
 SEQUENCE(ago(15m), ago(1m), 10s)) AS cpu_user
 FROM sample.DevOps
 WHERE hostname = 'host-Hovjv' and measure_name = 'cpu_utilization'
 AND time > ago(30m)
 GROUP BY hostname
)
SELECT ROUND(
 REDUCE(cpu_user,
 -- initial state
 CAST(ROW(0, 0) AS ROW(count_high BIGINT, count_total BIGINT)),
 -- function to count the total points and points above a certain threshold
 (s, x) -> CAST(ROW(s.count_high + IF(x.value > 70.0, 1, 0), s.count_total + 1) AS
 ROW(count_high BIGINT, count_total BIGINT)),
 -- output function converting the counts to fraction above threshold
 s -> IF(s.count_total = 0, NULL, CAST(s.count_high AS DOUBLE) / s.count_total)),
 4) AS fraction_cpu_above_threshold
from time_series_view

SQL support

Timestream for LiveAnalytics supports some common SQL constructs. You can read more below.

Topics

• SELECT

• Subquery support

• SHOW statements

• DESCRIBE statements

SQL support 714

Amazon Timestream Developer Guide

• UNLOAD

SELECT

SELECT statements can be used to retrieve data from one or more tables. Timestream's query
language supports the following syntax for SELECT statements:

[WITH with_query [, ...]]
 SELECT [ALL | DISTINCT] select_expr [, ...]
 [function (expression) OVER (
 [PARTITION BY partition_expr_list]
 [ORDER BY order_list]
 [frame_clause])
 [FROM from_item [, ...]]
 [WHERE condition]
 [GROUP BY [ALL | DISTINCT] grouping_element [, ...]]
 [HAVING condition]
 [{ UNION | INTERSECT | EXCEPT } [ALL | DISTINCT] select]
 [ORDER BY order_list]
 [LIMIT [count | ALL]]

where

• function (expression) is one of the supported window functions.

• partition_expr_list is:

expression | column_name [, expr_list]

• order_list is:

expression | column_name [ASC | DESC]
[NULLS FIRST | NULLS LAST]
[, order_list]

• frame_clause is:

ROWS | RANGE
{ UNBOUNDED PRECEDING | expression PRECEDING | CURRENT ROW } |
{BETWEEN
{ UNBOUNDED PRECEDING | expression { PRECEDING | FOLLOWING } |
CURRENT ROW}

SQL support 715

Amazon Timestream Developer Guide

AND
{ UNBOUNDED FOLLOWING | expression { PRECEDING | FOLLOWING } |
CURRENT ROW }}

• from_item is one of:

table_name [[AS] alias [(column_alias [, ...])]]
from_item join_type from_item [ON join_condition | USING (join_column [, ...])]

• join_type is one of:

[INNER] JOIN
LEFT [OUTER] JOIN
RIGHT [OUTER] JOIN
FULL [OUTER] JOIN

• grouping_element is one of:

()
expression

Subquery support

Timestream supports subqueries in EXISTS and IN predicates. The EXISTS predicate determines
if a subquery returns any rows. The IN predicate determines if values produced by the subquery
match the values or expression of in IN clause. The Timestream query language supports correlated
and other subqueries.

SELECT t.c1
FROM (VALUES 1, 2, 3, 4, 5) AS t(c1)
WHERE EXISTS
(SELECT t.c2
 FROM (VALUES 1, 2, 3) AS t(c2)
 WHERE t.c1= t.c2
)
ORDER BY t.c1

c1

1

SQL support 716

Amazon Timestream Developer Guide

c1

2

3

SELECT t.c1
FROM (VALUES 1, 2, 3, 4, 5) AS t(c1)
WHERE t.c1 IN
(SELECT t.c2
 FROM (VALUES 2, 3, 4) AS t(c2)
)
ORDER BY t.c1

c1

2

3

4

SHOW statements

You can view all the databases in an account by using the SHOW DATABASES statement. The syntax
is as follows:

SHOW DATABASES [LIKE pattern]

where the LIKE clause can be used to filter database names.

You can view all the tables in an account by using the SHOW TABLES statement. The syntax is as
follows:

SHOW TABLES [FROM database] [LIKE pattern]

where the FROM clause can be used to filter database names and the LIKE clause can be used to
filter table names.

SQL support 717

Amazon Timestream Developer Guide

You can view all the measures for a table by using the SHOW MEASURES statement. The syntax is as
follows:

SHOW MEASURES FROM database.table [LIKE pattern]

where the FROM clause will be used to specify the database and table name and the LIKE clause
can be used to filter measure names.

DESCRIBE statements

You can view the metadata for a table by using the DESCRIBE statement. The syntax is as follows:

DESCRIBE database.table

where table contains the table name. The describe statement returns the column names and data
types for the table.

UNLOAD

Timestream for LiveAnalytics supports an UNLOAD command as an extension to its SQL support.
Data types supported by UNLOAD are described in Supported data types. The time and unknown
types do not apply to UNLOAD.

UNLOAD (SELECT statement)
 TO 's3://bucket-name/folder'
 WITH (option = expression [, ...])

where option is

{ partitioned_by = ARRAY[col_name[,…]]
 | format = ['{ CSV | PARQUET }']
 | compression = ['{ GZIP | NONE }']
 | encryption = ['{ SSE_KMS | SSE_S3 }']
 | kms_key = '<string>'
 | field_delimiter ='<character>'
 | escaped_by = '<character>'
 | include_header = ['{true, false}']
 | max_file_size = '<value>'
}

SQL support 718

Amazon Timestream Developer Guide

SELECT statement

The query statement used to select and retrieve data from one or more Timestream for
LiveAnalytics tables.

(SELECT column 1, column 2, column 3 from database.table
 where measure_name = "ABC" and timestamp between ago (1d) and now())

TO clause

TO 's3://bucket-name/folder'

or

TO 's3://access-point-alias/folder'

The TO clause in the UNLOAD statement specifies the destination for the output of the query
results. You need to provide the full path, including either Amazon S3 bucket-name or Amazon
S3 access-point-alias with folder location on Amazon S3 where Timestream for LiveAnalytics
writes the output file objects. The S3 bucket should be owned by the same account and in
the same region. In addition to the query result set, Timestream for LiveAnalytics writes the
manifest and metadata files to specified destination folder.

PARTITIONED_BY clause

partitioned_by = ARRAY [col_name[,…] , (default: none)

The partitioned_by clause is used in queries to group and analyze data at a granular
level. When you export your query results to the S3 bucket, you can choose to partition the
data based on one or more columns in the select query. When partitioning the data, the
exported data is divided into subsets based on the partition column and each subset is stored
in a separate folder. Within the results folder that contains your exported data, a sub-folder
folder/results/partition column = partition value/ is automatically created.
However, note that partitioned columns are not included in the output file.

partitioned_by is not a mandatory clause in the syntax. If you choose to export the data
without any partitioning, you can exclude the clause in the syntax.

SQL support 719

Amazon Timestream Developer Guide

Example

Assuming you are monitoring clickstream data of your website and have 5 channels of traffic
namely direct, Social Media, Organic Search, Other, and Referral. When exporting
the data, you can choose to partition the data using the column Channel. Within your data
folder, s3://bucketname/results, you will have five folders each with their respective
channel name, for instance, s3://bucketname/results/channel=Social Media/.
Within this folder you will find the data of all the customers that landed on your website
through the Social Media channel. Similarly, you will have other folders for the remaining
channels.

Exported data partitioned by Channel column

FORMAT

format = ['{ CSV | PARQUET }' , default: CSV

The keywords to specify the format of the query results written to your S3 bucket. You can
export the data either as a comma separated value (CSV) using a comma (,) as the default
delimiter or in the Apache Parquet format, an efficient open columnar storage format for
analytics.

COMPRESSION

compression = ['{ GZIP | NONE }'], default: GZIP

You can compress the exported data using compression algorithm GZIP or have it
uncompressed by specifying the NONE option.

SQL support 720

Amazon Timestream Developer Guide

ENCRYPTION

encryption = ['{ SSE_KMS | SSE_S3 }'], default: SSE_S3

The output files on Amazon S3 are encrypted using your selected encryption option. In addition
to your data, the manifest and metadata files are also encrypted based on your selected
encryption option. We currently support SSE_S3 and SSE_KMS encryption. SSE_S3 is a server-
side encryption with Amazon S3 encrypting the data using 256-bit advanced encryption
standard (AES) encryption. SSE_KMS is a server-side encryption to encrypt data using customer-
managed keys.

KMS_KEY

kms_key = '<string>'

KMS Key is a customer-defined key to encrypt exported query results. KMS Key is securely
managed by Amazon Key Management Service (Amazon KMS) and used to encrypt data files on
Amazon S3.

FIELD_DELIMITER

field_delimiter ='<character>' , default: (,)

When exporting the data in CSV format, this field specifies a single ASCII character that is
used to separate fields in the output file, such as pipe character (|), a comma (,), or tab (/t). The
default delimiter for CSV files is a comma character. If a value in your data contains the chosen
delimiter, the delimiter will be quoted with a quote character. For instance, if the value in your
data contains Time,stream, then this value will be quoted as "Time,stream" in the exported
data. The quote character used by Timestream for LiveAnalytics is double quotes (").

Avoid specifying the carriage return character (ASCII 13, hex 0D, text '\r') or the line break
character (ASCII 10, hex 0A, text '\n') as the FIELD_DELIMITER if you want to include headers
in the CSV, since that will prevent many parsers from being able to parse the headers correctly
in the resulting CSV output.

ESCAPED_BY

escaped_by = '<character>', default: (\)

SQL support 721

Amazon Timestream Developer Guide

When exporting the data in CSV format, this field specifies the character that should be treated
as an escape character in the data file written to S3 bucket. Escaping happens in the following
scenarios:

1. If the value itself contains the quote character (") then it will be escaped using an escape
character. For example, if the value is Time"stream, where (\) is the configured escape
character, then it will be escaped as Time\"stream.

2. If the value contains the configured escape character, it will be escaped. For example, if the
value is Time\stream, then it will be escaped as Time\\stream.

Note

If the exported output contains complex data type in the like Arrays, Rows or
Timeseries, it will be serialized as a JSON string. Following is an example.

Data type Actual value How the value is escaped
in CSV format [serialized
JSON string]

Array [23,24,25] "[23,24,25]"

Row (x=23.0, y=hello) "{\"x\":23.0,\"y\":
\"hello\"}"

Timeseries [(time=1970-01-01
00:00:00.000000010
, value=100.0),
(time=1970-01-01
00:00:00.000000012,
value=120.0)]

"[{\"time\":\"1970
-01-01 00:00:00.
000000010Z\",\"val
ue\":100.0},{\"tim
e\":\"1970-01-01
00:00:00.000000012
Z\",\"value\":120.
0}]"

INCLUDE_HEADER

include_header = 'true' , default: 'false'

SQL support 722

Amazon Timestream Developer Guide

When exporting the data in CSV format, this field lets you include column names as the first
row of the exported CSV data files.

The accepted values are 'true' and 'false' and the default value is 'false'. Text transformation
options such as escaped_by and field_delimiter apply to headers as well.

Note

When including headers, it is important that you not select a carriage return character
(ASCII 13, hex 0D, text '\r') or a line break character (ASCII 10, hex 0A, text '\n') as the
FIELD_DELIMITER, since that will prevent many parsers from being able to parse the
headers correctly in the resulting CSV output.

MAX_FILE_SIZE

max_file_size = 'X[MB|GB]' , default: '78GB'

This field specifies the maximum size of the files that the UNLOAD statement creates in Amazon
S3. The UNLOAD statement can create multiple files but the maximum size of each file written
to Amazon S3 will be approximately what is specified in this field.

The value of the field must be between 16 MB and 78 GB, inclusive. You can specify it in integer
such as 12GB, or in decimals such as 0.5GB or 24.7MB. The default value is 78 GB.

The actual file size is approximated when the file is being written, so the actual maximum size
may not be exactly equal to the number you specify.

Logical operators

Timestream for LiveAnalytics supports the following logical operators.

Operator Description Example

AND True if both values are true a AND b

OR True if either value is true a OR b

NOT True if the value is false NOT a

Logical operators 723

Amazon Timestream Developer Guide

• The result of an AND comparison may be NULL if one or both sides of the expression are NULL.

• If at least one side of an AND operator is FALSE the expression evaluates to FALSE.

• The result of an OR comparison may be NULL if one or both sides of the expression are NULL.

• If at least one side of an OR operator is TRUE the expression evaluates to TRUE.

• The logical complement of NULL is NULL.

The following truth table demonstrates the handling of NULL in AND and OR:

A B A and b A or b

null null null null

false null false null

null false false null

true null null true

null true null true

false false false false

true false false true

false true false true

true true true true

The following truth table demonstrates the handling of NULL in NOT:

A Not a

null null

true false

false true

Logical operators 724

Amazon Timestream Developer Guide

Comparison operators

Timestream for LiveAnalytics supports the following comparison operators.

Operator Description

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

= Equal

<> Not equal

!= Not equal

Note

• The BETWEEN operator tests if a value is within a specified range. The syntax is as follows:

BETWEEN min AND max

The presence of NULL in a BETWEEN or NOT BETWEEN statement will result in the
statement evaluating to NULL.

• IS NULL and IS NOT NULL operators test whether a value is null (undefined). Using
NULL with IS NULL evaluates to true.

• In SQL, a NULL value signifies an unknown value.

Comparison functions

Timestream for LiveAnalytics supports the following comparison functions.

Topics

Comparison operators 725

Amazon Timestream Developer Guide

• greatest()

• least()

• ALL(), ANY() and SOME()

greatest()

The greatest() function returns the largest of the provided values. It returns NULL if any of the
provided values are NULL. The syntax is as follows.

greatest(value1, value2, ..., valueN)

least()

The least() function returns the smallest of the provided values. It returns NULL if any of the
provided values are NULL. The syntax is as follows.

least(value1, value2, ..., valueN)

ALL(), ANY() and SOME()

The ALL, ANY and SOME quantifiers can be used together with comparison operators in the
following way.

Expression Meaning

A = ALL(...) Evaluates to true when A is equal to all values.

A <> ALL(...) Evaluates to true when A does not match any
value.

A < ALL(...) Evaluates to true when A is smaller than the
smallest value.

A = ANY(...) Evaluates to true when A is equal to any of the
values.

A <> ANY(...) Evaluates to true when A does not match one
or more values.

Comparison functions 726

Amazon Timestream Developer Guide

Expression Meaning

A < ANY(...) Evaluates to true when A is smaller than the
biggest value.

Examples and usage notes

Note

When using ALL, ANY or SOME, the keyword VALUES should be used if the comparison
values are a list of literals.

Example: ANY()

An example of ANY() in a query statement as follows.

SELECT 11.7 = ANY (VALUES 12.0, 13.5, 11.7)

An alternative syntax for the same operation is as follows.

SELECT 11.7 = ANY (SELECT 12.0 UNION ALL SELECT 13.5 UNION ALL SELECT 11.7)

In this case, ANY() evaluates to True.

Example: ALL()

An example of ALL() in a query statement as follows.

SELECT 17 < ALL (VALUES 19, 20, 15);

An alternative syntax for the same operation is as follows.

SELECT 17 < ALL (SELECT 19 UNION ALL SELECT 20 UNION ALL SELECT 15);

In this case, ALL() evaluates to False.

Example: SOME()

An example of SOME() in a query statement as follows.

Comparison functions 727

Amazon Timestream Developer Guide

SELECT 50 >= SOME (VALUES 53, 77, 27);

An alternative syntax for the same operation is as follows.

SELECT 50 >= SOME (SELECT 53 UNION ALL SELECT 77 UNION ALL SELECT 27);

In this case, SOME() evaluates to True.

Conditional expressions

Timestream for LiveAnalytics supports the following conditional expressions.

Topics

• The CASE statement

• The IF statement

• The COALESCE statement

• The NULLIF statement

• The TRY statement

The CASE statement

The CASE statement searches each value expression from left to right until it finds one that equals
expression. If it finds a match, the result for the matching value is returned. If no match is found,
the result from the ELSE clause is returned if it exists; otherwise null is returned. The syntax is as
follows:

CASE expression
 WHEN value THEN result
 [WHEN ...]
 [ELSE result]
END

Timestream also supports the following syntax for CASE statements. In this syntax, the "searched"
form evaluates each boolean condition from left to right until one is true and returns the
matching result. If no conditions are true, the result from the ELSE clause is returned if it exists;
otherwise null is returned. See below for the alternate syntax:

Conditional expressions 728

Amazon Timestream Developer Guide

CASE
 WHEN condition THEN result
 [WHEN ...]
 [ELSE result]
END

The IF statement

The IF statement evaluates a condition to be true or false and returns the appropriate value.
Timestream supports the following two syntax representations for IF:

if(condition, true_value)

This syntax evaluates and returns true_value if condition is true; otherwise null is returned
and true_value is not evaluated.

if(condition, true_value, false_value)

This syntax evaluates and returns true_value if condition is true, otherwise evaluates and
returns false_value.

Examples

SELECT
 if(true, 'example 1'),
 if(false, 'example 2'),
 if(true, 'example 3 true', 'example 3 false'),
 if(false, 'example 4 true', 'example 4 false')

_col0 _col1 _col2 _col3

example 1 -

null

example 3 true example 4 false

The COALESCE statement

COALESCE returns the first non-null value in an argument list. The syntax is as follows:

Conditional expressions 729

Amazon Timestream Developer Guide

coalesce(value1, value2[,...])

The NULLIF statement

The IF statement evaluates a condition to be true or false and returns the appropriate value.
Timestream supports the following two syntax representations for IF:

NULLIF returns null if value1 equals value2; otherwise it returns value1. The syntax is as
follows:

nullif(value1, value2)

The TRY statement

The TRY function evaluates an expression and handles certain types of errors by returning null.
The syntax is as follows:

try(expression)

Conversion functions

Timestream for LiveAnalytics supports the following conversion functions.

Topics

• cast()

• try_cast()

cast()

The syntax of the cast function to explicitly cast a value as a type is as follows.

cast(value AS type)

try_cast()

Timestream for LiveAnalytics also supports the try_cast function that is similar to cast but returns
null if cast fails. The syntax is as follows.

Conversion functions 730

Amazon Timestream Developer Guide

try_cast(value AS type)

Mathematical operators

Timestream for LiveAnalytics supports the following mathematical operators.

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division (integer division performs truncation)

% Modulus (remainder)

Mathematical functions

Timestream for LiveAnalytics supports the following mathematical functions.

Function Output data type Description

abs(x) [same as input] Returns the absolute value of
x.

cbrt(x) double Returns the cube root of x.

ceiling(x) or ceil(x) [same as input] Returns x rounded up to the
nearest integer.

degrees(x) double Converts angle x in radians to
degrees.

e() double Returns the constant Euler's
number.

Mathematical operators 731

Amazon Timestream Developer Guide

Function Output data type Description

exp(x) double Returns Euler's number raised
to the power of x.

floor(x) [same as input] Returns x rounded down to
the nearest integer.

from_base(string,radix) bigint Returns the value of string
interpreted as a base-radix
number.

ln(x) double Returns the natural logarithm
of x.

log2(x) double Returns the base 2 logarithm
of x.

log10(x) double Returns the base 10
logarithm of x.

mod(n,m) [same as input] Returns the modulus
(remainder) of n divided by m.

pi() double Returns the constant Pi.

pow(x, p) or power(x, p) double Returns x raised to the power
of p.

radians(x) double Converts angle x in degrees to
radians.

rand() or random() double Returns a pseudo-random
value in the range 0.0 1.0.

random(n) [same as input] Returns a pseudo-random
number between 0 and n
(exclusive).

Mathematical functions 732

Amazon Timestream Developer Guide

Function Output data type Description

round(x) [same as input] Returns x rounded to the
nearest integer.

round(x,d) [same as input] Returns x rounded to d
decimal places.

sign(x) [same as input] Returns the signum function
of x, that is:

• 0 if the argument is 0

• 1 if the argument is greater
than 0

• -1 if the argument is less
than 0.

For double arguments, the
function additionally returns:

• NaN if the argument is NaN

• 1 if the argument is
+Infinity

• -1 if the argument is -
Infinity.

sqrt(x) double Returns the square root of x.

to_base(x, radix) varchar Returns the base-radi
x representation of x.

truncate(x) double Returns x rounded to integer
by dropping digits after
decimal point.

acos(x) double Returns the arc cosine of x.

asin(x) double Returns the arc sine of x.

Mathematical functions 733

Amazon Timestream Developer Guide

Function Output data type Description

atan(x) double Returns the arc tangent of x.

atan2(y, x) double Returns the arc tangent
of y / x.

cos(x) double Returns the cosine of x.

cosh(x) double Returns the hyperbolic cosine
of x.

sin(x) double Returns the sine of x.

tan(x) double Returns the tangent of x.

tanh(x) double Returns the hyperbolic
tangent of x.

infinity() double Returns the constant
representing positive infinity.

is_finite(x) boolean Determine if x is finite.

is_infinite(x) boolean Determine if x is infinite.

is_nan(x) boolean Determine if x is not-a-num
ber.

nan() double Returns the constant
representing not-a-number.

String operators

Timestream for LiveAnalytics supports the || operator for concatenating one or more strings.

String operators 734

Amazon Timestream Developer Guide

String functions

Note

The input data type of these functions is assumed to be varchar unless otherwise specified.

Function Output data type Description

chr(n) varchar Returns the Unicode code
point n as a varchar.

codepoint(x) integer Returns the Unicode code
point of the only character of
str.

concat(x1, ..., xN) varchar Returns the concatenation of
x1, x2, ..., xN.

hamming_distance(x1,x2) bigint Returns the Hamming
distance of x1 and x2, i.e. the
number of positions at which
the corresponding character
s are different. Note that the
two varchar inputs must have
the same length.

length(x) bigint Returns the length of x in
characters.

levenshtein_distance(x1, x2) bigint Returns the Levenshtein edit
distance of x1 and x2, i.e. the
minimum number of single-
character edits (insertions,
deletions or substitutions)
needed to change x1 into x2.

lower(x) varchar Converts x to lowercase.

String functions 735

Amazon Timestream Developer Guide

Function Output data type Description

lpad(x1, bigint size, x2) varchar Left pads x1 to size character
s with x2. If size is less than
the length of x1, the result is
truncated to size characters.
size must not be negative and
x2 must be non-empty.

ltrim(x) varchar Removes leading whitespace
from x.

replace(x1, x2) varchar Removes all instances of x2
from x1.

replace(x1, x2, x3) varchar Replaces all instances of x2
with x3 in x1.

Reverse(x) varchar Returns x with the characters
in reverse order.

rpad(x1, bigint size, x2) varchar Right pads x1 to size
characters with x2. If size is
less than the length of x1,
the result is truncated to size
characters. size must not be
negative and x2 must be non-
empty.

rtrim(x) varchar Removes trailing whitespace
from x.

split(x1, x2) array(varchar) Splits x1 on delimiter x2 and
returns an array.

String functions 736

Amazon Timestream Developer Guide

Function Output data type Description

split(x1, x2, bigint limit) array(varchar) Splits x1 on delimiter x2 and
returns an array. The last
element in the array always
contain everything left in the
x1. limit must be a positive
number.

split_part(x1, x2, bigint pos) varchar Splits x1 on delimiter x2 and
returns the varchar field at
pos. Field indexes start with
1. If pos is larger than the
number of fields, then null is
returned.

strpos(x1, x2) bigint Returns the starting position
of the first instance of x2 in
x1. Positions start with 1. If
not found, 0 is returned.

strpos(x1, x2,bigint instance) bigint Returns the position of the
Nth instance of x2 in x1.
Instance must be a positive
number. Positions start with
1. If not found, 0 is returned.

strrpos(x1, x2) bigint Returns the starting position
of the last instance of x2 in
x1. Positions start with 1. If
not found, 0 is returned.

strrpos(x1, x2, bigint instance) bigint Returns the position of the
Nth instance of x2 in x1
starting from the end of x1.
instance must be a positive
number. Positions start with
1. If not found, 0 is returned.

String functions 737

Amazon Timestream Developer Guide

Function Output data type Description

position(x2 IN x1) bigint Returns the starting position
of the first instance of x2 in
x1. Positions start with 1. If
not found, 0 is returned.

substr(x, bigint start) varchar Returns the rest of x from
the starting position start.
Positions start with 1. A
negative starting position is
interpreted as being relative
to the end of x.

substr(x, bigint start, bigint
len)

varchar Returns a substring from x of
length len from the starting
position start. Positions start
with 1. A negative starting
position is interpreted as
being relative to the end of x.

trim(x) varchar Removes leading and trailing
whitespace from x.

upper(x) varchar Converts x to uppercase.

Array operators

Timestream for LiveAnalytics supports the following array operators.

Operator Description

[] Access an element of an array where the first
index starts at 1.

|| Concatenate an array with another array or
element of the same type.

Array operators 738

Amazon Timestream Developer Guide

Array functions

Timestream for LiveAnalytics supports the following array functions.

Function Output data type Description

array_distinct(x) array Remove duplicate values from
the array x.

SELECT array_dis
tinct(ARRAY[1,2,2,3])

Example result: [1,2,3]

array_intersect(x, y) array Returns an array of the
elements in the intersection
of x and y, without duplicates.

SELECT array_int
ersect(ARRAY[1,2,3],
 ARRAY[3,4,5])

Example result: [3]

array_union(x, y) array Returns an array of the
elements in the union of x
and y, without duplicates.

SELECT array_uni
on(ARRAY[1,2,3],
 ARRAY[3,4,5])

Example result:
[1,2,3,4,5]

array_except(x, y) array Returns an array of elements
in x but not in y, without
duplicates.

Array functions 739

Amazon Timestream Developer Guide

Function Output data type Description

SELECT array_exc
ept(ARRAY[1,2,3],
 ARRAY[3,4,5])

Example result: [1,2]

array_join(x, delimiter,
null_replacement)

varchar Concatenates the elements
of the given array using the
delimiter and an optional
string to replace nulls.

SELECT array_joi
n(ARRAY[1,2,3], ';',
 '')

Example result: 1;2;3

array_max(x) same as array elements Returns the maximum value
of input array.

SELECT array_max
(ARRAY[1,2,3])

Example result: 3

array_min(x) same as array elements Returns the minimum value
of input array.

SELECT array_min
(ARRAY[1,2,3])

Example result: 1

Array functions 740

Amazon Timestream Developer Guide

Function Output data type Description

array_position(x, element) bigint Returns the position of
the first occurrence of the
element in array x (or 0 if not
found).

SELECT array_pos
ition(ARRAY[3,4,5,9],
 5)

Example result: 3

array_remove(x, element) array Remove all elements that
equal element from array x.

SELECT array_rem
ove(ARRAY[3,4,5,9],
 4)

Example result: [3,5,9]

array_sort(x) array Sorts and returns the array
x. The elements of x must be
orderable. Null elements will
be placed at the end of the
returned array.

SELECT array_sor
t(ARRAY[6,8,2,9,3])

Example result:
[2,3,6,8,9]

Array functions 741

Amazon Timestream Developer Guide

Function Output data type Description

arrays_overlap(x, y) boolean Tests if arrays x and y have
any non-null elements in
common. Returns null if there
are no non-null elements
in common but either array
contains null.

SELECT arrays_ov
erlap(ARRAY[6,8,2,
9,3], ARRAY[6,8])

Example result: true

cardinality(x) bigint Returns the size of the array
x.

SELECT cardinali
ty(ARRAY[6,8,2,9,3])

Example result: 5

concat(array1, array2, ...,
arrayN)

array Concatenates the arrays
array1, array2, ..., arrayN.

SELECT concat(AR
RAY[6,8,2,9,3],
 ARRAY[11,32],
 ARRAY[6,8,2,0,14])

Example result:
[6,8,2,9,3,11,32,6,
8,2,0,14]

Array functions 742

Amazon Timestream Developer Guide

Function Output data type Description

element_at(array(E), index) E Returns element of array
at given index. If index < 0,
element_at accesses elements
from the last to the first.

SELECT element_a
t(ARRAY[6,8,2,9,3],
 1)

Example result: 6

repeat(element, count) array Repeat element for count
times.

SELECT repeat(1, 3)

Example result: [1,1,1]

reverse(x) array Returns an array which has
the reversed order of array x.

SELECT reverse(A
RRAY[6,8,2,9,3])

Example result:
[3,9,2,8,6]

Array functions 743

Amazon Timestream Developer Guide

Function Output data type Description

sequence(start, stop) array(bigint) Generate a sequence of
integers from start to stop,
incrementing by 1 if start is
less than or equal to stop,
otherwise -1.

SELECT sequence(3, 8)

Example result:
[3,4,5,6,7,8]

sequence(start, stop, step) array(bigint) Generate a sequence of
integers from start to stop,
incrementing by step.

SELECT sequence(3, 15,
 2)

Example result:
[3,5,7,9,11,13,15]

Array functions 744

Amazon Timestream Developer Guide

Function Output data type Description

sequence(start, stop) array(timestamp) Generate a sequence of
timestamps from start date to
stop date, incrementing by 1
day.

SELECT sequence(
'2023-04-02 19:26:12.
941000000', '2023-04-
06 19:26:12.941000000
', 1d)

Example result:
[2023-04-02
19:26:12.941000000
,2023-04-03
19:26:12.941000000
,2023-04-04
19:26:12.941000000
,2023-04-05
19:26:12.941000000
,2023-04-06
19:26:12.941000000]

Array functions 745

Amazon Timestream Developer Guide

Function Output data type Description

sequence(start, stop, step) array(timestamp) Generate a sequence of
timestamps from start to
stop, incrementing by step.
The data type of step is
interval.

SELECT sequence(
'2023-04-02 19:26:12.
941000000', '2023-04-
10 19:26:12.941000000
', 2d)

Example result:
[2023-04-02
19:26:12.941000000
,2023-04-04
19:26:12.941000000
,2023-04-06
19:26:12.941000000
,2023-04-08
19:26:12.941000000
,2023-04-10
19:26:12.941000000]

shuffle(x) array Generate a random permutati
on of the given array x.

SELECT shuffle(A
RRAY[6,8,2,9,3])

Example result:
[6,3,2,9,8]

Array functions 746

Amazon Timestream Developer Guide

Function Output data type Description

slice(x, start, length) array Subsets array x starting from
index start (or starting from
the end if start is negative)
with a length of length.

SELECT slice(ARR
AY[6,8,2,9,3], 1, 3)

Example result: [6,8,2]

zip(array1, array2[, ...]) array(row) Merges the given arrays,
element-wise, into a
single array of rows. If the
arguments have an uneven
length, missing values are
filled with NULL.

SELECT zip(ARRAY
[6,8,2,9,3], ARRAY[15,
24])

Example result: [(6,
15),(8, 24),(2,
-),(9, -),(3,
-)]

Bitwise functions

Timestream for LiveAnalytics supports the following bitwise functions.

Function Output data type Description

bit_count(bigint, bigint) bigint (two's complement) Returns the count of bits in
the first bigint parameter
where the second parameter

Bitwise functions 747

Amazon Timestream Developer Guide

Function Output data type Description

is a bit signed integer such as
8 or 64.

SELECT bit_count(19, 8)

Example result: 3

SELECT bit_count(19, 2)

Example result: Number
must be represent
able with the bits
specified. 19 can not
be represented with 2
bits

bitwise_and(bigint, bigint) bigint (two's complement) Returns the bitwise AND of
the bigint parameters.

SELECT bitwise_and(12,
 7)

Example result: 4

bitwise_not(bigint) bigint (two's complement) Returns the bitwise NOT of
the bigint parameter.

SELECT bitwise_not(12)

Example result: -13

Bitwise functions 748

Amazon Timestream Developer Guide

Function Output data type Description

bitwise_or(bigint, bigint) bigint (two's complement) Returns the bitwise OR of the
bigint parameters.

SELECT bitwise_or(12,
 7)

Example result: 15

bitwise_xor(bigint, bigint) bigint (two's complement) Returns the bitwise XOR of
the bigint parameters.

SELECT bitwise_xor(12,
 7)

Example result: 11

Regular expression functions

The regular expression functions in Timestream for LiveAnalytics support the Java pattern syntax.
Timestream for LiveAnalytics supports the following regular expression functions.

Function Output data type Description

regexp_extract_all(string,
pattern)

array(varchar) Returns the substring(s)
matched by the regular
expression pattern in string.

SELECT regexp_ex
tract_all('example
 expect complex', 'ex
\w')

Example result:
[exa,exp]

Regular expression functions 749

http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

Amazon Timestream Developer Guide

Function Output data type Description

regexp_extract_all(string,
pattern, group)

array(varchar) Finds all occurrences of the
regular expression pattern
in string and returns the
capturing group number
group.

SELECT regexp_ex
tract_all('example
 expect complex', '(ex)
(\w)', 2)

Example result: [a,p]

regexp_extract(string,
pattern)

varchar Returns the first substring
matched by the regular
expression pattern in string.

SELECT regexp_ex
tract('example
 expect', 'ex\w')

Example result: exa

regexp_extract(string,
pattern, group)

varchar Finds the first occurrence
of the regular expression
pattern in string and returns
the capturing group number
group.

SELECT regexp_ex
tract('example
 expect', '(ex)(\w)',
 2)

Example result: a

Regular expression functions 750

http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html#gnumber
http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html#gnumber

Amazon Timestream Developer Guide

Function Output data type Description

regexp_like(string, pattern) boolean Evaluates the regular
expression pattern and
determines if it is contained
within string. This function is
similar to the LIKE operator,
except that the pattern only
needs to be contained within
string, rather than needing
to match all of string. In
other words, this performs
a contains operation rather
than a match operation. You
can match the entire string by
anchoring the pattern using ^
and $.

SELECT regexp_li
ke('example', 'ex')

Example result: true

regexp_replace(string,
pattern)

varchar Removes every instance of
the substring matched by the
regular expression pattern
from string.

SELECT regexp_re
place('example
 expect', 'expect')

Example result: example

Regular expression functions 751

Amazon Timestream Developer Guide

Function Output data type Description

regexp_replace(string,
pattern, replacement)

varchar Replaces every instance of
the substring matched by
the regex pattern in string
with replacement. Capturing
groups can be referenced in
replacement using $g for a
numbered group or ${name}
for a named group. A dollar
sign ($) may be included in
the replacement by escaping
it with a backslash (\$).

SELECT regexp_re
place('example
 expect', 'expect',
 'surprise')

Example result: example
surprise

Regular expression functions 752

Amazon Timestream Developer Guide

Function Output data type Description

regexp_replace(string,
pattern, function)

varchar Replaces every instance of
the substring matched by the
regular expression pattern
in string using function. The
lambda expression function is
invoked for each match with
the capturing groups passed
as an array. Capturing group
numbers start at one; there is
no group for the entire match
(if you need this, surround
the entire expression with
parenthesis).

SELECT regexp_re
place('example',
 '(\w)', x -> upper(x[1
]))

Example result: EXAMPLE

regexp_split(string, pattern) array(varchar) Splits string using the regular
expression pattern and
returns an array. Trailing
empty strings are preserved.

SELECT regexp_sp
lit('example', 'x')

Example result:
[e,ample]

Regular expression functions 753

https://prestodb.io/docs/current/functions/lambda.html

Amazon Timestream Developer Guide

Date / time operators

Note

Timestream for LiveAnalytics does not support negative time values. Any operation
resulting in negative time results in error.

Timestream for LiveAnalytics supports the following operations on timestamps, dates, and
intervals.

Operator Description

+ Addition

- Subtraction

Topics

• Operations

• Addition

• Subtraction

Operations

The result type of an operation is based on the operands. Interval literals such as 1day and 3s can
be used.

SELECT date '2022-05-21' + interval '2' day

SELECT date '2022-05-21' + 2d

SELECT date '2022-05-21' + 2day

Example result for each: 2022-05-23

Date / time operators 754

Amazon Timestream Developer Guide

Interval units include second, minute, hour, day, week, month, and year. But in some cases not
all are applicable. For example seconds, minutes, and hours can not be added to or subtracted from
a date.

SELECT interval '4' year + interval '2' month

Example result: 4-2

SELECT typeof(interval '4' year + interval '2' month)

Example result: interval year to month

Result type of interval operations may be 'interval year to month' or 'interval day
to second' depending on the operands. Intervals can be added to or subtracted from dates
and timestamps. But a date or timestamp cannot be added to or subtracted from a date or
timestamp. To find intervals or durations related to dates or timestamps, see date_diff and
related functions in Interval and duration.

Addition

Example

SELECT date '2022-05-21' + interval '2' day

Example result: 2022-05-23

Example

SELECT typeof(date '2022-05-21' + interval '2' day)

Example result: date

Example

SELECT interval '2' year + interval '4' month

Example result: 2-4

Date / time operators 755

Amazon Timestream Developer Guide

Example

SELECT typeof(interval '2' year + interval '4' month)

Example result: interval year to month

Subtraction

Example

SELECT timestamp '2022-06-17 01:00' - interval '7' hour

Example result: 2022-06-16 18:00:00.000000000

Example

SELECT typeof(timestamp '2022-06-17 01:00' - interval '7' hour)

Example result: timestamp

Example

SELECT interval '6' day - interval '4' hour

Example result: 5 20:00:00.000000000

Example

SELECT typeof(interval '6' day - interval '4' hour)

Example result: interval day to second

Date / time functions

Note

Timestream for LiveAnalytics does not support negative time values. Any operation
resulting in negative time results in error.

Date / time functions 756

Amazon Timestream Developer Guide

Timestream for LiveAnalytics uses UTC timezone for date and time. Timestream supports the
following functions for date and time.

Topics

• General and conversion

• Interval and duration

• Formatting and parsing

• Extraction

General and conversion

Timestream for LiveAnalytics supports the following general and conversion functions for date and
time.

Function Output data type Description

current_date date Returns current date in UTC.
No parentheses used.

SELECT current_date

Example result: 2022-07-0
7

Note

This is also a reserved
keyword. For a
list of reserved
keywords, see
Reserved keywords.

current_time time Returns current time in UTC.
No parentheses used.

SELECT current_time

Date / time functions 757

Amazon Timestream Developer Guide

Function Output data type Description

Example result: 17:41:52.
827000000

Note

This is also a reserved
keyword. For a
list of reserved
keywords, see
Reserved keywords.

current_timestamp or now() timestamp Returns current timestamp in
UTC.

SELECT current_t
imestamp

Example result: 2022-07-0
7 17:42:32.939000000

Note

This is also a reserved
keyword. For a
list of reserved
keywords, see
Reserved keywords.

Date / time functions 758

Amazon Timestream Developer Guide

Function Output data type Description

current_timezone() varchar

The value will be 'UTC.'

Timestream uses UTC
timezone for date and time.

SELECT current_t
imezone()

Example result: UTC

date(varchar(x)), date(time
stamp)

date SELECT date(TIMESTAMP
 '2022-07-07 17:44:43.
771000000')

Example result: 2022-07-0
7

last_day_of_month(
timestamp), last_day_
of_month(date)

date SELECT last_day_
of_month(TIMESTAMP
 '2022-07-07 17:44:43.
771000000')

Example result: 2022-07-3
1

from_iso8601_timestamp(stri
ng)

timestamp Parses the ISO 8601
timestamp into internal
timestamp format.

SELECT from_iso8
601_timestamp('202
2-06-17T08:04:05.0
00000000+05:00')

Example result: 2022-06-1
7 03:04:05.000000000

Date / time functions 759

Amazon Timestream Developer Guide

Function Output data type Description

from_iso8601_date(string) date Parses the ISO 8601 date
string into internal timestamp
format for UTC 00:00:00 of
the specified date.

SELECT from_iso8
601_date('2022-07-
17')

Example result: 2022-07-1
7

to_iso8601(timestamp),
to_iso8601(date)

varchar Returns an ISO 8601
formatted string for the
input.

SELECT to_iso860
1(from_iso8601_dat
e('2022-06-17'))

Example result: 2022-06-1
7

from_milliseconds(bigint) timestamp SELECT from_mill
iseconds(1)

Example result: 1970-01-0
1 00:00:00.001000000

Date / time functions 760

Amazon Timestream Developer Guide

Function Output data type Description

from_nanoseconds(bigint) timestamp select from_nano
seconds(300000001)

Example result: 1970-01-0
1 00:00:00.300000001

from_unixtime(double) timestamp Returns a timestamp which
corresponds to the provided
unixtime.

SELECT from_unixtime(1)

Example result: 1970-01-0
1 00:00:01.000000000

localtime time Returns current time in UTC.
No parentheses used.

SELECT localtime

Example result: 17:58:22.
654000000

Note

This is also a reserved
keyword. For a
list of reserved
keywords, see
Reserved keywords.

Date / time functions 761

Amazon Timestream Developer Guide

Function Output data type Description

localtimestamp timestamp Returns current timestamp in
UTC. No parentheses used.

SELECT localtimestamp

Example result: 2022-07-0
7 17:59:04.368000000

Note

This is also a reserved
keyword. For a
list of reserved
keywords, see
Reserved keywords.

to_milliseconds(interval day
to second), to_milliseconds(ti
mestamp)

bigint SELECT to_millis
econds(INTERVAL '2'
 DAY + INTERVAL '3'
 HOUR)

Example result: 183600000

SELECT to_millis
econds(TIMESTAMP
 '2022-06-17 17:44:43.
771000000')

Example result: 165548788
3771

Date / time functions 762

Amazon Timestream Developer Guide

Function Output data type Description

to_nanoseconds(interval
day to second), to_nanose
conds(timestamp)

bigint SELECT to_nanose
conds(INTERVAL '2' DAY
 + INTERVAL '3' HOUR)

Example result: 183600000
000000

SELECT to_nanose
conds(TIMESTAMP
 '2022-06-17 17:44:43.
771000678')

Example result: 165548788
3771000678

to_unixtime(timestamp) double Returns unixtime for the
provided timestamp.

SELECT to_unixti
me('2022-06-17
 17:44:43.771000000')

Example result: 1.6554878
837710001E9

Date / time functions 763

Amazon Timestream Developer Guide

Function Output data type Description

date_trunc(unit, timestamp) timestamp Returns the timestamp
truncated to unit, where unit
is one of [second, minute,
hour, day, week, month,
quarter, or year].

SELECT date_trun
c('minute', TIMESTAMP
 '2022-06-17 17:44:43.
771000000')

Example result: 2022-06-1
7 17:44:00.000000000

Interval and duration

Timestream for LiveAnalytics supports the following interval and duration functions for date and
time.

Function Output data type Description

date_add(unit, bigint, date),
date_add(unit, bigint, time),
date_add(varchar(x), bigint,
timestamp)

timestamp Adds a bigint of units, where
unit is one of [second, minute,
hour, day, week, month,
quarter, or year].

SELECT date_add('hour',
 9, TIMESTAMP '2022-06-
17 00:00:00')

Example result: 2022-06-1
7 09:00:00.000000000

Date / time functions 764

Amazon Timestream Developer Guide

Function Output data type Description

date_diff(unit, date, date) ,
date_diff(unit, time, time) ,
date_diff(unit, timestamp,
timestamp)

bigint Returns a difference, where
unit is one of [second, minute,
hour, day, week, month,
quarter, or year].

SELECT date_diff('day',
 DATE '2020-03-01',
 DATE '2020-03-02')

Example result: 1

parse_duration(string) interval Parses the input string
to return an interval
equivalent.

SELECT parse_dur
ation('42.8ms')

Example result: 0
00:00:00.042800000

SELECT typeof(pa
rse_duration('42.8
ms'))

Example result: interval
day to second

Date / time functions 765

Amazon Timestream Developer Guide

Function Output data type Description

bin(timestamp, interval) timestamp Rounds down the timestamp
 parameter's integer value

to the nearest multiple of
the interval parameter's
integer value.

The meaning of this return
value may not be obvious.
It is calculated using integer
arithmetic first by dividing
the timestamp integer by the
interval integer and then by
multiplying the result by the
interval integer.

Keeping in mind that a
timestamp specifies a UTC
point in time as a number of
fractions of a second elapsed
since the POSIX epoch
(January 1, 1970), the return
value will seldom align with
calendar units. For example,
if you specify an interval of
30 days, all the days since
the epoch are divided into
30-day increments, and the
start of the most recent 30-
day increment is returned,
which has no relationship to
calendar months.

Here are some examples:

bin(TIMESTAMP '2022-06-
17 10:15:20', 5m)

Date / time functions 766

Amazon Timestream Developer Guide

Function Output data type Description

 ==> 2022-06-17
 10:15:00.000000000
bin(TIMESTAMP '2022-06-
17 10:15:20', 1d)
 ==> 2022-06-17
 00:00:00.000000000
bin(TIMESTAMP '2022-06-
17 10:15:20', 10day)
 ==> 2022-06-17
 00:00:00.000000000
bin(TIMESTAMP '2022-06-
17 10:15:20', 30day)
 ==> 2022-05-28
 00:00:00.000000000

ago(interval) timestamp Returns the value correspon
ding to current_timestamp
interval.

SELECT ago(1d)

Example result: 2022-07-0
6 21:08:53.245000000

interval literals such as 1h,
1d, and 30m

interval Interval literals are a
convenience for parse_dur
ation(string). For example, 1d
is the same as parse_dur
ation('1d') . This
allows the use of the literals
wherever an interval is used.
For example, ago(1d) and
bin(<timestamp> , 1m).

Date / time functions 767

Amazon Timestream Developer Guide

Some interval literals act as shorthand for parse_duration. For example,
parse_duration('1day'), 1day, parse_duration('1d'), and 1d each return 1
00:00:00.000000000 where the type is interval day to second. Space is allowed in the
format provided to parse_duration. For example parse_duration('1day') also returns
00:00:00.000000000. But 1 day is not an interval literal.

The units related to interval day to second are ns, nanosecond, us, microsecond, ms,
millisecond, s, second, m, minute, h, hour, d, and day.

There is also interval year to month. The units related to interval year to month are y,
year, and month. For example, SELECT 1year returns 1-0. SELECT 12month also returns 1-0.
SELECT 8month returns 0-8.

Although the unit of quarter is also available for some functions such as date_trunc and
date_add, quarter is not available as part of an interval literal.

Formatting and parsing

Timestream for LiveAnalytics supports the following formatting and parsing functions for date and
time.

Function Output data type Description

date_format(timestamp,
varchar(x))

varchar For more information about
the format specifiers used
by this function, see https://
trino.io/docs/current/fu
nctions/datetime.html#mysq
l-date-functions

SELECT date_form
at(TIMESTAMP '2019-10-
20 10:20:20', '%Y-%m-
%d %H:%i:%s')

Example result: 2019-10-2
0 10:20:20

Date / time functions 768

https://trino.io/docs/current/functions/datetime.html#mysql-date-functions
https://trino.io/docs/current/functions/datetime.html#mysql-date-functions
https://trino.io/docs/current/functions/datetime.html#mysql-date-functions
https://trino.io/docs/current/functions/datetime.html#mysql-date-functions

Amazon Timestream Developer Guide

Function Output data type Description

date_parse(varchar(x),
varchar(y))

timestamp For more information about
the format specifiers used
by this function, see https://
trino.io/docs/current/fu
nctions/datetime.html#mysq
l-date-functions

SELECT date_pars
e('2019-10-20
 10:20:20', '%Y-%m-%d
 %H:%i:%s')

Example result: 2019-10-2
0 10:20:20.000000000

format_datetime(timestamp,
varchar(x))

varchar For more information about
the format string used by
this function, see http://j
oda-time.sourceforge.net/
apidocs/org/joda/time/fo
rmat/DateTimeFormat.html

SELECT format_da
tetime(parse_datet
ime('1968-01-13 12',
 'yyyy-MM-dd HH'),
 'yyyy-MM-dd HH')

Example result: 1968-01-1
3 12

Date / time functions 769

https://trino.io/docs/current/functions/datetime.html#mysql-date-functions
https://trino.io/docs/current/functions/datetime.html#mysql-date-functions
https://trino.io/docs/current/functions/datetime.html#mysql-date-functions
https://trino.io/docs/current/functions/datetime.html#mysql-date-functions
http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html
http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html
http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html
http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html

Amazon Timestream Developer Guide

Function Output data type Description

parse_datetime(varchar(x),
varchar(y))

timestamp For more information about
the format string used by
this function, see http://j
oda-time.sourceforge.net/
apidocs/org/joda/time/fo
rmat/DateTimeFormat.html

SELECT parse_dat
etime('2019-12-29
 10:10 PST', 'uuuu-LL-
dd HH:mm z')

Example result: 2019-12-2
9 18:10:00.000000000

Extraction

Timestream for LiveAnalytics supports the following extraction functions for date and time. The
extract function is the basis for the remaining convenience functions.

Function Output data type Description

extract bigint Extracts a field from a
timestamp, where field is one
of [YEAR, QUARTER, MONTH,
WEEK, DAY, DAY_OF_MO
NTH, DAY_OF_WEEK,
DOW, DAY_OF_YEAR, DOY,
YEAR_OF_WEEK, YOW, HOUR,
MINUTE, or SECOND].

SELECT extract(YEAR
 FROM '2019-10-12
 23:10:34.000000000')

Date / time functions 770

http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html
http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html
http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html
http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html

Amazon Timestream Developer Guide

Function Output data type Description

Example result: 2019

day(timestamp), day(date),
day(interval day to second)

bigint SELECT day('2019-10-12
 23:10:34.000000000')

Example result: 12

day_of_month(timestamp),
day_of_month(date),
day_of_month(interval day to
second)

bigint SELECT day_of_mo
nth('2019-10-12
 23:10:34.000000000')

Example result: 12

day_of_week(timestamp),
day_of_week(date)

bigint SELECT day_of_we
ek('2019-10-12
 23:10:34.000000000')

Example result: 6

day_of_year(timestamp),
day_of_year(date)

bigint SELECT day_of_ye
ar('2019-10-12
 23:10:34.000000000')

Example result: 285

dow(timestamp), dow(date) bigint Alias for day_of_week

doy(timestamp), doy(date) bigint Alias for day_of_year

hour(timestamp), hour(time),
hour(interval day to second)

bigint SELECT hour('2019-10-12
 23:10:34.000000000')

Example result: 23

Date / time functions 771

Amazon Timestream Developer Guide

Function Output data type Description

millisecond(timestamp),
millisecond(time), milliseco
nd(interval day to second)

bigint SELECT milliseco
nd('2019-10-12
 23:10:34.000000000')

Example result: 0

minute(timestamp), minute(ti
me), minute(interval day to
second)

bigint SELECT minute('2
019-10-12 23:10:34.
000000000')

Example result: 10

month(timestamp),
month(date), month(interval
year to month)

bigint SELECT month('20
19-10-12 23:10:34.
000000000')

Example result: 10

nanosecond(timestamp),
nanosecond(time), nanosecon
d(interval day to second)

bigint SELECT nanosecon
d(current_timestamp)

Example result: 162000000

quarter(timestamp), quarter(d
ate)

bigint SELECT quarter('
2019-10-12 23:10:34.
000000000')

Example result: 4

second(timestamp), second(ti
me), second(interval day to
second)

bigint SELECT second('2
019-10-12 23:10:34.
000000000')

Example result: 34

Date / time functions 772

Amazon Timestream Developer Guide

Function Output data type Description

week(timestamp), week(date) bigint SELECT week('2019-10-12
 23:10:34.000000000')

Example result: 41

week_of_year(timestamp),
week_of_year(date)

bigint Alias for week

year(timestamp), year(date),
year(interval year to month)

bigint SELECT year('2019-10-12
 23:10:34.000000000')

Example result: 2019

year_of_week(timestamp),
year_of_week(date)

bigint SELECT year_of_w
eek('2019-10-12
 23:10:34.000000000')

Example result: 2019

yow(timestamp), yow(date) bigint Alias for year_of_week

Aggregate functions

Timestream for LiveAnalytics supports the following aggregate functions.

Function Output data type Description

arbitrary(x) [same as input] Returns an arbitrary non-null
value of x, if one exists.

SELECT arbitrary(t.c)
 FROM (VALUES 1, 2, 3,
 4) AS t(c)

Example result: 1

Aggregate functions 773

Amazon Timestream Developer Guide

Function Output data type Description

array_agg(x) array<[same as input] Returns an array created from
the input x elements.

SELECT array_agg(t.c)
 FROM (VALUES 1, 2, 3,
 4) AS t(c)

Example result:
[1,2,3,4]

avg(x) double Returns the average (arithmet
ic mean) of all input values.

SELECT avg(t.c) FROM
 (VALUES 1, 2, 3, 4) AS
 t(c)

Example result: 2.5

bool_and(boolean) every(boo
lean)

boolean Returns TRUE if every input
value is TRUE, otherwise
FALSE.

SELECT bool_and(t.c)
 FROM (VALUES true,
 true, false, true) AS
 t(c)

Example result: false

Aggregate functions 774

Amazon Timestream Developer Guide

Function Output data type Description

bool_or(boolean) boolean Returns TRUE if any input
value is TRUE, otherwise
FALSE.

SELECT bool_or(t.c)
 FROM (VALUES true,
 true, false, true) AS
 t(c)

Example result: true

count(*) count(x) bigint count(*) returns the number
of input rows.

count(x) returns the number
of non-null input values.

SELECT count(t.c) FROM
 (VALUES true, true,
 false, true) AS t(c)

Example result: 4

count_if(x) bigint Returns the number of TRUE
input values.

SELECT count_if(t.c)
 FROM (VALUES true,
 true, false, true) AS
 t(c)

Example result: 3

Aggregate functions 775

Amazon Timestream Developer Guide

Function Output data type Description

geometric_mean(x) double Returns the geometric mean
of all input values.

SELECT geometric
_mean(t.c) FROM
 (VALUES 1, 2, 3, 4) AS
 t(c)

Example result: 2.2133638
39400643

max_by(x, y) [same as x] Returns the value of x
associated with the maximum
value of y over all input
values.

SELECT max_by(t.c1,
 t.c2) FROM (VALUES
 (('a', 1)), (('b', 2)),
 (('c', 3)), (('d', 4)))
 AS t(c1, c2)

Example result: d

max_by(x, y, n) array<[same as x]> Returns n values of x
associated with the n largest
of all input values of y in
descending order of y.

SELECT max_by(t.c1,
 t.c2, 2) FROM (VALUES
 (('a', 1)), (('b', 2)),
 (('c', 3)), (('d', 4)))
 AS t(c1, c2)

Example result: [d,c]

Aggregate functions 776

Amazon Timestream Developer Guide

Function Output data type Description

min_by(x, y) [same as x] Returns the value of x
associated with the minimum
value of y over all input
values.

SELECT min_by(t.c1,
 t.c2) FROM (VALUES
 (('a', 1)), (('b', 2)),
 (('c', 3)), (('d', 4)))
 AS t(c1, c2)

Example result: a

min_by(x, y, n) array<[same as x]> Returns n values of x
associated with the n smallest
of all input values of y in
ascending order of y.

SELECT min_by(t.c1,
 t.c2, 2) FROM (VALUES
 (('a', 1)), (('b', 2)),
 (('c', 3)), (('d', 4)))
 AS t(c1, c2)

Example result: [a,b]

max(x) [same as input] Returns the maximum value
of all input values.

SELECT max(t.c) FROM
 (VALUES 1, 2, 3, 4) AS
 t(c)

Example result: 4

Aggregate functions 777

Amazon Timestream Developer Guide

Function Output data type Description

max(x, n) array<[same as x]> Returns n largest values of all
input values of x.

SELECT max(t.c, 2) FROM
 (VALUES 1, 2, 3, 4) AS
 t(c)

Example result: [4,3]

min(x) [same as input] Returns the minimum value
of all input values.

SELECT min(t.c) FROM
 (VALUES 1, 2, 3, 4) AS
 t(c)

Example result: 1

min(x, n) array<[same as x]> Returns n smallest values of
all input values of x.

SELECT min(t.c, 2) FROM
 (VALUES 1, 2, 3, 4) AS
 t(c)

Example result: [1,2]

sum(x) [same as input] Returns the sum of all input
values.

SELECT sum(t.c) FROM
 (VALUES 1, 2, 3, 4) AS
 t(c)

Example result: 10

Aggregate functions 778

Amazon Timestream Developer Guide

Function Output data type Description

bitwise_and_agg(x) bigint Returns the bitwise AND of all
input values in 2s complemen
t representation.

SELECT bitwise_a
nd_agg(t.c) FROM
 (VALUES 1, -3) AS t(c)

Example result: 1

bitwise_or_agg(x) bigint Returns the bitwise OR of all
input values in 2s complemen
t representation.

SELECT bitwise_o
r_agg(t.c) FROM
 (VALUES 1, -3) AS t(c)

Example result: -3

Aggregate functions 779

Amazon Timestream Developer Guide

Function Output data type Description

approx_distinct(x) bigint Returns the approxima
te number of distinct
input values. This function
provides an approximation
of count(DISTINCT x). Zero
is returned if all input values
are null. This function should
produce a standard error of
2.3%, which is the standard
deviation of the (approxim
ately normal) error distribut
ion over all possible sets. It
does not guarantee an upper
bound on the error for any
specific input set.

SELECT approx_di
stinct(t.c) FROM
 (VALUES 1, 2, 3, 4, 8)
 AS t(c)

Example result: 5

Aggregate functions 780

Amazon Timestream Developer Guide

Function Output data type Description

approx_distinct(x, e) bigint Returns the approxima
te number of distinct
input values. This function
provides an approximation
of count(DISTINCT x). Zero
is returned if all input values
are null. This function should
produce a standard error of
no more than e, which is the
standard deviation of the
(approximately normal) error
distribution over all possible
sets. It does not guarantee
an upper bound on the error
for any specific input set. The
current implementation of
this function requires that e
be in the range of [0.004062
5, 0.26000].

SELECT approx_di
stinct(t.c, 0.2) FROM
 (VALUES 1, 2, 3, 4, 8)
 AS t(c)

Example result: 5

Aggregate functions 781

Amazon Timestream Developer Guide

Function Output data type Description

approx_percentile(x,
percentage)

[same as x] Returns the approximate
percentile for all input values
of x at the given percentage.
The value of percentage must
be between zero and one and
must be constant for all input
rows.

SELECT approx_pe
rcentile(t.c, 0.4)
 FROM (VALUES 1, 2, 3,
 4) AS t(c)

Example result: 2

approx_percentile(x,
percentages)

array<[same as x]> Returns the approximate
percentile for all input values
of x at each of the specified
percentages. Each element of
the percentages array must
be between zero and one, and
the array must be constant
for all input rows.

SELECT approx_pe
rcentile(t.c,
 ARRAY[0.1, 0.8, 0.8])
 FROM (VALUES 1, 2, 3,
 4) AS t(c)

Example result: [1,4,4]

Aggregate functions 782

Amazon Timestream Developer Guide

Function Output data type Description

approx_percentile(x, w,
percentage)

[same as x] Returns the approximate
weighed percentile for all
input values of x using the
per-item weight w at the
percentage p. The weight
must be an integer value of
at least one. It is effectively a
replication count for the value
x in the percentile set. The
value of p must be between
zero and one and must be
constant for all input rows.

SELECT approx_pe
rcentile(t.c, 1, 0.1)
 FROM (VALUES 1, 2, 3,
 4) AS t(c)

Example result: 1

Aggregate functions 783

Amazon Timestream Developer Guide

Function Output data type Description

approx_percentile(x, w,
percentages)

array<[same as x]> Returns the approximate
weighed percentile for all
input values of x using the
per-item weight w at each
of the given percentages
specified in the array. The
weight must be an integer
value of at least one. It is
effectively a replication count
for the value x in the percentil
e set. Each element of the
array must be between zero
and one, and the array must
be constant for all input rows.

SELECT approx_pe
rcentile(t.c, 1,
 ARRAY[0.1, 0.8, 0.8])
 FROM (VALUES 1, 2, 3,
 4) AS t(c)

Example result: [1,4,4]

Aggregate functions 784

Amazon Timestream Developer Guide

Function Output data type Description

approx_percentile(x, w,
percentage, accuracy)

[same as x] Returns the approxima
te weighed percentile for
all input values of x using
the per-item weight w at
the percentage p, with a
maximum rank error of
accuracy. The weight must be
an integer value of at least
one. It is effectively a replicati
on count for the value x in the
percentile set. The value of
p must be between zero and
one and must be constant for
all input rows. The accuracy
must be a value greater than
zero and less than one, and it
must be constant for all input
rows.

SELECT approx_pe
rcentile(t.c, 1, 0.1,
 0.5) FROM (VALUES 1, 2,
 3, 4) AS t(c)

Example result: 1

corr(y, x) double Returns correlation coefficient
of input values.

SELECT corr(t.c1, t.c2)
 FROM (VALUES ((1, 1)),
 ((2, 2)), ((3, 3)),
 ((4, 4))) AS t(c1, c2)

Example result: 1.0

Aggregate functions 785

Amazon Timestream Developer Guide

Function Output data type Description

covar_pop(y, x) double Returns the population
covariance of input values.

SELECT covar_pop(t.c1,
 t.c2) FROM (VALUES ((1,
 1)), ((2, 2)), ((3,
 3)), ((4, 4))) AS t(c1,
 c2)

Example result: 1.25

covar_samp(y, x) double Returns the sample covarianc
e of input values.

SELECT covar_samp(t.c1,
 t.c2) FROM (VALUES ((1,
 1)), ((2, 2)), ((3,
 3)), ((4, 4))) AS t(c1,
 c2)

Example result: 1.6666666
666666667

regr_intercept(y, x) double Returns linear regression
intercept of input values. y is
the dependent value. x is the
independent value.

SELECT regr_inte
rcept(t.c1, t.c2) FROM
 (VALUES ((1, 1)), ((2,
 2)), ((3, 3)), ((4,
 4))) AS t(c1, c2)

Example result: 0.0

Aggregate functions 786

Amazon Timestream Developer Guide

Function Output data type Description

regr_slope(y, x) double Returns linear regression
slope of input values. y is
the dependent value. x is the
independent value.

SELECT regr_slope(t.c1,
 t.c2) FROM (VALUES ((1,
 1)), ((2, 2)), ((3,
 3)), ((4, 4))) AS t(c1,
 c2)

Example result: 1.0

skewness(x) double Returns the skewness of all
input values.

SELECT skewness(t.c1)
 FROM (VALUES 1, 2, 3,
 4, 8) AS t(c1)

Example result: 0.8978957
037987335

stddev_pop(x) double Returns the population
standard deviation of all input
values.

SELECT stddev_pop(t.c1)
 FROM (VALUES 1, 2, 3,
 4, 8) AS t(c1)

Example result: 2.4166091
947189146

Aggregate functions 787

Amazon Timestream Developer Guide

Function Output data type Description

stddev_samp(x) stddev(x) double Returns the sample standard
deviation of all input values.

SELECT stddev_sa
mp(t.c1) FROM (VALUES
 1, 2, 3, 4, 8) AS t(c1)

Example result: 2.7018512
17221259

var_pop(x) double Returns the population
variance of all input values.

SELECT var_pop(t.c1)
 FROM (VALUES 1, 2, 3,
 4, 8) AS t(c1)

Example result: 5.8400000
00000001

var_samp(x) variance(x) double Returns the sample variance
of all input values.

SELECT var_samp(t.c1)
 FROM (VALUES 1, 2, 3,
 4, 8) AS t(c1)

Example result: 7.3000000
00000001

Window functions

Window functions perform calculations across rows of the query result. They run after the HAVING
clause but before the ORDER BY clause. Invoking a window function requires special syntax using
the OVER clause to specify the window. A window has three components:

Window functions 788

Amazon Timestream Developer Guide

• The partition specification, which separates the input rows into different partitions. This is
analogous to how the GROUP BY clause separates rows into different groups for aggregate
functions.

• The ordering specification, which determines the order in which input rows will be processed by
the window function.

• The window frame, which specifies a sliding window of rows to be processed by the function for
a given row. If the frame is not specified, it defaults to RANGE UNBOUNDED PRECEDING, which
is the same as RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW. This frame
contains all rows from the start of the partition up to the last peer of the current row.

All Aggregate Functions can be used as window functions by adding the OVER clause. The
aggregate function is computed for each row over the rows within the current row's window frame.
In addition to aggregate functions, Timestream for LiveAnalytics supports the following ranking
and value functions.

Function Output data type Description

cume_dist() bigint Returns the cumulative
distribution of a value in a
group of values. The result is
the number of rows preceding
or peer with the row in the
window ordering of the
window partition divided by
the total number of rows in
the window partition. Thus,
any tie values in the ordering
will evaluate to the same
distribution value.

dense_rank() bigint Returns the rank of a value
in a group of values. This is
similar to rank(), except that
tie values do not produce
gaps in the sequence.

Window functions 789

Amazon Timestream Developer Guide

Function Output data type Description

ntile(n) bigint Divides the rows for each
window partition into n
buckets ranging from 1 to
at most n. Bucket values
will differ by at most 1. If
the number of rows in the
partition does not divide
evenly into the number of
buckets, then the remainder
values are distributed one per
bucket, starting with the first
bucket.

percent_rank() double Returns the percentage
ranking of a value in group
of values. The result is (r
- 1) / (n - 1) where r is the
rank() of the row and n is the
total number of rows in the
window partition.

rank() bigint Returns the rank of a value in
a group of values. The rank is
one plus the number of rows
preceding the row that are
not peer with the row. Thus,
tie values in the ordering will
produce gaps in the sequence.
The ranking is performed for
each window partition.

Window functions 790

Amazon Timestream Developer Guide

Function Output data type Description

row_number() bigint Returns a unique, sequential
number for each row, starting
with one, according to the
ordering of rows within the
window partition.

first_value(x) [same as input] Returns the first value of
the window. This function
is scoped to the window
frame. The function takes
an expression or target as its
parameter.

last_value(x) [same as input] Returns the last value of
the window. This function
is scoped to the window
frame. The function takes
an expression or target as its
parameter.

nth_value(x, offset) [same as input] Returns the value at the
specified offset from
beginning the window.
Offsets start at 1. The offset
can be any scalar expression.
If the offset is null or greater
than the number of values in
the window, null is returned.
It is an error for the offset
to be zero or negative. The
function takes an expression
or target as its first parameter
.

Window functions 791

Amazon Timestream Developer Guide

Function Output data type Description

lead(x[, offset[, default_v
alue]])

[same as input] Returns the value at offset
rows after the current row in
the window. Offsets start at
0, which is the current row.
The offset can be any scalar
expression. The default offset
is 1. If the offset is null or
larger than the window, the
default_value is returned,
or if it is not specified null is
returned. The function takes
an expression or target as its
first parameter.

lag(x[, offset[, default_v
alue]])

[same as input] Returns the value at offset
rows before the current row
in the window Offsets start
at 0, which is the current row.
The offset can be any scalar
expression. The default offset
is 1. If the offset is null or
larger than the window, the
default_value is returned,
or if it is not specified null is
returned. The function takes
an expression or target as its
first parameter.

Sample queries

This section includes example use cases of Timestream for LiveAnalytics's query language.

Topics

• Simple queries

Sample queries 792

Amazon Timestream Developer Guide

• Queries with time series functions

• Queries with aggregate functions

Simple queries

The following gets the 10 most recently added data points for a table.

SELECT * FROM <database_name>.<table_name>
ORDER BY time DESC
LIMIT 10

The following gets the 5 oldest data points for a specific measure.

SELECT * FROM <database_name>.<table_name>
WHERE measure_name = '<measure_name>'
ORDER BY time ASC
LIMIT 5

The following works with nanosecond granularity timestamps.

SELECT now() AS time_now
, now() - (INTERVAL '12' HOUR) AS twelve_hour_earlier -- Compatibility with ANSI SQL
, now() - 12h AS also_twelve_hour_earlier -- Convenient time interval literals
, ago(12h) AS twelve_hours_ago -- More convenience with time functionality
, bin(now(), 10m) AS time_binned -- Convenient time binning support
, ago(50ns) AS fifty_ns_ago -- Nanosecond support
, now() + (1h + 50ns) AS hour_fifty_ns_future

Measure values for multi-measure records are identified by column name. Measure values for
single-measure records are identified by measure_value::<data_type>, where <data_type>
is one of double, bigint, boolean, or varchar as described in Supported data types. For more
information about how measure values are modeled, see Single table vs. multiple tables.

The following retrieves values for a measure called speed from multi-measure records with a
measure_name of IoTMulti-stats.

SELECT speed FROM <database_name>.<table_name> where measure_name = 'IoTMulti-stats'

The following retrieves double values from single-measure records with a measure_name of
load.

Sample queries 793

https://docs.amazonaws.cn/timestream/latest/developerguide/data-modeling.html#data-modeling-multiVsinglerecords

Amazon Timestream Developer Guide

SELECT measure_value::double FROM <database_name>.<table_name> WHERE measure_name =
 'load'

Queries with time series functions

Topics

• Example dataset and queries

Example dataset and queries

You can use Timestream for LiveAnalytics to understand and improve the performance and
availability of your services and applications. Below is an example table and sample queries run on
that table.

The table ec2_metrics stores telemetry data, such as CPU utilization and other metrics from EC2
instances. You can view the table below.

Time region az Hostname measure_n
ame

measure_v
alue::dou
ble

measure_v
alue::big
int

2019-12-0
4 19:00:00.
000000000

us-east-1 us-east-1a frontend0
1

cpu_utili
zation

35.1 null

2019-12-0
4 19:00:00.
000000000

us-east-1 us-east-1a frontend0
1

memory_ut
ilization

55.3 null

2019-12-0
4 19:00:00.
000000000

us-east-1 us-east-1a frontend0
1

network_b
ytes_in

null 1,500

2019-12-0
4 19:00:00.
000000000

us-east-1 us-east-1a frontend0
1

network_b
ytes_out

null 6,700

Sample queries 794

Amazon Timestream Developer Guide

Time region az Hostname measure_n
ame

measure_v
alue::dou
ble

measure_v
alue::big
int

2019-12-0
4 19:00:00.
000000000

us-east-1 us-east-1b frontend0
2

cpu_utili
zation

38.5 null

2019-12-0
4 19:00:00.
000000000

us-east-1 us-east-1b frontend0
2

memory_ut
ilization

58.4 null

2019-12-0
4 19:00:00.
000000000

us-east-1 us-east-1b frontend0
2

network_b
ytes_in

null 23,000

2019-12-0
4 19:00:00.
000000000

us-east-1 us-east-1b frontend0
2

network_b
ytes_out

null 12,000

2019-12-0
4 19:00:00.
000000000

us-east-1 us-east-1c frontend0
3

cpu_utili
zation

45.0 null

2019-12-0
4 19:00:00.
000000000

us-east-1 us-east-1c frontend0
3

memory_ut
ilization

65.8 null

2019-12-0
4 19:00:00.
000000000

us-east-1 us-east-1c frontend0
3

network_b
ytes_in

null 15,000

2019-12-0
4 19:00:00.
000000000

us-east-1 us-east-1c frontend0
3

network_b
ytes_out

null 836,000

2019-12-0
4 19:00:05.
000000000

us-east-1 us-east-1a frontend0
1

cpu_utili
zation

55.2 null

Sample queries 795

Amazon Timestream Developer Guide

Time region az Hostname measure_n
ame

measure_v
alue::dou
ble

measure_v
alue::big
int

2019-12-0
4 19:00:05.
000000000

us-east-1 us-east-1a frontend0
1

memory_ut
ilization

75.0 null

2019-12-0
4 19:00:05.
000000000

us-east-1 us-east-1a frontend0
1

network_b
ytes_in

null 1,245

2019-12-0
4 19:00:05.
000000000

us-east-1 us-east-1a frontend0
1

network_b
ytes_out

null 68,432

2019-12-0
4 19:00:08.
000000000

us-east-1 us-east-1b frontend0
2

cpu_utili
zation

65.6 null

2019-12-0
4 19:00:08.
000000000

us-east-1 us-east-1b frontend0
2

memory_ut
ilization

85.3 null

2019-12-0
4 19:00:08.
000000000

us-east-1 us-east-1b frontend0
2

network_b
ytes_in

null 1,245

2019-12-0
4 19:00:08.
000000000

us-east-1 us-east-1b frontend0
2

network_b
ytes_out

null 68,432

2019-12-0
4 19:00:20.
000000000

us-east-1 us-east-1c frontend0
3

cpu_utili
zation

12.1 null

2019-12-0
4 19:00:20.
000000000

us-east-1 us-east-1c frontend0
3

memory_ut
ilization

32.0 null

Sample queries 796

Amazon Timestream Developer Guide

Time region az Hostname measure_n
ame

measure_v
alue::dou
ble

measure_v
alue::big
int

2019-12-0
4 19:00:20.
000000000

us-east-1 us-east-1c frontend0
3

network_b
ytes_in

null 1,400

2019-12-0
4 19:00:20.
000000000

us-east-1 us-east-1c frontend0
3

network_b
ytes_out

null 345

2019-12-0
4 19:00:10.
000000000

us-east-1 us-east-1a frontend0
1

cpu_utili
zation

15.3 null

2019-12-0
4 19:00:10.
000000000

us-east-1 us-east-1a frontend0
1

memory_ut
ilization

35.4 null

2019-12-0
4 19:00:10.
000000000

us-east-1 us-east-1a frontend0
1

network_b
ytes_in

null 23

2019-12-0
4 19:00:10.
000000000

us-east-1 us-east-1a frontend0
1

network_b
ytes_out

null 0

2019-12-0
4 19:00:16.
000000000

us-east-1 us-east-1b frontend0
2

cpu_utili
zation

44.0 null

2019-12-0
4 19:00:16.
000000000

us-east-1 us-east-1b frontend0
2

memory_ut
ilization

64.2 null

2019-12-0
4 19:00:16.
000000000

us-east-1 us-east-1b frontend0
2

network_b
ytes_in

null 1,450

Sample queries 797

Amazon Timestream Developer Guide

Time region az Hostname measure_n
ame

measure_v
alue::dou
ble

measure_v
alue::big
int

2019-12-0
4 19:00:16.
000000000

us-east-1 us-east-1b frontend0
2

network_b
ytes_out

null 200

2019-12-0
4 19:00:40.
000000000

us-east-1 us-east-1c frontend0
3

cpu_utili
zation

66.4 null

2019-12-0
4 19:00:40.
000000000

us-east-1 us-east-1c frontend0
3

memory_ut
ilization

86.3 null

2019-12-0
4 19:00:40.
000000000

us-east-1 us-east-1c frontend0
3

network_b
ytes_in

null 300

2019-12-0
4 19:00:40.
000000000

us-east-1 us-east-1c frontend0
3

network_b
ytes_out

null 423

Find the average, p90, p95, and p99 CPU utilization for a specific EC2 host over the past 2 hours:

SELECT region, az, hostname, BIN(time, 15s) AS binned_timestamp,
 ROUND(AVG(measure_value::double), 2) AS avg_cpu_utilization,
 ROUND(APPROX_PERCENTILE(measure_value::double, 0.9), 2) AS p90_cpu_utilization,
 ROUND(APPROX_PERCENTILE(measure_value::double, 0.95), 2) AS p95_cpu_utilization,
 ROUND(APPROX_PERCENTILE(measure_value::double, 0.99), 2) AS p99_cpu_utilization
FROM "sampleDB".DevOps
WHERE measure_name = 'cpu_utilization'
 AND hostname = 'host-Hovjv'
 AND time > ago(2h)
GROUP BY region, hostname, az, BIN(time, 15s)
ORDER BY binned_timestamp ASC

Sample queries 798

Amazon Timestream Developer Guide

Identify EC2 hosts with CPU utilization that is higher by 10 % or more compared to the average
CPU utilization of the entire fleet for the past 2 hours:

WITH avg_fleet_utilization AS (
 SELECT COUNT(DISTINCT hostname) AS total_host_count, AVG(measure_value::double) AS
 fleet_avg_cpu_utilization
 FROM "sampleDB".DevOps
 WHERE measure_name = 'cpu_utilization'
 AND time > ago(2h)
), avg_per_host_cpu AS (
 SELECT region, az, hostname, AVG(measure_value::double) AS avg_cpu_utilization
 FROM "sampleDB".DevOps
 WHERE measure_name = 'cpu_utilization'
 AND time > ago(2h)
 GROUP BY region, az, hostname
)
SELECT region, az, hostname, avg_cpu_utilization, fleet_avg_cpu_utilization
FROM avg_fleet_utilization, avg_per_host_cpu
WHERE avg_cpu_utilization > 1.1 * fleet_avg_cpu_utilization
ORDER BY avg_cpu_utilization DESC

Find the average CPU utilization binned at 30 second intervals for a specific EC2 host over the past
2 hours:

SELECT BIN(time, 30s) AS binned_timestamp, ROUND(AVG(measure_value::double), 2) AS
 avg_cpu_utilization
FROM "sampleDB".DevOps
WHERE measure_name = 'cpu_utilization'
 AND hostname = 'host-Hovjv'
 AND time > ago(2h)
GROUP BY hostname, BIN(time, 30s)
ORDER BY binned_timestamp ASC

Find the average CPU utilization binned at 30 second intervals for a specific EC2 host over the past
2 hours, filling in the missing values using linear interpolation:

WITH binned_timeseries AS (
 SELECT hostname, BIN(time, 30s) AS binned_timestamp,
 ROUND(AVG(measure_value::double), 2) AS avg_cpu_utilization
 FROM "sampleDB".DevOps
 WHERE measure_name = 'cpu_utilization'
 AND hostname = 'host-Hovjv'

Sample queries 799

Amazon Timestream Developer Guide

 AND time > ago(2h)
 GROUP BY hostname, BIN(time, 30s)
), interpolated_timeseries AS (
 SELECT hostname,
 INTERPOLATE_LINEAR(
 CREATE_TIME_SERIES(binned_timestamp, avg_cpu_utilization),
 SEQUENCE(min(binned_timestamp), max(binned_timestamp), 15s)) AS
 interpolated_avg_cpu_utilization
 FROM binned_timeseries
 GROUP BY hostname
)
SELECT time, ROUND(value, 2) AS interpolated_cpu
FROM interpolated_timeseries
CROSS JOIN UNNEST(interpolated_avg_cpu_utilization)

Find the average CPU utilization binned at 30 second intervals for a specific EC2 host over the
past 2 hours, filling in the missing values using interpolation based on the last observation carried
forward:

WITH binned_timeseries AS (
 SELECT hostname, BIN(time, 30s) AS binned_timestamp,
 ROUND(AVG(measure_value::double), 2) AS avg_cpu_utilization
 FROM "sampleDB".DevOps
 WHERE measure_name = 'cpu_utilization'
 AND hostname = 'host-Hovjv'
 AND time > ago(2h)
 GROUP BY hostname, BIN(time, 30s)
), interpolated_timeseries AS (
 SELECT hostname,
 INTERPOLATE_LOCF(
 CREATE_TIME_SERIES(binned_timestamp, avg_cpu_utilization),
 SEQUENCE(min(binned_timestamp), max(binned_timestamp), 15s)) AS
 interpolated_avg_cpu_utilization
 FROM binned_timeseries
 GROUP BY hostname
)
SELECT time, ROUND(value, 2) AS interpolated_cpu
FROM interpolated_timeseries
CROSS JOIN UNNEST(interpolated_avg_cpu_utilization)

Queries with aggregate functions

Below is an example IoT scenario example data set to illustrate queries with aggregate functions.

Sample queries 800

Amazon Timestream Developer Guide

Topics

• Example data

• Example queries

Example data

Timestream enables you to store and analyze IoT sensor data such as the location, fuel
consumption, speed, and load capacity of one or more fleets of trucks to enable effective fleet
management. Below is the schema and some of the data of a table iot_trucks that stores telemetry
such as location, fuel consumption, speed, and load capacity of trucks.

Time truck_id Make Model Fleet fuel_capa
city

load_capa
city

measure_n
ame

measure_v
alue::dou
ble

measure_v
alue::var
char

2019-12-0
4
19:00:00.
000000000

123456781GMC Astro Alpha 100 500 fuel_read
ing

65.2 null

2019-12-0
4
19:00:00.
000000000

123456781GMC Astro Alpha 100 500 load 400.0 null

2019-12-0
4
19:00:00.
000000000

123456781GMC Astro Alpha 100 500 speed 90.2 null

2019-12-0
4
19:00:00.
000000000

123456781GMC Astro Alpha 100 500 location null 47.6062
N,
122.3321
W

2019-12-0
4
19:00:00.

123456782KenworthW900 Alpha 150 1000 fuel_read
ing

10.1 null

Sample queries 801

Amazon Timestream Developer Guide

Time truck_id Make Model Fleet fuel_capa
city

load_capa
city

measure_n
ame

measure_v
alue::dou
ble

measure_v
alue::var
char

000000000

2019-12-0
4
19:00:00.
000000000

123456782KenworthW900 Alpha 150 1000 load 950.3 null

2019-12-0
4
19:00:00.
000000000

123456782KenworthW900 Alpha 150 1000 speed 50.8 null

2019-12-0
4
19:00:00.
000000000

123456782KenworthW900 Alpha 150 1000 location null 40.7128
degrees
N,
74.0060
degrees
W

Example queries

Get a list of all the sensor attributes and values being monitored for each truck in the fleet.

SELECT
 truck_id,
 fleet,
 fuel_capacity,
 model,
 load_capacity,
 make,
 measure_name
FROM "sampleDB".IoT
GROUP BY truck_id, fleet, fuel_capacity, model, load_capacity, make, measure_name

Get the most recent fuel reading of each truck in the fleet in the past 24 hours.

Sample queries 802

Amazon Timestream Developer Guide

WITH latest_recorded_time AS (
 SELECT
 truck_id,
 max(time) as latest_time
 FROM "sampleDB".IoT
 WHERE measure_name = 'fuel-reading'
 AND time >= ago(24h)
 GROUP BY truck_id
)
SELECT
 b.truck_id,
 b.fleet,
 b.make,
 b.model,
 b.time,
 b.measure_value::double as last_reported_fuel_reading
FROM
latest_recorded_time a INNER JOIN "sampleDB".IoT b
ON a.truck_id = b.truck_id AND b.time = a.latest_time
WHERE b.measure_name = 'fuel-reading'
AND b.time > ago(24h)
ORDER BY b.truck_id

Identify trucks that have been running on low fuel(less than 10 %) in the past 48 hours:

WITH low_fuel_trucks AS (
 SELECT time, truck_id, fleet, make, model, (measure_value::double/
cast(fuel_capacity as double)*100) AS fuel_pct
 FROM "sampleDB".IoT
 WHERE time >= ago(48h)
 AND (measure_value::double/cast(fuel_capacity as double)*100) < 10
 AND measure_name = 'fuel-reading'
),
other_trucks AS (
SELECT time, truck_id, (measure_value::double/cast(fuel_capacity as double)*100) as
 remaining_fuel
 FROM "sampleDB".IoT
 WHERE time >= ago(48h)
 AND truck_id IN (SELECT truck_id FROM low_fuel_trucks)
 AND (measure_value::double/cast(fuel_capacity as double)*100) >= 10
 AND measure_name = 'fuel-reading'
),
trucks_that_refuelled AS (

Sample queries 803

Amazon Timestream Developer Guide

 SELECT a.truck_id
 FROM low_fuel_trucks a JOIN other_trucks b
 ON a.truck_id = b.truck_id AND b.time >= a.time
)
SELECT DISTINCT truck_id, fleet, make, model, fuel_pct
FROM low_fuel_trucks
WHERE truck_id NOT IN (
 SELECT truck_id FROM trucks_that_refuelled
)

Find the average load and max speed for each truck for the past week:

SELECT
 bin(time, 1d) as binned_time,
 fleet,
 truck_id,
 make,
 model,
 AVG(
 CASE WHEN measure_name = 'load' THEN measure_value::double ELSE NULL END
) AS avg_load_tons,
 MAX(
 CASE WHEN measure_name = 'speed' THEN measure_value::double ELSE NULL END
) AS max_speed_mph
FROM "sampleDB".IoT
WHERE time >= ago(7d)
AND measure_name IN ('load', 'speed')
GROUP BY fleet, truck_id, make, model, bin(time, 1d)
ORDER BY truck_id

Get the load efficiency for each truck for the past week:

WITH average_load_per_truck AS (
 SELECT
 truck_id,
 avg(measure_value::double) AS avg_load
 FROM "sampleDB".IoT
 WHERE measure_name = 'load'
 AND time >= ago(7d)
 GROUP BY truck_id, fleet, load_capacity, make, model
),
truck_load_efficiency AS (
 SELECT

Sample queries 804

Amazon Timestream Developer Guide

 a.truck_id,
 fleet,
 load_capacity,
 make,
 model,
 avg_load,
 measure_value::double,
 time,
 (measure_value::double*100)/avg_load as load_efficiency -- ,
 approx_percentile(avg_load_pct, DOUBLE '0.9')
 FROM "sampleDB".IoT a JOIN average_load_per_truck b
 ON a.truck_id = b.truck_id
 WHERE a.measure_name = 'load'
)
SELECT
 truck_id,
 time,
 load_efficiency
FROM truck_load_efficiency
ORDER BY truck_id, time

API reference

This section contains the API Reference documentation for Amazon Timestream.

Timestream has two APIs: Query and Write.

• The Write API allows you to perform operations like table creation, resource tagging, and writing
of records to Timestream.

• The Query API allows you to perform query operations.

Note

Both APIs include the DescribeEndpoints action. For both Query and Write, the
DescribeEndpoints action are identical.

You can read more about each API below, along with data types, common errors and parameters.

API reference 805

Amazon Timestream Developer Guide

Note

For error codes common to all Amazon services, see the Amazon Support section.

Topics

• Actions

• Data Types

• Common Errors

• Common Parameters

Actions

The following actions are supported by Amazon Timestream Write:

• CreateBatchLoadTask

• CreateDatabase

• CreateTable

• DeleteDatabase

• DeleteTable

• DescribeBatchLoadTask

• DescribeDatabase

• DescribeEndpoints

• DescribeTable

• ListBatchLoadTasks

• ListDatabases

• ListTables

• ListTagsForResource

• ResumeBatchLoadTask

• TagResource

• UntagResource

• UpdateDatabase

Actions 806

https://docs.amazonaws.cn/awssupport/latest/APIReference/CommonErrors.html

Amazon Timestream Developer Guide

• UpdateTable

• WriteRecords

The following actions are supported by Amazon Timestream Query:

• CancelQuery

• CreateScheduledQuery

• DeleteScheduledQuery

• DescribeAccountSettings

• DescribeEndpoints

• DescribeScheduledQuery

• ExecuteScheduledQuery

• ListScheduledQueries

• ListTagsForResource

• PrepareQuery

• Query

• TagResource

• UntagResource

• UpdateAccountSettings

• UpdateScheduledQuery

Amazon Timestream Write

The following actions are supported by Amazon Timestream Write:

• CreateBatchLoadTask

• CreateDatabase

• CreateTable

• DeleteDatabase

• DeleteTable

• DescribeBatchLoadTask

• DescribeDatabase

Actions 807

Amazon Timestream Developer Guide

• DescribeEndpoints

• DescribeTable

• ListBatchLoadTasks

• ListDatabases

• ListTables

• ListTagsForResource

• ResumeBatchLoadTask

• TagResource

• UntagResource

• UpdateDatabase

• UpdateTable

• WriteRecords

Actions 808

Amazon Timestream Developer Guide

CreateBatchLoadTask
Service: Amazon Timestream Write

Creates a new Timestream batch load task. A batch load task processes data from a CSV source
in an S3 location and writes to a Timestream table. A mapping from source to target is defined
in a batch load task. Errors and events are written to a report at an S3 location. For the report, if
the Amazon KMS key is not specified, the report will be encrypted with an S3 managed key when
SSE_S3 is the option. Otherwise an error is thrown. For more information, see Amazon managed
keys. Service quotas apply. For details, see code sample.

Request Syntax

{
 "ClientToken": "string",
 "DataModelConfiguration": {
 "DataModel": {
 "DimensionMappings": [
 {
 "DestinationColumn": "string",
 "SourceColumn": "string"
 }
],
 "MeasureNameColumn": "string",
 "MixedMeasureMappings": [
 {
 "MeasureName": "string",
 "MeasureValueType": "string",
 "MultiMeasureAttributeMappings": [
 {
 "MeasureValueType": "string",
 "SourceColumn": "string",
 "TargetMultiMeasureAttributeName": "string"
 }
],
 "SourceColumn": "string",
 "TargetMeasureName": "string"
 }
],
 "MultiMeasureMappings": {
 "MultiMeasureAttributeMappings": [
 {
 "MeasureValueType": "string",
 "SourceColumn": "string",

Actions 809

https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#aws-managed-cmk
https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#aws-managed-cmk
https://docs.amazonaws.cn/timestream/latest/developerguide/ts-limits.html
https://docs.amazonaws.cn/timestream/latest/developerguide/code-samples.create-batch-load.html

Amazon Timestream Developer Guide

 "TargetMultiMeasureAttributeName": "string"
 }
],
 "TargetMultiMeasureName": "string"
 },
 "TimeColumn": "string",
 "TimeUnit": "string"
 },
 "DataModelS3Configuration": {
 "BucketName": "string",
 "ObjectKey": "string"
 }
 },
 "DataSourceConfiguration": {
 "CsvConfiguration": {
 "ColumnSeparator": "string",
 "EscapeChar": "string",
 "NullValue": "string",
 "QuoteChar": "string",
 "TrimWhiteSpace": boolean
 },
 "DataFormat": "string",
 "DataSourceS3Configuration": {
 "BucketName": "string",
 "ObjectKeyPrefix": "string"
 }
 },
 "RecordVersion": number,
 "ReportConfiguration": {
 "ReportS3Configuration": {
 "BucketName": "string",
 "EncryptionOption": "string",
 "KmsKeyId": "string",
 "ObjectKeyPrefix": "string"
 }
 },
 "TargetDatabaseName": "string",
 "TargetTableName": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters.

Actions 810

Amazon Timestream Developer Guide

The request accepts the following data in JSON format.

ClientToken

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Required: No

DataModelConfiguration

Type: DataModelConfiguration object

Required: No

DataSourceConfiguration

Defines configuration details about the data source for a batch load task.

Type: DataSourceConfiguration object

Required: Yes

RecordVersion

Type: Long

Required: No

ReportConfiguration

Report configuration for a batch load task. This contains details about where error reports are
stored.

Type: ReportConfiguration object

Required: Yes

TargetDatabaseName

Target Timestream database for a batch load task.

Actions 811

Amazon Timestream Developer Guide

Type: String

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

TargetTableName

Target Timestream table for a batch load task.

Type: String

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

Response Syntax

{
 "TaskId": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

TaskId

The ID of the batch load task.

Type: String

Length Constraints: Minimum length of 3. Maximum length of 32.

Pattern: [A-Z0-9]+

Errors

For information about the errors that are common to all actions, see Common Errors.

Actions 812

Amazon Timestream Developer Guide

AccessDeniedException

You are not authorized to perform this action.

HTTP Status Code: 400

ConflictException

Timestream was unable to process this request because it contains resource that already exists.

HTTP Status Code: 400

InternalServerException

Timestream was unable to fully process this request because of an internal server error.

HTTP Status Code: 500

InvalidEndpointException

The requested endpoint was not valid.

HTTP Status Code: 400

ResourceNotFoundException

The operation tried to access a nonexistent resource. The resource might not be specified
correctly, or its status might not be ACTIVE.

HTTP Status Code: 400

ServiceQuotaExceededException

The instance quota of resource exceeded for this account.

HTTP Status Code: 400

ThrottlingException

Too many requests were made by a user and they exceeded the service quotas. The request was
throttled.

HTTP Status Code: 400

ValidationException

An invalid or malformed request.

Actions 813

Amazon Timestream Developer Guide

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon Command Line Interface

• Amazon SDK for .NET

• Amazon SDK for C++

• Amazon SDK for Go v2

• Amazon SDK for Java V2

• Amazon SDK for JavaScript V3

• Amazon SDK for Kotlin

• Amazon SDK for PHP V3

• Amazon SDK for Python

• Amazon SDK for Ruby V3

Actions 814

https://docs.amazonaws.cn/goto/aws-cli/timestream-write-2018-11-01/CreateBatchLoadTask
https://docs.amazonaws.cn/goto/DotNetSDKV3/timestream-write-2018-11-01/CreateBatchLoadTask
https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/CreateBatchLoadTask
https://docs.amazonaws.cn/goto/SdkForGoV2/timestream-write-2018-11-01/CreateBatchLoadTask
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/CreateBatchLoadTask
https://docs.amazonaws.cn/goto/SdkForJavaScriptV3/timestream-write-2018-11-01/CreateBatchLoadTask
https://docs.amazonaws.cn/goto/SdkForKotlin/timestream-write-2018-11-01/CreateBatchLoadTask
https://docs.amazonaws.cn/goto/SdkForPHPV3/timestream-write-2018-11-01/CreateBatchLoadTask
https://docs.amazonaws.cn/goto/boto3/timestream-write-2018-11-01/CreateBatchLoadTask
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/CreateBatchLoadTask

Amazon Timestream Developer Guide

CreateDatabase
Service: Amazon Timestream Write

Creates a new Timestream database. If the Amazon KMS key is not specified, the database will
be encrypted with a Timestream managed Amazon KMS key located in your account. For more
information, see Amazon managed keys. Service quotas apply. For details, see code sample.

Request Syntax

{
 "DatabaseName": "string",
 "KmsKeyId": "string",
 "Tags": [
 {
 "Key": "string",
 "Value": "string"
 }
]
}

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters.

The request accepts the following data in JSON format.

DatabaseName

The name of the Timestream database.

Type: String

Length Constraints: Minimum length of 3. Maximum length of 256.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

KmsKeyId

The Amazon KMS key for the database. If the Amazon KMS key is not specified, the database
will be encrypted with a Timestream managed Amazon KMS key located in your account. For
more information, see Amazon managed keys.

Actions 815

https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#aws-managed-cmk
https://docs.amazonaws.cn/timestream/latest/developerguide/ts-limits.html
https://docs.amazonaws.cn/timestream/latest/developerguide/code-samples.create-db.html
https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#aws-managed-cmk

Amazon Timestream Developer Guide

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Required: No

Tags

A list of key-value pairs to label the table.

Type: Array of Tag objects

Array Members: Minimum number of 0 items. Maximum number of 200 items.

Required: No

Response Syntax

{
 "Database": {
 "Arn": "string",
 "CreationTime": number,
 "DatabaseName": "string",
 "KmsKeyId": "string",
 "LastUpdatedTime": number,
 "TableCount": number
 }
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

Database

The newly created Timestream database.

Type: Database object

Errors

For information about the errors that are common to all actions, see Common Errors.

Actions 816

Amazon Timestream Developer Guide

AccessDeniedException

You are not authorized to perform this action.

HTTP Status Code: 400

ConflictException

Timestream was unable to process this request because it contains resource that already exists.

HTTP Status Code: 400

InternalServerException

Timestream was unable to fully process this request because of an internal server error.

HTTP Status Code: 500

InvalidEndpointException

The requested endpoint was not valid.

HTTP Status Code: 400

InvalidEndpointException

The requested endpoint was not valid.

HTTP Status Code: 400

ServiceQuotaExceededException

The instance quota of resource exceeded for this account.

HTTP Status Code: 400

ThrottlingException

Too many requests were made by a user and they exceeded the service quotas. The request was
throttled.

HTTP Status Code: 400

ValidationException

An invalid or malformed request.

HTTP Status Code: 400

Actions 817

Amazon Timestream Developer Guide

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon Command Line Interface

• Amazon SDK for .NET

• Amazon SDK for C++

• Amazon SDK for Go v2

• Amazon SDK for Java V2

• Amazon SDK for JavaScript V3

• Amazon SDK for Kotlin

• Amazon SDK for PHP V3

• Amazon SDK for Python

• Amazon SDK for Ruby V3

Actions 818

https://docs.amazonaws.cn/goto/aws-cli/timestream-write-2018-11-01/CreateDatabase
https://docs.amazonaws.cn/goto/DotNetSDKV3/timestream-write-2018-11-01/CreateDatabase
https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/CreateDatabase
https://docs.amazonaws.cn/goto/SdkForGoV2/timestream-write-2018-11-01/CreateDatabase
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/CreateDatabase
https://docs.amazonaws.cn/goto/SdkForJavaScriptV3/timestream-write-2018-11-01/CreateDatabase
https://docs.amazonaws.cn/goto/SdkForKotlin/timestream-write-2018-11-01/CreateDatabase
https://docs.amazonaws.cn/goto/SdkForPHPV3/timestream-write-2018-11-01/CreateDatabase
https://docs.amazonaws.cn/goto/boto3/timestream-write-2018-11-01/CreateDatabase
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/CreateDatabase

Amazon Timestream Developer Guide

CreateTable
Service: Amazon Timestream Write

Adds a new table to an existing database in your account. In an Amazon Web Services account,
table names must be at least unique within each Region if they are in the same database. You
might have identical table names in the same Region if the tables are in separate databases. While
creating the table, you must specify the table name, database name, and the retention properties.
Service quotas apply. See code sample for details.

Request Syntax

{
 "DatabaseName": "string",
 "MagneticStoreWriteProperties": {
 "EnableMagneticStoreWrites": boolean,
 "MagneticStoreRejectedDataLocation": {
 "S3Configuration": {
 "BucketName": "string",
 "EncryptionOption": "string",
 "KmsKeyId": "string",
 "ObjectKeyPrefix": "string"
 }
 }
 },
 "RetentionProperties": {
 "MagneticStoreRetentionPeriodInDays": number,
 "MemoryStoreRetentionPeriodInHours": number
 },
 "Schema": {
 "CompositePartitionKey": [
 {
 "EnforcementInRecord": "string",
 "Name": "string",
 "Type": "string"
 }
]
 },
 "TableName": "string",
 "Tags": [
 {
 "Key": "string",
 "Value": "string"
 }

Actions 819

https://docs.amazonaws.cn/timestream/latest/developerguide/ts-limits.html
https://docs.amazonaws.cn/timestream/latest/developerguide/code-samples.create-table.html

Amazon Timestream Developer Guide

]
}

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters.

The request accepts the following data in JSON format.

DatabaseName

The name of the Timestream database.

Type: String

Length Constraints: Minimum length of 3. Maximum length of 256.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

MagneticStoreWriteProperties

Contains properties to set on the table when enabling magnetic store writes.

Type: MagneticStoreWriteProperties object

Required: No

RetentionProperties

The duration for which your time-series data must be stored in the memory store and the
magnetic store.

Type: RetentionProperties object

Required: No

Schema

The schema of the table.

Type: Schema object

Required: No

Actions 820

Amazon Timestream Developer Guide

TableName

The name of the Timestream table.

Type: String

Length Constraints: Minimum length of 3. Maximum length of 256.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

Tags

A list of key-value pairs to label the table.

Type: Array of Tag objects

Array Members: Minimum number of 0 items. Maximum number of 200 items.

Required: No

Response Syntax

{
 "Table": {
 "Arn": "string",
 "CreationTime": number,
 "DatabaseName": "string",
 "LastUpdatedTime": number,
 "MagneticStoreWriteProperties": {
 "EnableMagneticStoreWrites": boolean,
 "MagneticStoreRejectedDataLocation": {
 "S3Configuration": {
 "BucketName": "string",
 "EncryptionOption": "string",
 "KmsKeyId": "string",
 "ObjectKeyPrefix": "string"
 }
 }
 },
 "RetentionProperties": {
 "MagneticStoreRetentionPeriodInDays": number,

Actions 821

Amazon Timestream Developer Guide

 "MemoryStoreRetentionPeriodInHours": number
 },
 "Schema": {
 "CompositePartitionKey": [
 {
 "EnforcementInRecord": "string",
 "Name": "string",
 "Type": "string"
 }
]
 },
 "TableName": "string",
 "TableStatus": "string"
 }
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

Table

The newly created Timestream table.

Type: Table object

Errors

For information about the errors that are common to all actions, see Common Errors.

AccessDeniedException

You are not authorized to perform this action.

HTTP Status Code: 400

ConflictException

Timestream was unable to process this request because it contains resource that already exists.

HTTP Status Code: 400

Actions 822

Amazon Timestream Developer Guide

InternalServerException

Timestream was unable to fully process this request because of an internal server error.

HTTP Status Code: 500

InvalidEndpointException

The requested endpoint was not valid.

HTTP Status Code: 400

InvalidEndpointException

The requested endpoint was not valid.

HTTP Status Code: 400

ResourceNotFoundException

The operation tried to access a nonexistent resource. The resource might not be specified
correctly, or its status might not be ACTIVE.

HTTP Status Code: 400

ServiceQuotaExceededException

The instance quota of resource exceeded for this account.

HTTP Status Code: 400

ThrottlingException

Too many requests were made by a user and they exceeded the service quotas. The request was
throttled.

HTTP Status Code: 400

ValidationException

An invalid or malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

Actions 823

Amazon Timestream Developer Guide

• Amazon Command Line Interface

• Amazon SDK for .NET

• Amazon SDK for C++

• Amazon SDK for Go v2

• Amazon SDK for Java V2

• Amazon SDK for JavaScript V3

• Amazon SDK for Kotlin

• Amazon SDK for PHP V3

• Amazon SDK for Python

• Amazon SDK for Ruby V3

Actions 824

https://docs.amazonaws.cn/goto/aws-cli/timestream-write-2018-11-01/CreateTable
https://docs.amazonaws.cn/goto/DotNetSDKV3/timestream-write-2018-11-01/CreateTable
https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/CreateTable
https://docs.amazonaws.cn/goto/SdkForGoV2/timestream-write-2018-11-01/CreateTable
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/CreateTable
https://docs.amazonaws.cn/goto/SdkForJavaScriptV3/timestream-write-2018-11-01/CreateTable
https://docs.amazonaws.cn/goto/SdkForKotlin/timestream-write-2018-11-01/CreateTable
https://docs.amazonaws.cn/goto/SdkForPHPV3/timestream-write-2018-11-01/CreateTable
https://docs.amazonaws.cn/goto/boto3/timestream-write-2018-11-01/CreateTable
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/CreateTable

Amazon Timestream Developer Guide

DeleteDatabase
Service: Amazon Timestream Write

Deletes a given Timestream database. This is an irreversible operation. After a database is deleted,
the time-series data from its tables cannot be recovered.

Note

All tables in the database must be deleted first, or a ValidationException error will be
thrown.
Due to the nature of distributed retries, the operation can return either success or a
ResourceNotFoundException. Clients should consider them equivalent.

See code sample for details.

Request Syntax

{
 "DatabaseName": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters.

The request accepts the following data in JSON format.

DatabaseName

The name of the Timestream database to be deleted.

Type: String

Length Constraints: Minimum length of 3. Maximum length of 256.

Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Actions 825

https://docs.amazonaws.cn/timestream/latest/developerguide/code-samples.delete-db.html

Amazon Timestream Developer Guide

Errors

For information about the errors that are common to all actions, see Common Errors.

AccessDeniedException

You are not authorized to perform this action.

HTTP Status Code: 400

InternalServerException

Timestream was unable to fully process this request because of an internal server error.

HTTP Status Code: 500

InvalidEndpointException

The requested endpoint was not valid.

HTTP Status Code: 400

ResourceNotFoundException

The operation tried to access a nonexistent resource. The resource might not be specified
correctly, or its status might not be ACTIVE.

HTTP Status Code: 400

ThrottlingException

Too many requests were made by a user and they exceeded the service quotas. The request was
throttled.

HTTP Status Code: 400

ValidationException

An invalid or malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

Actions 826

Amazon Timestream Developer Guide

• Amazon Command Line Interface

• Amazon SDK for .NET

• Amazon SDK for C++

• Amazon SDK for Go v2

• Amazon SDK for Java V2

• Amazon SDK for JavaScript V3

• Amazon SDK for Kotlin

• Amazon SDK for PHP V3

• Amazon SDK for Python

• Amazon SDK for Ruby V3

Actions 827

https://docs.amazonaws.cn/goto/aws-cli/timestream-write-2018-11-01/DeleteDatabase
https://docs.amazonaws.cn/goto/DotNetSDKV3/timestream-write-2018-11-01/DeleteDatabase
https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/DeleteDatabase
https://docs.amazonaws.cn/goto/SdkForGoV2/timestream-write-2018-11-01/DeleteDatabase
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/DeleteDatabase
https://docs.amazonaws.cn/goto/SdkForJavaScriptV3/timestream-write-2018-11-01/DeleteDatabase
https://docs.amazonaws.cn/goto/SdkForKotlin/timestream-write-2018-11-01/DeleteDatabase
https://docs.amazonaws.cn/goto/SdkForPHPV3/timestream-write-2018-11-01/DeleteDatabase
https://docs.amazonaws.cn/goto/boto3/timestream-write-2018-11-01/DeleteDatabase
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/DeleteDatabase

Amazon Timestream Developer Guide

DeleteTable
Service: Amazon Timestream Write

Deletes a given Timestream table. This is an irreversible operation. After a Timestream database
table is deleted, the time-series data stored in the table cannot be recovered.

Note

Due to the nature of distributed retries, the operation can return either success or a
ResourceNotFoundException. Clients should consider them equivalent.

See code sample for details.

Request Syntax

{
 "DatabaseName": "string",
 "TableName": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters.

The request accepts the following data in JSON format.

DatabaseName

The name of the database where the Timestream database is to be deleted.

Type: String

Length Constraints: Minimum length of 3. Maximum length of 256.

Required: Yes

TableName

The name of the Timestream table to be deleted.

Type: String

Actions 828

https://docs.amazonaws.cn/timestream/latest/developerguide/code-samples.delete-table.html

Amazon Timestream Developer Guide

Length Constraints: Minimum length of 3. Maximum length of 256.

Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see Common Errors.

AccessDeniedException

You are not authorized to perform this action.

HTTP Status Code: 400

InternalServerException

Timestream was unable to fully process this request because of an internal server error.

HTTP Status Code: 500

InvalidEndpointException

The requested endpoint was not valid.

HTTP Status Code: 400

ResourceNotFoundException

The operation tried to access a nonexistent resource. The resource might not be specified
correctly, or its status might not be ACTIVE.

HTTP Status Code: 400

ThrottlingException

Too many requests were made by a user and they exceeded the service quotas. The request was
throttled.

HTTP Status Code: 400

ValidationException

An invalid or malformed request.

Actions 829

Amazon Timestream Developer Guide

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon Command Line Interface

• Amazon SDK for .NET

• Amazon SDK for C++

• Amazon SDK for Go v2

• Amazon SDK for Java V2

• Amazon SDK for JavaScript V3

• Amazon SDK for Kotlin

• Amazon SDK for PHP V3

• Amazon SDK for Python

• Amazon SDK for Ruby V3

Actions 830

https://docs.amazonaws.cn/goto/aws-cli/timestream-write-2018-11-01/DeleteTable
https://docs.amazonaws.cn/goto/DotNetSDKV3/timestream-write-2018-11-01/DeleteTable
https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/DeleteTable
https://docs.amazonaws.cn/goto/SdkForGoV2/timestream-write-2018-11-01/DeleteTable
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/DeleteTable
https://docs.amazonaws.cn/goto/SdkForJavaScriptV3/timestream-write-2018-11-01/DeleteTable
https://docs.amazonaws.cn/goto/SdkForKotlin/timestream-write-2018-11-01/DeleteTable
https://docs.amazonaws.cn/goto/SdkForPHPV3/timestream-write-2018-11-01/DeleteTable
https://docs.amazonaws.cn/goto/boto3/timestream-write-2018-11-01/DeleteTable
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/DeleteTable

Amazon Timestream Developer Guide

DescribeBatchLoadTask
Service: Amazon Timestream Write

Returns information about the batch load task, including configurations, mappings, progress, and
other details. Service quotas apply. See code sample for details.

Request Syntax

{
 "TaskId": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters.

The request accepts the following data in JSON format.

TaskId

The ID of the batch load task.

Type: String

Length Constraints: Minimum length of 3. Maximum length of 32.

Pattern: [A-Z0-9]+

Required: Yes

Response Syntax

{
 "BatchLoadTaskDescription": {
 "CreationTime": number,
 "DataModelConfiguration": {
 "DataModel": {
 "DimensionMappings": [
 {
 "DestinationColumn": "string",
 "SourceColumn": "string"
 }
],

Actions 831

https://docs.amazonaws.cn/timestream/latest/developerguide/ts-limits.html
https://docs.amazonaws.cn/timestream/latest/developerguide/code-samples.describe-batch-load.html

Amazon Timestream Developer Guide

 "MeasureNameColumn": "string",
 "MixedMeasureMappings": [
 {
 "MeasureName": "string",
 "MeasureValueType": "string",
 "MultiMeasureAttributeMappings": [
 {
 "MeasureValueType": "string",
 "SourceColumn": "string",
 "TargetMultiMeasureAttributeName": "string"
 }
],
 "SourceColumn": "string",
 "TargetMeasureName": "string"
 }
],
 "MultiMeasureMappings": {
 "MultiMeasureAttributeMappings": [
 {
 "MeasureValueType": "string",
 "SourceColumn": "string",
 "TargetMultiMeasureAttributeName": "string"
 }
],
 "TargetMultiMeasureName": "string"
 },
 "TimeColumn": "string",
 "TimeUnit": "string"
 },
 "DataModelS3Configuration": {
 "BucketName": "string",
 "ObjectKey": "string"
 }
 },
 "DataSourceConfiguration": {
 "CsvConfiguration": {
 "ColumnSeparator": "string",
 "EscapeChar": "string",
 "NullValue": "string",
 "QuoteChar": "string",
 "TrimWhiteSpace": boolean
 },
 "DataFormat": "string",
 "DataSourceS3Configuration": {

Actions 832

Amazon Timestream Developer Guide

 "BucketName": "string",
 "ObjectKeyPrefix": "string"
 }
 },
 "ErrorMessage": "string",
 "LastUpdatedTime": number,
 "ProgressReport": {
 "BytesMetered": number,
 "FileFailures": number,
 "ParseFailures": number,
 "RecordIngestionFailures": number,
 "RecordsIngested": number,
 "RecordsProcessed": number
 },
 "RecordVersion": number,
 "ReportConfiguration": {
 "ReportS3Configuration": {
 "BucketName": "string",
 "EncryptionOption": "string",
 "KmsKeyId": "string",
 "ObjectKeyPrefix": "string"
 }
 },
 "ResumableUntil": number,
 "TargetDatabaseName": "string",
 "TargetTableName": "string",
 "TaskId": "string",
 "TaskStatus": "string"
 }
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

BatchLoadTaskDescription

Description of the batch load task.

Type: BatchLoadTaskDescription object

Actions 833

Amazon Timestream Developer Guide

Errors

For information about the errors that are common to all actions, see Common Errors.

AccessDeniedException

You are not authorized to perform this action.

HTTP Status Code: 400

InternalServerException

Timestream was unable to fully process this request because of an internal server error.

HTTP Status Code: 500

InvalidEndpointException

The requested endpoint was not valid.

HTTP Status Code: 400

ResourceNotFoundException

The operation tried to access a nonexistent resource. The resource might not be specified
correctly, or its status might not be ACTIVE.

HTTP Status Code: 400

ThrottlingException

Too many requests were made by a user and they exceeded the service quotas. The request was
throttled.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon Command Line Interface

• Amazon SDK for .NET

• Amazon SDK for C++

Actions 834

https://docs.amazonaws.cn/goto/aws-cli/timestream-write-2018-11-01/DescribeBatchLoadTask
https://docs.amazonaws.cn/goto/DotNetSDKV3/timestream-write-2018-11-01/DescribeBatchLoadTask
https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/DescribeBatchLoadTask

Amazon Timestream Developer Guide

• Amazon SDK for Go v2

• Amazon SDK for Java V2

• Amazon SDK for JavaScript V3

• Amazon SDK for Kotlin

• Amazon SDK for PHP V3

• Amazon SDK for Python

• Amazon SDK for Ruby V3

Actions 835

https://docs.amazonaws.cn/goto/SdkForGoV2/timestream-write-2018-11-01/DescribeBatchLoadTask
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/DescribeBatchLoadTask
https://docs.amazonaws.cn/goto/SdkForJavaScriptV3/timestream-write-2018-11-01/DescribeBatchLoadTask
https://docs.amazonaws.cn/goto/SdkForKotlin/timestream-write-2018-11-01/DescribeBatchLoadTask
https://docs.amazonaws.cn/goto/SdkForPHPV3/timestream-write-2018-11-01/DescribeBatchLoadTask
https://docs.amazonaws.cn/goto/boto3/timestream-write-2018-11-01/DescribeBatchLoadTask
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/DescribeBatchLoadTask

Amazon Timestream Developer Guide

DescribeDatabase
Service: Amazon Timestream Write

Returns information about the database, including the database name, time that the database was
created, and the total number of tables found within the database. Service quotas apply. See code
sample for details.

Request Syntax

{
 "DatabaseName": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters.

The request accepts the following data in JSON format.

DatabaseName

The name of the Timestream database.

Type: String

Length Constraints: Minimum length of 3. Maximum length of 256.

Required: Yes

Response Syntax

{
 "Database": {
 "Arn": "string",
 "CreationTime": number,
 "DatabaseName": "string",
 "KmsKeyId": "string",
 "LastUpdatedTime": number,
 "TableCount": number
 }
}

Actions 836

https://docs.amazonaws.cn/timestream/latest/developerguide/ts-limits.html
https://docs.amazonaws.cn/timestream/latest/developerguide/code-samples.describe-db.html
https://docs.amazonaws.cn/timestream/latest/developerguide/code-samples.describe-db.html

Amazon Timestream Developer Guide

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

Database

The name of the Timestream table.

Type: Database object

Errors

For information about the errors that are common to all actions, see Common Errors.

AccessDeniedException

You are not authorized to perform this action.

HTTP Status Code: 400

InternalServerException

Timestream was unable to fully process this request because of an internal server error.

HTTP Status Code: 500

InvalidEndpointException

The requested endpoint was not valid.

HTTP Status Code: 400

ResourceNotFoundException

The operation tried to access a nonexistent resource. The resource might not be specified
correctly, or its status might not be ACTIVE.

HTTP Status Code: 400

ThrottlingException

Too many requests were made by a user and they exceeded the service quotas. The request was
throttled.

Actions 837

Amazon Timestream Developer Guide

HTTP Status Code: 400

ValidationException

An invalid or malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon Command Line Interface

• Amazon SDK for .NET

• Amazon SDK for C++

• Amazon SDK for Go v2

• Amazon SDK for Java V2

• Amazon SDK for JavaScript V3

• Amazon SDK for Kotlin

• Amazon SDK for PHP V3

• Amazon SDK for Python

• Amazon SDK for Ruby V3

Actions 838

https://docs.amazonaws.cn/goto/aws-cli/timestream-write-2018-11-01/DescribeDatabase
https://docs.amazonaws.cn/goto/DotNetSDKV3/timestream-write-2018-11-01/DescribeDatabase
https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/DescribeDatabase
https://docs.amazonaws.cn/goto/SdkForGoV2/timestream-write-2018-11-01/DescribeDatabase
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/DescribeDatabase
https://docs.amazonaws.cn/goto/SdkForJavaScriptV3/timestream-write-2018-11-01/DescribeDatabase
https://docs.amazonaws.cn/goto/SdkForKotlin/timestream-write-2018-11-01/DescribeDatabase
https://docs.amazonaws.cn/goto/SdkForPHPV3/timestream-write-2018-11-01/DescribeDatabase
https://docs.amazonaws.cn/goto/boto3/timestream-write-2018-11-01/DescribeDatabase
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/DescribeDatabase

Amazon Timestream Developer Guide

DescribeEndpoints
Service: Amazon Timestream Write

Returns a list of available endpoints to make Timestream API calls against. This API operation is
available through both the Write and Query APIs.

Because the Timestream SDKs are designed to transparently work with the service’s architecture,
including the management and mapping of the service endpoints, we don't recommend that you
use this API operation unless:

• You are using VPC endpoints (Amazon PrivateLink) with Timestream

• Your application uses a programming language that does not yet have SDK support

• You require better control over the client-side implementation

For detailed information on how and when to use and implement DescribeEndpoints, see The
Endpoint Discovery Pattern.

Response Syntax

{
 "Endpoints": [
 {
 "Address": "string",
 "CachePeriodInMinutes": number
 }
]
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

Endpoints

An Endpoints object is returned when a DescribeEndpoints request is made.

Type: Array of Endpoint objects

Actions 839

https://docs.amazonaws.cn/timestream/latest/developerguide/VPCEndpoints
https://docs.amazonaws.cn/timestream/latest/developerguide/Using.API.html#Using-API.endpoint-discovery
https://docs.amazonaws.cn/timestream/latest/developerguide/Using.API.html#Using-API.endpoint-discovery

Amazon Timestream Developer Guide

Errors

For information about the errors that are common to all actions, see Common Errors.

InternalServerException

Timestream was unable to fully process this request because of an internal server error.

HTTP Status Code: 500

ThrottlingException

Too many requests were made by a user and they exceeded the service quotas. The request was
throttled.

HTTP Status Code: 400

ValidationException

An invalid or malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon Command Line Interface

• Amazon SDK for .NET

• Amazon SDK for C++

• Amazon SDK for Go v2

• Amazon SDK for Java V2

• Amazon SDK for JavaScript V3

• Amazon SDK for Kotlin

• Amazon SDK for PHP V3

• Amazon SDK for Python

• Amazon SDK for Ruby V3

Actions 840

https://docs.amazonaws.cn/goto/aws-cli/timestream-write-2018-11-01/DescribeEndpoints
https://docs.amazonaws.cn/goto/DotNetSDKV3/timestream-write-2018-11-01/DescribeEndpoints
https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/DescribeEndpoints
https://docs.amazonaws.cn/goto/SdkForGoV2/timestream-write-2018-11-01/DescribeEndpoints
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/DescribeEndpoints
https://docs.amazonaws.cn/goto/SdkForJavaScriptV3/timestream-write-2018-11-01/DescribeEndpoints
https://docs.amazonaws.cn/goto/SdkForKotlin/timestream-write-2018-11-01/DescribeEndpoints
https://docs.amazonaws.cn/goto/SdkForPHPV3/timestream-write-2018-11-01/DescribeEndpoints
https://docs.amazonaws.cn/goto/boto3/timestream-write-2018-11-01/DescribeEndpoints
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/DescribeEndpoints

Amazon Timestream Developer Guide

DescribeTable
Service: Amazon Timestream Write

Returns information about the table, including the table name, database name, retention duration
of the memory store and the magnetic store. Service quotas apply. See code sample for details.

Request Syntax

{
 "DatabaseName": "string",
 "TableName": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters.

The request accepts the following data in JSON format.

DatabaseName

The name of the Timestream database.

Type: String

Length Constraints: Minimum length of 3. Maximum length of 256.

Required: Yes

TableName

The name of the Timestream table.

Type: String

Length Constraints: Minimum length of 3. Maximum length of 256.

Required: Yes

Response Syntax

{
 "Table": {

Actions 841

https://docs.amazonaws.cn/timestream/latest/developerguide/ts-limits.html
https://docs.amazonaws.cn/timestream/latest/developerguide/code-samples.describe-table.html

Amazon Timestream Developer Guide

 "Arn": "string",
 "CreationTime": number,
 "DatabaseName": "string",
 "LastUpdatedTime": number,
 "MagneticStoreWriteProperties": {
 "EnableMagneticStoreWrites": boolean,
 "MagneticStoreRejectedDataLocation": {
 "S3Configuration": {
 "BucketName": "string",
 "EncryptionOption": "string",
 "KmsKeyId": "string",
 "ObjectKeyPrefix": "string"
 }
 }
 },
 "RetentionProperties": {
 "MagneticStoreRetentionPeriodInDays": number,
 "MemoryStoreRetentionPeriodInHours": number
 },
 "Schema": {
 "CompositePartitionKey": [
 {
 "EnforcementInRecord": "string",
 "Name": "string",
 "Type": "string"
 }
]
 },
 "TableName": "string",
 "TableStatus": "string"
 }
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

Table

The Timestream table.

Type: Table object

Actions 842

Amazon Timestream Developer Guide

Errors

For information about the errors that are common to all actions, see Common Errors.

AccessDeniedException

You are not authorized to perform this action.

HTTP Status Code: 400

InternalServerException

Timestream was unable to fully process this request because of an internal server error.

HTTP Status Code: 500

InvalidEndpointException

The requested endpoint was not valid.

HTTP Status Code: 400

ResourceNotFoundException

The operation tried to access a nonexistent resource. The resource might not be specified
correctly, or its status might not be ACTIVE.

HTTP Status Code: 400

ThrottlingException

Too many requests were made by a user and they exceeded the service quotas. The request was
throttled.

HTTP Status Code: 400

ValidationException

An invalid or malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

Actions 843

Amazon Timestream Developer Guide

• Amazon Command Line Interface

• Amazon SDK for .NET

• Amazon SDK for C++

• Amazon SDK for Go v2

• Amazon SDK for Java V2

• Amazon SDK for JavaScript V3

• Amazon SDK for Kotlin

• Amazon SDK for PHP V3

• Amazon SDK for Python

• Amazon SDK for Ruby V3

Actions 844

https://docs.amazonaws.cn/goto/aws-cli/timestream-write-2018-11-01/DescribeTable
https://docs.amazonaws.cn/goto/DotNetSDKV3/timestream-write-2018-11-01/DescribeTable
https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/DescribeTable
https://docs.amazonaws.cn/goto/SdkForGoV2/timestream-write-2018-11-01/DescribeTable
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/DescribeTable
https://docs.amazonaws.cn/goto/SdkForJavaScriptV3/timestream-write-2018-11-01/DescribeTable
https://docs.amazonaws.cn/goto/SdkForKotlin/timestream-write-2018-11-01/DescribeTable
https://docs.amazonaws.cn/goto/SdkForPHPV3/timestream-write-2018-11-01/DescribeTable
https://docs.amazonaws.cn/goto/boto3/timestream-write-2018-11-01/DescribeTable
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/DescribeTable

Amazon Timestream Developer Guide

ListBatchLoadTasks
Service: Amazon Timestream Write

Provides a list of batch load tasks, along with the name, status, when the task is resumable until,
and other details. See code sample for details.

Request Syntax

{
 "MaxResults": number,
 "NextToken": "string",
 "TaskStatus": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters.

The request accepts the following data in JSON format.

MaxResults

The total number of items to return in the output. If the total number of items available is more
than the value specified, a NextToken is provided in the output. To resume pagination, provide
the NextToken value as argument of a subsequent API invocation.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 100.

Required: No

NextToken

A token to specify where to start paginating. This is the NextToken from a previously truncated
response.

Type: String

Required: No

TaskStatus

Status of the batch load task.

Actions 845

https://docs.amazonaws.cn/timestream/latest/developerguide/code-samples.list-batch-load-tasks.html

Amazon Timestream Developer Guide

Type: String

Valid Values: CREATED | IN_PROGRESS | FAILED | SUCCEEDED | PROGRESS_STOPPED
| PENDING_RESUME

Required: No

Response Syntax

{
 "BatchLoadTasks": [
 {
 "CreationTime": number,
 "DatabaseName": "string",
 "LastUpdatedTime": number,
 "ResumableUntil": number,
 "TableName": "string",
 "TaskId": "string",
 "TaskStatus": "string"
 }
],
 "NextToken": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

BatchLoadTasks

A list of batch load task details.

Type: Array of BatchLoadTask objects

NextToken

A token to specify where to start paginating. Provide the next ListBatchLoadTasksRequest.

Type: String

Actions 846

Amazon Timestream Developer Guide

Errors

For information about the errors that are common to all actions, see Common Errors.

AccessDeniedException

You are not authorized to perform this action.

HTTP Status Code: 400

InternalServerException

Timestream was unable to fully process this request because of an internal server error.

HTTP Status Code: 500

InvalidEndpointException

The requested endpoint was not valid.

HTTP Status Code: 400

ThrottlingException

Too many requests were made by a user and they exceeded the service quotas. The request was
throttled.

HTTP Status Code: 400

ValidationException

An invalid or malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon Command Line Interface

• Amazon SDK for .NET

• Amazon SDK for C++

• Amazon SDK for Go v2

Actions 847

https://docs.amazonaws.cn/goto/aws-cli/timestream-write-2018-11-01/ListBatchLoadTasks
https://docs.amazonaws.cn/goto/DotNetSDKV3/timestream-write-2018-11-01/ListBatchLoadTasks
https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/ListBatchLoadTasks
https://docs.amazonaws.cn/goto/SdkForGoV2/timestream-write-2018-11-01/ListBatchLoadTasks

Amazon Timestream Developer Guide

• Amazon SDK for Java V2

• Amazon SDK for JavaScript V3

• Amazon SDK for Kotlin

• Amazon SDK for PHP V3

• Amazon SDK for Python

• Amazon SDK for Ruby V3

Actions 848

https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/ListBatchLoadTasks
https://docs.amazonaws.cn/goto/SdkForJavaScriptV3/timestream-write-2018-11-01/ListBatchLoadTasks
https://docs.amazonaws.cn/goto/SdkForKotlin/timestream-write-2018-11-01/ListBatchLoadTasks
https://docs.amazonaws.cn/goto/SdkForPHPV3/timestream-write-2018-11-01/ListBatchLoadTasks
https://docs.amazonaws.cn/goto/boto3/timestream-write-2018-11-01/ListBatchLoadTasks
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/ListBatchLoadTasks

Amazon Timestream Developer Guide

ListDatabases
Service: Amazon Timestream Write

Returns a list of your Timestream databases. Service quotas apply. See code sample for details.

Request Syntax

{
 "MaxResults": number,
 "NextToken": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters.

The request accepts the following data in JSON format.

MaxResults

The total number of items to return in the output. If the total number of items available is more
than the value specified, a NextToken is provided in the output. To resume pagination, provide
the NextToken value as argument of a subsequent API invocation.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 20.

Required: No

NextToken

The pagination token. To resume pagination, provide the NextToken value as argument of a
subsequent API invocation.

Type: String

Required: No

Response Syntax

{

Actions 849

https://docs.amazonaws.cn/timestream/latest/developerguide/ts-limits.html
https://docs.amazonaws.cn/timestream/latest/developerguide/code-samples.list-db.html

Amazon Timestream Developer Guide

 "Databases": [
 {
 "Arn": "string",
 "CreationTime": number,
 "DatabaseName": "string",
 "KmsKeyId": "string",
 "LastUpdatedTime": number,
 "TableCount": number
 }
],
 "NextToken": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

Databases

A list of database names.

Type: Array of Database objects

NextToken

The pagination token. This parameter is returned when the response is truncated.

Type: String

Errors

For information about the errors that are common to all actions, see Common Errors.

AccessDeniedException

You are not authorized to perform this action.

HTTP Status Code: 400

InternalServerException

Timestream was unable to fully process this request because of an internal server error.

Actions 850

Amazon Timestream Developer Guide

HTTP Status Code: 500

InvalidEndpointException

The requested endpoint was not valid.

HTTP Status Code: 400

ThrottlingException

Too many requests were made by a user and they exceeded the service quotas. The request was
throttled.

HTTP Status Code: 400

ValidationException

An invalid or malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon Command Line Interface

• Amazon SDK for .NET

• Amazon SDK for C++

• Amazon SDK for Go v2

• Amazon SDK for Java V2

• Amazon SDK for JavaScript V3

• Amazon SDK for Kotlin

• Amazon SDK for PHP V3

• Amazon SDK for Python

• Amazon SDK for Ruby V3

Actions 851

https://docs.amazonaws.cn/goto/aws-cli/timestream-write-2018-11-01/ListDatabases
https://docs.amazonaws.cn/goto/DotNetSDKV3/timestream-write-2018-11-01/ListDatabases
https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/ListDatabases
https://docs.amazonaws.cn/goto/SdkForGoV2/timestream-write-2018-11-01/ListDatabases
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/ListDatabases
https://docs.amazonaws.cn/goto/SdkForJavaScriptV3/timestream-write-2018-11-01/ListDatabases
https://docs.amazonaws.cn/goto/SdkForKotlin/timestream-write-2018-11-01/ListDatabases
https://docs.amazonaws.cn/goto/SdkForPHPV3/timestream-write-2018-11-01/ListDatabases
https://docs.amazonaws.cn/goto/boto3/timestream-write-2018-11-01/ListDatabases
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/ListDatabases

Amazon Timestream Developer Guide

ListTables
Service: Amazon Timestream Write

Provides a list of tables, along with the name, status, and retention properties of each table. See
code sample for details.

Request Syntax

{
 "DatabaseName": "string",
 "MaxResults": number,
 "NextToken": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters.

The request accepts the following data in JSON format.

DatabaseName

The name of the Timestream database.

Type: String

Length Constraints: Minimum length of 3. Maximum length of 256.

Required: No

MaxResults

The total number of items to return in the output. If the total number of items available is more
than the value specified, a NextToken is provided in the output. To resume pagination, provide
the NextToken value as argument of a subsequent API invocation.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 20.

Required: No

Actions 852

https://docs.amazonaws.cn/timestream/latest/developerguide/code-samples.list-table.html

Amazon Timestream Developer Guide

NextToken

The pagination token. To resume pagination, provide the NextToken value as argument of a
subsequent API invocation.

Type: String

Required: No

Response Syntax

{
 "NextToken": "string",
 "Tables": [
 {
 "Arn": "string",
 "CreationTime": number,
 "DatabaseName": "string",
 "LastUpdatedTime": number,
 "MagneticStoreWriteProperties": {
 "EnableMagneticStoreWrites": boolean,
 "MagneticStoreRejectedDataLocation": {
 "S3Configuration": {
 "BucketName": "string",
 "EncryptionOption": "string",
 "KmsKeyId": "string",
 "ObjectKeyPrefix": "string"
 }
 }
 },
 "RetentionProperties": {
 "MagneticStoreRetentionPeriodInDays": number,
 "MemoryStoreRetentionPeriodInHours": number
 },
 "Schema": {
 "CompositePartitionKey": [
 {
 "EnforcementInRecord": "string",
 "Name": "string",
 "Type": "string"
 }
]
 },

Actions 853

Amazon Timestream Developer Guide

 "TableName": "string",
 "TableStatus": "string"
 }
]
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

NextToken

A token to specify where to start paginating. This is the NextToken from a previously truncated
response.

Type: String

Tables

A list of tables.

Type: Array of Table objects

Errors

For information about the errors that are common to all actions, see Common Errors.

AccessDeniedException

You are not authorized to perform this action.

HTTP Status Code: 400

InternalServerException

Timestream was unable to fully process this request because of an internal server error.

HTTP Status Code: 500

InvalidEndpointException

The requested endpoint was not valid.

Actions 854

Amazon Timestream Developer Guide

HTTP Status Code: 400

ResourceNotFoundException

The operation tried to access a nonexistent resource. The resource might not be specified
correctly, or its status might not be ACTIVE.

HTTP Status Code: 400

ThrottlingException

Too many requests were made by a user and they exceeded the service quotas. The request was
throttled.

HTTP Status Code: 400

ValidationException

An invalid or malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon Command Line Interface

• Amazon SDK for .NET

• Amazon SDK for C++

• Amazon SDK for Go v2

• Amazon SDK for Java V2

• Amazon SDK for JavaScript V3

• Amazon SDK for Kotlin

• Amazon SDK for PHP V3

• Amazon SDK for Python

• Amazon SDK for Ruby V3

Actions 855

https://docs.amazonaws.cn/goto/aws-cli/timestream-write-2018-11-01/ListTables
https://docs.amazonaws.cn/goto/DotNetSDKV3/timestream-write-2018-11-01/ListTables
https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/ListTables
https://docs.amazonaws.cn/goto/SdkForGoV2/timestream-write-2018-11-01/ListTables
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/ListTables
https://docs.amazonaws.cn/goto/SdkForJavaScriptV3/timestream-write-2018-11-01/ListTables
https://docs.amazonaws.cn/goto/SdkForKotlin/timestream-write-2018-11-01/ListTables
https://docs.amazonaws.cn/goto/SdkForPHPV3/timestream-write-2018-11-01/ListTables
https://docs.amazonaws.cn/goto/boto3/timestream-write-2018-11-01/ListTables
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/ListTables

Amazon Timestream Developer Guide

ListTagsForResource
Service: Amazon Timestream Write

Lists all tags on a Timestream resource.

Request Syntax

{
 "ResourceARN": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters.

The request accepts the following data in JSON format.

ResourceARN

The Timestream resource with tags to be listed. This value is an Amazon Resource Name (ARN).

Type: String

Length Constraints: Minimum length of 1. Maximum length of 1011.

Required: Yes

Response Syntax

{
 "Tags": [
 {
 "Key": "string",
 "Value": "string"
 }
]
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

Actions 856

Amazon Timestream Developer Guide

The following data is returned in JSON format by the service.

Tags

The tags currently associated with the Timestream resource.

Type: Array of Tag objects

Array Members: Minimum number of 0 items. Maximum number of 200 items.

Errors

For information about the errors that are common to all actions, see Common Errors.

InvalidEndpointException

The requested endpoint was not valid.

HTTP Status Code: 400

ResourceNotFoundException

The operation tried to access a nonexistent resource. The resource might not be specified
correctly, or its status might not be ACTIVE.

HTTP Status Code: 400

ThrottlingException

Too many requests were made by a user and they exceeded the service quotas. The request was
throttled.

HTTP Status Code: 400

ValidationException

An invalid or malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

Actions 857

Amazon Timestream Developer Guide

• Amazon Command Line Interface

• Amazon SDK for .NET

• Amazon SDK for C++

• Amazon SDK for Go v2

• Amazon SDK for Java V2

• Amazon SDK for JavaScript V3

• Amazon SDK for Kotlin

• Amazon SDK for PHP V3

• Amazon SDK for Python

• Amazon SDK for Ruby V3

Actions 858

https://docs.amazonaws.cn/goto/aws-cli/timestream-write-2018-11-01/ListTagsForResource
https://docs.amazonaws.cn/goto/DotNetSDKV3/timestream-write-2018-11-01/ListTagsForResource
https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/ListTagsForResource
https://docs.amazonaws.cn/goto/SdkForGoV2/timestream-write-2018-11-01/ListTagsForResource
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/ListTagsForResource
https://docs.amazonaws.cn/goto/SdkForJavaScriptV3/timestream-write-2018-11-01/ListTagsForResource
https://docs.amazonaws.cn/goto/SdkForKotlin/timestream-write-2018-11-01/ListTagsForResource
https://docs.amazonaws.cn/goto/SdkForPHPV3/timestream-write-2018-11-01/ListTagsForResource
https://docs.amazonaws.cn/goto/boto3/timestream-write-2018-11-01/ListTagsForResource
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/ListTagsForResource

Amazon Timestream Developer Guide

ResumeBatchLoadTask
Service: Amazon Timestream Write

Request Syntax

{
 "TaskId": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters.

The request accepts the following data in JSON format.

TaskId

The ID of the batch load task to resume.

Type: String

Length Constraints: Minimum length of 3. Maximum length of 32.

Pattern: [A-Z0-9]+

Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see Common Errors.

AccessDeniedException

You are not authorized to perform this action.

HTTP Status Code: 400

Actions 859

Amazon Timestream Developer Guide

InternalServerException

Timestream was unable to fully process this request because of an internal server error.

HTTP Status Code: 500

InvalidEndpointException

The requested endpoint was not valid.

HTTP Status Code: 400

ResourceNotFoundException

The operation tried to access a nonexistent resource. The resource might not be specified
correctly, or its status might not be ACTIVE.

HTTP Status Code: 400

ThrottlingException

Too many requests were made by a user and they exceeded the service quotas. The request was
throttled.

HTTP Status Code: 400

ValidationException

An invalid or malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon Command Line Interface

• Amazon SDK for .NET

• Amazon SDK for C++

• Amazon SDK for Go v2

• Amazon SDK for Java V2

• Amazon SDK for JavaScript V3

Actions 860

https://docs.amazonaws.cn/goto/aws-cli/timestream-write-2018-11-01/ResumeBatchLoadTask
https://docs.amazonaws.cn/goto/DotNetSDKV3/timestream-write-2018-11-01/ResumeBatchLoadTask
https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/ResumeBatchLoadTask
https://docs.amazonaws.cn/goto/SdkForGoV2/timestream-write-2018-11-01/ResumeBatchLoadTask
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/ResumeBatchLoadTask
https://docs.amazonaws.cn/goto/SdkForJavaScriptV3/timestream-write-2018-11-01/ResumeBatchLoadTask

Amazon Timestream Developer Guide

• Amazon SDK for Kotlin

• Amazon SDK for PHP V3

• Amazon SDK for Python

• Amazon SDK for Ruby V3

Actions 861

https://docs.amazonaws.cn/goto/SdkForKotlin/timestream-write-2018-11-01/ResumeBatchLoadTask
https://docs.amazonaws.cn/goto/SdkForPHPV3/timestream-write-2018-11-01/ResumeBatchLoadTask
https://docs.amazonaws.cn/goto/boto3/timestream-write-2018-11-01/ResumeBatchLoadTask
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/ResumeBatchLoadTask

Amazon Timestream Developer Guide

TagResource
Service: Amazon Timestream Write

Associates a set of tags with a Timestream resource. You can then activate these user-defined tags
so that they appear on the Billing and Cost Management console for cost allocation tracking.

Request Syntax

{
 "ResourceARN": "string",
 "Tags": [
 {
 "Key": "string",
 "Value": "string"
 }
]
}

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters.

The request accepts the following data in JSON format.

ResourceARN

Identifies the Timestream resource to which tags should be added. This value is an Amazon
Resource Name (ARN).

Type: String

Length Constraints: Minimum length of 1. Maximum length of 1011.

Required: Yes

Tags

The tags to be assigned to the Timestream resource.

Type: Array of Tag objects

Array Members: Minimum number of 0 items. Maximum number of 200 items.

Required: Yes

Actions 862

Amazon Timestream Developer Guide

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see Common Errors.

InvalidEndpointException

The requested endpoint was not valid.

HTTP Status Code: 400

ResourceNotFoundException

The operation tried to access a nonexistent resource. The resource might not be specified
correctly, or its status might not be ACTIVE.

HTTP Status Code: 400

ServiceQuotaExceededException

The instance quota of resource exceeded for this account.

HTTP Status Code: 400

ThrottlingException

Too many requests were made by a user and they exceeded the service quotas. The request was
throttled.

HTTP Status Code: 400

ValidationException

An invalid or malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

Actions 863

Amazon Timestream Developer Guide

• Amazon Command Line Interface

• Amazon SDK for .NET

• Amazon SDK for C++

• Amazon SDK for Go v2

• Amazon SDK for Java V2

• Amazon SDK for JavaScript V3

• Amazon SDK for Kotlin

• Amazon SDK for PHP V3

• Amazon SDK for Python

• Amazon SDK for Ruby V3

Actions 864

https://docs.amazonaws.cn/goto/aws-cli/timestream-write-2018-11-01/TagResource
https://docs.amazonaws.cn/goto/DotNetSDKV3/timestream-write-2018-11-01/TagResource
https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/TagResource
https://docs.amazonaws.cn/goto/SdkForGoV2/timestream-write-2018-11-01/TagResource
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/TagResource
https://docs.amazonaws.cn/goto/SdkForJavaScriptV3/timestream-write-2018-11-01/TagResource
https://docs.amazonaws.cn/goto/SdkForKotlin/timestream-write-2018-11-01/TagResource
https://docs.amazonaws.cn/goto/SdkForPHPV3/timestream-write-2018-11-01/TagResource
https://docs.amazonaws.cn/goto/boto3/timestream-write-2018-11-01/TagResource
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/TagResource

Amazon Timestream Developer Guide

UntagResource
Service: Amazon Timestream Write

Removes the association of tags from a Timestream resource.

Request Syntax

{
 "ResourceARN": "string",
 "TagKeys": ["string"]
}

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters.

The request accepts the following data in JSON format.

ResourceARN

The Timestream resource that the tags will be removed from. This value is an Amazon Resource
Name (ARN).

Type: String

Length Constraints: Minimum length of 1. Maximum length of 1011.

Required: Yes

TagKeys

A list of tags keys. Existing tags of the resource whose keys are members of this list will be
removed from the Timestream resource.

Type: Array of strings

Array Members: Minimum number of 0 items. Maximum number of 200 items.

Length Constraints: Minimum length of 1. Maximum length of 128.

Required: Yes

Actions 865

Amazon Timestream Developer Guide

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see Common Errors.

InvalidEndpointException

The requested endpoint was not valid.

HTTP Status Code: 400

ResourceNotFoundException

The operation tried to access a nonexistent resource. The resource might not be specified
correctly, or its status might not be ACTIVE.

HTTP Status Code: 400

ServiceQuotaExceededException

The instance quota of resource exceeded for this account.

HTTP Status Code: 400

ThrottlingException

Too many requests were made by a user and they exceeded the service quotas. The request was
throttled.

HTTP Status Code: 400

ValidationException

An invalid or malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

Actions 866

Amazon Timestream Developer Guide

• Amazon Command Line Interface

• Amazon SDK for .NET

• Amazon SDK for C++

• Amazon SDK for Go v2

• Amazon SDK for Java V2

• Amazon SDK for JavaScript V3

• Amazon SDK for Kotlin

• Amazon SDK for PHP V3

• Amazon SDK for Python

• Amazon SDK for Ruby V3

Actions 867

https://docs.amazonaws.cn/goto/aws-cli/timestream-write-2018-11-01/UntagResource
https://docs.amazonaws.cn/goto/DotNetSDKV3/timestream-write-2018-11-01/UntagResource
https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/UntagResource
https://docs.amazonaws.cn/goto/SdkForGoV2/timestream-write-2018-11-01/UntagResource
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/UntagResource
https://docs.amazonaws.cn/goto/SdkForJavaScriptV3/timestream-write-2018-11-01/UntagResource
https://docs.amazonaws.cn/goto/SdkForKotlin/timestream-write-2018-11-01/UntagResource
https://docs.amazonaws.cn/goto/SdkForPHPV3/timestream-write-2018-11-01/UntagResource
https://docs.amazonaws.cn/goto/boto3/timestream-write-2018-11-01/UntagResource
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/UntagResource

Amazon Timestream Developer Guide

UpdateDatabase
Service: Amazon Timestream Write

Modifies the Amazon KMS key for an existing database. While updating the database, you must
specify the database name and the identifier of the new Amazon KMS key to be used (KmsKeyId).
If there are any concurrent UpdateDatabase requests, first writer wins.

See code sample for details.

Request Syntax

{
 "DatabaseName": "string",
 "KmsKeyId": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters.

The request accepts the following data in JSON format.

DatabaseName

The name of the database.

Type: String

Length Constraints: Minimum length of 3. Maximum length of 256.

Required: Yes

KmsKeyId

The identifier of the new Amazon KMS key (KmsKeyId) to be used to encrypt the data stored
in the database. If the KmsKeyId currently registered with the database is the same as the
KmsKeyId in the request, there will not be any update.

You can specify the KmsKeyId using any of the following:

• Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab

• Key ARN: arn:aws:kms:us-
east-1:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

• Alias name: alias/ExampleAlias

Actions 868

https://docs.amazonaws.cn/timestream/latest/developerguide/code-samples.update-db.html

Amazon Timestream Developer Guide

• Alias ARN: arn:aws:kms:us-east-1:111122223333:alias/ExampleAlias

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Required: Yes

Response Syntax

{
 "Database": {
 "Arn": "string",
 "CreationTime": number,
 "DatabaseName": "string",
 "KmsKeyId": "string",
 "LastUpdatedTime": number,
 "TableCount": number
 }
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

Database

A top-level container for a table. Databases and tables are the fundamental management
concepts in Amazon Timestream. All tables in a database are encrypted with the same Amazon
KMS key.

Type: Database object

Errors

For information about the errors that are common to all actions, see Common Errors.

AccessDeniedException

You are not authorized to perform this action.

Actions 869

Amazon Timestream Developer Guide

HTTP Status Code: 400

InternalServerException

Timestream was unable to fully process this request because of an internal server error.

HTTP Status Code: 500

InvalidEndpointException

The requested endpoint was not valid.

HTTP Status Code: 400

ResourceNotFoundException

The operation tried to access a nonexistent resource. The resource might not be specified
correctly, or its status might not be ACTIVE.

HTTP Status Code: 400

ServiceQuotaExceededException

The instance quota of resource exceeded for this account.

HTTP Status Code: 400

ThrottlingException

Too many requests were made by a user and they exceeded the service quotas. The request was
throttled.

HTTP Status Code: 400

ValidationException

An invalid or malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon Command Line Interface

Actions 870

https://docs.amazonaws.cn/goto/aws-cli/timestream-write-2018-11-01/UpdateDatabase

Amazon Timestream Developer Guide

• Amazon SDK for .NET

• Amazon SDK for C++

• Amazon SDK for Go v2

• Amazon SDK for Java V2

• Amazon SDK for JavaScript V3

• Amazon SDK for Kotlin

• Amazon SDK for PHP V3

• Amazon SDK for Python

• Amazon SDK for Ruby V3

Actions 871

https://docs.amazonaws.cn/goto/DotNetSDKV3/timestream-write-2018-11-01/UpdateDatabase
https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/UpdateDatabase
https://docs.amazonaws.cn/goto/SdkForGoV2/timestream-write-2018-11-01/UpdateDatabase
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/UpdateDatabase
https://docs.amazonaws.cn/goto/SdkForJavaScriptV3/timestream-write-2018-11-01/UpdateDatabase
https://docs.amazonaws.cn/goto/SdkForKotlin/timestream-write-2018-11-01/UpdateDatabase
https://docs.amazonaws.cn/goto/SdkForPHPV3/timestream-write-2018-11-01/UpdateDatabase
https://docs.amazonaws.cn/goto/boto3/timestream-write-2018-11-01/UpdateDatabase
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/UpdateDatabase

Amazon Timestream Developer Guide

UpdateTable
Service: Amazon Timestream Write

Modifies the retention duration of the memory store and magnetic store for your Timestream
table. Note that the change in retention duration takes effect immediately. For example, if the
retention period of the memory store was initially set to 2 hours and then changed to 24 hours, the
memory store will be capable of holding 24 hours of data, but will be populated with 24 hours of
data 22 hours after this change was made. Timestream does not retrieve data from the magnetic
store to populate the memory store.

See code sample for details.

Request Syntax

{
 "DatabaseName": "string",
 "MagneticStoreWriteProperties": {
 "EnableMagneticStoreWrites": boolean,
 "MagneticStoreRejectedDataLocation": {
 "S3Configuration": {
 "BucketName": "string",
 "EncryptionOption": "string",
 "KmsKeyId": "string",
 "ObjectKeyPrefix": "string"
 }
 }
 },
 "RetentionProperties": {
 "MagneticStoreRetentionPeriodInDays": number,
 "MemoryStoreRetentionPeriodInHours": number
 },
 "Schema": {
 "CompositePartitionKey": [
 {
 "EnforcementInRecord": "string",
 "Name": "string",
 "Type": "string"
 }
]
 },
 "TableName": "string"
}

Actions 872

https://docs.amazonaws.cn/timestream/latest/developerguide/code-samples.update-table.html

Amazon Timestream Developer Guide

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters.

The request accepts the following data in JSON format.

DatabaseName

The name of the Timestream database.

Type: String

Length Constraints: Minimum length of 3. Maximum length of 256.

Required: Yes

MagneticStoreWriteProperties

Contains properties to set on the table when enabling magnetic store writes.

Type: MagneticStoreWriteProperties object

Required: No

RetentionProperties

The retention duration of the memory store and the magnetic store.

Type: RetentionProperties object

Required: No

Schema

The schema of the table.

Type: Schema object

Required: No

TableName

The name of the Timestream table.

Type: String

Length Constraints: Minimum length of 3. Maximum length of 256.

Actions 873

Amazon Timestream Developer Guide

Required: Yes

Response Syntax

{
 "Table": {
 "Arn": "string",
 "CreationTime": number,
 "DatabaseName": "string",
 "LastUpdatedTime": number,
 "MagneticStoreWriteProperties": {
 "EnableMagneticStoreWrites": boolean,
 "MagneticStoreRejectedDataLocation": {
 "S3Configuration": {
 "BucketName": "string",
 "EncryptionOption": "string",
 "KmsKeyId": "string",
 "ObjectKeyPrefix": "string"
 }
 }
 },
 "RetentionProperties": {
 "MagneticStoreRetentionPeriodInDays": number,
 "MemoryStoreRetentionPeriodInHours": number
 },
 "Schema": {
 "CompositePartitionKey": [
 {
 "EnforcementInRecord": "string",
 "Name": "string",
 "Type": "string"
 }
]
 },
 "TableName": "string",
 "TableStatus": "string"
 }
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

Actions 874

Amazon Timestream Developer Guide

The following data is returned in JSON format by the service.

Table

The updated Timestream table.

Type: Table object

Errors

For information about the errors that are common to all actions, see Common Errors.

AccessDeniedException

You are not authorized to perform this action.

HTTP Status Code: 400

InternalServerException

Timestream was unable to fully process this request because of an internal server error.

HTTP Status Code: 500

InvalidEndpointException

The requested endpoint was not valid.

HTTP Status Code: 400

ResourceNotFoundException

The operation tried to access a nonexistent resource. The resource might not be specified
correctly, or its status might not be ACTIVE.

HTTP Status Code: 400

ThrottlingException

Too many requests were made by a user and they exceeded the service quotas. The request was
throttled.

HTTP Status Code: 400

ValidationException

An invalid or malformed request.

Actions 875

Amazon Timestream Developer Guide

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon Command Line Interface

• Amazon SDK for .NET

• Amazon SDK for C++

• Amazon SDK for Go v2

• Amazon SDK for Java V2

• Amazon SDK for JavaScript V3

• Amazon SDK for Kotlin

• Amazon SDK for PHP V3

• Amazon SDK for Python

• Amazon SDK for Ruby V3

Actions 876

https://docs.amazonaws.cn/goto/aws-cli/timestream-write-2018-11-01/UpdateTable
https://docs.amazonaws.cn/goto/DotNetSDKV3/timestream-write-2018-11-01/UpdateTable
https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/UpdateTable
https://docs.amazonaws.cn/goto/SdkForGoV2/timestream-write-2018-11-01/UpdateTable
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/UpdateTable
https://docs.amazonaws.cn/goto/SdkForJavaScriptV3/timestream-write-2018-11-01/UpdateTable
https://docs.amazonaws.cn/goto/SdkForKotlin/timestream-write-2018-11-01/UpdateTable
https://docs.amazonaws.cn/goto/SdkForPHPV3/timestream-write-2018-11-01/UpdateTable
https://docs.amazonaws.cn/goto/boto3/timestream-write-2018-11-01/UpdateTable
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/UpdateTable

Amazon Timestream Developer Guide

WriteRecords
Service: Amazon Timestream Write

Enables you to write your time-series data into Timestream. You can specify a single data point or
a batch of data points to be inserted into the system. Timestream offers you a flexible schema that
auto detects the column names and data types for your Timestream tables based on the dimension
names and data types of the data points you specify when invoking writes into the database.

Timestream supports eventual consistency read semantics. This means that when you query data
immediately after writing a batch of data into Timestream, the query results might not reflect the
results of a recently completed write operation. The results may also include some stale data. If
you repeat the query request after a short time, the results should return the latest data. Service
quotas apply.

See code sample for details.

Upserts

You can use the Version parameter in a WriteRecords request to update data points.
Timestream tracks a version number with each record. Version defaults to 1 when it's not
specified for the record in the request. Timestream updates an existing record’s measure value
along with its Version when it receives a write request with a higher Version number for
that record. When it receives an update request where the measure value is the same as that of
the existing record, Timestream still updates Version, if it is greater than the existing value of
Version. You can update a data point as many times as desired, as long as the value of Version
continuously increases.

For example, suppose you write a new record without indicating Version in the request.
Timestream stores this record, and set Version to 1. Now, suppose you try to update this
record with a WriteRecords request of the same record with a different measure value but,
like before, do not provide Version. In this case, Timestream will reject this update with a
RejectedRecordsException since the updated record’s version is not greater than the existing
value of Version.

However, if you were to resend the update request with Version set to 2, Timestream would
then succeed in updating the record’s value, and the Version would be set to 2. Next, suppose
you sent a WriteRecords request with this same record and an identical measure value, but
with Version set to 3. In this case, Timestream would only update Version to 3. Any further
updates would need to send a version number greater than 3, or the update requests would receive
a RejectedRecordsException.

Actions 877

https://docs.amazonaws.cn/timestream/latest/developerguide/ts-limits.html
https://docs.amazonaws.cn/timestream/latest/developerguide/ts-limits.html
https://docs.amazonaws.cn/timestream/latest/developerguide/code-samples.write.html

Amazon Timestream Developer Guide

Request Syntax

{
 "CommonAttributes": {
 "Dimensions": [
 {
 "DimensionValueType": "string",
 "Name": "string",
 "Value": "string"
 }
],
 "MeasureName": "string",
 "MeasureValue": "string",
 "MeasureValues": [
 {
 "Name": "string",
 "Type": "string",
 "Value": "string"
 }
],
 "MeasureValueType": "string",
 "Time": "string",
 "TimeUnit": "string",
 "Version": number
 },
 "DatabaseName": "string",
 "Records": [
 {
 "Dimensions": [
 {
 "DimensionValueType": "string",
 "Name": "string",
 "Value": "string"
 }
],
 "MeasureName": "string",
 "MeasureValue": "string",
 "MeasureValues": [
 {
 "Name": "string",
 "Type": "string",
 "Value": "string"
 }
],

Actions 878

Amazon Timestream Developer Guide

 "MeasureValueType": "string",
 "Time": "string",
 "TimeUnit": "string",
 "Version": number
 }
],
 "TableName": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters.

The request accepts the following data in JSON format.

CommonAttributes

A record that contains the common measure, dimension, time, and version attributes shared
across all the records in the request. The measure and dimension attributes specified will be
merged with the measure and dimension attributes in the records object when the data is
written into Timestream. Dimensions may not overlap, or a ValidationException will be
thrown. In other words, a record must contain dimensions with unique names.

Type: Record object

Required: No

DatabaseName

The name of the Timestream database.

Type: String

Length Constraints: Minimum length of 3. Maximum length of 256.

Required: Yes

Records

An array of records that contain the unique measure, dimension, time, and version attributes for
each time-series data point.

Type: Array of Record objects

Array Members: Minimum number of 1 item. Maximum number of 100 items.

Actions 879

Amazon Timestream Developer Guide

Required: Yes

TableName

The name of the Timestream table.

Type: String

Length Constraints: Minimum length of 3. Maximum length of 256.

Required: Yes

Response Syntax

{
 "RecordsIngested": {
 "MagneticStore": number,
 "MemoryStore": number,
 "Total": number
 }
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

RecordsIngested

Information on the records ingested by this request.

Type: RecordsIngested object

Errors

For information about the errors that are common to all actions, see Common Errors.

AccessDeniedException

You are not authorized to perform this action.

HTTP Status Code: 400

Actions 880

Amazon Timestream Developer Guide

InternalServerException

Timestream was unable to fully process this request because of an internal server error.

HTTP Status Code: 500

InvalidEndpointException

The requested endpoint was not valid.

HTTP Status Code: 400

RejectedRecordsException

WriteRecords would throw this exception in the following cases:

• Records with duplicate data where there are multiple records with the same dimensions,
timestamps, and measure names but:

• Measure values are different

• Version is not present in the request or the value of version in the new record is equal to or
lower than the existing value

In this case, if Timestream rejects data, the ExistingVersion field in the
RejectedRecords response will indicate the current record’s version. To force an update,
you can resend the request with a version for the record set to a value greater than the
ExistingVersion.

• Records with timestamps that lie outside the retention duration of the memory store.

• Records with dimensions or measures that exceed the Timestream defined limits.

For more information, see Quotas in the Amazon Timestream Developer Guide.

HTTP Status Code: 400

ResourceNotFoundException

The operation tried to access a nonexistent resource. The resource might not be specified
correctly, or its status might not be ACTIVE.

HTTP Status Code: 400

ThrottlingException

Too many requests were made by a user and they exceeded the service quotas. The request was
throttled.

Actions 881

https://docs.amazonaws.cn/timestream/latest/developerguide/ts-limits.html

Amazon Timestream Developer Guide

HTTP Status Code: 400

ValidationException

An invalid or malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon Command Line Interface

• Amazon SDK for .NET

• Amazon SDK for C++

• Amazon SDK for Go v2

• Amazon SDK for Java V2

• Amazon SDK for JavaScript V3

• Amazon SDK for Kotlin

• Amazon SDK for PHP V3

• Amazon SDK for Python

• Amazon SDK for Ruby V3

Amazon Timestream Query

The following actions are supported by Amazon Timestream Query:

• CancelQuery

• CreateScheduledQuery

• DeleteScheduledQuery

• DescribeAccountSettings

• DescribeEndpoints

• DescribeScheduledQuery

• ExecuteScheduledQuery

Actions 882

https://docs.amazonaws.cn/goto/aws-cli/timestream-write-2018-11-01/WriteRecords
https://docs.amazonaws.cn/goto/DotNetSDKV3/timestream-write-2018-11-01/WriteRecords
https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/WriteRecords
https://docs.amazonaws.cn/goto/SdkForGoV2/timestream-write-2018-11-01/WriteRecords
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/WriteRecords
https://docs.amazonaws.cn/goto/SdkForJavaScriptV3/timestream-write-2018-11-01/WriteRecords
https://docs.amazonaws.cn/goto/SdkForKotlin/timestream-write-2018-11-01/WriteRecords
https://docs.amazonaws.cn/goto/SdkForPHPV3/timestream-write-2018-11-01/WriteRecords
https://docs.amazonaws.cn/goto/boto3/timestream-write-2018-11-01/WriteRecords
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/WriteRecords

Amazon Timestream Developer Guide

• ListScheduledQueries

• ListTagsForResource

• PrepareQuery

• Query

• TagResource

• UntagResource

• UpdateAccountSettings

• UpdateScheduledQuery

Actions 883

Amazon Timestream Developer Guide

CancelQuery
Service: Amazon Timestream Query

Cancels a query that has been issued. Cancellation is provided only if the query has not completed
running before the cancellation request was issued. Because cancellation is an idempotent
operation, subsequent cancellation requests will return a CancellationMessage, indicating that
the query has already been canceled. See code sample for details.

Request Syntax

{
 "QueryId": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters.

The request accepts the following data in JSON format.

QueryId

The ID of the query that needs to be cancelled. QueryID is returned as part of the query result.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: [a-zA-Z0-9]+

Required: Yes

Response Syntax

{
 "CancellationMessage": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

Actions 884

https://docs.amazonaws.cn/timestream/latest/developerguide/code-samples.cancel-query.html

Amazon Timestream Developer Guide

CancellationMessage

A CancellationMessage is returned when a CancelQuery request for the query specified by
QueryId has already been issued.

Type: String

Errors

For information about the errors that are common to all actions, see Common Errors.

AccessDeniedException

You do not have the necessary permissions to access the account settings.

HTTP Status Code: 400

InternalServerException

An internal server error occurred while processing the request.

HTTP Status Code: 400

InvalidEndpointException

The requested endpoint is invalid.

HTTP Status Code: 400

ThrottlingException

The request was throttled due to excessive requests.

HTTP Status Code: 400

ValidationException

Invalid or malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

Actions 885

Amazon Timestream Developer Guide

• Amazon Command Line Interface

• Amazon SDK for .NET

• Amazon SDK for C++

• Amazon SDK for Go v2

• Amazon SDK for Java V2

• Amazon SDK for JavaScript V3

• Amazon SDK for Kotlin

• Amazon SDK for PHP V3

• Amazon SDK for Python

• Amazon SDK for Ruby V3

Actions 886

https://docs.amazonaws.cn/goto/aws-cli/timestream-query-2018-11-01/CancelQuery
https://docs.amazonaws.cn/goto/DotNetSDKV3/timestream-query-2018-11-01/CancelQuery
https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/CancelQuery
https://docs.amazonaws.cn/goto/SdkForGoV2/timestream-query-2018-11-01/CancelQuery
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/CancelQuery
https://docs.amazonaws.cn/goto/SdkForJavaScriptV3/timestream-query-2018-11-01/CancelQuery
https://docs.amazonaws.cn/goto/SdkForKotlin/timestream-query-2018-11-01/CancelQuery
https://docs.amazonaws.cn/goto/SdkForPHPV3/timestream-query-2018-11-01/CancelQuery
https://docs.amazonaws.cn/goto/boto3/timestream-query-2018-11-01/CancelQuery
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/CancelQuery

Amazon Timestream Developer Guide

CreateScheduledQuery
Service: Amazon Timestream Query

Create a scheduled query that will be run on your behalf at the configured schedule. Timestream
assumes the execution role provided as part of the ScheduledQueryExecutionRoleArn
parameter to run the query. You can use the NotificationConfiguration parameter to
configure notification for your scheduled query operations.

Request Syntax

{
 "ClientToken": "string",
 "ErrorReportConfiguration": {
 "S3Configuration": {
 "BucketName": "string",
 "EncryptionOption": "string",
 "ObjectKeyPrefix": "string"
 }
 },
 "KmsKeyId": "string",
 "Name": "string",
 "NotificationConfiguration": {
 "SnsConfiguration": {
 "TopicArn": "string"
 }
 },
 "QueryString": "string",
 "ScheduleConfiguration": {
 "ScheduleExpression": "string"
 },
 "ScheduledQueryExecutionRoleArn": "string",
 "Tags": [
 {
 "Key": "string",
 "Value": "string"
 }
],
 "TargetConfiguration": {
 "TimestreamConfiguration": {
 "DatabaseName": "string",
 "DimensionMappings": [
 {
 "DimensionValueType": "string",

Actions 887

Amazon Timestream Developer Guide

 "Name": "string"
 }
],
 "MeasureNameColumn": "string",
 "MixedMeasureMappings": [
 {
 "MeasureName": "string",
 "MeasureValueType": "string",
 "MultiMeasureAttributeMappings": [
 {
 "MeasureValueType": "string",
 "SourceColumn": "string",
 "TargetMultiMeasureAttributeName": "string"
 }
],
 "SourceColumn": "string",
 "TargetMeasureName": "string"
 }
],
 "MultiMeasureMappings": {
 "MultiMeasureAttributeMappings": [
 {
 "MeasureValueType": "string",
 "SourceColumn": "string",
 "TargetMultiMeasureAttributeName": "string"
 }
],
 "TargetMultiMeasureName": "string"
 },
 "TableName": "string",
 "TimeColumn": "string"
 }
 }
}

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters.

The request accepts the following data in JSON format.

Actions 888

Amazon Timestream Developer Guide

ClientToken

Using a ClientToken makes the call to CreateScheduledQuery idempotent, in other words,
making the same request repeatedly will produce the same result. Making multiple identical
CreateScheduledQuery requests has the same effect as making a single request.

• If CreateScheduledQuery is called without a ClientToken, the Query SDK generates a
ClientToken on your behalf.

• After 8 hours, any request with the same ClientToken is treated as a new request.

Type: String

Length Constraints: Minimum length of 32. Maximum length of 128.

Required: No

ErrorReportConfiguration

Configuration for error reporting. Error reports will be generated when a problem is
encountered when writing the query results.

Type: ErrorReportConfiguration object

Required: Yes

KmsKeyId

The Amazon KMS key used to encrypt the scheduled query resource, at-rest. If the Amazon KMS
key is not specified, the scheduled query resource will be encrypted with a Timestream owned
Amazon KMS key. To specify a KMS key, use the key ID, key ARN, alias name, or alias ARN. When
using an alias name, prefix the name with alias/

If ErrorReportConfiguration uses SSE_KMS as encryption type, the same KmsKeyId is used to
encrypt the error report at rest.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Required: No

Name

Name of the scheduled query.

Actions 889

Amazon Timestream Developer Guide

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: [a-zA-Z0-9|!\-_*'\(\)]([a-zA-Z0-9]|[!\-_*'\(\)\/.])+

Required: Yes

NotificationConfiguration

Notification configuration for the scheduled query. A notification is sent by Timestream when a
query run finishes, when the state is updated or when you delete it.

Type: NotificationConfiguration object

Required: Yes

QueryString

The query string to run. Parameter names can be specified in the query string @ character
followed by an identifier. The named Parameter @scheduled_runtime is reserved and can be
used in the query to get the time at which the query is scheduled to run.

The timestamp calculated according to the ScheduleConfiguration parameter, will be the
value of @scheduled_runtime paramater for each query run. For example, consider an
instance of a scheduled query executing on 2021-12-01 00:00:00. For this instance, the
@scheduled_runtime parameter is initialized to the timestamp 2021-12-01 00:00:00 when
invoking the query.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 262144.

Required: Yes

ScheduleConfiguration

The schedule configuration for the query.

Type: ScheduleConfiguration object

Required: Yes

ScheduledQueryExecutionRoleArn

The ARN for the IAM role that Timestream will assume when running the scheduled query.

Actions 890

Amazon Timestream Developer Guide

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Required: Yes

Tags

A list of key-value pairs to label the scheduled query.

Type: Array of Tag objects

Array Members: Minimum number of 0 items. Maximum number of 200 items.

Required: No

TargetConfiguration

Configuration used for writing the result of a query.

Type: TargetConfiguration object

Required: No

Response Syntax

{
 "Arn": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

Arn

ARN for the created scheduled query.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Actions 891

Amazon Timestream Developer Guide

Errors

For information about the errors that are common to all actions, see Common Errors.

AccessDeniedException

You do not have the necessary permissions to access the account settings.

HTTP Status Code: 400

ConflictException

Unable to poll results for a cancelled query.

HTTP Status Code: 400

InternalServerException

An internal server error occurred while processing the request.

HTTP Status Code: 400

InvalidEndpointException

The requested endpoint is invalid.

HTTP Status Code: 400

ServiceQuotaExceededException

You have exceeded the service quota.

HTTP Status Code: 400

ThrottlingException

The request was throttled due to excessive requests.

HTTP Status Code: 400

ValidationException

Invalid or malformed request.

HTTP Status Code: 400

Actions 892

Amazon Timestream Developer Guide

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon Command Line Interface

• Amazon SDK for .NET

• Amazon SDK for C++

• Amazon SDK for Go v2

• Amazon SDK for Java V2

• Amazon SDK for JavaScript V3

• Amazon SDK for Kotlin

• Amazon SDK for PHP V3

• Amazon SDK for Python

• Amazon SDK for Ruby V3

Actions 893

https://docs.amazonaws.cn/goto/aws-cli/timestream-query-2018-11-01/CreateScheduledQuery
https://docs.amazonaws.cn/goto/DotNetSDKV3/timestream-query-2018-11-01/CreateScheduledQuery
https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/CreateScheduledQuery
https://docs.amazonaws.cn/goto/SdkForGoV2/timestream-query-2018-11-01/CreateScheduledQuery
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/CreateScheduledQuery
https://docs.amazonaws.cn/goto/SdkForJavaScriptV3/timestream-query-2018-11-01/CreateScheduledQuery
https://docs.amazonaws.cn/goto/SdkForKotlin/timestream-query-2018-11-01/CreateScheduledQuery
https://docs.amazonaws.cn/goto/SdkForPHPV3/timestream-query-2018-11-01/CreateScheduledQuery
https://docs.amazonaws.cn/goto/boto3/timestream-query-2018-11-01/CreateScheduledQuery
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/CreateScheduledQuery

Amazon Timestream Developer Guide

DeleteScheduledQuery
Service: Amazon Timestream Query

Deletes a given scheduled query. This is an irreversible operation.

Request Syntax

{
 "ScheduledQueryArn": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters.

The request accepts the following data in JSON format.

ScheduledQueryArn

The ARN of the scheduled query.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see Common Errors.

AccessDeniedException

You do not have the necessary permissions to access the account settings.

HTTP Status Code: 400

InternalServerException

An internal server error occurred while processing the request.

Actions 894

Amazon Timestream Developer Guide

HTTP Status Code: 400

InvalidEndpointException

The requested endpoint is invalid.

HTTP Status Code: 400

ResourceNotFoundException

The requested resource could not be found.

HTTP Status Code: 400

ThrottlingException

The request was throttled due to excessive requests.

HTTP Status Code: 400

ValidationException

Invalid or malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon Command Line Interface

• Amazon SDK for .NET

• Amazon SDK for C++

• Amazon SDK for Go v2

• Amazon SDK for Java V2

• Amazon SDK for JavaScript V3

• Amazon SDK for Kotlin

• Amazon SDK for PHP V3

• Amazon SDK for Python

• Amazon SDK for Ruby V3

Actions 895

https://docs.amazonaws.cn/goto/aws-cli/timestream-query-2018-11-01/DeleteScheduledQuery
https://docs.amazonaws.cn/goto/DotNetSDKV3/timestream-query-2018-11-01/DeleteScheduledQuery
https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/DeleteScheduledQuery
https://docs.amazonaws.cn/goto/SdkForGoV2/timestream-query-2018-11-01/DeleteScheduledQuery
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/DeleteScheduledQuery
https://docs.amazonaws.cn/goto/SdkForJavaScriptV3/timestream-query-2018-11-01/DeleteScheduledQuery
https://docs.amazonaws.cn/goto/SdkForKotlin/timestream-query-2018-11-01/DeleteScheduledQuery
https://docs.amazonaws.cn/goto/SdkForPHPV3/timestream-query-2018-11-01/DeleteScheduledQuery
https://docs.amazonaws.cn/goto/boto3/timestream-query-2018-11-01/DeleteScheduledQuery
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/DeleteScheduledQuery

Amazon Timestream Developer Guide

Actions 896

Amazon Timestream Developer Guide

DescribeAccountSettings
Service: Amazon Timestream Query

Describes the settings for your account that include the query pricing model and the configured
maximum TCUs the service can use for your query workload.

You're charged only for the duration of compute units used for your workloads.

Response Syntax

{
 "MaxQueryTCU": number,
 "QueryCompute": {
 "ComputeMode": "string",
 "ProvisionedCapacity": {
 "ActiveQueryTCU": number,
 "LastUpdate": {
 "Status": "string",
 "StatusMessage": "string",
 "TargetQueryTCU": number
 },
 "NotificationConfiguration": {
 "RoleArn": "string",
 "SnsConfiguration": {
 "TopicArn": "string"
 }
 }
 }
 },
 "QueryPricingModel": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

MaxQueryTCU

The maximum number of Timestream compute units (TCUs) the service will use at any point
in time to serve your queries. To run queries, you must set a minimum capacity of 4 TCU. You

Actions 897

https://docs.amazonaws.cn/timestream/latest/developerguide/tcu.html

Amazon Timestream Developer Guide

can set the maximum number of TCU in multiples of 4, for example, 4, 8, 16, 32, and so on. This
configuration is applicable only for on-demand usage of (TCUs).

Type: Integer

QueryCompute

An object that contains the usage settings for Timestream Compute Units (TCUs) in your
account for the query workload. QueryCompute is available only in the Asia Pacific (Mumbai)
region.

Type: QueryComputeResponse object

QueryPricingModel

The pricing model for queries in your account.

Note

The QueryPricingModel parameter is used by several Timestream operations;
however, the UpdateAccountSettings API operation doesn't recognize any values
other than COMPUTE_UNITS.

Type: String

Valid Values: BYTES_SCANNED | COMPUTE_UNITS

Errors

For information about the errors that are common to all actions, see Common Errors.

AccessDeniedException

You do not have the necessary permissions to access the account settings.

HTTP Status Code: 400

InternalServerException

An internal server error occurred while processing the request.

HTTP Status Code: 400

Actions 898

Amazon Timestream Developer Guide

InvalidEndpointException

The requested endpoint is invalid.

HTTP Status Code: 400

ThrottlingException

The request was throttled due to excessive requests.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon Command Line Interface

• Amazon SDK for .NET

• Amazon SDK for C++

• Amazon SDK for Go v2

• Amazon SDK for Java V2

• Amazon SDK for JavaScript V3

• Amazon SDK for Kotlin

• Amazon SDK for PHP V3

• Amazon SDK for Python

• Amazon SDK for Ruby V3

Actions 899

https://docs.amazonaws.cn/goto/aws-cli/timestream-query-2018-11-01/DescribeAccountSettings
https://docs.amazonaws.cn/goto/DotNetSDKV3/timestream-query-2018-11-01/DescribeAccountSettings
https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/DescribeAccountSettings
https://docs.amazonaws.cn/goto/SdkForGoV2/timestream-query-2018-11-01/DescribeAccountSettings
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/DescribeAccountSettings
https://docs.amazonaws.cn/goto/SdkForJavaScriptV3/timestream-query-2018-11-01/DescribeAccountSettings
https://docs.amazonaws.cn/goto/SdkForKotlin/timestream-query-2018-11-01/DescribeAccountSettings
https://docs.amazonaws.cn/goto/SdkForPHPV3/timestream-query-2018-11-01/DescribeAccountSettings
https://docs.amazonaws.cn/goto/boto3/timestream-query-2018-11-01/DescribeAccountSettings
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/DescribeAccountSettings

Amazon Timestream Developer Guide

DescribeEndpoints
Service: Amazon Timestream Query

DescribeEndpoints returns a list of available endpoints to make Timestream API calls against. This
API is available through both Write and Query.

Because the Timestream SDKs are designed to transparently work with the service’s architecture,
including the management and mapping of the service endpoints, it is not recommended that you
use this API unless:

• You are using VPC endpoints (Amazon PrivateLink) with Timestream

• Your application uses a programming language that does not yet have SDK support

• You require better control over the client-side implementation

For detailed information on how and when to use and implement DescribeEndpoints, see The
Endpoint Discovery Pattern.

Response Syntax

{
 "Endpoints": [
 {
 "Address": "string",
 "CachePeriodInMinutes": number
 }
]
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

Endpoints

An Endpoints object is returned when a DescribeEndpoints request is made.

Type: Array of Endpoint objects

Actions 900

https://docs.amazonaws.cn/timestream/latest/developerguide/VPCEndpoints
https://docs.amazonaws.cn/timestream/latest/developerguide/Using.API.html#Using-API.endpoint-discovery
https://docs.amazonaws.cn/timestream/latest/developerguide/Using.API.html#Using-API.endpoint-discovery

Amazon Timestream Developer Guide

Errors

For information about the errors that are common to all actions, see Common Errors.

InternalServerException

An internal server error occurred while processing the request.

HTTP Status Code: 400

ThrottlingException

The request was throttled due to excessive requests.

HTTP Status Code: 400

ValidationException

Invalid or malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon Command Line Interface

• Amazon SDK for .NET

• Amazon SDK for C++

• Amazon SDK for Go v2

• Amazon SDK for Java V2

• Amazon SDK for JavaScript V3

• Amazon SDK for Kotlin

• Amazon SDK for PHP V3

• Amazon SDK for Python

• Amazon SDK for Ruby V3

Actions 901

https://docs.amazonaws.cn/goto/aws-cli/timestream-query-2018-11-01/DescribeEndpoints
https://docs.amazonaws.cn/goto/DotNetSDKV3/timestream-query-2018-11-01/DescribeEndpoints
https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/DescribeEndpoints
https://docs.amazonaws.cn/goto/SdkForGoV2/timestream-query-2018-11-01/DescribeEndpoints
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/DescribeEndpoints
https://docs.amazonaws.cn/goto/SdkForJavaScriptV3/timestream-query-2018-11-01/DescribeEndpoints
https://docs.amazonaws.cn/goto/SdkForKotlin/timestream-query-2018-11-01/DescribeEndpoints
https://docs.amazonaws.cn/goto/SdkForPHPV3/timestream-query-2018-11-01/DescribeEndpoints
https://docs.amazonaws.cn/goto/boto3/timestream-query-2018-11-01/DescribeEndpoints
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/DescribeEndpoints

Amazon Timestream Developer Guide

DescribeScheduledQuery
Service: Amazon Timestream Query

Provides detailed information about a scheduled query.

Request Syntax

{
 "ScheduledQueryArn": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters.

The request accepts the following data in JSON format.

ScheduledQueryArn

The ARN of the scheduled query.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Required: Yes

Response Syntax

{
 "ScheduledQuery": {
 "Arn": "string",
 "CreationTime": number,
 "ErrorReportConfiguration": {
 "S3Configuration": {
 "BucketName": "string",
 "EncryptionOption": "string",
 "ObjectKeyPrefix": "string"
 }
 },
 "KmsKeyId": "string",
 "LastRunSummary": {
 "ErrorReportLocation": {

Actions 902

Amazon Timestream Developer Guide

 "S3ReportLocation": {
 "BucketName": "string",
 "ObjectKey": "string"
 }
 },
 "ExecutionStats": {
 "BytesMetered": number,
 "CumulativeBytesScanned": number,
 "DataWrites": number,
 "ExecutionTimeInMillis": number,
 "QueryResultRows": number,
 "RecordsIngested": number
 },
 "FailureReason": "string",
 "InvocationTime": number,
 "QueryInsightsResponse": {
 "OutputBytes": number,
 "OutputRows": number,
 "QuerySpatialCoverage": {
 "Max": {
 "PartitionKey": ["string"],
 "TableArn": "string",
 "Value": number
 }
 },
 "QueryTableCount": number,
 "QueryTemporalRange": {
 "Max": {
 "TableArn": "string",
 "Value": number
 }
 }
 },
 "RunStatus": "string",
 "TriggerTime": number
 },
 "Name": "string",
 "NextInvocationTime": number,
 "NotificationConfiguration": {
 "SnsConfiguration": {
 "TopicArn": "string"
 }
 },
 "PreviousInvocationTime": number,

Actions 903

Amazon Timestream Developer Guide

 "QueryString": "string",
 "RecentlyFailedRuns": [
 {
 "ErrorReportLocation": {
 "S3ReportLocation": {
 "BucketName": "string",
 "ObjectKey": "string"
 }
 },
 "ExecutionStats": {
 "BytesMetered": number,
 "CumulativeBytesScanned": number,
 "DataWrites": number,
 "ExecutionTimeInMillis": number,
 "QueryResultRows": number,
 "RecordsIngested": number
 },
 "FailureReason": "string",
 "InvocationTime": number,
 "QueryInsightsResponse": {
 "OutputBytes": number,
 "OutputRows": number,
 "QuerySpatialCoverage": {
 "Max": {
 "PartitionKey": ["string"],
 "TableArn": "string",
 "Value": number
 }
 },
 "QueryTableCount": number,
 "QueryTemporalRange": {
 "Max": {
 "TableArn": "string",
 "Value": number
 }
 }
 },
 "RunStatus": "string",
 "TriggerTime": number
 }
],
 "ScheduleConfiguration": {
 "ScheduleExpression": "string"
 },

Actions 904

Amazon Timestream Developer Guide

 "ScheduledQueryExecutionRoleArn": "string",
 "State": "string",
 "TargetConfiguration": {
 "TimestreamConfiguration": {
 "DatabaseName": "string",
 "DimensionMappings": [
 {
 "DimensionValueType": "string",
 "Name": "string"
 }
],
 "MeasureNameColumn": "string",
 "MixedMeasureMappings": [
 {
 "MeasureName": "string",
 "MeasureValueType": "string",
 "MultiMeasureAttributeMappings": [
 {
 "MeasureValueType": "string",
 "SourceColumn": "string",
 "TargetMultiMeasureAttributeName": "string"
 }
],
 "SourceColumn": "string",
 "TargetMeasureName": "string"
 }
],
 "MultiMeasureMappings": {
 "MultiMeasureAttributeMappings": [
 {
 "MeasureValueType": "string",
 "SourceColumn": "string",
 "TargetMultiMeasureAttributeName": "string"
 }
],
 "TargetMultiMeasureName": "string"
 },
 "TableName": "string",
 "TimeColumn": "string"
 }
 }
 }
}

Actions 905

Amazon Timestream Developer Guide

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

ScheduledQuery

The scheduled query.

Type: ScheduledQueryDescription object

Errors

For information about the errors that are common to all actions, see Common Errors.

AccessDeniedException

You do not have the necessary permissions to access the account settings.

HTTP Status Code: 400

InternalServerException

An internal server error occurred while processing the request.

HTTP Status Code: 400

InvalidEndpointException

The requested endpoint is invalid.

HTTP Status Code: 400

ResourceNotFoundException

The requested resource could not be found.

HTTP Status Code: 400

ThrottlingException

The request was throttled due to excessive requests.

HTTP Status Code: 400

Actions 906

Amazon Timestream Developer Guide

ValidationException

Invalid or malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon Command Line Interface

• Amazon SDK for .NET

• Amazon SDK for C++

• Amazon SDK for Go v2

• Amazon SDK for Java V2

• Amazon SDK for JavaScript V3

• Amazon SDK for Kotlin

• Amazon SDK for PHP V3

• Amazon SDK for Python

• Amazon SDK for Ruby V3

Actions 907

https://docs.amazonaws.cn/goto/aws-cli/timestream-query-2018-11-01/DescribeScheduledQuery
https://docs.amazonaws.cn/goto/DotNetSDKV3/timestream-query-2018-11-01/DescribeScheduledQuery
https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/DescribeScheduledQuery
https://docs.amazonaws.cn/goto/SdkForGoV2/timestream-query-2018-11-01/DescribeScheduledQuery
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/DescribeScheduledQuery
https://docs.amazonaws.cn/goto/SdkForJavaScriptV3/timestream-query-2018-11-01/DescribeScheduledQuery
https://docs.amazonaws.cn/goto/SdkForKotlin/timestream-query-2018-11-01/DescribeScheduledQuery
https://docs.amazonaws.cn/goto/SdkForPHPV3/timestream-query-2018-11-01/DescribeScheduledQuery
https://docs.amazonaws.cn/goto/boto3/timestream-query-2018-11-01/DescribeScheduledQuery
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/DescribeScheduledQuery

Amazon Timestream Developer Guide

ExecuteScheduledQuery
Service: Amazon Timestream Query

You can use this API to run a scheduled query manually.

If you enabled QueryInsights, this API also returns insights and metrics related to the query that
you executed as part of an Amazon SNS notification. QueryInsights helps with performance
tuning of your query. For more information about QueryInsights, see Using query insights to
optimize queries in Amazon Timestream.

Request Syntax

{
 "ClientToken": "string",
 "InvocationTime": number,
 "QueryInsights": {
 "Mode": "string"
 },
 "ScheduledQueryArn": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters.

The request accepts the following data in JSON format.

ClientToken

Not used.

Type: String

Length Constraints: Minimum length of 32. Maximum length of 128.

Required: No

InvocationTime

The timestamp in UTC. Query will be run as if it was invoked at this timestamp.

Type: Timestamp

Required: Yes

Actions 908

https://docs.amazonaws.cn/timestream/latest/developerguide/using-query-insights.html
https://docs.amazonaws.cn/timestream/latest/developerguide/using-query-insights.html

Amazon Timestream Developer Guide

QueryInsights

Encapsulates settings for enabling QueryInsights.

Enabling QueryInsights returns insights and metrics as a part of the Amazon SNS
notification for the query that you executed. You can use QueryInsights to tune your query
performance and cost.

Type: ScheduledQueryInsights object

Required: No

ScheduledQueryArn

ARN of the scheduled query.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see Common Errors.

AccessDeniedException

You do not have the necessary permissions to access the account settings.

HTTP Status Code: 400

InternalServerException

An internal server error occurred while processing the request.

HTTP Status Code: 400

InvalidEndpointException

The requested endpoint is invalid.

Actions 909

Amazon Timestream Developer Guide

HTTP Status Code: 400

ResourceNotFoundException

The requested resource could not be found.

HTTP Status Code: 400

ThrottlingException

The request was throttled due to excessive requests.

HTTP Status Code: 400

ValidationException

Invalid or malformed request.

HTTP Status Code: 400

Examples

Scheduled query notification message for the ENABLED_WITH_RATE_CONTROL mode

The following example shows a successful scheduled query notification message for the
ENABLED_WITH_RATE_CONTROL mode of the QueryInsights parameter.

"SuccessNotificationMessage": {
 "type": "MANUAL_TRIGGER_SUCCESS",
 "arn": "arn:aws:timestream:<Region>:<Account>:scheduled-query/sq-test-49c6ed55-
c2e7-4cc2-9956-4a0ecea13420-80e05b035236a4c3",
 "scheduledQueryRunSummary": {
 "invocationEpochSecond": 1723710546,
 "triggerTimeMillis": 1723710547490,
 "runStatus": "MANUAL_TRIGGER_SUCCESS",
 "executionStats": {
 "executionTimeInMillis": 17343,
 "dataWrites": 1024,
 "bytesMetered": 0,
 "cumulativeBytesScanned": 600,
 "recordsIngested": 1,
 "queryResultRows": 1
 },
 "queryInsightsResponse": {
 "querySpatialCoverage": {

Actions 910

Amazon Timestream Developer Guide

 "max": {
 "value": 1.0,
 "tableArn": "arn:aws:timestream:<Region>:<Account>:database/BaseDb/
table/BaseTable",
 "partitionKey": [
 "measure_name"
]
 }
 },
 "queryTemporalRange": {
 "max": {
 "value": 2399999999999,
 "tableArn": "arn:aws:timestream:<Region>:<Account>:database/BaseDb/
table/BaseTable"
 }
 },
 "queryTableCount": 1,
 "outputRows": 1,
 "outputBytes": 59
 }
 }
}

Scheduled query notification message for the DISABLED mode

The following example shows a successful scheduled query notification message for the DISABLED
mode of the QueryInsights parameter.

"SuccessNotificationMessage": {
 "type": "MANUAL_TRIGGER_SUCCESS",
 "arn": "arn:aws:timestream:<Region>:<Account>:scheduled-query/sq-test-
fa109d9e-6528-4a0d-ac40-482fa05e657f-140faaeecdc5b2a7",
 "scheduledQueryRunSummary": {
 "invocationEpochSecond": 1723711401,
 "triggerTimeMillis": 1723711402144,
 "runStatus": "MANUAL_TRIGGER_SUCCESS",
 "executionStats": {
 "executionTimeInMillis": 17992,
 "dataWrites": 1024,
 "bytesMetered": 0,
 "cumulativeBytesScanned": 600,
 "recordsIngested": 1,
 "queryResultRows": 1

Actions 911

Amazon Timestream Developer Guide

 }
 }
}

Failure notification message for the ENABLED_WITH_RATE_CONTROL mode

The following example shows a failed scheduled query notification message for the
ENABLED_WITH_RATE_CONTROL mode of the QueryInsights parameter.

"FailureNotificationMessage": {
 "type": "MANUAL_TRIGGER_FAILURE",
 "arn": "arn:aws:timestream:<Region>:<Account>:scheduled-query/sq-test-
b261670d-790c-4116-9db5-0798071b18b1-b7e27a1d79be226d",
 "scheduledQueryRunSummary": {
 "invocationEpochSecond": 1727915513,
 "triggerTimeMillis": 1727915513894,
 "runStatus": "MANUAL_TRIGGER_FAILURE",
 "executionStats": {
 "executionTimeInMillis": 10777,
 "dataWrites": 0,
 "bytesMetered": 0,
 "cumulativeBytesScanned": 0,
 "recordsIngested": 0,
 "queryResultRows": 4
 },
 "errorReportLocation": {
 "s3ReportLocation": {
 "bucketName": "amzn-s3-demo-bucket",
 "objectKey": "4my-organization-f7a3c5d065a1a95e/1727915513/
MANUAL/1727915513894/5e14b3df-b147-49f4-9331-784f749b68ae"
 }
 },
 "failureReason": "Schedule encountered some errors and is incomplete. Please
 take a look at error report for further details"
 }
}

Failure notification message for the DISABLED mode

The following example shows a failed scheduled query notification message for the DISABLED
mode of the QueryInsights parameter.

"FailureNotificationMessage": {

Actions 912

Amazon Timestream Developer Guide

 "type": "MANUAL_TRIGGER_FAILURE",
 "arn": "arn:aws:timestream:<Region>:<Account>:scheduled-query/sq-test-
b261670d-790c-4116-9db5-0798071b18b1-b7e27a1d79be226d",
 "scheduledQueryRunSummary": {
 "invocationEpochSecond": 1727915194,
 "triggerTimeMillis": 1727915195119,
 "runStatus": "MANUAL_TRIGGER_FAILURE",
 "executionStats": {
 "executionTimeInMillis": 10777,
 "dataWrites": 0,
 "bytesMetered": 0,
 "cumulativeBytesScanned": 0,
 "recordsIngested": 0,
 "queryResultRows": 4
 },
 "errorReportLocation": {
 "s3ReportLocation": {
 "bucketName": "amzn-s3-demo-bucket",
 "objectKey": "4my-organization-b7e27a1d79be226d/1727915194/
MANUAL/1727915195119/08dea9f5-9a0a-4e63-a5f7-ded23247bb98"
 }
 },
 "failureReason": "Schedule encountered some errors and is incomplete. Please
 take a look at error report for further details"
 }
}

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon Command Line Interface

• Amazon SDK for .NET

• Amazon SDK for C++

• Amazon SDK for Go v2

• Amazon SDK for Java V2

• Amazon SDK for JavaScript V3

• Amazon SDK for Kotlin

• Amazon SDK for PHP V3

Actions 913

https://docs.amazonaws.cn/goto/aws-cli/timestream-query-2018-11-01/ExecuteScheduledQuery
https://docs.amazonaws.cn/goto/DotNetSDKV3/timestream-query-2018-11-01/ExecuteScheduledQuery
https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/ExecuteScheduledQuery
https://docs.amazonaws.cn/goto/SdkForGoV2/timestream-query-2018-11-01/ExecuteScheduledQuery
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/ExecuteScheduledQuery
https://docs.amazonaws.cn/goto/SdkForJavaScriptV3/timestream-query-2018-11-01/ExecuteScheduledQuery
https://docs.amazonaws.cn/goto/SdkForKotlin/timestream-query-2018-11-01/ExecuteScheduledQuery
https://docs.amazonaws.cn/goto/SdkForPHPV3/timestream-query-2018-11-01/ExecuteScheduledQuery

Amazon Timestream Developer Guide

• Amazon SDK for Python

• Amazon SDK for Ruby V3

Actions 914

https://docs.amazonaws.cn/goto/boto3/timestream-query-2018-11-01/ExecuteScheduledQuery
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/ExecuteScheduledQuery

Amazon Timestream Developer Guide

ListScheduledQueries
Service: Amazon Timestream Query

Gets a list of all scheduled queries in the caller's Amazon account and Region.
ListScheduledQueries is eventually consistent.

Request Syntax

{
 "MaxResults": number,
 "NextToken": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters.

The request accepts the following data in JSON format.

MaxResults

The maximum number of items to return in the output. If the total number of items
available is more than the value specified, a NextToken is provided in the output. To
resume pagination, provide the NextToken value as the argument to the subsequent call to
ListScheduledQueriesRequest.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 1000.

Required: No

NextToken

A pagination token to resume pagination.

Type: String

Required: No

Response Syntax

{

Actions 915

Amazon Timestream Developer Guide

 "NextToken": "string",
 "ScheduledQueries": [
 {
 "Arn": "string",
 "CreationTime": number,
 "ErrorReportConfiguration": {
 "S3Configuration": {
 "BucketName": "string",
 "EncryptionOption": "string",
 "ObjectKeyPrefix": "string"
 }
 },
 "LastRunStatus": "string",
 "Name": "string",
 "NextInvocationTime": number,
 "PreviousInvocationTime": number,
 "State": "string",
 "TargetDestination": {
 "TimestreamDestination": {
 "DatabaseName": "string",
 "TableName": "string"
 }
 }
 }
]
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

NextToken

A token to specify where to start paginating. This is the NextToken from a previously truncated
response.

Type: String

ScheduledQueries

A list of scheduled queries.

Type: Array of ScheduledQuery objects

Actions 916

Amazon Timestream Developer Guide

Errors

For information about the errors that are common to all actions, see Common Errors.

AccessDeniedException

You do not have the necessary permissions to access the account settings.

HTTP Status Code: 400

InternalServerException

An internal server error occurred while processing the request.

HTTP Status Code: 400

InvalidEndpointException

The requested endpoint is invalid.

HTTP Status Code: 400

ThrottlingException

The request was throttled due to excessive requests.

HTTP Status Code: 400

ValidationException

Invalid or malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon Command Line Interface

• Amazon SDK for .NET

• Amazon SDK for C++

• Amazon SDK for Go v2

• Amazon SDK for Java V2

Actions 917

https://docs.amazonaws.cn/goto/aws-cli/timestream-query-2018-11-01/ListScheduledQueries
https://docs.amazonaws.cn/goto/DotNetSDKV3/timestream-query-2018-11-01/ListScheduledQueries
https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/ListScheduledQueries
https://docs.amazonaws.cn/goto/SdkForGoV2/timestream-query-2018-11-01/ListScheduledQueries
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/ListScheduledQueries

Amazon Timestream Developer Guide

• Amazon SDK for JavaScript V3

• Amazon SDK for Kotlin

• Amazon SDK for PHP V3

• Amazon SDK for Python

• Amazon SDK for Ruby V3

Actions 918

https://docs.amazonaws.cn/goto/SdkForJavaScriptV3/timestream-query-2018-11-01/ListScheduledQueries
https://docs.amazonaws.cn/goto/SdkForKotlin/timestream-query-2018-11-01/ListScheduledQueries
https://docs.amazonaws.cn/goto/SdkForPHPV3/timestream-query-2018-11-01/ListScheduledQueries
https://docs.amazonaws.cn/goto/boto3/timestream-query-2018-11-01/ListScheduledQueries
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/ListScheduledQueries

Amazon Timestream Developer Guide

ListTagsForResource
Service: Amazon Timestream Query

List all tags on a Timestream query resource.

Request Syntax

{
 "MaxResults": number,
 "NextToken": "string",
 "ResourceARN": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters.

The request accepts the following data in JSON format.

MaxResults

The maximum number of tags to return.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 200.

Required: No

NextToken

A pagination token to resume pagination.

Type: String

Required: No

ResourceARN

The Timestream resource with tags to be listed. This value is an Amazon Resource Name (ARN).

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Actions 919

Amazon Timestream Developer Guide

Required: Yes

Response Syntax

{
 "NextToken": "string",
 "Tags": [
 {
 "Key": "string",
 "Value": "string"
 }
]
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

NextToken

A pagination token to resume pagination with a subsequent call to
ListTagsForResourceResponse.

Type: String

Tags

The tags currently associated with the Timestream resource.

Type: Array of Tag objects

Array Members: Minimum number of 0 items. Maximum number of 200 items.

Errors

For information about the errors that are common to all actions, see Common Errors.

InvalidEndpointException

The requested endpoint is invalid.

Actions 920

Amazon Timestream Developer Guide

HTTP Status Code: 400

ResourceNotFoundException

The requested resource could not be found.

HTTP Status Code: 400

ThrottlingException

The request was throttled due to excessive requests.

HTTP Status Code: 400

ValidationException

Invalid or malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon Command Line Interface

• Amazon SDK for .NET

• Amazon SDK for C++

• Amazon SDK for Go v2

• Amazon SDK for Java V2

• Amazon SDK for JavaScript V3

• Amazon SDK for Kotlin

• Amazon SDK for PHP V3

• Amazon SDK for Python

• Amazon SDK for Ruby V3

Actions 921

https://docs.amazonaws.cn/goto/aws-cli/timestream-query-2018-11-01/ListTagsForResource
https://docs.amazonaws.cn/goto/DotNetSDKV3/timestream-query-2018-11-01/ListTagsForResource
https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/ListTagsForResource
https://docs.amazonaws.cn/goto/SdkForGoV2/timestream-query-2018-11-01/ListTagsForResource
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/ListTagsForResource
https://docs.amazonaws.cn/goto/SdkForJavaScriptV3/timestream-query-2018-11-01/ListTagsForResource
https://docs.amazonaws.cn/goto/SdkForKotlin/timestream-query-2018-11-01/ListTagsForResource
https://docs.amazonaws.cn/goto/SdkForPHPV3/timestream-query-2018-11-01/ListTagsForResource
https://docs.amazonaws.cn/goto/boto3/timestream-query-2018-11-01/ListTagsForResource
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/ListTagsForResource

Amazon Timestream Developer Guide

PrepareQuery
Service: Amazon Timestream Query

A synchronous operation that allows you to submit a query with parameters to be stored by
Timestream for later running. Timestream only supports using this operation with ValidateOnly
set to true.

Request Syntax

{
 "QueryString": "string",
 "ValidateOnly": boolean
}

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters.

The request accepts the following data in JSON format.

QueryString

The Timestream query string that you want to use as a prepared statement. Parameter names
can be specified in the query string @ character followed by an identifier.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 262144.

Required: Yes

ValidateOnly

By setting this value to true, Timestream will only validate that the query string is a valid
Timestream query, and not store the prepared query for later use.

Type: Boolean

Required: No

Response Syntax

{
 "Columns": [

Actions 922

Amazon Timestream Developer Guide

 {
 "Aliased": boolean,
 "DatabaseName": "string",
 "Name": "string",
 "TableName": "string",
 "Type": {
 "ArrayColumnInfo": {
 "Name": "string",
 "Type": "Type"
 },
 "RowColumnInfo": [
 {
 "Name": "string",
 "Type": "Type"
 }
],
 "ScalarType": "string",
 "TimeSeriesMeasureValueColumnInfo": {
 "Name": "string",
 "Type": "Type"
 }
 }
 }
],
 "Parameters": [
 {
 "Name": "string",
 "Type": {
 "ArrayColumnInfo": {
 "Name": "string",
 "Type": "Type"
 },
 "RowColumnInfo": [
 {
 "Name": "string",
 "Type": "Type"
 }
],
 "ScalarType": "string",
 "TimeSeriesMeasureValueColumnInfo": {
 "Name": "string",
 "Type": "Type"
 }
 }

Actions 923

Amazon Timestream Developer Guide

 }
],
 "QueryString": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

Columns

A list of SELECT clause columns of the submitted query string.

Type: Array of SelectColumn objects

Parameters

A list of parameters used in the submitted query string.

Type: Array of ParameterMapping objects

QueryString

The query string that you want prepare.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 262144.

Errors

For information about the errors that are common to all actions, see Common Errors.

AccessDeniedException

You do not have the necessary permissions to access the account settings.

HTTP Status Code: 400

InternalServerException

An internal server error occurred while processing the request.

Actions 924

Amazon Timestream Developer Guide

HTTP Status Code: 400

InvalidEndpointException

The requested endpoint is invalid.

HTTP Status Code: 400

ThrottlingException

The request was throttled due to excessive requests.

HTTP Status Code: 400

ValidationException

Invalid or malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon Command Line Interface

• Amazon SDK for .NET

• Amazon SDK for C++

• Amazon SDK for Go v2

• Amazon SDK for Java V2

• Amazon SDK for JavaScript V3

• Amazon SDK for Kotlin

• Amazon SDK for PHP V3

• Amazon SDK for Python

• Amazon SDK for Ruby V3

Actions 925

https://docs.amazonaws.cn/goto/aws-cli/timestream-query-2018-11-01/PrepareQuery
https://docs.amazonaws.cn/goto/DotNetSDKV3/timestream-query-2018-11-01/PrepareQuery
https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/PrepareQuery
https://docs.amazonaws.cn/goto/SdkForGoV2/timestream-query-2018-11-01/PrepareQuery
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/PrepareQuery
https://docs.amazonaws.cn/goto/SdkForJavaScriptV3/timestream-query-2018-11-01/PrepareQuery
https://docs.amazonaws.cn/goto/SdkForKotlin/timestream-query-2018-11-01/PrepareQuery
https://docs.amazonaws.cn/goto/SdkForPHPV3/timestream-query-2018-11-01/PrepareQuery
https://docs.amazonaws.cn/goto/boto3/timestream-query-2018-11-01/PrepareQuery
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/PrepareQuery

Amazon Timestream Developer Guide

Query
Service: Amazon Timestream Query

Query is a synchronous operation that enables you to run a query against your Amazon
Timestream data.

If you enabled QueryInsights, this API also returns insights and metrics related to the query
that you executed. QueryInsights helps with performance tuning of your query. For more
information about QueryInsights, see Using query insights to optimize queries in Amazon
Timestream.

Note

The maximum number of Query API requests you're allowed to make with
QueryInsights enabled is 1 query per second (QPS). If you exceed this query rate, it
might result in throttling.

Query will time out after 60 seconds. You must update the default timeout in the SDK to support a
timeout of 60 seconds. See the code sample for details.

Your query request will fail in the following cases:

• If you submit a Query request with the same client token outside of the 5-minute idempotency
window.

• If you submit a Query request with the same client token, but change other parameters, within
the 5-minute idempotency window.

• If the size of the row (including the query metadata) exceeds 1 MB, then the query will fail with
the following error message:

Query aborted as max page response size has been exceeded by the output
result row

• If the IAM principal of the query initiator and the result reader are not the same and/or the query
initiator and the result reader do not have the same query string in the query requests, the query
will fail with an Invalid pagination token error.

Actions 926

https://docs.amazonaws.cn/timestream/latest/developerguide/using-query-insights.html
https://docs.amazonaws.cn/timestream/latest/developerguide/using-query-insights.html
https://docs.amazonaws.cn/timestream/latest/developerguide/code-samples.run-query.html

Amazon Timestream Developer Guide

Request Syntax

{
 "ClientToken": "string",
 "MaxRows": number,
 "NextToken": "string",
 "QueryInsights": {
 "Mode": "string"
 },
 "QueryString": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters.

The request accepts the following data in JSON format.

ClientToken

Unique, case-sensitive string of up to 64 ASCII characters specified when a Query request
is made. Providing a ClientToken makes the call to Query idempotent. This means that
running the same query repeatedly will produce the same result. In other words, making
multiple identical Query requests has the same effect as making a single request. When using
ClientToken in a query, note the following:

• If the Query API is instantiated without a ClientToken, the Query SDK generates a
ClientToken on your behalf.

• If the Query invocation only contains the ClientToken but does not include a NextToken,
that invocation of Query is assumed to be a new query run.

• If the invocation contains NextToken, that particular invocation is assumed to be a
subsequent invocation of a prior call to the Query API, and a result set is returned.

• After 4 hours, any request with the same ClientToken is treated as a new request.

Type: String

Length Constraints: Minimum length of 32. Maximum length of 128.

Required: No

Actions 927

Amazon Timestream Developer Guide

MaxRows

The total number of rows to be returned in the Query output. The initial run of Query with a
MaxRows value specified will return the result set of the query in two cases:

• The size of the result is less than 1MB.

• The number of rows in the result set is less than the value of maxRows.

Otherwise, the initial invocation of Query only returns a NextToken, which can then be used in
subsequent calls to fetch the result set. To resume pagination, provide the NextToken value in
the subsequent command.

If the row size is large (e.g. a row has many columns), Timestream may return fewer rows to
keep the response size from exceeding the 1 MB limit. If MaxRows is not provided, Timestream
will send the necessary number of rows to meet the 1 MB limit.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 1000.

Required: No

NextToken

A pagination token used to return a set of results. When the Query API is invoked using
NextToken, that particular invocation is assumed to be a subsequent invocation of a prior
call to Query, and a result set is returned. However, if the Query invocation only contains the
ClientToken, that invocation of Query is assumed to be a new query run.

Note the following when using NextToken in a query:

• A pagination token can be used for up to five Query invocations, OR for a duration of up to 1
hour – whichever comes first.

• Using the same NextToken will return the same set of records. To keep paginating through
the result set, you must to use the most recent nextToken.

• Suppose a Query invocation returns two NextToken values, TokenA and TokenB. If TokenB
is used in a subsequent Query invocation, then TokenA is invalidated and cannot be reused.

• To request a previous result set from a query after pagination has begun, you must re-invoke
the Query API.

• The latest NextToken should be used to paginate until null is returned, at which point a
new NextToken should be used.

Actions 928

Amazon Timestream Developer Guide

• If the IAM principal of the query initiator and the result reader are not the same and/or the
query initiator and the result reader do not have the same query string in the query requests,
the query will fail with an Invalid pagination token error.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Required: No

QueryInsights

Encapsulates settings for enabling QueryInsights.

Enabling QueryInsights returns insights and metrics in addition to query results for the
query that you executed. You can use QueryInsights to tune your query performance.

Type: QueryInsights object

Required: No

QueryString

The query to be run by Timestream.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 262144.

Required: Yes

Response Syntax

{
 "ColumnInfo": [
 {
 "Name": "string",
 "Type": {
 "ArrayColumnInfo": "ColumnInfo",
 "RowColumnInfo": [
 "ColumnInfo"
],
 "ScalarType": "string",
 "TimeSeriesMeasureValueColumnInfo": "ColumnInfo"
 }

Actions 929

Amazon Timestream Developer Guide

 }
],
 "NextToken": "string",
 "QueryId": "string",
 "QueryInsightsResponse": {
 "OutputBytes": number,
 "OutputRows": number,
 "QuerySpatialCoverage": {
 "Max": {
 "PartitionKey": ["string"],
 "TableArn": "string",
 "Value": number
 }
 },
 "QueryTableCount": number,
 "QueryTemporalRange": {
 "Max": {
 "TableArn": "string",
 "Value": number
 }
 },
 "UnloadPartitionCount": number,
 "UnloadWrittenBytes": number,
 "UnloadWrittenRows": number
 },
 "QueryStatus": {
 "CumulativeBytesMetered": number,
 "CumulativeBytesScanned": number,
 "ProgressPercentage": number
 },
 "Rows": [
 {
 "Data": [
 {
 "ArrayValue": [
 "Datum"
],
 "NullValue": boolean,
 "RowValue": "Row",
 "ScalarValue": "string",
 "TimeSeriesValue": [
 {
 "Time": "string",
 "Value": "Datum"

Actions 930

Amazon Timestream Developer Guide

 }
]
 }
]
 }
]
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

ColumnInfo

The column data types of the returned result set.

Type: Array of ColumnInfo objects

NextToken

A pagination token that can be used again on a Query call to get the next set of results.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

QueryId

A unique ID for the given query.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: [a-zA-Z0-9]+

QueryInsightsResponse

Encapsulates QueryInsights containing insights and metrics related to the query that you
executed.

Type: QueryInsightsResponse object

Actions 931

Amazon Timestream Developer Guide

QueryStatus

Information about the status of the query, including progress and bytes scanned.

Type: QueryStatus object

Rows

The result set rows returned by the query.

Type: Array of Row objects

Errors

For information about the errors that are common to all actions, see Common Errors.

AccessDeniedException

You do not have the necessary permissions to access the account settings.

HTTP Status Code: 400

ConflictException

Unable to poll results for a cancelled query.

HTTP Status Code: 400

InternalServerException

An internal server error occurred while processing the request.

HTTP Status Code: 400

InvalidEndpointException

The requested endpoint is invalid.

HTTP Status Code: 400

QueryExecutionException

Timestream was unable to run the query successfully.

HTTP Status Code: 400

Actions 932

Amazon Timestream Developer Guide

ThrottlingException

The request was throttled due to excessive requests.

HTTP Status Code: 400

ValidationException

Invalid or malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon Command Line Interface

• Amazon SDK for .NET

• Amazon SDK for C++

• Amazon SDK for Go v2

• Amazon SDK for Java V2

• Amazon SDK for JavaScript V3

• Amazon SDK for Kotlin

• Amazon SDK for PHP V3

• Amazon SDK for Python

• Amazon SDK for Ruby V3

Actions 933

https://docs.amazonaws.cn/goto/aws-cli/timestream-query-2018-11-01/Query
https://docs.amazonaws.cn/goto/DotNetSDKV3/timestream-query-2018-11-01/Query
https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/Query
https://docs.amazonaws.cn/goto/SdkForGoV2/timestream-query-2018-11-01/Query
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/Query
https://docs.amazonaws.cn/goto/SdkForJavaScriptV3/timestream-query-2018-11-01/Query
https://docs.amazonaws.cn/goto/SdkForKotlin/timestream-query-2018-11-01/Query
https://docs.amazonaws.cn/goto/SdkForPHPV3/timestream-query-2018-11-01/Query
https://docs.amazonaws.cn/goto/boto3/timestream-query-2018-11-01/Query
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/Query

Amazon Timestream Developer Guide

TagResource
Service: Amazon Timestream Query

Associate a set of tags with a Timestream resource. You can then activate these user-defined tags
so that they appear on the Billing and Cost Management console for cost allocation tracking.

Request Syntax

{
 "ResourceARN": "string",
 "Tags": [
 {
 "Key": "string",
 "Value": "string"
 }
]
}

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters.

The request accepts the following data in JSON format.

ResourceARN

Identifies the Timestream resource to which tags should be added. This value is an Amazon
Resource Name (ARN).

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Required: Yes

Tags

The tags to be assigned to the Timestream resource.

Type: Array of Tag objects

Array Members: Minimum number of 0 items. Maximum number of 200 items.

Required: Yes

Actions 934

Amazon Timestream Developer Guide

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see Common Errors.

InvalidEndpointException

The requested endpoint is invalid.

HTTP Status Code: 400

ResourceNotFoundException

The requested resource could not be found.

HTTP Status Code: 400

ServiceQuotaExceededException

You have exceeded the service quota.

HTTP Status Code: 400

ThrottlingException

The request was throttled due to excessive requests.

HTTP Status Code: 400

ValidationException

Invalid or malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon Command Line Interface

• Amazon SDK for .NET

Actions 935

https://docs.amazonaws.cn/goto/aws-cli/timestream-query-2018-11-01/TagResource
https://docs.amazonaws.cn/goto/DotNetSDKV3/timestream-query-2018-11-01/TagResource

Amazon Timestream Developer Guide

• Amazon SDK for C++

• Amazon SDK for Go v2

• Amazon SDK for Java V2

• Amazon SDK for JavaScript V3

• Amazon SDK for Kotlin

• Amazon SDK for PHP V3

• Amazon SDK for Python

• Amazon SDK for Ruby V3

Actions 936

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/TagResource
https://docs.amazonaws.cn/goto/SdkForGoV2/timestream-query-2018-11-01/TagResource
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/TagResource
https://docs.amazonaws.cn/goto/SdkForJavaScriptV3/timestream-query-2018-11-01/TagResource
https://docs.amazonaws.cn/goto/SdkForKotlin/timestream-query-2018-11-01/TagResource
https://docs.amazonaws.cn/goto/SdkForPHPV3/timestream-query-2018-11-01/TagResource
https://docs.amazonaws.cn/goto/boto3/timestream-query-2018-11-01/TagResource
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/TagResource

Amazon Timestream Developer Guide

UntagResource
Service: Amazon Timestream Query

Removes the association of tags from a Timestream query resource.

Request Syntax

{
 "ResourceARN": "string",
 "TagKeys": ["string"]
}

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters.

The request accepts the following data in JSON format.

ResourceARN

The Timestream resource that the tags will be removed from. This value is an Amazon Resource
Name (ARN).

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Required: Yes

TagKeys

A list of tags keys. Existing tags of the resource whose keys are members of this list will be
removed from the Timestream resource.

Type: Array of strings

Array Members: Minimum number of 0 items. Maximum number of 200 items.

Length Constraints: Minimum length of 1. Maximum length of 128.

Required: Yes

Actions 937

Amazon Timestream Developer Guide

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see Common Errors.

InvalidEndpointException

The requested endpoint is invalid.

HTTP Status Code: 400

ResourceNotFoundException

The requested resource could not be found.

HTTP Status Code: 400

ThrottlingException

The request was throttled due to excessive requests.

HTTP Status Code: 400

ValidationException

Invalid or malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon Command Line Interface

• Amazon SDK for .NET

• Amazon SDK for C++

• Amazon SDK for Go v2

• Amazon SDK for Java V2

• Amazon SDK for JavaScript V3

Actions 938

https://docs.amazonaws.cn/goto/aws-cli/timestream-query-2018-11-01/UntagResource
https://docs.amazonaws.cn/goto/DotNetSDKV3/timestream-query-2018-11-01/UntagResource
https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/UntagResource
https://docs.amazonaws.cn/goto/SdkForGoV2/timestream-query-2018-11-01/UntagResource
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/UntagResource
https://docs.amazonaws.cn/goto/SdkForJavaScriptV3/timestream-query-2018-11-01/UntagResource

Amazon Timestream Developer Guide

• Amazon SDK for Kotlin

• Amazon SDK for PHP V3

• Amazon SDK for Python

• Amazon SDK for Ruby V3

Actions 939

https://docs.amazonaws.cn/goto/SdkForKotlin/timestream-query-2018-11-01/UntagResource
https://docs.amazonaws.cn/goto/SdkForPHPV3/timestream-query-2018-11-01/UntagResource
https://docs.amazonaws.cn/goto/boto3/timestream-query-2018-11-01/UntagResource
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/UntagResource

Amazon Timestream Developer Guide

UpdateAccountSettings
Service: Amazon Timestream Query

Transitions your account to use TCUs for query pricing and modifies the maximum query compute
units that you've configured. If you reduce the value of MaxQueryTCU to a desired configuration,
the new value can take up to 24 hours to be effective.

Note

After you've transitioned your account to use TCUs for query pricing, you can't transition to
using bytes scanned for query pricing.

Request Syntax

{
 "MaxQueryTCU": number,
 "QueryCompute": {
 "ComputeMode": "string",
 "ProvisionedCapacity": {
 "NotificationConfiguration": {
 "RoleArn": "string",
 "SnsConfiguration": {
 "TopicArn": "string"
 }
 },
 "TargetQueryTCU": number
 }
 },
 "QueryPricingModel": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters.

The request accepts the following data in JSON format.

MaxQueryTCU

The maximum number of compute units the service will use at any point in time to serve your
queries. To run queries, you must set a minimum capacity of 4 TCU. You can set the maximum

Actions 940

Amazon Timestream Developer Guide

number of TCU in multiples of 4, for example, 4, 8, 16, 32, and so on. The maximum value
supported for MaxQueryTCU is 1000. To request an increase to this soft limit, contact Amazon
Support. For information about the default quota for maxQueryTCU, see Default quotas. This
configuration is applicable only for on-demand usage of Timestream Compute Units (TCUs).

The maximum value supported for MaxQueryTCU is 1000. To request an increase to this soft
limit, contact Amazon Support. For information about the default quota for maxQueryTCU, see
Default quotas.

Type: Integer

Required: No

QueryCompute

Modifies the query compute settings configured in your account, including the query pricing
model and provisioned Timestream Compute Units (TCUs) in your account. QueryCompute is
available only in the Asia Pacific (Mumbai) region.

Note

This API is idempotent, meaning that making the same request multiple times will have
the same effect as making the request once.

Type: QueryComputeRequest object

Required: No

QueryPricingModel

The pricing model for queries in an account.

Note

The QueryPricingModel parameter is used by several Timestream operations;
however, the UpdateAccountSettings API operation doesn't recognize any values
other than COMPUTE_UNITS.

Type: String

Actions 941

https://docs.amazonaws.cn/timestream/latest/developerguide/ts-limits.html#limits.default

Amazon Timestream Developer Guide

Valid Values: BYTES_SCANNED | COMPUTE_UNITS

Required: No

Response Syntax

{
 "MaxQueryTCU": number,
 "QueryCompute": {
 "ComputeMode": "string",
 "ProvisionedCapacity": {
 "ActiveQueryTCU": number,
 "LastUpdate": {
 "Status": "string",
 "StatusMessage": "string",
 "TargetQueryTCU": number
 },
 "NotificationConfiguration": {
 "RoleArn": "string",
 "SnsConfiguration": {
 "TopicArn": "string"
 }
 }
 }
 },
 "QueryPricingModel": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

MaxQueryTCU

The configured maximum number of compute units the service will use at any point in time to
serve your queries.

Type: Integer

Actions 942

Amazon Timestream Developer Guide

QueryCompute

Confirms the updated account settings for querying data in your account. QueryCompute is
available only in the Asia Pacific (Mumbai) region.

Type: QueryComputeResponse object

QueryPricingModel

The pricing model for an account.

Type: String

Valid Values: BYTES_SCANNED | COMPUTE_UNITS

Errors

For information about the errors that are common to all actions, see Common Errors.

AccessDeniedException

You do not have the necessary permissions to access the account settings.

HTTP Status Code: 400

InternalServerException

An internal server error occurred while processing the request.

HTTP Status Code: 400

InvalidEndpointException

The requested endpoint is invalid.

HTTP Status Code: 400

ThrottlingException

The request was throttled due to excessive requests.

HTTP Status Code: 400

ValidationException

Invalid or malformed request.

Actions 943

Amazon Timestream Developer Guide

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon Command Line Interface

• Amazon SDK for .NET

• Amazon SDK for C++

• Amazon SDK for Go v2

• Amazon SDK for Java V2

• Amazon SDK for JavaScript V3

• Amazon SDK for Kotlin

• Amazon SDK for PHP V3

• Amazon SDK for Python

• Amazon SDK for Ruby V3

Actions 944

https://docs.amazonaws.cn/goto/aws-cli/timestream-query-2018-11-01/UpdateAccountSettings
https://docs.amazonaws.cn/goto/DotNetSDKV3/timestream-query-2018-11-01/UpdateAccountSettings
https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/UpdateAccountSettings
https://docs.amazonaws.cn/goto/SdkForGoV2/timestream-query-2018-11-01/UpdateAccountSettings
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/UpdateAccountSettings
https://docs.amazonaws.cn/goto/SdkForJavaScriptV3/timestream-query-2018-11-01/UpdateAccountSettings
https://docs.amazonaws.cn/goto/SdkForKotlin/timestream-query-2018-11-01/UpdateAccountSettings
https://docs.amazonaws.cn/goto/SdkForPHPV3/timestream-query-2018-11-01/UpdateAccountSettings
https://docs.amazonaws.cn/goto/boto3/timestream-query-2018-11-01/UpdateAccountSettings
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/UpdateAccountSettings

Amazon Timestream Developer Guide

UpdateScheduledQuery
Service: Amazon Timestream Query

Update a scheduled query.

Request Syntax

{
 "ScheduledQueryArn": "string",
 "State": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters.

The request accepts the following data in JSON format.

ScheduledQueryArn

ARN of the scheuled query.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Required: Yes

State

State of the scheduled query.

Type: String

Valid Values: ENABLED | DISABLED

Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see Common Errors.

Actions 945

Amazon Timestream Developer Guide

AccessDeniedException

You do not have the necessary permissions to access the account settings.

HTTP Status Code: 400

InternalServerException

An internal server error occurred while processing the request.

HTTP Status Code: 400

InvalidEndpointException

The requested endpoint is invalid.

HTTP Status Code: 400

ResourceNotFoundException

The requested resource could not be found.

HTTP Status Code: 400

ThrottlingException

The request was throttled due to excessive requests.

HTTP Status Code: 400

ValidationException

Invalid or malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon Command Line Interface

• Amazon SDK for .NET

• Amazon SDK for C++

• Amazon SDK for Go v2

Actions 946

https://docs.amazonaws.cn/goto/aws-cli/timestream-query-2018-11-01/UpdateScheduledQuery
https://docs.amazonaws.cn/goto/DotNetSDKV3/timestream-query-2018-11-01/UpdateScheduledQuery
https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/UpdateScheduledQuery
https://docs.amazonaws.cn/goto/SdkForGoV2/timestream-query-2018-11-01/UpdateScheduledQuery

Amazon Timestream Developer Guide

• Amazon SDK for Java V2

• Amazon SDK for JavaScript V3

• Amazon SDK for Kotlin

• Amazon SDK for PHP V3

• Amazon SDK for Python

• Amazon SDK for Ruby V3

Data Types

The following data types are supported by Amazon Timestream Write:

• BatchLoadProgressReport

• BatchLoadTask

• BatchLoadTaskDescription

• CsvConfiguration

• Database

• DataModel

• DataModelConfiguration

• DataModelS3Configuration

• DataSourceConfiguration

• DataSourceS3Configuration

• Dimension

• DimensionMapping

• Endpoint

• MagneticStoreRejectedDataLocation

• MagneticStoreWriteProperties

• MeasureValue

• MixedMeasureMapping

• MultiMeasureAttributeMapping

• MultiMeasureMappings

• PartitionKey

• Record

Data Types 947

https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/UpdateScheduledQuery
https://docs.amazonaws.cn/goto/SdkForJavaScriptV3/timestream-query-2018-11-01/UpdateScheduledQuery
https://docs.amazonaws.cn/goto/SdkForKotlin/timestream-query-2018-11-01/UpdateScheduledQuery
https://docs.amazonaws.cn/goto/SdkForPHPV3/timestream-query-2018-11-01/UpdateScheduledQuery
https://docs.amazonaws.cn/goto/boto3/timestream-query-2018-11-01/UpdateScheduledQuery
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/UpdateScheduledQuery

Amazon Timestream Developer Guide

• RecordsIngested

• RejectedRecord

• ReportConfiguration

• ReportS3Configuration

• RetentionProperties

• S3Configuration

• Schema

• Table

• Tag

The following data types are supported by Amazon Timestream Query:

• AccountSettingsNotificationConfiguration

• ColumnInfo

• Datum

• DimensionMapping

• Endpoint

• ErrorReportConfiguration

• ErrorReportLocation

• ExecutionStats

• LastUpdate

• MixedMeasureMapping

• MultiMeasureAttributeMapping

• MultiMeasureMappings

• NotificationConfiguration

• ParameterMapping

• ProvisionedCapacityRequest

• ProvisionedCapacityResponse

• QueryComputeRequest

• QueryComputeResponse

• QueryInsights

Data Types 948

Amazon Timestream Developer Guide

• QueryInsightsResponse

• QuerySpatialCoverage

• QuerySpatialCoverageMax

• QueryStatus

• QueryTemporalRange

• QueryTemporalRangeMax

• Row

• S3Configuration

• S3ReportLocation

• ScheduleConfiguration

• ScheduledQuery

• ScheduledQueryDescription

• ScheduledQueryInsights

• ScheduledQueryInsightsResponse

• ScheduledQueryRunSummary

• SelectColumn

• SnsConfiguration

• Tag

• TargetConfiguration

• TargetDestination

• TimeSeriesDataPoint

• TimestreamConfiguration

• TimestreamDestination

• Type

Amazon Timestream Write

The following data types are supported by Amazon Timestream Write:

• BatchLoadProgressReport

• BatchLoadTask

• BatchLoadTaskDescription

Data Types 949

Amazon Timestream Developer Guide

• CsvConfiguration

• Database

• DataModel

• DataModelConfiguration

• DataModelS3Configuration

• DataSourceConfiguration

• DataSourceS3Configuration

• Dimension

• DimensionMapping

• Endpoint

• MagneticStoreRejectedDataLocation

• MagneticStoreWriteProperties

• MeasureValue

• MixedMeasureMapping

• MultiMeasureAttributeMapping

• MultiMeasureMappings

• PartitionKey

• Record

• RecordsIngested

• RejectedRecord

• ReportConfiguration

• ReportS3Configuration

• RetentionProperties

• S3Configuration

• Schema

• Table

• Tag

Data Types 950

Amazon Timestream Developer Guide

BatchLoadProgressReport
Service: Amazon Timestream Write

Details about the progress of a batch load task.

Contents

BytesMetered

Type: Long

Required: No

FileFailures

Type: Long

Required: No

ParseFailures

Type: Long

Required: No

RecordIngestionFailures

Type: Long

Required: No

RecordsIngested

Type: Long

Required: No

RecordsProcessed

Type: Long

Required: No

Data Types 951

Amazon Timestream Developer Guide

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 952

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/BatchLoadProgressReport
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/BatchLoadProgressReport
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/BatchLoadProgressReport

Amazon Timestream Developer Guide

BatchLoadTask
Service: Amazon Timestream Write

Details about a batch load task.

Contents

CreationTime

The time when the Timestream batch load task was created.

Type: Timestamp

Required: No

DatabaseName

Database name for the database into which a batch load task loads data.

Type: String

Required: No

LastUpdatedTime

The time when the Timestream batch load task was last updated.

Type: Timestamp

Required: No

ResumableUntil

Type: Timestamp

Required: No

TableName

Table name for the table into which a batch load task loads data.

Type: String

Required: No

Data Types 953

Amazon Timestream Developer Guide

TaskId

The ID of the batch load task.

Type: String

Length Constraints: Minimum length of 3. Maximum length of 32.

Pattern: [A-Z0-9]+

Required: No

TaskStatus

Status of the batch load task.

Type: String

Valid Values: CREATED | IN_PROGRESS | FAILED | SUCCEEDED | PROGRESS_STOPPED
| PENDING_RESUME

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 954

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/BatchLoadTask
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/BatchLoadTask
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/BatchLoadTask

Amazon Timestream Developer Guide

BatchLoadTaskDescription
Service: Amazon Timestream Write

Details about a batch load task.

Contents

CreationTime

The time when the Timestream batch load task was created.

Type: Timestamp

Required: No

DataModelConfiguration

Data model configuration for a batch load task. This contains details about where a data model
for a batch load task is stored.

Type: DataModelConfiguration object

Required: No

DataSourceConfiguration

Configuration details about the data source for a batch load task.

Type: DataSourceConfiguration object

Required: No

ErrorMessage

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Required: No

LastUpdatedTime

The time when the Timestream batch load task was last updated.

Type: Timestamp

Data Types 955

Amazon Timestream Developer Guide

Required: No

ProgressReport

Type: BatchLoadProgressReport object

Required: No

RecordVersion

Type: Long

Required: No

ReportConfiguration

Report configuration for a batch load task. This contains details about where error reports are
stored.

Type: ReportConfiguration object

Required: No

ResumableUntil

Type: Timestamp

Required: No

TargetDatabaseName

Type: String

Required: No

TargetTableName

Type: String

Required: No

TaskId

The ID of the batch load task.

Data Types 956

Amazon Timestream Developer Guide

Type: String

Length Constraints: Minimum length of 3. Maximum length of 32.

Pattern: [A-Z0-9]+

Required: No

TaskStatus

Status of the batch load task.

Type: String

Valid Values: CREATED | IN_PROGRESS | FAILED | SUCCEEDED | PROGRESS_STOPPED
| PENDING_RESUME

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 957

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/BatchLoadTaskDescription
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/BatchLoadTaskDescription
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/BatchLoadTaskDescription

Amazon Timestream Developer Guide

CsvConfiguration
Service: Amazon Timestream Write

A delimited data format where the column separator can be a comma and the record separator is a
newline character.

Contents

ColumnSeparator

Column separator can be one of comma (','), pipe ('|), semicolon (';'), tab('/t'), or blank space (' ').

Type: String

Length Constraints: Fixed length of 1.

Required: No

EscapeChar

Escape character can be one of

Type: String

Length Constraints: Fixed length of 1.

Required: No

NullValue

Can be blank space (' ').

Type: String

Length Constraints: Minimum length of 1. Maximum length of 256.

Required: No

QuoteChar

Can be single quote (') or double quote (").

Type: String

Length Constraints: Fixed length of 1.

Data Types 958

Amazon Timestream Developer Guide

Required: No

TrimWhiteSpace

Specifies to trim leading and trailing white space.

Type: Boolean

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 959

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/CsvConfiguration
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/CsvConfiguration
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/CsvConfiguration

Amazon Timestream Developer Guide

Database
Service: Amazon Timestream Write

A top-level container for a table. Databases and tables are the fundamental management concepts
in Amazon Timestream. All tables in a database are encrypted with the same Amazon KMS key.

Contents

Arn

The Amazon Resource Name that uniquely identifies this database.

Type: String

Required: No

CreationTime

The time when the database was created, calculated from the Unix epoch time.

Type: Timestamp

Required: No

DatabaseName

The name of the Timestream database.

Type: String

Length Constraints: Minimum length of 3. Maximum length of 256.

Required: No

KmsKeyId

The identifier of the Amazon KMS key used to encrypt the data stored in the database.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Required: No

LastUpdatedTime

The last time that this database was updated.

Data Types 960

Amazon Timestream Developer Guide

Type: Timestamp

Required: No

TableCount

The total number of tables found within a Timestream database.

Type: Long

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 961

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/Database
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/Database
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/Database

Amazon Timestream Developer Guide

DataModel
Service: Amazon Timestream Write

Data model for a batch load task.

Contents

DimensionMappings

Source to target mappings for dimensions.

Type: Array of DimensionMapping objects

Array Members: Minimum number of 1 item.

Required: Yes

MeasureNameColumn

Type: String

Length Constraints: Minimum length of 1. Maximum length of 256.

Required: No

MixedMeasureMappings

Source to target mappings for measures.

Type: Array of MixedMeasureMapping objects

Array Members: Minimum number of 1 item.

Required: No

MultiMeasureMappings

Source to target mappings for multi-measure records.

Type: MultiMeasureMappings object

Required: No

TimeColumn

Source column to be mapped to time.

Data Types 962

Amazon Timestream Developer Guide

Type: String

Length Constraints: Minimum length of 1. Maximum length of 256.

Required: No

TimeUnit

The granularity of the timestamp unit. It indicates if the time value is in seconds, milliseconds,
nanoseconds, or other supported values. Default is MILLISECONDS.

Type: String

Valid Values: MILLISECONDS | SECONDS | MICROSECONDS | NANOSECONDS

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 963

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/DataModel
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/DataModel
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/DataModel

Amazon Timestream Developer Guide

DataModelConfiguration
Service: Amazon Timestream Write

Contents

DataModel

Type: DataModel object

Required: No

DataModelS3Configuration

Type: DataModelS3Configuration object

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 964

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/DataModelConfiguration
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/DataModelConfiguration
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/DataModelConfiguration

Amazon Timestream Developer Guide

DataModelS3Configuration
Service: Amazon Timestream Write

Contents

BucketName

Type: String

Length Constraints: Minimum length of 3. Maximum length of 63.

Pattern: [a-z0-9][\.\-a-z0-9]{1,61}[a-z0-9]

Required: No

ObjectKey

Type: String

Length Constraints: Minimum length of 1. Maximum length of 1024.

Pattern: [a-zA-Z0-9|!\-_*'\(\)]([a-zA-Z0-9]|[!\-_*'\(\)\/.])+

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 965

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/DataModelS3Configuration
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/DataModelS3Configuration
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/DataModelS3Configuration

Amazon Timestream Developer Guide

DataSourceConfiguration
Service: Amazon Timestream Write

Defines configuration details about the data source.

Contents

DataFormat

This is currently CSV.

Type: String

Valid Values: CSV

Required: Yes

DataSourceS3Configuration

Configuration of an S3 location for a file which contains data to load.

Type: DataSourceS3Configuration object

Required: Yes

CsvConfiguration

A delimited data format where the column separator can be a comma and the record separator
is a newline character.

Type: CsvConfiguration object

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 966

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/DataSourceConfiguration
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/DataSourceConfiguration
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/DataSourceConfiguration

Amazon Timestream Developer Guide

DataSourceS3Configuration
Service: Amazon Timestream Write

Contents

BucketName

The bucket name of the customer S3 bucket.

Type: String

Length Constraints: Minimum length of 3. Maximum length of 63.

Pattern: [a-z0-9][\.\-a-z0-9]{1,61}[a-z0-9]

Required: Yes

ObjectKeyPrefix

Type: String

Length Constraints: Minimum length of 1. Maximum length of 1024.

Pattern: [a-zA-Z0-9|!\-_*'\(\)]([a-zA-Z0-9]|[!\-_*'\(\)\/.])+

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 967

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/DataSourceS3Configuration
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/DataSourceS3Configuration
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/DataSourceS3Configuration

Amazon Timestream Developer Guide

Dimension
Service: Amazon Timestream Write

Represents the metadata attributes of the time series. For example, the name and Availability Zone
of an EC2 instance or the name of the manufacturer of a wind turbine are dimensions.

Contents

Name

Dimension represents the metadata attributes of the time series. For example, the name and
Availability Zone of an EC2 instance or the name of the manufacturer of a wind turbine are
dimensions.

For constraints on dimension names, see Naming Constraints.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 60.

Required: Yes

Value

The value of the dimension.

Type: String

Required: Yes

DimensionValueType

The data type of the dimension for the time-series data point.

Type: String

Valid Values: VARCHAR

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

Data Types 968

https://docs.amazonaws.cn/timestream/latest/developerguide/ts-limits.html#limits.naming

Amazon Timestream Developer Guide

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 969

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/Dimension
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/Dimension
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/Dimension

Amazon Timestream Developer Guide

DimensionMapping
Service: Amazon Timestream Write

Contents

DestinationColumn

Type: String

Length Constraints: Minimum length of 1.

Required: No

SourceColumn

Type: String

Length Constraints: Minimum length of 1.

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 970

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/DimensionMapping
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/DimensionMapping
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/DimensionMapping

Amazon Timestream Developer Guide

Endpoint
Service: Amazon Timestream Write

Represents an available endpoint against which to make API calls against, as well as the TTL for
that endpoint.

Contents

Address

An endpoint address.

Type: String

Required: Yes

CachePeriodInMinutes

The TTL for the endpoint, in minutes.

Type: Long

Required: Yes

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 971

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/Endpoint
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/Endpoint
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/Endpoint

Amazon Timestream Developer Guide

MagneticStoreRejectedDataLocation
Service: Amazon Timestream Write

The location to write error reports for records rejected, asynchronously, during magnetic store
writes.

Contents

S3Configuration

Configuration of an S3 location to write error reports for records rejected, asynchronously,
during magnetic store writes.

Type: S3Configuration object

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 972

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/MagneticStoreRejectedDataLocation
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/MagneticStoreRejectedDataLocation
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/MagneticStoreRejectedDataLocation

Amazon Timestream Developer Guide

MagneticStoreWriteProperties
Service: Amazon Timestream Write

The set of properties on a table for configuring magnetic store writes.

Contents

EnableMagneticStoreWrites

A flag to enable magnetic store writes.

Type: Boolean

Required: Yes

MagneticStoreRejectedDataLocation

The location to write error reports for records rejected asynchronously during magnetic store
writes.

Type: MagneticStoreRejectedDataLocation object

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 973

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/MagneticStoreWriteProperties
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/MagneticStoreWriteProperties
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/MagneticStoreWriteProperties

Amazon Timestream Developer Guide

MeasureValue
Service: Amazon Timestream Write

Represents the data attribute of the time series. For example, the CPU utilization of an EC2
instance or the RPM of a wind turbine are measures. MeasureValue has both name and value.

MeasureValue is only allowed for type MULTI. Using MULTI type, you can pass multiple data
attributes associated with the same time series in a single record

Contents

Name

The name of the MeasureValue.

For constraints on MeasureValue names, see Naming Constraints in the Amazon Timestream
Developer Guide.

Type: String

Length Constraints: Minimum length of 1.

Required: Yes

Type

Contains the data type of the MeasureValue for the time-series data point.

Type: String

Valid Values: DOUBLE | BIGINT | VARCHAR | BOOLEAN | TIMESTAMP | MULTI

Required: Yes

Value

The value for the MeasureValue. For information, see Data types.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Required: Yes

Data Types 974

https://docs.aws.amazon.com/timestream/latest/developerguide/ts-limits.html#limits.naming
https://docs.amazonaws.cn/timestream/latest/developerguide/writes.html#writes.data-types

Amazon Timestream Developer Guide

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 975

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/MeasureValue
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/MeasureValue
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/MeasureValue

Amazon Timestream Developer Guide

MixedMeasureMapping
Service: Amazon Timestream Write

Contents

MeasureValueType

Type: String

Valid Values: DOUBLE | BIGINT | VARCHAR | BOOLEAN | TIMESTAMP | MULTI

Required: Yes

MeasureName

Type: String

Length Constraints: Minimum length of 1.

Required: No

MultiMeasureAttributeMappings

Type: Array of MultiMeasureAttributeMapping objects

Array Members: Minimum number of 1 item.

Required: No

SourceColumn

Type: String

Length Constraints: Minimum length of 1.

Required: No

TargetMeasureName

Type: String

Length Constraints: Minimum length of 1.

Data Types 976

Amazon Timestream Developer Guide

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 977

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/MixedMeasureMapping
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/MixedMeasureMapping
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/MixedMeasureMapping

Amazon Timestream Developer Guide

MultiMeasureAttributeMapping
Service: Amazon Timestream Write

Contents

SourceColumn

Type: String

Length Constraints: Minimum length of 1.

Required: Yes

MeasureValueType

Type: String

Valid Values: DOUBLE | BIGINT | BOOLEAN | VARCHAR | TIMESTAMP

Required: No

TargetMultiMeasureAttributeName

Type: String

Length Constraints: Minimum length of 1.

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 978

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/MultiMeasureAttributeMapping
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/MultiMeasureAttributeMapping
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/MultiMeasureAttributeMapping

Amazon Timestream Developer Guide

MultiMeasureMappings
Service: Amazon Timestream Write

Contents

MultiMeasureAttributeMappings

Type: Array of MultiMeasureAttributeMapping objects

Array Members: Minimum number of 1 item.

Required: Yes

TargetMultiMeasureName

Type: String

Length Constraints: Minimum length of 1.

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 979

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/MultiMeasureMappings
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/MultiMeasureMappings
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/MultiMeasureMappings

Amazon Timestream Developer Guide

PartitionKey
Service: Amazon Timestream Write

An attribute used in partitioning data in a table. A dimension key partitions data using the values
of the dimension specified by the dimension-name as partition key, while a measure key partitions
data using measure names (values of the 'measure_name' column).

Contents

Type

The type of the partition key. Options are DIMENSION (dimension key) and MEASURE (measure
key).

Type: String

Valid Values: DIMENSION | MEASURE

Required: Yes

EnforcementInRecord

The level of enforcement for the specification of a dimension key in ingested records. Options
are REQUIRED (dimension key must be specified) and OPTIONAL (dimension key does not have
to be specified).

Type: String

Valid Values: REQUIRED | OPTIONAL

Required: No

Name

The name of the attribute used for a dimension key.

Type: String

Length Constraints: Minimum length of 1.

Required: No

Data Types 980

Amazon Timestream Developer Guide

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 981

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/PartitionKey
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/PartitionKey
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/PartitionKey

Amazon Timestream Developer Guide

Record
Service: Amazon Timestream Write

Represents a time-series data point being written into Timestream. Each record contains an array
of dimensions. Dimensions represent the metadata attributes of a time-series data point, such
as the instance name or Availability Zone of an EC2 instance. A record also contains the measure
name, which is the name of the measure being collected (for example, the CPU utilization of an
EC2 instance). Additionally, a record contains the measure value and the value type, which is the
data type of the measure value. Also, the record contains the timestamp of when the measure was
collected and the timestamp unit, which represents the granularity of the timestamp.

Records have a Version field, which is a 64-bit long that you can use for updating data points.
Writes of a duplicate record with the same dimension, timestamp, and measure name but different
measure value will only succeed if the Version attribute of the record in the write request is
higher than that of the existing record. Timestream defaults to a Version of 1 for records without
the Version field.

Contents

Dimensions

Contains the list of dimensions for time-series data points.

Type: Array of Dimension objects

Array Members: Maximum number of 128 items.

Required: No

MeasureName

Measure represents the data attribute of the time series. For example, the CPU utilization of an
EC2 instance or the RPM of a wind turbine are measures.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 256.

Required: No

MeasureValue

Contains the measure value for the time-series data point.

Data Types 982

Amazon Timestream Developer Guide

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Required: No

MeasureValues

Contains the list of MeasureValue for time-series data points.

This is only allowed for type MULTI. For scalar values, use MeasureValue attribute of the
record directly.

Type: Array of MeasureValue objects

Required: No

MeasureValueType

Contains the data type of the measure value for the time-series data point. Default type is
DOUBLE. For more information, see Data types.

Type: String

Valid Values: DOUBLE | BIGINT | VARCHAR | BOOLEAN | TIMESTAMP | MULTI

Required: No

Time

Contains the time at which the measure value for the data point was collected. The time value
plus the unit provides the time elapsed since the epoch. For example, if the time value is 12345
and the unit is ms, then 12345 ms have elapsed since the epoch.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 256.

Required: No

TimeUnit

The granularity of the timestamp unit. It indicates if the time value is in seconds, milliseconds,
nanoseconds, or other supported values. Default is MILLISECONDS.

Type: String

Data Types 983

https://docs.amazonaws.cn/timestream/latest/developerguide/writes.html#writes.data-types

Amazon Timestream Developer Guide

Valid Values: MILLISECONDS | SECONDS | MICROSECONDS | NANOSECONDS

Required: No

Version

64-bit attribute used for record updates. Write requests for duplicate data with a higher version
number will update the existing measure value and version. In cases where the measure value is
the same, Version will still be updated. Default value is 1.

Note

Version must be 1 or greater, or you will receive a ValidationException error.

Type: Long

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 984

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/Record
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/Record
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/Record

Amazon Timestream Developer Guide

RecordsIngested
Service: Amazon Timestream Write

Information on the records ingested by this request.

Contents

MagneticStore

Count of records ingested into the magnetic store.

Type: Integer

Required: No

MemoryStore

Count of records ingested into the memory store.

Type: Integer

Required: No

Total

Total count of successfully ingested records.

Type: Integer

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 985

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/RecordsIngested
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/RecordsIngested
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/RecordsIngested

Amazon Timestream Developer Guide

RejectedRecord
Service: Amazon Timestream Write

Represents records that were not successfully inserted into Timestream due to data validation
issues that must be resolved before reinserting time-series data into the system.

Contents

ExistingVersion

The existing version of the record. This value is populated in scenarios where an identical record
exists with a higher version than the version in the write request.

Type: Long

Required: No

Reason

The reason why a record was not successfully inserted into Timestream. Possible causes of
failure include:

• Records with duplicate data where there are multiple records with the same dimensions,
timestamps, and measure names but:

• Measure values are different

• Version is not present in the request, or the value of version in the new record is equal to or
lower than the existing value

If Timestream rejects data for this case, the ExistingVersion field in the
RejectedRecords response will indicate the current record’s version. To force an update,
you can resend the request with a version for the record set to a value greater than the
ExistingVersion.

• Records with timestamps that lie outside the retention duration of the memory store.

Note

When the retention window is updated, you will receive a RejectedRecords
exception if you immediately try to ingest data within the new window. To avoid a
RejectedRecords exception, wait until the duration of the new window to ingest
new data. For further information, see Best Practices for Configuring Timestream and
the explanation of how storage works in Timestream.

Data Types 986

https://docs.amazonaws.cn/timestream/latest/developerguide/best-practices.html#configuration
https://docs.amazonaws.cn/timestream/latest/developerguide/storage.html

Amazon Timestream Developer Guide

• Records with dimensions or measures that exceed the Timestream defined limits.

For more information, see Access Management in the Timestream Developer Guide.

Type: String

Required: No

RecordIndex

The index of the record in the input request for WriteRecords. Indexes begin with 0.

Type: Integer

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 987

https://docs.amazonaws.cn/timestream/latest/developerguide/ts-limits.html
https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/RejectedRecord
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/RejectedRecord
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/RejectedRecord

Amazon Timestream Developer Guide

ReportConfiguration
Service: Amazon Timestream Write

Report configuration for a batch load task. This contains details about where error reports are
stored.

Contents

ReportS3Configuration

Configuration of an S3 location to write error reports and events for a batch load.

Type: ReportS3Configuration object

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 988

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/ReportConfiguration
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/ReportConfiguration
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/ReportConfiguration

Amazon Timestream Developer Guide

ReportS3Configuration
Service: Amazon Timestream Write

Contents

BucketName

Type: String

Length Constraints: Minimum length of 3. Maximum length of 63.

Pattern: [a-z0-9][\.\-a-z0-9]{1,61}[a-z0-9]

Required: Yes

EncryptionOption

Type: String

Valid Values: SSE_S3 | SSE_KMS

Required: No

KmsKeyId

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Required: No

ObjectKeyPrefix

Type: String

Length Constraints: Minimum length of 1. Maximum length of 928.

Pattern: [a-zA-Z0-9|!\-_*'\(\)]([a-zA-Z0-9]|[!\-_*'\(\)\/.])+

Required: No

Data Types 989

Amazon Timestream Developer Guide

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 990

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/ReportS3Configuration
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/ReportS3Configuration
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/ReportS3Configuration

Amazon Timestream Developer Guide

RetentionProperties
Service: Amazon Timestream Write

Retention properties contain the duration for which your time-series data must be stored in the
magnetic store and the memory store.

Contents

MagneticStoreRetentionPeriodInDays

The duration for which data must be stored in the magnetic store.

Type: Long

Valid Range: Minimum value of 1. Maximum value of 73000.

Required: Yes

MemoryStoreRetentionPeriodInHours

The duration for which data must be stored in the memory store.

Type: Long

Valid Range: Minimum value of 1. Maximum value of 8766.

Required: Yes

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 991

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/RetentionProperties
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/RetentionProperties
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/RetentionProperties

Amazon Timestream Developer Guide

S3Configuration
Service: Amazon Timestream Write

The configuration that specifies an S3 location.

Contents

BucketName

The bucket name of the customer S3 bucket.

Type: String

Length Constraints: Minimum length of 3. Maximum length of 63.

Pattern: [a-z0-9][\.\-a-z0-9]{1,61}[a-z0-9]

Required: No

EncryptionOption

The encryption option for the customer S3 location. Options are S3 server-side encryption with
an S3 managed key or Amazon managed key.

Type: String

Valid Values: SSE_S3 | SSE_KMS

Required: No

KmsKeyId

The Amazon KMS key ID for the customer S3 location when encrypting with an Amazon
managed key.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Required: No

ObjectKeyPrefix

The object key preview for the customer S3 location.

Type: String

Data Types 992

Amazon Timestream Developer Guide

Length Constraints: Minimum length of 1. Maximum length of 928.

Pattern: [a-zA-Z0-9|!\-_*'\(\)]([a-zA-Z0-9]|[!\-_*'\(\)\/.])+

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 993

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/S3Configuration
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/S3Configuration
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/S3Configuration

Amazon Timestream Developer Guide

Schema
Service: Amazon Timestream Write

A Schema specifies the expected data model of the table.

Contents

CompositePartitionKey

A non-empty list of partition keys defining the attributes used to partition the table data. The
order of the list determines the partition hierarchy. The name and type of each partition key
as well as the partition key order cannot be changed after the table is created. However, the
enforcement level of each partition key can be changed.

Type: Array of PartitionKey objects

Array Members: Minimum number of 1 item.

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 994

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/Schema
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/Schema
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/Schema

Amazon Timestream Developer Guide

Table
Service: Amazon Timestream Write

Represents a database table in Timestream. Tables contain one or more related time series. You can
modify the retention duration of the memory store and the magnetic store for a table.

Contents

Arn

The Amazon Resource Name that uniquely identifies this table.

Type: String

Required: No

CreationTime

The time when the Timestream table was created.

Type: Timestamp

Required: No

DatabaseName

The name of the Timestream database that contains this table.

Type: String

Length Constraints: Minimum length of 3. Maximum length of 256.

Required: No

LastUpdatedTime

The time when the Timestream table was last updated.

Type: Timestamp

Required: No

MagneticStoreWriteProperties

Contains properties to set on the table when enabling magnetic store writes.

Type: MagneticStoreWriteProperties object

Data Types 995

Amazon Timestream Developer Guide

Required: No

RetentionProperties

The retention duration for the memory store and magnetic store.

Type: RetentionProperties object

Required: No

Schema

The schema of the table.

Type: Schema object

Required: No

TableName

The name of the Timestream table.

Type: String

Length Constraints: Minimum length of 3. Maximum length of 256.

Required: No

TableStatus

The current state of the table:

• DELETING - The table is being deleted.

• ACTIVE - The table is ready for use.

Type: String

Valid Values: ACTIVE | DELETING | RESTORING

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

Data Types 996

Amazon Timestream Developer Guide

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 997

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/Table
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/Table
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/Table

Amazon Timestream Developer Guide

Tag
Service: Amazon Timestream Write

A tag is a label that you assign to a Timestream database and/or table. Each tag consists of a key
and an optional value, both of which you define. With tags, you can categorize databases and/or
tables, for example, by purpose, owner, or environment.

Contents

Key

The key of the tag. Tag keys are case sensitive.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128.

Required: Yes

Value

The value of the tag. Tag values are case-sensitive and can be null.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 256.

Required: Yes

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Amazon Timestream Query

The following data types are supported by Amazon Timestream Query:

Data Types 998

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-write-2018-11-01/Tag
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-write-2018-11-01/Tag
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-write-2018-11-01/Tag

Amazon Timestream Developer Guide

• AccountSettingsNotificationConfiguration

• ColumnInfo

• Datum

• DimensionMapping

• Endpoint

• ErrorReportConfiguration

• ErrorReportLocation

• ExecutionStats

• LastUpdate

• MixedMeasureMapping

• MultiMeasureAttributeMapping

• MultiMeasureMappings

• NotificationConfiguration

• ParameterMapping

• ProvisionedCapacityRequest

• ProvisionedCapacityResponse

• QueryComputeRequest

• QueryComputeResponse

• QueryInsights

• QueryInsightsResponse

• QuerySpatialCoverage

• QuerySpatialCoverageMax

• QueryStatus

• QueryTemporalRange

• QueryTemporalRangeMax

• Row

• S3Configuration

• S3ReportLocation

• ScheduleConfiguration

• ScheduledQuery

Data Types 999

Amazon Timestream Developer Guide

• ScheduledQueryDescription

• ScheduledQueryInsights

• ScheduledQueryInsightsResponse

• ScheduledQueryRunSummary

• SelectColumn

• SnsConfiguration

• Tag

• TargetConfiguration

• TargetDestination

• TimeSeriesDataPoint

• TimestreamConfiguration

• TimestreamDestination

• Type

Data Types 1000

Amazon Timestream Developer Guide

AccountSettingsNotificationConfiguration
Service: Amazon Timestream Query

Configuration settings for notifications related to account settings.

Contents

RoleArn

An Amazon Resource Name (ARN) that grants Timestream permission to publish notifications.
This field is only visible if SNS Topic is provided when updating the account settings.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Required: Yes

SnsConfiguration

Details on SNS that are required to send the notification.

Type: SnsConfiguration object

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 1001

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/AccountSettingsNotificationConfiguration
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/AccountSettingsNotificationConfiguration
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/AccountSettingsNotificationConfiguration

Amazon Timestream Developer Guide

ColumnInfo
Service: Amazon Timestream Query

Contains the metadata for query results such as the column names, data types, and other
attributes.

Contents

Type

The data type of the result set column. The data type can be a scalar or complex. Scalar data
types are integers, strings, doubles, Booleans, and others. Complex data types are types such as
arrays, rows, and others.

Type: Type object

Required: Yes

Name

The name of the result set column. The name of the result set is available for columns of all
data types except for arrays.

Type: String

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 1002

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/ColumnInfo
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/ColumnInfo
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/ColumnInfo

Amazon Timestream Developer Guide

Datum
Service: Amazon Timestream Query

Datum represents a single data point in a query result.

Contents

ArrayValue

Indicates if the data point is an array.

Type: Array of Datum objects

Required: No

NullValue

Indicates if the data point is null.

Type: Boolean

Required: No

RowValue

Indicates if the data point is a row.

Type: Row object

Required: No

ScalarValue

Indicates if the data point is a scalar value such as integer, string, double, or Boolean.

Type: String

Required: No

TimeSeriesValue

Indicates if the data point is a timeseries data type.

Type: Array of TimeSeriesDataPoint objects

Required: No

Data Types 1003

Amazon Timestream Developer Guide

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 1004

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/Datum
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/Datum
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/Datum

Amazon Timestream Developer Guide

DimensionMapping
Service: Amazon Timestream Query

This type is used to map column(s) from the query result to a dimension in the destination table.

Contents

DimensionValueType

Type for the dimension.

Type: String

Valid Values: VARCHAR

Required: Yes

Name

Column name from query result.

Type: String

Required: Yes

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 1005

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/DimensionMapping
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/DimensionMapping
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/DimensionMapping

Amazon Timestream Developer Guide

Endpoint
Service: Amazon Timestream Query

Represents an available endpoint against which to make API calls against, as well as the TTL for
that endpoint.

Contents

Address

An endpoint address.

Type: String

Required: Yes

CachePeriodInMinutes

The TTL for the endpoint, in minutes.

Type: Long

Required: Yes

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 1006

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/Endpoint
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/Endpoint
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/Endpoint

Amazon Timestream Developer Guide

ErrorReportConfiguration
Service: Amazon Timestream Query

Configuration required for error reporting.

Contents

S3Configuration

The S3 configuration for the error reports.

Type: S3Configuration object

Required: Yes

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 1007

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/ErrorReportConfiguration
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/ErrorReportConfiguration
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/ErrorReportConfiguration

Amazon Timestream Developer Guide

ErrorReportLocation
Service: Amazon Timestream Query

This contains the location of the error report for a single scheduled query call.

Contents

S3ReportLocation

The S3 location where error reports are written.

Type: S3ReportLocation object

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 1008

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/ErrorReportLocation
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/ErrorReportLocation
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/ErrorReportLocation

Amazon Timestream Developer Guide

ExecutionStats
Service: Amazon Timestream Query

Statistics for a single scheduled query run.

Contents

BytesMetered

Bytes metered for a single scheduled query run.

Type: Long

Required: No

CumulativeBytesScanned

Bytes scanned for a single scheduled query run.

Type: Long

Required: No

DataWrites

Data writes metered for records ingested in a single scheduled query run.

Type: Long

Required: No

ExecutionTimeInMillis

Total time, measured in milliseconds, that was needed for the scheduled query run to complete.

Type: Long

Required: No

QueryResultRows

Number of rows present in the output from running a query before ingestion to destination
data source.

Type: Long

Data Types 1009

Amazon Timestream Developer Guide

Required: No

RecordsIngested

The number of records ingested for a single scheduled query run.

Type: Long

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 1010

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/ExecutionStats
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/ExecutionStats
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/ExecutionStats

Amazon Timestream Developer Guide

LastUpdate
Service: Amazon Timestream Query

Configuration object that contains the most recent account settings update, visible only if settings
have been updated previously.

Contents

Status

The status of the last update. Can be either PENDING, FAILED, or SUCCEEDED.

Type: String

Valid Values: PENDING | FAILED | SUCCEEDED

Required: No

StatusMessage

Error message describing the last account settings update status, visible only if an error
occurred.

Type: String

Required: No

TargetQueryTCU

The number of TimeStream Compute Units (TCUs) requested in the last account settings
update.

Type: Integer

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

Data Types 1011

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/LastUpdate
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/LastUpdate

Amazon Timestream Developer Guide

• Amazon SDK for Ruby V3

Data Types 1012

https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/LastUpdate

Amazon Timestream Developer Guide

MixedMeasureMapping
Service: Amazon Timestream Query

MixedMeasureMappings are mappings that can be used to ingest data into a mixture of narrow and
multi measures in the derived table.

Contents

MeasureValueType

Type of the value that is to be read from sourceColumn. If the mapping is for MULTI, use
MeasureValueType.MULTI.

Type: String

Valid Values: BIGINT | BOOLEAN | DOUBLE | VARCHAR | MULTI

Required: Yes

MeasureName

Refers to the value of measure_name in a result row. This field is required if
MeasureNameColumn is provided.

Type: String

Required: No

MultiMeasureAttributeMappings

Required when measureValueType is MULTI. Attribute mappings for MULTI value measures.

Type: Array of MultiMeasureAttributeMapping objects

Array Members: Minimum number of 1 item.

Required: No

SourceColumn

This field refers to the source column from which measure-value is to be read for result
materialization.

Type: String

Data Types 1013

Amazon Timestream Developer Guide

Required: No

TargetMeasureName

Target measure name to be used. If not provided, the target measure name by default would be
measure-name if provided, or sourceColumn otherwise.

Type: String

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 1014

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/MixedMeasureMapping
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/MixedMeasureMapping
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/MixedMeasureMapping

Amazon Timestream Developer Guide

MultiMeasureAttributeMapping
Service: Amazon Timestream Query

Attribute mapping for MULTI value measures.

Contents

MeasureValueType

Type of the attribute to be read from the source column.

Type: String

Valid Values: BIGINT | BOOLEAN | DOUBLE | VARCHAR | TIMESTAMP

Required: Yes

SourceColumn

Source column from where the attribute value is to be read.

Type: String

Required: Yes

TargetMultiMeasureAttributeName

Custom name to be used for attribute name in derived table. If not provided, source column
name would be used.

Type: String

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 1015

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/MultiMeasureAttributeMapping
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/MultiMeasureAttributeMapping
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/MultiMeasureAttributeMapping

Amazon Timestream Developer Guide

MultiMeasureMappings
Service: Amazon Timestream Query

Only one of MixedMeasureMappings or MultiMeasureMappings is to be provided.
MultiMeasureMappings can be used to ingest data as multi measures in the derived table.

Contents

MultiMeasureAttributeMappings

Required. Attribute mappings to be used for mapping query results to ingest data for multi-
measure attributes.

Type: Array of MultiMeasureAttributeMapping objects

Array Members: Minimum number of 1 item.

Required: Yes

TargetMultiMeasureName

The name of the target multi-measure name in the derived table. This input is required when
measureNameColumn is not provided. If MeasureNameColumn is provided, then value from
that column will be used as multi-measure name.

Type: String

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 1016

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/MultiMeasureMappings
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/MultiMeasureMappings
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/MultiMeasureMappings

Amazon Timestream Developer Guide

NotificationConfiguration
Service: Amazon Timestream Query

Notification configuration for a scheduled query. A notification is sent by Timestream when a
scheduled query is created, its state is updated or when it is deleted.

Contents

SnsConfiguration

Details about the Amazon Simple Notification Service (SNS) configuration. This field is visible
only when SNS Topic is provided when updating the account settings.

Type: SnsConfiguration object

Required: Yes

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 1017

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/NotificationConfiguration
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/NotificationConfiguration
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/NotificationConfiguration

Amazon Timestream Developer Guide

ParameterMapping
Service: Amazon Timestream Query

Mapping for named parameters.

Contents

Name

Parameter name.

Type: String

Required: Yes

Type

Contains the data type of a column in a query result set. The data type can be scalar or
complex. The supported scalar data types are integers, Boolean, string, double, timestamp,
date, time, and intervals. The supported complex data types are arrays, rows, and timeseries.

Type: Type object

Required: Yes

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 1018

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/ParameterMapping
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/ParameterMapping
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/ParameterMapping

Amazon Timestream Developer Guide

ProvisionedCapacityRequest
Service: Amazon Timestream Query

A request to update the provisioned capacity settings for querying data.

Contents

TargetQueryTCU

The target compute capacity for querying data, specified in Timestream Compute Units (TCUs).

Type: Integer

Required: Yes

NotificationConfiguration

Configuration settings for notifications related to the provisioned capacity update.

Type: AccountSettingsNotificationConfiguration object

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 1019

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/ProvisionedCapacityRequest
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/ProvisionedCapacityRequest
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/ProvisionedCapacityRequest

Amazon Timestream Developer Guide

ProvisionedCapacityResponse
Service: Amazon Timestream Query

The response to a request to update the provisioned capacity settings for querying data.

Contents

ActiveQueryTCU

The number of Timestream Compute Units (TCUs) provisioned in the account. This field is only
visible when the compute mode is PROVISIONED.

Type: Integer

Required: No

LastUpdate

Information about the last update to the provisioned capacity settings.

Type: LastUpdate object

Required: No

NotificationConfiguration

An object that contains settings for notifications that are sent whenever the provisioned
capacity settings are modified. This field is only visible when the compute mode is
PROVISIONED.

Type: AccountSettingsNotificationConfiguration object

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 1020

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/ProvisionedCapacityResponse
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/ProvisionedCapacityResponse
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/ProvisionedCapacityResponse

Amazon Timestream Developer Guide

Data Types 1021

Amazon Timestream Developer Guide

QueryComputeRequest
Service: Amazon Timestream Query

A request to retrieve or update the compute capacity settings for querying data. QueryCompute is
available only in the Asia Pacific (Mumbai) region.

Contents

ComputeMode

The mode in which Timestream Compute Units (TCUs) are allocated and utilized within an
account. Note that in the Asia Pacific (Mumbai) region, the API operation only recognizes the
value PROVISIONED. QueryCompute is available only in the Asia Pacific (Mumbai) region.

Type: String

Valid Values: ON_DEMAND | PROVISIONED

Required: No

ProvisionedCapacity

Configuration object that contains settings for provisioned Timestream Compute Units (TCUs)
in your account. QueryCompute is available only in the Asia Pacific (Mumbai) region.

Type: ProvisionedCapacityRequest object

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 1022

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/QueryComputeRequest
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/QueryComputeRequest
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/QueryComputeRequest

Amazon Timestream Developer Guide

QueryComputeResponse
Service: Amazon Timestream Query

The response to a request to retrieve or update the compute capacity settings for querying data.
QueryCompute is available only in the Asia Pacific (Mumbai) region.

Contents

ComputeMode

The mode in which Timestream Compute Units (TCUs) are allocated and utilized within an
account. Note that in the Asia Pacific (Mumbai) region, the API operation only recognizes the
value PROVISIONED. QueryCompute is available only in the Asia Pacific (Mumbai) region.

Type: String

Valid Values: ON_DEMAND | PROVISIONED

Required: No

ProvisionedCapacity

Configuration object that contains settings for provisioned Timestream Compute Units (TCUs)
in your account. QueryCompute is available only in the Asia Pacific (Mumbai) region.

Type: ProvisionedCapacityResponse object

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 1023

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/QueryComputeResponse
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/QueryComputeResponse
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/QueryComputeResponse

Amazon Timestream Developer Guide

QueryInsights
Service: Amazon Timestream Query

QueryInsights is a performance tuning feature that helps you optimize your queries, reducing
costs and improving performance. With QueryInsights, you can assess the pruning efficiency
of your queries and identify areas for improvement to enhance query performance. With
QueryInsights, you can also analyze the effectiveness of your queries in terms of temporal and
spatial pruning, and identify opportunities to improve performance. Specifically, you can evaluate
how well your queries use time-based and partition key-based indexing strategies to optimize data
retrieval. To optimize query performance, it's essential that you fine-tune both the temporal and
spatial parameters that govern query execution.

The key metrics provided by QueryInsights are QuerySpatialCoverage and
QueryTemporalRange. QuerySpatialCoverage indicates how much of the spatial axis the
query scans, with lower values being more efficient. QueryTemporalRange shows the time range
scanned, with narrower ranges being more performant.

Benefits of QueryInsights

The following are the key benefits of using QueryInsights:

• Identifying inefficient queries – QueryInsights provides information on the time-based and
attribute-based pruning of the tables accessed by the query. This information helps you identify
the tables that are sub-optimally accessed.

• Optimizing your data model and partitioning – You can use the QueryInsights information
to access and fine-tune your data model and partitioning strategy.

• Tuning queries – QueryInsights highlights opportunities to use indexes more effectively.

Note

The maximum number of Query API requests you're allowed to make with
QueryInsights enabled is 1 query per second (QPS). If you exceed this query rate, it
might result in throttling.

Data Types 1024

Amazon Timestream Developer Guide

Contents

Mode

Provides the following modes to enable QueryInsights:

• ENABLED_WITH_RATE_CONTROL – Enables QueryInsights for the queries being processed.
This mode also includes a rate control mechanism, which limits the QueryInsights feature
to 1 query per second (QPS).

• DISABLED – Disables QueryInsights.

Type: String

Valid Values: ENABLED_WITH_RATE_CONTROL | DISABLED

Required: Yes

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 1025

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/QueryInsights
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/QueryInsights
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/QueryInsights

Amazon Timestream Developer Guide

QueryInsightsResponse
Service: Amazon Timestream Query

Provides various insights and metrics related to the query that you executed.

Contents

OutputBytes

Indicates the size of query result set in bytes. You can use this data to validate if the result set
has changed as part of the query tuning exercise.

Type: Long

Required: No

OutputRows

Indicates the total number of rows returned as part of the query result set. You can use this
data to validate if the number of rows in the result set have changed as part of the query tuning
exercise.

Type: Long

Required: No

QuerySpatialCoverage

Provides insights into the spatial coverage of the query, including the table with sub-optimal
(max) spatial pruning. This information can help you identify areas for improvement in your
partitioning strategy to enhance spatial pruning.

Type: QuerySpatialCoverage object

Required: No

QueryTableCount

Indicates the number of tables in the query.

Type: Long

Required: No

Data Types 1026

Amazon Timestream Developer Guide

QueryTemporalRange

Provides insights into the temporal range of the query, including the table with the largest
(max) time range. Following are some of the potential options for optimizing time-based
pruning:

• Add missing time-predicates.

• Remove functions around the time predicates.

• Add time predicates to all the sub-queries.

Type: QueryTemporalRange object

Required: No

UnloadPartitionCount

Indicates the partitions created by the Unload operation.

Type: Long

Required: No

UnloadWrittenBytes

Indicates the size, in bytes, written by the Unload operation.

Type: Long

Required: No

UnloadWrittenRows

Indicates the rows written by the Unload query.

Type: Long

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

Data Types 1027

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/QueryInsightsResponse

Amazon Timestream Developer Guide

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 1028

https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/QueryInsightsResponse
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/QueryInsightsResponse

Amazon Timestream Developer Guide

QuerySpatialCoverage
Service: Amazon Timestream Query

Provides insights into the spatial coverage of the query, including the table with sub-optimal (max)
spatial pruning. This information can help you identify areas for improvement in your partitioning
strategy to enhance spatial pruning

For example, you can do the following with the QuerySpatialCoverage information:

• Add measure_name or use customer-defined partition key (CDPK) predicates.

• If you've already done the preceding action, remove functions around them or clauses, such as
LIKE.

Contents

Max

Provides insights into the spatial coverage of the executed query and the table with the most
inefficient spatial pruning.

• Value – The maximum ratio of spatial coverage.

• TableArn – The Amazon Resource Name (ARN) of the table with sub-optimal spatial pruning.

• PartitionKey – The partition key used for partitioning, which can be a default
measure_name or a CDPK.

Type: QuerySpatialCoverageMax object

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 1029

https://docs.amazonaws.cn/timestream/latest/developerguide/customer-defined-partition-keys.html
https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/QuerySpatialCoverage
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/QuerySpatialCoverage
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/QuerySpatialCoverage

Amazon Timestream Developer Guide

QuerySpatialCoverageMax
Service: Amazon Timestream Query

Provides insights into the table with the most sub-optimal spatial range scanned by your query.

Contents

PartitionKey

The partition key used for partitioning, which can be a default measure_name or a customer
defined partition key.

Type: Array of strings

Required: No

TableArn

The Amazon Resource Name (ARN) of the table with the most sub-optimal spatial pruning.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Required: No

Value

The maximum ratio of spatial coverage.

Type: Double

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 1030

https://docs.amazonaws.cn/timestream/latest/developerguide/customer-defined-partition-keys.html
https://docs.amazonaws.cn/timestream/latest/developerguide/customer-defined-partition-keys.html
https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/QuerySpatialCoverageMax
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/QuerySpatialCoverageMax
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/QuerySpatialCoverageMax

Amazon Timestream Developer Guide

QueryStatus
Service: Amazon Timestream Query

Information about the status of the query, including progress and bytes scanned.

Contents

CumulativeBytesMetered

The amount of data scanned by the query in bytes that you will be charged for. This is a
cumulative sum and represents the total amount of data that you will be charged for since
the query was started. The charge is applied only once and is either applied when the query
completes running or when the query is cancelled.

Type: Long

Required: No

CumulativeBytesScanned

The amount of data scanned by the query in bytes. This is a cumulative sum and represents the
total amount of bytes scanned since the query was started.

Type: Long

Required: No

ProgressPercentage

The progress of the query, expressed as a percentage.

Type: Double

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 1031

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/QueryStatus
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/QueryStatus
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/QueryStatus

Amazon Timestream Developer Guide

Data Types 1032

Amazon Timestream Developer Guide

QueryTemporalRange
Service: Amazon Timestream Query

Provides insights into the temporal range of the query, including the table with the largest (max)
time range.

Contents

Max

Encapsulates the following properties that provide insights into the most sub-optimal
performing table on the temporal axis:

• Value – The maximum duration in nanoseconds between the start and end of the query.

• TableArn – The Amazon Resource Name (ARN) of the table which is queried with the largest
time range.

Type: QueryTemporalRangeMax object

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 1033

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/QueryTemporalRange
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/QueryTemporalRange
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/QueryTemporalRange

Amazon Timestream Developer Guide

QueryTemporalRangeMax
Service: Amazon Timestream Query

Provides insights into the table with the most sub-optimal temporal pruning scanned by your
query.

Contents

TableArn

The Amazon Resource Name (ARN) of the table which is queried with the largest time range.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Required: No

Value

The maximum duration in nanoseconds between the start and end of the query.

Type: Long

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 1034

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/QueryTemporalRangeMax
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/QueryTemporalRangeMax
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/QueryTemporalRangeMax

Amazon Timestream Developer Guide

Row
Service: Amazon Timestream Query

Represents a single row in the query results.

Contents

Data

List of data points in a single row of the result set.

Type: Array of Datum objects

Required: Yes

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 1035

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/Row
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/Row
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/Row

Amazon Timestream Developer Guide

S3Configuration
Service: Amazon Timestream Query

Details on S3 location for error reports that result from running a query.

Contents

BucketName

Name of the S3 bucket under which error reports will be created.

Type: String

Length Constraints: Minimum length of 3. Maximum length of 63.

Pattern: [a-z0-9][\.\-a-z0-9]{1,61}[a-z0-9]

Required: Yes

EncryptionOption

Encryption at rest options for the error reports. If no encryption option is specified, Timestream
will choose SSE_S3 as default.

Type: String

Valid Values: SSE_S3 | SSE_KMS

Required: No

ObjectKeyPrefix

Prefix for the error report key. Timestream by default adds the following prefix to the error
report path.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 896.

Pattern: [a-zA-Z0-9|!\-_*'\(\)]([a-zA-Z0-9]|[!\-_*'\(\)\/.])+

Required: No

Data Types 1036

Amazon Timestream Developer Guide

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 1037

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/S3Configuration
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/S3Configuration
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/S3Configuration

Amazon Timestream Developer Guide

S3ReportLocation
Service: Amazon Timestream Query

S3 report location for the scheduled query run.

Contents

BucketName

S3 bucket name.

Type: String

Length Constraints: Minimum length of 3. Maximum length of 63.

Pattern: [a-z0-9][\.\-a-z0-9]{1,61}[a-z0-9]

Required: No

ObjectKey

S3 key.

Type: String

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 1038

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/S3ReportLocation
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/S3ReportLocation
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/S3ReportLocation

Amazon Timestream Developer Guide

ScheduleConfiguration
Service: Amazon Timestream Query

Configuration of the schedule of the query.

Contents

ScheduleExpression

An expression that denotes when to trigger the scheduled query run. This can be a cron
expression or a rate expression.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 256.

Required: Yes

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 1039

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/ScheduleConfiguration
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/ScheduleConfiguration
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/ScheduleConfiguration

Amazon Timestream Developer Guide

ScheduledQuery
Service: Amazon Timestream Query

Scheduled Query

Contents

Arn

The Amazon Resource Name.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Required: Yes

Name

The name of the scheduled query.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: [a-zA-Z0-9|!\-_*'\(\)]([a-zA-Z0-9]|[!\-_*'\(\)\/.])+

Required: Yes

State

State of scheduled query.

Type: String

Valid Values: ENABLED | DISABLED

Required: Yes

CreationTime

The creation time of the scheduled query.

Type: Timestamp

Required: No

Data Types 1040

Amazon Timestream Developer Guide

ErrorReportConfiguration

Configuration for scheduled query error reporting.

Type: ErrorReportConfiguration object

Required: No

LastRunStatus

Status of the last scheduled query run.

Type: String

Valid Values: AUTO_TRIGGER_SUCCESS | AUTO_TRIGGER_FAILURE |
MANUAL_TRIGGER_SUCCESS | MANUAL_TRIGGER_FAILURE

Required: No

NextInvocationTime

The next time the scheduled query is to be run.

Type: Timestamp

Required: No

PreviousInvocationTime

The last time the scheduled query was run.

Type: Timestamp

Required: No

TargetDestination

Target data source where final scheduled query result will be written.

Type: TargetDestination object

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

Data Types 1041

Amazon Timestream Developer Guide

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 1042

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/ScheduledQuery
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/ScheduledQuery
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/ScheduledQuery

Amazon Timestream Developer Guide

ScheduledQueryDescription
Service: Amazon Timestream Query

Structure that describes scheduled query.

Contents

Arn

Scheduled query ARN.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Required: Yes

Name

Name of the scheduled query.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: [a-zA-Z0-9|!\-_*'\(\)]([a-zA-Z0-9]|[!\-_*'\(\)\/.])+

Required: Yes

NotificationConfiguration

Notification configuration.

Type: NotificationConfiguration object

Required: Yes

QueryString

The query to be run.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 262144.

Required: Yes

Data Types 1043

Amazon Timestream Developer Guide

ScheduleConfiguration

Schedule configuration.

Type: ScheduleConfiguration object

Required: Yes

State

State of the scheduled query.

Type: String

Valid Values: ENABLED | DISABLED

Required: Yes

CreationTime

Creation time of the scheduled query.

Type: Timestamp

Required: No

ErrorReportConfiguration

Error-reporting configuration for the scheduled query.

Type: ErrorReportConfiguration object

Required: No

KmsKeyId

A customer provided KMS key used to encrypt the scheduled query resource.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Required: No

LastRunSummary

Runtime summary for the last scheduled query run.

Data Types 1044

Amazon Timestream Developer Guide

Type: ScheduledQueryRunSummary object

Required: No

NextInvocationTime

The next time the scheduled query is scheduled to run.

Type: Timestamp

Required: No

PreviousInvocationTime

Last time the query was run.

Type: Timestamp

Required: No

RecentlyFailedRuns

Runtime summary for the last five failed scheduled query runs.

Type: Array of ScheduledQueryRunSummary objects

Required: No

ScheduledQueryExecutionRoleArn

IAM role that Timestream uses to run the schedule query.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Required: No

TargetConfiguration

Scheduled query target store configuration.

Type: TargetConfiguration object

Required: No

Data Types 1045

Amazon Timestream Developer Guide

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 1046

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/ScheduledQueryDescription
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/ScheduledQueryDescription
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/ScheduledQueryDescription

Amazon Timestream Developer Guide

ScheduledQueryInsights
Service: Amazon Timestream Query

Encapsulates settings for enabling QueryInsights on an ExecuteScheduledQueryRequest.

Contents

Mode

Provides the following modes to enable ScheduledQueryInsights:

• ENABLED_WITH_RATE_CONTROL – Enables ScheduledQueryInsights for the queries
being processed. This mode also includes a rate control mechanism, which limits the
QueryInsights feature to 1 query per second (QPS).

• DISABLED – Disables ScheduledQueryInsights.

Type: String

Valid Values: ENABLED_WITH_RATE_CONTROL | DISABLED

Required: Yes

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 1047

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/ScheduledQueryInsights
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/ScheduledQueryInsights
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/ScheduledQueryInsights

Amazon Timestream Developer Guide

ScheduledQueryInsightsResponse
Service: Amazon Timestream Query

Provides various insights and metrics related to the ExecuteScheduledQueryRequest that was
executed.

Contents

OutputBytes

Indicates the size of query result set in bytes. You can use this data to validate if the result set
has changed as part of the query tuning exercise.

Type: Long

Required: No

OutputRows

Indicates the total number of rows returned as part of the query result set. You can use this
data to validate if the number of rows in the result set have changed as part of the query tuning
exercise.

Type: Long

Required: No

QuerySpatialCoverage

Provides insights into the spatial coverage of the query, including the table with sub-optimal
(max) spatial pruning. This information can help you identify areas for improvement in your
partitioning strategy to enhance spatial pruning.

Type: QuerySpatialCoverage object

Required: No

QueryTableCount

Indicates the number of tables in the query.

Type: Long

Required: No

Data Types 1048

Amazon Timestream Developer Guide

QueryTemporalRange

Provides insights into the temporal range of the query, including the table with the largest
(max) time range. Following are some of the potential options for optimizing time-based
pruning:

• Add missing time-predicates.

• Remove functions around the time predicates.

• Add time predicates to all the sub-queries.

Type: QueryTemporalRange object

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 1049

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/ScheduledQueryInsightsResponse
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/ScheduledQueryInsightsResponse
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/ScheduledQueryInsightsResponse

Amazon Timestream Developer Guide

ScheduledQueryRunSummary
Service: Amazon Timestream Query

Run summary for the scheduled query

Contents

ErrorReportLocation

S3 location for error report.

Type: ErrorReportLocation object

Required: No

ExecutionStats

Runtime statistics for a scheduled run.

Type: ExecutionStats object

Required: No

FailureReason

Error message for the scheduled query in case of failure. You might have to look at the error
report to get more detailed error reasons.

Type: String

Required: No

InvocationTime

InvocationTime for this run. This is the time at which the query is scheduled to run. Parameter
@scheduled_runtime can be used in the query to get the value.

Type: Timestamp

Required: No

QueryInsightsResponse

Provides various insights and metrics related to the run summary of the scheduled query.

Type: ScheduledQueryInsightsResponse object

Data Types 1050

Amazon Timestream Developer Guide

Required: No

RunStatus

The status of a scheduled query run.

Type: String

Valid Values: AUTO_TRIGGER_SUCCESS | AUTO_TRIGGER_FAILURE |
MANUAL_TRIGGER_SUCCESS | MANUAL_TRIGGER_FAILURE

Required: No

TriggerTime

The actual time when the query was run.

Type: Timestamp

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 1051

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/ScheduledQueryRunSummary
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/ScheduledQueryRunSummary
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/ScheduledQueryRunSummary

Amazon Timestream Developer Guide

SelectColumn
Service: Amazon Timestream Query

Details of the column that is returned by the query.

Contents

Aliased

True, if the column name was aliased by the query. False otherwise.

Type: Boolean

Required: No

DatabaseName

Database that has this column.

Type: String

Required: No

Name

Name of the column.

Type: String

Required: No

TableName

Table within the database that has this column.

Type: String

Required: No

Type

Contains the data type of a column in a query result set. The data type can be scalar or
complex. The supported scalar data types are integers, Boolean, string, double, timestamp,
date, time, and intervals. The supported complex data types are arrays, rows, and timeseries.

Type: Type object

Data Types 1052

Amazon Timestream Developer Guide

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 1053

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/SelectColumn
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/SelectColumn
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/SelectColumn

Amazon Timestream Developer Guide

SnsConfiguration
Service: Amazon Timestream Query

Details on SNS that are required to send the notification.

Contents

TopicArn

SNS topic ARN that the scheduled query status notifications will be sent to.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Required: Yes

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 1054

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/SnsConfiguration
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/SnsConfiguration
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/SnsConfiguration

Amazon Timestream Developer Guide

Tag
Service: Amazon Timestream Query

A tag is a label that you assign to a Timestream database and/or table. Each tag consists of a key
and an optional value, both of which you define. Tags enable you to categorize databases and/or
tables, for example, by purpose, owner, or environment.

Contents

Key

The key of the tag. Tag keys are case sensitive.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128.

Required: Yes

Value

The value of the tag. Tag values are case sensitive and can be null.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 256.

Required: Yes

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 1055

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/Tag
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/Tag
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/Tag

Amazon Timestream Developer Guide

TargetConfiguration
Service: Amazon Timestream Query

Configuration used for writing the output of a query.

Contents

TimestreamConfiguration

Configuration needed to write data into the Timestream database and table.

Type: TimestreamConfiguration object

Required: Yes

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 1056

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/TargetConfiguration
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/TargetConfiguration
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/TargetConfiguration

Amazon Timestream Developer Guide

TargetDestination
Service: Amazon Timestream Query

Destination details to write data for a target data source. Current supported data source is
Timestream.

Contents

TimestreamDestination

Query result destination details for Timestream data source.

Type: TimestreamDestination object

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 1057

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/TargetDestination
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/TargetDestination
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/TargetDestination

Amazon Timestream Developer Guide

TimeSeriesDataPoint
Service: Amazon Timestream Query

The timeseries data type represents the values of a measure over time. A time series is an array
of rows of timestamps and measure values, with rows sorted in ascending order of time. A
TimeSeriesDataPoint is a single data point in the time series. It represents a tuple of (time, measure
value) in a time series.

Contents

Time

The timestamp when the measure value was collected.

Type: String

Required: Yes

Value

The measure value for the data point.

Type: Datum object

Required: Yes

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 1058

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/TimeSeriesDataPoint
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/TimeSeriesDataPoint
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/TimeSeriesDataPoint

Amazon Timestream Developer Guide

TimestreamConfiguration
Service: Amazon Timestream Query

Configuration to write data into Timestream database and table. This configuration allows the user
to map the query result select columns into the destination table columns.

Contents

DatabaseName

Name of Timestream database to which the query result will be written.

Type: String

Required: Yes

DimensionMappings

This is to allow mapping column(s) from the query result to the dimension in the destination
table.

Type: Array of DimensionMapping objects

Required: Yes

TableName

Name of Timestream table that the query result will be written to. The table should be within
the same database that is provided in Timestream configuration.

Type: String

Required: Yes

TimeColumn

Column from query result that should be used as the time column in destination table. Column
type for this should be TIMESTAMP.

Type: String

Required: Yes

MeasureNameColumn

Name of the measure column.

Data Types 1059

Amazon Timestream Developer Guide

Type: String

Required: No

MixedMeasureMappings

Specifies how to map measures to multi-measure records.

Type: Array of MixedMeasureMapping objects

Array Members: Minimum number of 1 item.

Required: No

MultiMeasureMappings

Multi-measure mappings.

Type: MultiMeasureMappings object

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 1060

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/TimestreamConfiguration
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/TimestreamConfiguration
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/TimestreamConfiguration

Amazon Timestream Developer Guide

TimestreamDestination
Service: Amazon Timestream Query

Destination for scheduled query.

Contents

DatabaseName

Timestream database name.

Type: String

Required: No

TableName

Timestream table name.

Type: String

Required: No

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Data Types 1061

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/TimestreamDestination
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/TimestreamDestination
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/TimestreamDestination

Amazon Timestream Developer Guide

Type
Service: Amazon Timestream Query

Contains the data type of a column in a query result set. The data type can be scalar or complex.
The supported scalar data types are integers, Boolean, string, double, timestamp, date, time, and
intervals. The supported complex data types are arrays, rows, and timeseries.

Contents

ArrayColumnInfo

Indicates if the column is an array.

Type: ColumnInfo object

Required: No

RowColumnInfo

Indicates if the column is a row.

Type: Array of ColumnInfo objects

Required: No

ScalarType

Indicates if the column is of type string, integer, Boolean, double, timestamp, date, time. For
more information, see Supported data types.

Type: String

Valid Values: VARCHAR | BOOLEAN | BIGINT | DOUBLE | TIMESTAMP | DATE | TIME
| INTERVAL_DAY_TO_SECOND | INTERVAL_YEAR_TO_MONTH | UNKNOWN | INTEGER

Required: No

TimeSeriesMeasureValueColumnInfo

Indicates if the column is a timeseries data type.

Type: ColumnInfo object

Required: No

Data Types 1062

https://docs.amazonaws.cn/timestream/latest/developerguide/supported-data-types.html

Amazon Timestream Developer Guide

See Also

For more information about using this API in one of the language-specific Amazon SDKs, see the
following:

• Amazon SDK for C++

• Amazon SDK for Java V2

• Amazon SDK for Ruby V3

Common Errors

This section lists the errors common to the API actions of all Amazon services. For errors specific to
an API action for this service, see the topic for that API action.

AccessDeniedException

You do not have sufficient access to perform this action.

HTTP Status Code: 400

IncompleteSignature

The request signature does not conform to Amazon standards.

HTTP Status Code: 400

InternalFailure

The request processing has failed because of an unknown error, exception or failure.

HTTP Status Code: 500

InvalidAction

The action or operation requested is invalid. Verify that the action is typed correctly.

HTTP Status Code: 400

InvalidClientTokenId

The X.509 certificate or Amazon access key ID provided does not exist in our records.

HTTP Status Code: 403

Common Errors 1063

https://docs.amazonaws.cn/goto/SdkForCpp/timestream-query-2018-11-01/Type
https://docs.amazonaws.cn/goto/SdkForJavaV2/timestream-query-2018-11-01/Type
https://docs.amazonaws.cn/goto/SdkForRubyV3/timestream-query-2018-11-01/Type

Amazon Timestream Developer Guide

NotAuthorized

You do not have permission to perform this action.

HTTP Status Code: 400

OptInRequired

The Amazon access key ID needs a subscription for the service.

HTTP Status Code: 403

RequestExpired

The request reached the service more than 15 minutes after the date stamp on the request or
more than 15 minutes after the request expiration date (such as for pre-signed URLs), or the
date stamp on the request is more than 15 minutes in the future.

HTTP Status Code: 400

ServiceUnavailable

The request has failed due to a temporary failure of the server.

HTTP Status Code: 503

ThrottlingException

The request was denied due to request throttling.

HTTP Status Code: 400

ValidationError

The input fails to satisfy the constraints specified by an Amazon service.

HTTP Status Code: 400

Common Parameters

The following list contains the parameters that all actions use for signing Signature Version 4
requests with a query string. Any action-specific parameters are listed in the topic for that action.
For more information about Signature Version 4, see Signing Amazon API requests in the IAM User
Guide.

Common Parameters 1064

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-signing.html

Amazon Timestream Developer Guide

Action

The action to be performed.

Type: string

Required: Yes

Version

The API version that the request is written for, expressed in the format YYYY-MM-DD.

Type: string

Required: Yes

X-Amz-Algorithm

The hash algorithm that you used to create the request signature.

Condition: Specify this parameter when you include authentication information in a query
string instead of in the HTTP authorization header.

Type: string

Valid Values: AWS4-HMAC-SHA256

Required: Conditional

X-Amz-Credential

The credential scope value, which is a string that includes your access key, the date, the region
you are targeting, the service you are requesting, and a termination string ("aws4_request").
The value is expressed in the following format: access_key/YYYYMMDD/region/service/
aws4_request.

For more information, see Create a signed Amazon API request in the IAM User Guide.

Condition: Specify this parameter when you include authentication information in a query
string instead of in the HTTP authorization header.

Type: string

Required: Conditional

Common Parameters 1065

https://docs.amazonaws.cn/IAM/latest/UserGuide/create-signed-request.html

Amazon Timestream Developer Guide

X-Amz-Date

The date that is used to create the signature. The format must be ISO 8601 basic format
(YYYYMMDD'T'HHMMSS'Z'). For example, the following date time is a valid X-Amz-Date value:
20120325T120000Z.

Condition: X-Amz-Date is optional for all requests; it can be used to override the date used for
signing requests. If the Date header is specified in the ISO 8601 basic format, X-Amz-Date is not
required. When X-Amz-Date is used, it always overrides the value of the Date header. For more
information, see Elements of an Amazon API request signature in the IAM User Guide.

Type: string

Required: Conditional

X-Amz-Security-Token

The temporary security token that was obtained through a call to Amazon Security Token
Service (Amazon STS). For a list of services that support temporary security credentials from
Amazon STS, see Amazon Web Services services that work with IAM in the IAM User Guide.

Condition: If you're using temporary security credentials from Amazon STS, you must include
the security token.

Type: string

Required: Conditional

X-Amz-Signature

Specifies the hex-encoded signature that was calculated from the string to sign and the derived
signing key.

Condition: Specify this parameter when you include authentication information in a query
string instead of in the HTTP authorization header.

Type: string

Required: Conditional

X-Amz-SignedHeaders

Specifies all the HTTP headers that were included as part of the canonical request. For more
information about specifying signed headers, see Create a signed Amazon API request in the
IAM User Guide.

Common Parameters 1066

https://docs.amazonaws.cn/IAM/latest/UserGuide/signing-elements.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/create-signed-request.html

Amazon Timestream Developer Guide

Condition: Specify this parameter when you include authentication information in a query
string instead of in the HTTP authorization header.

Type: string

Required: Conditional

Document history

Change Description Date

Amazon Timestream for
LiveAnalytics will no longer
be open to new customers
starting June 20, 2025.

Amazon Timestream for
LiveAnalytics will no longer
be open to new customers
starting on 6/20/2025. If
you would like to use the
service, please sign up prior to
06/20/2025. For capabilities
similar to Amazon Timestrea
m for LiveAnalytics, explore
Amazon Timestream for
InfluxDB.

May 20, 2025

AmazonTimestreamIn
fluxDBFullAccessWi
thoutMarketplaceAc
cess – New policy

This policy grants administr
ative permissions that allow
full access to all Timestrea
m for InfluxDB resources,
excluding any marketplace-
related actions. For more
information see Amazon
managed policies for Amazon
Timestream for InfluxDB.

April 16, 2025

AmazonTimestreamIn
fluxDBFullAccess –
Update to an existing policy

Amazon Timestream for
InfluxDB has added to
the existing AmazonTim
estreamInfluxDBFul

April 16, 2025

Document history 1067

https://docs.amazonaws.cn/timestream/latest/developerguide/timestream-for-influxdb.html
https://docs.amazonaws.cn/timestream/latest/developerguide/timestream-for-influxdb.html
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol-influxdb.html
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol-influxdb.html
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol-influxdb.html

Amazon Timestream Developer Guide

lAccess managed policy.
For more information, see
Amazon managed policies
for Amazon Timestream for
InfluxDB.

AmazonTimestreamIn
fluxDBFullAccess –
Update to an existing policy

Amazon Timestream for
InfluxDB has added access to
create, update, delete, and list
Amazon Timestream InfluxDB
clusters to the existing
AmazonTimestreamIn
fluxDBFullAccess
managed policy. For more
information, see Amazon
managed policies for Amazon
Timestream for InfluxDB.

February 17, 2025

Documentation-only update Updated the Quotas topic to
segregate the default quotas
and system limits.

October 22, 2024

Amazon Timestream now
supports query insights

Timestream now includes
support for the query
insights feature that helps
you optimize your queries,
improve their performance,
and reduce costs.

October 22, 2024

Document history 1068

https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol-influxdb.html
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol-influxdb.html
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol-influxdb.html
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol-influxdb.html
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol-influxdb.html
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol-influxdb.html
https://docs.amazonaws.cn/timestream/latest/developerguide/ts-limits.html
https://docs.amazonaws.cn/timestream/latest/developerguide/using-query-insights.html
https://docs.amazonaws.cn/timestream/latest/developerguide/using-query-insights.html

Amazon Timestream Developer Guide

Amazon Timestream for
InfluxDB update to an existing
policy.

Amazon Timestream for
InfluxDB has added the
ec2:DescribeRouteT
ables action to the existing
AmazonTimestreamIn
fluxDBFullAccess
managed policy for describin
g your route tables. For more
information, see Amazon
managed policies for Amazon
Timestream for InfluxDB.

October 8, 2024

AmazonTimestreamIn
fluxDBFullAccess –
Update to an existing policy

Amazon Timestream for
InfluxDB has added the
ec2:DescribeRouteT
ables action to the existing
AmazonTimestreamIn
fluxDBFullAccess
managed policy. This action
is used for describing your
route tables. See AmazonTim
estreamInfluxDBFullAccess.

September 12, 2024

AmazonTimestreamRe
adOnlyAccess – Update
to an existing policy

Timestream for LiveAnalytics
has added the DescribeA
ccountSettings
permission to the AmazonTim
estreamReadOnlyAcc
ess managed policy for
describing Amazon Web
Services account settings.

June 3, 2024

Document history 1069

https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol-influxdb.html
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol-influxdb.html
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol-influxdb.html
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol-influxdb.html#iam.identitybasedpolicies.predefinedpolicies
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol-influxdb.html#iam.identitybasedpolicies.predefinedpolicies
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonTimestreamReadOnlyAccess
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonTimestreamReadOnlyAccess
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonTimestreamReadOnlyAccess

Amazon Timestream Developer Guide

Amazon Timestream for
LiveAnalytics now supports
Timestream Compute Units
(TCUs)

Amazon Timestream for
LiveAnalytics now includes
support for Timestream
Compute Units (TCUs)
to measure the compute
capacity allocated for your
query needs.

April 29, 2024

New policies added Amazon Timestream for
InfluxDB added two new
policies: One that allows the
service to manage network
interfaces and security groups
in your account. For more
information, see AmazonTim
estreamInfluxDBServiceRoleP
olicy. Another that provide
full administrative access to
create, update, delete and list
Amazon Timestream InfluxDB
instances and create and list
parameter groups. For more
information, see AmazonTim
estreamInfluxDBFullAccess.

March 14, 2024

Amazon Timestream for
InfluxDB is now generally
available.

This documentation covers
the initial release of Amazon
Timestream for InfluxDB.

March 14, 2024

Document history 1070

https://docs.amazonaws.cn/timestream/latest/developerguide/tcu.html
https://docs.amazonaws.cn/timestream/latest/developerguide/tcu.html
https://docs.amazonaws.cn/timestream/latest/developerguide/tcu.html
https://docs.amazonaws.cn/timestream/latest/developerguide/tcu.html
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol-influxdb.html#security-iam-awsmanpol-timestreamforinfluxdbServiceRolePolicy
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol-influxdb.html#security-iam-awsmanpol-timestreamforinfluxdbServiceRolePolicy
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol-influxdb.html#security-iam-awsmanpol-timestreamforinfluxdbServiceRolePolicy
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol-influxdb.html#iam.identitybasedpolicies.predefinedpolicies
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol-influxdb.html#iam.identitybasedpolicies.predefinedpolicies
https://docs.amazonaws.cn/timestream/latest/developerguide/timestream-for-influxdb.html
https://docs.amazonaws.cn/timestream/latest/developerguide/timestream-for-influxdb.html
https://docs.amazonaws.cn/timestream/latest/developerguide/timestream-for-influxdb.html

Amazon Timestream Developer Guide

Amazon Timestream for
LiveAnalytics Query events
are available in Amazon
CloudTrail

Amazon Timestream for
LiveAnalytics now publishes
Query API data events
to Amazon CloudTrail.
Customers can audit all Query
API requests made in their
Amazon accounts, and see
information such as which
IAM User/Role made the
request, when the request
was made, which databases
and tables were queried, and
the request's Query ID.

September 12, 2023

Amazon Timestream for
LiveAnalytics UNLOAD

Amazon Timestream for
LiveAnalytics now supports
UNLOAD to export query
results to S3.

May 12, 2023

Amazon Timestream for
LiveAnalytics update to an
existing policy.

Batch load permissions added
to a managed policy.

February 24, 2023

Amazon Timestream for
LiveAnalytics batch load.

Amazon Timestream for
LiveAnalytics now supports
batch load functionality.

February 24, 2023

Amazon Timestream for
LiveAnalytics now supports
Amazon Backup.

Amazon Timestream for
LiveAnalytics now supports
Amazon Backup.

December 14, 2022

Amazon Timestream for
LiveAnalytics updates to
Amazon managed policies

New information about
Amazon managed policies
and Amazon Timestream
for LiveAnalytics, including
updates to existing managed
policies.

November 29, 2021

Document history 1071

https://docs.amazonaws.cn/timestream/latest/developerguide/logging-using-cloudtrail.html
https://docs.amazonaws.cn/timestream/latest/developerguide/logging-using-cloudtrail.html
https://docs.amazonaws.cn/timestream/latest/developerguide/logging-using-cloudtrail.html
https://docs.amazonaws.cn/timestream/latest/developerguide/logging-using-cloudtrail.html
https://docs.amazonaws.cn/timestream/latest/developerguide/export-unload.html
https://docs.amazonaws.cn/timestream/latest/developerguide/export-unload.html
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol.html
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol.html
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol.html
https://docs.amazonaws.cn/timestream/latest/developerguide/batch-load.html
https://docs.amazonaws.cn/timestream/latest/developerguide/batch-load.html
https://docs.amazonaws.cn/timestream/latest/developerguide/backups.html
https://docs.amazonaws.cn/timestream/latest/developerguide/backups.html
https://docs.amazonaws.cn/timestream/latest/developerguide/backups.html
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol.html
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol.html
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol.html

Amazon Timestream Developer Guide

Amazon Timestream for
LiveAnalytics supports
scheduled queries

Amazon Timestream for
LiveAnalytics now supports
running a query on your
behalf, based on a schedule.

November 29, 2021

Amazon Timestream for
LiveAnalytics supports
magnetic store.

Amazon Timestream for
LiveAnalytics now supports
using magnetic storage for
your table writes.

November 29, 2021

Amazon Timestream for
LiveAnalytics multi-measure
records.

Amazon Timestream for
LiveAnalytics now supports
a more compact format for
storing your time-series data.

November 29, 2021

Amazon Timestream for
LiveAnalytics updates to
Amazon managed policies

New information about
Amazon managed policies
and Amazon Timestream
for LiveAnalytics, including
updates to existing managed
policies.

May 24, 2021

Amazon Timestream for
LiveAnalytics is now available
in the Europe (Frankfurt)
region.

Amazon Timestream for
LiveAnalytics is now generally
available in the Europe
(Frankfurt) region (eu-
central-1).

April 23, 2021

Amazon Timestream for
LiveAnalytics now supports
VPC endpoints (Amazon
PrivateLink).

Amazon Timestream for
LiveAnalytics now supports
the use of VPC endpoints
(Amazon PrivateLink).

March 23, 2021

Amazon Timestream now
supports cross table queries.

You can use Amazon
Timestream for LiveAnalytics
to run cross table queries.

February 10, 2021

Document history 1072

https://docs.amazonaws.cn/timestream/latest/developerguide/scheduledqueries.html
https://docs.amazonaws.cn/timestream/latest/developerguide/scheduledqueries.html
https://docs.amazonaws.cn/timestream/latest/developerguide/scheduledqueries.html
https://docs.amazonaws.cn/timestream/latest/developerguide/writes.html
https://docs.amazonaws.cn/timestream/latest/developerguide/writes.html
https://docs.amazonaws.cn/timestream/latest/developerguide/writes.html
https://docs.amazonaws.cn/timestream/latest/developerguide/writes.html#writes.writing-data-multi-measure
https://docs.amazonaws.cn/timestream/latest/developerguide/writes.html#writes.writing-data-multi-measure
https://docs.amazonaws.cn/timestream/latest/developerguide/writes.html#writes.writing-data-multi-measure
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol.html
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol.html
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol.html
https://docs.amazonaws.cn/timestream/latest/developerguide/what-is-timestream.html
https://docs.amazonaws.cn/timestream/latest/developerguide/what-is-timestream.html
https://docs.amazonaws.cn/timestream/latest/developerguide/what-is-timestream.html
https://docs.amazonaws.cn/timestream/latest/developerguide/what-is-timestream.html
https://docs.amazonaws.cn/timestream/latest/developerguide/VPCEndpoints.html
https://docs.amazonaws.cn/timestream/latest/developerguide/VPCEndpoints.html
https://docs.amazonaws.cn/timestream/latest/developerguide/VPCEndpoints.html
https://docs.amazonaws.cn/timestream/latest/developerguide/VPCEndpoints.html
https://docs.amazonaws.cn/timestream/latest/developerguide/supported-sql-constructs.SELECT.html
https://docs.amazonaws.cn/timestream/latest/developerguide/supported-sql-constructs.SELECT.html

Amazon Timestream Developer Guide

Amazon Timestream for
LiveAnalytics now supports
enhanced query execution
statistics.

Amazon Timestream for
LiveAnalytics now supports
enhanced query execution
statistics, such as amount of
data scanned.

February 10, 2021

Amazon Timestream for
LiveAnalytics now supports
advanced time series
functions.

You can use Amazon
Timestream for LiveAnaly
tics to run SQL queries
with advanced time series
functions, such as derivatives,
integrals, and correlations.

February 10, 2021

Amazon Timestream for
LiveAnalytics is now HIPAA,
ISO, and PCI compliant.

You can now use Amazon
Timestream for LiveAnalytics
for workloads that require
HIPAA, ISO, and PCI-compl
iant infrastructure.

January 27, 2021

Amazon Timestream for
LiveAnalytics now supports
open-source Telegraf and
Grafana.

You can now use Telegraf,
the open-source, plugin-dr
iven server agent for collectin
g and reporting metrics,
and Grafana, the open-sour
ce analytics and monitorin
g platform for databases,
with Amazon Timestream for
LiveAnalytics.

November 25, 2020

Amazon Timestream for
LiveAnalytics is now generally
available.

This documentation covers
the initial release of Amazon
Timestream for LiveAnalytics.

September 30, 2020

Document history 1073

https://docs.amazonaws.cn/timestream/latest/developerguide/API_query_Query.html
https://docs.amazonaws.cn/timestream/latest/developerguide/API_query_Query.html
https://docs.amazonaws.cn/timestream/latest/developerguide/API_query_Query.html
https://docs.amazonaws.cn/timestream/latest/developerguide/API_query_Query.html
https://docs.amazonaws.cn/timestream/latest/developerguide/timeseries-specific-constructs.functions.html
https://docs.amazonaws.cn/timestream/latest/developerguide/timeseries-specific-constructs.functions.html
https://docs.amazonaws.cn/timestream/latest/developerguide/timeseries-specific-constructs.functions.html
https://docs.amazonaws.cn/timestream/latest/developerguide/timeseries-specific-constructs.functions.html
https://docs.amazonaws.cn/timestream/latest/developerguide/what-is-timestream.html
https://docs.amazonaws.cn/timestream/latest/developerguide/what-is-timestream.html
https://docs.amazonaws.cn/timestream/latest/developerguide/what-is-timestream.html
https://docs.amazonaws.cn/timestream/latest/developerguide/OtherServices.html
https://docs.amazonaws.cn/timestream/latest/developerguide/OtherServices.html
https://docs.amazonaws.cn/timestream/latest/developerguide/OtherServices.html
https://docs.amazonaws.cn/timestream/latest/developerguide/OtherServices.html
https://docs.amazonaws.cn/timestream/latest/developerguide/what-is-timestream.html
https://docs.amazonaws.cn/timestream/latest/developerguide/what-is-timestream.html
https://docs.amazonaws.cn/timestream/latest/developerguide/what-is-timestream.html

Amazon Timestream Developer Guide

What is Timestream for InfluxDB?

Amazon Timestream for InfluxDB is a managed time series database engine that makes it easy for
application developers and DevOps teams to run InfluxDB databases on Amazon for real-time time
series applications using open-source APIs. With Amazon Timestream for InfluxDB, it is easy to set
up, operate, and scale time series workloads that can answer queries with single-digit millisecond
query response time.

Amazon Timestream for InfluxDB gives you access to the capabilities of the familiar open source
version of InfluxDB on its 2.x branch. This means that the code, applications, and tools you already
use today with your existing InfluxDB open-source databases should work seamlessly with Amazon
Timestream for InfluxDB. Amazon Timestream for InfluxDB can automatically back up your
database and keep your database software up to date with the latest version. In addition, Amazon
Timestream for InfluxDB makes it easy to use replication to enhance database availability, and
improve data durability. As with all Amazon services, there are no upfront investments required,
and you pay only for the resources you use.

DB instances

A DB instance is an isolated database environment running in the cloud. It is the basic building
block of Amazon Timestream for InfluxDB. A DB instance can contain multiple user-created
databases (or organizations and buckets for the case of InfluxDb 2.x databases), and can be
accessed using the same client tools and applications you might use to access a standalone self-
managed InfluxDB instance. DB instances are simple to create and modify with the Amazon
command line tools, Amazon Timestream InfluxDB API operations, or the Amazon Web Services
Management Console.

Note

Amazon Timestream for InfluxDB supports access to databases using the Influx API
operations and Influx UI. Amazon Timestream for InfluxDB does not allow direct host
access.

You can have up to 40 Amazon Timestream for InfluxDB instances.

DB instances 1074

Amazon Timestream Developer Guide

Each DB instance has a DB instance id. This service generated name uniquely identifies the
DB instance when interacting with the Amazon Timestream for InfluxDB API and Amazon CLI
commands. The DB instance id is unique for that customer in an Amazon Region.

The DB instance id forms part of the DNS hostname allocated to your instance by Timestream for
InfluxDB. For example, if you specify influxdb1 as the DB instance name and the service generates
an instance id c5vasdqn0b then Timestream will automatically allocate a DNS endpoint for your
instance. An example endpoint is c5vasdqn0b-3ksj4dla5nfjhi.timestream-influxdb.us-
east-1.on.aws, where c5vasdqn0b is your instance id. All instances created before 12/09/2024
will maintain the old structure with an endpoint similar to: influxdb1-3ksj4dla5nfjhi.us-
east-1.timestream-influxdb.amazonaws.com where influxdb1 is your instance name.

In the example endpoint c5vasdqn0b-3ksj4dla5nfjhi.timestream-influxdb.us-
east-1.on.aws, the string 3ksj4dla5nfjhi is a unique account identifier generated by
Amazon. The identifier 3ksj4dla5nfjhi in the example doesn't change for the specified account
in a certain Region. Therefore, all your DB instances created by this account share the same fixed
identifier in the Region. Consider the following features of the fixed identifier:

• Currently Timestream for InfluxDB does not support DB instance renaming.

• For all instances created after 12/09/2024, if you delete and re-create your DB instance with the
same DB instance name, the endpoint will change since a new instance id will be assigned to the
instance. Instance created before tthe aforementioned date will be assigned the same endpoint
based on instance name.

• If you use the same account to create a DB instance in a different Region, the
internally generated identifier is different because the Region is different, as in
zxlasoonhvd.4a3j5du5ks7md2.timestream-influxdb.us-east-1.on.aws.

Each DB instance supports only one Timestream for InfluxDB database engine.

When creating a DB instance, InfluxDB requires that an organization name be specified. A DB
instance can host multiple organizations and multiple buckets associated to each organization.

Amazon Timestream for InfluxDB allows you to create a master user account and password for
your DB instance as part of the creation process. This master user has permissions to create
organizations, buckets, and to perform read, write, delete and upsert operations on your data.
You will also be able to access the InfluxUI and retrieve you operator token on. your first log in.
From there you will be able to manage all your access tokens as well. You must set the master user

DB instances 1075

Amazon Timestream Developer Guide

password when you create a DB instance, but you can change it at any time using the Influx API,
Influx CLI, or the InfluxUI.

DB instance classes

The DB instance class determines the computation and memory capacity of an Amazon
Timestream for InfluxDB DB instance. The DB instance class that you need depends on your
processing power and memory requirements.

A DB instance class consists of both the DB instance class type and the size. For example,
db.influx is a memory-optimized DB instance class type suitable for the high performance
memory requirements related to running InfluxDb workloads. Within the db.influx instance class
type, db.influx.2xlarge is a DB instance class. The size of this class is 2xlarge.

For more information about instance class pricing, see Amazon Timestream for InfluxDB pricing.

DB instance class types

Amazon Timestream for InfluxDB supports DB instance classes for the following use case optimized
for InfluxDB use cases.

• db.influx—These instance classes are ideal for running memory-intensive workloads in open-
source InfluxDB databases

Hardware specifications for DB instance classes

The following terminology describes the hardware specifications for DB instance classes:

• vCPU

The number of virtual central processing units (CPUs). A virtual CPU is a unit of capacity that you
can use to compare DB instance classes.

• Memory (GiB)

The RAM, in gibibytes, allocated to the DB instance. There is often a consistent ratio between
memory and vCPU. As an example, take the db.influx instance class, which has a memory to
vCPU ratio similar to the EC2 r7g instance class.

DB instance classes 1076

https://aws.amazon.com/timestream/pricing/

Amazon Timestream Developer Guide

• Influx-Optimized

The DB instance uses an optimized configuration stack and provides additional, dedicated
capacity for I/O. This optimization provides the best performance by minimizing contention
between I/O and other traffic from your instance.

• Network bandwidth

The network speed relative to other DB instance classes. In the following table, you can find
hardware details about the Amazon Timestream for InfluxDB instance classes.

Instances Class vCPU Memory (GiB) Storage Type Network
bandwidth
(Gbps)

db.influx
.medium

1 8 Influx IOPS
Included

10

db.influx.large 2 16 Influx IOPS
Included

10

db.influx.xlarge 4 32 Influx IOPS
Included

10

db.influx.2xlarge 8 64 Influx IOPS
Included

10

db.influx.4xlarge 16 128 Influx IOPS
Included

10

db.influx.8xlarge 32 256 Influx IOPS
Included

12

db.influx
.12xlarge

48 384 Influx IOPS
Included

20

db.influx
.16xlarge

64 512 Influx IOPS
Included

25

Hardware specifications 1077

Amazon Timestream Developer Guide

InfluxDB instance storage

DB instances for Amazon Timestream for InfluxDB use Influx IOPS Included volumes for databases
and log storage.

In some cases, your database workload might not be able to achieve 100 percent of the IOPS that
you have provisioned. For more information, see Factors that affect storage performance. For more
information about Timestream for InfluxDB storage pricing, see Amazon Timestream pricing.

Amazon Timestream for InfluxDB storage types

Amazon Timestream for InfluxDB provides support for one storage type, Influx IOPS Included. You
can create Timestream for InfluxDB instances with up to 16 tebibytes (TiB) of storage.

Here is a brief description of the available storage type:

• Influx IO Included storage: Storage performance is the combination of I/O operations
per second (IOPS) and how fast the storage volume can perform reads and writes (storage
throughput). On Influx IOPS Included storage volumes, Amazon Timestream for InfluxDB
provides 3 storage tiers that come pre configured with optimal IOPS and throughput required for
different types of workloads.

InfluxDB instance sizing

The optimal configuration of a Timestream for InfluxDB instance depends on various factors,
including ingestion rate, batch sizes, time series cardinality, concurrent queries, and query types.
To provide sizing recommendations, let's consider an exemplary workload with the following
characteristics:

• Data is collected and written by a fleet of Telegraf agents gathering System, CPU, Memory, Disk,
IO, and etc. from a data center.

Each write request contains 5000 lines.

• The queries executed on the system are categorized as “moderate complexity” queries, exhibiting
the following characteristics:

• They have multiple functions and one or two regular expressions

• They may include group by clauses or sample a time range of multiple weeks.

Instance Storage 1078

https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/CHAP_Storage.html#CHAP_Storage.Other.Factors
https://aws.amazon.com/timestream/pricing/

Amazon Timestream Developer Guide

• They typically takes a few hundred milliseconds to a couple of thousand milliseconds to
execute.

• The CPU favors query performance primarily.

Max # of series Writes (lines per
second)

Reads (Queries
per second)

Instance class Storage Type

<100K ~50,000 <10 db.influx.large Influx IO
Included 3K

<1MM ~150,000 <25 db.influx.2xlarge Influx IO
Included 3K

~1MM ~200,000 ~25 db.influx.4xlarge Influx IO
Included 3K

<5MM ~250,000 ~35 db.influx.4xlarge Influx IO
Included 12K

<10MM ~500,000 ~50 db.influx.8xlarge Influx IO
Included 12K

~10MM <750,000 <5100 db.influx
.12xlarge

Influx IO
Included 12K

Amazon Web Services Regions and Availability Zones

Amazon cloud computing resources are hosted in multiple locations world-wide. These locations
are composed of Amazon Web Services Regions and . Each Amazon Region is a separate geographic
area. Each Amazon Region has multiple, isolated locations known as Availability Zones.

Note

For information about finding the for an Amazon Region, see Regions and Zones in the
Amazon EC2 User Guide.

Regions and Availability Zones 1079

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/using-regions-availability-zones.html

Amazon Timestream Developer Guide

Amazon Timestream for InfluxDB enables you to place resources, such as DB instances, and data in
multiple locations.

Amazon operates state-of-the-art, highly-available data centers. Although rare, failures can occur
that affect the availability of DB instances that are in the same location. If you host all your DB
instances in one location that is affected by such a failure, none of your DB instances will be
available.

It is important to remember that each Amazon Region is completely independent. Any Amazon
Timestream for InfluxDB activity you initiate (for example, creating database instances or listing
available database instances) runs only in your current default Amazon Region. The default
Amazon Region can be changed in the console, or by setting the AWS_DEFAULT_REGION
environment variable. Or it can be overridden by using the --region parameter with the Amazon
Command Line Interface (Amazon CLI). For more information, see Configuring the Amazon
Command Line Interface, specifically the sections about environment variables and command line
options.

To create or work with an Amazon Timestream for InfluxDB DB instance in a specific Amazon
Region, use the corresponding regional service endpoint.

Regions and Availability Zones 1080

https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-getting-started.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-getting-started.html

Amazon Timestream Developer Guide

Amazon Region availability

The following table shows the Amazon Regions where Amazon Timestream for InfluxDB is
currently available and the endpoint for each Region.

Amazon Region
name

Region Endpoint Protocol

US East (N. Virginia) us-east-1 timestream-influxd
b.us-east-1.amazon
aws.com

HTTPS

US East (Ohio) us-east-2 timestream-influxd
b.us-east-2.amazon
aws.com

HTTPS

US West (Oregon) us-west-2 timestream-influxd
b.us-west-2.amazon
aws.com

HTTPS

Asia Pacific (Mumbai) ap-south-1 timestream-influxd
b.ap-south-1.amazo
naws.com

HTTPS

Asia Pacific (Singapor
e)

ap-southeast-1 timestream-influxd
b.ap-southeast-1.a
mazonaws.com

HTTPS

Asia Pacific (Sydney) ap-southeast-2 timestream-influxd
b.ap-southeast-2.a
mazonaws.com

HTTPS

Asia Pacific (Tokyo) ap-northeast-1 timestream-influxd
b.ap-northeast-1.a
mazonaws.com

HTTPS

Europe (Frankfurt) eu-central-1 timestream-influxd
b.eu-central-1.ama
zonaws.com

HTTPS

Regions availability 1081

Amazon Timestream Developer Guide

Amazon Region
name

Region Endpoint Protocol

Europe (Ireland) eu-west-1 timestream-influxd
b.eu-west-1.amazon
aws.com

HTTPS

Europe (Stockholm) eu-north-1 timestream-influxd
b.eu-north-1.amazo
naws.com

HTTPS

Canada (Central) ca-central-1 timestream-influxd
b.ca-central-1.ama
zonaws.com

HTTPS

Europe (London) eu-west-2 timestream-influxd
b.eu-west-2.amazon
aws.com

HTTPS

Europe (Paris) eu-west-3 timestream-influxd
b.eu-west-3.amazon
aws.com

HTTPS

Asia Pacific (Jakarta) ap-southeast-3 timestream-influxd
b.ap-southeast-3.a
mazonaws.com

HTTPS

Europe (Milan) eu-south-1 timestream-influxd
b.eu-south-1.amazo
naws.com

HTTPS

Europe (Spain) eu-south-2 timestream-influxd
b.eu-south-2.amazo
naws.com

HTTPS

Middle East (UAE) me-central-1 timestream-influxd
b.me-central-1.ama
zonaws.com

HTTPS

Regions availability 1082

Amazon Timestream Developer Guide

Amazon Region
name

Region Endpoint Protocol

China (Beijing) cn-north-1 timestream-influxd
b.cn-north-1.on.am
azonwebservices.co
m.cn

HTTPS

China (Ningxia) cn-northwest-1 timestream-influxd
b.cn-northwest-1.o
n.amazonwebservice
s.com.cn

HTTPS

For more information on Amazon Regions where Amazon Timestream for InfluxDB is currently
available and the endpoint for each Region, see Amazon Timestream endpoints and quotas.

Amazon Regions design

Each Amazon Region is designed to be isolated from the other Amazon Regions. This design
achieves the greatest possible fault tolerance and stability.

When you view your resources, you see only the resources that are tied to the Amazon Region
that you specified. This is because Amazon Regions are isolated from each other, and we don't
automatically replicate resources across Amazon Regions.

Amazon Availability Zones

When you create a DB instance, Amazon Timestream for InfluxDB choose one for you randomly
based on your subnet configuration. An Availability Zone is represented by an Amazon Region code
followed by a letter identifier (for example, us-east-1a).

Use the describe-availability-zones Amazon EC2 command as follows to describe the within
the specified Region that are enabled for your account.

aws ec2 describe-availability-zones --region region-name

For example, to describe the within the US East (N. Virginia) Region (us-east-1) that are enabled for
your account, run the following command:

Regions design 1083

https://docs.amazonaws.cn/general/latest/gr/timestream.html

Amazon Timestream Developer Guide

aws ec2 describe-availability-zones --region us-east-1

You can't choose the for the primary and secondary DB instances in a Multi-AZ DB deployment.
Amazon Timestream for InfluxDB chooses them for you randomly. For more information about
Multi-AZ deployments, see Configuring and managing a multi-AZ deployment.

DB Instance billing for Amazon Timestream for InfluxDB

Amazon Timestream for InfluxDB instances are billed based on the following components:

• DB instance hours (per hour) — Based on the DB instance class of the DB instance, for example,
db.influx.large. Pricing is listed on a per-hour basis, but bills are calculated down to the second
and show times in decimal form. Amazon Timestream for InfluxDB usage is billed in 1-second
increments, with a minimum of 10 minutes. For more information, see DB instance classesDB
instance classes.

• Storage (per GiB per month) — Storage capacity that you have provisioned to your DB instance.
For more information, see InfluxDB instance storage.

• Data transfer (per GB) — Data transfer in and out of your DB instance from or to the internet
and other Amazon Regions.

For Amazon Timestream for InfluxDB pricing information, see the Amazon Timestream for InfluxDB
pricing page.

Setting up Amazon Timestream for InfluxDB

Before you use Amazon Timestream for InfluxDB for the first time, complete the following tasks:

If you already have an Amazon account, know your Amazon Timestream for InfluxDB requirements,
and prefer to use the defaults for IAM and Amazon VPC Getting started with Timestream for
InfluxDB.

Sign up for an Amazon account

If you do not have an Amazon account, complete the following steps to create one.

To sign up for an Amazon account

• Go to the Amazon sign in page.

Billing 1084

https://www.amazonaws.cn/timestream/pricing/
https://www.amazonaws.cn/timestream/pricing/
https://portal.amazonaws.cn/billing/signup

Amazon Timestream Developer Guide

• Choose Create a new accountand the follow the instructions.

Note

Part of the sign-up procedure involves receiving a phone call and entering a verification
code on the phone keypad.

When you sign up for an Amazon account, an Amazon account root user is created. The root user
has access to all Amazon services and resources in the account. As a security best practice, assign
administrative access to an administrative user, and use only the root user to perform tasks that
require root user access.

Amazon sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

User management

Create an administrative user

Create an administrative user

After you sign up for an Amazon account, create an administrative user so that you don't use the
root user for everyday tasks.

Secure your Amazon account root user

Sign in to the Amazon Web Services Management Console as the account owner by choosing Root
user and entering your Amazon account email address. On the next page, enter your password. For
help signing in by using root user, see Signing in as the root user in the Amazon Sign-In User Guide

Turn on multi-factor authentication (MFA) for your root user. For instructions, see Enable a virtual
MFA device for your Amazon account root user (console) in the IAM User Guide.

Grant programmatic access

Users need programmatic access if they want to interact with Amazon outside of the Amazon Web
Services Management Console. The way to grant programmatic access depends on the type of user
that's accessing Amazon.

Setting up 1085

https://aws.amazon.com/
https://docs.amazonaws.cn/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-root
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-root

Amazon Timestream Developer Guide

To grant users programmatic access, choose one of the following options:

Which user needs
programmatic access?

To By

Workforce identity(Users
managed in IAM Identity
Center)

Use temporary credentials to
sign programmatic requests
to the Amazon CLI, Amazon
SDKs, or Amazon APIs.

Following the instructions for
the interface that you want to
use.

For the Amazon CLI, see
Configuring IAM Identity
Center authentication with
the Amazon CLI in the
Amazon Command Line
Interface User Guide.

For Amazon SDKs, tools, and
Amazon APIs, see Using IAM
Identity Center to authentic
ate Amazon SDK and tools in
the Amazon SDKs and Tools
Reference Guide.

IAM Use temporary credentials to
sign programmatic requests
to the Amazon CLI, SDKs, and
APIs.

Following the instructions in
Use temporary credentials
with Amazon resources in the
Amazon Identity and Access
Management User Guide.

IAM (Not recommended) Use
long-term credentials to sign
programmatic requests to the
Amazon CLI, SDKs, and APIs.

Following the instructions for
the interface that you want to
use.

For the Amazon CLI, see
Authenticating using IAM user
credentials for the Amazon
CLI in the Amazon Command
Line Interface User Guide.

Setting up 1086

https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-sso.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-sso.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-sso.html
https://docs.amazonaws.cn/sdkref/latest/guide/access-sso.html
https://docs.amazonaws.cn/sdkref/latest/guide/access-sso.html
https://docs.amazonaws.cn/sdkref/latest/guide/access-sso.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-authentication-user.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-authentication-user.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-authentication-user.html

Amazon Timestream Developer Guide

Which user needs
programmatic access?

To By

For Amazon SDKs and tools,
see Using long-term credentia
ls to authenticate Amazon
SDKs and tools in the Amazon
SDKs and Tools Reference
Guide.

For Amazon APIs, see
Managing access keys for IAM
users in the Amazon Identity
and Access Management User
Guide.

Determine requirements

The basic building block of Amazon Timestream for InfluxDB is the DB instance. In a DB instance,
you create your buckets. A DB instance provides a network address called an endpoint. Your
applications use this endpoint to connect to your DB instance. You will also access your InfluxUI
using this same endpoint from your browser. When you create a DB instance, you specify details
like storage, memory, database engine and version, network configuration, and security. You
control network access to a DB instance through a security group.

Before you create a DB instance and a security group, you must know your DB instance and
network needs. Here are some important things to consider:

• Resource requirements — What are the memory and processor requirements for your
application or service? You use these settings to help you determine what DB instance class to
use. For specifications about DB instance classes, see DB instance classes.

• VPC and security group — Your DB instance will most likely be in a virtual private cloud (VPC).
To connect to your DB instance, you need to set up security group rules. These rules are set up
differently depending on what kind of VPC you use and how you use it. For example, you can use:
a default VPC or a user-defined VPC.

The following list describes the rules for each VPC option:

Determine requirements 1087

https://docs.amazonaws.cn/sdkref/latest/guide/access-iam-users.html
https://docs.amazonaws.cn/sdkref/latest/guide/access-iam-users.html
https://docs.amazonaws.cn/sdkref/latest/guide/access-iam-users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html

Amazon Timestream Developer Guide

• Default VPC — If your Amazon account has a default VPC in the current Amazon Region, that
VPC is configured to support DB instances. If you specify the default VPC when you create the
DB instance, make sure to create a VPC security group that authorizes connections from the
application or service to the Amazon Timestream for InfluxDB DB instance. Use the Security
Group option on the VPC console or the Amazon CLI to create VPC security groups. For more
information, see Step 3: Create a VPC security group.

• User-defined VPC — If you want to specify a user-defined VPC when you create a DB instance,
be aware of the following:

• Make sure to create a VPC security group that authorizes connections from the application or
service to the Amazon Timestream for InfluxDB DB instance. Use the Security Group option on
the VPC console or the Amazon CLI to create VPC security groups. For information, see Step 3:
Create a VPC security group.

• The VPC must meet certain requirements in order to host DB instances, such as having at
least two subnets, each in a separate Availability Zone. For information, see Amazon VPC and
Amazon Timestream for InfluxDB.

• High availability — Do you need failover support? On Amazon Timestream for InfluxDB, a Multi-
AZ deployment creates a primary DB instance and a secondary standby DB instance in another
Availability Zone for failover support. We recommend Multi-AZ deployments for production
workloads to maintain high availability. For development and test purposes, you can use a
deployment that isn't Multi-AZ. For more information, see Multi-AZ DB instance deployments.

• IAM policies — Does your Amazon account have policies that grant the permissions needed to
perform Amazon Timestream for InfluxDB operations? If you are connecting to Amazon using
IAM credentials, your IAM account must have IAM policies that grant the permissions required to
perform Amazon Timestream for InfluxDB control plane operations. For more information, see
Identity and Access Management for Amazon Timestream for InfluxDB.

• Open ports — What TCP/IP port does your database listen on? The firewalls at some companies
might block connections to the default port for your database engine. The default for
Timestream for InfluxDB is 8086.

• Amazon Region — What Amazon Region do you want your database in? Having your database
in close proximity to your application or web service can reduce network latency. For more
information, see Amazon Web Services Regions and Availability Zones .

• DB disk subsystem — What are your storage requirements? Amazon Timestream for InfluxDB
provides provides three configurations for it Influx IOPS Included storage type::

• Influx Io Included 3k IOPS (SSD)

Determine requirements 1088

https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/USER_VPC.WorkingWithRDSInstanceinaVPC.html#USER_VPC.CreateVPCSecurityGroup
https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/USER_VPC.WorkingWithRDSInstanceinaVPC.html#USER_VPC.CreateVPCSecurityGroup
https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/USER_VPC.WorkingWithRDSInstanceinaVPC.html#USER_VPC.CreateVPCSecurityGroup
https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/USER_VPC.html
https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/USER_VPC.html

Amazon Timestream Developer Guide

• Influx Io Included 12k IOPS (SSD)

• Influx Io Included 16k IOPS (SSD)

For more information on Amazon Timestream for InfluxDB storage, see Amazon Timestream for
InfluxDB DB instance storage. When you have the information you need to create the security
group and the DB instance, continue to the next step.

Provide access to your DB instance in your VPC by creating a security
group

VPC security groups provide access to DB instances in a VPC. They act as a firewall for the
associated DB instance, controlling both inbound and outbound traffic at the DB instance level. DB
instances are created by default with a firewall and a default security group that protect the DB
instance.

Before you can connect to your DB instance, you must add rules to a security group that enable you
to connect. Use your network and configuration information to create rules to allow access to your
DB instance.

For example, suppose that you have an application that accesses a database on your DB instance in
a VPC. In this case, you must add a custom TCP rule that specifies the port range and IP addresses
that your application uses to access the database. If you have an application on an Amazon EC2
instance, you can use the security group that you set up for the Amazon EC2 instance.

Creating a security group for VPC access

To create a VPC security group, sign in to the Amazon Web Services Management Console and
choose VPC.

Note

Make sure you are in the VPC console, not the Amazon Timesteam for InfluxDB console.

• In the upper-right corner of the Amazon Web Services Management Console, choose the
Amazon Region where you want to create your VPC security group and DB instance. In the list
of Amazon VPC resources for that Amazon Region, you should see at least one VPC and several
subnets. If you don't, you don't have a default VPC in that Amazon Region..

VPC access 1089

https://console.amazonaws.cn/vpc

Amazon Timestream Developer Guide

• In the navigation pane, choose Security Groups.

• Choose Create security group.

• Inn the Basic details section of the security group page, enter the Security group name and
Description. For VPC, choose the VPC thatyou want to create your DB instance in.

• In Inbound rules, choose Add rule.

• For Type, choose Custom TCP.

• For Source, choose a Security group name or enter the IP address range (CIDR value) from
where you access the DB instance. If you choose My IP, this allows access to the DB instance
from the IP address detected in your browser.

For Source, choose a security group name or type the IP address range (CIDR value) from where
you access the DB instance. If you choose My IP, this allows access to the DB instance from the IP
address detected in your browser.

• (Optional) In Outbound rules, add rules for outbound traffic. By default, all outbound traffic is
allowed.

• Choose Create security group.

You can use this VPC security group as the security group for your DB instance when you create it.

Note

If you use a default VPC, a default subnet group spanning all of the VPC's subnets is created
for you. When you create a DB instance, you can choose the default eiifccntf VPC and
choose default for DB Subnet Group.

After you have completed the setup requirements, you can create a DB instance using your
requirements and security group. To do so, follow the instructions in Creating a DB instance.

Getting started with Timestream for InfluxDB

In the following examples, you can find out how to create and connect to a DB instance using
Amazon Timestream for InfluxDB Service.

Getting started 1090

Amazon Timestream Developer Guide

Note

Before you can create or connect to a DB instance, make sure to complete the tasks in
Setting up Amazon Timestream for InfluxDB.

Topics

• Creating and connecting to a Timestream for InfluxDB instance

• Creating a new operator token for your InfluxDB instance

Creating and connecting to a Timestream for InfluxDB instance

This tutorial creates an Amazon EC2 instance and an Amazon Timestream for InfluxDB DB instance.
The tutorial shows you how to write data to the DB instance from the EC2 instance using the
Telegraf client. As a best practice, this tutorial creates a private DB instance in a virtual private
cloud (VPC). In most cases, other resources in the same VPC, such as EC2 instances, can access the
DB instance, but resources outside of the VPC can't access it.

After you complete the tutorial, there will be a public and private subnet in each Availability Zone
in your VPC. In one Availability Zone, the EC2 instance will be in the public subnet, and the DB
instance will be in the private subnet.

Note

There's no charge for creating an Amazon account. However, by completing this tutorial,
you might incur costs for the Amazon resources you use. You can delete these resources
after you complete the tutorial if they are no longer needed.

The following diagram shows the configuration when accessibility is public.

Creating and connecting to a Timestream for InfluxDB instance 1091

Amazon Timestream Developer Guide

Warning

We don't recommend using 0.0.0.0/0 for HTTP access, since you would make it possible
for all IP addresses to access your public InfluxDB instance via HTTP. This approach is not
acceptable even for a short time in a test environment. Authorize only a specific IP address
or range of addresses to access your InfluxDB instances using HTTP for web UI or API
access.

Creating and connecting to a Timestream for InfluxDB instance 1092

Amazon Timestream Developer Guide

This tutorial creates a DB instance running InfluxDB with the Amazon Web Services Management
Console. We will focus only on the DB instance size and DB instance identifier. We will use the
default settings for the other configuration options. The DB instance created by this example will
be private.

Other settings that you could configure include availability, security, and logging. To create a public
DB instance, you must choose to make your instance Publicly accessible on the Connectivity
configuration section. For information about creating DB instances, see Creating a DB instance.

If your instance is not publicly accessible, do the following:

• Create a host on the VPC of the instance through which you can tunnel traffic.

• Set up SSH tunneling to the instance. For more information, see Amazon EC2 instance port
forwarding with Amazon Systems Manager.

• In order for the certificate to work, add the following line to the /etc/hosts file of your client
machine: 127.0.0.1. This is the DNS address of your instance.

• Connect to your instance using the fully qualified domain name, for example, https://
<DNS>:8086.

Note

Localhost is unable to validate the certificate because localhost is not part of the
certificate SAN.

The following diagram shows the configuration when accessibility is private:

Creating and connecting to a Timestream for InfluxDB instance 1093

https://aws.amazon.com/blogs/mt/amazon-ec2-instance-port-forwarding-with-aws-systems-manager/
https://aws.amazon.com/blogs/mt/amazon-ec2-instance-port-forwarding-with-aws-systems-manager/

Amazon Timestream Developer Guide

Prerequisites

Before you begin, complete the steps in the following sections:

• Sign up for an Amazon account.

• Create an administrative user.

Step 1: Create an Amazon EC2 instance

Create an Amazon EC2 instance that you will use to connect to your database.

1. Sign in to the Amazon Web Services Management Console and open the Amazon EC2 console
at https://console.amazonaws.cn/ec2/.

2. In the upper-right corner of the Amazon Web Services Management Console, choose the
Amazon Region in which you want to create the EC2 instance.

3. Choose EC2 Dashboard, and then choose Launch instance.

4. When the Launch an instance page opens, choose the following settings:

Creating and connecting to a Timestream for InfluxDB instance 1094

https://console.amazonaws.cn/ec2/

Amazon Timestream Developer Guide

a. Under Name and tags, enter ec2-database-connect for Name.

b. Under Application and OS Images (Amazon Machine Image), choose Amazon Linux, and
then select Amazon Linux 2023 AMI. Keep the default selections for the other choices.

c. Under Instance type, choose t2.micro.

d. Under Key pair (login), choose a Key pair name to use an existing key pair. To create a
new key pair for the Amazon EC2 instance, choose Create new key pair and then use the
Create key pair window to create it. For more information about creating a new key pair,
see Create a key pair for your Amazon EC2 instance in the Amazon Elastic Compute Cloud
User Guide.

e. For Allow SSH traffic from in Network settings, choose the source of SSH connections
to the EC2 instance. You can choose My IP if the displayed IP address is correct for SSH
connections. Otherwise, you can determine the IP address to use to connect to EC2
instances in your VPC using Secure Shell (SSH). To determine your public IP address, in a
different browser window or tab, you can use the service at checkip.amazonaws.com/. An
example of an IP address is 192.0.2.1/32. In many cases, you might connect through an
internet service provider (ISP) or from behind your firewall without a static IP address. If
so, make sure to determine the range of IP addresses used by client computers.

Warning

We do not recommend using 0.0.0.0/0 for SSH access, since you would make it
possible for all IP addresses to access your public EC2 instances using SSH. This
approach is not acceptable even for a short time in a test environment. Authorize
only a specific IP address or range of addresses to access your EC2 instances using
SSH.

Step 2: Create an InfluxDB DB instance

The basic building block of Amazon Timestream for InfluxDB is the DB instance. This environment
is where you run your InfluxDB databases.

In this example, you will create a DB instance running the InfluxDB database engine with a
db.influx.large DB instance class.

Creating and connecting to a Timestream for InfluxDB instance 1095

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/create-key-pairs.html
https://checkip.amazonaws.com

Amazon Timestream Developer Guide

1. Sign in to the Amazon Web Services Management Console and open the Amazon Timestream
for InfluxDB console at https://console.aws.amazon.com/timestream/.

2. In the upper-right corner of the Amazon Timestream for InfluxDB console, choose the Amazon
Region in which you want to create the DB instance.

3. In the navigation pane, choose InfluxDB Databases.

4. Choose Create InfluxDB database.

5. In the Deployment settings section, select Cluster with read replicas. Choose View
subscription options to start a subscription for the read replica add-on. For more information,
see Read replica licensing through Amazon Web Services Marketplace.

6. In the Database credentials section, enter KronosTest-1 for DB cluster name.

7. Provide the InfluxDB basic configuration parameters: Initial username, Initial organization
name, Initial bucket name and Password.

Important

You won't be able to view the user password again. You won't be able to access your
instance and obtain an operator token without your password. If you don't record it,
you might have to change it. See Creating a new operator token for your InfluxDB
instance.
If you need to change the user password after the DB instance is available, you can
modify the DB instance to do so. For more information about modifying a DB instance,
see Updating DB instances.

Creating and connecting to a Timestream for InfluxDB instance 1096

https://console.amazonaws.cn/timestream/

Amazon Timestream Developer Guide

8. In the Instance configuration section, select the db.influx.large DB instance class.

9. In the Storage configuration section, select Influx IO Included (3K) for Storage type.

10. In the Connectivity configuration section, select IPv4 for the Network type. Make sure your
InfluxDB instance is in the same subnet as your newly created EC2 instance. Under Public
access, select Not publicly accessible to make your DB instance private.

Creating and connecting to a Timestream for InfluxDB instance 1097

Amazon Timestream Developer Guide

11. In the Failover settings and Parameter group settings sections, keep the default values.

12. Configure your logs in Log delivery settings and create tags (optional). For more information
about logs, see Setup to view InfluxDB logs on Timestream Influxdb Instances. For more details
about adding tags, see Adding tags and labels to resources.

13. Choose Create InfluxDB database.

14. In the Databases list, chose the name of your new InfluxDB instance to show its details. The DB
instance has a status of Creating until it is ready to use.

Creating and connecting to a Timestream for InfluxDB instance 1098

Amazon Timestream Developer Guide

You can connect to the DB instance when the status changes to Available. Depending on the DB
instance class and the amount of storage, it can take up to 20 minutes before the new instance is
available.

Important

At this time, you can't modify compute (instance types) and storage (storage types)
configurations of existing instances.

Step 3: Access the InfluxDB UI

To access the InfluxDB UI from a private Timestream for InfluxDB DB instance, you must connect
from within the same subnet and security group. One way to facilitate this connection is to create a
bastion host within the private subnet.

A bastion host is a special-purpose server that acts as a secure entry point to critical systems,
protecting your network from external access. It serves as a gateway between your secure internal
network and the outside world.

Note

For publicly accessible Timestream for InfluxDB DB instances, you can access the InfluxDB
UI via the InfluxDB UI button on the instance details page in the console. Note that this
button will be disabled for instances that are not publicly accessible.
If you have a public DB instance, connect to the InfluxDB UI via the console and proceed to
Step 4: Send Telegraf data to your InfluxDB instance.

Follow these steps to create and configure your bastion host:

Creating and connecting to a Timestream for InfluxDB instance 1099

Amazon Timestream Developer Guide

1. Create a bastion host: To create a bastion host, you can launch a new EC2 instance or use an
existing one. Ensure that the instance has the necessary network setup to access the security
group you used to create the private Timestream for InfluxDB instance you are trying to access.

2. Connect to the InfluxDB UI: Once you have created a bastion host, you can
use the endpoint displayed in the console to connect to the InfluxDB UI.
The endpoint will be in the format <db-identifier>-<*>.timestream-
influxdb.<region>.on.aws. In China, it will be <db-identifier>-<*>.timestream-
influxdb.<region>.on.amazonwebservices.com.cn.

3. Configure your bastion host for local forwarding: To set up local forwarding, use the Amazon
Systems Manager (SSM) session manager. Run the following command, replacing bastion-
ec2-instance-id with the ID of your bastion host instance, endpoint with the endpoint
displayed in the above console, and port-number with the port number you want to use:

aws ssm start-session --target bastion-ec2-instance-id \
--document-name AWS-StartPortForwardingSessionToRemoteHost \
--parameters '{"host":["endpoint"], "portNumber":["port-number"],
 "localPortNumber":["port-number"]}'

You may be prompted to install the SessionManagerPlugin. For more details, see Install the
Session Manager plugin for the Amazon CLI.

4. Access the InfluxDB UI: After completing the above steps, you can access the InfluxDB UI at
http://localhost:port-number. You will need to acknowledge the "not secure" message.

5. Enable domain name validation: To enable domain name validation, add the following
line to your /etc/hosts file (Linux), /private/etc/hosts (Mac), or C:\Windows
\System32\drivers\etc (Windows).

127.0.0.1 endpoint

6. You can now access the InfluxDB UI using https://endpoint:port-number.

Step 4: Send Telegraf data to your InfluxDB instance

You can now start sending telemetry data to your InfluxDB DB instance using the Telegraf agent.
In this example, you'll install and configure a Telegraf agent to send performance metrics to you
InfluxDB DB instance.

Creating and connecting to a Timestream for InfluxDB instance 1100

https://docs.amazonaws.cn/systems-manager/latest/userguide/session-manager-working-with-install-plugin.html
https://docs.amazonaws.cn/systems-manager/latest/userguide/session-manager-working-with-install-plugin.html

Amazon Timestream Developer Guide

1. After you connect to the InfluxDB UI, you should see a new browser window with a login
prompt. Enter the credentials you used earlier to create your InfluxDB DB instance.

2. In the left navigation pane, click on the arrow icon and select API Tokens.

3. For this test, choose Generate API Token. Select All Access API Token from the dropdown list.

Note

For production scenarios, we recommend creating tokens with specific access to the
required buckets that are built for specific Telegraf needs.

4. Your token will appear on the screen.

Important

Make sure to copy and save the token since it will not be displayed again.

5. Connect to the EC2 instance that you created earlier by following the steps in Connect to your
Linux instance using SSH in the Amazon Elastic Compute Cloud User Guide.

Creating and connecting to a Timestream for InfluxDB instance 1101

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/connect-to-linux-instance.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/connect-to-linux-instance.html

Amazon Timestream Developer Guide

We recommend that you connect to your EC2 instance using SSH. If the SSH client utility
is installed on Windows, Linux, or Mac, you can connect to the instance using the following
command format:

ssh -i location_of_pem_file ec2-user@ec2-instance-public-dns-name

For example, assume that ec2-database-connect-key-pair.pem is
stored in /dir1 on Linux, and the public IPv4 DNS for your EC2 instance is
ec2-12-345-678-90.compute-1.amazonaws.com. Your SSH command would look as
follows:

ssh -i /dir1/ec2-database-connect-key-pair.pem ec2-
user@ec2-12-345-678-90.compute-1.amazonaws.com

6. Get the latest version of Telegraf installed on your instance. To do this, use the following
command:

cat <<EOF | sudo tee /etc/yum.repos.d/influxdata.repo
[influxdata]
name = InfluxData Repository - Stable
baseurl = https://repos.influxdata.com/stable/\$basearch/main
enabled = 1
gpgcheck = 1
gpgkey = https://repos.influxdata.com/influxdata-archive_compat.key
EOF

sudo yum install telegraf

7. Configure your Telegraf instance.

Note

If telegraf.conf does not exist or it does not contain a timestream section, you can
generate one with:

telegraf —section-filter agent:inputs:outputs —input-filter cpu:mem —output-
filter timestream config > telegraf.conf

Creating and connecting to a Timestream for InfluxDB instance 1102

Amazon Timestream Developer Guide

a. Edit the configuration file usually located at /etc/telegraf.

sudo nano /etc/telegraf/telegraf.conf

b. Configure the input plugins for CPUs, memory metrics, and disk usage.

[[inputs.cpu]]
 percpu = true
 totalcpu = true
 collect_cpu_time = false
 report_active = false

[[inputs.mem]]

[[inputs.disk]]
 ignore_fs = ["tmpfs", "devtmpfs", "devfs"]

c. Configure the output plugin to send data to your InfluxDB DB instance and save your
changes.

[[outputs.influxdb_v2]]
 urls = ["https://us-west-2-1.aws.cloud2.influxdata.com"]
 token = "<your_telegraf_token"
 organization = "your_org"
 bucket = "your_bucket"
 timeout = "5s"

d. Configure the Timestream target.

Configuration for sending metrics to Amazon Timestream.
[[outputs.timestream]]

 ## Amazon Region and credentials
 region = "us-east-1"
 access_key = "<AWS key here>"
 secret_key = "<AWS secret key here>"
 database_name = "<timestream database name>" # needs to exist

 ## Specifies if the plugin should describe on start.
 describe_database_on_start = false
 mapping_mode = "multi-table" # allows multiple tables for each input metrics

Creating and connecting to a Timestream for InfluxDB instance 1103

Amazon Timestream Developer Guide

 create_table_if_not_exists = true
 create_table_magnetic_store_retention_period_in_days = 365
 create_table_memory_store_retention_period_in_hours = 24

 use_multi_measure_records = true # Important to use multi-measure records
 measure_name_for_multi_measure_records = "telegraf_measure"
 max_write_go_routines = 25

8. Enable and start the Telegraf service.

$ sudo systemctl enable telegraf
$ sudo systemctl start telegraf

Step 5: Delete the Amazon EC2 instance and the InfluxDB DB instance

After you explore the Telegraf-generated data using your your InfluxDB DB instance with the
InfluxDB UI, delete both your EC2 and your InfluxDB DB instances so you are no longer charged for
them.

To delete the EC2 instance:

1. Sign in to the Amazon Web Services Management Console and open the Amazon EC2 console
at https://console.amazonaws.cn/ec2/.

2. In the navigation pane, choose Instances.

3. Select the checkbox next to the EC2 instance's name, and then select Instance state. Choose
Terminate (delete) instance.

4. Choose Terminate (delete) when prompted for confirmation.

For more information about deleting an EC2 instance, see Terminate Amazon EC2 instances in the
Amazon Elastic Compute Cloud User Guide.

To delete the DB instance with no final DB snapshot:

1. Sign in to the Amazon Web Services Management Console and open the Amazon Timestream
for InfluxDB console at https://console.aws.amazon.com/timestream/.

2. In the navigation pane, choose InfluxDB databases.

3. Select the DB instance you want to delete. Choose Delete

Creating and connecting to a Timestream for InfluxDB instance 1104

https://console.amazonaws.cn/ec2/
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/terminating-instances.html
https://console.amazonaws.cn/timestream/

Amazon Timestream Developer Guide

4. Confirm the deletion and choose Delete.

Creating a new operator token for your InfluxDB instance

If you need to get the Operator Token for your new InfluxDB instance, perform the following steps:

1. To change your operator token, we recommend using the Influx CLI. For instructions, please
see: Install and use the Influx CLI.

2. Configure your CLI to use --username-password to be able to create the operator:

influx config create --config-name CONFIG_NAME1 --host-url "https://
yourinstanceid.eu-central-1.timestream-influxdb.amazonaws.com:8086" --org [YOURORG]
 --username-password [YOURUSERNAME] --active

3. Create your new operator token. You will be asked for your password to confirm this step.

influx auth create --org [YOURORG] --operator

Important

Once a new operator token has been created, you will need to update any client that is
currently using the old one.

Migrating data from self-managed InfluxDB to Timestream for
InfluxDB

The Influx migration script is a Python script that migrates data between InfluxDB OSS instances,
whether those instances are managed by Amazon or not.

InfluxDB is a time series database. InfluxDB contains points, which contain a number of key-value
pairs and a timestamp. When points are grouped by key-value pairs, they form a series. A series
is grouped by a string identifier called a measurement. InfluxDB is often used for operations
monitoring, IOT data, and analytics. A bucket is a kind of container within InfluxDB to store data.
Amazon-managed InfluxDB is InfluxDB within the Amazon ecosystem. InfluxDB provides the
InfluxDB v2 API for accessing data and making changes to the database. The InfluxDB v2 API is
what the Influx migration script uses to migrate data.

Creating a new operator token for your InfluxDB instance 1105

https://docs.influxdata.com/influxdb/v2/tools/influx-cli/
https://github.com/awslabs/amazon-timestream-tools/tree/mainline/tools/python/influx-migration

Amazon Timestream Developer Guide

• The Influx migration script can migrate buckets and their metadata, migrate all buckets from all
organizations, or do a full migration, which replaces all data on the destination instance.

• The script backups data from the source instance locally, on whatever system executes the script,
then restores the data to the destination instance. The data is kept in code>influxdb-backup-
<timestamp></timestamp> directories, one for each migration.

• The script provides a number of options and configurations including mounting S3 buckets
to limit local storage usage during migration and choosing which organizations to use during
migration.

Topics

• Preparation

• How to use scripts

• Migration Overview

Preparation

Data migration for InfluxDB is accomplished with a Python script that utilizes InfluxDB CLI features
and the InfluxDB v2 API. Execution of the migration script requires the following environment
configuration:

• Supported Versions: A minimum version of 2.3 of InfluxDB and Influx CLI is supported.

• Token Environment Variables

• Create the environment variable INFLUX_SRC_TOKEN containing the token for your source
InfluxDB instance.

• Create the environment variable INFLUX_DEST_TOKEN containing the token for your
destination InfluxDB instance.

• Python 3

• Check installation: python3 --version.

• If not installed, install from the Python website. Minimum version 3.7 required. On Windows
the default Python 3 alias is simply python.

• The Python module requests is required. Install it with: shell python3 -m pip install
requests

• TThe Python module influxdb_client is required. Install it with: shell python3 -m pip
install influxdb_client

Preparation 1106

Amazon Timestream Developer Guide

• InfluxDB CLI

• Confirm installation: influx version.

• If not installed, follow the installation guide in the InfluxDB documentation.

Add influx to your $PATH.

• S3 Mounting Tools (Optional)

When S3 mounting is used, all backup files are stored in a user-defined S3 bucket. S3 mounting
can be useful to save space on the executing machine or when backup files need to be shared.
If S3 mounting isn't used, by omitting the --s3-bucket option, then a local influxdb-
backup-<millisecond timestamp> directory will be created to store backup files in the
same directory that the script was run.

For Linux: mountpoint-s3.

For Windows: rclone (Prior rclone configuration is needed).

• Disk Space

• The migration process automatically creates unique directories to store sets of backup files
and retains these backup directories in either S3 or on the local filesystem, depending on the
program arguments provided.

• Ensure there is enough disk space for database backup, ideally double the size of the existing
InfluxDB database if you choose to omit the --s3-bucket option and use local storage for
backup and restoration.

• Check space with df -h (UNIX/Linux) or by checking drive properties on Windows.

• Direct Connection

Ensure a direct network connection exists between the system running the migration script and
the source and destination systems. influx ping --host <host> is one way to verify a
direct connection.

How to use scripts

A simple example of running the script is the command:

python3 influx_migration.py --src-host <source host> --src-bucket <source bucket> --
dest-host <destination host>

How to use scripts 1107

https://docs.influxdata.com/influxdb/cloud/tools/influx-cli/#install-the-influx-cli
https://github.com/awslabs/mountpoint-s3
https://rclone.org/

Amazon Timestream Developer Guide

Which migrates a single bucket.

All options can be viewed by running:

python3 influx_migration.py -h

Usage

shell influx_migration.py [-h] [--src-bucket SRC_BUCKET] [--dest-bucket DEST_BUCKET]
 [--src-host SRC_HOST] --dest-host DEST_HOST [--full] [--confirm-full] [--src-org
 SRC_ORG] [--dest-org DEST_ORG] [--csv] [--retry-restore-dir RETRY_RESTORE_DIR] [--dir-
name DIR_NAME] [--log-level LOG_LEVEL] [--skip-verify] [--s3-bucket S3_BUCKET]

Options

• -confirm-full (optional): Using --full without --csv will replace all tokens, users, buckets,
dashboards, and any other key-value data in the destination database with the tokens, users,
buckets, dashboards, and any other key-value data in the source database. --full with --csv
only migrates all bucket and bucket metadata, including bucket organizations. This option (--
confirm-full) will confirm a full migration and proceed without user input. If this option is not
provided, and --full has been provided and --csv not provided, then the script will pause for
execution and wait for user confirmation. This is a critical action, proceed with caution. Defaults
to false.

• -csv (optional): Whether to use csv files for backing up and restoring. If --full is passed as well
then all user-defined buckets in all organizations will be migrated, not system buckets, users,
tokens, or dashboards. If a singular organization is desired for all buckets in the destination
server instead of their already-existing source organizations, use --dest-org.

• -dest-bucket DEST_BUCKET (optional): The name of the InfluxDB bucket in the destination
server, must not be an already existing bucket. Defaults to value of --src-bucket or None if --
src-bucket not provided.

• -dest-host DEST_HOST: The host for the destination server. Example: http://localhost:8086.

• -dest-org DEST_ORG (optional): The name of the organization to restore buckets to in the
destination server. If this is omitted, then all migrated buckets from the source server will
retain their original organization and migrated buckets may not be visible in the destination
server without creating and switching organizations. This value will be used in all forms of
restoration whether a single bucket, a full migration, or any migration using csv files for backup
and restoration.

How to use scripts 1108

Amazon Timestream Developer Guide

• -dir-name DIR_NAME (optional): The name of the backup directory to create. Defaults to
influxdb-backup-<timestamp>. Must not already exist.

• -full (optional): Whether to perform a full restore, replacing all data on destination server with
all data from source server from all organizations, including all key-value data such as tokens,
dashboards, users, etc. Overrides --src-bucket and --dest-bucket. If used with --csv, only
migrates data and metadata of buckets. Defaults to false.

• h, --help: Shows help message and exits.

• -log-level LOG_LEVEL(optional): The log level to be used during execution. Options are debug,
error, and info. Defaults to info.

• -retry-restore-dir RETRY_RESTORE_DIR(optional): Directory to use for restoration when a
previous restore failed, will skip backup and directory creation, will fail if the directory doesn't
exist, can be a directory within an S3 bucket. If a restoration fails, the backup directory path that
can be used for restoration will be indicated relative to the current directory. S3 buckets will be
in the form influxdb-backups/<s3 bucket>/<backup directory>. The default backup
directory name is influxdb-backup-<timestamp>.

• -s3-bucket S3_BUCKET(optional): The name of the S3 bucket to use to store backup files.
On Linux this is simply the name of the S3 bucket, such as amzn-s3-demo-bucket1, given
AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment variables have been set
or ${HOME}/.aws/credentials exists. On Windows, this is the rclone configured remote
and bucket name, such as my-remote:amzn-s3-demo-bucket1. All backup files will be left
in the S3 bucket after migration in a created influxdb-backups-<timestamp> directory.
A temporary mount directory named influx-backups will be created in the directory from
where this script is ran. If not provided, then all backup files will be stored locally in a created
influxdb-backups-<timestamp> directory from where this script is run.

• -skip-verify(optional): Skip TLS certificate verification.

• -src-bucket SRC_BUCKET(optional): The name of the InfluxDB bucket in the source server. If not
provided, then --full must be provided.

• -src-host SRC_HOST(optional): The host for the source server. Defaults to http://localhost:8086.

As noted previously, mountpoint-s3 and rclone are needed if --s3-bucket is to be used, but
can be ignored if the user doesn't provide a value for --s3-bucket, in which case backup files will
be stored in a unique directory locally.

How to use scripts 1109

Amazon Timestream Developer Guide

Migration Overview

After meeting the prerequisites:

1. Run Migration Script: Using a terminal app of your choice, run the Python script to transfer
data from the source InfluxDB instance to the destination InfluxDB instance.

2. Provide Credentials: Provide host addresses and ports as CLI options.

3. Verify Data: Ensure the data is correctly transferred by:

a. Using the InfluxDB UI and inspecting buckets.

b. Listing buckets with influx bucket list -t <destination token> --host
<destination host address> --skip-verify.

c. Using influx v1 shell -t <destination token> --host <destination
host address> --skip-verify and running SELECT * FROM <migrated
bucket>.<retention period>.<measurement name> LIMIT 100 to
view contents of a bucket or SELECT COUNT(*) FROM <migrated
bucket>.<retention period>.<measurment name> to verify the correct number of
records have been migrated.

Example Example run

1. Open a terminal app of your choice and make sure the required prerequisites are properly
installed:

2. Navigate to the migration script:

Migration Overview 1110

Amazon Timestream Developer Guide

3. Prepare the following information:

a. Name of the source bucket to be migrated.

b. (Optional) Choose a new bucket name for the migrated bucket in the destination server.

c. Root token for source and destination influx instances.

d. Host address of source and destination influx instances.

e. (Optional) S3 bucket name and credentials; Amazon Command Line Interface credentials
should be set in the OS environment variables.

AWS credentials (for timestream testing)
 export AWS_ACCESS_KEY_ID="xxx"
 export AWS_SECRET_ACCESS_KEY="xxx"

f. Construct the command as:

python3 influx_migration.py --src-bucket [amzn-s3-demo-source-bucket] --dest-
bucket [amzn-s3-demo-destination-bucket] --src-host [source host] --dest-host
 [dest host] --s3-bucket [amzn-s3-demo-bucket2](optional) --log-level debug

g. Execute the script:

h. Wait for the script to finish executing.

i. Check the newly migrated bucket for data integrity, performance.txt. This file, located
under the same directory where the script was run, contains some basic information on
how long each step took.

Migration scenarios

Example Example 1: Simple Migration Using Local Storage

You want to migrate a single bucket, amzn-s3-demo-primary-bucket, from the source server
(http://localhost:8086) to a destination server (http://dest-server-address:8086).
Migration Overview 1111

Amazon Timestream Developer Guide

After ensuring you have TCP access (for HTTP access) to both machines hosting the InfluxDB
instances on port 8086 and you have both source and destination tokens and have stored them as
the environment variables INFLUX_SRC_TOKEN and INFLUX_DEST_TOKEN, respectively, for added
security:

python3 influx_migration.py --src-bucket amzn-s3-demo-primary-bucket --src-host http://
localhost:8086 --dest-host http://dest-server-address:8086

The output should look similar to the following:

INFO: influx_migration.py: Backing up bucket data and metadata using the InfluxDB CLI
2023/10/26 10:47:15 INFO: Downloading metadata snapshot
2023/10/26 10:47:15 INFO: Backing up TSM for shard 1
2023/10/26 10:47:15 INFO: Backing up TSM for shard 8245
2023/10/26 10:47:15 INFO: Backing up TSM for shard 8263
[More shard backups . . .]
2023/10/26 10:47:20 INFO: Backing up TSM for shard 8240
2023/10/26 10:47:20 INFO: Backing up TSM for shard 8268
2023/10/26 10:47:20 INFO: Backing up TSM for shard 2
INFO: influx_migration.py: Restoring bucket data and metadata using the InfluxDB CLI
2023/10/26 10:47:20 INFO: Restoring bucket "96c11c8876b3c016" as "amzn-s3-demo-primary-
bucket"
2023/10/26 10:47:21 INFO: Restoring TSM snapshot for shard 12772
2023/10/26 10:47:22 INFO: Restoring TSM snapshot for shard 12773
[More shard restores . . .]
2023/10/26 10:47:28 INFO: Restoring TSM snapshot for shard 12825
2023/10/26 10:47:28 INFO: Restoring TSM snapshot for shard 12826
INFO: influx_migration.py: Migration complete

The directory influxdb-backup-<timestamp> will be created and stored in the directory from
where the script was run, containing backup files.

Example Example 2: Full Migration Using Local Storage and Debug Logging

Same as above except you want to migrate all buckets, tokens, users, and dashboards, deleting
the buckets in the destination server, and proceeding without user confirmation of a complete
database migration by using the --confirm-full option. You also want to see what the
performance measurements are so you enable debug logging.

Migration Overview 1112

Amazon Timestream Developer Guide

python3 influx_migration.py --full --confirm-full --src-host http://localhost:8086 --
dest-host http://dest-server-address:8086 --log-level debug

The output should look similar to the following:

INFO: influx_migration.py: Backing up bucket data and metadata using the InfluxDB CLI
2023/10/26 10:55:27 INFO: Downloading metadata snapshot
2023/10/26 10:55:27 INFO: Backing up TSM for shard 6952
2023/10/26 10:55:27 INFO: Backing up TSM for shard 6953
[More shard backups . . .]
2023/10/26 10:55:36 INFO: Backing up TSM for shard 8268
2023/10/26 10:55:36 INFO: Backing up TSM for shard 2
DEBUG: influx_migration.py: backup started at 2023-10-26 10:55:27 and took 9.41 seconds
 to run.
INFO: influx_migration.py: Restoring bucket data and metadata using the InfluxDB CLI
2023/10/26 10:55:36 INFO: Restoring KV snapshot
2023/10/26 10:55:38 WARN: Restoring KV snapshot overwrote the operator token, ensure
 following commands use the correct token
2023/10/26 10:55:38 INFO: Restoring SQL snapshot
2023/10/26 10:55:39 INFO: Restoring TSM snapshot for shard 6952
2023/10/26 10:55:39 INFO: Restoring TSM snapshot for shard 6953
[More shard restores . . .]
2023/10/26 10:55:49 INFO: Restoring TSM snapshot for shard 8268
2023/10/26 10:55:49 INFO: Restoring TSM snapshot for shard 2
DEBUG: influx_migration.py: restore started at 2023-10-26 10:55:36 and took 13.51
 seconds to run.
INFO: influx_migration.py: Migration complete

Example Example 3: Full Migration Using CSV, Destination Organization, and S3 Bucket

Same as the previous example but using Linux or Mac and storing the files in the S3 bucket, amzn-
s3-demo-bucket. This avoids backup files overloading the local storage capacity.

python3 influx_migration.py --full --src-host http://localhost:8086 --dest-host http://
dest-server-address:8086 --csv --dest-org MyOrg --s3-bucket amzn-s3-demo-bucket

The output should look similar to the following:

INFO: influx_migration.py: Creating directory influxdb-backups
INFO: influx_migration.py: Mounting amzn-s3-demo-influxdb-migration-bucket

Migration Overview 1113

Amazon Timestream Developer Guide

INFO: influx_migration.py: Creating directory influxdb-backups/amzn-s3-demo-bucket/
influxdb-backup-1698352128323
INFO: influx_migration.py: Backing up bucket data and metadata using the InfluxDB v2
 API
INFO: influx_migration.py: Restoring bucket data and metadata from csv
INFO: influx_migration.py: Restoring bucket amzn-s3-demo-some-bucket
INFO: influx_migration.py: Restoring bucket amzn-s3-demo-another-bucket
INFO: influx_migration.py: Restoring bucket amzn-s3-demo-primary-bucket
INFO: influx_migration.py: Migration complete
INFO: influx_migration.py: Unmounting influxdb-backups
INFO: influx_migration.py: Removing temporary mount directory

Configuring a DB instance

This section shows how to set up your Amazon Timestream for InfluxDB DB instance. Before
creating a DB instance, decide on the DB instance class that will run the DB instance. Also, decide
where the DB instance will run by choosing an Amazon Region. Next, create the DB instance.

You can configure a DB instance with a DB parameter group.A DB parameter group acts as a
container for engine configuration values that are applied to one or more DB instances.

The parameters that are available depend on the DB engine and DB engine version. You can specify
a DB parameter group when you create a DB instance. You can also modify a DB instance to specify
them.

Important

At this time, you can't modify compute (Instance types) and Storage (Storage Types)
configuration of existing instances.

Creating a DB instance

Using the console

1. Sign in to the Amazon Web Services Management Console and open Amazon Timestream for
InfluxDB.

2. In the upper-right corner of the Amazon Timestream for InfluxDB console, choose the Amazon
Region in which you want to create the DB instance.

Configuring a DB instance 1114

https://console.amazonaws.cn/timestream/
https://console.amazonaws.cn/timestream/

Amazon Timestream Developer Guide

3. In the navigation pane, choose InfluxDB Databases.

4. Choose Create Influx database.

5. For DB Instance Identifier. enter a name that will identify your instance.

6. Provide the InfluxDB basic configuration parameters User Name, Organization, Bucket Name
and Password.

Important

Your user name, organization, bucket name and password will be stored as a secret in
Amazon Secrets Manager that will be created for your account.

If you need to change the user password after the DB instance is available, you can modify
using the Influx CLI.

7.

8. For DB Instance Class, select an instance size that better fit your workload needs.

9. For DB Storage Class, select a storage class that fits your need. In all cases, you will only need
to configure the allocated storage.

10. In the Connectivity configuration section, make sure your InfluxDB instance is in the same
subnet as your new the clients that require connectivity to your Timestream for InfluxDB DB
instance. You could also chose to make your DB instance publicly available.

11. Choose Create Influx database.

12. In the Databases list, choose the name of your new InfluxDB instance to show its details. The
DB Instance has a status of Creating until is ready to use.

13. When the status changes to Available, you can connect to the DB instance. Depending on
the DB instance class and the amount of storage, it can take up to 20 minutes before the new
instance is available.

Using the CLI

To create a DB instance by using the Amazon Command Line Interface, call the create-db-
instance command with the following parameters:

--name
--vpc-subnet-ids

Creating a DB instance 1115

https://docs.influxdata.com/influxdb/v2/admin/users/change-password/

Amazon Timestream Developer Guide

--vpc-security-group-ids
--db-instance-type
--db-storage-type
--username
--organization
--password
--allocated-storage

For information about each setting, see Settings for DB instances.

Example Example: Using default engine configs

For Linux, macOS, or Unix:

aws timestream-influxdb create-db-instance \
 --name myinfluxDbinstance \
 --allocated-storage 400 \
 --db-instance-type db.influx.4xlarge \
 --vpc-subnet-ids subnetid1 subnetid2
 --vpc-security-group-ids mysecuritygroup \
 --username masterawsuser \
 --password \
 --db-storage-type InfluxIOIncludedT2

For Windows:

aws timestream-influxdb create-db-instance \
 --name myinfluxDbinstance \
 --allocated-storage 400 \
 --db-instance-type db.influx.4xlarge \
 --vpc-subnet-ids subnetid1 subnetid2
 --vpc-security-group-ids mysecuritygroup \
 --username masterawsuser \
 --password \
 --db-storage-type InfluxIOIncludedT2

Using the API

To create a DB instance by using the Amazon Command Line Interface, call the
CreateDBInstance command with the following parameters:

For information about each setting, see Settings for DB instances.

Creating a DB instance 1116

Amazon Timestream Developer Guide

Important

Part of the DBInstance response object you receive an influxAuthParametersSecretArn.
This will hold an ARN to a SecretsManager secret in your account. It will only be populated
after your InfluxDB DB instances is available. The secret contains influx authentication
parameters provided during the CreateDbInstance process. This is a READONLY copy as
any updates/modifications/deletions to this secret doesn't impact the created DB instance.
If you delete this secret, our API response will still refer to the deleted secret ARN.

Once you have finished creating your Timestream for InfluxDB DB instance, we recommend you
download, install and configure the Influx CLI.

The influx CLI provides a simple way to interact with InfluxDB from a command line. For detailed
installation and setup instructions, see Use the Influx CLI.

Settings for DB instances

You can create a DB instance using the console, the create-db-instance CLI command, or the
CreateDBInstance Timestream for InfluxDB API operation.

The following table provides details about settings that you choose when you create a DB instance.

Console Setting Description CLI option and
Timestream API
parameter

Allocated storage The amount of storage to allocate for your DB
instance (in gibibytes). In some cases, allocating a
higher amount of storage for your DB instance than
the size of your database can improve I/O performan
ce.

For more information, see InfluxDB instance storage.

CLI: allocated
-storage

API: allocated
storage

Bucket Name A name for the bucket to initialize the InfluxDb
instance

CLI: bucket

API: bucket

Settings for DB instances 1117

https://docs.influxdata.com/influxdb/v2/tools/influx-cli/

Amazon Timestream Developer Guide

Console Setting Description CLI option and
Timestream API
parameter

DB instance type The configuration for your DB instance. For example,
a db.influx.large DB instance class has 16 GiB
memory, 2 vCPUs, memory optimized.

If possible, choose a DB instance type large enough
that a typical query working set can be held in
memory. When working sets are held in memory,
the system can avoid writing to disk, which improves
performance. For more information, see DB instance
class types.

CLI: db-instan
ce-type

API: Dbinstanc
etype

DB instance
identifier

The name for your DB instance. Name your DB
instances in the same way that you name your on-
premises servers. Your DB instance identifier can
contain up to 63 alphanumeric characters, and must
be unique for your account in the Amazon Region
you chose.

CLI: db-instan
ce-identi
fier

API: Dbinstanc
eidentifier

DB parameter
group

A parameter group for your DB instance. You can
choose the default parameter group, or you can
create a custom parameter group.

For more information, see Working with DB
parameter groups..

CLI: db-parame
ter-group-
name

API: DBParamet
erGroupName

Log Delivery
Setting

The name of the S3 bucket were the InfluxDB logs
will be stored.

CLI: LogDelive
ryConfigu
ration

API: log-deliv
ery-confi
guration

Settings for DB instances 1118

Amazon Timestream Developer Guide

Console Setting Description CLI option and
Timestream API
parameter

Multi-AZ
deployment

Create a standby instance to create a passive
secondary replica of your DB instance in another
Availability Zone for failover support. We
recommend Multi-AZ for production workloads to
maintain high availability.

For development and testing, you can choose Do not
create a standby instance.

For more information, see Configuring and
managing a multi-AZ deployment.

CLI: MultiAz

API: multi-az

Network Type The IP addressing protocols supported by the DB
instance.

IPv4 (the default) to specify that resources can
communicate with the DB instance only over
the Internet Protocol version 4 (IPv4) addressing
protocol.

Dual-stack mode to specify that resources can
communicate with the DB instance over IPv4,
Internet Protocol version 6 (IPv6), or both. Use
dual-stack mode if you have any resources that
must communicate with your DB instance over
the IPv6 addressing protocol. Also, make sure that
you associate an IPv6 CIDR block with all subnets
in the DB subnet group that you specify. While
IPv6 is public by default, we do support private
IPv6 endpoints, keep in mind that this is a one way
door since we do not support changing the Publicly
Accessible flag after instance creation.

CLI: network-t
ype

API: NetworkTy
pe

Settings for DB instances 1119

Amazon Timestream Developer Guide

Console Setting Description CLI option and
Timestream API
parameter

Password This will be your master use password use to Initializ
e your InfluxDB Db instance. You will use this
password to log in into the InfluxUI to obtain your
operator token.

CLI: password

API: password

Public Access Yes to give the DB instance a public IP address,
meaning that it's accessible outside the VPC. To be
publicly accessible, the DB instance also has to be in
a public subnet in the VPC.

No to make the DB instance accessible only from
inside the VPC.

To connect to a DB instance from outside of its VPC,
the DB instance must be publicly accessible. Also,
access must be granted using the inbound rules of
the DB instance's security group. In addition, other
requirements must be met.

CLI: publicly-
accessible

API: PubliclyA
ccessible

Storage Type The storage type for your DB instance

You can choose between 3 different types Provision
ed influx IOPS Included storage according to your
workloads requirements:

* Influx IOPS Included 3000 IOPS

* Influx IOPS Included 12000 IOPS

* INflux IOPS Included 16000 IOPS

For more information, see InfluxDB instance storage.

CLI: db-storag
e-type

API: DbStorage
Type

Settings for DB instances 1120

Amazon Timestream Developer Guide

Console Setting Description CLI option and
Timestream API
parameter

Initial username This will be the master user to initialize your
InfluxDB DB instance with. You will use this
username to log in into the InfluxUI to obtain your
operator token.

CLI: username

API: Username

Subnets A vpc subnet to associate with this DB instance. CLI: vpc-subne
t-ids

API: VPCSubnet
Ids

VPC Security
Group (firewall)

The security group to associate with the DB instance. CLI: vpc-secur
ity-group-
ids

API: VPCSecuri
tyGroupIds

Connecting to an Amazon Timestream for InfluxDB DB instance

Before you can connect to a DB instance, you must create the DB instance. For information, see
Creating a DB instance. After Amazon Timestream provisions your DB instance, use the InfluxDB
API, influx CLI, or any compatible client or utility for InfluxDB to connect to the DB instance.

Topics

• Finding the connection information for an Amazon Timestream for InfluxDB DB instance

• Database authentication options

• Working with parameter groups

Connecting to an Amazon Timestream for InfluxDB DB instance 1121

Amazon Timestream Developer Guide

Finding the connection information for an Amazon Timestream for InfluxDB DB
instance

The connection information for a DB instance includes its endpoint, port, username,
password, and a valid access token, such as the operator or all-access token. For
example, for a Timestream for InfluxDB DB instance, suppose that the endpoint value is
c5vasdqn0b-3ksj4dla5nfjhi.timestream-influxdb.us-east-1.on.aws. In this case, the
port value is 8086, and the database user is admin. Given this information, to access the instance
you will use:

• The endpoint of your instance, c5vasdqn0b-3ksj4dla5nfjhi.timestream-influxdb.us-
east-1.on.aws:8086.

• Either the username and password supplied when creating the instance or valid access token.

Instances created before December 9, 2024 will have an endpoint that contains the instance name
instead of the instance ID. For example: influxdb1-123456789.us-east-1.timestream-
influxdb.amazonaws.com.

Important

As part of the DB instance response object, you will receive a
influxAuthParametersSecretArn. This will hold an ARN to a Secrets Manager secret
in your account. t will only be populated after your InfluxDB DB instances are available. The
secret contains Influx authentication parameters provided during the CreateDbInstance
process. This is a read-only copy as any updates/modifications/deletions to this secret
doesn't impact the created DB instance. If you delete this secret, our API response will still
refer to the deleted secret ARN.

The endpoint is unique for each DB instance, and the values of the port and user can vary. To
connect to a DB instance, you can use the influx CLI, InfluxDB API, or any client compatible with
InfluxDB.

To find the connection information for a DB instance, use the Amazon Management Console.
You can also use the Amazon Command Line Interface (Amazon CLI) describe-db-instances
command or the Timestream for InfluxDB API GetDBInstance operation.

Connecting to an Amazon Timestream for InfluxDB DB instance 1122

Amazon Timestream Developer Guide

Using the Amazon Web Services Management Console

1. Sign in to the Amazon Web Services Management Console and open the Amazon Timestream
console.

2. In the navigation pane, choose InfluxDB Databases to display a list of your DB instances.

3. Choose the name of the DB instance to display its details.

4. In the Summary section, copy the endpoint. Also, note the port number. You will need both
the endpoint and the port number to connect to the DB instance.

If you need to find the username and password information, choose the Configuration Details tab
and choose the influxAuthParametersSecretArn to access your Secrets Manager.

Using the CLI

• To find the connection information for a InfluxDB DB instance by using the Amazon CLI, call
the get-db-instance command. In the call, query for the DB instance ID, endpoint, port,
and influxAuthParametersSecretArn.

For Linux, macOS, or Unix:

aws timestream-influxdb get-db-instance --identifier id \
 --query "[name,endpoint,influxAuthParametersSecretArn]"

For Windows:

aws timestream-influxdb get-db-instance --identifier id ^
 --query "[name,endpoint,influxAuthParametersSecretArn]"

Your output should be similar to the following. To access the username information, you will
need to check the InfluxAuthParameterSecret.

[
 [
 "mydb",
 "mydbid-123456789012.timestream-influxdb.us-east-1.on.aws",
 8086,
]
]

Connecting to an Amazon Timestream for InfluxDB DB instance 1123

https://console.aws.amazon.com/timestream/
https://console.aws.amazon.com/timestream/

Amazon Timestream Developer Guide

Creating access tokens

With this information, you are going to be able to connect to your instance to retrieve or create
your access tokens. There are several ways to achieve this:

Using the CLI

1. If you haven’t already, download, install, and configure the influx CLI.

2. When configuring your influx CLI config, use --username-password to authenticate.

influx config create --config-name YOUR_CONFIG_NAME --host-url "https://
yourinstanceid-accountidentifier.timestream-influxdb.us-east-1.on.aws:8086" --org
 yourorg --username-password admin --active

3. Use the influx auth create command to re-create your operator token. Take into account that
this process will invalidate the old operator token.

influx auth create --org kronos --operator

4. Once you have the operator token, you can use the influx auth list command to view all your
tokens. You can use the influx auth create command to create an all-access token.

Important

You will need to perform this step to obtain your operator token first. Then you will be able
to create new tokens using the InfluxDB API or CLI.

Using the InfluxDB UI

1. Browse to your Timestream for InfluxDB instance using the created endpoint to
log in and access the InfluxDB UI. You will need to use the username and password
used to create your InfluxDB DB instance. You can retrieve this information from the
influxAuthParametersSecretArn that was specified in the response object of the
CreateDbInstance.

Alternatively you can open the InfluxDB UI from the Amazon Timestream for InfluxDB console:

Connecting to an Amazon Timestream for InfluxDB DB instance 1124

https://docs.influxdata.com/influxdb/v2/tools/influx-cli/
https://docs.influxdata.com/influxdb/v2/reference/cli/influx/auth/create/
https://docs.influxdata.com/influxdb/v2/reference/cli/influx/auth/list
https://docs.influxdata.com/influxdb/v2/reference/cli/influx/auth/create/

Amazon Timestream Developer Guide

a. Sign in to the Amazon Web Services Management Console and open the Timestream for
InfluxDB console at https://console.aws.amazon.com/timestream/.

b. In the upper-right corner of the Amazon Timestream for InfluxDB console, choose the
Amazon Region in which you created the DB instance.

c. In the Databases list, choose the name of your InfluxDB instance to show its details. In the
upper right corner, choose InfluxDB UI.

2. Once logged in to your InfluxDB UI, navigate to Load Data and then API Tokens using the left
navigation bar.

3. Choose Generate API Token and select All Access API Token.

4. Enter a description for the API token and choose SAVE.

5. Copy the generated token and store it for safe keeping.

Important

When creating tokens from the InfluxDB UI, the newly created tokens are only going to be
shown once. Make sure you copy these. Otherwise, you will need to re-create them.

Using the InfluxDB API

• Send a request to the InfluxDB API /api/v2/authorizations endpoint using the POST
request method.

Include the following with your request:

a. Headers:

i. Authorization: Token <INFLUX_OPERATOR_TOKEN>

ii. Content-Type: application/json

b. Request body: JSON body with the following properties:

i. status: "active"

ii. description: API token description

iii. orgID: InfluxDB organization ID

Connecting to an Amazon Timestream for InfluxDB DB instance 1125

https://console.amazonaws.cn/timestream/

Amazon Timestream Developer Guide

iv. permissions: Array of objects where each object represents permissions for an
InfluxDB resource type or a specific resource. Each permission contains the following
properties:

A. action: “read” or “write”

B. resource: JSON object that represents the InfluxDB resource to grant permission
to. Each resource contains at least the following property: orgID: InfluxDB
organization ID

C. type: Resource type. For information about what InfluxDB resource types exist,
use the /api/v2/resources endpoint.

The following example uses curl and the InfluxDB API to generate an all-access token:

export INFLUX_HOST=https://instanceid-123456789.timestream-influxdb.us-east-1.on.aws
export INFLUX_ORG_ID=<YOUR_INFLUXDB_ORG_ID>
export INFLUX_TOKEN=<YOUR_INFLUXDB_OPERATOR_TOKEN>

curl --request POST \
"$INFLUX_HOST/api/v2/authorizations" \
 --header "Authorization: Token $INFLUX_TOKEN" \
 --header "Content-Type: text/plain; charset=utf-8" \
 --data '{
 "status": "active",
 "description": "All access token for get started tutorial",
 "orgID": "'"$INFLUX_ORG_ID"'",
 "permissions": [
 {"action": "read", "resource": {"orgID": "'"$INFLUX_ORG_ID"'", "type":
 "authorizations"}},
 {"action": "write", "resource": {"orgID": "'"$INFLUX_ORG_ID"'", "type":
 "authorizations"}},
 {"action": "read", "resource": {"orgID": "'"$INFLUX_ORG_ID"'", "type":
 "buckets"}},
 {"action": "write", "resource": {"orgID": "'"$INFLUX_ORG_ID"'", "type":
 "buckets"}},
 {"action": "read", "resource": {"orgID": "'"$INFLUX_ORG_ID"'", "type":
 "dashboards"}},
 {"action": "write", "resource": {"orgID": "'"$INFLUX_ORG_ID"'", "type":
 "dashboards"}},
 {"action": "read", "resource": {"orgID": "'"$INFLUX_ORG_ID"'", "type": "orgs"}},
 {"action": "write", "resource": {"orgID": "'"$INFLUX_ORG_ID"'", "type": "orgs"}},

Connecting to an Amazon Timestream for InfluxDB DB instance 1126

Amazon Timestream Developer Guide

 {"action": "read", "resource": {"orgID": "'"$INFLUX_ORG_ID"'", "type":
 "sources"}},
 {"action": "write", "resource": {"orgID": "'"$INFLUX_ORG_ID"'", "type":
 "sources"}},
 {"action": "read", "resource": {"orgID": "'"$INFLUX_ORG_ID"'", "type": "tasks"}},
 {"action": "write", "resource": {"orgID": "'"$INFLUX_ORG_ID"'", "type":
 "tasks"}},
 {"action": "read", "resource": {"orgID": "'"$INFLUX_ORG_ID"'", "type":
 "telegrafs"}},
 {"action": "write", "resource": {"orgID": "'"$INFLUX_ORG_ID"'", "type":
 "telegrafs"}},
 {"action": "read", "resource": {"orgID": "'"$INFLUX_ORG_ID"'", "type": "users"}},
 {"action": "write", "resource": {"orgID": "'"$INFLUX_ORG_ID"'", "type":
 "users"}},
 {"action": "read", "resource": {"orgID": "'"$INFLUX_ORG_ID"'", "type":
 "variables"}},
 {"action": "write", "resource": {"orgID": "'"$INFLUX_ORG_ID"'", "type":
 "variables"}},
 {"action": "read", "resource": {"orgID": "'"$INFLUX_ORG_ID"'", "type":
 "scrapers"}},
 {"action": "write", "resource": {"orgID": "'"$INFLUX_ORG_ID"'", "type":
 "scrapers"}},
 {"action": "read", "resource": {"orgID": "'"$INFLUX_ORG_ID"'", "type":
 "secrets"}},
 {"action": "write", "resource": {"orgID": "'"$INFLUX_ORG_ID"'", "type":
 "secrets"}},
 {"action": "read", "resource": {"orgID": "'"$INFLUX_ORG_ID"'", "type":
 "labels"}},
 {"action": "write", "resource": {"orgID": "'"$INFLUX_ORG_ID"'", "type":
 "labels"}},
 {"action": "read", "resource": {"orgID": "'"$INFLUX_ORG_ID"'", "type": "views"}},
 {"action": "write", "resource": {"orgID": "'"$INFLUX_ORG_ID"'", "type":
 "views"}},
 {"action": "read", "resource": {"orgID": "'"$INFLUX_ORG_ID"'", "type":
 "documents"}},
 {"action": "write", "resource": {"orgID": "'"$INFLUX_ORG_ID"'", "type":
 "documents"}},
 {"action": "read", "resource": {"orgID": "'"$INFLUX_ORG_ID"'", "type":
 "notificationRules"}},
 {"action": "write", "resource": {"orgID": "'"$INFLUX_ORG_ID"'", "type":
 "notificationRules"}},
 {"action": "read", "resource": {"orgID": "'"$INFLUX_ORG_ID"'", "type":
 "notificationEndpoints"}},

Connecting to an Amazon Timestream for InfluxDB DB instance 1127

Amazon Timestream Developer Guide

 {"action": "write", "resource": {"orgID": "'"$INFLUX_ORG_ID"'", "type":
 "notificationEndpoints"}},
 {"action": "read", "resource": {"orgID": "'"$INFLUX_ORG_ID"'", "type":
 "checks"}},
 {"action": "write", "resource": {"orgID": "'"$INFLUX_ORG_ID"'", "type":
 "checks"}},
 {"action": "read", "resource": {"orgID": "'"$INFLUX_ORG_ID"'", "type": "dbrp"}},
 {"action": "write", "resource": {"orgID": "'"$INFLUX_ORG_ID"'", "type": "dbrp"}},
 {"action": "read", "resource": {"orgID": "'"$INFLUX_ORG_ID"'", "type":
 "notebooks"}},
 {"action": "write", "resource": {"orgID": "'"$INFLUX_ORG_ID"'", "type":
 "notebooks"}},
 {"action": "read", "resource": {"orgID": "'"$INFLUX_ORG_ID"'", "type":
 "annotations"}},
 {"action": "write", "resource": {"orgID": "'"$INFLUX_ORG_ID"'", "type":
 "annotations"}},
 {"action": "read", "resource": {"orgID": "'"$INFLUX_ORG_ID"'", "type":
 "remotes"}},
 {"action": "write", "resource": {"orgID": "'"$INFLUX_ORG_ID"'", "type":
 "remotes"}},
 {"action": "read", "resource": {"orgID": "'"$INFLUX_ORG_ID"'", "type":
 "replications"}},
 {"action": "write", "resource": {"orgID": "'"$INFLUX_ORG_ID"'", "type":
 "replications"}}
]
 }
'

Database authentication options

Amazon Timestream for InfluxDB supports the following ways to authenticate database users:

• Password authentication – Your DB instance performs all administration of user accounts.
You create users, specify passwords, and administer tokens using the InfluxDB UI, influx CLI, or
InfluxDB API.

• Token authentication – Your DB instance performs all administration of user accounts. You can
create users, specify passwords, and administer tokens using your operator token via the influx
CLI and InfluxDB API.

Connecting to an Amazon Timestream for InfluxDB DB instance 1128

Amazon Timestream Developer Guide

Encrypted connections

You can use Secure Socket Layer (SSL) or Transport Layer Security (TLS) from your application to
encrypt a connection to a DB instance. The certificates needed for the TLS handshake between
InfluxDB and the applications created and managed by the Kronos service. When the certificate is
renewed, the instance is automatically updated with the latest version without requiring any user
intervention.

Working with parameter groups

Database parameters specify how the database is configured. For example, database parameters
can specify the amount of resources, such as memory, to allocate to a database.

You manage your database configuration by associating your DB instances with parameter groups.
Amazon Timestream for InfluxDB defines parameter groups with default settings. You can also
define your own parameter groups with customized settings.

Overview of parameter groups

A DB parameter group acts as a container for engine configuration values that are applied to one
or more DB instances.

Topics

• Default and custom parameter groups

• Creating a DB parameter group

• Static and dynamic DB instance parameters

• Supported parameters and parameter values

Default and custom parameter groups

DB instances use DB parameter groups. The following sections describe configuring and managing
DB instance parameter groups.

Creating a DB parameter group

You can create a new DB parameter group using the Amazon Web Services Management Console,
the Amazon Command Line Interface, or the Timestream API.

The following limitations apply to the DB parameter group name:

Connecting to an Amazon Timestream for InfluxDB DB instance 1129

Amazon Timestream Developer Guide

• The name must be 1 to 255 letters, numbers, or hyphens.

• Default parameter group names can include a period, such as default.InfluxDB.2.7.
However, custom parameter group names can't include a period.

• The first character must be a letter.

• The name cannot start with “dbpg-”

• The name can't end with a hyphen or contain two consecutive hyphens.

• If you create a DB instance without specifying a DB parameter group, the DB instance uses the
InfluxDB engine defaults.

You can't modify the parameter settings of a default parameter group. Instead, you can do the
following:

1. Create a new parameter group.

2. Change the settings of your desired parameters. Not all DB engine parameters in a parameter
group are eligible to be modified.

3. Update your DB instance to use the custom parameter group. For information about updating
a DB instance, see Updating DB instances.

Note

If you have modified your DB instance to use a custom parameter group, and you start the
DB instance, Amazon Timestream for InfluxDB automatically reboots the DB instance as
part of the startup process.
Currently, you won’t be able to modify custom parameter groups once they have been
created. If you need to change a parameter, it is required that you create a new custom
parameter group and assign it to the instances that require this configuration change.
If you update an existing DB instance to assign a new parameter group, it will always be
applied immediately and reboot your instance.

Static and dynamic DB instance parameters

InfluxDB DB instance parameters are always static. They behave as follows:

When you change a static parameter, save the DB parameter group, and assign it to an instance,
the parameter change takes effect automatically after the instance is rebooted.

Connecting to an Amazon Timestream for InfluxDB DB instance 1130

Amazon Timestream Developer Guide

When you associate a new DB parameter group with a DB instance, Timestream applies the
modified static parameters only after the DB instance is rebooted. Currently the only option is
apply immediately.

For more information about changing the DB parameter group, see Updating DB instances.

Supported parameters and parameter values

To determine the supported parameters for your DB instance, view the parameters in the DB
parameter group used by the DB instance. For more information, see Viewing parameter values for
a DB parameter group.

For more information about all parameters supported by the open-source version of InfluxDB, see
InfluxDB configuration options. Currently you will only be able to modify the following InfluxDB
parameters:

Parameter Description Default
value

Value Valid range Note

flux-log-
enabled

Include
option
to show
detailed
logs for Flux
queries

FALSE Boolean N/A

log-level Log output
level.
InfluxDB
outputs log
entries with
severity
levels greater
than or equal
to the level
specified.

info debug, info,
error

N/A

no-tasks Disable
the task

FALSE Boolean N/A

Connecting to an Amazon Timestream for InfluxDB DB instance 1131

https://docs.influxdata.com/influxdb/v2/reference/config-options/?t=JSON
https://docs.influxdata.com/influxdb/v2/reference/config-options/?t=JSON
https://docs.influxdata.com/influxdb/v2/reference/config-options/?t=JSON
https://docs.influxdata.com/influxdb/v2/reference/config-options/#log-level
https://docs.influxdata.com/influxdb/v2/reference/config-options/#no-tasks

Amazon Timestream Developer Guide

Parameter Description Default
value

Value Valid range Note

scheduler. If
problematic
tasks prevent
InfluxDB
from
starting, use
this option
to start
InfluxDB
without
scheduling
or executing
tasks.

query-con
currency

Number
of queries
allowed
to execute
concurren
tly. Setting
to 0 allows
an unlimited
number of
concurrent
queries.

1,024 N/A

Connecting to an Amazon Timestream for InfluxDB DB instance 1132

https://docs.influxdata.com/influxdb/v2/reference/config-options/#query-concurrency
https://docs.influxdata.com/influxdb/v2/reference/config-options/#query-concurrency

Amazon Timestream Developer Guide

Parameter Description Default
value

Value Valid range Note

query-queue-
size

Maximum
number
of queries
allowed in
execution
queue. When
queue limit
is reached,
new queries
are rejected.
 Setting to
0 allows an
unlimited
number of
queries in the
queue.

1,024 N/A

tracing-type Enable
tracing in
InfluxDB and
specifies the
tracing type.
Tracing is
disabled by
default.

"" log, jaeger N/A

Connecting to an Amazon Timestream for InfluxDB DB instance 1133

https://docs.influxdata.com/influxdb/v2/reference/config-options/#query-queue-size
https://docs.influxdata.com/influxdb/v2/reference/config-options/#query-queue-size
https://docs.influxdata.com/influxdb/v2/reference/config-options/#tracing-type

Amazon Timestream Developer Guide

Parameter Description Default
value

Value Valid range Note

metrics-d
isabled

Disable
the HTTP /
metrics
endpoint
which
exposes
internal
InfluxDB
metrics.

FALSE N/A

Connecting to an Amazon Timestream for InfluxDB DB instance 1134

https://docs.influxdata.com/influxdb/v2/reference/config-options/#metrics-disabled
https://docs.influxdata.com/influxdb/v2/reference/config-options/#metrics-disabled
https://docs.influxdata.com/influxdb/v2/reference/internals/metrics/
https://docs.influxdata.com/influxdb/v2/reference/internals/metrics/
https://docs.influxdata.com/influxdb/v2/reference/internals/metrics/

Amazon Timestream Developer Guide

Parameter Description Default
value

Value Valid range Note

http-idle-
timeout

Maximum
duration
the server
should keep
established
connections
alive while
waiting
for new
requests. Set
to 0 for no
timeout.

3m0s Duration
with unit
hours,
minutes,
seconds,
milliseco
nds .
Example:
durationT
ype=minut
es,value=
10

Hours:

-Minimum: 0

-Maximum:
 256,205

Minutes:

-Minimum: 0

-Maximum:
 15,372,286

Seconds:

-Minimum: 0

-Maximum:
 922,337,203

Milliseconds:

-Minimum: 0

-Maximum:
922,337,2
03,685

Connecting to an Amazon Timestream for InfluxDB DB instance 1135

https://docs.influxdata.com/influxdb/v2/reference/config-options/#http-idle-timeout
https://docs.influxdata.com/influxdb/v2/reference/config-options/#http-idle-timeout

Amazon Timestream Developer Guide

Parameter Description Default
value

Value Valid range Note

http-read
-header-t
imeout

Maximum
duration
the server
should try to
read HTTP
headers
for new
requests. Set
to 0 for no
timeout.

10s Duration
with unit
hours,
minutes,
seconds,
milliseco
nds .
Example:
durationT
ype=minut
es,value=
10

Hours:

-Minimum: 0

-Maximum:
 256,205

Minutes:

-Minimum: 0

-Maximum:
 15,372,286

Seconds:

-Minimum: 0

-Maximum:
 922,337,203

Milliseconds:

-Minimum: 0

-Maximum:
922,337,2
03,685

Connecting to an Amazon Timestream for InfluxDB DB instance 1136

https://docs.influxdata.com/influxdb/v2/reference/config-options/#http-read-header-timeout
https://docs.influxdata.com/influxdb/v2/reference/config-options/#http-read-header-timeout
https://docs.influxdata.com/influxdb/v2/reference/config-options/#http-read-header-timeout

Amazon Timestream Developer Guide

Parameter Description Default
value

Value Valid range Note

http-read-
timeout

Maximum
duration the
server should
try to read
the entirety
of new
requests. Set
to 0 for no
timeout.

0 Duration
with unit
hours,
minutes,
seconds,
milliseco
nds .
Example:
durationT
ype=minut
es,value=
10

Hours:

-Minimum: 0

-Maximum:
 256,205

Minutes:

-Minimum: 0

-Maximum:
 15,372,286

Seconds:

-Minimum: 0

-Maximum:
 922,337,203

Milliseconds:

-Minimum: 0

-Maximum:
922,337,2
03,685

Connecting to an Amazon Timestream for InfluxDB DB instance 1137

https://docs.influxdata.com/influxdb/v2/reference/config-options/#http-read-timeout
https://docs.influxdata.com/influxdb/v2/reference/config-options/#http-read-timeout

Amazon Timestream Developer Guide

Parameter Description Default
value

Value Valid range Note

http-write-
timeout

Maximum
duration
the server
should spend
processin
g and
respondin
g to write
requests. Set
to 0 for no
timeout.

0 Duration
with unit
hours,
minutes,
seconds,
milliseco
nds .
Example:
durationT
ype=minut
es,value=
10

Hours:

-Minimum: 0

-Maximum:
 256,205

Minutes:

-Minimum: 0

-Maximum:
 15,372,286

Seconds:

-Minimum: 0

-Maximum:
 922,337,203

Milliseconds:

-Minimum: 0

-Maximum:
922,337,2
03,685

Connecting to an Amazon Timestream for InfluxDB DB instance 1138

https://docs.influxdata.com/influxdb/v2/reference/config-options/#http-write-timeout
https://docs.influxdata.com/influxdb/v2/reference/config-options/#http-write-timeout

Amazon Timestream Developer Guide

Parameter Description Default
value

Value Valid range Note

influxql-
max-select-
buckets

Maximum
number of
group by
time buckets
a SELECT
statement
can create.
0 allows an
unlimited
number of
buckets.

0 Long Minimum: 0

Maximum:
9,223,372
,036,854,
775,807

influxql-max-
select-point

Maximum
number
of points
a SELECT
statement
can process.
0 allows an
unlimited
number
of points.
InfluxDB
checks the
point count
every second
(so queries
exceeding
the
maximum
aren’t
immediately
aborted).

0 Long Minimum: 0

Maximum:
9,223,372
,036,854,
775,807

Connecting to an Amazon Timestream for InfluxDB DB instance 1139

https://docs.influxdata.com/influxdb/v2/reference/config-options/#influxql-max-select-buckets
https://docs.influxdata.com/influxdb/v2/reference/config-options/#influxql-max-select-buckets
https://docs.influxdata.com/influxdb/v2/reference/config-options/#influxql-max-select-buckets
https://docs.influxdata.com/influxdb/v2/reference/config-options/#influxql-max-select-point
https://docs.influxdata.com/influxdb/v2/reference/config-options/#influxql-max-select-point

Amazon Timestream Developer Guide

Parameter Description Default
value

Value Valid range Note

influxql-max-
select-series

Maximum
number
of series
a SELECT
statement
can return.
0 allows an
unlimited
number of
series.

0 Long Minimum: 0

Maximum:
9,223,372
,036,854,
775,807

pprof-dis
abled

Disable the
/debug/pp
rof HTTP
endpoint.
This
endpoint
provides
runtime
profiling data
and can be
helpful when
debugging.

TRUE Boolean N/A While
InfluxDB
sets pprof-
disabled
as false
by default,
Amazon sets
it as true by
default.

query-initial-
memory-
bytes

Initial bytes
of memory
allocated for
a query.

0 Long Minimum: 0

Maximum:
query-mem
ory-bytes

Connecting to an Amazon Timestream for InfluxDB DB instance 1140

https://docs.influxdata.com/influxdb/v2/reference/config-options/#influxql-max-select-series
https://docs.influxdata.com/influxdb/v2/reference/config-options/#influxql-max-select-series
https://docs.influxdata.com/influxdb/v2/reference/config-options/#pprof-disabled
https://docs.influxdata.com/influxdb/v2/reference/config-options/#pprof-disabled
https://docs.influxdata.com/influxdb/v2/reference/config-options/#query-initial-memory-bytes
https://docs.influxdata.com/influxdb/v2/reference/config-options/#query-initial-memory-bytes
https://docs.influxdata.com/influxdb/v2/reference/config-options/#query-initial-memory-bytes

Amazon Timestream Developer Guide

Parameter Description Default
value

Value Valid range Note

query-max
-memory-b
ytes

Maximum
total bytes
of memory
allowed for
queries.

0 Long Minimum: 0

Maximum:
9,223,372
,036,854,
775,807

query-mem
ory-bytes

Specifies
the Time to
Live (TTL)
in minutes
for newly
created user
sessions.

0 Long Minimum: 0

Maximum:
2,147,483
,647

Must be
greater than
or equal to
query-initial-
memory-
bytes.

session-l
ength

Specifies
the Time to
Live (TTL)
in minutes
for newly
created user
sessions.

60 Integer Minimum: 0

Maximum:
2,880

Connecting to an Amazon Timestream for InfluxDB DB instance 1141

https://docs.influxdata.com/influxdb/v2/reference/config-options/#influxql-max-select-series
https://docs.influxdata.com/influxdb/v2/reference/config-options/#influxql-max-select-series
https://docs.influxdata.com/influxdb/v2/reference/config-options/#influxql-max-select-series
https://docs.influxdata.com/influxdb/v2/reference/config-options/#query-memory-bytes
https://docs.influxdata.com/influxdb/v2/reference/config-options/#query-memory-bytes
https://docs.influxdata.com/influxdb/v2/reference/config-options/#session-length
https://docs.influxdata.com/influxdb/v2/reference/config-options/#session-length

Amazon Timestream Developer Guide

Parameter Description Default
value

Value Valid range Note

session-r
enew-disa
bled

Disables
automatically
extending a
user’s session
TTL on each
request.
By default,
every request
sets the
session’s
expiration
time to 5
minutes from
now. When
disabled,
sessions
expire after
the specified
session
length and
the user is
redirected
to the login
page, even
if recently
active.

FALSE Boolean N/A

Connecting to an Amazon Timestream for InfluxDB DB instance 1142

https://docs.influxdata.com/influxdb/v2/reference/config-options/#session-renew-disabled
https://docs.influxdata.com/influxdb/v2/reference/config-options/#session-renew-disabled
https://docs.influxdata.com/influxdb/v2/reference/config-options/#session-renew-disabled
https://docs.influxdata.com/influxdb/v2/reference/config-options/#session-length
https://docs.influxdata.com/influxdb/v2/reference/config-options/#session-length

Amazon Timestream Developer Guide

Parameter Description Default
value

Value Valid range Note

storage-c
ache-max-
memory-size

Maximum
size (in bytes)
a shard’s
cache can
reach before
it starts
rejecting
 writes.

1,073,741
,824

Long Minimum: 0

Maximum:
549,755,8
13,888

Must be
lower than
instance'
s total
memory
capacity.

We
recommend
setting it to
below 15
percent of
the total
memory
capacity.

storage-c
ache-snap
shot-memo
ry-size

Size (in
bytes) at
which the
storage
engine will
snapshot the
cache and
write it to a
TSM file to
make more
memory
available.

26,214,400 Long Minimum: 0

Maximum:
549,755,8
13,888

Must be
lower than
storage-c
ache-max-
memory-size.

Connecting to an Amazon Timestream for InfluxDB DB instance 1143

https://docs.influxdata.com/influxdb/v2/reference/config-options/#storage-cache-max-memory-size
https://docs.influxdata.com/influxdb/v2/reference/config-options/#storage-cache-max-memory-size
https://docs.influxdata.com/influxdb/v2/reference/config-options/#storage-cache-max-memory-size
https://docs.influxdata.com/influxdb/v2/reference/config-options/#storage-cache-snapshot-memory-size
https://docs.influxdata.com/influxdb/v2/reference/config-options/#storage-cache-snapshot-memory-size
https://docs.influxdata.com/influxdb/v2/reference/config-options/#storage-cache-snapshot-memory-size
https://docs.influxdata.com/influxdb/v2/reference/config-options/#storage-cache-snapshot-memory-size

Amazon Timestream Developer Guide

Parameter Description Default
value

Value Valid range Note

storage-c
ache-snap
shot-write-
cold-duration

Duration
at which
the storage
engine will
snapshot the
cache and
write it to
a new TSM
file if the
shard hasn’t
received
writes or
deletes.

10m0s Duration
with unit
hours,
minutes,
seconds,
milliseco
nds .
Example:
durationT
ype=minut
es,value=
10

Hours:

-Minimum: 0

-Maximum:
 256,205

Minutes:

-Minimum: 0

-Maximum:
 15,372,286

Seconds:

-Minimum: 0

-Maximum:
 922,337,203

Milliseconds:

-Minimum: 0

-Maximum:
922,337,2
03,685

Connecting to an Amazon Timestream for InfluxDB DB instance 1144

https://docs.influxdata.com/influxdb/v2/reference/config-options/#storage-cache-snapshot-write-cold-duration
https://docs.influxdata.com/influxdb/v2/reference/config-options/#storage-cache-snapshot-write-cold-duration
https://docs.influxdata.com/influxdb/v2/reference/config-options/#storage-cache-snapshot-write-cold-duration
https://docs.influxdata.com/influxdb/v2/reference/config-options/#storage-cache-snapshot-write-cold-duration

Amazon Timestream Developer Guide

Parameter Description Default
value

Value Valid range Note

storage-c
ompact-full-
write-cold-
duration

Duration
at which
the storage
engine will
compact all
TSM files
in a shard
if it hasn’t
received
writes or
deletes.

4h0m0s Duration
with unit
hours,
minutes,
seconds,
milliseco
nds .
Example:
durationT
ype=minut
es,value=
10

Hours:

-Minimum: 0

-Maximum:
 256,205

Minutes:

-Minimum: 0

-Maximum:
 15,372,286

Seconds:

-Minimum: 0

-Maximum:
 922,337,203

Milliseconds:

-Minimum: 0

-Maximum:
922,337,2
03,685

storage-c
ompact-th
roughput-
burst

Rate limit
(in bytes
per second)
that TSM
compactions
can write to
disk.

50,331,648 Long Minimum: 0

Maximum:
9,223,372
,036,854,
775,807

Connecting to an Amazon Timestream for InfluxDB DB instance 1145

https://docs.influxdata.com/influxdb/v2/reference/config-options/#storage-compact-full-write-cold-duration
https://docs.influxdata.com/influxdb/v2/reference/config-options/#storage-compact-full-write-cold-duration
https://docs.influxdata.com/influxdb/v2/reference/config-options/#storage-compact-full-write-cold-duration
https://docs.influxdata.com/influxdb/v2/reference/config-options/#storage-compact-full-write-cold-duration
https://docs.influxdata.com/influxdb/v2/reference/config-options/#storage-compact-throughput-burst
https://docs.influxdata.com/influxdb/v2/reference/config-options/#storage-compact-throughput-burst
https://docs.influxdata.com/influxdb/v2/reference/config-options/#storage-compact-throughput-burst
https://docs.influxdata.com/influxdb/v2/reference/config-options/#storage-compact-throughput-burst

Amazon Timestream Developer Guide

Parameter Description Default
value

Value Valid range Note

storage-max-
concurrent-
compactions

Maximum
number of
full and level
compactions
that can run
concurrently.
A value of 0
results in 50
percent of
runtime.G
OMAXPROCS
(0) used
at runtime.
Any number
greater than
zero limits
compactio
ns to that
value. This
setting does
not apply
to cache
snapshotting.

0 Integer Minimum: 0

Maximum: 64

Connecting to an Amazon Timestream for InfluxDB DB instance 1146

https://docs.influxdata.com/influxdb/v2/reference/config-options/#storage-max-concurrent-compactions
https://docs.influxdata.com/influxdb/v2/reference/config-options/#storage-max-concurrent-compactions
https://docs.influxdata.com/influxdb/v2/reference/config-options/#storage-max-concurrent-compactions

Amazon Timestream Developer Guide

Parameter Description Default
value

Value Valid range Note

storage-m
ax-index-log-
file-size

Size (in
bytes) at
which an
index write-
ahead log
(WAL) file
will compact
into an index
file. Lower
sizes will
cause log
files to be
compacted
 more quickly
and result in
lower heap
usage at
the expense
of write
throughput.

1,048,576 Long Minimum: 0

Maximum:
9,223,372
,036,854,
775,807

storage-n
o-validate-
field-size

Skip field size
validation
on incoming
write
requests.

FALSE Boolean N/A

Connecting to an Amazon Timestream for InfluxDB DB instance 1147

https://docs.influxdata.com/influxdb/v2/reference/config-options/#storage-max-index-log-file-size
https://docs.influxdata.com/influxdb/v2/reference/config-options/#storage-max-index-log-file-size
https://docs.influxdata.com/influxdb/v2/reference/config-options/#storage-max-index-log-file-size
https://docs.influxdata.com/influxdb/v2/reference/config-options/#storage-no-validate-field-size
https://docs.influxdata.com/influxdb/v2/reference/config-options/#storage-no-validate-field-size
https://docs.influxdata.com/influxdb/v2/reference/config-options/#storage-no-validate-field-size

Amazon Timestream Developer Guide

Parameter Description Default
value

Value Valid range Note

storage-r
etention-
check-int
erval

Interval of
retention
policy
enforcement
checks.

30m0s Duration
with unit
hours,
minutes,
seconds,
milliseco
nds .
Example:
durationT
ype=minut
es,value=
10

N/A Hours:

-Minimum: 0

-Maximum:
 256,205

Minutes:

-Minimum: 0

-Maximum:
 15,372,286

Seconds:

-Minimum: 0

-Maximum:
 922,337,203

Milliseconds:

-Minimum: 0

-Maximum:
922,337,2
03,685

Connecting to an Amazon Timestream for InfluxDB DB instance 1148

https://docs.influxdata.com/influxdb/v2/reference/config-options/#storage-retention-check-interval
https://docs.influxdata.com/influxdb/v2/reference/config-options/#storage-retention-check-interval
https://docs.influxdata.com/influxdb/v2/reference/config-options/#storage-retention-check-interval
https://docs.influxdata.com/influxdb/v2/reference/config-options/#storage-retention-check-interval

Amazon Timestream Developer Guide

Parameter Description Default
value

Value Valid range Note

storage-s
eries-file-
max-con
current-s
napshot-c
ompactions

Maximum
number of
snapshot
compactions
that can run
concurren
tly across
all series
partitions in
a database.

0 Integer Minimum: 0

Maximum: 64

Connecting to an Amazon Timestream for InfluxDB DB instance 1149

https://docs.influxdata.com/influxdb/v2/reference/config-options/#storage-series-file-max-concurrent-snapshot-compactions
https://docs.influxdata.com/influxdb/v2/reference/config-options/#storage-series-file-max-concurrent-snapshot-compactions
https://docs.influxdata.com/influxdb/v2/reference/config-options/#storage-series-file-max-concurrent-snapshot-compactions
https://docs.influxdata.com/influxdb/v2/reference/config-options/#storage-series-file-max-concurrent-snapshot-compactions
https://docs.influxdata.com/influxdb/v2/reference/config-options/#storage-series-file-max-concurrent-snapshot-compactions
https://docs.influxdata.com/influxdb/v2/reference/config-options/#storage-series-file-max-concurrent-snapshot-compactions

Amazon Timestream Developer Guide

Parameter Description Default
value

Value Valid range Note

storage-s
eries-id-set-
cache-size

Size of the
internal
cache used in
the TSI index
to store
previously
calculated
series results.
Cached
results are
returned
quickly
rather than
needing to
be recalcula
ted when a
subsequen
t query with
the same tag
key/value
predicate is
executed.
 Setting this
value to 0
will disable
the cache
and may
decrease
query
performance.

100 Long Minimum: 0

Maximum:
9,223,372
,036,854,
775,807

Connecting to an Amazon Timestream for InfluxDB DB instance 1150

https://docs.influxdata.com/influxdb/v2/reference/config-options/#storage-series-id-set-cache-size
https://docs.influxdata.com/influxdb/v2/reference/config-options/#storage-series-id-set-cache-size
https://docs.influxdata.com/influxdb/v2/reference/config-options/#storage-series-id-set-cache-size

Amazon Timestream Developer Guide

Parameter Description Default
value

Value Valid range Note

storage-w
al-max-co
ncurrent-
writes

Maximum
number
writes to
the WAL
directory to
attempt at
the same
time.

0 Integer Minimum: 0

Maximum:
256

storage-wal-
max-write-
delay

Maximum
amount of
time a write
request to
the WAL
directory
will wait
when the the
maximum
number of
concurrent
active writes
to the WAL
directory has
been met.
Set to 0 to
disable the
timeout.

10m Duration
with unit
hours,
minutes,
seconds,
milliseco
nds .
Example:
durationT
ype=minut
es,value=
10

Hours:

-Minimum: 0

-Maximum:
 256205

Minutes:

-Minimum: 0

-Maximum:
 15,372,286

Seconds:

-Minimum: 0

-Maximum:
 922,337,203

Milliseconds:

-Minimum: 0

-Maximum:
922,337,2
03,685

Connecting to an Amazon Timestream for InfluxDB DB instance 1151

https://docs.influxdata.com/influxdb/v2/reference/config-options/#storage-wal-max-concurrent-writes
https://docs.influxdata.com/influxdb/v2/reference/config-options/#storage-wal-max-concurrent-writes
https://docs.influxdata.com/influxdb/v2/reference/config-options/#storage-wal-max-concurrent-writes
https://docs.influxdata.com/influxdb/v2/reference/config-options/#storage-wal-max-concurrent-writes
https://docs.influxdata.com/influxdb/v2/reference/config-options/#storage-wal-max-write-delay
https://docs.influxdata.com/influxdb/v2/reference/config-options/#storage-wal-max-write-delay
https://docs.influxdata.com/influxdb/v2/reference/config-options/#storage-wal-max-write-delay

Amazon Timestream Developer Guide

Parameter Description Default
value

Value Valid range Note

ui-disabled Disable the
InfluxDB user
interface
(UI). The UI
is enabled by
default.

FALSE Boolean N/A

Improperly setting parameters in a parameter group can have unintended adverse effects,
including degraded performance and system instability. Always be cautious when modifying
database parameters. Test parameter group setting changes on a test DB instance before applying
those parameter group changes to a production DB instance.

Working with DB parameter groups

DB instances use DB parameter groups. The following sections describe configuring and managing
DB instance parameter groups.

Topics

• Creating a DB parameter group

• Associating a DB parameter group with a DB instance

• Listing DB parameter groups

• Viewing parameter values for a DB parameter group

Creating a DB parameter group

Using the Amazon Web Services Management Console

1. Sign in to the Amazon Web Services Management Console and open the Amazon Timestream
for InfluxDB console.

2. In the navigation pane, choose Parameter groups.

3. Choose Create parameter group.

4. In the Parameter group name box, enter the name of the new DB parameter group.

5. In the Description box, enter a description for the new DB parameter group.

Connecting to an Amazon Timestream for InfluxDB DB instance 1152

https://docs.influxdata.com/influxdb/v2/reference/config-options/#ui-disabled
https://console.aws.amazon.com/timestream/
https://console.aws.amazon.com/timestream/

Amazon Timestream Developer Guide

6. Choose the parameters to modify and apply the desired values. For more information on
supported parameters, see Supported parameters and parameter values.

7. Choose Create parameter group.

Using the Amazon Command Line Interface

• To create a DB parameter group by using the Amazon CLI, call the create-db-parameter-
group command with the following parameters:

--db-parameter-group-name <value>
--description <value>
--endpoint_url <value>
--region <value>
--parameters (list) (string)

Example Example

For information about each setting, see Settings for DB instances. This example uses default
engine configs.

aws timestream-influxdb create-db-parameter-group
 --db-parameter-group-name YOUR_PARAM_GROUP_NAME \
 --endpoint-url YOUR_ENDPOINT \
 --region YOUR_REGION \
 --parameters
 "InfluxDBv2={logLevel=debug,queryConcurrency=10,metricsDisabled=true}" \" \
 --debug

Associating a DB parameter group with a DB instance

You can create your own DB parameter groups with customized settings. You can associate a DB
parameter group with a DB instance using the Amazon Web Services Management Console, the
Amazon Command Line Interface, or the Timestream for InfluxDB API. You can do so when you
create or modify a DB instance.

For information about creating a DB parameter group, see Creating a DB parameter group. For
information about creating a DB instance, see Creating a DB instance. For information about
modifying a DB instance, see Updating DB instances.

Connecting to an Amazon Timestream for InfluxDB DB instance 1153

Amazon Timestream Developer Guide

Note

When you associate a new DB parameter group with a DB instance, the modified static
parameters are applied only after the DB instance is rebooted. Currently, only apply
immediately is supported. Timestream for InfluxDB only support static parameters.

Using the Amazon Web Services Management Console

1. Sign in to the Amazon Web Services Management Console and open the Amazon Timestream
for InfluxDB console.

2. In the navigation pane, choose InfluxDB Databases, and then choose the DB instance that you
want to modify.

3. Choose Update. The Update DB instance page appears.

4. Change the DB parameter group setting.

5. Choose Continue and check the summary of modifications.

6. Currently only Apply immediately is supported. This option can cause an outage in some cases
since it will reboot your DB instance.

7. On the confirmation page, review your changes. If they are correct, choose Update DB
instance to save your changes and apply them. Or choose Back to edit your changes or Cancel
to cancel your changes.

Using the Amazon Command Line Interface

For Linux, macOS, or Unix:

aws timestream-influxdb update-db-instance
--identifier YOUR_DB_INSTANCE_ID \
--region YOUR_REGION \
--db-parameter-group-identifier YOUR_PARAM_GROUP_ID \
--log-delivery-configuration "{\"s3Configuration\": {\"bucketName\":
 \"${LOGGING_BUCKET}\", \"enabled\": false }}"

For Windows:

aws timestream-influxdb update-db-instance

Connecting to an Amazon Timestream for InfluxDB DB instance 1154

https://console.amazonaws.cn/timestream/
https://console.amazonaws.cn/timestream/

Amazon Timestream Developer Guide

--identifier YOUR_DB_INSTANCE_ID ^
--region YOUR_REGION ^
--db-parameter-group-identifier YOUR_PARAM_GROUP_ID ^
--log-delivery-configuration "{\"s3Configuration\": {\"bucketName\":
 \"${LOGGING_BUCKET}\", \"enabled\": false }}"

Listing DB parameter groups

You can list the DB parameter groups you've created for your Amazon account.

Using the Amazon Web Services Management Console

1. Sign in to the Amazon Web Services Management Console and open the Amazon Timestream
for InfluxDB console.

2. In the navigation pane, choose Parameter groups.

3. The DB parameter groups appear in a list.

Using the Amazon Command Line Interface

To list all DB parameter groups for an Amazon account, use the Amazon Command Line Interface
list-db-parameter-groups command.

aws timestream-influxdb list-db-parameter-groups --region region

To return a specific DB parameter groups for an Amazon account, use the Amazon Command Line
Interface get-db-parameter-group command.

aws timestream-influxdb get-db-parameter-group --region region --identifier identifier

Viewing parameter values for a DB parameter group

You can get a list of all parameters in a DB parameter group and their values.

Using the Amazon Web Services Management Console

1. Sign in to the Amazon Web Services Management Console and open the Amazon Timestream
for InfluxDB console.

Connecting to an Amazon Timestream for InfluxDB DB instance 1155

https://console.amazonaws.cn/timestream/
https://console.amazonaws.cn/timestream/
https://console.amazonaws.cn/timestream/
https://console.amazonaws.cn/timestream/

Amazon Timestream Developer Guide

2. In the navigation pane, choose Parameter groups.

3. The DB parameter groups appear in a list.

4. Choose the name of the parameter group to see its list of parameters.

Using the Amazon Command Line Interface

To view the parameter values for a DB parameter group, use the Amazon Command Line Interface
get-db-parameter-group command. Replace parameter-group-identifier with your own
information.

get-db-parameter-group --identifier parameter-group-identifier

Using the API

To view the parameter values for a DB parameter group, use the Timestream API
GetDbParameterGroup command. Replace parameter-group-identifier with your own
information.

GetDbParameterGroup parameter-group-identifier

Working with Multi-AZ read replica clusters for Amazon
Timestream for InfluxDB

A read replica cluster deployment is an asynchronous deployment mode of Amazon Timestream
for InfluxDB that allows you to configure read replicas attached to a primary DB instance. A read
replica cluster has a writer DB instance and a reader DB instance in separate Availability Zones
within the same Amazon Web Services Region. Read replica clusters provide high availability and
increased capacity for read workloads when compared to Multi-AZ DB instance deployments.

Instance class availability for read replica clusters

Read replica cluster deployments are supported for the same instance types as regular Timestream
for InfluxDB instances.

Working with read replica clusters 1156

Amazon Timestream Developer Guide

Instance class vCPU Memory (GiB) Storage type Network
bandwidth
(Gbps)

db.influx
.medium

1 8 Influx IOPS
Included

10

db.influx.large 2 16 Influx IOPS
Included

10

db.influx.xlarge 4 32 Influx IOPS
Included

10

db.influx.2xlarge 8 64 Influx IOPS
Included

10

db.influx.4xlarge 16 128 Influx IOPS
Included

10

db.influx.8xlarge 32 256 Influx IOPS
Included

12

db.influx
.12xlarge

48 384 Influx IOPS
Included

20

db.influx
.16xlarge

64 512 Influx IOPS
Included

25

Read replica cluster architecture

With a read replica cluster, Amazon Timestream for InfluxDB automatically replicates all writes
made to the writer DB instance to all reader DB instances using InfluxData’s licensed read replica
add-on. This replication is asynchronous and all writes are acknowledged as soon as they are
committed by the writer node. Writes do not require acknowledgement from all reader nodes to be
considered as a successful write. Once data is committed by the writer DB instance, it is replicated
to the read replica instance almost instantaneously. In case of unrecoverable writer failure, any
data that has not been replicated over to at least one of the readers will be lost.

Read replica cluster architecture 1157

Amazon Timestream Developer Guide

A read replica instance is a read-only copy of a writer DB instance. You can reduce the load on your
writer DB instance by routing some or all of the queries from your applications to the read replica.
In this way, you can elastically scale out beyond the capacity constraints of a single DB instance for
read-heavy database workloads.

The following diagram shows a primary DB instance replicating to a read replica in a different
Availability Zone. Clients have read/write access to the primary DB instance and read-only access to
the replica.

Parameter groups for read replica clusters

In a read replica cluster, a DB parameter group acts as a container for engine configuration values
that are applied to every DB instance in the read replica cluster. A default DB parameter group is
set based on the DB engine and DB engine version. The settings in the DB parameter group are
used for all of the DB instances in the cluster.

Parameter groups 1158

Amazon Timestream Developer Guide

When passing a specific DB parameter group using CreateDbCluster or UpdateDbCluster for Multi-
AZ DB read replica, ensure the storage-wal-max-write-delay is set to a duration of 1 hour
minimum. If no DB parameter group is specified, storage-wal-max-write-delay will default to
1 hour.

Replica lag in read replica clusters

Although Timestream for InfluxDB read replica clusters allow for high write performance, replica
lag can still occur due to the nature of engine-based asynchronous replication. This lag can lead to
potential data loss in the event of a failover, making it essential to monitor.

You can track the replica lag from CloudWatch by selecting All metrics in the Amazon Web
Services Management Console navigation pane. Choose Timestream/InfluxDB, then By DbCluster.
Select your DbClusterName and then your DbReaderInstanceName. Here, besides the normal
set of metrics tracked for all Timestream for InfluxDB instances (see below list), you will also see
ReplicaLag, expressed in milliseconds.

• CPUUtilization

• MemoryUtilization

• DiskUtilization

• ReplicaLag (only for replica instance mode DB instances)

Common causes of replica lag

In general, replica lag occurs when the write and read workloads are too high for the reader
DB instances to apply the transactions efficiently. Various workloads can incur temporary or
continuous replica lag. Some examples of common causes are the following:

• High write concurrency or heavy batch updating on the writer DB instance, causing the apply
process on the reader DB instances to fall behind.

• Heavy read workload that is using resources on one or more reader DB instances. Running slow
or large queries can affect the apply process and can cause replica lag.

• Transactions that modify large amounts of data or DDL statements can sometimes cause a
temporary increase in replica lag because the database must preserve commit order.

Replica lag 1159

https://docs.amazonaws.cn/ts-influxdb/latest/ts-influxdb-api/API_CreateDbCluster.html
https://docs.amazonaws.cn/ts-influxdb/latest/ts-influxdb-api/API_UpdateDbCluster.html

Amazon Timestream Developer Guide

For a tutorial that shows you how to create a CloudWatch alarm when replica lag exceeds a set
amount of time, see Tutorial: Create an Amazon CloudWatch alarm for Multi-AZ cluster replica lag
for Amazon Timestream for InfluxDB.

Mitigating replica lag

For Timestream for InfluxDB read replica clusters, you can mitigate replica lag by reducing the load
on your writer DB instance.

Availability and durability

Read replica clusters can be configured to either automatically fail over to one of the reader
instances in case of writer failure to prioritize write availability or to avoid failing over to minimize
tip data loss. Tip data refers to the replication gap of data not yet replicated to at least one of the
reader nodes (see Replica lag in read replica clusters). The default and recommended behavior for
read replica clusters is to automatically fail over in case of writer failures. However, if tip data loss is
more important than write availability for your use cases, you can override the default by updating
the cluster.

Read replica clusters ensure that all DB instances of the cluster are distributed across at least two
Availability Zones to ensure increased write availability and data durability in case of an Availability
Zone outage.

Topics

• Overview of Amazon Timestream for InfluxDB read replica clusters

• Creating a Timestream for InfluxDB read replica cluster

• Connecting to a Timestream for InfluxDB read replica DB cluster

• Modifying a read replica cluster for Amazon Timestream for InfluxDB

• Creating CloudWatch alarms to monitor Amazon Timestream for InfluxDB

• Read replica licensing through Amazon Web Services Marketplace

Overview of Amazon Timestream for InfluxDB read replica clusters

The following sections discuss Timestream for InfluxDB read replica clusters:

Topics

• Use cases for read replicas

Availability and durability 1160

Amazon Timestream Developer Guide

• How read replicas work

• Characteristics of Timestream for InfluxDB read replicas

• Read replica instance and storage types

• Considerations when deleting replicas

Use cases for read replicas

Using a read replica cluster might make sense in a variety of scenarios, including the following:

• Scaling beyond the compute or I/O capacity of a single DB instance for read-heavy database
workloads. You can direct this excess read traffic to one or more read replicas.

• Serving read traffic while the primary writer instance is unavailable. In some cases, your primary
DB instance might not be able to take I/O requests, for example, due to I/O suspension for
backups or scheduled maintenance. In these cases, you can direct read traffic to your read
replica. For this use case, keep in mind that the data on the read replica might be "stale"
because the primary DB instance is unavailable. Also, keep in mind that you will need to turn off
automatic failover for these scenarios to work.

• Business reporting or data warehousing scenarios where you might want business reporting
queries to run against a read replica, rather than your production DB instance.

• Implementing disaster recovery. You can promote a read replica to primary as a disaster recovery
solution if the primary DB instance fails.

• Faster failover for scenarios where availability is more important than durability. Since read
replicas use asynchronous replication, there is a chance that some data that was committed by
the primary writer instance was not replicated before a failover. However, for applications where
uptime is paramount, this trade-off is acceptable. Depending on your workload characteristics,
a failover to a read replica could be significantly faster than a failover to a standby DB instance
that uses synchronous replication, as the replica instance is already running and does not need to
start the engine. This can be particularly beneficial in use cases where every minute counts.

How read replicas work

To create a read replica cluster, Amazon Timestream for InfluxDB uses InfluxData’s licensed read
replica add-ons. The add-on subscription is activated via the Amazon Web Services Marketplace,
directly from the Amazon Timestream management console. For more details, see Read replica
licensing through Amazon Web Services Marketplace.

Read replicas cluster overview 1161

Amazon Timestream Developer Guide

Read replicas are billed as standard DB instances at the same rates as the DB instance type used for
each node in your cluster, plus the cost of InfluxData’s licensed add-on. The cost of the add-on is
billed in instance-hours via the Amazon Web Services Marketplace. You aren't charged for the data
transfer incurred in replicating data between the source DB instance and a read replica within the
same Amazon Web Services Region.

Once you have created and configured your read replica cluster and start accepting writes, Amazon
Timestream for InfluxDB uses the asynchronous replication method to update the read replica
whenever there is a change to the primary DB instance.

The read replica functions as a dedicated DB instance, exclusively accepting read-only connections.
Applications can connect to a read replica in the same manner as they would to any other
DB instance, providing a seamless and familiar experience. Amazon Timestream for InfluxDB
automatically replicates all data from the primary DB instance to the read replica, ensuring data
consistency and accuracy. Note that updates are done at the cluster level and applied at the same
time to both the primary and replica.

Characteristics of Timestream for InfluxDB read replicas

Feature or behavior Timestream for InfluxDB

What is the replicati
on method?

Logical replication.

Can a replica be made
writable?

No, Timestream for InfluxDB read replicas are designed to be read-only
and cannot be made writable. While a read replica can be promoted
to primary in the event of a failover, thereby accepting writes, at any
given time, there can only be one writer DB instance in a Timestrea
m for InfluxDB read replica cluster. This ensures data consistency and
prevents conflicts that could arise from multiple writable instances. The
read replica's role is to provide a redundant, read-only copy of the data,
and it will automatically reject write requests to maintain data integrity
.

Can backups be
performed on the
replica?

Yes, you can use the built-in engine capabilities to create backups using
the Influx CLI.

Read replicas cluster overview 1162

Amazon Timestream Developer Guide

Feature or behavior Timestream for InfluxDB

Can you use parallel
replication?

No, Timestream for InfluxDB has a single process handling replication.

Read replica instance and storage types

A read replica is created with the same instance and storage type as the primary DB instance. Any
changes to the configuration must be made at the cluster level and will apply to all instances
within the cluster. All instance and storage configurations available for Timestream for InfluxDB DB
instances are available for Timestream for InfluxDB read replica clusters.

Instance types

Instance class vCPU Memory (GiB) Storage type Network
bandwidth
(Gbps)

db.influx
.medium

1 8 Influx IOPS
Included

10

db.influx.large 2 16 Influx IOPS
Included

10

db.influx.xlarge 4 32 Influx IOPS
Included

10

db.influx.2xlarge 8 64 Influx IOPS
Included

10

db.influx.4xlarge 16 128 Influx IOPS
Included

10

db.influx.8xlarge 32 256 Influx IOPS
Included

12

db.influx
.12xlarge

48 384 Influx IOPS
Included

20

Read replicas cluster overview 1163

Amazon Timestream Developer Guide

Instance class vCPU Memory (GiB) Storage type Network
bandwidth
(Gbps)

db.influx
.16xlarge

64 512 Influx IOPS
Included

25

Storage options

Timestream for InfluxDB DB
cluster storage

Source DB instance storage
allocation

Included IOPS

Influx IO Included (3K) 20 GiB to 16 TiB 3,000 IOPS

Influx IO Included (12K) 400 GiB to 16 TiB 12,000 IOPS

Influx IO Included (16K) 400 GiB to 16 TiB 16,000 IOPS

Considerations when deleting replicas

If you no longer require read replicas, you can explicitly delete the cluster by calling the delete-
db-cluster API. In the following example, replace each user input placeholder with your
own information. Keep in mind that you cannot remove a single node from your cluster at this
time.

aws timestream-influxdb delete-db-cluster \
 --region region \
 --endpoint endpoint \
 --db-cluster-id cluster-id

Creating a Timestream for InfluxDB read replica cluster

A Timestream for InfluxDB read replica cluster has a writer DB instance and a reader DB instance in
separate Availability Zones. Timestream for InfluxDB read replica clusters provide high availability,
increased capacity for read workloads, and faster failover when failover to replica is configured.

Creating a read replica cluster 1164

Amazon Timestream Developer Guide

DB cluster prerequisites

Important

The following are prerequisites to complete before creating a read replica cluster.

Topics

• Configure the network for the DB cluster

• Additional prerequisites

Configure the network for the DB cluster

You can only create a Timestream for InfluxDB read replica DB cluster in a virtual private cloud
(VPC) based on the Amazon VPC service. It must be in an Amazon Web Services Region that has at
least three Availability Zones. The DB subnet group that you choose for the DB cluster must cover
at least three Availability Zones. This configuration ensures that each DB instance in the DB cluster
is in a different Availability Zone.

To connect to your DB cluster from resources other than EC2 instances in the same VPC, configure
the network connections manually.

Additional prerequisites

Before you create your read replica cluster, consider the following additional prerequisites:

To tailor the configuration parameters for your DB cluster, specify a DB cluster parameter group
with the required parameter settings. For information about creating or modifying a DB cluster
parameter group, see Parameter groups for read replica clusters.

Determine the TCP/IP port number to specify for your DB cluster. The firewalls at some companies
block connections to the default ports. If your company firewall blocks the default port, choose
another port for your DB cluster. All DB instances in a DB cluster use the same port.

Create a DB cluster

You can create a Timestream for InfluxDB read replica DB cluster using the Amazon Web Services
Management Console, the Amazon CLI, or the Amazon Timestream for InfluxDB API.

Creating a read replica cluster 1165

Amazon Timestream Developer Guide

Using the Amazon Web Services Management Console

You can create a Timestream for InfluxDB read replica DB cluster by choosing Cluster with read
replicas in the Deployment settings section.

To create a read replica DB cluster using the console:

1. Sign in to the Amazon Web Services Management Console and open the Amazon
Timestream console.

2. In the upper-right corner of the Amazon Web Services Management Console, choose the
Amazon Web Services Region in which you want to create the read replica DB cluster.

3. In the navigation pane, choose InfluxDB databases.

4. Choose Create InfluxDB database.

5. In Deployment settings, choose Cluster with read replicas.

Once you select that option, a message will appear indicating you need to activate your
subscription via the Amazon Web Services Marketplace widget. Click on View subscription
options. Note that it can take 1–2 minutes for the subscription to become active.

Creating a read replica cluster 1166

https://console.amazonaws.cn/timestream

Amazon Timestream Developer Guide

6. Once the subscription is active, click View subscription.

7. A window will appear presenting information on the cost per vCPU per instance hour for
each Region. This follows the same compute pricing model where you are charged for the
number of hours your instance is active based on the instance type you have selected. You
will only need to subscribe to the add-on once, and that will allow you to create instances
in all Regions where Timestream for InfluxDB is available.

Creating a read replica cluster 1167

Amazon Timestream Developer Guide

Important

To subscribe to the offer, you will need to have either
AWSMarketplaceManageSubscriptions or AWSMarketplaceFullAccess permissions.
For more information about these permissions, check Controlling access to Amazon
Web Services Marketplace subscriptions.

Creating a read replica cluster 1168

https://docs.amazonaws.cn/marketplace/latest/buyerguide/buyer-iam-users-groups-policies.html
https://docs.amazonaws.cn/marketplace/latest/buyerguide/buyer-iam-users-groups-policies.html

Amazon Timestream Developer Guide

8. Once you confirm your subscription, the service will automatically select the Region based
on the Region of your instance.

9. In Database credentials, complete the following fields:

a. For DB cluster name, enter the identifier for your DB cluster.

b. Provide the InfluxDB basic initial configuration parameters: username, organization
name, bucket name, and password.

10. In Instance configuration, specify the DB instance class. Select an instance size that best
fits your workload needs. Keep in mind that this instance type will be used for all instances
in your read replica DB cluster.

11. In Storage configuration, select a Storage type that fits your needs. In all cases, you will
only need to configure the allocated storage. Keep in mind that this storage type will be
used for all instances in your read replica DB cluster.

12. In the Connectivity configuration section, make sure your InfluxDB cluster is in the same
subnet as the clients that require connectivity to your Timestream for InfluxDB DB instance.
You could also choose to make your DB instance publicly available in the Public access
subsection.

13. Choose Create InfluxDB database.

14. In the InfluxDB databases list, choose the name of your new InfluxDB cluster to show its
details. The DB cluster will have a status of Creating until it is ready to use.

15. When the status changes to Available, you can connect to the DB cluster. Depending on the
DB instance class and the amount of storage, it can take up to 20 minutes before the new
instance is available.

Creating a read replica cluster 1169

Amazon Timestream Developer Guide

16. Once created, you can click on your DB cluster identifier to retrieve information about your
newly created cluster. The endpoint showing an instance mode of PRIMARY is the one you
will need to use for writes and engine administration.

Using the Amazon CLI

To create a DB instance using the Amazon Command Line Interface, call the create-db-
cluster command with the following parameters. Replace each user input placeholder
with your own information.

aws timestream-influxdb create-db-cluster \
 --region region \
 --vpc-subnet-ids subnet-ids \
 --vpc-security-group-ids security-group-ids \
 --db-instance-type db.influx.large \
 --db-storage-type InfluxIOIncludedT2 \
 --allocated-storage 400 \

Creating a read replica cluster 1170

Amazon Timestream Developer Guide

 --password password \
 --name cluster-name \
 --deployment-type MULTI_NODE_READ_REPLICAS \
 --publicly-accessible
 //--failover-mode is optional and defaults to AUTOMATIC.

Settings for creating read replica clusters

For details about settings that you choose when you create a read replica cluster, see the following
table. For more information about the Amazon CLI options, see create-db-cluster. For more
information about the Amazon Timestream for InfluxDB API parameters, see CreateDbCluster.

Console setting Setting description CLI option and Timestream
for InfluxDB API parameter

Allocated storage The amount of storage
to allocate for each DB
instance in your DB cluster (in
gibibytes). For more informati
on, see InfluxDB instance
storage.

CLI option: --allocated-
storage

API parameter: allocated
Storage

Database port The port number on which
InfluxDB accepts connections.

Valid Values: 1024-65535

Default: 8086

Constraints: The value can't
be 2375-2376, 7788-7799,
8090, or 51678-51680.

CLI option: --port

API parameter: port

DB cluster name The name that uniquely
identifies the DB cluster.
DB instance names must be
unique per customer and per
region.

CLI option: --name

API parameter: name

Creating a read replica cluster 1171

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/timestream-influxdb/create-db-cluster.html
https://docs.amazonaws.cn/ts-influxdb/latest/ts-influxdb-api/API_CreateDbCluster.html

Amazon Timestream Developer Guide

Console setting Setting description CLI option and Timestream
for InfluxDB API parameter

DB instance type The compute and memory
capacity of each DB instance
in your Timestream for
InfluxDB DB cluster, for
example db.influx
.xlarge .

If possible, choose a DB
instance class large enough
that a typical query working
set can be held in memory.
When working sets are held
in memory, the system can
avoid writing to disk, which
improves performance.

CLI option: --db-inst
ance-type

API parameter: dbInstanc
eType

DB cluster parameter group The ID of the DB parameter
group to assign to your DB
cluster. DB parameter groups
specify how the database is
configured. For example, DB
parameter groups can specify
the limit for query concurren
cy.

CLI option: --db-para
meter-group-identi
fier

API parameter: dbParamet
erGroupIdentifier

Deployment type Specifies whether the DB
cluster will be deployed as
a multinode read replica or
a Multi-AZ multinode read
replica.

Possible values: MULTI_NOD
E_READ_REPLICAS

CLI option: --deploym
ent-type

API parameter: deploymen
tType

Creating a read replica cluster 1172

Amazon Timestream Developer Guide

Console setting Setting description CLI option and Timestream
for InfluxDB API parameter

VPC subnet ID The DB subnet ID you want
to use for the DB cluster.
Select Choose existing to
use an existing DB subnet
group, then choose the
required subnet group from
the Existing DB subnet
groups dropdown list. Choose
Automatic setup to let
Timestream for InfluxDB
select a compatible DB subnet
group.

CLI option: --vpc-sub
net-ids

API parameter: vpcSubnet
Ids

Organization The name of the initial
organization for the initial
admin user in InfluxDB. An
InfluxDB organization is a
workspace for a group of
users.

CLI option: --organiz
ation

API parameter: organizat
ion

Bucket The name of the initial
InfluxDB bucket. All InfluxDB
data is stored in a bucket. A
bucket combines the concept
of a database and a retention
period (the duration of time
that each data point persists)
. A bucket belongs to an
organization.

CLI option: --bucket

API parameter: bucket

Creating a read replica cluster 1173

Amazon Timestream Developer Guide

Console setting Setting description CLI option and Timestream
for InfluxDB API parameter

Log exports Configuration for sending
InfluxDB engine logs to a
specified S3 bucket.

Configuration for S3 bucket
log delivery: s3Configu
ration -> (structur
e)

The name of the S3 bucket to
deliver logs to: bucketName
-> (string)

Indicates whether log delivery
to the S3 bucket is enabled:
enabled -> (boolean)

Shorthand syntax:
s3Configuration={b
ucketName=string,
enabled=boolean}

CLI option: --log-del
ivery-configuration

API parameter: logDelive
ryConfiguration

Password The password of the initial
admin user you created in
InfluxDB. This password
will allow you to access
the InfluxDB UI to perform
various administrative tasks
and also use the InfluxDB
CLI to create an operator
token. These attributes will be
stored in a secret created in
Amazon Secrets Manager in
your account.

CLI option: --password

API parameter: password

Creating a read replica cluster 1174

Amazon Timestream Developer Guide

Console setting Setting description CLI option and Timestream
for InfluxDB API parameter

Username The username of the initial
admin user created in
InfluxDB. Must start with
a letter and can't end with
a hyphen or contain two
consecutive hyphens. For
example, my-user1. This
username will allow you to
access the InfluxDB UI to
perform various administr
ative tasks and also use
the InfluxDB CLI to create
an operator token. These
attributes will be stored in
a secret created in Amazon
Secrets Manager in your
account.

CLI option: --username

API parameter: username

Public access Indicates whether the DB
cluster is accessible from
outside the VPC.

Publicly accessible gives
the DB cluster a public IP
address, meaning it's accessibl
e outside the VPC. To be
publicly accessible, the DB
cluster also has to be in a
public subnet in the VPC.

Not publicly accessibl
e makes the DB cluster
accessible only from inside
the VPC.

CLI options: --publicly-
accessible --no-publ
icly-accessible

API parameter: publiclyA
ccessible

Creating a read replica cluster 1175

Amazon Timestream Developer Guide

Console setting Setting description CLI option and Timestream
for InfluxDB API parameter

DB storage type InfluxDB data.

You can choose between
three different types of
provisioned Influx IOPS
Included storage according to
your workload's requirements.

Possible values:

• InfluxIOIncludedT1

• InfluxIOIncludedT2

• InfluxIOIncludedT3

CLI options: --db-stor
age-type --no-publ
icly-accessible

API parameter: dbStorage
Type

VPC security group A list of VPC security group
IDs to associate with the DB
instance.

CLI options: --vpc-sec
urity-group-ids --no-
publicly-accessible

API parameter: vpcSecuri
tyGroupIds

VPC subnet IDs A list of VPC subnet IDs
to associate with the DB
instance. Provide at least two
VPC subnet IDs in different
Availability Zones when
deploying with a Timestream
for InfluxDB DB cluster.

CLI options: --vpc-sub
net-ids

API parameter: vpcSubnet
Ids

Creating a read replica cluster 1176

Amazon Timestream Developer Guide

Console setting Setting description CLI option and Timestream
for InfluxDB API parameter

Failover mode How your cluster responds
to a primary instance failure.
You can configure this with
the following options:

AUTOMATIC : If the primary
instance fails, the system
automatically promotes a
read replica to become the
new primary instance.

NO_FAILOVER : If the
primary instance fails, the
system attempts to restore
the primary instance without
promoting a read replica. The
cluster remains unavailable
until the primary instance is
restored.

CLI options: --failover-
mode

API parameter: failoverM
ode

Important

As part of the DB cluster response object, you will receive an
influxAuthParametersSecretArn. This will hold an ARN to a Secrets Manager secret in
your account. It will only be populated after your InfluxDB DB instances are available. The
secret contains Influx authentication parameters provided during the CreateDbInstance
process. This is a read-only copy as any updates/modifications/deletions to this secret
doesn't impact the created DB instance. If you delete this secret, our API response will still
refer to the deleted secret ARN.

Creating a read replica cluster 1177

Amazon Timestream Developer Guide

Connecting to a Timestream for InfluxDB read replica DB cluster

A Timestream for InfluxDB read replica DB cluster has two reachable DB instances instead of a
single DB instance. Each connection is handled by a specific DB instance. When you connect to a
read replica DB cluster, the hostname and port that you specify point to a fully qualified domain
name called an endpoint.

The primary (writer) endpoint connects to the writer DB instance of the read replica DB cluster,
which supports both read and write operations. The reader endpoint connects to the reader DB
instance, which support only read operations.

Using endpoints, you can map each connection to the appropriate DB instance based on your use
case. For example, to perform administrative or write statements, you can connect to whichever
DB instance is the writer DB instance. To perform queries, you can connect to the reader endpoint.
For diagnosis or tuning, you can connect to a specific DB instance endpoint, /metrics, to examine
details about a specific DB instance.

For information about connecting to a DB instance, see Connecting to an Amazon Timestream
for InfluxDB DB instance. For more information about connecting to read replica clusters, see the
following topics.

Types of read replica cluster endpoints

An endpoint is represented by a unique identifier that contains a host address. Each Timestream for
InfluxDB cluster has:

• A cluster endpoint.

• A cluster read-only endpoint.

• An instance endpoint for each instance in the cluster.

Cluster endpoint

A cluster endpoint (or writer endpoint) for a read replica cluster connects to the current writer DB
instance for that DB cluster. This endpoint is the only one that can perform write operations such
as:

• InfluxDB-specific administrative commands, e.g., creating, modifying, or deleting organizations,
users, buckets, tasks, etc.

• Writing data to your database cluster.

Connecting to a read replica DB cluster 1178

Amazon Timestream Developer Guide

You use the cluster endpoint for all write operations on the DB cluster, including writes, upserts,
deletes, and all configuration and administrative changes.

In addition, you can use the cluster endpoint for read operations, such as queries.

If the current writer DB instance of a DB cluster fails, the read replica cluster automatically fails
over to one of its replicas, promoting it as the new writer DB instance. During a failover, the DB
cluster continues to serve connection requests to the cluster endpoint from the new writer DB
instance, with minimal interruption of service. The read replica endpoint that was promoted to
writer will stop serving reads until a new replica is deployed.

The following example illustrates a cluster endpoint for a read replica cluster:

ipvtdwa5se-wmyjrrjko.us-west-2.timestream-influxdb.amazonaws.com

Read-only endpoint

The read-only endpoint connects to any one of the read replica instances in the cluster. Read
replicas will only support read operations, such as Flux or InfluxQL queries; in other words, all
operations executed against the /api/v2/query endpoint for Flux queries or /api/query
endpoint for InfluxQL v1-compatible queries. By processing those statements on the reader DB
instances, this endpoint reduces the overhead on the writer DB instance. It also helps the cluster to
handle a higher number of simultaneous queries.

The following example illustrates a reader endpoint for a read replica cluster. The read-only intent
of a reader endpoint is denoted by the -ro within the cluster endpoint name.

ipvtdwa5se-wmyjrrjko-ro.us-west-2.timestream-influxdb.amazonaws.com

Instance endpoint

An instance endpoint connects to a specific DB instance within a read replica cluster. Each DB
instance in a DB cluster has its own unique instance endpoint. Therefore, there is one instance
endpoint for the current writer DB instance of the DB cluster (the primary), and there is one
instance endpoint for each of the reader DB instances in the DB cluster.

The instance endpoint provides direct control over connections to the DB cluster. This control can
help you address scenarios where using the cluster endpoint or reader endpoint might not be
appropriate. For example, your client application might require more fine-grained load balancing

Connecting to a read replica DB cluster 1179

Amazon Timestream Developer Guide

based on workload type. In this case, you can configure multiple clients to connect to different
reader DB instances in a DB cluster to distribute read workloads.

The following example illustrates an instance endpoint for a DB instance in a read replica cluster:

mydbinstance-123456789012.us-east-1.timestream-influxdb.amazonaws.com

Modifying a read replica cluster for Amazon Timestream for InfluxDB

A read replica cluster has a writer DB instance and a reader DB instance in separate Availability
Zones. Read replica clusters provide high availability, increased capacity for read workloads, and
faster failover when compared to Multi-AZ deployments. For more information about read replica
clusters, see Overview of Amazon Timestream for InfluxDB read replica clusters.

You can modify a read replica cluster to change its settings.

Important

You can't modify the DB instances within a read replica cluster. All modifications must be
done at the DB cluster level.
You can modify a read replica cluster using the Amazon Web Services Management
Console, the Amazon CLI, or the Amazon Timestream for InfluxDB API.

Modify a read replica cluster for Amazon Timestream for InfluxDB

Using the Amazon Web Services Management Console

To modify a read replica DB cluster using the console:

1. Sign in to the Amazon Web Services Management Console and open the Amazon
Timestream console.

2. In the navigation pane, choose InfluxDB databases and then choose the read replica cluster
you want to modify.

3. Choose Modify. The Modify DB cluster page appears.

4. Choose any of the settings that you want. For information about each setting, see Settings
for modifying read replica clusters.

5. After you have made your changes, choose Continue and check the summary of
modifications.

Modifying a read replica cluster 1180

https://console.amazonaws.cn/timestream

Amazon Timestream Developer Guide

6. On the confirmation page, review your changes. If they're correct, choose Modify DB
cluster to save your changes. Alternatively, choose Back to edit your changes or Cancel to
cancel your changes.

Important

Currently Amazon Timestream for InfluxDB only supports Apply Immediately updates
for the read replica cluster. If you confirm the changes, your DB cluster will incur
downtime while the changes are being applied.

Using the Amazon CLI

To modify a DB instance using the Amazon Command Line Interface, use the update-db-
cluster command with the following parameters. Replace each user input placeholder
with your own information.

aws timestream-influxdb update-db-cluster \
 --region region \
 --db-cluster-id db-cluster-id \
 --db-instance-type db.influx.4xlarge \
 --port 10000 \
 --failover mode NO_FAILOVER

Settings for modifying read replica clusters

For details about settings that you can use to modify a read replica cluster, see the following table.
For more information about the Amazon CLI options, see update-db-cluster.

Console setting Setting description CLI option and Timestream
for InfluxDB API parameter

Database port The port number on which
InfluxDB accepts connections.

Valid Values: 1024-65535

CLI option: --port

API parameter: port

Modifying a read replica cluster 1181

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/timestream-influxdb/update-db-cluster.html

Amazon Timestream Developer Guide

Console setting Setting description CLI option and Timestream
for InfluxDB API parameter

Default: 8086

Constraints: The value can't
be 2375-2376, 7788-7799,
8090, or 51678-51680.

DB instance type The compute and memory
capacity of each DB instance
in your Timestream for
InfluxDB DB cluster, for
example db.influx
.xlarge . If possible, choose
a DB instance class large
enough that a typical query
working set can be held in
memory. When working
sets are held in memory, the
system can avoid writing
to disk, which improves
performance.

CLI option: --db-inst
ance-type

API parameter: dbInstanc
eType

DB cluster parameter group The ID of the DB parameter
group to assign to your DB
cluster. DB parameter groups
specify how the database is
configured. For example, DB
parameter groups can specify
the limit for query concurren
cy.

CLI option: --db-para
meter-group-identi
fier

API parameter: dbParamet
erGroupIdentifier

Modifying a read replica cluster 1182

Amazon Timestream Developer Guide

Console setting Setting description CLI option and Timestream
for InfluxDB API parameter

Log exports Configuration for sending
InfluxDB engine logs to a
specified S3 bucket.

Configuration for S3 bucket
log delivery: s3Configu
ration -> (structur
e)

The name of the S3 bucket to
deliver logs to: bucketName
-> (string)

Indicate whether log delivery
to the S3 bucket is enabled:
enabled -> (boolean)

Shorthand syntax:
s3Configuration={b
ucketName=string,
enabled=boolean}

CLI option: --log-del
ivery-configuration

API parameter: logDelive
ryConfiguration

Modifying a read replica cluster 1183

Amazon Timestream Developer Guide

Console setting Setting description CLI option and Timestream
for InfluxDB API parameter

Failover mode Configure how your cluster
responds to a primary
instance failure using the
following options:

AUTOMATIC : If the primary
instance fails, the system
automatically promotes a
read replica to become the
new primary instance.

NO_FAILOVER : If the
primary instance fails, the
system attempts to restore
the primary instance without
promoting a read replica. The
cluster remains unavailable
until the primary instance is
restored.

CLI option: --failover-
mode

API parameter: failoverM
ode

Creating CloudWatch alarms to monitor Amazon Timestream for
InfluxDB

You can create a CloudWatch alarm that sends an Amazon SNS message when the alarm changes
state. An alarm watches a single metric over a time period that you specify. The alarm can also
perform one or more actions based on the value of the metric relative to a given threshold over a
number of time periods. The action is a notification sent to an Amazon SNS topic or Amazon EC2
Auto Scaling policy.

Alarms invoke actions for sustained state changes only. CloudWatch alarms don't invoke actions
simply because they are in a particular state. The state must have changed and have been
maintained for a specified number of time periods.

Creating CloudWatch alarms to monitor Timestream for InfluxDB 1184

Amazon Timestream Developer Guide

You can set CloudWatch alarms on any of the available metrics for Timestream for InfluxDB,
including CPUUtilization, MemoryUtilization, DiskUtilization, and ReplicaLag.

We recommend to start creating DiskUtilization-related alarms for your Timestream for
InfluxDB databases, since out-of-storage space issues can turn out to be fairly problematic to
InfluxDB. We recommend setting alerts to be sent whenever DiskUtilization goes over
approximately 75–80 percent.

To set an alarm using the Amazon CLI

Call put-metric-alarm. For more information, see put-metric-alarm in the Amazon CLI
Command Reference.

To set an alarm using the CloudWatch API

Call PutMetricAlarm. For more information, see PutMetricAlarm in the Amazon CloudWatch API
Reference. For more information about setting up Amazon SNS topics and creating alarms, see
Using Amazon CloudWatch alarms.

Tutorial: Create an Amazon CloudWatch alarm for Multi-AZ cluster replica lag for
Amazon Timestream for InfluxDB

You can create an Amazon CloudWatch alarm that sends an Amazon SNS message when replica lag
for a Multi-AZ DB cluster has exceeded a threshold. An alarm watches the ReplicaLag metric over
a time period that you specify. The action is a notification sent to an Amazon SNS topic or Amazon
EC2 Auto Scaling policy.

To set a CloudWatch alarm for Multi-AZ DB cluster replica lag

1. Sign in to the Amazon Web Services Management Console and open the CloudWatch console
at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Alarms, then All alarms.

3. Choose Create alarm.

4. On the Specify metric and conditions page, choose Select metric.

5. In the search box, enter the name of your DB cluster, select Timestream/InfluxDB, By
DbCluster, and then select your cluster.

Creating CloudWatch alarms to monitor Timestream for InfluxDB 1185

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cloudwatch/put-metric-alarm.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_PutMetricAlarm.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://console.amazonaws.cn/cloudwatch

Amazon Timestream Developer Guide

6. The following image shows the Select metric page with a read replica cluster named
inframonitoringcluster selected. Choose the metric you want to create an alarm for, in
this case ReplicaLag. Click Select metric.

7. On the Specify metric and conditions page, customize the following fields:

Creating CloudWatch alarms to monitor Timestream for InfluxDB 1186

Amazon Timestream Developer Guide

a. Select a period of time for your calculations in the Period section.

b. Set up the conditions related to your alarm. For Threshold type, you can choose between
Static and Anomaly detection.

In this case, we will use Static since we know how our workload behaves. Each workload
might have different requirements when it comes to what is considered "healthy."

c. Select your threshold value. In the case of Static threshold values, these will be in
milliseconds.

d. Choose Next.

8. On the Configure actions page, in the Notification section, customize the following settings:

Creating CloudWatch alarms to monitor Timestream for InfluxDB 1187

Amazon Timestream Developer Guide

a. For Alarm state trigger, select In alarm.

b. Choose Create new topic in Send a notification to the following SNS topic.

c. Enter a unique topic name and a valid email address that will receive the notification.

d. Choose Create topic. Scroll down and choose Next.

9. On the Add name and description page, enter an Alarm name and Alarm description. Choose
Next.

Creating CloudWatch alarms to monitor Timestream for InfluxDB 1188

Amazon Timestream Developer Guide

10. Review your alarm settings on the Preview and create page, and then choose Create alarm.

Important

To keep your Timestream for InfluxDB cluster in a healthy state, we also recommend
monitoring and creating alarms for CPUUtilization and MemoryUtilization that
consistently exceed a healthy 85 percent usage and DiskUtilization that exceeds 75
percent.

Read replica licensing through Amazon Web Services Marketplace

To use Timestream for InfluxDB read replicas, you will need to activate the Timestream for InfluxDB
read replicas add-on license through Amazon Web Services Marketplace. Once the license is active,
you will pay an hourly rate to use read replica clusters. You will only pay for the hours your read
replica cluster is active. If you subscribe to the license but have no active Timestream for InfluxDB
read replica clusters, you will not be charged.

Topics

• Read replica licensing terminology

• Payments and billing

• Subscribing to the InfluxDB read replica add-on on Marketplace listings

Read replica licensing through Amazon Web Services Marketplace 1189

Amazon Timestream Developer Guide

Read replica licensing terminology

This page uses the following terminology when discussing the Amazon Timestream for InfluxDB
integration with Amazon Web Services Marketplace.

SaaS subscription

In Amazon Web Services Marketplace, software-as-a-service (SaaS) products such as the pay-as-
you-go license model adopt a usage-based subscription model. InfluxData, the software seller
for the read replica add-on, tracks your usage and you pay only for what you use.

InfluxData Marketplace fees

Fees charged for the InfluxDB read replica add-on software license usage by InfluxData. These
service fees are metered through Amazon Web Services Marketplace and appear on your
Amazon bill under the Amazon Web Services Marketplace section.

Amazon Timestream for InfluxDB fees

Fees that Amazon charges for the Amazon Timestream for InfluxDB services, which excludes
licenses when using Timestream for InfluxDB read replica clusters. Fees are metered through
the Amazon Timestream for InfluxDB service being used and appear on your Amazon bill.

Payments and billing

Timestream for InfluxDB integrates with Amazon Web Services Marketplace to offer hourly, pay-
as-you-go licenses for the read replica add-on. The read replica Marketplace fees cover the license
costs of the read replica add-on software, and the Amazon Timestream fees cover the costs of your
Timestream for InfluxDB read replica cluster usage. For information about pricing, see Amazon
Timestream pricing.

To stop these fees, you must delete any Timestream for InfluxDB read replica clusters. In addition,
you can remove your subscriptions to Amazon Web Services Marketplace for read replica add-
on license. If you remove your subscriptions without deleting your read replica clusters, Amazon
Timestream will continue to bill you for the use of the read replica clusters. For more information,
see Considerations when deleting replicas.

You can view bills and manage payments for your Timestream for InfluxDB read replica cluster
in the Amazon Billing console. Your bills includes two charges: one for your usage of InfluxData's
licensed add-on through Amazon Web Services Marketplace, and one for your usage of Amazon

Read replica licensing through Amazon Web Services Marketplace 1190

https://www.amazonaws.cn/timestream/pricing
https://www.amazonaws.cn/timestream/pricing

Amazon Timestream Developer Guide

Timestream. For more information about billing, see Understanding your bill in the Amazon Billing
and Cost Management User Guide.

Subscribing to the InfluxDB read replica add-on on Marketplace listings

To use the read replica add-on license through Amazon Web Services Marketplace, you must use
the Amazon Timestream Amazon Web Services Management Console to subscribe to the InfluxDB
read replica add-on. You cannot complete these tasks through the Amazon CLI or the Timestream
for InfluxDB API.

Topics

• Subscribe from Amazon Timestream Amazon Web Services Management Console

• Subscribe to the InfluxDB read replica add-on in Amazon Web Services Marketplace

Note

If you want to create your read replica cluster by using the Amazon CLI or the Timestream
for InfluxDB API, you must complete this step first.

Subscribe from Amazon Timestream Amazon Web Services Management Console

You can subscribe to the InfluxDB read replica add-on using the Timestream Management Console.
Start the Create InfluxDB Database flow and follow the steps. For more information, see Creating
a Timestream for InfluxDB read replica cluster.

Subscribe to the InfluxDB read replica add-on in Amazon Web Services Marketplace

To use the InfluxDB add-on license with Amazon Web Services Marketplace, you need to have an
active Amazon Web Services Marketplace subscription for the InfluxDB read replica add-on. You
will need to subscribe to a single add-on offer and that will allow you to create any instance type
you need in any of the available regions. For information about Amazon Web Services Marketplace
subscriptions, see SaaS products through Amazon Web Services Marketplace in the Amazon Web
Services Marketplace Buyer Guide.

We recommend that you subscribe to InfluxDB in Amazon Web Services Marketplace before you
start creating a DB instance.

1. Navigate to the Amazon Web Services Marketplace and search for InfluxData.

Read replica licensing through Amazon Web Services Marketplace 1191

https://docs.amazonaws.cn/awsaccountbilling/latest/aboutv2/getting-viewing-bill.html
https://docs.amazonaws.cn/marketplace/latest/buyerguide/buyer-saas-products.html#saas-pricing-models
https://console.amazonaws.cn/marketplace

Amazon Timestream Developer Guide

2. Select Timestream for InfluxDB Read Replicas (Add-On).

3. Select View purchase options.

4. Review the End User License Agreement and choose Subscribe.

Read replica licensing through Amazon Web Services Marketplace 1192

Amazon Timestream Developer Guide

Read replica licensing through Amazon Web Services Marketplace 1193

Amazon Timestream Developer Guide

5. You can now create your Timestream for InfluxDB read replica cluster using the Timestream
Management Console, CLI, or API.

Managing DB instances

This section covers various aspects of managing Amazon Timestream for InfluxDB instance to
ensure optimal performance, availability, and monitoring capabilities. It provides guidance on
updating configurations of your database instances, handling multi-AZ deployments, and failover
processes. It also explains how to delete database instances and set up log viewing for your
InfluxDB instances.

Topics

• Updating DB instances

• Maintaining a DB instance

• Deleting a DB instance

• Multi-AZ DB instance deployments

• Setup to view InfluxDB logs on Timestream Influxdb Instances

Updating DB instances

You can update the following configuration parameters of your Timestream for InfluxDB instance:

• Instance class

• Storage type

• Allocated storage (increase only)

• Deployment type

• Parameter group

• Log delivery configuration

Important

We recommend you test all changes on a test instance before modifying the production
instance to understand their impact, especially when upgrading database versions.

Managing DB instances 1194

Amazon Timestream Developer Guide

Review the impact on your database and applications before updating settings. Some
modifications require a DB instance reboot, resulting in downtime.

Using the Amazon Web Services Management Console

1. Sign in to the Amazon Web Services Management Console and open the Amazon Timestream
for InfluxDB console.

2. In the navigation pane, choose InfluxDB Databases, and then choose the DB instance that you
want to modify.

3. Choose Modify.

4. On the Modify DB instance page, make the desired changes.

5. Choose Continue and check the summary of modifications.

6. Choose Next.

7. Review your changes.

8. Choose Modify instance to apply your changes.

Note

These modifications require a reboot of the Influx DB instance and can cause an outage in
some cases.

Using the Amazon Command Line Interface

To update a DB instance by using the Amazon Command Line Interface, call the update-db-
instance command. Specify the DB instance identifier and the values for the options that you
want to modify. For information about each option, see Settings for DB instances.

Example Example

The following code modifies my-db-instance by setting a different db-parameter-group-
name. Replace each user input placeholder with your own information. The changes are
applied immediately.

For Linux, macOS, or Unix:

Updating DB instances 1195

https://console.aws.amazon.com/timestream/
https://console.aws.amazon.com/timestream/

Amazon Timestream Developer Guide

aws timestream-influxdb update-db-instance \
 --identifier my-db-instance \
 --db-storage-type desired-storage-type \
 --allocated-storage desired-allocated-storage \
 --db-instance-type desired-instance-type \
 --deployment-type desired-deployment-type \
 --db-parameter-group-name new-param-group \
 --port 8086

For Windows:

aws timestream-influxdb update-db-instance ^
 --identifier my-db-instance ^
 --db-storage-type desired-storage-type ^
 --allocated-storage desired-allocated-storage ^
 --db-instance-type desired-instance-type ^
 --deployment-type desired-deployment-type ^
 --db-parameter-group-name new-param-group
 --port 8086

Maintaining a DB instance

Periodically, Amazon Timestream for InfluxDB performs maintenance on Amazon Timestream for
InfluxDB resources. Maintenance most often involves updates to the following resources in your DB
instance:

• Underlying hardware

• Underlying operating system (OS)

• Database engine version

Updates to the operating system most often occur for security issues.

Some maintenance items require that Amazon Timestream for InfluxDB take your DB instance
offline for a short time. Maintenance items that require a resource to be offline include required
operating system or database patching. Required patching is automatically scheduled only for
patches that are related to security and instance reliability. Such patching occurs infrequently,
typically once every few months. It seldom requires more than a fraction of your maintenance
window.

Maintaining a DB instance 1196

Amazon Timestream Developer Guide

• Maintenance windows are configured to take place everyday between 12 AM and 4 AM local time
for the Region your instance is being hosted.

• Customer resources might be patched once a week in any one of the seven maintenance
windows in the week.

Deleting a DB instance

Deleting a DB instance has an effect on instance recoverability, and snapshot availability. Consider
the following issues:

• If you want to delete all Timestream for InfluxDB resources, note that the DB instances resources
incur billing charges.

• When the status for a DB instance is deleting, its CA certificate value doesn't appear in the
Timestream for InfluxDB console or in output for Amazon Command Line Interface commands or
Timestream API operations.

• The time required to delete a DB instance varies depending on how much data is deleted, and
whether a final snapshot is taken.

You can delete a DB instance using the Amazon Web Services Management Console, the Amazon
Command Line Interface, or the Timestream API. You must provide the name of the DB instance:

Using the Amazon Web Services Management Console

1. Sign in to the Amazon Web Services Management Console and open the Amazon Timestream
for InfluxDB console.

2. In the navigation pane, choose InfluxDB Databases, and then choose the DB instance that you
want to delete.

3. Choose Delete.

4. Enter confirm in the box.

5. Choose Delete.

Using the Amazon Command Line Interface

To find the instance IDs of the DB instances in your account, call the list-db-instances
command:

Deleting a DB instance 1197

https://console.amazonaws.cn/timestream/
https://console.amazonaws.cn/timestream/

Amazon Timestream Developer Guide

aws timestream-influxdb list-db-instances \
--endpoint-url YOUR_ENDPOINT \
--region YOUR_REGION

To delete a DB instance by using the Amazon CLI, call the delete-db-instance command with
the following options:

aws timestream-influxdb list-db-instances \
--identifier YOUR_DB_INSTANCE \

Example Example

For Linux, macOS, or Unix:

aws timestream-influxdb delete-db-instance \
 --identifier mydbinstance

For Windows:

aws timestream-influxdb delete-db-instance ^
 --identifier mydbinstance

Multi-AZ DB instance deployments

Amazon Timestream for InfluxDB provides high availability and failover support for DB instances
using Multi-AZ deployments with a single standby DB instance. This type of deployment is called
a Multi-AZ DB instance deployment. Amazon Timestream for InfluxDB use the Amazon failover
technology.

In a Multi-AZ DB instance deployment, Amazon Timestream automatically provisions and
maintains a synchronous standby replica in a different Availability Zone. The primary DB instance is
synchronously replicated across Availability Zones to a standby replica to provide data redundancy.
Running a DB instance with high availability can enhance availability during DB instance failure
and Availability Zone disruption. For more information on , see Amazon Web Services Regions and
Availability Zones .

Multi-AZ DB instance deployments 1198

Amazon Timestream Developer Guide

Note

The high availability option isn't a scaling solution for read-only scenarios. You can't use a
standby replica to serve read traffic.

Using the Amazon Timestream console, you can create a Multi-AZ DB instance deployment
by simply specifying Create a standby instance option in the Availability and durability
configuration section when creating a DB instance. You can also specify a Multi-AZ DB instance
deployment with the Amazon Command Line Interface or Amazon Timestream API. Use the
create-db-instance or CLI command, or the CreateDBInstance API operation.

DB instances using Multi-AZ DB instance deployments can have increased write and commit
latency compared to a Single-AZ deployment. This can happen because of the synchronous data
replication that occurs. You might have a change in latency if your deployment fails over to the
standby replica, although Amazon is engineered with low-latency network connectivity between .
For production workloads, we recommend that you use IOPS Included storage 12K or 16K IOPS
for fast, consistent performance. For more information about DB instance classes, see DB instance
classes.

Configuring and managing a multi-AZ deployment

Timestream for InfluxDB Multi-AZ deployments can only have one standby. When the deployment
has one standby DB instance, it's called a Multi-AZ DB instance deployment. A Multi-AZ DB instance
deployment has one standby DB instance that provides failover support, but doesn't serve read
traffic.

Important

Your instance must have at least two subnets associated with it to execute Single-AZ to
Multi-AZ updates. Once the instance is created, you can't modify its deployment mode
from Single-AZ to Multi-AZ .

You can use the Amazon Web Services Management Console to determine whether your DB
instance is a Single-AZ or Multi-AZ deployment.

Multi-AZ DB instance deployments 1199

Amazon Timestream Developer Guide

Using the Amazon Web Services Management Console

1. Sign in to the Amazon Web Services Management Console and open the Amazon Timestream
for InfluxDB console.

2. In the navigation pane, choose InfluxDB databases, and then choose DB identifier.

A Multi-AZ DB instance deployment has the following characteristics:

• There is only one row for the DB instance.

• The value of Role is Instance or Primary.

• The value of Multi-AZ is Yes.

Failover process for Amazon Timestream

If a planned or unplanned outage of your DB instance results from an infrastructure defect,
Amazon Timestream for InfluxDB automatically switches to a standby replica in another Availability
Zone if you have turned on Multi-AZ. The time that it takes for the failover to complete depends on
the database activity and other conditions at the time the primary DB instance became unavailable.
Failover times are typically 60–120 seconds. However, large transactions or a lengthy recovery
process can increase failover time. When the failover is complete, it can take additional time for the
Timestream console to reflect the new Availability Zone.

Note

Amazon Timestream handles failovers automatically so you can resume database
operations as quickly as possible without administrative intervention. The primary DB
instance switches over automatically to the standby replica if any of the conditions
described in the following table occurs.

Failover reason Description

The operating system underlying the
Timestream database instance is being
patched in an offline operation.

A failover was triggered during the maintenan
ce window for an OS patch or a security
update.

Multi-AZ DB instance deployments 1200

https://console.amazonaws.cn/timestream/
https://console.amazonaws.cn/timestream/

Amazon Timestream Developer Guide

Failover reason Description

The primary host of the Timestream Multi-AZ
instance is unhealthy.

The Multi-AZ DB instance deployment
detected an impaired primary DB instance and
failed over.

The primary host of the Timestream Multi-AZ
instance is unreachable due to loss of network
connectivity.

Timestream monitoring detected a network
reachability failure to the primary DB instance
and triggered a failover.

The Timestream instance was modified by
customer.

An Timesteam for InfluxDB DB instance
modification triggered a failover. For more
information, see Updating DB instances.

The Timestream Multi-AZ primary instance is
busy and unresponsive.

The primary DB instance is unresponsive.
We recommend that you do the following
: * Examine the event for excessive CPU,
memory, or swap space usage. * Evaluate your
workload to determine whether you're using
the appropriate DB instance class. For more
information, see DB instance classes.

The storage volume underlying the primary
host of the Timestream Multi-AZ instance
experienced a failure.

The Multi-AZ DB instance deployment
detected a storage issue on the primary DB
instance and failed over.

Setting the JVM TTL for DNS name lookups

The failover mechanism automatically changes the Domain Name System (DNS) record of the DB
instance to point to the standby DB instance. As a result, you need to re-establish any existing
connections to your DB instance. In a Java virtual machine (JVM) environment, due to how the Java
DNS caching mechanism works, you might need to reconfigure JVM settings.

The JVM caches DNS name lookups. When the JVM resolves a host name to an IP address, it caches
the IP address for a specified period of time, known as the time-to-live (TTL).

Because Amazon resources use DNS name entries that occasionally change, we recommend that
you configure your JVM with a TTL value of no more than 60 seconds. Doing this makes sure that

Multi-AZ DB instance deployments 1201

Amazon Timestream Developer Guide

when a resource's IP address changes, your application can receive and use the resource's new IP
address by requerying the DNS.

On some Java configurations, the JVM default TTL is set so that it never refreshes DNS entries until
the JVM is restarted. Thus, if the IP address for an Amazon resource changes while your application
is still running, it can't use that resource until you manually restart the JVM and the cached IP
information is refreshed. In this case, it's crucial to set the JVM's TTL so that it periodically refreshes
its cached IP information.

You can get the JVM default TTL by retrieving the networkaddress.cache.ttl property value:

String ttl = java.security.Security.getProperty("networkaddress.cache.ttl");

Note

The default TTL can vary according to the version of your JVM and whether a security
manager is installed. Many JVMs provide a default TTL less than 60 seconds. If you're using
such a JVM and not using a security manager, you can ignore the rest of this topic.
To modify the JVM's TTL, set the networkaddress.cache.ttl property value. Use one of the
following methods, depending on your needs:

• To set the property value globally for all applications that use the JVM, set
networkaddress.cache.ttl in the $JAVA_HOME/jre/lib/security/
java.security file.

networkaddress.cache.ttl=60

• To set the property locally for your application only, set networkaddress.cache.ttl
in your application's initialization code before any network connections are established.

java.security.Security.setProperty("networkaddress.cache.ttl" , "60");

Setup to view InfluxDB logs on Timestream Influxdb Instances

By default InfluxDB generates logs that go to stdout. For more information, see Manage InfluxDB
logs

Setup to view InfluxDB Logs on Timestream Influxdb Instances 1202

https://docs.influxdata.com/influxdb/v2/admin/logs
https://docs.influxdata.com/influxdb/v2/admin/logs

Amazon Timestream Developer Guide

To view InfluxDB logs generated from the Instance you have created through Timestream InfluxDB,
we provide the opportunity to provide hourly logs. These logs will go to a specified S3 bucket that
you must create before creating your instance.

• Before creating the instance, the provided Amazon S3 bucket must also give Timestream-
InfluxDB permission to send logs to this bucket by providing a bucket policy with Timestream
InfluxDB Service Principal as following (replace {BUCKET_NAME} with the actual name of your
Amazon S3 bucket:

{
 "Version": "2012-10-17",
 "Id": "PolicyForInfluxLogs",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "timestream-influxdb.amazonaws.com"
 },
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::{BUCKET_NAME}/InfluxLogs/*"
 }
]
}

• The bucket provided must be in the same account and same Region of your created Timestream
InfluxDB instance

Here is the command you can call to make an instance to receive influx logs:

aws timestream-influxdb create-db-instance \
 --name myinfluxDbinstance \
 --allocated-storage 400 \
 --db-instance-type db.influx.4xlarge \
 --vpc-subnet-ids subnetid1 subnetid2
 --vpc-security-group-ids mysecuritygroup \
 --username masterawsuser \
 --password \
 --db-storage-type InfluxIOIncludedT2

Here is the format of this parameter.

Setup to view InfluxDB Logs on Timestream Influxdb Instances 1203

Amazon Timestream Developer Guide

-- log-delivery-configuration
{
 "S3Configuration": {
 "BucketName": "string",
 "Enabled": true|false
 }
}

• This field is not required and logging is not enabled by default.

• Not setting this field is the same as not having logs enabled.

• Logs will be sent to specified bucket with a prefix of InfluxLogs/.

• After creating the instance, you can modify the log delivery configuration with the update-db-
instance API command.

InfluxDB offers different types of logs. These can be configured by setting the InfluxDB Parameters.
Use the flux-log-enabled and log-level parameters to configure the type of logs that is emitted
from the instance. For more information, see Supported parameters and parameter values.

Adding tags and labels to resources

You can label Amazon Timestream for InfluxDB resources using tags. Tags let you categorize your
resources in different ways—for example, by purpose, owner, environment, or other criteria. Tags
can help you do the following:

• Quickly identify a resource based on the tags that you assigned to it.

• See Amazon bills broken down by tags.

Tagging is supported by Amazon services like Amazon Elastic Compute Cloud (Amazon EC2),
Amazon Simple Storage Service (Amazon S3), Timestream for InfluxDB, and more. Efficient tagging
can provide cost insights by enabling you to create reports across services that carry a specific tag.

Finally, it is good practice to follow optimal tagging strategies. For information, see Amazon
Tagging Strategies.

Tagging resources 1204

https://d0.awsstatic.com/aws-answers/AWS_Tagging_Strategies.pdf
https://d0.awsstatic.com/aws-answers/AWS_Tagging_Strategies.pdf

Amazon Timestream Developer Guide

Tagging restrictions

Each tag consists of a key and a value, both of which you define. The following restrictions apply:

• Each Timestream for InfluxDB DB instance can have only one tag with the same key. If you try to
add an existing tag, the existing tag value is updated to the new value.

• A value acts as a descriptor within a tag category. In Timestream for InfluxDB the value cannot
be empty or null.

• Tag keys and values are case sensitive.

• The maximum key length is 128 Unicode characters.

• The maximum value length is 256 Unicode characters.

• The allowed characters are letters, white space, and numbers, plus the following special
characters: + - = . _ : /

• The maximum number of tags per resource is 50.

• Amazon-assigned tag names and values are automatically assigned the aws: prefix, which you
can't assign. Amazon-assigned tag names don't count toward the tag limit of 50. User-assigned
tag names have the prefix user: in the cost allocation report.

• You can't backdate the application of a tag.

Security best practices for Timestream for InfluxDB

Optimize writes to InfluxDB

As any other time series database, InfluxDB is built to be able to ingest and process data in real-
time. To keep the system performing at its best we recommend following optimizations when
writing data to InfluxDB:

• Batch Writes: When writing data to InfluxDB, write data in batches to minimize the network
overhead related to every write request. The optimal batch size is 5000 lines of line protocol per
write request. To write multiple lines in one request, each line of line protocol must be delimited
by a new line (\n).

• Sort tags by key: Before writing data points to InfluxDB, sort tags by key in lexicographic order.

measurement,tagC=therefore,tagE=am,tagA=i,tagD=i,tagB=think fieldKey=fieldValue
 1562020262

Tagging restrictions 1205

Amazon Timestream Developer Guide

Optimized line protocol example with tags sorted by key
measurement,tagA=i,tagB=think,tagC=therefore,tagD=i,tagE=am fieldKey=fieldValue
 1562020262

• Use the coarsest time precision possible: – InfluxDB writes data in nanosecond precision,
however if your data isn’t collected in nanoseconds, there is no need to write at that precision.
For better performance, use the coarsest precision possible for timestamps. You can specify the
write precision when:

• When using the SDK you can specify the WritePrecision when setting the time attribute of your
point. For more information on InfluxDB client libraries, see the InfluxDB Documentation.

• When using Telegraf, you configure the time precision in the Telegraf agent configuration.
Precision is specified as an interval with an integer + unit (e.g. 0s,10ms,2us,4s). Valid time units
are “ns”, “us”, “ms”, and “s”.

[agent]
 interval ="10s"
 metric_batch_size="5000"
 precision = "0s"

• Use gzip compression: – Use gzip compression to speed up writes to InfluxDB and reduce
network bandwidth. Benchmarks have shown up to a 5x speed improvement when data is
compressed.

• When using Telegraf, in the Influxdb_v2 output plugin configuration in your telegraf.conf, set
the content_encoding option to gzip:

[[outputs.influxdb_v2]]
 urls = ["http://localhost:8086"]
 # ...
 content_encoding = "gzip"

• When using client libraries, each InfluxDB client library provides options for compressing write
requests or enforces compression by default. The method for enabling compression is different
for each library. For specific instructions, see the InfluxDB Documentation

• When using the InfluxDB API /api/v2/write endpoint to write data, compress the data with
gzip and set the Content-Encoding header to gzip.

Optimize writes to InfluxDB 1206

https://docs.influxdata.com/influxdb/v2/api-guide/client-libraries/
https://docs.influxdata.com/influxdb/v2/api-guide/client-libraries/
https://docs.influxdata.com/influxdb/v2/api-guide/client-libraries/

Amazon Timestream Developer Guide

Design for performance

Design your schema for simpler and more performance queries. The following guidelines will
ensure that your schema will be easy to query and maximize query performance:

• Design to query: Choose measurements, tag keys, and field keys that are easy to query. To
achieve this goal, follow these principles:

• Use measurements that have a simple name and accurately describe the schema.

• Avoid using the same name for a tag key and field key within the same schema.

• Avoid using reserved Flux keywords and special characters in tag and field keys.

• Tags store metadata that describe the fields and are common across many data points.

• Fields store unique or highly variable data, usually numeric data points.

• Measurements and keys should not contain data, but used to either aggregate or describe
data. Data will be stored in tag and field values.

• Keep your time series cardinality under control High series cardinality is one of the main causes
of decreased write and read performance in InfluxDB. In the context of InfluxDB high cardinality
refers to the presence of a very large number of unique tag values. Tags values are indexed in
InfluxDB which means that a very high number of unique values will generate a larger index
which can slow down data ingestion and query performance.

To better understand and resolve potential high cardinality related issues you can follow these
steps:

• Understand the causes of high cardinality

• Measure the cardinality of your buckets

• Take action to resolve high cardinality

• Causes of high series cardinality InfluxDB indexes the data based on measurements and tags
to speed up data reads. Each set of indexed data elements forms a series key. Tags containing
highly variable information like unique IDs, hashes, and random strings lead to a large number of
series, also known as high series cardinality. High series cardinality is the primary driver of high
memory usage in InfluxDB.

• Measuring series cardinality If you experience performance slowdowns or see an ever increasing
memory usage in your Timestream for InfluxDB instance, we recommend measureing the series
cardinality of your buckets.

Design for performance 1207

https://docs.influxdata.com/influxdb/v2/reference/glossary/#measurement
https://docs.influxdata.com/influxdb/v2/reference/glossary/#tag-key
https://docs.influxdata.com/influxdb/v2/reference/glossary/#field-key
https://docs.influxdata.com/influxdb/v2/reference/glossary/#tag-key
https://docs.influxdata.com/influxdb/v2/reference/glossary/#field-key
https://docs.influxdata.com/flux/v0/spec/lexical-elements/#keywords
https://docs.influxdata.com/influxdb/v2/reference/glossary/#series-key
https://docs.influxdata.com/influxdb/v2/reference/glossary/#tag
https://docs.influxdata.com/influxdb/v2/reference/glossary/#series
https://docs.influxdata.com/influxdb/v2/reference/glossary/#series-cardinality

Amazon Timestream Developer Guide

InfluxDB provides functions that allows you to measure series cardinality both in Flux and
InfluxQL.

• In Flux use the function influxdb.cardinality()

• In FluxQL use the SHOW SERIES CARDINALITY command

In both cases the engine will return the number of unique series keys in your data. Keep in mind
that is it not recommended to have more than 10 million series keys on any of your Timestream
for InfluxDB instances.

• Causes of high series cardinality If you encounter that any of your buckets have high cardinality
there are a few correcting steps you can take to fix it:

• Review your tags: Ensure that your workloads don’t generate cases were tags have unique
values for most entries. This could happen in cases where the number of unique tag values
always grows over time, or if log type messages are being written to the database where every
message would have an unique combination of timestamp, tags etc. You can use the following
Flux code to help you figure out which Tags are contributing most to your high cardinality
issues:

// Count unique values for each tag in a bucketimport "influxdata/influxdb/schema"

cardinalityByTag = (bucket) => schema.tagKeys(bucket: bucket)
 |> map(
 fn: (r) => ({
 tag: r._value,
 _value: if contains(set: ["_stop", "_start"], value: r._value) then
 0
 else
 (schema.tagValues(bucket: bucket, tag: r._value)
 |> count()
 |> findRecord(fn: (key) => true, idx: 0))._value,
 }),
)
 |> group(columns: ["tag"])
 |> sum()

cardinalityByTag(bucket: "amzn-s3-demo-bucket")

If you’re experiencing very high cardinality, the query above may time out. If you experience a
timeout, run the queries below – one at a time.

Design for performance 1208

Amazon Timestream Developer Guide

Generate a list of tags:

// Generate a list of tagsimport "influxdata/influxdb/schema"

schema.tagKeys(bucket: "amzn-s3-demo-bucket")

Count unique tag values for each tag:

// Run the following for each tag to count the number of unique tag valuesimport
 "influxdata/influxdb/schema"

tag = "example-tag-key"

schema.tagValues(bucket: "amzn-s3-demo-bucket1", tag: tag)
 |> count()

We recommend that you run these at different points in time to identify which tag is growing
faster.

• Improve your schema: Follow the modeling recommendations discussed in our Security best
practices for Timestream for InfluxDB.

• Remove or aggregate older data to reduce cardinality: Consider whether or not your use
cases needs all the data that is causing your high cardinality issues. If this data is not longer
needed or accessed frequently you can aggregate it, delete it or export it to another engine
such as Timestream for Live Analytics for long term storage and analysis.

Troubleshooting

Warning of "dev" version not recognized

The warning 'WARN: Couldn't parse version "dev" reported by server, assuming latest backup/
restore APIs are supported' may be displayed during migration. This warning can be ignored.

Migration failed during restoration stage

In the event of a failed migration during the restoration stage, users can use the --retry-
restore-dir flag to re-attempt the restoration. Use the --retry-restore-dir flag with a
path to a previously backed-up directory to skip the backup stage and retry the restoration stage.

Troubleshooting 1209

Amazon Timestream Developer Guide

The created backup directory used for a migration will be indicated if a migration fails during
restoration.

Possible reasons for a restore failing include:

• Invalid InfluxDB destination token – A bucket existing in the destination instance with the same
name as in the source instance. For individual bucket migrations use the --dest-bucket option
to set a unique name for the migrated bucket

• Connectivity failure, either with the source or destination hosts or with an optional S3 bucket.

Amazon Timestream for InfluxDB basic operational guidelines

Following are basic operational guidelines that everyone should follow when working with Amazon
Timestream for InfluxDB. Note that the Amazon Timestream for InfluxDB Service Level Agreement
requires that you follow these guidelines:

• Use metrics to monitor your memory, CPU, and storage usage. You can set up Amazon
CloudWatch to notify you when usage patterns change or when you approach the capacity of
your deployment. This way, you can maintain system performance and availability.

• Scale up your DB instance when you are approaching storage capacity limits. You should have
some buffer in storage and memory to accommodate unforeseen increases in demand from your
applications. Keep in mind that at this time, you will need to create a new instance and migrate
your data to achieve this.

• If your database workload requires more I/O than you have provisioned, recovery after a failover
or database failure will be slow. To increase the I/O capacity of a DB instance, do any or all of the
following:

• Migrate to a different DB instance with higher I/O capacity.

• If you are already using Influx IOPS Included storage storage, provision a storage type with
higher IOPS Included.

• If your client application is caching the Domain Name Service (DNS) data of your DB instances,
set a time-to-live (TTL) value of less than 30 seconds. The underlying IP address of a DB
instance can change after a failover. Caching the DNS data for an extended time can thus lead
to connection failures. Your application might try to connect to an IP address that's no longer in
service.

Amazon Timestream for InfluxDB basic operational guidelines 1210

Amazon Timestream Developer Guide

DB instance RAM recommendations

An Amazon Timestream for InfluxDB performance best practice is to allocate enough RAM so that
your working set resides almost completely in memory. The working set is the data and indexes
that are frequently in use on your instance. The more you use the DB instance, the more the
working set will grow.

Security in Timestream for InfluxDB

Cloud security at Amazon is the highest priority. As an Amazon customer, you benefit from a
data center and network architecture that is built to meet the requirements of the most security-
sensitive organizations.

Security is a shared responsibility between Amazon and you. The shared responsibility model
describes this as security of the cloud and security in the cloud:

• Security of the cloud – Amazon is responsible for protecting the infrastructure that runs
Amazon services in the Amazon Cloud. Amazon also provides you with services that you can use
securely. The effectiveness of our security is regularly tested and verified by third-party auditors
as part of the Amazon compliance programs. To learn about the compliance programs that apply
to Timestream for InfluxDB, see Amazon Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the Amazon service that you
use. You are also responsible for other factors including the sensitivity of your data, your
organization's requirements, and applicable laws and regulations.

This documentation will help you understand how to apply the shared responsibility model when
using Timestream for InfluxDB. The following topics show you how to configure Timestream
for InfluxDB to meet your security and compliance objectives. You'll also learn how to use other
Amazon services that can help you to monitor and secure your Timestream for InfluxDB resources.

Topics

• Overview

• Database authentication with Amazon Timestream for InfluxDB

• How Amazon Timestream for InfluxDB uses secrets

• Data protection in Timestream for InfluxDB

• Identity and Access Management for Amazon Timestream for InfluxDB

DB instance RAM recommendations 1211

http://www.amazonaws.cn/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

Amazon Timestream Developer Guide

• Logging and monitoring in Timestream for InfluxDB

• Compliance validation for Amazon Timestream for InfluxDB

• Resilience in Amazon Timestream for InfluxDB

• Infrastructure security in Amazon Timestream for InfluxDB

• Configuration and vulnerability analysis in Timestream for InfluxDB

• Incident response in Timestream for InfluxDB

• Amazon Timestream for InfluxDB API and interface VPC endpoints (Amazon PrivateLink)

• Security best practices for Timestream for InfluxDB

Overview

This documentation helps you understand how to apply the shared responsibility model when
using Amazon Timestream for InfluxDB. The following topics show you how to configure Amazon
Timestream for InfluxDB to meet your security and compliance objectives. You also learn how to
use other Amazon services that help you monitor and secure your Amazon Timestream for InfluxDB
resources.

You can manage access to your Amazon Timestream for InfluxDB resources and your databases on
a DB instance. The method you use to manage access depends on what type of task the user needs
to perform with Amazon Timestream for InfluxDB:

• Run your DB instance in a Virtual Private Cloud (VPC) based on the Amazon VPC service for
network access control.

• Use Amazon Identity and Access Management (IAM) policies to assign permissions that
determine who is allowed to manage Amazon Timestream for InfluxDB resources. For example,
you can use IAM to determine who is allowed to create, describe, modify, and delete DB
instances, tag resources, or modify security groups.

• Use security groups to control what IP addresses or Amazon EC2 instances can connect to your
databases on a DB instance. When you first create a DB instance, it's only accessible through rules
specified by an associated security group.

• Use Secure Socket Layer (SSL) or Transport Layer Security (TLS) connections with your DB
instances.

• Use the security features of your InfluxDB engine to control who can log in to the databases on
a DB instance. These features work just as if the database was on your local network. For more
information, see Security in Timestream for InfluxDB.

Overview 1212

https://www.amazonaws.cn/compliance/shared-responsibility-model/

Amazon Timestream Developer Guide

Note

You have to configure security only for your use cases. You don't have to configure security
access for processes that Amazon Timestream for InfluxDB manages. These include creating
backups, replicating data between a primary DB instance and a read replica, and other
processes.

Topics

• General security

General security

Topics

• Permissions

• Network access

• Dependencies

• S3 buckets

Permissions

InfluxDB users should be granted least-privilege permissions. Only tokens granted to specific users,
instead of operator tokens, should be used during migration.

Timestream for InfluxDB uses IAM permissions to control user permissions. We recommend users
be granted access to the specific actions and resources that they require. For more information, see
Grant least privilege access.

Network access

The Influx migration script can function locally, migrating data between two InfluxDB instances on
the same system, but it is assumed that the primary use case for migrations will be migrating data
across the network, either a local or public network. With this comes security considerations. The
Influx migration script will, by default, verify TLS certificates for instances with TLS enabled: we
recommend that users enable TLS in their InfluxDB instances and do not use the --skip-verify
option for the script.

Overview 1213

https://docs.amazonaws.cn/wellarchitected/2022-03-31/framework/sec_permissions_least_privileges.html

Amazon Timestream Developer Guide

We recommend you use an allow-list to restrict network traffic to be from sources you are
expecting. You can do this by limiting network traffic to the InfluxDB instances only from known
IPs.

Dependencies

The latest major versions of all dependencies should be used, including Influx CLI, InfluxDB,
Python, the Requests module, and optional dependencies such as mountpoint-s3 and rclone.

S3 buckets

If S3 buckets are used as a temporary storage for migration, we recommend enabling TLS,
versioning, and disabling public access.

Using S3 buckets for migration

1. Open the Amazon Web Services Management Console, navigate to Amazon Simple Storage
Service and then choose Buckets.

2. Choose the bucket you wish to use.

3. Choose the Permissions tab.

4. Under Block public access (bucket settings), choose Edit.

5. Check Block all public access.

6. Choose Save changes.

7. Under Bucket policy, choose Edit.

8. Enter the following, replacing <example-bucket> with your bucket name, to enforce the use of
TLS version 1.2 or later for connections:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "EnforceTLSv12orHigher",
 "Principal": {
 "AWS": "*"
 },
 "Action": [
 "s3:*"
],
 "Effect": "Deny",

Overview 1214

Amazon Timestream Developer Guide

 "Resource": [
 "arn:aws:s3:::<example bucket>/*",
 "arn:aws:s3:::<example bucket>"
],
 "Condition": {
 "NumericLessThan": {
 "s3:TlsVersion": 1.2
 }
 }
 }
]
}

9. Choose Save changes.

10. Choose the Properties tab.

11. Under Bucket Versioning, choose Edit.

12. Check Enable.

13. Choose Save changes.

For information about Amazon S3 bucket best security practices, see Security best practices for
Amazon Simple Storage Service.

Database authentication with Amazon Timestream for InfluxDB

Amazon Timestream for InfluxDB supports two ways to authenticate database users.

Password and access Token database authentication use different methods of authenticating to the
database. Therefore, a specific user can log in to a database using only one authentication method.
In both cases InfluxDB performs all administration of user accounts and API tokens.

Password authentication

During the InfluxDB DB instance creation process, you created an organization, user and password.
The user has permissions to manage everything in your Timestream for InfluxDB DB instance. With
this username and password combination you will be able to LogIn into your instance using the
InfluxUI and also use the InfluxCLI to generate an operator token.

An operator token is required to create users, delete buckets , organizations etc. For more
information, see Database authentication options.

Database authentication with Amazon Timestream for InfluxDB 1215

https://docs.amazonaws.cn/AmazonS3/latest/userguide/security-best-practices.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/security-best-practices.html

Amazon Timestream Developer Guide

API tokens

InfluxDB API tokens ensure secure interaction between InfluxDB and external tools such as clients
or applications. An API token belongs to a specific user and identifies InfluxDB permissions within
the user’s organization.

There are three types of API tokens in InfluxDB:

• Operator Token: Grants full read and write access to all organizations and all organization
resources in InfluxDB OSS 2.x. Some operations, for example, retrieving the server configuration,
require operator permissions. To create an operator token manually with the InfluxDB UI, api/
v2 API, or Influx CLI after the setup process is completed, you must use an existing operator
token or your username and password. To create a new operator token without using an existing
one, see the influxd recovery auth CLI.

Important

Because operator tokens have full read and write access to all organizations in the
database, we recommend creating an All-Access token for each organization and
using those to manage InfluxDB. This helps to prevent accidental interactions across
organizations.

• All-Access API Token: Grants full read and write access to all resources in an organization.

• Read/Write Tokens: Grants read access, write access, or both to specific buckets in an
organization.

All InfluxDb tokens are long lived tokens with no set expiration date, so it is not recommended to
use your operator or all access tokens to sent monitoring data from your clients or Telegraf agents
neither to embed them in your dashboarding applications. For these applications create read/write
tokens with just the necessary permissions to get the job done. Fo more information on how to
create influxDB token, see Create a token.

Secrets

InfluxDB operator tokens are generated on instance setup; other kinds of tokens, such as all-access
and read/write tokens, can be created using the Influx CLI, Influx v2 API, or the Timestream for
InfluxDB Multi-user rotation function. See Manage API tokens for how to generate, view, assign,
and delete tokens.

Database authentication with Amazon Timestream for InfluxDB 1216

https://docs.influxdata.com/influxdb/v2/reference/cli/influxd/recovery/auth/
https://docs.influxdata.com/influxdb/v2/admin/tokens/create-token/
https://docs.influxdata.com/influxdb/v2/admin/tokens/create-token/
https://docs.influxdata.com/influxdb/v2/tools/influx-cli/
https://docs.influxdata.com/influxdb/v2/admin/tokens/

Amazon Timestream Developer Guide

We recommend that you rotate Timestream for InfluxDB tokens often using Amazon Secrets
Manager and store tokens via environment variables. See Use Tokens for token usage in
environment variables and Rotating the secret for how to rotate Timestream for InfluxDB users and
tokens.

See also:

• Infrastructure security in Amazon Timestream for InfluxDB

• Security best practices for Timestream for InfluxDB

How Amazon Timestream for InfluxDB uses secrets

Timestream for InfluxDB supports username and password authentication through the user
interface, and token credentials for least privilege client and application connections. Timestream
for InfluxDB users have allAccess permissions within their organization while tokens can have
any set of permissions. Following best practices for secure API token management, users should be
created to manage tokens for fine-grain access within an organization. Additional information on
admin best practices with Timestream for InfluxDB can be found in the Influxdata documentation.

Amazon Secrets Manager is a secret storage service that you can use to protect database
credentials, API keys, and other secret information. Then in your code, you can replace hardcoded
credentials with an API call to Secrets Manager. This helps ensure that the secret can't be
compromised by someone examining your code, because the secret isn't there. For an overview of
Secrets Manager, see What is Amazon Secrets Manager.

When you create a database instance, Timestream for InfluxDB automatically creates an admin
secret for you to use with the multi-user rotation Amazon Lambda function. In order to rotate
Timestream for InfluxDB users and tokens, you must create a new secret by hand for each user or
token you wish to rotate. Each secret can be configured to rotate on a schedule with the use of a
Lambda function. The process to setup a new rotating secret consists of uploading the Lambda
function code, configuring the Lambda role, defining the new secret, and configuring the secret
rotation schedule.

What's in the secret

When you store Timestream for InfluxDB user credentials in the secret, use the following format.

Single-user:

How Timestream for InfluxDB uses secrets 1217

https://docs.influxdata.com/influxdb/cloud/admin/tokens/use-tokens/#add-a-token-to-a-cli-request
https://docs.influxdata.com/influxdb/v2/admin/tokens/create-token/
https://docs.amazonaws.cn/secretsmanager/latest/userguide/intro.html

Amazon Timestream Developer Guide

{
 "engine": "<required: must be set to 'timestream-influxdb'>",
 "username": "<required: username>",
 "password": "<required: password>",
 "dbIdentifier": "<required: DB identifier>"
}

When you create a Timestream for InfluxDB instance, an admin secret is automatically stored
in Secrets Manager with credentials to be used with the multi-user Lambda function. Set the
adminSecretArn to the Authentication Properties Secret Manager ARN value found
on the DB instance summary page or to the ARN of an admin secret. To create a new admin secret
you must already have the associated credentials and the credentials must have admin privileges.

When you store Timestream for InfluxDB token credentials in the secret, use the following format.

Multi-user:

{
 "engine": "<required: must be set to 'timestream-influxdb'>",
 "org": "<required: organization to associate token with>",
 "adminSecretArn": "<required: ARN of the admin secret>",
 "type": "<required: allAccess or operator or custom>",
 "dbIdentifier": "<required: DB identifier>",
 "token": "<required unless generating a new token: token being rotated>",
 "writeBuckets": "<optional: list of bucketIDs for custom type token, must be input
 within plaintext panel, for example ['id1','id2']>",
 "readBuckets": "<optional: list of bucketIDs for custom type token, must be input
 within plaintext panel, for example ['id1','id2']>",
 "permissions": "<optional: list of permissions for custom type token, must be input
 within plaintext panel, for example ['write-tasks','read-tasks']>"
}

When you store Timestream for InfluxDB admin credentials in the secret, use the following format:

Admin secret:

{
 "engine": "<required: must be set to 'timestream-influxdb'>",
 "username": "<required: username>",
 "password": "<required: password>",
 "dbIdentifier": "<required: DB identifier>",
 "organization": "<optional: initial organization>",

How Timestream for InfluxDB uses secrets 1218

Amazon Timestream Developer Guide

 "bucket": "<optional: initial bucket>"
}

To turn on automatic rotation for the secret, the secret must be in the correct JSON structure. See
Rotating the secret for how to rotate Timestream for InfluxDB secrets.

Modifying the secret

The credentials generated during the Timestream for InfluxDB instance creation process are
stored in a Secrets Manager secret in your account. The GetDbInstance response object contains
an influxAuthParametersSecretArn which holds the Amazon Resource Name (ARN) to such
secret. The secret will only be populated after your Timestream for InfluxDB instance is available.
This is a READONLY copy as any updates/modifications/deletions to this secret doesn't impact the
created DB instance. If you delete this secret, the API response will still refer to the deleted secret
ARN.

To create a new token in the Timestream for InfluxDB instance rather than store existing token
credentials, you can create non-operator tokens by leaving the token value blank in the secret
and using the multi-user rotation function with the AUTHENTICATION_CREATION_ENABLED
Lambda environment variable set to true. If you create a new token, the permissions defined in
the secret are assigned to the token and cannot be altered after the first successful rotation. For
more information on rotating secrets, see Rotating Amazon Secrets Manager Secrets.

If a secret is deleted, the associated user or token in the Timestream for InfluxDB instance will not
be deleted.

Rotating the secret

You use the Timestream for InfluxDB single- and multi-user rotation Lambda functions to rotate
Timestream for InfluxDB user and token credentials. Use the single-user Lambda function to
rotate user credentials for your Timestream for InfluxDB instance, and use the multi-user Lambda
function to rotate token credentials for your Timestream for InfluxDB instance.

Rotating users and tokens with the single- and multi-user Lambda functions is optional.
Timestream for InfluxDB credentials never expire and any exposed credentials pose a risk for
malicious actions against your DB instance. The advantage of rotating Timestream for InfluxDB
credentials with Secrets Manager is an added security layer which limits the attack vector of
exposed credentials to the window of time until the next rotation cycle. If no rotation mechanism is
in place for your DB instance, any exposed credentials will be valid until they are manually deleted.

How Timestream for InfluxDB uses secrets 1219

https://docs.amazonaws.cn/ts-influxdb/latest/ts-influxdb-api/API_GetDbInstance.html
https://docs.amazonaws.cn/ts-influxdb/latest/ts-influxdb-api/API_GetDbInstance.html#API_GetDbInstance_ResponseSyntax
https://docs.amazonaws.cn/secretsmanager/latest/userguide/rotating-secrets.html

Amazon Timestream Developer Guide

You can configure Secrets Manager to automatically rotate secrets for you according to a schedule
that you specify. This enables you to replace long-term secrets with short-term ones, which helps
to significantly reduce the risk of compromise. For more information on rotating secrets with
Secrets Manager, see Rotate Amazon Secrets Manager Secrets.

Rotating users

When you rotate users with the single-user Lambda function, a new random password will be
assigned to the user after each rotation. For more information on how to enable automatic
rotation, see Set up automatic rotation for non-database Amazon Secrets Manager secrets.

Rotating admin secrets

To rotate an admin secret you use the single-user rotation function. You need to add the engine
and dbIdentifier values to the secret since those values are not automatically populated on DB
initialization. See What's in the secret for the complete secret template.

To locate an admin secret for a Timestream for InfluxDB instance you use the admin secret ARN
from the Timestream for InfluxDB instance summary page. It is recommended that you rotate
all Timestream for InfluxDB admin secrets since admin users have elevated permissions for the
Timestream for InfluxDB instance.

Lambda rotation function

You can rotate a Timestream for InfluxDB user with the single-user rotation function by using
the What's in the secret with a new secret and adding the required fields for your Timestream for
InfluxDB user. For more information on secret rotation Lambda functions, see Rotation by Lambda
function.

You can rotate a Timestream for InfluxDB user with the single-user rotation function by using
the What's in the secret with a new secret and adding the required fields for your Timestream for
InfluxDB user. For more information on secret rotation Lambda functions, see Rotation by Lambda
function.

The single user rotation function authenticates with the Timestream for InfluxDB DB instance using
the credentials defined in the secret, then generates a new random password and sets the new
password for the user. For more information on secret rotation Lambda functions, see Rotation by
Lambda function.

How Timestream for InfluxDB uses secrets 1220

https://docs.amazonaws.cn/secretsmanager/latest/userguide/rotating-secrets.html
https://docs.amazonaws.cn/secretsmanager/latest/userguide/rotate-secrets_turn-on-for-other.html
https://docs.amazonaws.cn/secretsmanager/latest/userguide/rotate-secrets_lambda.html
https://docs.amazonaws.cn/secretsmanager/latest/userguide/rotate-secrets_lambda.html
https://docs.amazonaws.cn/secretsmanager/latest/userguide/rotate-secrets_lambda.html
https://docs.amazonaws.cn/secretsmanager/latest/userguide/rotate-secrets_lambda.html
https://docs.amazonaws.cn/secretsmanager/latest/userguide/rotate-secrets_lambda.html
https://docs.amazonaws.cn/secretsmanager/latest/userguide/rotate-secrets_lambda.html

Amazon Timestream Developer Guide

Lambda function execution role permissions

Use the following IAM policy as the role for the single-user Lambda function. The policy gives
the Lambda function the required permissions to perform a secret rotation for Timestream for
InfluxDB users.

Replace all items listed below in the IAM policy with values from your Amazon account:

• {rotating_secret_arn} — The ARN for the secret being rotated can be found in the Secrets
Manager secret details.

• {db_instance_arn} — The Timestream for InfluxDB instance ARN can be found on the
Timestream for InfluxDB instance summary page.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:DescribeSecret",
 "secretsmanager:GetSecretValue",
 "secretsmanager:PutSecretValue",
 "secretsmanager:UpdateSecretVersionStage"
],
 "Resource": "{rotating_secret_arn}"
 },
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetRandomPassword"
],
 "Resource": "*"
 },
 {
 "Action": [
 "timestream-influxdb:GetDbInstance"
],
 "Resource": "{db_instance_arn}",
 "Effect": "Allow"
 }
]

How Timestream for InfluxDB uses secrets 1221

Amazon Timestream Developer Guide

}

Rotating tokens

You can rotate a Timestream for InfluxDB token with the multi-user rotation function by using
the What's in the secret with a new secret and adding the required fields for your Timestream
for InfluxDB token. For more information on secret rotation Lambda functions, see Rotation by
Lambda function.

You can rotate a Timestream for InfluxDB token by using the Timestream for InfluxDB multi-user
Lambda function. Set the AUTHENTICATION_CREATION_ENABLED environment variable to true
in the Lambda configuration to enable token creation. To create a new token, use the What's in the
secret for your secret value. Omit the token key-value pair in the new secret and set the type to
allAccess, or define the specific permissions and set the type to custom. The rotation function
will create a new token during the first rotation cycle. You can't change the token permissions by
editing the secret after rotation and any subsequent rotations will use the permissions that are set
in the DB instance.

Lambda rotation function

The multi-user rotation function rotates token credentials by creating a new permission identical
token using the admin credentials in the admin secret. The Lambda function validates the token
value in the secret before creating the replacement token, storing the new token value in the
secret, and deleting the old token. If the Lambda function is creating a new token it will first
validate that the AUTHENTICATION_CREATION_ENABLED environment variable is set to true,
that there is no token value in the secret, and that the token type is not type operator.

Lambda function execution role permissions

Use the following IAM policy as the role for the multi-user Lambda function. The policy gives
the Lambda function the required permissions to perform a secret rotation for Timestream for
InfluxDB tokens.

Replace all items listed below in the IAM policy with values from your Amazon account:

• {rotating_secret_arn} — The ARN for the secret being rotated can be found in the Secrets
Manager secret details.

• {authentication_properties_admin_secret_arn} — The Timestream for InfluxDB admin secret
ARN can be found on the Timestream for InfluxDB instance summary page.

How Timestream for InfluxDB uses secrets 1222

https://docs.amazonaws.cn/secretsmanager/latest/userguide/rotate-secrets_lambda.html
https://docs.amazonaws.cn/secretsmanager/latest/userguide/rotate-secrets_lambda.html

Amazon Timestream Developer Guide

• {db_instance_arn} — The Timestream for InfluxDB instance ARN can be found on the
Timestream for InfluxDB instance summary page.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:DescribeSecret",
 "secretsmanager:GetSecretValue",
 "secretsmanager:PutSecretValue",
 "secretsmanager:UpdateSecretVersionStage"
],
 "Resource": "{rotating_secret_arn}"
 },
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue"
],
 "Resource": "{authentication_properties_admin_secret_arn}"
 },
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetRandomPassword"
],
 "Resource": "*"
 },
 {
 "Action": [
 "timestream-influxdb:GetDbInstance"
],
 "Resource": "{db_instance_arn}",
 "Effect": "Allow"
 }
]
}

How Timestream for InfluxDB uses secrets 1223

Amazon Timestream Developer Guide

Data protection in Timestream for InfluxDB

The Amazon shared responsibility model applies to data protection in Amazon Timestream for
InfluxDB. As described in this model, Amazon is responsible for protecting the global infrastructure
that runs all of the Amazon Web Services Cloud. You are responsible for maintaining control
over your content that is hosted on this infrastructure. You are also responsible for the security
configuration and management tasks for the Amazon Web Services services that you use. For more
information about data privacy, see the Data Privacy FAQ.

For data protection purposes, we recommend that you protect Amazon Web Services account
credentials and set up individual users with Amazon IAM Identity Center or Amazon Identity and
Access Management (IAM). That way, each user is given only the permissions necessary to fulfill
their job duties. We also recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with Amazon resources. We require TLS 1.2 and recommend TLS
1.3.

• Set up API and user activity logging with Amazon CloudTrail. For information about using
CloudTrail trails to capture Amazon activities, see Working with CloudTrail trails in the Amazon
CloudTrail User Guide.

• Use Amazon encryption solutions, along with all default security controls within Amazon Web
Services services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-3 validated cryptographic modules when accessing Amazon through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-3.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with Timestream for InfluxDB or other Amazon Web Services services using the
console, API, Amazon CLI, or Amazon SDKs. Any data that you enter into tags or free-form text
fields used for names may be used for billing or diagnostic logs. If you provide a URL to an external
server, we strongly recommend that you do not include credentials information in the URL to
validate your request to that server.

Data protection 1224

https://aws.amazon.com/compliance/shared-responsibility-model/
https://www.amazonaws.cn/compliance/data-privacy-faq/
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-trails.html
https://www.amazonaws.cn/compliance/fips/

Amazon Timestream Developer Guide

For more detailed information on Timestream for InfluxDB data protection topics like Encryption at
Rest and Key Management, select any of the available topics below.

Topics

• Encryption at rest

• Encryption in transit

Encryption at rest

Timestream for InfluxDB encryption at rest provides enhanced security by encrypting all your
data at rest using encryption keys stored in Amazon Key Management Service (Amazon KMS).
This functionality helps reduce the operational burden and complexity involved in protecting
sensitive data. With encryption at rest, you can build security-sensitive applications that meet strict
encryption compliance and regulatory requirements.

• Encryption is turned on by default on your Timestream for InfluxDB DB instance, and cannot
be turned off. The industry standard AES-256 encryption algorithm is the default encryption
algorithm used.

• Amazon KMS is used for encryption at rest in Timestream for InfluxDB.

• You don't need to modify your DB instance client applications to use encryption.

Encryption in transit

All your Timestream for InfluxDB data is encrypted in transit. By default, all communications to and
from Timestream for InfluxDB are protected by using Transport Layer Security (TLS) encryption.

Traffic to and from Amazon Timestream for InfluxDB is secured using supported TLS versions 1.2 or
1.3.

Identity and Access Management for Amazon Timestream for InfluxDB

Amazon Identity and Access Management (IAM) is an Amazon Web Services service that helps an
administrator securely control access to Amazon resources. IAM administrators control who can
be authenticated (signed in) and authorized (have permissions) to use Timestream for InfluxDB
resources. IAM is an Amazon Web Services service that you can use with no additional charge.

Identity and Access Management 1225

https://aws.amazon.com/kms/

Amazon Timestream Developer Guide

Topics

• Authenticating with identities

• Managing access using policies

• How Amazon Timestream for InfluxDB works with IAM

• Identity-based policy examples for Amazon Timestream for InfluxDB

• Troubleshooting Amazon Timestream for InfluxDB identity and access

• Controlling access to a DB instance in a VPC

• Using service-linked roles for Amazon Timestream for InfluxDB

• Amazon managed policies for Amazon Timestream for InfluxDB

• Connecting to Timestream for InfluxDB through a VPC endpoint

Authenticating with identities

Authentication is how you sign in to Amazon using your identity credentials. You must be
authenticated (signed in to Amazon) as the Amazon Web Services account root user, as an IAM user,
or by assuming an IAM role.

If you access Amazon programmatically, Amazon provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use Amazon tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Amazon Signature Version 4 for API requests
in the IAM User Guide.

Regardless of the authentication method that you use, you might be required to provide
additional security information. For example, Amazon recommends that you use multi-factor
authentication (MFA) to increase the security of your account. To learn more, see Amazon Multi-
factor authentication in IAM in the IAM User Guide.

IAM users and groups

An IAM user is an identity within your Amazon Web Services account that has specific permissions
for a single person or application. Where possible, we recommend relying on temporary credentials
instead of creating IAM users who have long-term credentials such as passwords and access keys.
However, if you have specific use cases that require long-term credentials with IAM users, we
recommend that you rotate access keys. For more information, see Rotate access keys regularly for
use cases that require long-term credentials in the IAM User Guide.

Identity and Access Management 1226

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_sigv.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html#rotate-credentials

Amazon Timestream Developer Guide

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see Use cases for IAM users in
the IAM User Guide.

IAM roles

An IAM role is an identity within your Amazon Web Services account that has specific permissions.
It is similar to an IAM user, but is not associated with a specific person. To temporarily assume an
IAM role in the Amazon Web Services Management Console, you can switch from a user to an IAM
role (console). You can assume a role by calling an Amazon CLI or Amazon API operation or by
using a custom URL. For more information about methods for using roles, see Methods to assume a
role in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Create a role for a third-party identity provider
(federation) in the IAM User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some Amazon Web Services services, you can attach a policy
directly to a resource (instead of using a role as a proxy). To learn the difference between roles
and resource-based policies for cross-account access, see Cross account resource access in IAM in
the IAM User Guide.

• Cross-service access – Some Amazon Web Services services use features in other Amazon Web
Services services. For example, when you make a call in a service, it's common for that service to
run applications in Amazon EC2 or store objects in Amazon S3. A service might do this using the
calling principal's permissions, using a service role, or using a service-linked role.

Identity and Access Management 1227

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_groups.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/gs-identities-iam-users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

Amazon Timestream Developer Guide

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
Amazon, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an Amazon Web Services service, combined with the requesting Amazon Web
Services service to make requests to downstream services. FAS requests are only made when a
service receives a request that requires interactions with other Amazon Web Services services
or resources to complete. In this case, you must have permissions to perform both actions. For
policy details when making FAS requests, see Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM.
For more information, see Create a role to delegate permissions to an Amazon Web Services
service in the IAM User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an Amazon
Web Services service. The service can assume the role to perform an action on your behalf.
Service-linked roles appear in your Amazon Web Services account and are owned by the
service. An IAM administrator can view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making Amazon CLI or
Amazon API requests. This is preferable to storing access keys within the EC2 instance. To assign
an Amazon role to an EC2 instance and make it available to all of its applications, you create
an instance profile that is attached to the instance. An instance profile contains the role and
enables programs that are running on the EC2 instance to get temporary credentials. For more
information, see Use an IAM role to grant permissions to applications running on Amazon EC2
instances in the IAM User Guide.

Managing access using policies

You control access in Amazon by creating policies and attaching them to Amazon identities or
resources. A policy is an object in Amazon that, when associated with an identity or resource,
defines their permissions. Amazon evaluates these policies when a principal (user, root user, or role
session) makes a request. Permissions in the policies determine whether the request is allowed or
denied. Most policies are stored in Amazon as JSON documents. For more information about the
structure and contents of JSON policy documents, see Overview of JSON policies in the IAM User
Guide.

Identity and Access Management 1228

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html#access_policies-json

Amazon Timestream Developer Guide

Administrators can use Amazon JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform
the operation. For example, suppose that you have a policy that allows the iam:GetRole action.
A user with that policy can get role information from the Amazon Web Services Management
Console, the Amazon CLI, or the Amazon API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Define custom IAM permissions with customer managed policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your Amazon Web Services
account. Managed policies include Amazon managed policies and customer managed policies. To
learn how to choose between a managed policy or an inline policy, see Choose between managed
policies and inline policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal in
a resource-based policy. Principals can include accounts, users, roles, federated users, or Amazon
Web Services services.

Resource-based policies are inline policies that are located in that service. You can't use Amazon
managed policies from IAM in a resource-based policy.

Identity and Access Management 1229

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_principal.html

Amazon Timestream Developer Guide

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, Amazon WAF, and Amazon VPC are examples of services that support ACLs. To learn
more about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service
Developer Guide.

Other policy types

Amazon supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in Amazon Organizations. Amazon Organizations
is a service for grouping and centrally managing multiple Amazon Web Services accounts that
your business owns. If you enable all features in an organization, then you can apply service
control policies (SCPs) to any or all of your accounts. The SCP limits permissions for entities in
member accounts, including each Amazon Web Services account root user. For more information
about Organizations and SCPs, see Service control policies in the Amazon Organizations User
Guide.

• Resource control policies (RCPs) – RCPs are JSON policies that you can use to set the maximum
available permissions for resources in your accounts without updating the IAM policies attached
to each resource that you own. The RCP limits permissions for resources in member accounts and
can impact the effective permissions for identities, including the Amazon Web Services account
root user, regardless of whether they belong to your organization. For more information about
Organizations and RCPs, including a list of Amazon Web Services services that support RCPs, see
Resource control policies (RCPs) in the Amazon Organizations User Guide.

Identity and Access Management 1230

https://docs.amazonaws.cn/AmazonS3/latest/userguide/acl-overview.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.amazonaws.cn/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.amazonaws.cn/organizations/latest/userguide/orgs_manage_policies_rcps.html

Amazon Timestream Developer Guide

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how Amazon determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How Amazon Timestream for InfluxDB works with IAM

IAM features you can use with Amazon Timestream for InfluxDB

IAM feature Timestream for InfluxDB support

Identity-based policies Yes

Resource-based policies No

Policy actions Yes

Policy resources Yes

Policy condition keys No

ACLs No

ABAC (tags in policies) Yes

Temporary credentials Yes

Principal permissions Yes

Service roles No

Service-linked roles Yes

Identity and Access Management 1231

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

Amazon Timestream Developer Guide

To get a high-level view of how Timestream for InfluxDB and other Amazon services work with
most IAM features, see Amazon services that work with IAM in the IAM User Guide.

Identity-based policies for Timestream for InfluxDB

Supports identity-based policies: Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Define custom IAM permissions with customer managed policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for Timestream for InfluxDB

To view examples of Timestream for InfluxDB identity-based policies, see Identity-based policy
examples for Amazon Timestream for InfluxDB.

Resource-based policies within Timestream for InfluxDB

Supports resource-based policies: No

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal in
a resource-based policy. Principals can include accounts, users, roles, federated users, or Amazon
Web Services services.

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource
are in different Amazon Web Services accounts, an IAM administrator in the trusted account
must also grant the principal entity (user or role) permission to access the resource. They grant
permission by attaching an identity-based policy to the entity. However, if a resource-based policy

Identity and Access Management 1232

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_principal.html

Amazon Timestream Developer Guide

grants access to a principal in the same account, no additional identity-based policy is required. For
more information, see Cross account resource access in IAM in the IAM User Guide.

Policy actions for Timestream for InfluxDB

Supports policy actions: Yes

Administrators can use Amazon JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated Amazon API
operation. There are some exceptions, such as permission-only actions that don't have a matching
API operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

To see a list of Timestream for InfluxDB actions, see Actions, resources and condition keys for
Amazon Timestream for InfluxDB in the Service Authorization Reference.

Policy actions in Timestream for InfluxDB use the following prefix before the action:

timestream-influxdb

To specify multiple actions in a single statement, separate them with commas.

"Action": [
 "timestream-influxdb:action1",
 "timestream-influxdb:action2"
]

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin
with the word Describe, include the following action:

"Action": "timestream-influxdb:Describe*"

Policy resources for Timestream for InfluxDB

Supports policy resources: Yes

Identity and Access Management 1233

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.amazonaws.cn/service-authorization/latest/reference/list_amazontimestreaminfluxdb.html
https://docs.amazonaws.cn/service-authorization/latest/reference/list_amazontimestreaminfluxdb.html

Amazon Timestream Developer Guide

Administrators can use Amazon JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

To see a list of Timestream for InfluxDB resource types and their ARNs, see Resource types defined
by Amazon Timestream for InfluxDB in the Service Authorization Reference. To learn with which
actions you can specify the ARN of each resource, see Actions, resources and condition keys for
Amazon Timestream for InfluxDB.

Policy condition keys for Timestream for InfluxDB

Supports service-specific policy condition keys: No

Administrators can use Amazon JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, Amazon evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, Amazon evaluates the condition using a logical OR operation. All
of the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

Identity and Access Management 1234

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference-arns.html
https://docs.amazonaws.cn/service-authorization/latest/reference/list_amazontimestreaminfluxdb.html#amazontimestreaminfluxdb-resources-for-iam-policies
https://docs.amazonaws.cn/service-authorization/latest/reference/list_amazontimestreaminfluxdb.html#amazontimestreaminfluxdb-resources-for-iam-policies
https://docs.amazonaws.cn/service-authorization/latest/reference/list_amazontimestreaminfluxdb.html
https://docs.amazonaws.cn/service-authorization/latest/reference/list_amazontimestreaminfluxdb.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_variables.html

Amazon Timestream Developer Guide

Amazon supports global condition keys and service-specific condition keys. To see all Amazon
global condition keys, see Amazon global condition context keys in the IAM User Guide.

Access control lists (ACLs) in Timestream for InfluxDB

Supports ACLs: No

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Attribute-based access control (ABAC) with Timestream for InfluxDB

Supports ABAC (tags in policies): Yes

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In Amazon, these attributes are called tags. You can attach tags to IAM entities (users
or roles) and to many Amazon resources. Tagging entities and resources is the first step of ABAC.
Then you design ABAC policies to allow operations when the principal's tag matches the tag on the
resource that they are trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see Define permissions with ABAC authorization in the IAM User
Guide. To view a tutorial with steps for setting up ABAC, see Use attribute-based access control
(ABAC) in the IAM User Guide.

Using Temporary credentials with Timestream for InfluxDB

Supports temporary credentials: Yes

Some Amazon Web Services services don't work when you sign in using temporary credentials.
For additional information, including which Amazon Web Services services work with temporary
credentials, see Amazon Web Services services that work with IAM in the IAM User Guide.

Identity and Access Management 1235

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon Timestream Developer Guide

You are using temporary credentials if you sign in to the Amazon Web Services Management
Console using any method except a user name and password. For example, when you access
Amazon using your company's single sign-on (SSO) link, that process automatically creates
temporary credentials. You also automatically create temporary credentials when you sign in to
the console as a user and then switch roles. For more information about switching roles, see Switch
from a user to an IAM role (console) in the IAM User Guide.

You can manually create temporary credentials using the Amazon CLI or Amazon API. You can then
use those temporary credentials to access Amazon. Amazon recommends that you dynamically
generate temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

Cross-service principal permissions for Timestream for InfluxDB

Supports forward access sessions (FAS): Yes

When you use an IAM user or role to perform actions in Amazon, you are considered a principal.
When you use some services, you might perform an action that then initiates another action in a
different service. FAS uses the permissions of the principal calling an Amazon Web Services service,
combined with the requesting Amazon Web Services service to make requests to downstream
services. FAS requests are only made when a service receives a request that requires interactions
with other Amazon Web Services services or resources to complete. In this case, you must have
permissions to perform both actions. For policy details when making FAS requests, see Forward
access sessions.

Service roles for Timestream for InfluxDB

Supports service roles: No

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Create a role to delegate permissions to an Amazon Web Services service in the IAM User Guide.

Warning

Changing the permissions for a service role might break Timestream for InfluxDB
functionality. Edit service roles only when Timestream for InfluxDB provides guidance to do
so.

Identity and Access Management 1236

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Timestream Developer Guide

Service-linked roles for Timestream for InfluxDB

Supports service-linked roles: Yes

A service-linked role is a type of service role that is linked to an Amazon Web Services service. The
service can assume the role to perform an action on your behalf. Service-linked roles appear in
your Amazon Web Services account and are owned by the service. An IAM administrator can view,
but not edit the permissions for service-linked roles.

For details about creating or managing service-linked roles, see Amazon services that work with
IAM. Find a service in the table that includes a Yes in the Service-linked role column. Choose the
Yes link to view the service-linked role documentation for that service.

Identity-based policy examples for Amazon Timestream for InfluxDB

By default, users and roles don't have permission to create or modify Timestream for InfluxDB
resources. They also can't perform tasks by using the Amazon Web Services Management Console,
Amazon Command Line Interface (Amazon CLI), or Amazon API. To grant users permission to
perform actions on the resources that they need, an IAM administrator can create IAM policies. The
administrator can then add the IAM policies to roles, and users can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy
documents, see Create IAM policies (console) in the IAM User Guide.

For details about actions and resource types defined by Timestream for InfluxDB, including the
format of the ARNs for each of the resource types, see Actions, resources, and condition Keys for
Amazon Timestream for InfluxDB in the Service Authorization Reference.

Topics

• Policy best practices

• Using the Timestream for InfluxDB console

• Allow users to view their own permissions

• Accessing one Amazon S3 bucket

• Allowing all operations

• Create, describe, delete and update a DB instance

Identity and Access Management 1237

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.amazonaws.cn/service-authorization/latest/reference/list_amazontimestreaminfluxdb.html
https://docs.amazonaws.cn/service-authorization/latest/reference/list_amazontimestreaminfluxdb.html

Amazon Timestream Developer Guide

Policy best practices

Identity-based policies determine whether someone can create, access, or delete Timestream
for InfluxDB resources in your account. These actions can incur costs for your Amazon Web
Services account. When you create or edit identity-based policies, follow these guidelines and
recommendations:

• Get started with Amazon managed policies and move toward least-privilege permissions
– To get started granting permissions to your users and workloads, use the Amazon managed
policies that grant permissions for many common use cases. They are available in your Amazon
Web Services account. We recommend that you reduce permissions further by defining Amazon
customer managed policies that are specific to your use cases. For more information, see Amazon
managed policies or Amazon managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific Amazon Web Services service, such as Amazon
CloudFormation. For more information, see IAM JSON policy elements: Condition in the IAM
User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see Validate policies with IAM Access Analyzer in the
IAM User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users or a
root user in your Amazon Web Services account, turn on MFA for additional security. To require
MFA when API operations are called, add MFA conditions to your policies. For more information,
see Secure API access with MFA in the IAM User Guide.

Identity and Access Management 1238

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html

Amazon Timestream Developer Guide

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Using the Timestream for InfluxDB console

To access the Amazon Timestream for InfluxDB console, you must have a minimum set of
permissions. These permissions must allow you to list and view details about the Timestream for
InfluxDB resources in your Amazon Web Services account. If you create an identity-based policy
that is more restrictive than the minimum required permissions, the console won't function as
intended for entities (users or roles) with that policy.

You don't need to allow minimum console permissions for users that are making calls only to
the Amazon CLI or the Amazon API. Instead, allow access to only the actions that match the API
operation that they're trying to perform.

To ensure that users and roles can still use the Timestream for InfluxDB console, also attach the
Timestream for InfluxDB ConsoleAccess or ReadOnly Amazon managed policy to the entities.
For more information, see Adding permissions to a user in the IAM User Guide.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the Amazon CLI or Amazon API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws-cn:iam::*:user/${aws:username}"]
 },
 {

Identity and Access Management 1239

https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

Amazon Timestream Developer Guide

 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

Accessing one Amazon S3 bucket

In this example, you want to grant an IAM user in your Amazon account access to one of your
Amazon S3 buckets, amzn-s3-demo-bucket. You also want to allow the user to add, update, and
delete objects.

In addition to granting the s3:PutObject, s3:GetObject, and s3:DeleteObject permissions
to the user, the policy also grants the s3:ListAllMyBuckets, s3:GetBucketLocation, and
s3:ListBucket permissions. These are the additional permissions required by the console. Also,
the s3:PutObjectAcl and the s3:GetObjectAcl actions are required to be able to copy, cut,
and paste objects in the console. For an example walkthrough that grants permissions to users and
tests them using the console, see An example walkthrough: Using user policies to control access to
your bucket.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"ListBucketsInConsole",
 "Effect":"Allow",
 "Action":[
 "s3:ListAllMyBuckets"
],
 "Resource":"arn:aws-cn:s3:::*"
 },

Identity and Access Management 1240

https://docs.amazonaws.cn/AmazonS3/latest/userguide/walkthrough1.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/walkthrough1.html

Amazon Timestream Developer Guide

 {
 "Sid":"ViewSpecificBucketInfo",
 "Effect":"Allow",
 "Action":[
 "s3:ListBucket",
 "s3:GetBucketLocation"
],
 "Resource":"arn:aws-cn:s3:::amzn-s3-demo-bucket"
 },
 {
 "Sid":"ManageBucketContents",
 "Effect":"Allow",
 "Action":[
 "s3:PutObject",
 "s3:PutObjectAcl",
 "s3:GetObject",
 "s3:GetObjectAcl",
 "s3:DeleteObject"
],
 "Resource":"arn:aws-cn:s3:::amzn-s3-demo-bucket/*"
 }
]
}

Allowing all operations

The following is a sample policy that allows all operations in Timestream for InfluxDB.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "timestream-influxdb:*"
],
 "Resource": "*"
 }
]
}

Identity and Access Management 1241

Amazon Timestream Developer Guide

Create, describe, delete and update a DB instance

The following sample policy allows a user to create, describe, delete and update a DB instance
sampleDB:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "timestream-influxdb:CreateDbInstance",
 "timestream-influxdb:GetDbInstance",
 "timestream-influxdb:DeleteDbInstance",
 "timestream-influxdb:UpdateDbInstance"
],
 "Resource": "arn:aws:timestream-influxdb:us-east-1:<account_ID>:dbinstance/
sampleDB"
 }
]
}

Troubleshooting Amazon Timestream for InfluxDB identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with Timestream for InfluxDB and IAM.

Topics

• I am not authorized to perform an action in Timestream for InfluxDB

• I want to allow people outside of my Amazon account to access my Timestream for InfluxDB
resources

I am not authorized to perform an action in Timestream for InfluxDB

If the Amazon Web Services Management Console tells you that you're not authorized to perform
an action, then you must contact your administrator for assistance. Your administrator is the
person that provided you with your user name and password.

Identity and Access Management 1242

Amazon Timestream Developer Guide

The following example error occurs when the mateojackson user tries to use the console to
view details about a fictional my-example-widget resource but does not have the fictional
timestream-influxdb:GetWidget permissions.

User: arn:aws-cn:iam::123456789012:user/mateojackson is not authorized to perform:
 timestream-influxdb:GetWidget on resource: my-example-widget

In this case, Mateo asks his administrator to update his policies to allow him to access the my-
example-widget resource using the timestream-influxdb:GetWidget action.

I want to allow people outside of my Amazon account to access my Timestream for InfluxDB
resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• Controlling access to a DB instance in a VPC

• To learn whether Timestream for InfluxDB supports these features, see How Amazon Timestream
for InfluxDB works with IAM.

• To learn how to provide access to your resources across Amazon accounts that you own, see
Providing access to an IAM user in another Amazon account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party Amazon accounts, see Providing
access to Amazon accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see How IAM roles differ from resource-based policies in the IAM User Guide.

Controlling access to a DB instance in a VPC

Using Amazon Virtual Private Cloud (Amazon VPC), you can launch Amazon resources, such as
Amazon Timestream for InfluxDB DB instances, into a virtual private cloud (VPC). When you use
Amazon VPC, you have control over your virtual networking environment. You can choose your
own IP address range, create subnets, and configure routing and access control lists.

Identity and Access Management 1243

https://docs.amazonaws.cn/timestream/latest/developerguide/security_iam_service-with-iam-influxb.html
https://docs.amazonaws.cn/timestream/latest/developerguide/security_iam_service-with-iam-influxb.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

Amazon Timestream Developer Guide

A VPC security group controls access to DB instances inside a VPC. Each VPC security group rule
enables a specific source to access a DB instance in a VPC that is associated with that VPC security
group. The source can be a range of addresses (for example, 203.0.113.0/24), or another VPC
security group. By specifying a VPC security group as the source, you allow incoming traffic from all
instances (typically application servers) that use the source VPC security group. Before attempting
to connect to your DB instance, configure your VPC for your use case. The following are common
scenarios for accessing a DB instance in a VPC:

A DB instance in a VPC accessed by an Amazon EC2 instance in the same VPC

A common use of a DB instance in a VPC is to share data with an application server that is
running in an EC2 instance in the same VPC. The EC2 instance might run a web server with an
application that interacts with the DB instance.

A DB instance in a VPC accessed by an EC2 instance in a different VPC

In some cases, your DB instance is in a different VPC from the EC2 instance that you're using to
access it. If so, you can use VPC peering to access the DB instance.

A DB instance in a VPC accessed by a client application through the internet

To access a DB instance in a VPC from a client application through the internet, you configure
a VPC with a single public subnet and use the public subnets to create the DB instance. You
also configure an internet gateway in the VPC to enable communication over the internet. To
connect to a DB instance from outside of its VPC, the DB instance must be publicly accessible.
Also, access must be granted using the inbound rules of the DB instance's security group, and
other requirements must be met.

For more information on VPC security groups, see Control traffic to your Amazon resources using
security groups in the Amazon Virtual Private Cloud User Guide.

For details on how to connect to a Timestream for InfluxDB DB instance, see Connecting to an
Amazon Timestream for InfluxDB DB instance.

Security group scenario

A common use of a DB instance in a VPC is to share data with an application server running in
an Amazon EC2 instance in the same VPC, which is accessed by a client application outside the
VPC. For this scenario, you use the Timestream for InfluxDB and VPC pages on the Amazon Web
Services Management Console or the Timestream for InfluxDB and EC2 API operations to create
the necessary instances and security groups:

Identity and Access Management 1244

https://docs.amazonaws.cn/vpc/latest/userguide/vpc-security-groups.html
https://docs.amazonaws.cn/vpc/latest/userguide/vpc-security-groups.html

Amazon Timestream Developer Guide

1. Create a VPC security group (for example, sg-0123ec2example) and define inbound rules that
use the IP addresses of the client application as the source. This security group allows your client
application to connect to EC2 instances in a VPC that uses this security group.

2. Create an EC2 instance for the application and add the EC2 instance to the VPC security group
(sg-0123ec2example) that you created in the previous step.

3. Create a second VPC security group (for example, sg-6789rdsexample) and create a new rule
by specifying the VPC security group that you created in step 1 (sg-0123ec2example) as the
source.

4. Create a new DB instance and add the DB instance to the VPC security group
(sg-6789rdsexample) that you created in the previous step. When you create the DB, use the
same port number as the one specified for the VPC security group (sg-6789rdsexample) rule
that you created in step 3.

Creating a VPC security group

You can create a VPC security group for a DB instance by using the VPC console. For information
about creating a security group, see Create a security group for your VPC in the Amazon Virtual
Private Cloud User Guide.

Associating a security group with a DB instance

Once a Timestream for InfluxDB DB instance has been created, you will not be able to associate it
to new security groups since changes to these configurations are not currently supported.

Using service-linked roles for Amazon Timestream for InfluxDB

Amazon Timestream for InfluxDB uses Amazon Identity and Access Management (IAM) service-
linked roles. A service-linked role is a unique type of IAM role that is linked directly to an Amazon
service, such as Amazon Timestream for InfluxDB. Amazon Timestream for InfluxDB service-linked
roles are predefined by Amazon Timestream for InfluxDB. They include all the permissions that the
service requires to call Amazon services on behalf of your dbinstances.

A service-linked role makes setting up Amazon Timestream for InfluxDB easier because you don’t
have to manually add the necessary permissions. The roles already exist within your Amazon
account but are linked to Amazon Timestream for InfluxDB use cases and have predefined
permissions. Only Amazon Timestream for InfluxDB can assume these roles, and only these roles
can use the predefined permissions policy. You can delete the roles only after first deleting their

Identity and Access Management 1245

https://docs.amazonaws.cn/vpc/latest/userguide/creating-security-groups.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role

Amazon Timestream Developer Guide

related resources. This protects your Amazon Timestream for InfluxDB resources because you can't
inadvertently remove necessary permissions to access the resources.

For information about other services that support service-linked roles, see Amazon services that
work with IAM and look for the services that have Yes in the Service-Linked Role column. Choose a
Yes with a link to view the service-linked role documentation for that service.

Contents

• Service-Linked Role Permissions for Amazon Timestream for InfluxDB

• Creating a Service-Linked Role (IAM)

• Editing the Description of a Service-Linked Role for Amazon Timestream for InfluxDB

• Editing a Service-Linked Role Description (IAM Console)

• Editing a Service-Linked Role Description (IAM CLI)

• Editing a Service-Linked Role Description (IAM API)

• Deleting a Service-Linked Role for Amazon Timestream for InfluxDB

• Cleaning Up a Service-Linked Role

• Deleting a Service-Linked Role (IAM Console)

• Deleting a Service-Linked Role (IAM CLI)

• Deleting a Service-Linked Role (IAM API)

• Supported Regions for Amazon Timestream for InfluxDB Service-Linked Roles

Service-Linked Role Permissions for Amazon Timestream for InfluxDB

Amazon Timestream for InfluxDB uses the service-linked role named
AmazonTimestreamInfluxDBServiceRolePolicy – This policy allows Timestream for InfluxDB to
manage Amazon resources on your behalf as necessary for managing your clusters.

The AmazonTimestreamInfluxDBServiceRolePolicy service-linked role permissions policy allows
Amazon Timestream for InfluxDB to complete the following actions on the specified resources:

To allow an IAM entity to create AmazonTimestreamInfluxDBServiceRolePolicy service-linked
roles

Add the following policy statement to the permissions for that IAM entity:

{
 "Effect": "Allow",

Identity and Access Management 1246

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon Timestream Developer Guide

 "Action": [
 "iam:CreateServiceLinkedRole",
 "iam:PutRolePolicy"
],
 "Resource": "arn:aws-cn:iam::*:role/aws-service-role/
timestreamforinfluxdb.amazonaws.com/AmazonTimestreamInfluxDBServiceRolePolicy*",
 "Condition": {"StringLike": {"iam:AmazonServiceName":
 "timestreamforinfluxdb.amazonaws.com"}}
}

To allow an IAM entity to delete AmazonTimestreamInfluxDBServiceRolePolicy service-linked
roles

Add the following policy statement to the permissions for that IAM entity:

{
 "Effect": "Allow",
 "Action": [
 "iam:DeleteServiceLinkedRole",
 "iam:GetServiceLinkedRoleDeletionStatus"
],
 "Resource": "arn:aws-cn:iam::*:role/aws-service-role/
timestreamforinfluxdb.amazonaws.com/AmazonTimestreamInfluxDBServiceRolePolicy*",
 "Condition": {"StringLike": {"iam:AmazonServiceName":
 "timestreamforinfluxdb.amazonaws.com"}}
}

Alternatively, you can use an Amazon managed policy to provide full access to Amazon Timestream
for InfluxDB.

Creating a Service-Linked Role (IAM)

You don't need to manually create a service-linked role. When you create a DB instance, Amazon
Timestream for InfluxDB creates the service-linked role for you.

If you delete this service-linked role, and then need to create it again, you can use the same process
to recreate the role in your account. When you create a DB instance, Amazon Timestream for
InfluxDB creates the service-linked role for you again.

Editing the Description of a Service-Linked Role for Amazon Timestream for InfluxDB

Amazon Timestream for InfluxDB does not allow you to edit the
AmazonTimestreamInfluxDBServiceRolePolicy service-linked role. After you create a service-linked

Identity and Access Management 1247

Amazon Timestream Developer Guide

role, you cannot change the name of the role because various entities might reference the role.
However, you can edit the description of the role using IAM.

Editing a Service-Linked Role Description (IAM Console)

You can use the IAM console to edit a service-linked role description.

To edit the description of a service-linked role (console)

1. In the left navigation pane of the IAM console, choose Roles.

2. Choose the name of the role to modify.

3. To the far right of Role description, choose Edit.

4. Enter a new description in the box and choose Save.

Editing a Service-Linked Role Description (IAM CLI)

You can use IAM operations from the Amazon Command Line Interface to edit a service-linked role
description.

To change the description of a service-linked role (CLI)

1. (Optional) To view the current description for a role, use the Amazon CLI for IAM operation
get-role.

Example

$ aws iam get-role --role-name AmazonTimestreamInfluxDBServiceRolePolicy

Use the role name, not the ARN, to refer to roles with the CLI operations. For example, if a role
has the following ARN: arn:aws-cn:iam::123456789012:role/myrole, refer to the role
as myrole.

2. To update a service-linked role's description, use the Amazon CLI for IAM operation update-
role-description.

Linux and MacOS

$ aws iam update-role-description \
 --role-name AmazonTimestreamInfluxDBServiceRolePolicy \
 --description "new description"

Identity and Access Management 1248

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/get-role.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/update-role-description.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/update-role-description.html

Amazon Timestream Developer Guide

Windows

$ aws iam update-role-description ^
 --role-name AmazonTimestreamInfluxDBServiceRolePolicy ^
 --description "new description"

Editing a Service-Linked Role Description (IAM API)

You can use the IAM API to edit a service-linked role description.

To change the description of a service-linked role (API)

1. (Optional) To view the current description for a role, use the IAM API operation GetRole.

Example

https://iam.amazonaws.com/
 ?Action=GetRole
 &RoleName=AmazonTimestreamInfluxDBServiceRolePolicy
 &Version=2010-05-08
 &AUTHPARAMS

2. To update a role's description, use the IAM API operation UpdateRoleDescription.

Example

https://iam.amazonaws.com/
 ?Action=UpdateRoleDescription
 &RoleName=AmazonTimestreamInfluxDBServiceRolePolicy
 &Version=2010-05-08
 &Description="New description"

Deleting a Service-Linked Role for Amazon Timestream for InfluxDB

If you no longer need to use a feature or service that requires a service-linked role, we recommend
that you delete that role. That way you don’t have an unused entity that is not actively monitored
or maintained. However, you must clean up your service-linked role before you can delete it.

Amazon Timestream for InfluxDB does not delete the service-linked role for you.

Identity and Access Management 1249

https://docs.amazonaws.cn/IAM/latest/APIReference/API_GetRole.html
https://docs.amazonaws.cn/IAM/latest/APIReference/API_GetRole.html
https://docs.amazonaws.cn/IAM/latest/APIReference/API_UpdateRoleDescription.html
https://docs.amazonaws.cn/IAM/latest/APIReference/API_UpdateRoleDescription.html

Amazon Timestream Developer Guide

Cleaning Up a Service-Linked Role

Before you can use IAM to delete a service-linked role, first confirm that the role has no resources
(clusters) associated with it.

To check whether the service-linked role has an active session in the IAM console

1. Sign in to the Amazon Web Services Management Console and open the IAM console at
https://console.amazonaws.cn/iam/.

2. In the left navigation pane of the IAM console, choose Roles. Then choose the name (not the
check box) of the AmazonTimestreamInfluxDBServiceRolePolicy role.

3. On the Summary page for the selected role, choose the Access Advisor tab.

4. On the Access Advisor tab, review recent activity for the service-linked role.

Deleting a Service-Linked Role (IAM Console)

You can use the IAM console to delete a service-linked role.

To delete a service-linked role (console)

1. Sign in to the Amazon Web Services Management Console and open the IAM console at
https://console.amazonaws.cn/iam/.

2. In the left navigation pane of the IAM console, choose Roles. Then select the check box next to
the role name that you want to delete, not the name or row itself.

3. For Role actions at the top of the page, choose Delete role.

4. In the confirmation page, review the service last accessed data, which shows when each of the
selected roles last accessed an Amazon service. This helps you to confirm whether the role is
currently active. If you want to proceed, choose Yes, Delete to submit the service-linked role
for deletion.

5. Watch the IAM console notifications to monitor the progress of the service-linked role
deletion. Because the IAM service-linked role deletion is asynchronous, after you submit the
role for deletion, the deletion task can succeed or fail. If the task fails, you can choose View
details or View Resources from the notifications to learn why the deletion failed.

Identity and Access Management 1250

https://console.amazonaws.cn/iam/
https://console.amazonaws.cn/iam/

Amazon Timestream Developer Guide

Deleting a Service-Linked Role (IAM CLI)

You can use IAM operations from the Amazon Command Line Interface to delete a service-linked
role.

To delete a service-linked role (CLI)

1. If you don't know the name of the service-linked role that you want to delete, enter the
following command. This command lists the roles and their Amazon Resource Names (ARNs) in
your account.

$ aws iam get-role --role-name role-name

Use the role name, not the ARN, to refer to roles with the CLI operations. For example, if a
role has the ARN arn:aws-cn:iam::123456789012:role/myrole, you refer to the role as
myrole.

2. Because a service-linked role cannot be deleted if it is being used or has associated resources,
you must submit a deletion request with the delete-service-linked-role command. That request
can be denied if these conditions are not met. You must capture the deletion-task-id from
the response to check the status of the deletion task. Enter the following to submit a service-
linked role deletion request.

$ aws iam delete-service-linked-role --role-name role-name

3. Run the get-service-linked-role-deletion-status command to check the status of the deletion
task.

$ aws iam get-service-linked-role-deletion-status --deletion-task-id deletion-task-
id

The status of the deletion task can be NOT_STARTED, IN_PROGRESS, SUCCEEDED, or FAILED.
If the deletion fails, the call returns the reason that it failed so that you can troubleshoot.

Deleting a Service-Linked Role (IAM API)

You can use the IAM API to delete a service-linked role.

Identity and Access Management 1251

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/delete-service-linked-role.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/get-service-linked-role-deletion-status.html

Amazon Timestream Developer Guide

To delete a service-linked role (API)

1. To submit a deletion request for a service-linked roll, call DeleteServiceLinkedRole. In the
request, specify a role name.

Because a service-linked role cannot be deleted if it is being used or has associated resources,
you must submit a deletion request. That request can be denied if these conditions are not
met. You must capture the DeletionTaskId from the response to check the status of the
deletion task.

2. To check the status of the deletion, call GetServiceLinkedRoleDeletionStatus. In the request,
specify the DeletionTaskId.

The status of the deletion task can be NOT_STARTED, IN_PROGRESS, SUCCEEDED, or FAILED.
If the deletion fails, the call returns the reason that it failed so that you can troubleshoot.

Supported Regions for Amazon Timestream for InfluxDB Service-Linked Roles

Amazon Timestream for InfluxDB supports using service-linked roles in all of the Regions where
the service is available. For more information, see Amazon service endpoints.

Amazon managed policies for Amazon Timestream for InfluxDB

To add permissions to users, groups, and roles, it is easier to use Amazon managed policies than
to write policies yourself. It takes time and expertise to create IAM customer managed policies
that provide your team with only the permissions they need. To get started quickly, you can use
our Amazon managed policies. These policies cover common use cases and are available in your
Amazon account. For more information about Amazon managed policies, see Amazon managed
policies in the IAM User Guide.

Amazon services maintain and update Amazon managed policies. You can't change the permissions
in Amazon managed policies. Services occasionally add additional permissions to an Amazon
managed policy to support new features. This type of update affects all identities (users, groups,
and roles) where the policy is attached. Services are most likely to update an Amazon managed
policy when a new feature is launched or when new operations become available. Services do not
remove permissions from an Amazon managed policy, so policy updates won't break your existing
permissions.

Identity and Access Management 1252

https://docs.amazonaws.cn/IAM/latest/APIReference/API_DeleteServiceLinkedRole.html
https://docs.amazonaws.cn/IAM/latest/APIReference/API_GetServiceLinkedRoleDeletionStatus.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

Amazon Timestream Developer Guide

Additionally, Amazon supports managed policies for job functions that span multiple services. For
example, the ReadOnlyAccess Amazon managed policy provides read-only access to all Amazon
services and resources. When a service launches a new feature, Amazon adds read-only permissions
for new operations and resources. For a list and descriptions of job function policies, see Amazon
managed policies for job functions in the IAM User Guide.

Amazon managed policy: AmazonTimestreamInfluxDBServiceRolePolicy

You cannot attach the AmazonTimestreamInfluxDBServiceRolePolicy Amazon managed policy to
identities in your account. This policy is part of the Amazon TimestreamforInfluxDB service-linked
role. This role allows the service to manage network interfaces and security groups in your account.

Timestream for InfluxDB uses the permissions in this policy to manage EC2 security groups and
network interfaces. This is required to manage Timestream for InfluxDB DB instances.

To review this policy in JSON format, see AmazonTimestreamInfluxDBServiceRolePolicy.

Amazon-managed policies for Amazon Timestream for InfluxDB

Amazon addresses many common use cases by providing standalone IAM policies that are created
and administered by Amazon. Managed policies grant necessary permissions for common use cases
so you can avoid having to investigate what permissions are needed. For more information, see
Amazon Managed Policies in the IAM User Guide.

The following Amazon managed policies, which you can attach to users in your account, are specific
to Timestream for InfluxDB:

AmazonTimestreamInfluxDBFullAccess

You can attach the AmazonTimestreamInfluxDBFullAccess policy to your IAM identities.
This policy grants administrative permissions that allow full access to all Timestream for InfluxDB
resources.

Identity and Access Management 1253

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AmazonTimestreamInfluxDBServiceRolePolicy.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

Amazon Timestream Developer Guide

You can also create your own custom IAM policies to allow permissions for Amazon Timestream for
InfluxDB API actions. You can attach these custom policies to the IAM users or groups that require
those permissions.

To review this policy in JSON format, see AmazonTimestreamInfluxDBFullAccess.

AmazonTimestreamInfluxDBFullAccessWithoutMarketplaceAccess

You can attach the AmazonTimestreamInfluxDBFullAccessWithoutMarketplaceAccess
policy to your IAM identities. This policy grants administrative permissions that allow full access to
all Timestream for InfluxDB resources, excluding any marketplace-related actions.

You can also create your own custom IAM policies to allow permissions for Timestream for InfluxDB
API actions. You can attach these custom policies to the IAM users or groups that require those
permissions.

To review this policy in JSON format, see
AmazonTimestreamInfluxDBFullAccessWithoutMarketplaceAccess.

Timestream for InfluxDB updates to Amazon managed policies

View details about updates to Amazon managed policies for Timestream for InfluxDB since this
service began tracking these changes. For automatic alerts about changes to this page, subscribe to
the RSS feed on the Timestream for InfluxDB Document history page.

Change Description Date

AmazonTimestreamIn
fluxDBFullAccess – Update to
an existing policy

Amazon Timestream for
InfluxDB updated the
existing managed policy
AmazonTimestreamIn
fluxDBFullAccess that
adds necessary permissions
to access Marketplace APIs
for managing subscription
required for creating and

4/16/2025

Identity and Access Management 1254

https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AmazonTimestreamInfluxDBFullAccess.html
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AmazonTimestreamInfluxDBFullAccessWithoutMarketplaceAccess.html

Amazon Timestream Developer Guide

Change Description Date

updating Timestream for
InfluxDB cluster resources.

AmazonTimestreamIn
fluxDBFullAccessWithoutMark
etplaceAccess – New policy

Amazon Timestream for
InfluxDB added a new policy
to provide administrative
access to manage Amazon
Timestream for InfluxDB
instances and parameter
groups except marketplace
operations.

04/16/2025

AmazonTimestreamIn
fluxDBFullAccess – Update to
an existing policy

Amazon Timestream for
InfluxDB updated the existing
managed policy AmazonTim
estreamInfluxDBFul
lAccess to also provide
full administrative access to
create, update, delete, and list
Amazon Timestream InfluxDB
clusters.

2/17/2025

AmazonTimestreamIn
fluxDBFullAccess – Update to
an existing policy

Added the ec2:Descr
ibeRouteTables action
to the existing AmazonTim
estreamInfluxDBFul
lAccess managed policy.
This action is used for
describing your route tables

10/08/2024

Amazon managed policy:
AmazonTimestreamIn
fluxDBServiceRolePolicy –
New policy

Amazon Timestream for
InfluxDB added a new policy
that allows the service to
manage network interfaces
and security groups in your
account.

03/14/2024

Identity and Access Management 1255

Amazon Timestream Developer Guide

Change Description Date

AmazonTimestreamIn
fluxDBFullAccess – New policy

Amazon Timestream for
InfluxDB added a new policy
to provide full administr
ative access to create,
update, delete and list
Amazon Timestream InfluxDB
instances and create and list
parameter groups.

03/14/2024

Connecting to Timestream for InfluxDB through a VPC endpoint

You can connect directly to Timestream for InfluxDB through a private interface endpoint in your
virtual private cloud (VPC). When you use an interface VPC endpoint, communication between your
VPC and Timestream for InfluxDB is conducted entirely within the Amazon network.

Timestream for InfluxDB supports Amazon Virtual Private Cloud (Amazon VPC) endpoints powered
by Amazon PrivateLink. Each VPC endpoint is represented by one or more Elastic Network
Interfaces (ENIs) with private IP addresses in your VPC subnets.

The interface VPC endpoint connects your VPC directly to Timestream for InfluxDB without
an internet gateway, NAT device, VPN connection, or Amazon Direct Connect connection. The
instances in your VPC do not need public IP addresses to communicate with Timestream for
InfluxDB.

Regions

Timestream for InfluxDB supports VPC endpoints and VPC endpoint policies in all Amazon Web
Services Regions in which Timestream for InfluxDB is supported.

Topics

• Considerations for Timestream for InfluxDB VPC endpoints

• Creating a VPC endpoint for Timestream for InfluxDB

• Connecting to an Timestream for InfluxDB VPC endpoint

• Controlling access to a VPC endpoint

• Using a VPC endpoint in a policy statement

Identity and Access Management 1256

https://docs.amazonaws.cn/vpc/latest/privatelink/
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/using-eni.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/using-eni.html

Amazon Timestream Developer Guide

• Logging your VPC endpoint

Considerations for Timestream for InfluxDB VPC endpoints

Before you set up an interface VPC endpoint for Timestream for InfluxDB, review the Interface
endpoint properties and limitations topic in the Amazon PrivateLink Guide.

Timestream for InfluxDB support for a VPC endpoint includes the following.

• You can use your VPC endpoint to call all Timestream for InfluxDB API operations from your VPC.

• You can use Amazon CloudTrail logs to audit your use of Timestream for InfluxDB resources
through the VPC endpoint. For details, see Logging your VPC endpoint.

Creating a VPC endpoint for Timestream for InfluxDB

You can create a VPC endpoint for Timestream for InfluxDB by using the Amazon VPC console
or the Amazon VPC API. For more information, see Create an interface endpoint in the Amazon
PrivateLink Guide.

• To create a VPC endpoint for Timestream for InfluxDB, use the following service name:

com.amazonaws.region.timestream-influxdb

For example, in the US West (Oregon) Region (us-west-2), the service name would be:

com.amazonaws.us-west-2.timestream-influxdb

To make it easier to use the VPC endpoint, you can enable a private DNS name for your VPC
endpoint. If you select the Enable DNS Name option, the standard Timestream for InfluxDB DNS
hostname resolves to your VPC endpoint. For example, https://timestream-influxdb.us-
west-2.amazonaws.com would resolve to a VPC endpoint connected to service name
com.amazonaws.us-west-2.timestream-influxdb.

This option makes it easier to use the VPC endpoint. The Amazon SDKs and Amazon CLI use the
standard Timestream for InfluxDB DNS hostname by default, so you do not need to specify the VPC
endpoint URL in applications and commands.

Identity and Access Management 1257

https://docs.amazonaws.cn/vpc/latest/privatelink/vpce-interface.html#vpce-interface-limitations
https://docs.amazonaws.cn/vpc/latest/privatelink/vpce-interface.html#vpce-interface-limitations
https://docs.amazonaws.cn/ts-influxdb/latest/ts-influxdb-api/API_Operations.html
https://docs.amazonaws.cn/vpc/latest/privatelink/vpce-interface.html#create-interface-endpoint
https://docs.amazonaws.cn/vpc/latest/privatelink/verify-domains.html

Amazon Timestream Developer Guide

For more information, see Accessing a service through an interface endpoint in the Amazon
PrivateLink Guide.

Connecting to an Timestream for InfluxDB VPC endpoint

You can connect to Timestream for InfluxDB through the VPC endpoint by using an Amazon SDK,
the Amazon CLI or Amazon Tools for PowerShell. To specify the VPC endpoint, use its DNS name.

If you enabled private hostnames when you created your VPC endpoint, you do not need to
specify the VPC endpoint URL in your CLI commands or application configuration. The standard
Timestream for InfluxDB DNS hostname resolves to your VPC endpoint. The Amazon CLI and
SDKs use this hostname by default, so you can begin using the VPC endpoint to connect to
an Timestream for InfluxDB regional endpoint without changing anything in your scripts and
applications.

To use private hostnames, the enableDnsHostnames and enableDnsSupport attributes of
your VPC must be set to true. To set these attributes, use the ModifyVpcAttribute operation. For
details, see View and update DNS attributes for your VPC in the Amazon VPC User Guide.

Controlling access to a VPC endpoint

To control access to your VPC endpoint for Timestream for InfluxDB, attach a VPC endpoint
policy to your VPC endpoint. The endpoint policy determines whether principals can use the VPC
endpoint to call Timestream for InfluxDB operations on Timestream for InfluxDB resources.

You can create a VPC endpoint policy when you create your endpoint, and you can change the
VPC endpoint policy at any time. Use the VPC management console, or the CreateVpcEndpoint or
ModifyVpcEndpoint operations. You can also create and change a VPC endpoint policy by using
an Amazon CloudFormation template. For help using the VPC management console, see Create an
interface endpoint and Modifying an interface endpoint in the Amazon PrivateLink Guide.

Note

Timestream for InfluxDB supports VPC endpoint policies beginning in July 2020. VPC
endpoints for Timestream for InfluxDB that were created before that date have the default
VPC endpoint policy, but you can change it at any time.

Topics

Identity and Access Management 1258

https://docs.amazonaws.cn/vpc/latest/privatelink/vpce-interface.html#access-service-though-endpoint
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_ModifyVpcAttribute.html
https://docs.amazonaws.cn/vpc/latest/userguide/vpc-dns.html#vpc-dns-updating
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_CreateVpcEndpoint.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_ModifyVpcEndpoint.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-ec2-vpcendpoint.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-ec2-vpcendpoint.html
https://docs.amazonaws.cn/vpc/latest/privatelink/vpce-interface.html#create-interface-endpoint
https://docs.amazonaws.cn/vpc/latest/privatelink/vpce-interface.html#create-interface-endpoint
https://docs.amazonaws.cn/vpc/latest/privatelink/vpce-interface.html#modify-interface-endpoint

Amazon Timestream Developer Guide

• About VPC endpoint policies

• Default VPC endpoint policy

• Creating a VPC endpoint policy

• Viewing a VPC endpoint policy

About VPC endpoint policies

For an Timestream for InfluxDB request that uses a VPC endpoint to be successful, the principal
requires permissions from two sources:

• A IAM policy must give principal permission to call the operation on the resource.

• A VPC endpoint policy must give the principal permission to use the endpoint to make the
request.

Default VPC endpoint policy

Every VPC endpoint has a VPC endpoint policy, but you are not required to specify the policy. If
you don't specify a policy, the default endpoint policy allows all operations by all principals on all
resources over the endpoint.

However, for Timestream for InfluxDB resources, the principal must also have permission to call the
operation from an IAM policy Therefore, in practice, the default policy says that if a principal has
permission to call an operation on a resource, they can also call it by using the endpoint.

{
 "Statement": [
 {
 "Action": "*",
 "Effect": "Allow",
 "Principal": "*",
 "Resource": "*"
 }
]
}

To allow principals to use the VPC endpoint for only a subset of their permitted operations, create
or update the VPC endpoint policy.

Identity and Access Management 1259

Amazon Timestream Developer Guide

Creating a VPC endpoint policy

A VPC endpoint policy determines whether a principal has permission to use the VPC endpoint to
perform operations on a resource. For Timestream for InfluxDB resources, the principal must also
have permission to perform the operations from a IAM policy,

Each VPC endpoint policy statement requires the following elements:

• The principal that can perform actions

• The actions that can be performed

• The resources on which actions can be performed

The policy statement doesn't specify the VPC endpoint. Instead, it applies to any VPC endpoint
to which the policy is attached. For more information, see Controlling access to services with VPC
endpoints in the Amazon VPC User Guide.

Amazon CloudTrail logs all operations that use the VPC endpoint.

Viewing a VPC endpoint policy

To view the VPC endpoint policy for an endpoint, use the VPC management console or the
DescribeVpcEndpoints operation.

The following Amazon CLI command gets the policy for the endpoint with the specified VPC
endpoint ID.

Before using this command, replace the example endpoint ID with a valid one from your account.

$ aws ec2 describe-vpc-endpoints \

--query 'VpcEndpoints[?VpcEndpointId==`vpc-endpoint-id`].[PolicyDocument]'

--output text

Using a VPC endpoint in a policy statement

You can control access to Timestream for InfluxDB resources and operations when the request
comes from VPC or uses a VPC endpoint. To do so, use one of the following global condition keys in
a IAM policy.

• Use the aws:sourceVpce condition key to grant or restrict access based on the VPC endpoint.

Identity and Access Management 1260

https://docs.amazonaws.cn/vpc/latest/userguide/vpc-endpoints-access.html
https://docs.amazonaws.cn/vpc/latest/userguide/vpc-endpoints-access.html
https://console.amazonaws.cn/vpc/
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_DescribeVpcEndpoints.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#AvailableKeys

Amazon Timestream Developer Guide

• Use the aws:sourceVpc condition key to grant or restrict access based on the VPC that hosts
the private endpoint.

Note

Use caution when creating key policies and IAM policies based on your VPC endpoint. If
a policy statement requires that requests come from a particular VPC or VPC endpoint,
requests from integrated Amazon services that use an Timestream for InfluxDB resource on
your behalf might fail.
Also, the aws:sourceIP condition key is not effective when the request comes from an
Amazon VPC endpoint. To restrict requests to a VPC endpoint, use the aws:sourceVpce
or aws:sourceVpc condition keys. For more information, see Identity and access
management for VPC endpoints and VPC endpoint services in the Amazon PrivateLink
Guide.

You can use these global condition keys to control access to operations like CreateDbInstance that
don't depend on any particular resource.

Logging your VPC endpoint

Amazon CloudTrail logs all operations that use the VPC endpoint. When a request to Timestream
for InfluxDB uses a VPC endpoint, the VPC endpoint ID appears in the Amazon CloudTrail log entry
that records the request. You can use the endpoint ID to audit the use of your Timestream for
InfluxDB VPC endpoint.

However, your CloudTrail logs don't include operations requested by principals in other accounts or
requests for Timestream for InfluxDB operations on Timestream for InfluxDB resources and aliases
in other accounts. Also, to protect your VPC, requests that are denied by a VPC endpoint policy, but
otherwise would have been allowed, are not recorded in Amazon CloudTrail.

Logging and monitoring in Timestream for InfluxDB

Monitoring is an important part of maintaining the reliability, availability, and performance of
Timestream for InfluxDB and your Amazon solutions. You should collect monitoring data from all
of the parts of your Amazon solution so that you can more easily debug a multi-point failure if
one occurs. However, before you start monitoring Timestream for InfluxDB, you should create a
monitoring plan that includes answers to the following questions:

Logging and monitoring 1261

https://docs.amazonaws.cn/vpc/latest/userguide/vpc-endpoints.html
https://docs.amazonaws.cn/vpc/latest/privatelink/vpc-endpoints-iam.html
https://docs.amazonaws.cn/vpc/latest/privatelink/vpc-endpoints-iam.html
https://docs.amazonaws.cn/ts-influxdb/latest/ts-influxdb-api/API_CreateDbInstance.html

Amazon Timestream Developer Guide

• What are your monitoring goals?

• What resources will you monitor?

• How often will you monitor these resources?

• What monitoring tools will you use?

• Who will perform the monitoring tasks?

• Who should be notified when something goes wrong?

The next step is to establish a baseline for normal Timestream for InfluxDB performance in your
environment, by measuring performance at various times and under different load conditions. As
you monitor Timestream for InfluxDB, store historical monitoring data so that you can compare it
with current performance data, identify normal performance patterns and performance anomalies,
and devise methods to address issues.

To establish a baseline, you should, at a minimum, monitor the following items:

• System errors, so that you can determine whether any requests resulted in an error.

Topics

• Monitoring tools

• Logging Timestream for InfluxDB API calls with Amazon CloudTrail

Monitoring tools

Amazon provides various tools that you can use to monitor Timestream for InfluxDB. You can
configure some of these tools to do the monitoring for you, while some of the tools require manual
intervention. We recommend that you automate monitoring tasks as much as possible.

Topics

• Automated monitoring tools

• Manual monitoring tools

Automated monitoring tools

You can use the following automated monitoring tools to watch Timestream for InfluxDB and
report when something is wrong:

Logging and monitoring 1262

Amazon Timestream Developer Guide

• Amazon CloudWatch Alarms – Watch a single metric over a time period that you specify, and
perform one or more actions based on the value of the metric relative to a given threshold over
a number of time periods. The action is a notification sent to an Amazon Simple Notification
Service (Amazon SNS) topic or Amazon EC2 Auto Scaling policy. CloudWatch alarms do not
invoke actions simply because they are in a particular state; the state must have changed and
been maintained for a specified number of periods. For more information, see Monitoring with
Amazon CloudWatch.

Manual monitoring tools

Another important part of monitoring Timestream for InfluxDB involves manually monitoring
those items that the CloudWatch alarms don't cover. The Timestream for InfluxDB, CloudWatch,
Trusted Advisor, and other Amazon Web Services Management Console dashboards provide an at-
a-glance view of the state of your Amazon environment.

• The CloudWatch home page shows the following:

• Current alarms and status

• Graphs of alarms and resources

• Service health status

In addition, you can use CloudWatch to do the following:

• Create customized dashboards to monitor the services you care about

• Graph metric data to troubleshoot issues and discover trends

• Search and browse all your Amazon resource metrics

• Create and edit alarms to be notified of problems

Logging Timestream for InfluxDB API calls with Amazon CloudTrail

Timestream for InfluxDB is integrated with Amazon CloudTrail, a service that provides a record
of actions taken by a user, role, or an Amazon service in Timestream for InfluxDB. CloudTrail
captures Data Definition Language (DDL) API calls for Timestream for InfluxDB as events. The calls
that are captured include calls from the Timestream for InfluxDB console and code calls to the
Timestream for InfluxDB API operations. If you create a trail, you can enable continuous delivery
of CloudTrail events to an Amazon Simple Storage Service (Amazon S3) bucket, including events
for Timestream for InfluxDB. If you don't configure a trail, you can still view the most recent events
Logging and monitoring 1263

https://docs.amazonaws.cn/AmazonCloudWatch/latest/DeveloperGuide/CloudWatch_Dashboards.html

Amazon Timestream Developer Guide

on the CloudTrail console in Event history. Using the information collected by CloudTrail, you can
determine the request that was made to Timestream for InfluxDB, the IP address from which the
request was made, who made the request, when it was made, and additional details.

To learn more about CloudTrail, see the Amazon CloudTrail User Guide.

Timestream for InfluxDB information in CloudTrail

CloudTrail is enabled on your Amazon account when you create the account. When activity occurs
in Timestream for InfluxDB, that activity is recorded in a CloudTrail event along with other Amazon
service events in Event history. You can view, search, and download recent events in your Amazon
account. For more information, see Viewing Events with CloudTrail Event History.

For an ongoing record of events in your Amazon account, including events for Timestream for
InfluxDB, create a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By
default, when you create a trail in the console, the trail applies to all Amazon Regions. The trail
logs events from all Regions in the Amazon partition and delivers the log files to the Amazon S3
bucket that you specify. Additionally, you can configure other Amazon services to further analyze
and act upon the event data collected in CloudTrail logs.

For more information, see the following topics in the Amazon CloudTrail User Guide:

• Overview for Creating a Trail

• CloudTrail Supported Services and Integrations

• Configuring Amazon SNS Notifications for CloudTrail

• Receiving CloudTrail Log Files from Multiple Regions

• Receiving CloudTrail Log Files from Multiple Accounts

• Logging data events

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or Amazon Identity and Access Management (IAM) user
credentials

• Whether the request was made with temporary security credentials for a role or federated user

• Whether the request was made by another Amazon service

Logging and monitoring 1264

https://docs.amazonaws.cn/awscloudtrail/latest/userguide/
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html

Amazon Timestream Developer Guide

For more information, see the CloudTrail userIdentity Element.

Compliance validation for Amazon Timestream for InfluxDB

Third-party auditors assess the security and compliance of Amazon Timestream for InfluxDB as
part of multiple Amazon compliance programs. These include the following:

• GDPR

• HIPAA

• PCI

• SOC

Resilience in Amazon Timestream for InfluxDB

The Amazon global infrastructure is built around Amazon Regions and Availability Zones. Amazon
Regions provide multiple physically separated and isolated Availability Zones, which are connected
with low-latency, high-throughput, and highly redundant networking. With Availability Zones, you
can design and operate applications and databases that automatically fail over between zones
without interruption. Availability Zones are more highly available, fault tolerant, and scalable than
traditional single or multiple data center infrastructures.

For more information about Amazon Regions and Availability Zones, see Amazon Global
Infrastructure.

Amazon Timestream for InfluxDB periodically takes internal backups and retains them for 24 hours
to support availability and durability. Snapshots are taken during deletes and retained for 30 days
to support restores. To access or use these, file a ticket at Amazon support.

You can create your instance with Multi-AZ recovery capabilities. For more information, see Multi-
AZ DB instance deployments.

Infrastructure security in Amazon Timestream for InfluxDB

As a managed service, Amazon Timestream for InfluxDB is protected by the Amazon global
network security procedures that are described in the Amazon Web Services: Overview of Security
Processes whitepaper.

You use Amazon published control plane API calls to access Timestream for InfluxDB through the
network. For more information, see Control planes and data planes. Clients must support Transport

Compliance validation 1265

https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html
https://www.amazonaws.cn/about-aws/global-infrastructure/
https://www.amazonaws.cn/about-aws/global-infrastructure/
https://support.console.aws.amazon.com/support/home?nc2=h_ql_cu#/
https://docs.amazonaws.cn/timestream/latest/developerguide/timestream-for-influx-managing.html#timestream-for-influx-managing-multi-az-instance-deployments.html
https://docs.amazonaws.cn/timestream/latest/developerguide/timestream-for-influx-managing.html#timestream-for-influx-managing-multi-az-instance-deployments.html
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://docs.amazonaws.cn/whitepapers/latest/aws-fault-isolation-boundaries/control-planes-and-data-planes.html

Amazon Timestream Developer Guide

Layer Security (TLS) 1.2 or later. We recommend TLS 1.2 or 1.3. Clients must also support cipher
suites with perfect forward secrecy (PFS) such as Ephemeral Diffie-Hellman (DHE) or Elliptic Curve
Ephemeral Diffie-Hellman (ECDHE). Most modern systems such as Java 7 and later support these
modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the Amazon Security Token Service (Amazon STS)
to generate temporary security credentials to sign requests.

Timestream for InfluxDB is architected so that your traffic is isolated to the specific Amazon Region
that your Timestream for InfluxDB instance resides in.

Security groups

Security groups control the access that traffic has in and out of a DB instance. By default, network
access is turned off to a DB instance. You can specify rules in a security group that allow access
from an IP address range, port, or security group. After ingress rules are configured, the same rules
apply to all DB instances that are associated with that security group.

For more information, see Controlling access to a DB instance in a VPC.

Configuration and vulnerability analysis in Timestream for InfluxDB

Configuration and IT controls are a shared responsibility between Amazon and you, our customer.
For more information, see the Amazon shared responsibility model. In addition to the shared
responsibility model, Timestream for InfluxDB users should be aware of the following:

• It is the customer responsibility to patch their client applications with the relevant client side
dependencies.

• Customers should consider penetration testing if appropriate (see https://aws.amazon.com/
security/penetration-testing/.)

Incident response in Timestream for InfluxDB

Amazon Timestream for InfluxDB service incidents are reported in the Personal Health Dashboard.
You can learn more about the dashboard and Amazon Health here.

Timestream for InfluxDB supports reporting using Amazon CloudTrail. For more information, see
Logging Timestream for InfluxDB API calls with Amazon CloudTrail.

Configuration and vulnerability analysis in Timestream for InfluxDB 1266

https://docs.amazonaws.cn/STS/latest/APIReference/Welcome.html
https://www.amazonaws.cn/compliance/shared-responsibility-model/
https://www.amazonaws.cn/security/penetration-testing/
https://www.amazonaws.cn/security/penetration-testing/
https://phd.aws.amazon.com/phd/home#/
https://docs.amazonaws.cn/health/latest/ug/what-is-aws-health.html

Amazon Timestream Developer Guide

Amazon Timestream for InfluxDB API and interface VPC endpoints
(Amazon PrivateLink)

You can establish a private connection between your VPC and Amazon Amazon Timestream for
InfluxDB control plane API endpoints by creating an interface VPC endpoint. Interface endpoints
are powered by Amazon PrivateLink. Amazon PrivateLink allows you to privately access Amazon
Timestream for InfluxDB API operations without an internet gateway, NAT device, VPN connection,
or Amazon Direct Connect connection.

Instances in your VPC don't need public IP addresses to communicate with Amazon Timestream
for InfluxDB API endpoints. Your instances also don't need public IP addresses to use any of
the available Timestream for InfluxDB API operations. Traffic between your VPC and Amazon
Timestream for InfluxDB doesn't leave the Amazon network. Each interface endpoint is represented
by one or more elastic network interfaces in your subnets. For more information on elastic network
interfaces, see Elastic network interfaces in the Amazon EC2 User Guide.

• For more information about VPC endpoints, see Interface VPC endpoints (Amazon PrivateLink) in
the Amazon VPC User Guide.

• For more information about Timestream for InfluxDB API operations, see Timestream for
InfluxDB API operations.

After you create an interface VPC endpoint, if you enable private DNS hostnames for
the endpoint, the default Timestream for InfluxDB endpoint (https://timestream-
influxb.Region.amazonaws.com) resolves to your VPC endpoint. If you do not enable private DNS
hostnames, Amazon VPC provides a DNS endpoint name that you can use in the following format:

VPC_Endpoint_ID.timestream-influxb.Region.vpce.amazonaws.com

For more information, see Interface VPC Endpoints (Amazon PrivateLink) in the Amazon VPC User
Guide. Timestream for InfluxDB supports making calls to all of its API Actions inside your VPC.

Note

Private DNS hostnames can be enabled for only one VPC endpoint in the VPC. If you want
to create an additional VPC endpoint then private DNS hostname should be disabled for it.

Amazon Timestream for InfluxDB API and interface VPC endpoints (Amazon PrivateLink) 1267

https://aws.amazon.com/privatelink
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/using-eni.html
https://docs.amazonaws.cn/vpc/latest/userguide/vpce-interface.html
https://docs.amazonaws.cn/ts-influxdb/latest/ts-influxdb-api/Welcome.html
https://docs.amazonaws.cn/ts-influxdb/latest/ts-influxdb-api/Welcome.html
https://docs.amazonaws.cn/vpc/latest/userguide/vpce-interface.html#vpce-private-dns
https://docs.amazonaws.cn/vpc/latest/userguide/vpce-interface.html
https://docs.amazonaws.cn/ts-influxdb/latest/ts-influxdb-api/Welcome.html

Amazon Timestream Developer Guide

Considerations for VPC endpoints

Before you set up an interface VPC endpoint for Amazon Timestream for InfluxDB API endpoints,
ensure that you review Interface endpoint properties and limitations in the Amazon VPC User
Guide. All Timestream for InfluxDB API operations that are relevant to managing Amazon
Timestream for InfluxDB resources are available from your VPC using Amazon PrivateLink. VPC
endpoint policies are supported for Timestream for InfluxDB API endpoints. By default, full access
to Timestream for InfluxDB API operations is allowed through the endpoint. For more information,
see Controlling access to services with VPC endpoints in the Amazon VPC User Guide.

Creating an interface VPC endpoint for the Timestream for InfluxDB API

You can create a VPC endpoint for the Amazon Timestream for InfluxDB API using either the
Amazon VPC console or the Amazon CLI. For more information, see Creating an interface endpoint
in the Amazon VPC User Guide.

After you create an interface VPC endpoint, you can enable private DNS host names for the
endpoint. When you do, the default Amazon Timestream for InfluxDB endpoint (https://
timestream-influxb.Region.amazonaws.com) resolves to your VPC endpoint. For more information,
see Accessing a service through an interface endpoint in the Amazon VPC User Guide.

Creating a VPC endpoint policy for the Amazon Timestream for InfluxDB API

You can attach an endpoint policy to your VPC endpoint that controls access to the Timestream for
InfluxDB API. The policy specifies the following:

• The principal that can perform actions.

• The actions that can be performed.

• The resources on which actions can be performed.

For more information, see Controlling access to services with VPC endpoints in the Amazon VPC
User Guide.

Example VPC endpoint policy for Timestream for InfluxDB API actions

The following is an example of an endpoint policy for the Timestream for InfluxDB API. When
attached to an endpoint, this policy grants access to the listed Timestream for InfluxDB API actions
for all principals on all resources.

Amazon Timestream for InfluxDB API and interface VPC endpoints (Amazon PrivateLink) 1268

https://docs.amazonaws.cn/vpc/latest/privatelink/endpoint-services-overview.html
https://docs.amazonaws.cn/vpc/latest/userguide/vpc-endpoints-access.html
https://docs.amazonaws.cn/vpc/latest/privatelink/create-endpoint-service.html
https://docs.amazonaws.cn/vpc/latest/userguide/vpce-interface.html#access-service-though-endpoint
https://docs.amazonaws.cn/vpc/latest/userguide/vpc-endpoints-access.html

Amazon Timestream Developer Guide

{
 "Statement": [{
 "Principal": "*",
 "Effect": "Allow",
 "Action": [
 "timestream-influxb:CreateDbInstance",
 "timestream-influxb:UpdateDbInstance"
],
 "Resource": "*"
 }]
}

Example VPC endpoint policy that denies all access from a specified Amazon account

The following VPC endpoint policy denies Amazon account 123456789012 all access to resources
using the endpoint. The policy allows all actions from other accounts.

{
 "Statement": [{
 "Action": "*",
 "Effect": "Allow",
 "Resource": "*",
 "Principal": "*"
 },
 {
 "Action": "*",
 "Effect": "Deny",
 "Resource": "*",
 "Principal": {
 "AWS": [
 "123456789012"
]
 }
 }
]
}

Security best practices for Timestream for InfluxDB

Amazon Timestream for InfluxDB provides a number of security features to consider as you
develop and implement your own security policies. The following best practices are general
guidelines and don’t represent a complete security solution. Because these best practices might not

Security best practices 1269

Amazon Timestream Developer Guide

be appropriate or sufficient for your environment, treat them as helpful considerations rather than
prescriptions.

Implement least privilege access

When granting permissions, you decide who is getting what permissions to which Timestream
for InfluxDB resources. You enable specific actions that you want to allow on those resources.
Therefore you should grant only the permissions that are required to perform a task. Implementing
least privilege access is fundamental in reducing security risk and the impact that could result from
errors or malicious intent.

Use IAM roles

Producer and client applications must have valid credentials to access Timestream for InfluxDB DB
instances. You should not store Amazon credentials directly in a client application or in an Amazon
S3 bucket. These are long-term credentials that are not automatically rotated and could have a
significant business impact if they are compromised.

Instead, you should use an IAM role to manage temporary credentials for your producer and client
applications to access Timestream for InfluxDB DB instances. When you use a role, you don't have
to use long-term credentials (such as a user name and password or access keys) to access other
resources.

For more information, see the following topics in the IAM User Guide:

• IAM Roles

• Common Scenarios for Roles: Users, Applications, and Services

Use Amazon Identity and Access Management (IAM) accounts to control access to Amazon
Timestream for InfluxDB API operations, especially operations that create, modify, or delete
Amazon Timestream for InfluxDB resources. Such resources include DB instances, security groups,
and parameter groups.

• Create an individual user for each person who manages Amazon Timestream for InfluxDB
resources, including yourself. Don't use Amazon root credentials to manage Amazon Timestream
for InfluxDB resources.

• Grant each user the minimum set of permissions required to perform his or her duties.

• Use IAM groups to effectively manage permissions for multiple users.

Security best practices 1270

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios.html

Amazon Timestream Developer Guide

• Rotate your IAM credentials regularly.

• Configure Amazon Secrets Manager to automatically rotate the secrets for Amazon Timestream
for InfluxDB. For more information, see Rotating your Amazon Secrets Manager secrets in the
Amazon Secrets Manager User Guide. You can also retrieve the credential from Amazon Secrets
Manager programmatically. For more information, see Retrieving the secret value in the Amazon
Secrets Manager User Guide.

• Secure your Timestream for InfluxDB influx API tokens by using the API tokens.

Implement Server-Side Encryption in Dependent Resources

Data at rest and data in transit can be encrypted in Timestream for InfluxDB. For more information,
see Encryption in transit.

Use CloudTrail to Monitor API Calls

Timestream for InfluxDB is integrated with Amazon CloudTrail, a service that provides a record of
actions taken by a user, role, or an Amazon service in Timestream for InfluxDB.

Using the information collected by CloudTrail, you can determine the request that was made to
Timestream for InfluxDB, the IP address from which the request was made, who made the request,
when it was made, and additional details.

For more information, see the section called “Logging Timestream for LiveAnalytics API calls with
Amazon CloudTrail”.

Amazon Timestream for InfluxDB supports control plane CloudTrail events, but not data plane. For
more information, see Control planes and data planes.

Public accessibility

When you launch a DB instance inside a virtual private cloud (VPC) based on the Amazon VPC
service, you can turn on or off public accessibility for that DB instance. To designate whether the
DB instance that you create has a DNS name that resolves to a public IP address, you use the Public
accessibility parameter. By using this parameter, you can designate whether there is public access
to the DB instance

If your DB instance is in a VPC but isn't publicly accessible, you can also use an Amazon Site-to-Site
VPN connection or an Amazon Direct Connect connection to access it from a private network.

Security best practices 1271

https://docs.amazonaws.cn/secretsmanager/latest/userguide/rotating-secrets.html
https://docs.amazonaws.cn/secretsmanager/latest/userguide/manage_retrieve-secret.html
https://docs.amazonaws.cn/whitepapers/latest/aws-fault-isolation-boundaries/control-planes-and-data-planes.html

Amazon Timestream Developer Guide

If your DB instance is publicly accessible, be sure to take steps to prevent or help mitigate denial
of service related threats. For more information, see Introduction to denial of service attacks and
Protecting networks.

Working with other services

Amazon Timestream for InfluxDB integrates with a variety of Amazon services and popular third-
party tools. All services and tools compatible with open-source InfluxDB should work seamlessly
with Timestream for InfluxDB. Among those we would like to note:

Topics

• InfluxDB portals

• DBeaver

• Grafana

InfluxDB portals

Amazon Timestream for InfluxDB, based on InfluxDB 2.7 Open Source, utilizes long-lived access
tokens for authentication. Organizations with stringent security requirements can enhance their
token management through custom implementation of rotation and expiration mechanisms.
For environments requiring advanced security protocols, especially those with public internet-
exposed API endpoints, implementing additional token management strategies becomes essential.
You can address these security considerations through Ockam’s InfluxDB portals, which provide
comprehensive token management capabilities for InfluxDB deployments.

InfluxDB portals allow you to establish a private connection, with enhanced authentication and
authorization controls, between any InfluxDB client and Amazon Timestream for InfluxDB API
endpoints by creating an InfluxDB portal powered by Ockam. Portals enable you to:

• Privately access Amazon Timestream for InfluxDB API operations over mutually authenticated
and encrypted connections without the need for a VPN or Amazon Direct Connect connection.

• Automatically distribute and rotate short-lived least privilege API tokens to InfluxDB clients. The
built-in lease manager significantly reduces the risk associated with using the default InfluxDB
approach of long-lived access tokens by dynamically assigning each client a unique access token
with a short time-to-live (TTL).

• Have cryptographic guarantees of data privacy, data integrity, and authenticity thanks to the
mutually authenticated end-to-end encryption.

Working with other services 1272

https://docs.amazonaws.cn/whitepapers/latest/aws-best-practices-ddos-resiliency/introduction-denial-of-service-attacks.html
https://docs.amazonaws.cn/wellarchitected/latest/security-pillar/protecting-networks.html
https://www.ockam.io/

Amazon Timestream Developer Guide

Amazon Timestream for InfluxDB endpoints do not need public IP addresses. All clients
automatically get unique short-lived API tokens. Traffic between your InfluxDB and clients is
encrypted using unique encryption keys per client.

For more information on using InfluxDB Portals for secure connectivity and enhanced
authentication, see Ockam’s guide to Secure token management for Amazon Timestream for
InfluxDB.

DBeaver

DBeaver is a free universal SQL client that can be used to manage any database that has a JDBC
driver. It is widely used among developers and database administrators because of its robust data
viewing, editing, and management capabilities. Using DBeaver's cloud connectivity options, you can
connect DBeaver to Amazon Timestream for InfluxDB natively. DBeaver provides a comprehensive
and intuitive interface to work with time series data directly from within a DBeaver application.
Using your credentials, it also gives you full access to any queries that you could execute from
another query interface. It even lets you create graphs for better understanding and visualization
of query results.

To configure your DBeaver client to connect to your Timestream for InfluxDB DB instance or cluster,
refer to DBeaver's guide to InfluxDB configuration.

Grafana

Use Amazon Managed Grafana, Grafana, or Grafana Cloud to visualize data from your Timestream
for InfluxDB instance.

Connect to Grafana

Important

The instructions in this guide require Grafana Cloud or Grafana 10.3+.

1. Create your Timestream for InfluxDB DB instance or Timestream for InfluxDB DB cluster.

2. Create an Amazon Managed Grafana workspace, sign up for Grafana Cloud, or download and
install Grafana.

3. Visit your Amazon Managed Grafana, Grafana Cloud user interface (UI) or, if running Grafana
locally, start Grafana and visit http://localhost:3000 in your browser.

DBeaver 1273

https://www.ockam.io/blog/amazon-influxdb-token-management
https://www.ockam.io/blog/amazon-influxdb-token-management
https://dbeaver.com/docs/dbeaver/InfluxDB/
https://www.amazonaws.cn/grafana/
https://docs.amazonaws.cn/timestream/latest/developerguide/timestream-for-influx-getting-started-creating-db-instance.html
https://docs.amazonaws.cn/timestream/latest/developerguide/timestream-for-influx-create-rr-cluster.html
https://console.amazonaws.cn/grafana
https://grafana.com/products/cloud/
https://grafana.com/grafana/download

Amazon Timestream Developer Guide

4. In the left navigation of the Grafana UI, open the Connections section and select Add new
connection.

5. Select InfluxDB from the list of available data sources and click Add new data source.

6. On the Data Source configuration page, enter a name for your InfluxDB data source.

7. In the Query Language dropdown list, select one of the query languages supported by InfluxDB
2.7 (Flux or InfluxQL).

Important

SQL is only supported in InfluxDB 3.

Configure Grafana to use Flux

With Flux selected as the query language in your InfluxDB data source, configure your InfluxDB
connection:

1. In the HTTP section, enter your InfluxDB URL in the URL field.

https://your-timestream-for-influxdb-endpoint:8086

2. In the InfluxDB Details section, enter the following:

• In Organization: Your InfluxDB organization name or ID.

• In Token: Your InfluxDB API token.

• In Default Bucket: The default bucket to use in Flux queries.

• In Min time interval: The Grafana minimum time interval. The default is 10 seconds.

• In Max series: The maximum number of series or tables Grafana will process. The default is
1,000.

Grafana 1274

https://docs.influxdata.com/influxdb/v2/admin/organizations/view-orgs/
https://docs.influxdata.com/influxdb/v2/admin/tokens/
https://docs.influxdata.com/influxdb/v2/admin/buckets/

Amazon Timestream Developer Guide

Grafana 1275

Amazon Timestream Developer Guide

3. Click Save & test. Grafana attempts to connect to the InfluxDB 2.7 data source and returns the
results of the test.

Configure Grafana to use InfluxQL

To query InfluxDB 2.7 with InfluxQL, find your use case below and then complete the instructions
to configure Grafana.

New install of InfluxDB 2.7:

To configure Grafana to use InfluxQL with a new install of InfluxDB 2.7, do the following:

1. Authenticate with InfluxDB 2.7 tokens.

2. Manually create DBRP mappings.

Manual migration from InfluxDB 1.x to 2.7:

To configure Grafana to use InfluxQL when you have manually migrated from InfluxDB 1.x to
InfluxDB 2.7, do the following:

1. If your InfluxDB 1.x instance required authentication, create v1-compatible authentication
credentials to match your previous 1.x username and password. Otherwise, use InfluxDB v2
token authentication.

2. Manually create DBRP mappings.

With InfluxQL selected as the query language in your InfluxDB data source, configure your InfluxDB
connection:

1. In the HTTP section, enter your InfluxDB URL in the URL field.

https://your-timestream-for-influxdb-endpoint:8086

2. In the Custom HTTP Headers section, enter the following:

• Select Add header. Provide your InfluxDB API token:

• In Header, enter Authorization.

• In Value, use the Token schema and provide your InfluxDB API token. For example, Token
y0uR5uP3rSecr3tT0k3n.

3. In the InfluxDB Details section, enter the following:

Grafana 1276

https://docs.influxdata.com/influxdb/v2/admin/tokens/
https://docs.influxdata.com/influxdb/v2/tools/grafana/?t=InfluxQL#view-and-create-influxdb-dbrp-mappings
https://docs.influxdata.com/influxdb/v2/tools/grafana/?t=InfluxQL#view-and-create-influxdb-v1-authorizations
https://docs.influxdata.com/influxdb/v2/tools/grafana/?t=InfluxQL#view-and-create-influxdb-v1-authorizations
https://docs.influxdata.com/influxdb/v2/admin/tokens/
https://docs.influxdata.com/influxdb/v2/admin/tokens/
https://docs.influxdata.com/influxdb/v2/tools/grafana/?t=InfluxQL#view-and-create-influxdb-dbrp-mappings

Amazon Timestream Developer Guide

• In Database: The database name mapped to your InfluxDB 2.7 bucket.

• In User and Password: The username and password associated with your InfluxDB 1.x
compatibility authorization.

• In HTTP Method: Select GET.

4. Click Save & test. Grafana attempts to connect to the InfluxDB 2.7 data source and returns the
results of the test.

Grafana 1277

https://docs.influxdata.com/influxdb/v2/tools/grafana/?t=InfluxQL#view-and-create-influxdb-dbrp-mappings
https://docs.influxdata.com/influxdb/v2/tools/grafana/?t=InfluxQL#view-and-create-influxdb-v1-authorizations
https://docs.influxdata.com/influxdb/v2/tools/grafana/?t=InfluxQL#view-and-create-influxdb-v1-authorizations

Amazon Timestream Developer Guide

Query and visualize data

After configuring your InfluxDB connection, you can use Grafana and Flux to query and visualize
time series data stored in your InfluxDB instance.

For more information about using Grafana, see the Grafana technical documentation. If you are
just learning Flux, see Get started with Flux.

API reference

For a complete list and details of Amazon Timestream for InfluxDB APIs, see Amazon Timestream
for InfluxDB APIs.

For error codes common to all Amazon services, see the Amazon Support section.

Document history

Change Description Date

Amazon Timestream for
LiveAnalytics will no longer
be open to new customers
starting June 20, 2025.

Amazon Timestream for
LiveAnalytics will no longer
be open to new customers
starting on 6/20/2025. If
you would like to use the
service, please sign up prior to
06/20/2025. For capabilities
similar to Amazon Timestrea
m for LiveAnalytics, explore
Amazon Timestream for
InfluxDB.

May 20, 2025

AmazonTimestreamIn
fluxDBFullAccessWi
thoutMarketplaceAc
cess – New policy

This policy grants administr
ative permissions that allow
full access to all Timestrea
m for InfluxDB resources,
excluding any marketplace-
related actions. For more
information see Amazon

April 16, 2025

API reference 1278

https://grafana.com/docs/
https://docs.influxdata.com/flux/v0/get-started/
https://docs.amazonaws.cn/ts-influxdb/latest/ts-influxdb-api/Welcome.html
https://docs.amazonaws.cn/ts-influxdb/latest/ts-influxdb-api/Welcome.html
https://docs.amazonaws.cn/awssupport/latest/APIReference/CommonErrors.html
https://docs.amazonaws.cn/timestream/latest/developerguide/timestream-for-influxdb.html
https://docs.amazonaws.cn/timestream/latest/developerguide/timestream-for-influxdb.html
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol-influxdb.html

Amazon Timestream Developer Guide

managed policies for Amazon
Timestream for InfluxDB.

AmazonTimestreamIn
fluxDBFullAccess –
Update to an existing policy

Amazon Timestream for
InfluxDB has added to
the existing AmazonTim
estreamInfluxDBFul
lAccess managed policy.
For more information, see
Amazon managed policies
for Amazon Timestream for
InfluxDB.

April 16, 2025

AmazonTimestreamIn
fluxDBFullAccess –
Update to an existing policy

Amazon Timestream for
InfluxDB has added access to
create, update, delete, and list
Amazon Timestream InfluxDB
clusters to the existing
AmazonTimestreamIn
fluxDBFullAccess
managed policy. For more
information, see Amazon
managed policies for Amazon
Timestream for InfluxDB.

February 17, 2025

Documentation-only update Updated the Quotas topic to
segregate the default quotas
and system limits.

October 22, 2024

Amazon Timestream now
supports query insights

Timestream now includes
support for the query
insights feature that helps
you optimize your queries,
improve their performance,
and reduce costs.

October 22, 2024

Document history 1279

https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol-influxdb.html
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol-influxdb.html
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol-influxdb.html
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol-influxdb.html
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol-influxdb.html
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol-influxdb.html
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol-influxdb.html
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol-influxdb.html
https://docs.amazonaws.cn/timestream/latest/developerguide/ts-limits.html
https://docs.amazonaws.cn/timestream/latest/developerguide/using-query-insights.html
https://docs.amazonaws.cn/timestream/latest/developerguide/using-query-insights.html

Amazon Timestream Developer Guide

Amazon Timestream for
InfluxDB update to an existing
policy.

Amazon Timestream for
InfluxDB has added the
ec2:DescribeRouteT
ables action to the existing
AmazonTimestreamIn
fluxDBFullAccess
managed policy for describin
g your route tables. For more
information, see Amazon
managed policies for Amazon
Timestream for InfluxDB.

October 8, 2024

AmazonTimestreamIn
fluxDBFullAccess –
Update to an existing policy

Amazon Timestream for
InfluxDB has added the
ec2:DescribeRouteT
ables action to the existing
AmazonTimestreamIn
fluxDBFullAccess
managed policy. This action
is used for describing your
route tables. See AmazonTim
estreamInfluxDBFullAccess.

September 12, 2024

AmazonTimestreamRe
adOnlyAccess – Update
to an existing policy

Timestream for LiveAnalytics
has added the DescribeA
ccountSettings
permission to the AmazonTim
estreamReadOnlyAcc
ess managed policy for
describing Amazon Web
Services account settings.

June 3, 2024

Document history 1280

https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol-influxdb.html
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol-influxdb.html
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol-influxdb.html
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol-influxdb.html#iam.identitybasedpolicies.predefinedpolicies
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol-influxdb.html#iam.identitybasedpolicies.predefinedpolicies
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonTimestreamReadOnlyAccess
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonTimestreamReadOnlyAccess
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonTimestreamReadOnlyAccess

Amazon Timestream Developer Guide

Amazon Timestream for
LiveAnalytics now supports
Timestream Compute Units
(TCUs)

Amazon Timestream for
LiveAnalytics now includes
support for Timestream
Compute Units (TCUs)
to measure the compute
capacity allocated for your
query needs.

April 29, 2024

New policies added Amazon Timestream for
InfluxDB added two new
policies: One that allows the
service to manage network
interfaces and security groups
in your account. For more
information, see AmazonTim
estreamInfluxDBServiceRoleP
olicy. Another that provide
full administrative access to
create, update, delete and list
Amazon Timestream InfluxDB
instances and create and list
parameter groups. For more
information, see AmazonTim
estreamInfluxDBFullAccess.

March 14, 2024

Amazon Timestream for
InfluxDB is now generally
available.

This documentation covers
the initial release of Amazon
Timestream for InfluxDB.

March 14, 2024

Document history 1281

https://docs.amazonaws.cn/timestream/latest/developerguide/tcu.html
https://docs.amazonaws.cn/timestream/latest/developerguide/tcu.html
https://docs.amazonaws.cn/timestream/latest/developerguide/tcu.html
https://docs.amazonaws.cn/timestream/latest/developerguide/tcu.html
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol-influxdb.html#security-iam-awsmanpol-timestreamforinfluxdbServiceRolePolicy
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol-influxdb.html#security-iam-awsmanpol-timestreamforinfluxdbServiceRolePolicy
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol-influxdb.html#security-iam-awsmanpol-timestreamforinfluxdbServiceRolePolicy
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol-influxdb.html#iam.identitybasedpolicies.predefinedpolicies
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol-influxdb.html#iam.identitybasedpolicies.predefinedpolicies
https://docs.amazonaws.cn/timestream/latest/developerguide/timestream-for-influxdb.html
https://docs.amazonaws.cn/timestream/latest/developerguide/timestream-for-influxdb.html
https://docs.amazonaws.cn/timestream/latest/developerguide/timestream-for-influxdb.html

Amazon Timestream Developer Guide

Amazon Timestream for
LiveAnalytics Query events
are available in Amazon
CloudTrail

Amazon Timestream for
LiveAnalytics now publishes
Query API data events
to Amazon CloudTrail.
Customers can audit all Query
API requests made in their
Amazon accounts, and see
information such as which
IAM User/Role made the
request, when the request
was made, which databases
and tables were queried, and
the request's Query ID.

September 12, 2023

Amazon Timestream for
LiveAnalytics UNLOAD

Amazon Timestream for
LiveAnalytics now supports
UNLOAD to export query
results to S3.

May 12, 2023

Amazon Timestream for
LiveAnalytics update to an
existing policy.

Batch load permissions added
to a managed policy.

February 24, 2023

Amazon Timestream for
LiveAnalytics batch load.

Amazon Timestream for
LiveAnalytics now supports
batch load functionality.

February 24, 2023

Amazon Timestream for
LiveAnalytics now supports
Amazon Backup.

Amazon Timestream for
LiveAnalytics now supports
Amazon Backup.

December 14, 2022

Amazon Timestream for
LiveAnalytics updates to
Amazon managed policies

New information about
Amazon managed policies
and Amazon Timestream
for LiveAnalytics, including
updates to existing managed
policies.

November 29, 2021

Document history 1282

https://docs.amazonaws.cn/timestream/latest/developerguide/logging-using-cloudtrail.html
https://docs.amazonaws.cn/timestream/latest/developerguide/logging-using-cloudtrail.html
https://docs.amazonaws.cn/timestream/latest/developerguide/logging-using-cloudtrail.html
https://docs.amazonaws.cn/timestream/latest/developerguide/logging-using-cloudtrail.html
https://docs.amazonaws.cn/timestream/latest/developerguide/export-unload.html
https://docs.amazonaws.cn/timestream/latest/developerguide/export-unload.html
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol.html
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol.html
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol.html
https://docs.amazonaws.cn/timestream/latest/developerguide/batch-load.html
https://docs.amazonaws.cn/timestream/latest/developerguide/batch-load.html
https://docs.amazonaws.cn/timestream/latest/developerguide/backups.html
https://docs.amazonaws.cn/timestream/latest/developerguide/backups.html
https://docs.amazonaws.cn/timestream/latest/developerguide/backups.html
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol.html
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol.html
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol.html

Amazon Timestream Developer Guide

Amazon Timestream for
LiveAnalytics supports
scheduled queries

Amazon Timestream for
LiveAnalytics now supports
running a query on your
behalf, based on a schedule.

November 29, 2021

Amazon Timestream for
LiveAnalytics supports
magnetic store.

Amazon Timestream for
LiveAnalytics now supports
using magnetic storage for
your table writes.

November 29, 2021

Amazon Timestream for
LiveAnalytics multi-measure
records.

Amazon Timestream for
LiveAnalytics now supports
a more compact format for
storing your time-series data.

November 29, 2021

Amazon Timestream for
LiveAnalytics updates to
Amazon managed policies

New information about
Amazon managed policies
and Amazon Timestream
for LiveAnalytics, including
updates to existing managed
policies.

May 24, 2021

Amazon Timestream for
LiveAnalytics is now available
in the Europe (Frankfurt)
region.

Amazon Timestream for
LiveAnalytics is now generally
available in the Europe
(Frankfurt) region (eu-
central-1).

April 23, 2021

Amazon Timestream for
LiveAnalytics now supports
VPC endpoints (Amazon
PrivateLink).

Amazon Timestream for
LiveAnalytics now supports
the use of VPC endpoints
(Amazon PrivateLink).

March 23, 2021

Amazon Timestream now
supports cross table queries.

You can use Amazon
Timestream for LiveAnalytics
to run cross table queries.

February 10, 2021

Document history 1283

https://docs.amazonaws.cn/timestream/latest/developerguide/scheduledqueries.html
https://docs.amazonaws.cn/timestream/latest/developerguide/scheduledqueries.html
https://docs.amazonaws.cn/timestream/latest/developerguide/scheduledqueries.html
https://docs.amazonaws.cn/timestream/latest/developerguide/writes.html
https://docs.amazonaws.cn/timestream/latest/developerguide/writes.html
https://docs.amazonaws.cn/timestream/latest/developerguide/writes.html
https://docs.amazonaws.cn/timestream/latest/developerguide/writes.html#writes.writing-data-multi-measure
https://docs.amazonaws.cn/timestream/latest/developerguide/writes.html#writes.writing-data-multi-measure
https://docs.amazonaws.cn/timestream/latest/developerguide/writes.html#writes.writing-data-multi-measure
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol.html
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol.html
https://docs.amazonaws.cn/timestream/latest/developerguide/security-iam-awsmanpol.html
https://docs.amazonaws.cn/timestream/latest/developerguide/what-is-timestream.html
https://docs.amazonaws.cn/timestream/latest/developerguide/what-is-timestream.html
https://docs.amazonaws.cn/timestream/latest/developerguide/what-is-timestream.html
https://docs.amazonaws.cn/timestream/latest/developerguide/what-is-timestream.html
https://docs.amazonaws.cn/timestream/latest/developerguide/VPCEndpoints.html
https://docs.amazonaws.cn/timestream/latest/developerguide/VPCEndpoints.html
https://docs.amazonaws.cn/timestream/latest/developerguide/VPCEndpoints.html
https://docs.amazonaws.cn/timestream/latest/developerguide/VPCEndpoints.html
https://docs.amazonaws.cn/timestream/latest/developerguide/supported-sql-constructs.SELECT.html
https://docs.amazonaws.cn/timestream/latest/developerguide/supported-sql-constructs.SELECT.html

Amazon Timestream Developer Guide

Amazon Timestream for
LiveAnalytics now supports
enhanced query execution
statistics.

Amazon Timestream for
LiveAnalytics now supports
enhanced query execution
statistics, such as amount of
data scanned.

February 10, 2021

Amazon Timestream for
LiveAnalytics now supports
advanced time series
functions.

You can use Amazon
Timestream for LiveAnaly
tics to run SQL queries
with advanced time series
functions, such as derivatives,
integrals, and correlations.

February 10, 2021

Amazon Timestream for
LiveAnalytics is now HIPAA,
ISO, and PCI compliant.

You can now use Amazon
Timestream for LiveAnalytics
for workloads that require
HIPAA, ISO, and PCI-compl
iant infrastructure.

January 27, 2021

Amazon Timestream for
LiveAnalytics now supports
open-source Telegraf and
Grafana.

You can now use Telegraf,
the open-source, plugin-dr
iven server agent for collectin
g and reporting metrics,
and Grafana, the open-sour
ce analytics and monitorin
g platform for databases,
with Amazon Timestream for
LiveAnalytics.

November 25, 2020

Amazon Timestream for
LiveAnalytics is now generally
available.

This documentation covers
the initial release of Amazon
Timestream for LiveAnalytics.

September 30, 2020

Document history 1284

https://docs.amazonaws.cn/timestream/latest/developerguide/API_query_Query.html
https://docs.amazonaws.cn/timestream/latest/developerguide/API_query_Query.html
https://docs.amazonaws.cn/timestream/latest/developerguide/API_query_Query.html
https://docs.amazonaws.cn/timestream/latest/developerguide/API_query_Query.html
https://docs.amazonaws.cn/timestream/latest/developerguide/timeseries-specific-constructs.functions.html
https://docs.amazonaws.cn/timestream/latest/developerguide/timeseries-specific-constructs.functions.html
https://docs.amazonaws.cn/timestream/latest/developerguide/timeseries-specific-constructs.functions.html
https://docs.amazonaws.cn/timestream/latest/developerguide/timeseries-specific-constructs.functions.html
https://docs.amazonaws.cn/timestream/latest/developerguide/what-is-timestream.html
https://docs.amazonaws.cn/timestream/latest/developerguide/what-is-timestream.html
https://docs.amazonaws.cn/timestream/latest/developerguide/what-is-timestream.html
https://docs.amazonaws.cn/timestream/latest/developerguide/OtherServices.html
https://docs.amazonaws.cn/timestream/latest/developerguide/OtherServices.html
https://docs.amazonaws.cn/timestream/latest/developerguide/OtherServices.html
https://docs.amazonaws.cn/timestream/latest/developerguide/OtherServices.html
https://docs.amazonaws.cn/timestream/latest/developerguide/what-is-timestream.html
https://docs.amazonaws.cn/timestream/latest/developerguide/what-is-timestream.html
https://docs.amazonaws.cn/timestream/latest/developerguide/what-is-timestream.html

	Amazon Timestream
	Table of Contents
	
	What is Amazon Timestream for LiveAnalytics?
	Timestream for LiveAnalytics key benefits
	Timestream for LiveAnalytics use cases
	Getting started with Timestream for LiveAnalytics
	Amazon Timestream for LiveAnalytics availability change
	Amazon Timestream for LiveAnalytics availability change
	Alternative services evaluation

	Migration Guide
	Exporting Timestream data to Amazon S3
	Recommendations and best practices
	Basic commands

	Timestream for InfluxDB as a Target
	Ingesting data from Amazon S3 to Timestream for InfluxDB automation
	Data ingestion into Timestream for InfluxDB

	Migration validation script

	Aurora/RDS Postgres as a target
	Ingestion
	Overview of PostgreSQL CSV ingestion tool
	Key features

	How it works
	Amazon Timestream for LiveAnalytics concepts
	A summary of Timestream for LiveAnalytics concepts

	Architecture
	Write architecture
	Storage architecture
	Query architecture
	Cellular architecture

	Writes
	Data types
	No upfront schema definition
	Writing data (inserts and upserts)
	Multi-measure records
	Example: Monitoring the performance and health of a video streaming application
	Using single measure records
	Using multi-measure records

	Writing data with a timestamp that exists in the past or in the future

	Eventual consistency for reads
	Batching writes with WriteRecords API
	Batch load
	Choosing between the WriteRecords API operation and batch load

	Storage
	Queries
	Data model
	Flat model
	Time series model

	Scheduled queries
	Timestream Compute Unit (TCU)
	Provisioned Timestream Compute Units
	Benefits of Provisioning TCU
	How Provisioned TCU Works
	Monitoring Provisioned TCU usage
	Modifying your Provisioned TCUs
	Pricing for Provisioned TCUs

	MaxQuery TCU
	Billing for TCU
	Configuring TCU
	Estimating required compute units
	When to increase MaxQueryTCU
	When to decrease MaxQueryTCU
	Monitoring usage with CloudWatch metrics
	Understanding variations in compute units usage

	Accessing Timestream for LiveAnalytics
	
	Sign up for an Amazon Web Services account
	Secure IAM users
	Provide Timestream for LiveAnalytics access
	Grant programmatic access

	Using the console
	Tutorial
	Create a database
	Create a table
	Run a query
	Create a scheduled query
	Delete a scheduled query
	Delete a table
	Delete a database
	Edit a table
	Edit a database

	Accessing Amazon Timestream for LiveAnalytics using the Amazon CLI
	Downloading and configuring the Amazon CLI
	Using the Amazon CLI with Timestream for LiveAnalytics

	Using the API
	The endpoint discovery pattern
	How the endpoint discovery pattern works
	Implementing the endpoint discovery pattern
	Implementation procedure
	Usage notes for the endpoint discovery pattern

	Using the Amazon SDKs
	Java
	Prerequisites
	Using Apache Maven
	Setting your Amazon credentials

	Java v2
	Prerequisites
	Using Apache Maven

	Go
	Prerequisites

	Python
	Prerequisites

	Node.js
	Prerequisites

	.NET
	Prerequisites

	Getting started
	Tutorial
	Using the console
	Using the SDKs

	Sample application

	Code samples
	Write SDK client
	Query SDK client
	Create database
	Describe database
	Update database
	Delete database
	List databases
	Create table
	Memory store writes
	Magnetic store writes

	Describe table
	Update table
	Delete table
	List tables
	Write data (inserts and upserts)
	Writing batches of records
	Writing batches of records with common attributes
	Upserting records
	Multi-measure attribute example
	Handling write failures

	Run query
	Paginating results
	Parsing result sets
	Accessing the query status

	Run UNLOAD query
	Build and run an UNLOAD query
	Parse UNLOAD response, and get row count, manifest link, and metadata link
	Read and parse manifest content
	Read and parse metadata content

	Cancel query
	Create batch load task
	Describe batch load task
	List batch load tasks
	Resume batch load task
	Create scheduled query
	List scheduled query
	Describe scheduled query
	Execute scheduled query
	Update scheduled query
	Delete scheduled query

	Using batch load in Timestream for LiveAnalytics
	Batch load concepts in Timestream
	Batch load prerequisites
	Batch load best practices
	Preparing a batch load data file
	CSV format parameters

	Data model mappings for batch load
	Data model mappings schema
	Data model mappings with MultiMeasureMappings example
	Data model mappings with MixedMeasureMappings example

	Using batch load with the console
	Access batch load
	Create a batch load task
	Resume a batch load task
	Using the visual builder
	Auto load source columns mode
	Manually add source columns
	Mapping fields

	Using batch load with the Amazon CLI
	Create a batch load task
	Describe batch load task
	List batch load tasks
	Resume batch load task
	Create batch load task example
	Example output

	Using batch load with the Amazon SDKs
	Using batch load error reports

	Using scheduled queries in Timestream for LiveAnalytics
	Scheduled query benefits
	Scheduled query use cases
	Example: Using real-time analytics to detect fraudulent payments and make better business decisions
	Scheduled query concepts
	Schedule expressions for scheduled queries
	Data model mappings for scheduled queries
	Example: Target measure name for multi-measure records
	Example: Using measure name from scheduled query in multi-measure records
	Example: Mapping results to different multi-measure records with different attributes
	Example: Mapping results to single-measure records with measure name from query results
	Example: Mapping results to single-measure records with query result columns as measure names

	Scheduled query notification messages
	Scheduled query error reports
	Scheduled query error reports reasons
	Scheduled query error reports location
	Scheduled query error reports format
	Scheduled query error types
	Scheduled query error reports example

	Scheduled query patterns and examples
	Scheduled queries sample schema
	Multi-measure records
	Single-measure records

	Scheduled query patterns
	Scenario
	Simple fleet-level aggregates
	Aggregate from source tables
	Scheduled query to pre-compute aggregates
	Aggregate from derived table
	Aggregate combining source and derived tables
	Aggregate from frequently refreshed scheduled computation

	Last point from each device
	Computed from source table
	Derived table to precompute at daily granularity
	Computed from derived table
	Combining from source and derived table

	Unique dimension values
	On raw data
	Pre-compute unique dimension values
	Computing the variables from derived table

	Handling late-arriving data
	Scheduled catch-up queries
	Query aggregating data that arrived in time
	Catch-up query updating the aggregates for late arriving data

	Manual executions for unpredictable late arriving data

	Back-filling historical pre-computations

	Scheduled query examples
	Converting an aggregate dashboard to scheduled query
	Using scheduled queries and raw data for drill downs
	Optimizing costs by sharing scheduled query across dashboards
	Dashboard panels with raw data
	Converting into a single scheduled query enabling reuse
	Dashboard from pre-computed results

	Comparing a query on a base table with a query of scheduled query results
	Base table
	Query on a base table
	Scheduled query
	Query on a derived table
	Comparison

	Using UNLOAD to export query results to S3 from Timestream for LiveAnalytics
	Benefits of UNLOAD from Timestream for LiveAnalytics
	Use cases for UNLOAD from Timestream for LiveAnalytics
	UNLOAD Concepts
	Syntax
	Parameters
	What is written to my S3 bucket?
	What is the exported file name?
	What information does each file contain?
	Manifest file
	Metadata
	Results

	Example
	Data types

	Prerequisites for UNLOAD from Timestream for LiveAnalytics
	Best practices for UNLOAD from Timestream for LiveAnalytics
	Recommendations for accessing the data in CSV format using CSV parser
	Recommendations for accessing the data in Parquet format
	Using partition_by clause

	Example use case for UNLOAD from Timestream for LiveAnalytics
	Exporting the data without any partitions
	Partitioning data by channel
	Partitioning data by event
	Partitioning data by both channel and event
	Manifest and metadata files
	Manifest file
	Metadata

	Using Glue crawlers to build Glue Data Catalog

	Limits for UNLOAD from Timestream for LiveAnalytics

	Using query insights to optimize queries in Amazon Timestream
	Benefits of query insights
	Optimizing data access in Amazon Timestream
	Timestream partitioning scheme
	Data organization
	QuerySpatialCoverage
	QueryTemporalCoverage

	Enabling query insights in Amazon Timestream
	Optimizing queries using query insights response
	Querying energy consumption for the last 24 hours
	Optimizing the query for temporal range
	Optimizing the query for spatial coverage
	Improved query performance

	Working with Amazon Backup
	Backing up and restoring Timestream tables: How it works
	Backups
	Restores

	Creating backups of Amazon Timestream tables
	Enabling Amazon Backup to protect Timestream for LiveAnalytics data
	Creating on-demand backups
	Scheduled backups

	Restoring a backup of an Amazon Timestream table
	Restoring a Timestream for LiveAnalytics table from Amazon Backup
	Restoring a Timestream for LiveAnalytics table to another Region or account

	Copying a backup of a Amazon Timestream table
	Deleting backups
	Quota and limits

	Customer-defined partition keys
	Using customer-defined partition keys
	Getting started with customer-defined partition keys
	Create a table with a dimension type partition key

	Checking partitioning schema configuration
	Describe a table with a partition key

	Updating partitioning schema configuration
	Update a table with a partition key

	Advantages of customer-defined partition keys
	Limitations of customer-defined partition keys
	Customer-defined partition keys and low cardinality dimensions
	Creating partition keys for existing tables
	Timestream for LiveAnalytics schema validation with custom composite partition keys
	What is Timestream for LiveAnalytics schema validation with customer-defined partition keys?
	How to Use Timestream for LiveAnalytics schema validation with custom composite partition keys
	When to use Timestream for LiveAnalytics schema validation with custom composite partition keys
	Interaction with batch load jobs
	Interaction with scheduled query

	Adding tags and labels to resources
	Tagging restrictions
	Tagging operations
	Adding tags to new or existing databases and tables using the console

	Security in Timestream for LiveAnalytics
	Data protection in Timestream for LiveAnalytics
	Encryption at rest
	Encryption in transit
	Key management

	Identity and access management for Amazon Timestream for LiveAnalytics
	Audience
	Authenticating with identities
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How Amazon Timestream for LiveAnalytics works with IAM
	Timestream for LiveAnalytics identity-based policies
	Actions
	SelectValues vs. select:

	Resources
	Condition keys
	Examples

	Timestream for LiveAnalytics resource-based policies
	Authorization based on Timestream for LiveAnalytics tags
	Timestream for LiveAnalytics IAM roles
	Using temporary credentials with Timestream for LiveAnalytics
	Service-linked roles
	Service roles

	Amazon managed policies for Amazon Timestream Live Analytics
	Amazon managed policy: AmazonTimestreamReadOnlyAccess
	Amazon managed policy: AmazonTimestreamConsoleFullAccess
	Amazon managed policy: AmazonTimestreamFullAccess
	Timestream Live Analytics updates to Amazon managed policies

	Amazon Timestream for LiveAnalytics identity-based policy examples
	Policy best practices
	Using the Timestream for LiveAnalytics console
	Allow users to view their own permissions
	Common operations in Timestream for LiveAnalytics
	Allowing all operations
	Allowing SELECT operations
	Allowing SELECT operations on multiple resources
	Allowing metadata operations
	Allowing INSERT operations
	Allowing CRUD operations
	Cancel queries and select data without specifying resources
	Create, describe, delete and describe a database
	Limit listed databases by tag{"Owner": "${username}"}
	List all tables in a database
	Create, describe, delete, update and select on a table
	Limit a query by table

	Timestream for LiveAnalytics resource access based on tags
	Scheduled queries
	List, delete, update, execute ScheduledQuery
	CreateScheduledQuery using a customer managed KMS key
	DescribeScheduledQuery using a customer managed KMS key
	Execution role permissions (using a customer managed KMS key for scheduled query and SSE-KMS for error reports)
	Execution role trust relationship
	Allow access to all scheduled queries created within an account
	Allow access to all scheduled queries with a specific name

	Troubleshooting Amazon Timestream for LiveAnalytics identity and access
	I am not authorized to perform an action in Timestream for LiveAnalytics
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my Amazon account to access my Timestream for LiveAnalytics resources

	Logging and monitoring in Timestream for LiveAnalytics
	Monitoring tools
	Automated monitoring tools
	Manual monitoring tools

	Logging Timestream for LiveAnalytics API calls with Amazon CloudTrail
	Timestream for LiveAnalytics information in CloudTrail

	Resilience in Amazon Timestream Live Analytics
	Infrastructure security in Amazon Timestream Live Analytics
	Configuration and vulnerability analysis in Timestream
	Incident response in Timestream for LiveAnalytics
	VPC endpoints (Amazon PrivateLink)
	How VPC endpoints work with Timestream
	Considerations for Timestream VPC endpoints

	Creating an interface VPC endpoint for Timestream for LiveAnalytics
	Constructing a VPC endpoint service name using your Timestream cell
	Example: Constructing your VPC endpoint service name

	Creating a VPC endpoint policy for Timestream for LiveAnalytics

	Security best practices for Amazon Timestream for LiveAnalytics
	Timestream for LiveAnalytics preventative security best practices

	Working with other services
	Amazon DynamoDB
	Using EventBridge Pipes to send DynamoDB data to Timestream

	Amazon Lambda
	Build Amazon Lambda functions using Amazon Timestream for LiveAnalytics with Python
	Build Amazon Lambda functions using Amazon Timestream for LiveAnalytics with JavaScript
	Build Amazon Lambda functions using Amazon Timestream for LiveAnalytics with Go
	Build Amazon Lambda functions using Amazon Timestream for LiveAnalytics with C#

	Amazon IoT Core
	Prerequisites
	Using the console
	Using the CLI
	Sample application
	Video tutorial

	Amazon Managed Service for Apache Flink
	Sample application
	Video tutorial

	Amazon Kinesis
	Using Amazon Managed Service for Apache Flink
	Using EventBridge Pipes to send Kinesis data to Timestream
	Configuration
	Configuration example

	Event transformation
	Best practices
	Debugging failures
	Monitoring

	Amazon MQ
	Using EventBridge Pipes to send Amazon MQ data to Timestream

	Amazon MSK
	Using Managed Service for Apache Flink to send Amazon MSK data to Timestream for LiveAnalytics
	Using Kafka Connect to send Amazon MSK data to Timestream for LiveAnalytics
	Creating a sample application
	Additional resources

	Amazon QuickSight
	Accessing Amazon Timestream from QuickSight
	Create a new QuickSight data source connection for Timestream
	Edit permissions for the QuickSight data source connection for Timestream
	Create a new QuickSight dataset for Timestream
	Create a new analysis for Timestream
	Video tutorial

	Amazon SageMaker AI
	Amazon SQS
	Using EventBridge Pipes to send Amazon SQS data to Timestream

	Using DBeaver to work with Amazon Timestream
	Setting up DBeaver to work with Timestream

	Grafana
	Sample application
	Video tutorial

	Using SquaredUp to work with Amazon Timestream
	Using SquaredUp with Amazon Timestream

	Open source Telegraf
	Installing Telegraf with the Timestream for LiveAnalytics output plugin
	Installing Telegraf with the Timestream for LiveAnalytics output plugin on Amazon Linux 2

	Running Telegraf with the Timestream for LiveAnalytics output plugin
	Mapping Telegraf/InfluxDB metrics to the Timestream for LiveAnalytics model
	Storing the data in multiple tables
	Storing the data in a single table

	JDBC
	Configuring the JDBC driver for Timestream for LiveAnalytics
	Timestream for LiveAnalytics JDBC driver JARs
	Timestream for LiveAnalytics JDBC driver class and URL format
	Sample application

	Connection properties
	Basic authentication options
	Standard client info option
	Driver configuration option
	SDK option
	Endpoint configuration option
	Credential provider options
	SAML-based authentication options for Okta
	SAML-based authentication options for Azure AD

	JDBC URL examples
	Setting up Timestream for LiveAnalytics JDBC single sign-on authentication with Okta
	Prerequisites
	Amazon account federation in Okta
	Setting up Okta for SAML

	Setting up Timestream for LiveAnalytics JDBC single sign-on authentication with Microsoft Azure AD
	Prerequisites
	Setting up Azure AD
	Setting up IAM Identity Provider and roles in Amazon
	Create a SAML Identity Provider
	Create an IAM role
	Create an IAM policy
	Provisioning

	ODBC
	Setting up the Timestream for LiveAnalytics ODBC driver
	Set up access to Timestream for LiveAnalytics in your Amazon account
	Install the ODBC driver on your system
	Set up a data source name (DSN) for the ODBC driver
	Set up your business intelligence (BI) application to work with the ODBC driver

	Connection string syntax and options for the ODBC driver
	Connecting through a proxy

	Connection string examples for the Timestream for LiveAnalytics ODBC driver
	Example of connecting to the ODBC driver with IAM credentials
	Example of connecting to the ODBC driver with a profile
	Example of connecting to the ODBC driver with Okta
	Example of connecting to the ODBC driver with Azure Active Directory (AAD)
	Example of connecting to the ODBC driver with a specified endpoint and a log level of 2 (WARNING)

	Troubleshooting connection with the ODBC driver

	VPC endpoints (Amazon PrivateLink)

	Best practices
	Data modeling
	Single table vs. multiple tables
	Multi-measure records vs. single-measure records
	Dimensions and measures
	Using measure name with multi-measure records
	Recommendations for partitioning multi-measure records

	Security
	Configuring Amazon Timestream for LiveAnalytics
	Writes
	Batch load

	Queries
	Scheduled queries
	Client applications and supported integrations
	General

	Metering and cost optimization
	Writes
	Calculating the write size of a time series event
	Calculating the number of writes
	One time series event per write
	Batching time series events in a write
	Batching time series events and using common attributes in a write

	Storage
	Queries
	Cost optimization
	Monitoring with Amazon CloudWatch
	How do I use Timestream for LiveAnalytics metrics?
	Timestream for LiveAnalytics metrics and dimensions
	Dimensions for Timestream for LiveAnalytics metrics
	Timestream for LiveAnalytics metrics

	Creating CloudWatch alarms to monitor Timestream for LiveAnalytics

	Troubleshooting
	Handling WriteRecords throttles
	Handling rejected records
	Troubleshooting UNLOAD from Timestream for LiveAnalytics
	Timestream for LiveAnalytics specific error codes
	Timestream for LiveAnalytics write API errors
	Timestream for LiveAnalytics query API errors

	Quotas
	Default quotas
	Service limits
	Supported data types
	Batch load
	Naming constraints
	Reserved keywords
	System identifiers
	UNLOAD

	Query language reference
	Supported data types
	Built-in time series functionality
	Timeseries views
	CREATE_TIME_SERIES
	UNNEST

	Time series functions
	Interpolation functions
	Usage information
	Query examples

	Derivatives functions
	Usage information
	Query examples

	Integral functions
	Usage information
	Query examples

	Correlation functions
	Usage information
	Query examples

	Filter and reduce functions
	Usage information
	Query examples

	SQL support
	SELECT
	Subquery support
	SHOW statements
	DESCRIBE statements
	UNLOAD

	Logical operators
	Comparison operators
	Comparison functions
	greatest()
	least()
	ALL(), ANY() and SOME()
	Examples and usage notes
	Example: ANY()
	Example: ALL()
	Example: SOME()

	Conditional expressions
	The CASE statement
	The IF statement
	Examples

	The COALESCE statement
	The NULLIF statement
	The TRY statement

	Conversion functions
	cast()
	try_cast()

	Mathematical operators
	Mathematical functions
	String operators
	String functions
	Array operators
	Array functions
	Bitwise functions
	Regular expression functions
	Date / time operators
	Operations
	Addition
	Subtraction

	Date / time functions
	General and conversion
	Interval and duration
	Formatting and parsing
	Extraction

	Aggregate functions
	Window functions
	Sample queries
	Simple queries
	Queries with time series functions
	Example dataset and queries

	Queries with aggregate functions
	Example data
	Example queries

	API reference
	Actions
	Amazon Timestream Write
	CreateBatchLoadTask
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	CreateDatabase
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	CreateTable
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	DeleteDatabase
	Request Syntax
	Request Parameters
	Response Elements
	Errors
	See Also

	DeleteTable
	Request Syntax
	Request Parameters
	Response Elements
	Errors
	See Also

	DescribeBatchLoadTask
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	DescribeDatabase
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	DescribeEndpoints
	Response Syntax
	Response Elements
	Errors
	See Also

	DescribeTable
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	ListBatchLoadTasks
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	ListDatabases
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	ListTables
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	ListTagsForResource
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	ResumeBatchLoadTask
	Request Syntax
	Request Parameters
	Response Elements
	Errors
	See Also

	TagResource
	Request Syntax
	Request Parameters
	Response Elements
	Errors
	See Also

	UntagResource
	Request Syntax
	Request Parameters
	Response Elements
	Errors
	See Also

	UpdateDatabase
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	UpdateTable
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	WriteRecords
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	Amazon Timestream Query
	CancelQuery
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	CreateScheduledQuery
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	DeleteScheduledQuery
	Request Syntax
	Request Parameters
	Response Elements
	Errors
	See Also

	DescribeAccountSettings
	Response Syntax
	Response Elements
	Errors
	See Also

	DescribeEndpoints
	Response Syntax
	Response Elements
	Errors
	See Also

	DescribeScheduledQuery
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	ExecuteScheduledQuery
	Request Syntax
	Request Parameters
	Response Elements
	Errors
	Examples
	Scheduled query notification message for the ENABLED_WITH_RATE_CONTROL mode
	

	Scheduled query notification message for the DISABLED mode
	

	Failure notification message for the ENABLED_WITH_RATE_CONTROL mode
	

	Failure notification message for the DISABLED mode
	

	See Also

	ListScheduledQueries
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	ListTagsForResource
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	PrepareQuery
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	Query
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	TagResource
	Request Syntax
	Request Parameters
	Response Elements
	Errors
	See Also

	UntagResource
	Request Syntax
	Request Parameters
	Response Elements
	Errors
	See Also

	UpdateAccountSettings
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	UpdateScheduledQuery
	Request Syntax
	Request Parameters
	Response Elements
	Errors
	See Also

	Data Types
	Amazon Timestream Write
	BatchLoadProgressReport
	Contents
	See Also

	BatchLoadTask
	Contents
	See Also

	BatchLoadTaskDescription
	Contents
	See Also

	CsvConfiguration
	Contents
	See Also

	Database
	Contents
	See Also

	DataModel
	Contents
	See Also

	DataModelConfiguration
	Contents
	See Also

	DataModelS3Configuration
	Contents
	See Also

	DataSourceConfiguration
	Contents
	See Also

	DataSourceS3Configuration
	Contents
	See Also

	Dimension
	Contents
	See Also

	DimensionMapping
	Contents
	See Also

	Endpoint
	Contents
	See Also

	MagneticStoreRejectedDataLocation
	Contents
	See Also

	MagneticStoreWriteProperties
	Contents
	See Also

	MeasureValue
	Contents
	See Also

	MixedMeasureMapping
	Contents
	See Also

	MultiMeasureAttributeMapping
	Contents
	See Also

	MultiMeasureMappings
	Contents
	See Also

	PartitionKey
	Contents
	See Also

	Record
	Contents
	See Also

	RecordsIngested
	Contents
	See Also

	RejectedRecord
	Contents
	See Also

	ReportConfiguration
	Contents
	See Also

	ReportS3Configuration
	Contents
	See Also

	RetentionProperties
	Contents
	See Also

	S3Configuration
	Contents
	See Also

	Schema
	Contents
	See Also

	Table
	Contents
	See Also

	Tag
	Contents
	See Also

	Amazon Timestream Query
	AccountSettingsNotificationConfiguration
	Contents
	See Also

	ColumnInfo
	Contents
	See Also

	Datum
	Contents
	See Also

	DimensionMapping
	Contents
	See Also

	Endpoint
	Contents
	See Also

	ErrorReportConfiguration
	Contents
	See Also

	ErrorReportLocation
	Contents
	See Also

	ExecutionStats
	Contents
	See Also

	LastUpdate
	Contents
	See Also

	MixedMeasureMapping
	Contents
	See Also

	MultiMeasureAttributeMapping
	Contents
	See Also

	MultiMeasureMappings
	Contents
	See Also

	NotificationConfiguration
	Contents
	See Also

	ParameterMapping
	Contents
	See Also

	ProvisionedCapacityRequest
	Contents
	See Also

	ProvisionedCapacityResponse
	Contents
	See Also

	QueryComputeRequest
	Contents
	See Also

	QueryComputeResponse
	Contents
	See Also

	QueryInsights
	Contents
	See Also

	QueryInsightsResponse
	Contents
	See Also

	QuerySpatialCoverage
	Contents
	See Also

	QuerySpatialCoverageMax
	Contents
	See Also

	QueryStatus
	Contents
	See Also

	QueryTemporalRange
	Contents
	See Also

	QueryTemporalRangeMax
	Contents
	See Also

	Row
	Contents
	See Also

	S3Configuration
	Contents
	See Also

	S3ReportLocation
	Contents
	See Also

	ScheduleConfiguration
	Contents
	See Also

	ScheduledQuery
	Contents
	See Also

	ScheduledQueryDescription
	Contents
	See Also

	ScheduledQueryInsights
	Contents
	See Also

	ScheduledQueryInsightsResponse
	Contents
	See Also

	ScheduledQueryRunSummary
	Contents
	See Also

	SelectColumn
	Contents
	See Also

	SnsConfiguration
	Contents
	See Also

	Tag
	Contents
	See Also

	TargetConfiguration
	Contents
	See Also

	TargetDestination
	Contents
	See Also

	TimeSeriesDataPoint
	Contents
	See Also

	TimestreamConfiguration
	Contents
	See Also

	TimestreamDestination
	Contents
	See Also

	Type
	Contents
	See Also

	Common Errors
	Common Parameters

	Document history

	What is Timestream for InfluxDB?
	DB instances
	DB instance classes
	DB instance class types
	Hardware specifications for DB instance classes
	InfluxDB instance storage
	Amazon Timestream for InfluxDB storage types
	InfluxDB instance sizing

	Amazon Web Services Regions and Availability Zones
	Amazon Region availability
	Amazon Regions design
	Amazon Availability Zones

	DB Instance billing for Amazon Timestream for InfluxDB
	Setting up Amazon Timestream for InfluxDB
	Sign up for an Amazon account
	User management
	Determine requirements
	Provide access to your DB instance in your VPC by creating a security group
	Creating a security group for VPC access

	Getting started with Timestream for InfluxDB
	Creating and connecting to a Timestream for InfluxDB instance
	Prerequisites
	Step 1: Create an Amazon EC2 instance
	Step 2: Create an InfluxDB DB instance
	Step 3: Access the InfluxDB UI
	Step 4: Send Telegraf data to your InfluxDB instance
	Step 5: Delete the Amazon EC2 instance and the InfluxDB DB instance

	Creating a new operator token for your InfluxDB instance

	Migrating data from self-managed InfluxDB to Timestream for InfluxDB
	Preparation
	How to use scripts
	Migration Overview
	Migration scenarios

	Configuring a DB instance
	Creating a DB instance
	Settings for DB instances
	Connecting to an Amazon Timestream for InfluxDB DB instance
	Finding the connection information for an Amazon Timestream for InfluxDB DB instance
	Creating access tokens

	Database authentication options
	Encrypted connections

	Working with parameter groups
	Overview of parameter groups
	Default and custom parameter groups
	Creating a DB parameter group
	Static and dynamic DB instance parameters
	Supported parameters and parameter values

	Working with DB parameter groups
	Creating a DB parameter group
	Associating a DB parameter group with a DB instance
	Listing DB parameter groups
	Viewing parameter values for a DB parameter group

	Working with Multi-AZ read replica clusters for Amazon Timestream for InfluxDB
	Instance class availability for read replica clusters
	Read replica cluster architecture
	Parameter groups for read replica clusters
	Replica lag in read replica clusters
	Common causes of replica lag
	Mitigating replica lag

	Availability and durability
	Overview of Amazon Timestream for InfluxDB read replica clusters
	Use cases for read replicas
	How read replicas work
	Characteristics of Timestream for InfluxDB read replicas
	Read replica instance and storage types
	Considerations when deleting replicas

	Creating a Timestream for InfluxDB read replica cluster
	DB cluster prerequisites
	Configure the network for the DB cluster
	Additional prerequisites

	Create a DB cluster
	Settings for creating read replica clusters

	Connecting to a Timestream for InfluxDB read replica DB cluster
	Types of read replica cluster endpoints
	Cluster endpoint
	Read-only endpoint
	Instance endpoint

	Modifying a read replica cluster for Amazon Timestream for InfluxDB
	Modify a read replica cluster for Amazon Timestream for InfluxDB
	Settings for modifying read replica clusters

	Creating CloudWatch alarms to monitor Amazon Timestream for InfluxDB
	To set an alarm using the Amazon CLI
	To set an alarm using the CloudWatch API
	Tutorial: Create an Amazon CloudWatch alarm for Multi-AZ cluster replica lag for Amazon Timestream for InfluxDB
	To set a CloudWatch alarm for Multi-AZ DB cluster replica lag

	Read replica licensing through Amazon Web Services Marketplace
	Read replica licensing terminology
	Payments and billing
	Subscribing to the InfluxDB read replica add-on on Marketplace listings
	Subscribe from Amazon Timestream Amazon Web Services Management Console
	Subscribe to the InfluxDB read replica add-on in Amazon Web Services Marketplace

	Managing DB instances
	Updating DB instances
	Maintaining a DB instance
	Deleting a DB instance
	Multi-AZ DB instance deployments
	Configuring and managing a multi-AZ deployment
	Failover process for Amazon Timestream
	Setting the JVM TTL for DNS name lookups

	Setup to view InfluxDB logs on Timestream Influxdb Instances

	Adding tags and labels to resources
	Tagging restrictions

	Security best practices for Timestream for InfluxDB
	Optimize writes to InfluxDB
	Design for performance

	Troubleshooting
	Warning of "dev" version not recognized
	Migration failed during restoration stage
	Amazon Timestream for InfluxDB basic operational guidelines
	DB instance RAM recommendations

	Security in Timestream for InfluxDB
	Overview
	General security
	Permissions
	Network access
	Dependencies
	S3 buckets

	Database authentication with Amazon Timestream for InfluxDB
	Password authentication
	API tokens
	Secrets

	How Amazon Timestream for InfluxDB uses secrets
	What's in the secret
	Modifying the secret
	Rotating the secret
	Rotating users
	Rotating admin secrets
	Lambda rotation function
	Lambda function execution role permissions

	Rotating tokens
	Lambda rotation function
	Lambda function execution role permissions

	Data protection in Timestream for InfluxDB
	Encryption at rest
	Encryption in transit

	Identity and Access Management for Amazon Timestream for InfluxDB
	Authenticating with identities
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How Amazon Timestream for InfluxDB works with IAM
	Identity-based policies for Timestream for InfluxDB
	Identity-based policy examples for Timestream for InfluxDB

	Resource-based policies within Timestream for InfluxDB
	Policy actions for Timestream for InfluxDB
	Policy resources for Timestream for InfluxDB
	Policy condition keys for Timestream for InfluxDB
	Access control lists (ACLs) in Timestream for InfluxDB
	Attribute-based access control (ABAC) with Timestream for InfluxDB
	Using Temporary credentials with Timestream for InfluxDB
	Cross-service principal permissions for Timestream for InfluxDB
	Service roles for Timestream for InfluxDB
	Service-linked roles for Timestream for InfluxDB

	Identity-based policy examples for Amazon Timestream for InfluxDB
	Policy best practices
	Using the Timestream for InfluxDB console
	Allow users to view their own permissions
	Accessing one Amazon S3 bucket
	Allowing all operations
	Create, describe, delete and update a DB instance

	Troubleshooting Amazon Timestream for InfluxDB identity and access
	I am not authorized to perform an action in Timestream for InfluxDB
	I want to allow people outside of my Amazon account to access my Timestream for InfluxDB resources

	Controlling access to a DB instance in a VPC
	Security group scenario
	Creating a VPC security group
	Associating a security group with a DB instance

	Using service-linked roles for Amazon Timestream for InfluxDB
	Service-Linked Role Permissions for Amazon Timestream for InfluxDB
	Creating a Service-Linked Role (IAM)
	Editing the Description of a Service-Linked Role for Amazon Timestream for InfluxDB
	Editing a Service-Linked Role Description (IAM Console)
	Editing a Service-Linked Role Description (IAM CLI)
	Editing a Service-Linked Role Description (IAM API)

	Deleting a Service-Linked Role for Amazon Timestream for InfluxDB
	Cleaning Up a Service-Linked Role
	Deleting a Service-Linked Role (IAM Console)
	Deleting a Service-Linked Role (IAM CLI)
	Deleting a Service-Linked Role (IAM API)

	Supported Regions for Amazon Timestream for InfluxDB Service-Linked Roles

	Amazon managed policies for Amazon Timestream for InfluxDB
	Amazon managed policy: AmazonTimestreamInfluxDBServiceRolePolicy
	Amazon-managed policies for Amazon Timestream for InfluxDB
	AmazonTimestreamInfluxDBFullAccess

	AmazonTimestreamInfluxDBFullAccessWithoutMarketplaceAccess
	Timestream for InfluxDB updates to Amazon managed policies

	Connecting to Timestream for InfluxDB through a VPC endpoint
	Considerations for Timestream for InfluxDB VPC endpoints
	Creating a VPC endpoint for Timestream for InfluxDB
	Connecting to an Timestream for InfluxDB VPC endpoint
	Controlling access to a VPC endpoint
	About VPC endpoint policies
	Default VPC endpoint policy
	Creating a VPC endpoint policy
	Viewing a VPC endpoint policy

	Using a VPC endpoint in a policy statement
	Logging your VPC endpoint

	Logging and monitoring in Timestream for InfluxDB
	Monitoring tools
	Automated monitoring tools
	Manual monitoring tools

	Logging Timestream for InfluxDB API calls with Amazon CloudTrail
	Timestream for InfluxDB information in CloudTrail

	Compliance validation for Amazon Timestream for InfluxDB
	Resilience in Amazon Timestream for InfluxDB
	Infrastructure security in Amazon Timestream for InfluxDB
	Security groups

	Configuration and vulnerability analysis in Timestream for InfluxDB
	Incident response in Timestream for InfluxDB
	Amazon Timestream for InfluxDB API and interface VPC endpoints (Amazon PrivateLink)
	Considerations for VPC endpoints
	Creating an interface VPC endpoint for the Timestream for InfluxDB API
	Creating a VPC endpoint policy for the Amazon Timestream for InfluxDB API

	Security best practices for Timestream for InfluxDB
	Implement least privilege access
	Use IAM roles
	Implement Server-Side Encryption in Dependent Resources
	Use CloudTrail to Monitor API Calls
	Public accessibility

	Working with other services
	InfluxDB portals
	DBeaver
	Grafana
	Connect to Grafana
	Configure Grafana to use Flux
	Configure Grafana to use InfluxQL
	New install of InfluxDB 2.7:
	Manual migration from InfluxDB 1.x to 2.7:

	Query and visualize data

	API reference
	Document history

