Use StartTranscriptionJob with an Amazon SDK or CLI - Amazon Transcribe
Services or capabilities described in Amazon Web Services documentation might vary by Region. To see the differences applicable to the China Regions, see Getting Started with Amazon Web Services in China (PDF).

Use StartTranscriptionJob with an Amazon SDK or CLI

The following code examples show how to use StartTranscriptionJob.

Action examples are code excerpts from larger programs and must be run in context. You can see this action in context in the following code examples:

.NET
Amazon SDK for .NET
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the Amazon Code Examples Repository.

/// <summary> /// Start a transcription job for a media file. This method returns /// as soon as the job is started. /// </summary> /// <param name="jobName">A unique name for the transcription job.</param> /// <param name="mediaFileUri">The URI of the media file, typically an Amazon S3 location.</param> /// <param name="mediaFormat">The format of the media file.</param> /// <param name="languageCode">The language code of the media file, such as en-US.</param> /// <param name="vocabularyName">Optional name of a custom vocabulary.</param> /// <returns>A TranscriptionJob instance with information on the new job.</returns> public async Task<TranscriptionJob> StartTranscriptionJob(string jobName, string mediaFileUri, MediaFormat mediaFormat, LanguageCode languageCode, string? vocabularyName) { var response = await _amazonTranscribeService.StartTranscriptionJobAsync( new StartTranscriptionJobRequest() { TranscriptionJobName = jobName, Media = new Media() { MediaFileUri = mediaFileUri }, MediaFormat = mediaFormat, LanguageCode = languageCode, Settings = vocabularyName != null ? new Settings() { VocabularyName = vocabularyName } : null }); return response.TranscriptionJob; }
CLI
Amazon CLI

Example 1: To transcribe an audio file

The following start-transcription-job example transcribes your audio file.

aws transcribe start-transcription-job \ --cli-input-json file://myfile.json

Contents of myfile.json:

{ "TranscriptionJobName": "cli-simple-transcription-job", "LanguageCode": "the-language-of-your-transcription-job", "Media": { "MediaFileUri": "s3://DOC-EXAMPLE-BUCKET/Amazon-S3-prefix/your-media-file-name.file-extension" } }

For more information, see Getting Started (Amazon Command Line Interface) in the Amazon Transcribe Developer Guide.

Example 2: To transcribe a multi-channel audio file

The following start-transcription-job example transcribes your multi-channel audio file.

aws transcribe start-transcription-job \ --cli-input-json file://mysecondfile.json

Contents of mysecondfile.json:

{ "TranscriptionJobName": "cli-channelid-job", "LanguageCode": "the-language-of-your-transcription-job", "Media": { "MediaFileUri": "s3://DOC-EXAMPLE-BUCKET/Amazon-S3-prefix/your-media-file-name.file-extension" }, "Settings":{ "ChannelIdentification":true } }

Output:

{ "TranscriptionJob": { "TranscriptionJobName": "cli-channelid-job", "TranscriptionJobStatus": "IN_PROGRESS", "LanguageCode": "the-language-of-your-transcription-job", "Media": { "MediaFileUri": "s3://DOC-EXAMPLE-BUCKET/Amazon-S3-prefix/your-media-file-name.file-extension" }, "StartTime": "2020-09-17T16:07:56.817000+00:00", "CreationTime": "2020-09-17T16:07:56.784000+00:00", "Settings": { "ChannelIdentification": true } } }

For more information, see Transcribing Multi-Channel Audio in the Amazon Transcribe Developer Guide.

Example 3: To transcribe an audio file and identify the different speakers

The following start-transcription-job example transcribes your audio file and identifies the speakers in the transcription output.

aws transcribe start-transcription-job \ --cli-input-json file://mythirdfile.json

Contents of mythirdfile.json:

{ "TranscriptionJobName": "cli-speakerid-job", "LanguageCode": "the-language-of-your-transcription-job", "Media": { "MediaFileUri": "s3://DOC-EXAMPLE-BUCKET/Amazon-S3-prefix/your-media-file-name.file-extension" }, "Settings":{ "ShowSpeakerLabels": true, "MaxSpeakerLabels": 2 } }

Output:

{ "TranscriptionJob": { "TranscriptionJobName": "cli-speakerid-job", "TranscriptionJobStatus": "IN_PROGRESS", "LanguageCode": "the-language-of-your-transcription-job", "Media": { "MediaFileUri": "s3://DOC-EXAMPLE-BUCKET/Amazon-S3-prefix/your-media-file-name.file-extension" }, "StartTime": "2020-09-17T16:22:59.696000+00:00", "CreationTime": "2020-09-17T16:22:59.676000+00:00", "Settings": { "ShowSpeakerLabels": true, "MaxSpeakerLabels": 2 } } }

For more information, see Identifying Speakers in the Amazon Transcribe Developer Guide.

Example 4: To transcribe an audio file and mask any unwanted words in the transcription output

The following start-transcription-job example transcribes your audio file and uses a vocabulary filter you've previously created to mask any unwanted words.

aws transcribe start-transcription-job \ --cli-input-json file://myfourthfile.json

Contents of myfourthfile.json:

{ "TranscriptionJobName": "cli-filter-mask-job", "LanguageCode": "the-language-of-your-transcription-job", "Media": { "MediaFileUri": "s3://DOC-EXAMPLE-BUCKET/Amazon-S3-prefix/your-media-file-name.file-extension" }, "Settings":{ "VocabularyFilterName": "your-vocabulary-filter", "VocabularyFilterMethod": "mask" } }

Output:

{ "TranscriptionJob": { "TranscriptionJobName": "cli-filter-mask-job", "TranscriptionJobStatus": "IN_PROGRESS", "LanguageCode": "the-language-of-your-transcription-job", "Media": { "MediaFileUri": "s3://Amazon-S3-Prefix/your-media-file.file-extension" }, "StartTime": "2020-09-18T16:36:18.568000+00:00", "CreationTime": "2020-09-18T16:36:18.547000+00:00", "Settings": { "VocabularyFilterName": "your-vocabulary-filter", "VocabularyFilterMethod": "mask" } } }

For more information, see Filtering Transcriptions in the Amazon Transcribe Developer Guide.

Example 5: To transcribe an audio file and remove any unwanted words in the transcription output

The following start-transcription-job example transcribes your audio file and uses a vocabulary filter you've previously created to mask any unwanted words.

aws transcribe start-transcription-job \ --cli-input-json file://myfifthfile.json

Contents of myfifthfile.json:

{ "TranscriptionJobName": "cli-filter-remove-job", "LanguageCode": "the-language-of-your-transcription-job", "Media": { "MediaFileUri": "s3://DOC-EXAMPLE-BUCKET/Amazon-S3-prefix/your-media-file-name.file-extension" }, "Settings":{ "VocabularyFilterName": "your-vocabulary-filter", "VocabularyFilterMethod": "remove" } }

Output:

{ "TranscriptionJob": { "TranscriptionJobName": "cli-filter-remove-job", "TranscriptionJobStatus": "IN_PROGRESS", "LanguageCode": "the-language-of-your-transcription-job", "Media": { "MediaFileUri": "s3://DOC-EXAMPLE-BUCKET/Amazon-S3-prefix/your-media-file-name.file-extension" }, "StartTime": "2020-09-18T16:36:18.568000+00:00", "CreationTime": "2020-09-18T16:36:18.547000+00:00", "Settings": { "VocabularyFilterName": "your-vocabulary-filter", "VocabularyFilterMethod": "remove" } } }

For more information, see Filtering Transcriptions in the Amazon Transcribe Developer Guide.

Example 6: To transcribe an audio file with increased accuracy using a custom vocabulary

The following start-transcription-job example transcribes your audio file and uses a vocabulary filter you've previously created to mask any unwanted words.

aws transcribe start-transcription-job \ --cli-input-json file://mysixthfile.json

Contents of mysixthfile.json:

{ "TranscriptionJobName": "cli-vocab-job", "LanguageCode": "the-language-of-your-transcription-job", "Media": { "MediaFileUri": "s3://DOC-EXAMPLE-BUCKET/Amazon-S3-prefix/your-media-file-name.file-extension" }, "Settings":{ "VocabularyName": "your-vocabulary" } }

Output:

{ "TranscriptionJob": { "TranscriptionJobName": "cli-vocab-job", "TranscriptionJobStatus": "IN_PROGRESS", "LanguageCode": "the-language-of-your-transcription-job", "Media": { "MediaFileUri": "s3://DOC-EXAMPLE-BUCKET/Amazon-S3-prefix/your-media-file-name.file-extension" }, "StartTime": "2020-09-18T16:36:18.568000+00:00", "CreationTime": "2020-09-18T16:36:18.547000+00:00", "Settings": { "VocabularyName": "your-vocabulary" } } }

For more information, see Filtering Transcriptions in the Amazon Transcribe Developer Guide.

Example 7: To identify the language of an audio file and transcribe it

The following start-transcription-job example transcribes your audio file and uses a vocabulary filter you've previously created to mask any unwanted words.

aws transcribe start-transcription-job \ --cli-input-json file://myseventhfile.json

Contents of myseventhfile.json:

{ "TranscriptionJobName": "cli-identify-language-transcription-job", "IdentifyLanguage": true, "Media": { "MediaFileUri": "s3://DOC-EXAMPLE-BUCKET/Amazon-S3-prefix/your-media-file-name.file-extension" } }

Output:

{ "TranscriptionJob": { "TranscriptionJobName": "cli-identify-language-transcription-job", "TranscriptionJobStatus": "IN_PROGRESS", "Media": { "MediaFileUri": "s3://DOC-EXAMPLE-BUCKET/Amazon-S3-prefix/your-media-file-name.file-extension" }, "StartTime": "2020-09-18T22:27:23.970000+00:00", "CreationTime": "2020-09-18T22:27:23.948000+00:00", "IdentifyLanguage": true } }

For more information, see Identifying the Language in the Amazon Transcribe Developer Guide.

Example 8: To transcribe an audio file with personally identifiable information redacted

The following start-transcription-job example transcribes your audio file and redacts any personally identifiable information in the transcription output.

aws transcribe start-transcription-job \ --cli-input-json file://myeighthfile.json

Contents of myeigthfile.json:

{ "TranscriptionJobName": "cli-redaction-job", "LanguageCode": "language-code", "Media": { "MediaFileUri": "s3://Amazon-S3-Prefix/your-media-file.file-extension" }, "ContentRedaction": { "RedactionOutput":"redacted", "RedactionType":"PII" } }

Output:

{ "TranscriptionJob": { "TranscriptionJobName": "cli-redaction-job", "TranscriptionJobStatus": "IN_PROGRESS", "LanguageCode": "language-code", "Media": { "MediaFileUri": "s3://Amazon-S3-Prefix/your-media-file.file-extension" }, "StartTime": "2020-09-25T23:49:13.195000+00:00", "CreationTime": "2020-09-25T23:49:13.176000+00:00", "ContentRedaction": { "RedactionType": "PII", "RedactionOutput": "redacted" } } }

For more information, see Automatic Content Redaction in the Amazon Transcribe Developer Guide.

Example 9: To generate a transcript with personally identifiable information (PII) redacted and an unredacted transcript

The following start-transcription-job example generates two transcrptions of your audio file, one with the personally identifiable information redacted, and the other without any redactions.

aws transcribe start-transcription-job \ --cli-input-json file://myninthfile.json

Contents of myninthfile.json:

{ "TranscriptionJobName": "cli-redaction-job-with-unredacted-transcript", "LanguageCode": "language-code", "Media": { "MediaFileUri": "s3://Amazon-S3-Prefix/your-media-file.file-extension" }, "ContentRedaction": { "RedactionOutput":"redacted_and_unredacted", "RedactionType":"PII" } }

Output:

{ "TranscriptionJob": { "TranscriptionJobName": "cli-redaction-job-with-unredacted-transcript", "TranscriptionJobStatus": "IN_PROGRESS", "LanguageCode": "language-code", "Media": { "MediaFileUri": "s3://Amazon-S3-Prefix/your-media-file.file-extension" }, "StartTime": "2020-09-25T23:59:47.677000+00:00", "CreationTime": "2020-09-25T23:59:47.653000+00:00", "ContentRedaction": { "RedactionType": "PII", "RedactionOutput": "redacted_and_unredacted" } } }

For more information, see Automatic Content Redaction in the Amazon Transcribe Developer Guide.

Example 10: To use a custom language model you've previously created to transcribe an audio file.

The following start-transcription-job example transcribes your audio file with a custom language model you've previously created.

aws transcribe start-transcription-job \ --cli-input-json file://mytenthfile.json

Contents of mytenthfile.json:

{ "TranscriptionJobName": "cli-clm-2-job-1", "LanguageCode": "language-code", "Media": { "MediaFileUri": "s3://DOC-EXAMPLE-BUCKET/your-audio-file.file-extension" }, "ModelSettings": { "LanguageModelName":"cli-clm-2" } }

Output:

{ "TranscriptionJob": { "TranscriptionJobName": "cli-clm-2-job-1", "TranscriptionJobStatus": "IN_PROGRESS", "LanguageCode": "language-code", "Media": { "MediaFileUri": "s3://DOC-EXAMPLE-BUCKET/your-audio-file.file-extension" }, "StartTime": "2020-09-28T17:56:01.835000+00:00", "CreationTime": "2020-09-28T17:56:01.801000+00:00", "ModelSettings": { "LanguageModelName": "cli-clm-2" } } }

For more information, see Improving Domain-Specific Transcription Accuracy with Custom Language Models in the Amazon Transcribe Developer Guide.

Java
SDK for Java 2.x
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the Amazon Code Examples Repository.

public class TranscribeStreamingDemoApp { private static final Region REGION = Region.US_EAST_1; private static TranscribeStreamingAsyncClient client; public static void main(String args[]) throws URISyntaxException, ExecutionException, InterruptedException, LineUnavailableException { client = TranscribeStreamingAsyncClient.builder() .credentialsProvider(getCredentials()) .region(REGION) .build(); CompletableFuture<Void> result = client.startStreamTranscription(getRequest(16_000), new AudioStreamPublisher(getStreamFromMic()), getResponseHandler()); result.get(); client.close(); } private static InputStream getStreamFromMic() throws LineUnavailableException { // Signed PCM AudioFormat with 16kHz, 16 bit sample size, mono int sampleRate = 16000; AudioFormat format = new AudioFormat(sampleRate, 16, 1, true, false); DataLine.Info info = new DataLine.Info(TargetDataLine.class, format); if (!AudioSystem.isLineSupported(info)) { System.out.println("Line not supported"); System.exit(0); } TargetDataLine line = (TargetDataLine) AudioSystem.getLine(info); line.open(format); line.start(); InputStream audioStream = new AudioInputStream(line); return audioStream; } private static AwsCredentialsProvider getCredentials() { return DefaultCredentialsProvider.create(); } private static StartStreamTranscriptionRequest getRequest(Integer mediaSampleRateHertz) { return StartStreamTranscriptionRequest.builder() .languageCode(LanguageCode.EN_US.toString()) .mediaEncoding(MediaEncoding.PCM) .mediaSampleRateHertz(mediaSampleRateHertz) .build(); } private static StartStreamTranscriptionResponseHandler getResponseHandler() { return StartStreamTranscriptionResponseHandler.builder() .onResponse(r -> { System.out.println("Received Initial response"); }) .onError(e -> { System.out.println(e.getMessage()); StringWriter sw = new StringWriter(); e.printStackTrace(new PrintWriter(sw)); System.out.println("Error Occurred: " + sw.toString()); }) .onComplete(() -> { System.out.println("=== All records stream successfully ==="); }) .subscriber(event -> { List<Result> results = ((TranscriptEvent) event).transcript().results(); if (results.size() > 0) { if (!results.get(0).alternatives().get(0).transcript().isEmpty()) { System.out.println(results.get(0).alternatives().get(0).transcript()); } } }) .build(); } private InputStream getStreamFromFile(String audioFileName) { try { File inputFile = new File(getClass().getClassLoader().getResource(audioFileName).getFile()); InputStream audioStream = new FileInputStream(inputFile); return audioStream; } catch (FileNotFoundException e) { throw new RuntimeException(e); } } private static class AudioStreamPublisher implements Publisher<AudioStream> { private final InputStream inputStream; private static Subscription currentSubscription; private AudioStreamPublisher(InputStream inputStream) { this.inputStream = inputStream; } @Override public void subscribe(Subscriber<? super AudioStream> s) { if (this.currentSubscription == null) { this.currentSubscription = new SubscriptionImpl(s, inputStream); } else { this.currentSubscription.cancel(); this.currentSubscription = new SubscriptionImpl(s, inputStream); } s.onSubscribe(currentSubscription); } } public static class SubscriptionImpl implements Subscription { private static final int CHUNK_SIZE_IN_BYTES = 1024 * 1; private final Subscriber<? super AudioStream> subscriber; private final InputStream inputStream; private ExecutorService executor = Executors.newFixedThreadPool(1); private AtomicLong demand = new AtomicLong(0); SubscriptionImpl(Subscriber<? super AudioStream> s, InputStream inputStream) { this.subscriber = s; this.inputStream = inputStream; } @Override public void request(long n) { if (n <= 0) { subscriber.onError(new IllegalArgumentException("Demand must be positive")); } demand.getAndAdd(n); executor.submit(() -> { try { do { ByteBuffer audioBuffer = getNextEvent(); if (audioBuffer.remaining() > 0) { AudioEvent audioEvent = audioEventFromBuffer(audioBuffer); subscriber.onNext(audioEvent); } else { subscriber.onComplete(); break; } } while (demand.decrementAndGet() > 0); } catch (Exception e) { subscriber.onError(e); } }); } @Override public void cancel() { executor.shutdown(); } private ByteBuffer getNextEvent() { ByteBuffer audioBuffer = null; byte[] audioBytes = new byte[CHUNK_SIZE_IN_BYTES]; int len = 0; try { len = inputStream.read(audioBytes); if (len <= 0) { audioBuffer = ByteBuffer.allocate(0); } else { audioBuffer = ByteBuffer.wrap(audioBytes, 0, len); } } catch (IOException e) { throw new UncheckedIOException(e); } return audioBuffer; } private AudioEvent audioEventFromBuffer(ByteBuffer bb) { return AudioEvent.builder() .audioChunk(SdkBytes.fromByteBuffer(bb)) .build(); } } }
JavaScript
SDK for JavaScript (v3)
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the Amazon Code Examples Repository.

Start a transcription job.

// Import the required AWS SDK clients and commands for Node.js import { StartTranscriptionJobCommand } from "@aws-sdk/client-transcribe"; import { transcribeClient } from "./libs/transcribeClient.js"; // Set the parameters export const params = { TranscriptionJobName: "JOB_NAME", LanguageCode: "LANGUAGE_CODE", // For example, 'en-US' MediaFormat: "SOURCE_FILE_FORMAT", // For example, 'wav' Media: { MediaFileUri: "SOURCE_LOCATION", // For example, "https://transcribe-demo.s3-REGION.amazonaws.com/hello_world.wav" }, OutputBucketName: "OUTPUT_BUCKET_NAME" }; export const run = async () => { try { const data = await transcribeClient.send( new StartTranscriptionJobCommand(params) ); console.log("Success - put", data); return data; // For unit tests. } catch (err) { console.log("Error", err); } }; run();

Create the client.

import { TranscribeClient } from "@aws-sdk/client-transcribe"; // Set the AWS Region. const REGION = "REGION"; //e.g. "us-east-1" // Create an Amazon Transcribe service client object. const transcribeClient = new TranscribeClient({ region: REGION }); export { transcribeClient };
Python
SDK for Python (Boto3)
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the Amazon Code Examples Repository.

def start_job( job_name, media_uri, media_format, language_code, transcribe_client, vocabulary_name=None, ): """ Starts a transcription job. This function returns as soon as the job is started. To get the current status of the job, call get_transcription_job. The job is successfully completed when the job status is 'COMPLETED'. :param job_name: The name of the transcription job. This must be unique for your AWS account. :param media_uri: The URI where the audio file is stored. This is typically in an Amazon S3 bucket. :param media_format: The format of the audio file. For example, mp3 or wav. :param language_code: The language code of the audio file. For example, en-US or ja-JP :param transcribe_client: The Boto3 Transcribe client. :param vocabulary_name: The name of a custom vocabulary to use when transcribing the audio file. :return: Data about the job. """ try: job_args = { "TranscriptionJobName": job_name, "Media": {"MediaFileUri": media_uri}, "MediaFormat": media_format, "LanguageCode": language_code, } if vocabulary_name is not None: job_args["Settings"] = {"VocabularyName": vocabulary_name} response = transcribe_client.start_transcription_job(**job_args) job = response["TranscriptionJob"] logger.info("Started transcription job %s.", job_name) except ClientError: logger.exception("Couldn't start transcription job %s.", job_name) raise else: return job

For a complete list of Amazon SDK developer guides and code examples, see Using this service with an Amazon SDK. This topic also includes information about getting started and details about previous SDK versions.