本文属于机器翻译版本。若本译文内容与英语原文存在差异,则一律以英文原文为准。
使用SDK适用于 Java 2.x 的 Amazon 个性化运行时示例
以下代码示例向您展示了如何使用 Amazon SDK for Java 2.x 与 Amazon Personalize Runtime 配合使用来执行操作和实现常见场景。
操作是大型程序的代码摘录,必须在上下文中运行。您可以通过操作了解如何调用单个服务函数,还可以通过函数相关场景的上下文查看操作。
每个示例都包含一个指向完整源代码的链接,您可以在其中找到有关如何在上下文中设置和运行代码的说明。
主题
操作
以下代码示例显示了如何使用GetPersonalizedRanking
。
- SDK适用于 Java 2.x
-
注意
还有更多相关信息 GitHub。查找完整示例,学习如何在 Amazon 代码示例存储库
中进行设置和运行。 public static List<PredictedItem> getRankedRecs(PersonalizeRuntimeClient personalizeRuntimeClient, String campaignArn, String userId, ArrayList<String> items) { try { GetPersonalizedRankingRequest rankingRecommendationsRequest = GetPersonalizedRankingRequest.builder() .campaignArn(campaignArn) .userId(userId) .inputList(items) .build(); GetPersonalizedRankingResponse recommendationsResponse = personalizeRuntimeClient .getPersonalizedRanking(rankingRecommendationsRequest); List<PredictedItem> rankedItems = recommendationsResponse.personalizedRanking(); int rank = 1; for (PredictedItem item : rankedItems) { System.out.println("Item ranked at position " + rank + " details"); System.out.println("Item Id is : " + item.itemId()); System.out.println("Item score is : " + item.score()); System.out.println("---------------------------------------------"); rank++; } return rankedItems; } catch (PersonalizeRuntimeException e) { System.err.println(e.awsErrorDetails().errorMessage()); System.exit(1); } return null; }
-
有关API详细信息,请参阅 “Amazon SDK for Java 2.x API参考 GetPersonalizedRanking” 中的。
-
以下代码示例显示了如何使用GetRecommendations
。
- SDK适用于 Java 2.x
-
注意
还有更多相关信息 GitHub。查找完整示例,学习如何在 Amazon 代码示例存储库
中进行设置和运行。 获取推荐项目列表。
public static void getRecs(PersonalizeRuntimeClient personalizeRuntimeClient, String campaignArn, String userId) { try { GetRecommendationsRequest recommendationsRequest = GetRecommendationsRequest.builder() .campaignArn(campaignArn) .numResults(20) .userId(userId) .build(); GetRecommendationsResponse recommendationsResponse = personalizeRuntimeClient .getRecommendations(recommendationsRequest); List<PredictedItem> items = recommendationsResponse.itemList(); for (PredictedItem item : items) { System.out.println("Item Id is : " + item.itemId()); System.out.println("Item score is : " + item.score()); } } catch (AwsServiceException e) { System.err.println(e.awsErrorDetails().errorMessage()); System.exit(1); } }
从在域数据集组中创建的推荐系统获取推荐项目列表。
public static void getRecs(PersonalizeRuntimeClient personalizeRuntimeClient, String recommenderArn, String userId) { try { GetRecommendationsRequest recommendationsRequest = GetRecommendationsRequest.builder() .recommenderArn(recommenderArn) .numResults(20) .userId(userId) .build(); GetRecommendationsResponse recommendationsResponse = personalizeRuntimeClient .getRecommendations(recommendationsRequest); List<PredictedItem> items = recommendationsResponse.itemList(); for (PredictedItem item : items) { System.out.println("Item Id is : " + item.itemId()); System.out.println("Item score is : " + item.score()); } } catch (AwsServiceException e) { System.err.println(e.awsErrorDetails().errorMessage()); System.exit(1); } }
请求推荐时使用筛选条件。
public static void getFilteredRecs(PersonalizeRuntimeClient personalizeRuntimeClient, String campaignArn, String userId, String filterArn, String parameter1Name, String parameter1Value1, String parameter1Value2, String parameter2Name, String parameter2Value) { try { Map<String, String> filterValues = new HashMap<>(); filterValues.put(parameter1Name, String.format("\"%1$s\",\"%2$s\"", parameter1Value1, parameter1Value2)); filterValues.put(parameter2Name, String.format("\"%1$s\"", parameter2Value)); GetRecommendationsRequest recommendationsRequest = GetRecommendationsRequest.builder() .campaignArn(campaignArn) .numResults(20) .userId(userId) .filterArn(filterArn) .filterValues(filterValues) .build(); GetRecommendationsResponse recommendationsResponse = personalizeRuntimeClient .getRecommendations(recommendationsRequest); List<PredictedItem> items = recommendationsResponse.itemList(); for (PredictedItem item : items) { System.out.println("Item Id is : " + item.itemId()); System.out.println("Item score is : " + item.score()); } } catch (PersonalizeRuntimeException e) { System.err.println(e.awsErrorDetails().errorMessage()); System.exit(1); } }
-
有关API详细信息,请参阅 “Amazon SDK for Java 2.x API参考 GetRecommendations” 中的。
-