
版本 1.x 开发人员指南

适用于 Java 的 Amazon SDK 1.x

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

适用于 Java 的 Amazon SDK 1.x: 版本 1.x 开发人员指南

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

Table of Contents
.. viii
适用于 Java 的 Amazon SDK 1.x ... 1

发布了 SDK 的版本 2 .. 1
其他文档和资源 .. 1
Eclipse IDE 支持 .. 2
开发适用于 Android 的应用程序 .. 2
查看开发工具包的修订历史记录 ... 2
构建早期版本开发工具包的 Java 参考文档 ... 2

入门 ... 3
基本设置 ... 3

概览 ... 3
能够登录到 Amazon 访问门户。 ... 4
设置共享配置文件 .. 4
安装 Java 开发环境 .. 6

获取适用于 Java 的 Amazon SDK 的方法 .. 6
先决条件 .. 6
使用构建工具 ... 6
下载预构建的 jar ... 6
从源代码构建 ... 7

使用构建工具 .. 8
将 SDK 与 Apache Maven 结合使用 .. 8
将 SDK 与 Gradle 结合使用 ... 11

临时凭证和区域 .. 15
配置临时凭证 ... 15
刷新 IMDS 凭证 .. 16
设置 Amazon Web Services 区域 .. 16

使用 适用于 Java 的 Amazon SDK .. 18
使用 Amazon 开发的最佳实践 适用于 Java 的 Amazon SDK ... 18

S3 .. 18
创建服务客户端 .. 19

获取客户端生成器 .. 19
创建异步客户端 ... 20
使用 DefaultClient ... 21
客户端生命周期 ... 21

iii

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

提供临时凭证 .. 22
使用默认凭证提供程序链 ... 22
指定凭证提供程序或提供程序链 .. 25
明确指定临时凭证 .. 26
更多信息 .. 26

Amazon Web Services 区域 选择 ... 26
查看区域的服务可用性 .. 26
选择区域 .. 27
选择特定终端节点 .. 27
根据环境自动确定区域 .. 28

异常处理 ... 29
为什么使用未选中的异常？ ... 29
AmazonServiceException （和子类） .. 30
AmazonClientException .. 30

异步编程 ... 30
Java Futures ... 31
异步回调 .. 32
最佳实践 .. 34

记录 适用于 Java 的 Amazon SDK 通话 .. 34
下载 Log4J JAR .. 35
设置类路径 .. 35
特定服务的错误消息和警告 ... 35
请求/响应摘要日志记录 ... 36
详细线路日志记录 .. 37
延迟指标日志记录 .. 37

客户端配置 ... 38
代理配置 .. 38
HTTP 传输配置 ... 38
TCP 套接字缓冲区大小提示 .. 40

访问控制策略 .. 40
Amazon S3 示例 ... 41
Amazon SQS 示例 .. 41
Amazon SNS 示例 .. 41

为 DNS 名称查找设置 JVM TTL ... 42
如何设置 JVM TTL .. 42

为启用指标 适用于 Java 的 Amazon SDK .. 43

iv

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

如何启用 Java SDK 指标生成 ... 43
可用指标类型 ... 44
更多信息 .. 47

代码示例 .. 48
适用于 Java 的 Amazon SDK 2.x ... 48
Amazon CloudWatch 示例 ... 48

从 CloudWatch 获取指标 .. 49
发布自定义指标数据 .. 50
使用 CloudWatch 警报 .. 52
在 CloudWatch 中使用警报操作 ... 55
将 事件发送到 CloudWatch .. 56

Amazon DynamoDB 示例 .. 59
使用基于 Amazon 账户的端点 .. 59
处理 DynamoDB 中的表 ... 60
处理 DynamoDB 中的项目 .. 67

Amazon EC2 示例 .. 73
教程：启动 EC2 实例 ... 74
使用 IAM 角色授予对 Amazon EC2 上的 Amazon 资源的访问权 .. 78
教程：Amazon EC2 竞价型实例 ... 84
教程：高级 Amazon EC2 竞价型实例请求管理 .. 94
管理 Amazon EC2实例 ... 110
在 Amazon EC2 中使用弹性 IP 地址 .. 115
使用区域和可用区 .. 118
使用 Amazon EC2 密钥对 .. 121
在 Amazon EC2 中使用安全组 ... 123

Amazon Identity and Access Management (IAM) 示例 ... 126
管理 IAM 访问密钥 .. 127
管理 IAM 用户 ... 131
使用 IAM 账户别名 .. 134
使用 IAM 策略 ... 137
使用 IAM 服务器证书 .. 141

Amazon Lambda 示例 ... 145
服务操作 .. 145

Amazon Pinpoint 示例 .. 149
在 Amazon Pinpoint 中创建和删除应用程序 ... 149
在 Amazon Pinpoint 中创建端点 ... 151

v

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

在 Amazon Pinpoint 中创建分段 ... 153
在 Amazon Pinpoint 中创建市场活动 ... 155
在 Amazon Pinpoint 中更新渠道 ... 156

Amazon S3 示例 .. 157
创建、列出和删除 Amazon S3 桶 .. 158
在 Amazon S3 对象上执行操作 .. 163
管理对桶和对象的 Amazon S3 访问权限 .. 168
使用桶策略管理对 Amazon S3 桶的访问 .. 171
使用 TransferManager 执行 Amazon S3 操作 ... 175
将 Amazon S3 桶配置为网站 .. 187
使用 Amazon S3 客户端加密 .. 190

Amazon SQS 示例 ... 196
使用 Amazon SQS 消息队列 .. 196
发送、接收和删除 Amazon SQS 消息 .. 199
为 Amazon SQS 消息队列启用长轮询 .. 202
在 Amazon SQS 中设置可见性超时 ... 204
在 Amazon SQS 中使用死信队列 ... 206

Amazon SWF 示例 ... 208
SWF 基本知识 ... 209
构建简单 Amazon SWF 应用程序 .. 210
Lambda 任务 ... 228
适当地关闭活动和工作流工作线程 .. 233
注册域 .. 235
列出域 .. 236

SDK 中包含的代码示例 .. 237
如何获取示例 ... 237
使用命令行构建并运行示例 ... 237
使用 Eclipse IDE 构建并运行示例 .. 238

安全性 ... 240
数据保护 ... 240
强制实施最低 TLS 版本 ... 241

如何查看 TLS 版本 ... 241
强制实施最低 TLS 版本 .. 242

身份和访问管理 .. 242
受众 ... 242
使用身份进行身份验证 .. 243

vi

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

使用策略管理访问 .. 244
如何 Amazon Web Services 服务 使用 IAM .. 245
对 Amazon 身份和访问进行故障排除 ... 245

合规性验证 ... 247
恢复能力 ... 247
基础设施安全性 .. 248
S3 加密客户端迁移 .. 248

先决条件 .. 248
迁移概述 .. 249
更新现有客户端以读取新格式 .. 249
将加密和解密客户端迁移到 V2 ... 250
其他示例 .. 252

OpenPGP 密钥 ... 254
当前密钥 ... 254
以前的密钥 ... 259

文档历史记录 .. 266

vii

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

适用于 Java 的 Amazon SDK 1.x 于 2025 年 12 月 31 end-of-support 日达到。我们建议您迁移到
Amazon SDK for Java 2.x 以继续获得新功能、可用性改进和安全更新。

本文属于机器翻译版本。若本译文内容与英语原文存在差异，则一律以英文原文为准。

viii

https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/home.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

开发人员指南 – 适用于 Java 的 Amazon SDK 1.x

适用于 Java 的 Amazon SDK 为 Amazon 服务提供了 Java API。利用此开发工具包，您可以轻松构
建使用 Amazon S3、Amazon EC2、DynamoDB 等的 Java 应用程序。我们将定期向适用于 Java 的
Amazon SDK 添加对新服务的支持。有关每个版本的开发工具包附带的受支持服务及其 API 版本的列
表，请查看要使用的版本的发行说明。

发布了 SDK 的版本 2

请访问 https://github.com/aws/aws-sdk-java-v2/，了解新的适用于 Java 的 Amazon SDK 2.x。它包括
许多期待已久的功能，例如插入 HTTP 实施的方法。要开始使用，请参阅《适用于 Java 的 Amazon
SDK 2.x 开发人员指南》。

其他文档和资源

除了本指南外，还有以下适用于适用于 Java 的 Amazon SDK 开发人员的有价值的在线资源：

• 适用于 Java 的 Amazon SDK API 参考

• Java 开发人员博客

• Java 开发人员论坛

• GitHub:

• 文档源

• 文档问题

• 开发工具包源

• 开发工具包问题

• 开发工具包示例

• Gitter 频道

• 这些区域有：Amazon 代码示例目录

• @awsforjava (Twitter)

• 发布说明

发布了 SDK 的版本 2 1

https://www.amazonaws.cn/sdk-for-java/
https://github.com/aws/aws-sdk-java#release-notes
https://github.com/aws/aws-sdk-java-v2/
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide
https://docs.amazonaws.cn/AWSJavaSDK/latest/javadoc/
https://www.amazonaws.cn/blogs/developer/category/java
https://forums.aws.csdn.net/forum.jspa?forumID=70
https://github.com/awsdocs/aws-java-developer-guide
https://github.com/awsdocs/aws-java-developer-guide/issues
https://github.com/aws/aws-sdk-java
https://github.com/aws/aws-sdk-java/issues
https://github.com/aws/aws-sdk-java/tree/master/src/samples
https://gitter.im/aws/aws-sdk-java
https://docs.amazonaws.cn/code-samples/latest/catalog/
https://twitter.com/awsforjava
https://github.com/aws/aws-sdk-java#release-notes

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

Eclipse IDE 支持

如果您使用 Eclipse IDE 开发代码，则可使用 Amazon Toolkit for Eclipse 将适用于 Java 的 Amazon
SDK 添加到现有 Eclipse 项目或创建新的适用于 Java 的 Amazon SDK 项目。此工具包还支持
创建和上传 Lambda 函数、启动和监控 Amazon EC2 实例、管理 IAM 用户和安全组、Amazon
CloudFormation 模板编辑器等。

有关完整文档，请参阅《Amazon Toolkit for Eclipse User Guide》。

开发适用于 Android 的应用程序

对于 Android 开发人员，Amazon Web Services 发布了专用于 Android 开发的 SDK：Amplify
Android（适用于 Android 的 Amazon Mobile SDK）。

查看开发工具包的修订历史记录

要查看适用于 Java 的 Amazon SDK的版本历史记录，包括针对每个开发工具包版本的更改和支持的服
务，请参阅开发工具包的发布说明。

构建早期版本开发工具包的 Java 参考文档

适用于 Java 的 Amazon SDK API Reference 提供 SDK 版本 1.x 最新构建版的信息。如果您使用 1.x
版本的早期构建版本，您可能希望访问与您使用的版本相匹配的 SDK 参考文档。

构建文档的最轻松方式是使用 Apache 的 Maven 构建工具。先下载并安装 Maven（如果您的系统上尚
未安装它），然后按照以下说明进行操作来构建参考文档。

1. 在 GitHub 上的开发工具包存储库的版本页面上，找到并选择您将使用的开发工具包版本。

2. 选择 zip（对于大多数平台，包括 Windows）或 tar.gz（对于 Linux、macOS 或 Unix）链接以
将 SDK 下载到您的计算机上。

3. 将存档提取到本地目录。

4. 在命令行上，导航到将存档提取到的目录，然后键入以下内容。

mvn javadoc:javadoc

5. 在构建完成后，您将在 aws-java-sdk/target/site/apidocs/ 目录中找到生成的 HTML 文
档。

Eclipse IDE 支持 2

https://www.amazonaws.cn/eclipse/
https://docs.amazonaws.cn/toolkit-for-eclipse/v1/user-guide/
https://docs.amazonaws.cn/sdk-for-android/index.html
https://docs.amazonaws.cn/sdk-for-android/index.html
https://github.com/aws/aws-sdk-java#release-notes
https://docs.amazonaws.cn/AWSJavaSDK/latest/javadoc/
https://maven.apache.org/
https://github.com/aws/aws-sdk-java/releases

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

入门

此部分提供有关如何安装、设置和使用 适用于 Java 的 Amazon SDK 的信息。

主题

• 使用 Amazon Web Services 服务所需的基本设置

• 获取适用于 Java 的 Amazon SDK 的方法

• 使用构建工具

• 设置用于开发的 Amazon 临时凭证和 Amazon Web Services 区域

使用 Amazon Web Services 服务所需的基本设置

概览

要使用适用于 Java 的 Amazon SDK 成功开发访问 Amazon Web Services 服务的应用程序，需要满足
以下条件：

• 您必须能够登录 Amazon IAM Identity Center 中提供的 Amazon 访问门户。

• 为 SDK 配置的 IAM 角色的权限必须提供您的应用程序需访问的 Amazon Web Services 服务的访问
权限。与 PowerUserAccess Amazon 托管策略关联的权限足以满足大多数开发需求。

• 包含以下元素的开发环境：

• 通过以下方式设置的共享配置文件：

• config 文件包含一个默认配置文件，该配置文件指定一个 Amazon Web Services 区域。

• credentials 文件包含作为默认配置文件一部分的临时凭证。

• 一个合适的 Java 安装。

• 一种构建自动化工具，例如 Maven 或 Gradle。

• 用于处理代码的文本编辑器。

• （可选，但建议使用）一个 IDE（集成开发环境），例如 IntelliJ IDEA、Eclipse 或 NetBeans。

使用 IDE 时，还可以集成 Amazon Toolkit，以便更轻松地使用 Amazon Web Services 服
务。Amazon Toolkit for IntelliJ 和 Amazon Toolkit for Eclipse 是两个可用于 Java 开发的工具包。

基本设置 3

https://docs.amazonaws.cn/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.amazonaws.cn/sdkref/latest/guide/file-format.html
https://maven.apache.org/download.cgi
https://gradle.org/install/
https://www.jetbrains.com/idea/download/#section=windows
https://www.eclipse.org/ide/
https://netbeans.org/downloads/
https://docs.amazonaws.cn/toolkit-for-jetbrains/latest/userguide/welcome.html
https://docs.amazonaws.cn/toolkit-for-eclipse/v1/user-guide/welcome.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

Important

本设置部分中的说明假设您或组织使用 IAM Identity Center。如果您的组织使用独立于 IAM
Identity Center 运行的外部身份提供商，请了解如何获取临时凭证以供适用于 Java 的 SDK 使
用。按照以下说明向 ~/.aws/credentials 文件添加临时凭证。
如果您的身份提供商自动向 ~/.aws/credentials 文件添加临时凭证，请确保配置文件名称
为 [default]，这样您就无需向 SDK 或 Amazon CLI 提供配置文件名称。

能够登录到 Amazon 访问门户。

Amazon 访问门户是您手动登录 IAM Identity Center 的网址。URL 的格式为 d-
xxxxxxxxxx.awsapps.com/start 或 your_subdomain.awsapps.com/start。

如果您不熟悉 Amazon 访问门户，请按照《Amazon SDKs and Tools Reference Guide》中 IAM
Identity Center 身份验证主题步骤 1 中的账户访问指导进行操作。请勿执行步骤 2，因为适用于 Java
的 Amazon SDK 1.x 不支持步骤 2 所描述为 SDK 自动刷新令牌和自动检索临时凭证的功能。

设置共享配置文件

共享配置文件位于您的开发工作站上，包含所有 Amazon SDK 和 Amazon Command Line Interface
(CLI) 使用的基本设置。共享配置文件可以包含许多设置，但本说明用于设置使用 SDK 所需的基本元
素。

设置共享 config 文件

以下示例展示了共享 config 文件的内容。

[default]
region=us-east-1
output=json

出于开发目的，请使用离您计划运行代码的地方最近的 Amazon Web Services 区域。有关可在
config 文件中使用的区域代码的列表，请参阅 Amazon Web Services 一般参考 指南。输出格式的
json 设置是几个可能的值之一。

按照此部分中的指导创建 config 文件。

能够登录到 Amazon 访问门户。 4

https://docs.amazonaws.cn/sdkref/latest/guide/access-sso.html#idcGettingStarted
https://docs.amazonaws.cn/sdkref/latest/guide/access-sso.html#idcGettingStarted
https://docs.amazonaws.cn/sdkref/latest/guide/settings-reference.html
https://www.amazonaws.cn/about-aws/global-infrastructure/regions_az/
https://docs.amazonaws.cn/general/latest/gr/rande.html#region-names-codes
https://docs.amazonaws.cn/cli/latest/userguide/cli-usage-output-format.html
https://docs.amazonaws.cn/sdkref/latest/guide/file-location.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

为 SDK 设置临时凭证

通过 Amazon 访问门户获得 Amazon Web Services 账户 和 IAM 角色的访问权限后，请使用临时凭证
配置您的开发环境以供 SDK 访问。

使用临时凭证设置本地 credentials 文件的步骤

1. 创建共享 credentials 文件。

2. 在 credentials 文件中，粘贴以下占位符文本，直到粘贴有效的临时凭证为止。

[default]
aws_access_key_id=<value from Amazon access portal>
aws_secret_access_key=<value from Amazon access portal>
aws_session_token=<value from Amazon access portal>

3. 保存该文件。该 ~/.aws/credentials 文件现在应该存在于您的本地开发系统上。此文件包含
[默认] 配置文件，如果未指定特定的命名配置文件，则适用于 Java 的 SDK 将使用该配置文件。

4. 登录到 Amazon 访问门户。

5. 在手动刷新凭证标题下，按照以下说明操作以从 Amazon 访问门户中复制 IAM 角色凭证。

a. 对于链接的说明中的步骤 4，选择可授予访问权限以满足您的开发需求的 IAM 角色名称。此
角色的名称通常类似于 PowerUserAccess 或 Developer。

b. 对于步骤 7，选择将配置文件手动添加到您的 Amazon 凭证文件选项并复制内容。

6. 将复制的凭证粘贴到您的本地 credentials 文件中，并移除所有已粘贴的配置文件名称。您的
文件应类似于以下内容：

[default]
aws_access_key_id=AKIAIOSFODNN7EXAMPLE
aws_secret_access_key=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
aws_session_token=IQoJb3JpZ2luX2IQoJb3JpZ2luX2IQoJb3JpZ2luX2IQoJb3JpZ2luX2IQoJb3JpZVERYLONGSTRINGEXAMPLE

7. 保存 credentials 文件

当适用于 Java 的 SDK 创建服务客户端时，它将访问这些临时凭证并将它们用于每个请求。在步骤 5a
中选择的 IAM 角色的设置决定了临时凭证的有效时间。最长持续时间为 12 小时。

在临时凭证过期后，重复步骤 4 到 7。

设置共享配置文件 5

https://docs.amazonaws.cn/sdkref/latest/guide/file-location.html
https://docs.amazonaws.cn/sdkref/latest/guide/file-format.html#file-format-profile
https://docs.amazonaws.cn/singlesignon/latest/userguide/howtosignin.html
https://docs.amazonaws.cn/singlesignon/latest/userguide/howtogetcredentials.html#how-to-get-temp-credentials
https://docs.amazonaws.cn/singlesignon/latest/userguide/howtosessionduration.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

安装 Java 开发环境

适用于 Java 的 Amazon SDK V1 需要 Java 7 JDK 或更高版本，并且支持所有 Java LTS（长期支
持）JDK 版本。如果您使用 SDK 版本 1.12.767 或更早版本，则可以使用 Java 7，但是如果您使用
SDK 版本 1.12.768 或更高版本，则需要 Java 8。Maven 中央存储库列出了适用于 Java 的 SDK 的最
新版本。

适用于 Java 的 Amazon SDK 可以与 Oracle Java SE 开发套件以及 Amazon Corretto、Red Hat
OpenJDK 和 Adoptium 等开放式 Java 开发套件（OpenJDK）的分发版一起使用。

获取适用于 Java 的 Amazon SDK 的方法

先决条件

要使用适用于 Java 的 Amazon SDK，必须拥有：

• 您必须能够登录 Amazon IAM Identity Center 中提供的 Amazon 访问门户。

• 一个合适的 Java 安装。

• 在您的本地共享 credentials 文件中设置的临时凭证。

有关如何进行设置以使用适用于 Java 的 SDK 的说明，请参阅the section called “基本设置”主题。

使用构建工具管理适用于 Java 的 SDK 的依赖项（推荐）

建议在项目中使用 Apache Maven 或 Gradle 来访问适用于 Java 的 SDK 所需的依赖项。 本部分说明
如何使用这些工具。

下载并解压缩 SDK（不推荐）

建议使用构建工具来访问项目的 SDK，但您也可以下载最新版 SDK 的预构建 jar。

Note

有关如何下载和构建开发工具包旧版本的信息，请参阅安装开发工具包的旧版本。

1. 从 https://sdk-for-java.amazonwebservices.com/latest/aws-java-sdk.zip 下载 SDK。

安装 Java 开发环境 6

https://central.sonatype.com/artifact/com.amazonaws/aws-java-sdk-bom
https://www.oracle.com/java/technologies/downloads/
https://www.amazonaws.cn/corretto
https://developers.redhat.com/products/openjdk/overview
https://developers.redhat.com/products/openjdk/overview
https://adoptium.net/
https://sdk-for-java.amazonwebservices.com/latest/aws-java-sdk.zip

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

2. 下载开发工具包之后，将内容提取到本地目录中。

开发工具包包含以下目录：

• documentation – 包含 API 文档（同时在 Web 上提供：适用于 Java 的 Amazon SDK API
Reference）。

• lib – 包含 SDK .jar 文件。

• samples – 包含说明如何使用 SDK 的实用示例代码。

• third-party/lib – 包含 SDK 使用的第三方库，例如 Apache Commons 日志记录、AspectJ 和
Spring 框架。

要使用开发工具包，将完整路径添加到 lib，并将 third-party 目录添加到编译文件中的依赖项，
然后将它们添加到 java CLASSPATH 以运行代码。

从源代码构建 SDK 的早期版本（不推荐）

预建表单中仅提供完整 SDK 的最新版本，作为可下载 jar。不过，可使用 Apache Maven（开源）构建
开发工具包的旧版本。Maven 将一步完成下载所有必需的依赖项、构建和安装开发工具包。有关安装
说明和更多信息，请访问 http://maven.apache.org/。

1. 前往 SDK 的 GitHub 页面：适用于 Java 的 Amazon SDK（GitHub）。

2. 选择与所需开发工具包的版本号对应的标签。例如 1.6.10。

3. 单击 Download Zip 按钮下载选择的开发工具包版本。

4. 将文件解压缩到开发系统中的一个目录中。在很多系统中，可使用自己的图形文件管理器执行该操
作，或在终端窗口中使用 unzip 实用程序。

5. 在终端窗口中，导航到将开发工具包源文件解压缩的目录。

6. 使用以下命令构建并安装开发工具包 (Maven 需要)：

mvn clean install -Dgpg.skip=true

生成的 .jar 文件会构建到 target 目录中。

7. (可选) 使用以下命令构建 API 参考文档：

mvn javadoc:javadoc

从源代码构建 7

https://docs.amazonaws.cn/AWSJavaSDK/latest/javadoc/
https://docs.amazonaws.cn/AWSJavaSDK/latest/javadoc/
http://maven.apache.org/
https://github.com/aws/aws-sdk-java
https://maven.apache.org/

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

该文档构建到 target/site/apidocs/ 目录中。

使用构建工具

使用构建工具有助于管理 Java 项目的开发。有几种构建工具可用，但我们将演示如何使用 Maven 和
Gradle 这两种流行的构建工具来启动和运行。本主题介绍如何使用这两种构建工具管理项目所需的适
用于 Java 的 SDK 依赖项。

主题

• 将 SDK 与 Apache Maven 结合使用

• 将 SDK 与 Gradle 结合使用

将 SDK 与 Apache Maven 结合使用

您可以使用 Apache Maven 配置和构建适用于 Java 的 Amazon SDK项目或构建开发工具包本身。

Note

您必须安装 Maven 才能使用本主题中的指导信息。如果尚未安装 Maven，请访问 http://
maven.apache.org/ 下载并进行安装。

创建新的 Maven 软件包

要创建基本的 Maven 软件包，请打开终端 (命令行) 窗口并运行：

mvn -B archetype:generate \
 -DarchetypeGroupId=org.apache.maven.archetypes \
 -DgroupId=org.example.basicapp \
 -DartifactId=myapp

将 org.example.basicapp 替换为您的应用程序的完整软件包命名空间，将 myapp 替换为项目的名称
(这将变为项目的目录名称)。

默认情况下，使用 quickstart 原型为您创建项目模板，该原型是许多项目的绝佳起点。还提供
了更多原型；有关随该软件打包的原型的列表，请访问 Maven archetypes 页面。可以通过向 -

使用构建工具 8

https://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/archetypes/maven-archetype-quickstart/
https://maven.apache.org/archetypes/index.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

DarchetypeArtifactId 命令中添加 archetype:generate 参数来选择要使用的特定原型。例
如：

mvn archetype:generate \
 -DarchetypeGroupId=org.apache.maven.archetypes \
 -DarchetypeArtifactId=maven-archetype-webapp \
 -DgroupId=org.example.webapp \
 -DartifactId=mywebapp

Note

《Maven Getting Started Guide》中提供了有关创建和配置项目的详细信息。

将开发工具包配置为 Maven 依赖项

要在项目中使用适用于 Java 的 Amazon SDK，您需要在项目的 pom.xml 文件中将该工具包声明为依
赖项。从 1.9.0 版开始，可以导入单个组件或整个开发工具包。

指定单独的开发工具包模块

要选择单个开发工具包模块，请使用适用于 Java 的 Amazon SDK 的 Maven 材料清单 (BOM)，这将确
保您指定的所有模块使用相同版本的开发工具包而且相互兼容。

要使用 BOM，请向应用程序的 <dependencyManagement> 文件中添加一个 pom.xml 部分，将
aws-java-sdk-bom 作为依赖项添加并指定要使用的开发工具包的版本：

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-bom</artifactId>
 <version>1.11.1000</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

将 SDK 与 Apache Maven 结合使用 9

https://maven.apache.org/guides/getting-started/

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

要查看 Maven Central 中提供的最新版本的适用于 Java 的 Amazon SDK BOM，请访问：https://
mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-bom。您也可以使用此页查看项目
<dependencies> 文件的 pom.xml 部分中包括的 BOM 管理了哪些模块（依赖项）。

现在，可以从您的应用程序中所使用的开发工具包中选择单个模块。由于您已经在 BOM 中声明了开发
工具包版本，因此无需为每个组件都指定版本号。

<dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-s3</artifactId>
 </dependency>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-dynamodb</artifactId>
 </dependency>
</dependencies>

还可以参考 Amazon 代码示例目录 来了解要用于给定 Amazon Web Services 服务的依赖项。请参阅
特定的服务示例下的 POM 文件。例如，如果您想了解 Amazon S3 服务的依赖项，请参阅 GitHub 上
的完整示例。（查看 /java/example_code/s3 下的 pom）。

导入所有开发工具包模块

如果您想将整个开发工具包作为一个依赖项拉入，请勿使用 BOM 方法，而只需在 pom.xml 中声明该
开发工具包，如下所示：

<dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk</artifactId>
 <version>1.11.1000</version>
 </dependency>
</dependencies>

重新构建项目。

在设置项目之后，可以使用 Maven 的 package 命令进行构建：

mvn package

将 SDK 与 Apache Maven 结合使用 10

https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-bom
https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-bom
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/GetAcl.java

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

这会在 0jar 目录中创建 target 文件。

使用 Maven 构建开发工具包

可以使用 Apache Maven 从源构建开发工具包。为此，请从 GitHub 下载开发工具包代码，在本地解压
缩，然后执行下面的 Maven 命令：

mvn clean install

将 SDK 与 Gradle 结合使用

要管理 Gradle 项目的 SDK 依赖项，请将适用于 Java 的 Amazon SDK 的 Maven BOM 导入到应用程
序的 build.gradle 文件中。

Note

在以下示例中，将构建文件中的 1.12.529 替换为适用于 Java 的 Amazon SDK 的有效版
本。在 Maven Central 存储库中查找最新版本。

Gradle 4.6 或更高版本的项目设置

自 Gradle 4.6 开始，通过声明针对 BOM 的依赖项，便可以使用 Gradle 的经过改进的 POM 支持功能
来导入材料清单 (BOM) 文件。

1. 如果您使用的是 Gradle 5.0 或更高版本，请跳至步骤 2。否则，请在 settings.gradle 文件中启
用 IMPROVED_POM_SUPPORT 功能。

enableFeaturePreview('IMPROVED_POM_SUPPORT')

2. 将 BOM 添加到应用程序 build.gradle 文件的 dependencies 部分。

...
dependencies {
 implementation platform('com.amazonaws:aws-java-sdk-bom:1.12.529')

 // Declare individual SDK dependencies without version
 ...
}

将 SDK 与 Gradle 结合使用 11

https://github.com/aws/aws-sdk-java
https://gradle.com/
https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-bom/latest
https://docs.gradle.org/4.6/release-notes.html#bom-import

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

3. 在 dependencies 部分中指定要使用的开发工具包模块。例如，以下内容包括 Amazon Simple
Storage Service (Amazon S3) 的依赖项。

...
dependencies {
 implementation platform('com.amazonaws:aws-java-sdk-bom:1.12.529')
 implementation 'com.amazonaws:aws-java-sdk-s3'
 ...
}

Gradle 会自动使用 BOM 中的信息来解析开发工具包依赖项的正确版本。

以下是包含 build.gradle 的依赖项的完整 Amazon S3 文件的示例。

group 'aws.test'
version '1.0-SNAPSHOT'

apply plugin: 'java'

sourceCompatibility = 1.8

repositories {
 mavenCentral()
}

dependencies {
 implementation platform('com.amazonaws:aws-java-sdk-bom:1.12.529')
 implementation 'com.amazonaws:aws-java-sdk-s3'
}

Note

在前面的示例中，将 Amazon S3 的依赖项替换为您将在项目中使用的 Amazon 服务的依赖
项。由适用于 Java 的 Amazon SDK BOM 管理的模块（依赖项）列在 Maven Central 存储
库中。

将 SDK 与 Gradle 结合使用 12

https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-bom/latest
https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-bom/latest

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

用于 4.6 之前的 Gradle 版本的项目设置

早于 4.6 的 Gradle 版本缺少本机 BOM 支持。要管理项目的适用于 Java 的 Amazon SDK依赖项，请
使用 Spring 的适用于 Gradle 的依赖项管理插件为开发工具包导入 Maven BOM。

1. 向应用程序的 build.gradle 文件添加依赖项管理插件。

buildscript {
 repositories {
 mavenCentral()
 }
 dependencies {
 classpath "io.spring.gradle:dependency-management-plugin:1.0.9.RELEASE"
 }
}

apply plugin: "io.spring.dependency-management"

2. 将 BOM 添加到该文件的 dependencyManagement 部分。

dependencyManagement {
 imports {
 mavenBom 'com.amazonaws:aws-java-sdk-bom:1.12.529'
 }
}

3. 在 dependencies 部分中指定您将使用的开发工具包模块。例如，以下内容包含 Amazon S3 的依赖
项。

dependencies {
 compile 'com.amazonaws:aws-java-sdk-s3'
}

Gradle 会自动使用 BOM 中的信息来解析开发工具包依赖项的正确版本。

以下是包含 build.gradle 的依赖项的完整 Amazon S3 文件的示例。

group 'aws.test'
version '1.0'

apply plugin: 'java'

将 SDK 与 Gradle 结合使用 13

https://github.com/spring-gradle-plugins/dependency-management-plugin

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

sourceCompatibility = 1.8

repositories {
 mavenCentral()
}

buildscript {
 repositories {
 mavenCentral()
 }
 dependencies {
 classpath "io.spring.gradle:dependency-management-plugin:1.0.9.RELEASE"
 }
}

apply plugin: "io.spring.dependency-management"

dependencyManagement {
 imports {
 mavenBom 'com.amazonaws:aws-java-sdk-bom:1.12.529'
 }
}

dependencies {
 compile 'com.amazonaws:aws-java-sdk-s3'
 testCompile group: 'junit', name: 'junit', version: '4.11'
}

Note

在前面的示例中，将 Amazon S3 的依赖项替换为您将在项目中使用的 Amazon 服务的依赖
项。由适用于 Java 的 Amazon SDK BOM 管理的模块（依赖项）列在 Maven Central 存储
库中。

有关使用 BOM 指定开发工具包依赖项的更多信息，请参阅将开发工具包与 Apache Maven 一起使
用。

将 SDK 与 Gradle 结合使用 14

https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-bom/latest
https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-bom/latest

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

设置用于开发的 Amazon 临时凭证和 Amazon Web Services 区域

要使用适用于 Java 的 Amazon SDK 连接到任何支持的服务，您必须提供 Amazon 临时凭
证。Amazon SDK 和 CLI 使用提供程序链 在许多不同的位置（包括系统/用户环境变量和本地 Amazon
配置文件）查找 Amazon 临时凭证。

本主题提供有关使用适用于 Java 的 Amazon SDK 为本地应用程序开发设置 Amazon 临时凭证的基本
信息。如果您需要设置用于 EC2 实例的凭证或如果您使用 Eclipse IDE 进行开发，请改为参考以下主
题：

• 在使用 EC2 实例时，您需要创建一个 IAM 角色，然后向该角色授予对 EC2 实例的访问权，如使用
IAM 角色授予对 Amazon EC2 上的 Amazon 资源的访问权中所述。

• 使用 Amazon Toolkit for Eclipse 在 Eclipse 中设置 Amazon 凭证。有关更多信息，请参阅
《Amazon Toolkit for Eclipse User Guide》中的 Set up Amazon Credentials。

配置临时凭证

虽然可通过多种方式为适用于 Java 的 Amazon SDK 配置临时凭证，但建议使用以下方式：

• 在本地系统上的 Amazon 凭证配置文件中设置临时凭证，该配置文件位于：

• ~/.aws/credentials (在 Linux、macOS 或 Unix) 上

• C:\Users\USERNAME\.aws\credentialsWindows 上的

有关如何获取临时凭证的说明，请参阅本指南中的the section called “为 SDK 设置临时凭证”。

• 设置 AWS_ACCESS_KEY_ID、AWS_SECRET_ACCESS_KEY和 AWS_SESSION_TOKEN 环境变量。

要在 Linux、macOS 或 Unix 上设置这些变量，请使用 ：

export AWS_ACCESS_KEY_ID=your_access_key_id
export AWS_SECRET_ACCESS_KEY=your_secret_access_key
export AWS_SESSION_TOKEN=your_session_token

要在 Windows 上设置这些变量，请使用 ：

set AWS_ACCESS_KEY_ID=your_access_key_id
set AWS_SECRET_ACCESS_KEY=your_secret_access_key
set AWS_SESSION_TOKEN=your_session_token

临时凭证和区域 15

https://www.amazonaws.cn/eclipse/
https://docs.amazonaws.cn/toolkit-for-eclipse/v1/user-guide/
https://docs.amazonaws.cn/toolkit-for-eclipse/v1/user-guide/setup-credentials.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

• 对于 EC2 实例，请指定一个 IAM 角色，然后向该角色授予对 EC2 实例的访问权。有关其工作方式
的详细探讨，请参阅《Amazon EC2 用户指南（适用于 Linux 实例）》中的适用于 Amazon EC2 的
IAM 角色。

使用这些方法之一设置了 Amazon 临时凭证后，适用于 Java 的 Amazon SDK 将使用默认凭证提供程
序链自动加载这些凭证。有关在 Java 应用程序中使用 Amazon 凭证的其他信息，请参阅使用 Amazon
凭证。

刷新 IMDS 凭证

适用于 Java 的 Amazon SDK 支持选择每 1 分钟在后台刷新 IMDS 凭证一次，无论凭证到期时间如
何。这可让您更频繁地刷新凭证，并减小未达到 IMDS 影响感知的 Amazon 可用性的几率。

 1. // Refresh credentials using a background thread, automatically every minute. This
 will log an error if IMDS is down during
 2. // a refresh, but your service calls will continue using the cached credentials
 until the credentials are refreshed
 3. // again one minute later.
 4.
 5. InstanceProfileCredentialsProvider credentials =
 6. InstanceProfileCredentialsProvider.createAsyncRefreshingProvider(true);
 7.
 8. AmazonS3Client.builder()
 9. .withCredentials(credentials)
 10. .build();
 11.
 12. // This is new: When you are done with the credentials provider, you must close it
 to release the background thread.
 13. credentials.close();

设置 Amazon Web Services 区域

您应使用适用于 Java 的 Amazon SDK 设置将用于访问 Amazon 服务的默认 Amazon Web Services
区域。要获得最佳网络性能，请选择在地理位置上靠近您（或您的客户）的区域。有关每项服务的区域
列表信息，请参阅《Amazon Web Services General Reference》中的 Regions and Endpoints。

Note

如果您未 选择区域，则默认情况下将使用 us-east-1。

刷新 IMDS 凭证 16

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://docs.amazonaws.cn/general/latest/gr/rande.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

您可以使用类似的方法设置凭证以设置默认 Amazon 区域：

• 在本地系统上的 Amazon 配置文件中设置 Amazon Web Services 区域，该文件位于：

• Linux、macOS 或 Unix 上的 ~/.aws/config

• Windows 上的 C:\Users\USERNAME\.aws\config

此文件应包含以下格式的行：

+

[default]
region = your_aws_region

+

用所需的 Amazon Web Services 区域（例如“us-east-1”）替换 your_aws_region。

• 设置 AWS_REGION 环境变量。

在 Linux、macOS 或 Unix 上，请使用 ：

export AWS_REGION=your_aws_region

在 Windows 上，请使用 ：

set AWS_REGION=your_aws_region

其中，your_aws_region 是所需的 Amazon Web Services 区域名称。

设置 Amazon Web Services 区域 17

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

使用 适用于 Java 的 Amazon SDK

本节提供有关使用编程的重要一般信息 适用于 Java 的 Amazon SDK ，这些信息适用于您可能在 SDK
中使用的所有服务。

有关特定于服务的编程信息和示例（ Amazon EC2针对 Amazon S3、 Amazon SWF、等），请参
阅适用于 Java 的 Amazon SDK 代码示例。

主题

• 使用 Amazon 开发的最佳实践 适用于 Java 的 Amazon SDK

• 创建服务客户端

• 向提供临时证书 适用于 Java 的 Amazon SDK

• Amazon Web Services 区域 选择

• 异常处理

• 异步编程

• 记录 适用于 Java 的 Amazon SDK 通话

• 客户端配置

• 访问控制策略

• 为 DNS 名称查找设置 JVM TTL

• 为启用指标 适用于 Java 的 Amazon SDK

使用 Amazon 开发的最佳实践 适用于 Java 的 Amazon SDK

以下最佳做法可以帮助您在使用开发 Amazon 应用程序时避免出现问题或麻烦 适用于 Java 的
Amazon SDK。这些最佳实践已按服务分类整理。

S3

避免 ResetExceptions

当您使用流（通过AmazonS3客户端或TransferManager）将对象上传到 Amazon S3 时，可能会遇
到网络连接或超时问题。默认情况下， 适用于 Java 的 Amazon SDK 尝试重试传输失败的方法是在传
输开始之前标记输入流，然后在重试之前对其进行重置。

使用 Amazon 开发的最佳实践 适用于 Java 的 Amazon SDK 18

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

如果直播不支持标记和重置，则当出现暂时性故障并启用重试ResetException时，SDK 会抛出。

最佳实践

建议您使用支持标记和重置操作的流。

避免 a 的最可靠方法ResetException是使用文件或来提供数据 FileInputStream，它们 适用于 Java 的
Amazon SDK 可以在不受标记和重置限制的限制的情况下处理这些数据。

如果直播不是，FileInputStream但支持标记和重置，则可以使用setReadLimit方法设置标记限
制RequestClientOptions。其默认值为 128KB。将读取限制值设置为比流大小大一个字节将可靠地避免
ResetException.

例如，如果流的最大预期大小为 100000 字节，则将读取限制设置为 100001 (100000 + 1) 字节。标记
和重置操作将始终适用于 100000 字节或更少的字节。请注意，这可能会导致一些流将该数量的字节缓
冲到内存中。

创建服务客户端

要向发出请求 Amazon Web Services，请先创建一个服务客户端对象。推荐的方法是使用服务客户端
生成器。

每个都 Amazon Web Services 服务 有一个服务接口，其中包含服务 API 中每个操作的方法。例
如，DynamoDB 的服务接口名为。AmazonDynamoDBClient每个服务接口都有对应的客户端生成器，
可用于构建服务接口的实施。的客户端生成器类名 DynamoDB 为 AmazonDynamoDBClientBuilder。

获取客户端生成器

要获取客户端生成器的实例，使用下例中所示的静态工厂方法 standard。

AmazonDynamoDBClientBuilder builder = AmazonDynamoDBClientBuilder.standard();

获得生成器以后，可以使用生成器 API 中的多个常用 setter 来自定义客户端的属性。例如，您可以按
以下方法设置自定义区域和自定义凭证提供程序。

AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCredentials(new ProfileCredentialsProvider("myProfile"))
 .build();

创建服务客户端 19

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/ResetException.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/ResetException.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/FileInputStream.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/FileInputStream.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/RequestClientOptions.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/ResetException.html
https://docs.amazonaws.cn/AWSJavaSDK/latest/javadoc/com/amazonaws/services/dynamodbv2/AmazonDynamoDBClient.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/AmazonDynamoDBClientBuilder.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

Note

常用的 withXXX 方法会返回 builder 对象，由此可以将方法调用组合起来，这样不仅方便
而且代码更加便于阅读。在配置需要的属性后，可以调用 build 方法创建客户端。创建的客
户端不可更改，而且对 setRegion 或 setEndpoint 的所有调用都会失败。

生成器可以使用相同配置创建多个客户端。在编写应用程序时，请注意生成器可变而且是非线程安全
的。

以下代码使用生成器作为客户端实例的工厂。

public class DynamoDBClientFactory {
 private final AmazonDynamoDBClientBuilder builder =
 AmazonDynamoDBClientBuilder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCredentials(new ProfileCredentialsProvider("myProfile"));

 public AmazonDynamoDB createClient() {
 return builder.build();
 }
}

该生成器还为ClientConfiguration和提供了流畅的设置器 RequestMetricCollector，以及一个包含 2 的
自定义列表。RequestHandler

以下给出将覆盖所有可配置属性的完整示例。

AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCredentials(new ProfileCredentialsProvider("myProfile"))
 .withClientConfiguration(new ClientConfiguration().withRequestTimeout(5000))
 .withMetricsCollector(new MyCustomMetricsCollector())
 .withRequestHandlers(new MyCustomRequestHandler(), new
 MyOtherCustomRequestHandler)
 .build();

创建异步客户端

每个服务（除外） 适用于 Java 的 Amazon SDK 都有异步（或异步 Amazon S3）客户端，每个服务都
有相应的异步客户端生成器。

创建异步客户端 20

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/metrics/RequestMetricCollector.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/handlers/RequestHandler2.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/handlers/RequestHandler2.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

使用默认值创建异步 DynamoDB 客户端 ExecutorService

AmazonDynamoDBAsync ddbAsync = AmazonDynamoDBAsyncClientBuilder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCredentials(new ProfileCredentialsProvider("myProfile"))
 .build();

除了同步（或同步）客户端生成器支持的配置选项外，异步客户端还允许您设置自定
义ExecutorFactory以更改异步客户端ExecutorService使用的配置。 ExecutorFactory是一个函
数式接口，因此它可以与 Java 8 lambda 表达式和方法引用互操作。

使用自定义执行程序创建异步客户端

AmazonDynamoDBAsync ddbAsync = AmazonDynamoDBAsyncClientBuilder.standard()
 .withExecutorFactory(() -> Executors.newFixedThreadPool(10))
 .build();

使用 DefaultClient

同步和异步客户端生成器都包含名为 defaultClient 的另一个工厂方法。该方法使用默认配置创建
服务客户端，即，使用默认提供程序链加载凭证和 Amazon Web Services 区域。如果不能根据运行应
用程序的环境确定凭证或区域，则对 defaultClient 的调用失败。有关如何确定Amazon 凭证和区
域的更多信息，请参阅使用凭证和Amazon Web Services 区域 选择。

创建默认服务客户端

AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

客户端生命周期

开发工具包中的服务客户端是线程安全的，而且为了获得最佳性能，应该将其作为永久对象。每个客户
端均有各自的连接池资源。将显式关闭不再需要的客户端，以避免资源泄漏。

要显式关闭客户端，请调用 shutdown 方法。在调用 shutdown 后，会释放所有客户端资源且客户端
不可用。

关闭客户端

AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

使用 DefaultClient 21

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/client/builder/ExecutorFactory.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

ddb.shutdown();
// Client is now unusable

向提供临时证书 适用于 Java 的 Amazon SDK

要向发出请求 Amazon Web Services，您必须提供 Amazon 临时证书， 适用于 Java 的 Amazon SDK
以供其在调用服务时使用。您可以通过下列方式来执行此操作：

• 使用默认凭证提供程序链（推荐）。

• 使用特定的凭证提供程序或提供程序链（或创建您自己的）。

• 在代码中自行提供临时凭证。

使用默认凭证提供程序链

当您在不提供任何参数的情况下初始化新的服务客户端时，会 适用于 Java 的 Amazon SDK 尝试使用
Default AWSCredentials ProviderChain 类实现的默认凭证提供程序链来查找临时证书。默认凭证提供
程序链将按此顺序查找凭证：

1. 环境变量，Amazon_ACCESS_KEY_ID、Amazon_SECRET_KEY 或
Amazon_SECRET_ACCESS_KEY 和 Amazon_SESSION_TOKEN。 适用于 Java 的 Amazon SDK 使
用EnvironmentVariableCredentialsProvider类来加载这些证书。

2. Java 系统属性，aws.accessKeyId、aws.secretKey（而不是
aws.secretAccessKey）和 aws.sessionToken。 适用于 Java 的 Amazon SDK 使用加
载SystemPropertiesCredentialsProvider这些凭证。

3. 来自环境或容器的 Web 身份令牌凭证。

4. 默认凭证配置文件 ——通常位于~/.aws/credentials（位置可能因平台而异），
并由许多 Amazon SDKs 和共享。 Amazon CLI 适用于 Java 的 Amazon SDK 使用加
载ProfileCredentialsProvider这些凭证。

您可以使用提供的aws configure命令创建凭据文件 Amazon CLI，也可以使用文本编辑器编辑该
文件来创建凭证文件。有关凭证文件格式的信息，请参阅 Amazon 凭证文件格式。

5. Amazon ECS 容器凭证 – 如果设置了环境变量
AWS_CONTAINER_CREDENTIALS_RELATIVE_URI，则从 Amazon ECS 加载该凭证。 适用于
Java 的 Amazon SDK 使用加载ContainerCredentialsProvider这些凭证。可以指定此值的 IP 地址。

6. 实例配置文件凭证-用于 EC2 实例，并通过 Amazon EC2 元数据服务提供。 适用于 Java 的
Amazon SDK 使用加载InstanceProfileCredentialsProvider这些凭证。可以指定此值的 IP 地址。

提供临时凭证 22

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/auth/DefaultAWSCredentialsProviderChain.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/auth/DefaultAWSCredentialsProviderChain.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/auth/EnvironmentVariableCredentialsProvider.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/auth/SystemPropertiesCredentialsProvider.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/auth/profile/ProfileCredentialsProvider.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/auth/ContainerCredentialsProvider.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/auth/InstanceProfileCredentialsProvider.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

Note

仅在未设置 AWS_CONTAINER_CREDENTIALS_RELATIVE_URI 时使用实例配置文件凭
证。请参阅EC2ContainerCredentialsProviderWrapper了解更多信息。

设置临时凭证

为了能够使用 Amazon 临时证书，必须至少在前面的一个位置设置临时证书。有关设置凭证的信息，
请参阅以下主题：

• 要在环境 或默认凭证配置文件 中指定凭证，请参阅the section called “配置临时凭证”。

• 要设置 Java 系统属性，请参阅官方 Java 教程网站中的系统属性教程。

• 要为您的 EC2 实例设置和使用实例配置文件证书，请参阅上的 “使用 IAM 角色授予 Amazon 资源访
问权限” Amazon EC2。

设置备用凭证配置文件

默认 适用于 Java 的 Amazon SDK 使用默认配置文件，但也有一些方法可以自定义哪个配置文件来自
凭据文件。

您可以使用 P Amazon rofile 环境变量来更改 SDK 加载的配置文件。

例如，在 Linux、macOS 或 Unix 上，您可运行以下命令来将配置文件更改为 myProfile。

export AWS_PROFILE="myProfile"

在 Windows 上，您将使用以下配置文件。

set AWS_PROFILE="myProfile"

设置AWS_PROFILE环境变量会影响所有官方支持的工具 Amazon SDKs 和工具（包括和 Amazon
Tools for Windows PowerShell）的 Amazon CLI 凭证加载。如果只需要更改 Java 应用程序的配置文
件，则可改用系统属性 aws.profile。

使用默认凭证提供程序链 23

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/auth/EC2ContainerCredentialsProviderWrapper.html
http://docs.oracle.com/javase/tutorial/essential/environment/sysprop.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

Note

环境变量优先于系统属性。

设置备用凭证文件位置

会自动从默认凭证文件位置 适用于 Java 的 Amazon SDK 加载 Amazon 临时证书。但是，您也可以通
过在 AWS_CREDENTIAL_PROFILES_FILE 环境变量中设置凭证文件的完整路径来指定位置。

您可以使用此功能临时更改证书文件所在的位置（例如，通过使用命令行设置此变量）。 适用于 Java
的 Amazon SDK 或者，您也可以在您的用户环境或系统环境中设置该环境变量，在用户范围或系统范
围内对其进行更改。

覆盖默认凭证文件位置

• 将AWS_CREDENTIAL_PROFILES_FILE环境变量设置为 Amazon 凭据文件的位置。

• 在 Linux、macOS 或 Unix 上，请使用：

export AWS_CREDENTIAL_PROFILES_FILE=path/to/credentials_file

• 在 Windows 上，请使用：

set AWS_CREDENTIAL_PROFILES_FILE=path/to/credentials_file

Credentials 文件格式

根据本指南中的基本设置说明，您的凭证文件应采用以下基本格式。

[default]
aws_access_key_id=<value from Amazon access portal>
aws_secret_access_key=<value from Amazon access portal>
aws_session_token=<value from Amazon access portal>

[profile2]
aws_access_key_id=<value from Amazon access portal>
aws_secret_access_key=<value from Amazon access portal>
aws_session_token=<value from Amazon access portal>

使用默认凭证提供程序链 24

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

在方括号中指定配置文件名（例如：[default]），后跟该配置文件中的可配置字段作为键
值对。您的 credentials 文件可包含多个配置文件，可使用 aws configure --profile
PROFILE_NAME 选择要配置的配置文件来添加或编辑这些配置文件。

您可以指定其他字段，例如 metadata_service_timeout 和
metadata_service_num_attempts。无法使用 CLI 配置这些文件 – 如果您想使用这些文件，则必
须手动编辑它们。有关配置文件及其可用字段的更多信息，请参阅 Amazon Command Line Interface
用户指南Amazon Command Line Interface中的配置。

加载凭证

在设置临时凭证后，SDK 使用默认凭证提供程序链来加载这些凭证。

为此，您需要实例化 Amazon Web Services 服务 客户端，而无需向生成器明确提供证书，如下所示。

AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withRegion(Regions.US_WEST_2)
 .build();

指定凭证提供程序或提供程序链

您可以通过客户端生成器来指定一个不同于默认凭证提供程序链的凭证提供程序。

您可以向以提供者接口作为输入的客户端生成器提供凭证提供程序或AWSCredentials提供程序链的实
例。以下示例演示使用环境 凭证的具体情况。

AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withCredentials(new EnvironmentVariableCredentialsProvider())
 .build();

有关 适用于 Java 的 Amazon SDK提供的凭证提供者和提供者链的完整列表，请参阅 Provider 中
的AWSCredentials所有已知实现类。

Note

您可以使用此技术来提供凭证提供程序或提供者链，这些证书提供程序或通过使用
自己实现AWSCredentialsProvider接口的凭证提供程序或对类进行子类来创
建。AWSCredentialsProviderChain

指定凭证提供程序或提供程序链 25

https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-getting-started.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/auth/AWSCredentialsProvider.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/auth/AWSCredentialsProvider.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/auth/AWSCredentialsProvider.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/auth/AWSCredentialsProviderChain.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

明确指定临时凭证

如果默认凭证链和特定的或自定义的提供程序或提供程序链都不适用于您的代码，您可以通过自行提供
来明确设置这些凭证。如果您使用检索了临时证书 Amazon STS，请使用此方法指定 Amazon 访问凭
证。

1. 实例化该BasicSessionCredentials类，并为其提供 SDK 用于连接的 Amazon 访问 Amazon 密钥、
密钥和会 Amazon 话令牌。

2. AWSStaticCredentialsProvider用AWSCredentials对象创建。

3. 使用 AWSStaticCredentialsProvider 配置客户端生成器并构建客户端。

示例如下：

BasicSessionCredentials awsCreds = new BasicSessionCredentials("access_key_id",
 "secret_key_id", "session_token");
AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withCredentials(new AWSStaticCredentialsProvider(awsCreds))
 .build();

更多信息

• 注册 Amazon 并创建 IAM 用户

• 为开发设置 Amazon 凭证和区域

• 使用 IAM 角色授予对 Amazon 资源的访问权限 Amazon EC2

Amazon Web Services 区域 选择

区域使您能够访问实际位于特定地理区域的 Amazon 服务。它可以用于保证冗余，并保证您的数据和
应用程序接近您和用户访问它们的位置。

查看区域的服务可用性

要查看某个地区是否有特定 Amazon Web Services 服务 内容可用，请在要使用的区域上使
用isServiceSupported方法。

Region.getRegion(Regions.US_WEST_2)

明确指定临时凭证 26

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/auth/BasicSessionCredentials.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/auth/AWSStaticCredentialsProvider.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 .isServiceSupported(AmazonDynamoDB.ENDPOINT_PREFIX);

请参阅区域类文档查看可以指定的区域，并使用服务的终端节点前缀进行查询。在服务接口中定义了各
服务的终端节点前缀。例如， DynamoDB 终端节点前缀是在AmazonDynamo数据库中定义的。

选择区域

从 1.4 版本开始 适用于 Java 的 Amazon SDK，您可以指定区域名称，SDK 将自动为您选择合适的终
端节点。要自行选择终端节点，请参阅选择特定终端节点。

要显式设置区域时，我们建议您使用 Regions 枚举。这是所有公开可用区域的枚举。要使用枚举结果
中的一个区域创建客户端，请使用以下代码。

AmazonEC2 ec2 = AmazonEC2ClientBuilder.standard()
 .withRegion(Regions.US_WEST_2)
 .build();

如果 Regions 枚举结果不包含要使用的某个区域，可使用代表该区域名称的字符串。

AmazonEC2 ec2 = AmazonEC2ClientBuilder.standard()
 .withRegion("{region_api_default}")
 .build();

Note

使用生成器所构建的客户端不可改变，而且不能更改区域。如果您要 Amazon Web Services
区域 为同一服务使用多个客户端，则应创建多个客户端，每个区域一个。

选择特定终端节点

通过在创建 Amazon 客户端时调用withEndpointConfiguration方法，可以将每个客户端配置为
使用区域内的特定终端节点。

例如，要将 Amazon S3 客户端配置为使用欧洲（爱尔兰）区域，请使用以下代码。

AmazonS3 s3 = AmazonS3ClientBuilder.standard()
 .withEndpointConfiguration(new EndpointConfiguration(

选择区域 27

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/regions/Regions.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/AmazonDynamoDB.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/regions/Regions.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 "https://s3.eu-west-1.amazonaws.com",
 "eu-west-1"))
 .withCredentials(CREDENTIALS_PROVIDER)
 .build();

有关所有 Amazon 服务的区域及其相应终端节点的当前列表，请参阅区域和终端节点。

根据环境自动确定区域

Important

本节仅在使用客户端生成器访问 Amazon 服务时适用。 Amazon 使用客户端构造函数创建的客
户端不会自动从环境中确定区域，而是使用默认的 SDK 区域 (USEast1)。

在 Amazon EC2 或 Lambda 上运行时，您可能需要将客户端配置为使用与代码运行相同的区域。由此
可以将代码从其运行的环境中脱离，更轻松地将应用程序部署到多个区域以减少延迟并保证冗余。

必须使用客户端生成器，使开发工具包可自动检测代码的运行区域。

要使用默认 credential/region 提供程序链从环境中确定区域，请使用客户端生成器
的defaultClient方法。

AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

这与使用 standard 再加上 build 相同。

AmazonEC2 ec2 = AmazonEC2ClientBuilder.standard()
 .build();

如果您没有使用 withRegion 方法明确设置一个区域，开发工具包将参考默认区域提供程序链来尝试
并确定要使用的区域。

默认区域提供程序链

区域查找过程如下：

1. 通过生成器本身使用 withRegion 或 setRegion 明确设置的所有区域优先于其他所有区域。

2. 系统会检查 AWS_REGION 环境变量。如果已设置该变量，将使用对应区域配置客户端。

根据环境自动确定区域 28

https://docs.amazonaws.cn/general/latest/gr/rande.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

Note

此环境变量由 Lambda 容器设置。

3. SDK 会检查 Amazon 共享配置文件（通常位于~/.aws/config）。如果 region 属性存在，则
SDK 会使用该属性。

• AWS_CONFIG_FILE 环境变量可用于自定义共享配置文件的位置。

• 可以使用 AWS_PROFILE 环境变量或 aws.profile 系统属性，自定义 SDK 要加载的配置文
件。

4. SDK 尝试使用 Amazon EC2 实例元数据服务来确定当前正在运行的 Amazon EC2 实例的区域。

5. 如果开发工具包此时仍不能确定区域，则客户端创建将失败并返回异常。

开发 Amazon 应用程序时，常见的方法是使用共享配置文件（如使用默认凭证提供程序链中所述）来
设置本地开发的区域，并在 Amazon 基础设施上运行时依靠默认区域提供商链来确定区域。这可以明
显简化客户端创建，并保证应用程序的便携性。

异常处理

了解 适用于 Java 的 Amazon SDK 抛出异常的方式和时间对于使用 SDK 构建高质量的应用程序非常
重要。接下来几节介绍开发工具包引发异常的几种不同情况，以及如何正确地处理这些异常。

为什么使用未选中的异常？

出于以下原因， 适用于 Java 的 Amazon SDK 使用运行时（或未选中）异常而不是已检查的异常：

• 使开发人员能够精细控制要处理哪些错误，而不是必须处理无关紧要的异常情况（这会导致代码极其
冗长）

• 避免大型应用程序因使用选中的异常而固有的可扩展性问题

一般来说，小型应用程序使用选中的异常是可以的，但随着应用程序的大小和复杂程度增加，这样做就
会出现问题。

有关使用选中和未选中的异常的更多信息，请参阅：

• 未选中的异常 - 争议

• 使用选中的异常时的问题

异常处理 29

http://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html
http://www.artima.com/intv/handcuffs2.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

• Java 中选中的异常是一个错误（下文会说明我要如何处理这些异常）

AmazonServiceException （和子类）

AmazonServiceException是您在使用时遇到的最常见的异常 适用于 Java 的 Amazon SDK。该异常
是指来自 Amazon Web Services 服务的错误响应。例如，如果您尝试终止一个不存在的 Amazon
EC2 实例，则 EC2 将返回错误响应，并且该错误响应的所有详细信息都将包含在抛出的错误响应
中。AmazonServiceException在某些情况下，会引发 AmazonServiceException 的一个子类，
使开发人员能够通过捕获模块精细控制如何处理错误情况。

遇到时AmazonServiceException，您就知道您的请求已成功发送到， Amazon Web Services 服务
但无法成功处理。这可能是因为请求的参数中存在错误，或者是因为服务端的问题。

AmazonServiceException 为您提供很多信息，例如：

• 返回的 HTTP 状态代码

• 返回的 Amazon 错误码

• 来自服务的详细错误消息

• Amazon 失败请求的请求 ID

AmazonServiceException还包括有关失败的请求是调用者的错误（具有非法值的请求）还是调用
Amazon Web Services 服务者的错误（内部服务错误）的信息。

AmazonClientException

AmazonClientException表示 Java 客户端代码内部出现问题，无论是在尝试向发送请求时
Amazon 还是尝试解析来自 Amazon的响应时。AmazonClientException通常比 a 更严
重AmazonServiceException，表示存在阻止客户端向 Amazon 服务发出服务调用的主要问题。例
如，当您尝试在其中一个客户端上调用操作时，AmazonClientException如果没有可用的网络连
接，则会 适用于 Java 的 Amazon SDK 抛出。

异步编程
您可以使用同步或异步方法来调用对 Amazon 服务的操作。同步方法会阻止执行您的线程，直到客户
端接收到服务的响应。异步方法会立即返回，并控制调用的线程，而不必等待响应。

由于异步方法在收到响应之前返回，所以需要通过某种方法在响应准备就绪时接收响应。 适用于 Java
的 Amazon SDK 提供了两种方法：F uture 对象和回调方法。

AmazonServiceException （和子类） 30

http://radio-weblogs.com/0122027/stories/2003/04/01/JavasCheckedExceptionsWereAMistake.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/AmazonServiceException.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/AmazonClientException.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

Java Futures

中的异步方法 适用于 Java 的 Amazon SDK 返回一个 F ut ure 对象，该对象包含将来异步操作的结
果。

调用 Future isDone() 方法，确定该服务是否已提供响应对象。当响应准备好时，可以通过调用
Future get() 方法来获取响应对象。在应用程序继续处理其他任务时，可使用该机制定期轮询异步
操作的结果。

以下是一个异步操作的示例，该异步操作调用 Lambda 函数，接收Future可以容纳InvokeResult对象
的函数。InvokeResult 对象仅在 isDone() 为 true 时可检索到。

import com.amazonaws.services.lambda.AWSLambdaAsyncClient;
import com.amazonaws.services.lambda.model.InvokeRequest;
import com.amazonaws.services.lambda.model.InvokeResult;
import java.nio.ByteBuffer;
import java.util.concurrent.Future;
import java.util.concurrent.ExecutionException;

public class InvokeLambdaFunctionAsync
{
 public static void main(String[] args)
 {
 String function_name = "HelloFunction";
 String function_input = "{\"who\":\"SDK for Java\"}";

 AWSLambdaAsync lambda = AWSLambdaAsyncClientBuilder.defaultClient();
 InvokeRequest req = new InvokeRequest()
 .withFunctionName(function_name)
 .withPayload(ByteBuffer.wrap(function_input.getBytes()));

 Future<InvokeResult> future_res = lambda.invokeAsync(req);

 System.out.print("Waiting for future");
 while (future_res.isDone() == false) {
 System.out.print(".");
 try {
 Thread.sleep(1000);
 }
 catch (InterruptedException e) {
 System.err.println("\nThread.sleep() was interrupted!");
 System.exit(1);
 }

Java Futures 31

https://docs.oracle.com/javase/8/docs/api/index.html?java/util/concurrent/Future.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/lambda/model/InvokeResult.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 }

 try {
 InvokeResult res = future_res.get();
 if (res.getStatusCode() == 200) {
 System.out.println("\nLambda function returned:");
 ByteBuffer response_payload = res.getPayload();
 System.out.println(new String(response_payload.array()));
 }
 else {
 System.out.format("Received a non-OK response from {AWS}: %d\n",
 res.getStatusCode());
 }
 }
 catch (InterruptedException | ExecutionException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }

 System.exit(0);
 }
}

异步回调

除了使用 Java Future 对象监控异步请求的状态外，SDK 还允许您实现使用该AsyncHandler接口的
类。 AsyncHandler提供了两种根据请求完成方式调用的方法：onSuccess和onError。

回调接口方法的主要优势是它让您无需轮询 Future 对象即可确定请求是否已完成。相反，您的代码
能够立即开始其下一个活动，并由开发工具包在适当时调用处理程序。

import com.amazonaws.services.lambda.AWSLambdaAsync;
import com.amazonaws.services.lambda.AWSLambdaAsyncClientBuilder;
import com.amazonaws.services.lambda.model.InvokeRequest;
import com.amazonaws.services.lambda.model.InvokeResult;
import com.amazonaws.handlers.AsyncHandler;
import java.nio.ByteBuffer;
import java.util.concurrent.Future;

public class InvokeLambdaFunctionCallback
{
 private class AsyncLambdaHandler implements AsyncHandler<InvokeRequest,
 InvokeResult>

异步回调 32

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/handlers/AsyncHandler.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 {
 public void onSuccess(InvokeRequest req, InvokeResult res) {
 System.out.println("\nLambda function returned:");
 ByteBuffer response_payload = res.getPayload();
 System.out.println(new String(response_payload.array()));
 System.exit(0);
 }

 public void onError(Exception e) {
 System.out.println(e.getMessage());
 System.exit(1);
 }
 }

 public static void main(String[] args)
 {
 String function_name = "HelloFunction";
 String function_input = "{\"who\":\"SDK for Java\"}";

 AWSLambdaAsync lambda = AWSLambdaAsyncClientBuilder.defaultClient();
 InvokeRequest req = new InvokeRequest()
 .withFunctionName(function_name)
 .withPayload(ByteBuffer.wrap(function_input.getBytes()));

 Future<InvokeResult> future_res = lambda.invokeAsync(req, new
 AsyncLambdaHandler());

 System.out.print("Waiting for async callback");
 while (!future_res.isDone() && !future_res.isCancelled()) {
 // perform some other tasks...
 try {
 Thread.sleep(1000);
 }
 catch (InterruptedException e) {
 System.err.println("Thread.sleep() was interrupted!");
 System.exit(0);
 }
 System.out.print(".");
 }
 }
}

异步回调 33

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

最佳实践

回调执行

AsyncHandler 的实施在异步客户端拥有的线程池内执行。简短、快速执行的代码在您的
AsyncHandler 实施内最适合。如果您的处理程序方法包含长时间运行的代码或阻码，会导致对异步
客户端所使用线程池的争用，并阻止客户端执行请求。如果需要从回调开始一种长期运行的任务，请在
新的线程或应用程序托管的线程池中让回调运行其任务。

线程池配置

中的异步客户端 适用于 Java 的 Amazon SDK 提供了一个适用于大多数应用程序的默认线程池。您可
以实现自定义ExecutorService并将其传递给 适用于 Java 的 Amazon SDK 异步客户端，以便更好地控
制线程池的管理方式。

例如，您可以提供一个ExecutorService实现，该实现使用自定义ThreadFactory来控制池中线程的
命名方式，或者记录有关线程使用情况的其他信息。

异步访问

SDK 中的TransferManager类为使用提供了异步支持 Amazon S3。 TransferManager管理异步上传
和下载，提供详细的传输进度报告，并支持对不同事件的回调。

记录 适用于 Java 的 Amazon SDK 通话

使用 Apache Commons Log ging 进行检测，Apache Commons Logging 是一个抽象层，允许在运行
时使用多个日志系统中的任何一个。 适用于 Java 的 Amazon SDK

支持的日志记录系统包括 Java Logging Framework、Apache Log4j 和其他系统。本主题介绍如何使用
Log4j。无需对您的应用程序代码进行任何更改，就可以使用开发工具包的日志记录功能。

要了解有关 Log4j 的更多信息，请参阅 Apache 网站。

Note

本主题主要介绍 Log4j 1.x。Log4j2 不直接支持 Apache Commons Logging，但提供一个适配
器，将日志记录调用定向到使用 Apache Commons Logging 界面的 Log 4j2。有关更多信息，
请参阅 Log4j2 文档中的 Commons Logging Bridge。

最佳实践 34

https://docs.oracle.com/javase/8/docs/api/index.html?java/util/concurrent/ExecutorService.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/concurrent/ThreadFactory.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/TransferManager.html
http://commons.apache.org/proper/commons-logging/guide.html
http://logging.apache.org/log4j/2.x/
http://www.apache.org/
https://logging.apache.org/log4j/2.x/log4j-jcl.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

下载 Log4J JAR

要将 Log4j 与开发工具包一起使用，需要从 Apache 网站下载 Log4j JAR。该开发工具包不包括 JAR。
将 JAR 文件复制到类路径中的位置。

Log4j 使用配置文件 log4j.properties。配置文件示例如下所示。将该配置文件复制到类路径中的目录
中。Log4j JAR 和 log4j.properties 文件不需要在同一目录中。

log4j.properties 配置文件会指定日志记录级别、发送日志记录输出的位置（例如：发送到文件或控制
台）以及输出格式等属性。日志级别是记录器生成输出的粒度。Log4j 支持多个日志记录层次结构 的概
念。可以为每级层次结构单独设置日志记录级别。 适用于 Java 的 Amazon SDK支持以下两个日志记
录层次结构：

• log4j.logger.com.amazonaws

• log4j.logger.org.apache.http.wire

设置类路径

Log4j JAR 和 log4j.properties 文件都必须位于类路径中。如果您使用 Apache Ant，则在 Ant 文件的
path 元素中设置类路径。以下示例显示 SDK 附带的 Amazon S3 示例中 Ant 文件的路径元素。

<path id="aws.java.sdk.classpath">
 <fileset dir="../../third-party" includes="**/*.jar"/>
 <fileset dir="../../lib" includes="**/*.jar"/>
 <pathelement location="."/>
</path>

如果您使用 Eclipse IDE，可以打开菜单并导航到 Project (项目) | Properties (属性) | Java Build Path
(Java 构建路径) 来设置类路径。

特定服务的错误消息和警告

我们建议您始终将“com.amazonaws”记录器层次结构设置为“WARN”，以保证不会错过来自客户端库的
任何重要消息。例如，如果 Amazon S3 客户端检测到您的应用程序未正确关闭InputStream并可能
泄漏资源，则 S3 客户端会通过警告消息将其报告到日志。另外，由此可确保客户端在处理请求或响应
遇到任何问题时会记录相应消息。

以下 log4j.properties 文件将 rootLogger 设置为 WARN，也就是包含“com.amazonaws”层次结构中
所有记录器发送的警告和错误消息。您也可以将 com.amazonaws 记录器明确设置为 WARN。

下载 Log4J JAR 35

http://logging.apache.org/log4j/2.x/manual/configuration.html#Loggers
http://logging.apache.org/log4j/2.x/manual/appenders.html
http://logging.apache.org/log4j/2.x/manual/appenders.html
http://logging.apache.org/log4j/2.x/manual/layouts.html
http://ant.apache.org/manual/
https://github.com/aws/aws-sdk-java/blob/master/src/samples/AmazonS3/build.xml

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

log4j.rootLogger=WARN, A1
log4j.appender.A1=org.apache.log4j.ConsoleAppender
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%d [%t] %-5p %c - %m%n
Or you can explicitly enable WARN and ERROR messages for the {AWS} Java clients
log4j.logger.com.amazonaws=WARN

请求/响应摘要日志记录

对的每个请求都会 Amazon Web Services 服务 生成一个唯一的 Amazon 请求 ID，如果您在如何处理
请求时遇到问题， Amazon Web Services 服务 这会很有用。 Amazon 对于任何失败的服务调用，都
可以通过 SDK 中的 Exception 对象以编程方式访问请求 IDs ，也可以通过 “com.amazonaws.request”
记录器中的 DEBUG 日志级别报告请求。

以下 log4j.properties 文件支持请求和响应（包括请求）的摘要。 Amazon IDs

log4j.rootLogger=WARN, A1
log4j.appender.A1=org.apache.log4j.ConsoleAppender
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%d [%t] %-5p %c - %m%n
Turn on DEBUG logging in com.amazonaws.request to log
a summary of requests/responses with {AWS} request IDs
log4j.logger.com.amazonaws.request=DEBUG

以下是日志输出的示例。

2009-12-17 09:53:04,269 [main] DEBUG com.amazonaws.request - Sending
Request: POST https://rds.amazonaws.com / Parameters: (MaxRecords: 20,
Action: DescribeEngineDefaultParameters, SignatureMethod: HmacSHA256,
AWSAccessKeyId: ACCESSKEYID, Version: 2009-10-16, SignatureVersion: 2,
Engine: mysql5.1, Timestamp: 2009-12-17T17:53:04.267Z, Signature:
q963XH63Lcovl5Rr71APlzlye99rmWwT9DfuQaNznkD,) 2009-12-17 09:53:04,464
[main] DEBUG com.amazonaws.request - Received successful response: 200, {AWS}
Request ID: 694d1242-cee0-c85e-f31f-5dab1ea18bc6 2009-12-17 09:53:04,469
[main] DEBUG com.amazonaws.request - Sending Request: POST
https://rds.amazonaws.com / Parameters: (ResetAllParameters: true, Action:
ResetDBParameterGroup, SignatureMethod: HmacSHA256, DBParameterGroupName:
java-integ-test-param-group-0000000000000, AWSAccessKeyId: ACCESSKEYID,
Version: 2009-10-16, SignatureVersion: 2, Timestamp:
2009-12-17T17:53:04.467Z, Signature:
9WcgfPwTobvLVcpyhbrdN7P7l3uH0oviYQ4yZ+TQjsQ=,)

请求/响应摘要日志记录 36

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

2009-12-17 09:53:04,646 [main] DEBUG com.amazonaws.request - Received
successful response: 200, {AWS} Request ID:
694d1242-cee0-c85e-f31f-5dab1ea18bc6

详细线路日志记录

在某些情况下，查看 适用于 Java 的 Amazon SDK 发送和接收的确切请求和响应可能会很有用。您不
应在生产系统中启用此日志记录，因为写出大型请求（例如，正在上传到的文件 Amazon S3）或响应
可能会大大降低应用程序的速度。如果您确实需要访问这些信息，可以通过 Apache HttpClient 4 记录
器暂时将其启用。如果在 org.apache.http.wire 记录器中启用 DEBUG 级别，会记录所有请求和
响应数据。

以下 log4j.properties 文件在 Apache HttpClient 4 中开启了全线日志记录，只能暂时开启，因为它可能
会对应用程序的性能产生重大影响。

log4j.rootLogger=WARN, A1
log4j.appender.A1=org.apache.log4j.ConsoleAppender
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%d [%t] %-5p %c - %m%n
Log all HTTP content (headers, parameters, content, etc) for
all requests and responses. Use caution with this since it can
be very expensive to log such verbose data!
log4j.logger.org.apache.http.wire=DEBUG

延迟指标日志记录

如果您正在进行故障排除，并且希望查看诸如哪个进程占用了最多时间或者是服务器还是客户端具有
更大延迟等指标，则延迟记录器可能会很有用。将 com.amazonaws.latency 记录器设置为 DEBUG
可启用此记录器。

Note

此记录器仅在启用开发工具包指标时才可用。要了解更多有关 SDK 指标包的更多信息，请参
阅对 适用于 Java 的 Amazon SDK启用指标。

log4j.rootLogger=WARN, A1
log4j.appender.A1=org.apache.log4j.ConsoleAppender
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%d [%t] %-5p %c - %m%n

详细线路日志记录 37

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

log4j.logger.com.amazonaws.latency=DEBUG

以下是日志输出的示例。

com.amazonaws.latency - ServiceName=[{S3}], StatusCode=[200],
ServiceEndpoint=[https://list-objects-integ-test-test.s3.amazonaws.com],
RequestType=[ListObjectsV2Request], AWSRequestID=[REQUESTID],
 HttpClientPoolPendingCount=0,
RetryCapacityConsumed=0, HttpClientPoolAvailableCount=0, RequestCount=1,
HttpClientPoolLeasedCount=0, ResponseProcessingTime=[52.154],
 ClientExecuteTime=[487.041],
HttpClientSendRequestTime=[192.931], HttpRequestTime=[431.652],
 RequestSigningTime=[0.357],
CredentialsRequestTime=[0.011, 0.001], HttpClientReceiveResponseTime=[146.272]

客户端配置
适用于 Java 的 Amazon SDK 允许您更改默认的客户机配置，这在您想要执行以下操作时很有用：

• 通过代理连接到 Internet

• 更改 HTTP 传输设置，例如连接超时和请求重试次数

• 指定 TCP 套接字缓冲区大小提示

代理配置

在构造客户端对象时，您可以传入一个可选ClientConfiguration对象来自定义客户端的配置。

如果您通过代理服务器连接到 Internet，则将需要通过 ClientConfiguration 对象配置代理服务器
设置（代理主机、端口和用户名/密码）。

HTTP 传输配置

您可以使用ClientConfiguration对象配置多个 HTTP 传输选项。偶尔会添加新选项；要查看您可以检索
或设置的选项的完整列表，请参阅 适用于 Java 的 Amazon SDK API 参考。

Note

每个可配置的值都有一个由常量定义的默认值。有关常量值的列表ClientConfiguration，
请参阅 适用于 Java 的 Amazon SDK API 参考中的常量字段值。

客户端配置 38

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html
https://docs.amazonaws.cn/AWSJavaSDK/latest/javadoc/constant-values.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

最大连接数

您可以使用设置允许打开的 HTTP 连接的最大数量ClientConfiguration。 setMaxConnections方法。

Important

将最大连接数设置为并发事务的数量可避免连接争用和性能不佳。有关默认的最大连接数值，
请参阅 适用于 Java 的 Amazon SDK API 参考中的常量字段值。

超时和错误处理

可以设置与 HTTP 连接超时和处理错误相关的选项。

• Connection Timeout

连接超时是指 HTTP 连接在放弃连接之前等待建立连接的时间长度 (用毫秒表示)。默认值为 10,000
毫秒。

要自己设置此值，请使用ClientConfiguration。 setConnectionTimeout方法。

• Connection Time to Live (TTL)

默认情况下，开发工具包将尝试尽可能长时间地重用 HTTP 连接。如果因建立连接的服务器已停止
服务而失败，则将 TTL 设置为有限值可能会有助于恢复应用程序。例如，将 TTL 设置为 15 分钟可
确保您将在 15 分钟内与新服务器重新建立连接，即使您已经与出现问题的服务器建立了连接也是如
此。

要设置 HTTP 连接 TTL，请使用 ClientConfiguration.set ConnectionTTL 方法。

• Maximum Error Retries

可重试的错误的默认最大重试次数为 3。您可以通过使用来设置不同的值ClientConfiguration。
setMaxError重试方法。

本地地址

要设置 HTTP 客户端将绑定的本地地址，请使用ClientConfiguration。 setLocalAddress。

HTTP 传输配置 39

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html#setMaxConnections-int-
https://docs.amazonaws.cn/AWSJavaSDK/latest/javadoc/constant-values.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html#setConnectionTimeout-int-
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html#setConnectionTTL-long-
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html#setMaxErrorRetry-int-
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html#setMaxErrorRetry-int-
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html#setLocalAddress-java.net.InetAddress-

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

TCP 套接字缓冲区大小提示

想要调整低级 TCP 参数的高级用户还可以通过ClientConfiguration对象设置 TCP 缓冲区大小提示。大
多数用户永远不需要调整这些值，这些值是为高级用户提供的。

应用程序的最佳 TCP 缓冲区大小高度依赖网络和操作系统的配置和功能。例如，大多数现代操作系统
都为 TCP 缓冲区大小提供了自动调整逻辑，对于需要长时间保持打开状态才能使自动调整功能优化缓
冲区大小的 TCP 连接，自动调整逻辑会对连接性能产生很大的影响。

大型缓冲区大小 (例如，2 MB) 将允许操作系统在内存中缓冲更多的数据，而无需远程服务器确认收到
该信息，因此，这在网络延迟时间很长时尤其有用。

这仅是一个提示，操作系统可以选择不遵守它。在使用此选项时，用户应当始终检查在操作系统中配
置的限值和默认值。大多数操作系统都配置了最大 TCP 缓冲区大小限值，除非您明确提升了最大 TCP
缓冲区大小限值，否则操作系统将不允许您超出此限值。

可以使用许多资源来帮助配置 TCP 缓冲区大小和特定于操作系统的 TCP 设置，其中包括：

• 主机调整

访问控制策略

Amazon 访问控制策略使您能够对资源指定精细的访问控制。 Amazon 访问控制策略包含一组语句，
其形式如下：

在条件 D 适用的情况下，账户 A 有权对资源 C 执行操作 B。

其中：

• A 是委托人 Amazon Web Services 账户 ，即请求访问或修改您的某个 Amazon 资源。

• B 是操作-访问或修改 Amazon 资源的方式，例如向 Amazon SQS 队列发送消息或将对象存储在存
储 Amazon S3 桶中。

• C 是资源-委托人想要访问的 Amazon 实体，例如 Amazon SQS 队列或存储在中的对象 Amazon
S3。

• D 是一组条件 – 指定何时允许或拒绝主体访问资源的可选约束。有许多富有表现力的条件，还有一
些特定于每项服务的条件。例如，您可以使用日期条件以仅允许在特定时间之后或之前访问资源。

TCP 套接字缓冲区大小提示 40

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html
http://fasterdata.es.net/host-tuning/

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

Amazon S3 示例

以下示例演示了一项策略，该策略允许任何人访问存储桶中的所有对象，但将向该存储桶上传对象的访
问权限限制为两个特定 Amazon Web Services 账户的（存储桶拥有者的账户除外）。

Statement allowPublicReadStatement = new Statement(Effect.Allow)
 .withPrincipals(Principal.AllUsers)
 .withActions(S3Actions.GetObject)
 .withResources(new S3ObjectResource(myBucketName, "*"));
Statement allowRestrictedWriteStatement = new Statement(Effect.Allow)
 .withPrincipals(new Principal("123456789"), new Principal("876543210"))
 .withActions(S3Actions.PutObject)
 .withResources(new S3ObjectResource(myBucketName, "*"));

Policy policy = new Policy()
 .withStatements(allowPublicReadStatement, allowRestrictedWriteStatement);

AmazonS3 s3 = AmazonS3ClientBuilder.defaultClient();
s3.setBucketPolicy(myBucketName, policy.toJson());

Amazon SQS 示例

策略的一个常见用途是授权 Amazon SQS 队列接收来自 Amazon SNS 主题的消息。

Policy policy = new Policy().withStatements(
 new Statement(Effect.Allow)
 .withPrincipals(Principal.AllUsers)
 .withActions(SQSActions.SendMessage)
 .withConditions(ConditionFactory.newSourceArnCondition(myTopicArn)));

Map queueAttributes = new HashMap();
queueAttributes.put(QueueAttributeName.Policy.toString(), policy.toJson());

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();
sqs.setQueueAttributes(new SetQueueAttributesRequest(myQueueUrl, queueAttributes));

Amazon SNS 示例

一些服务提供可用于策略的其他条件。Amazon SNS 根据订阅主题请求的协议（例如电子邮
件、HTTP、HTTPS Amazon SQS）和终端节点（例如电子邮件地址、URL、 Amazon SQS ARN），
提供了允许或拒绝订阅 SNS 主题的条件。

Amazon S3 示例 41

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

Condition endpointCondition =
 SNSConditionFactory.newEndpointCondition("*@mycompany.com");

Policy policy = new Policy().withStatements(
 new Statement(Effect.Allow)
 .withPrincipals(Principal.AllUsers)
 .withActions(SNSActions.Subscribe)
 .withConditions(endpointCondition));

AmazonSNS sns = AmazonSNSClientBuilder.defaultClient();
sns.setTopicAttributes(
 new SetTopicAttributesRequest(myTopicArn, "Policy", policy.toJson()));

为 DNS 名称查找设置 JVM TTL

Java 虚拟机 (JVM) 缓存 DNS 名称查找。当 JVM 将主机名解析为 IP 地址时，它会将该 IP 地址缓存一
段指定的时间，即 time-to-live(TTL)。

由于 Amazon 资源使用的 DNS 名称条目偶尔会发生变化，因此我们建议您将 JVM 的 TTL 值配置为 5
秒。这可确保在资源的 IP 地址发生更改时，您的应用程序将能够通过重新查询 DNS 来接收和使用资
源的新 IP 地址。

对于一些 Java 配置，将设置 JVM 默认 TTL，以便在重新启动 JVM 之前绝不 刷新 DNS 条目。因此，
如果在应用程序仍在运行时 Amazon 资源的 IP 地址发生变化，则在您手动重启 JVM 并刷新缓存的 IP
信息之前，它将无法使用该资源。在此情况下，设置 JVM 的 TTL，以便定期刷新其缓存的 IP 信息是
极为重要的。

如何设置 JVM TTL

要修改 JVM 的 TTL，请设置 networkaddress.cache.ttl 安全属性值，在 Java 8 的 $JAVA_HOME/
jre/lib/security/java.security 文件中或者在 Java 11 或更高版本的 $JAVA_HOME/conf/
security/java.security 文件中设置 networkaddress.cache.ttl 属性。

以下是 java.security 文件中的代码段，该代码段显示 TTL 缓存设置为 5 秒。

#
This is the "master security properties file".
#
An alternate java.security properties file may be specified
...

为 DNS 名称查找设置 JVM TTL 42

https://docs.oracle.com/en/java/javase/17/core/java-networking.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

The Java-level namelookup cache policy for successful lookups:
#
any negative value: caching forever
any positive value: the number of seconds to cache an address for
zero: do not cache
...
networkaddress.cache.ttl=5
...

在 $JAVA_HOME 环境变量所代表的 JVM 上运行的所有应用程序都会使用此设置。

为启用指标 适用于 Java 的 Amazon SDK

适用于 Java 的 Amazon SDK 可以生成用于通过 Amazon 进行可视化和监控的指标，这些指标
CloudWatch可以衡量：

• 您的应用程序在访问时的性能 Amazon

• 与一起使用 JVMs 时的表现 Amazon

• 运行时环境详细信息，例如堆内存、线程数和已打开的文件描述符

如何启用 Java SDK 指标生成

您需要添加以下 Maven 依赖项才能让 SDK 向其发送指标。 CloudWatch

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-bom</artifactId>
 <version>1.12.490*</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>
<dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-cloudwatchmetrics</artifactId>
 <scope>provided</scope>

为启用指标 适用于 Java 的 Amazon SDK 43

https://www.amazonaws.cn/cloudwatch/

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 </dependency>
 <!-- Other SDK dependencies. -->
</dependencies>

*将版本号替换为 Maven Central 上可用的最新版 SDK。

适用于 Java 的 Amazon SDK 默认情况下，指标处于禁用状态。要为您的本地开发环境启用此功能，
请在启动 JVM 时包括指向您的 Amazon 安全凭证文件的系统属性。例如：

-Dcom.amazonaws.sdk.enableDefaultMetrics=credentialFile=/path/aws.properties

您需要指定证书文件的路径，以便 SDK 可以将收集到的数据点上传到以 CloudWatch 供日后分析。

Note

如果您使用 Amazon EC2 实例元数据服务 Amazon 从 Amazon EC2 实例进行访问，则无需指
定凭证文件。在这种情况下，您只需要指定以下各项：

-Dcom.amazonaws.sdk.enableDefaultMetrics

捕获的所有指标都位于命名空间 AWSSDK/Java 下，并上传到 CloudWatch 默认区域 (us -east-1)。
适用于 Java 的 Amazon SDK 要更改该区域，请使用系统属性中的 cloudwatchRegion 属性来指定
它。例如，要将 CloudWatch 区域设置为 us-ea st-1，请使用：

-Dcom.amazonaws.sdk.enableDefaultMetrics=credentialFile=/path/
aws.properties,cloudwatchRegion={region_api_default}

启用该功能后，每次有 Amazon 来自的服务请求时，都会生成指标数据点 适用于 Java 的 Amazon
SDK，排队等候统计摘要，然后异步上传到 CloudWatch 大约每分钟一次。指标一旦上传，您就可以
使用 Amazon Web Services 管理控制台将其可视化，并设置潜在问题的警报，如内存泄露、文件描述
符泄露等等。

可用指标类型

默认指标组分为三大类：

Amazon 请求指标

• 涵盖诸如 HTTP 请求/响应的延迟、请求数量、异常和重试等领域。

可用指标类型 44

https://central.sonatype.com/artifact/com.amazonaws/aws-java-sdk-bom
https://console.amazonaws.cn/console/home

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

Amazon Web Services 服务 指标

• 包括 Amazon Web Services 服务特定数据，例如 S3 上传和下载的吞吐量和字节数。

可用指标类型 45

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

机器指标

• 涵盖运行时环境，包括堆内存、线程数和打开的文件描述符。

可用指标类型 46

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

如果您想要排除机器指标，请在系统属性中添加 excludeMachineMetrics：

-Dcom.amazonaws.sdk.enableDefaultMetrics=credentialFile=/path/
aws.properties,excludeMachineMetrics

更多信息

• 有关预定义核心指标类型的完整列表，请参阅 amazonaws/metrics package summary。

• 适用于 Java 的 Amazon SDK 在 “ CloudWatch 使用CloudWatch 示例” 中了解如何使用 适用于 Java
的 Amazon SDK。

• 要了解有关性能调整的更多信息，请参阅 “调整 适用于 Java 的 Amazon SDK 以提高弹性” 博客文
章。

更多信息 47

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/metrics/package-summary.html
https://www.amazonaws.cn/blogs/developer/tuning-the-aws-sdk-for-java-to-improve-resiliency

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

适用于 Java 的 Amazon SDK 代码示例
本部分提供使用适用于 Java 的 Amazon SDK v1 对 Amazon 服务进行编程的教程和示例。

您可以在 GitHub 上的代码示例库 Amazon 文档中找到这些示例及其他示例的源代码。

要向 Amazon 文档团队提请考虑生成新的代码示例，请创建新的请求。该团队正在寻求生成涵盖更多
应用场景和使用情形的代码示例，而不仅仅是涵盖个别 API 调用的简单代码片段。有关说明，请参阅
GitHub 上的代码示例存储库中的 Contributing guidelines。

适用于 Java 的 Amazon SDK 2.x

2018 年，Amazon 发布了Amazon SDK for Java 2.x。本指南包含有关使用最新 Java SDK 的说明以及
示例代码。

Note

如需可供 开发人员使用的更多示例和其他资源，请参阅其他文档和资源适用于 Java 的
Amazon SDK！

使用适用于 Java 的 Amazon SDK 的 CloudWatch 示例

此部分提供使用适用于 Java 的 Amazon SDK 对 CloudWatch 进行编程的示例。

Amazon CloudWatch 实时监控您的 Amazon Web Services (Amazon) 资源以及在 Amazon 上运行的
应用程序。您可以使用 CloudWatch 收集和跟踪指标，这些指标是您可衡量的相关资源和应用程序的变
量。CloudWatch 警报可根据您定义的规则发送通知或者对您所监控的资源自动进行更改。

有关 CloudWatch 的更多信息，请参阅 Amazon CloudWatch 用户指南。

Note

这些示例仅包含演示每种方法所需的代码。完整的示例代码在 GitHub 上提供。您可以在那里
下载单个源文件，也可以将存储库复制到本地以获得所有示例，然后构建并运行这些示例。

主题

适用于 Java 的 Amazon SDK 2.x 48

https://github.com/awsdocs/aws-doc-sdk-examples
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/CONTRIBUTING.md
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/home.html
https://www.amazonaws.cn/sdk-for-java/
https://www.amazonaws.cn/cloudwatch/
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

• 从 CloudWatch 获取指标

• 发布自定义指标数据

• 使用 CloudWatch 警报

• 在 CloudWatch 中使用警报操作

• 将 事件发送到 CloudWatch

从 CloudWatch 获取指标

列出指标

要列出 CloudWatch 指标，请创建 ListMetricsRequest 并调用 AmazonCloudWatchClient 的
listMetrics 方法。您可以使用 ListMetricsRequest 通过命名空间、指标名称或维度筛选返回
的指标。

Note

Amazon 服务发布的指标和维度列表可在《Amazon CloudWatch 用户指南》的 {https---docs-
aws-amazon-com-AmazonCloudWatch-latest-monitoring-CW-Support-For-Amazon-html}
[Amazon CloudWatch 指标和维度参考] 中找到。

导入。

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;
import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;
import com.amazonaws.services.cloudwatch.model.ListMetricsRequest;
import com.amazonaws.services.cloudwatch.model.ListMetricsResult;
import com.amazonaws.services.cloudwatch.model.Metric;

代码

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

ListMetricsRequest request = new ListMetricsRequest()
 .withMetricName(name)
 .withNamespace(namespace);

从 CloudWatch 获取指标 49

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/ListMetricsRequest.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

boolean done = false;

while(!done) {
 ListMetricsResult response = cw.listMetrics(request);

 for(Metric metric : response.getMetrics()) {
 System.out.printf(
 "Retrieved metric %s", metric.getMetricName());
 }

 request.setNextToken(response.getNextToken());

 if(response.getNextToken() == null) {
 done = true;
 }
}

调用指标的 getMetrics 方法可在 ListMetricsResult 中返回指标。结果可以分页。要检索下一批
结果，请在原始请求对象中使用 setNextToken 对象的 ListMetricsResult 方法的返回值调用
getNextToken，并将已修改的请求对象传回对 listMetrics 的另一个调用。

更多信息

• 《Amazon CloudWatch API Reference》中的 ListMetrics。

发布自定义指标数据

许多 Amazon 服务以“AWS”开头的命名空间发布它们自己的指标。您也可以使用自己的命名空间发布自
定义指标数据（不以“AWS”开头即可）。

发布自定义指标数据

要发布自己的指标数据，请使用 PutMetricDataRequest 调用 AmazonCloudWatchClient 的
putMetricData 方法。PutMetricDataRequest 必须包括数据要使用的自定义命名空间，还必须
在 MetricDatum 对象中包含有关该数据点本身的信息。

Note

您无法指定以“AWS”开头的命名空间。以“AWS”开头的命名空间保留供 Amazon Web Services
产品使用。

发布自定义指标数据 50

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/ListMetricsResult.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/APIReference/API_ListMetrics.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/aws-namespaces.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/PutMetricDataRequest.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/MetricDatum.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

导入。

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;
import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;
import com.amazonaws.services.cloudwatch.model.Dimension;
import com.amazonaws.services.cloudwatch.model.MetricDatum;
import com.amazonaws.services.cloudwatch.model.PutMetricDataRequest;
import com.amazonaws.services.cloudwatch.model.PutMetricDataResult;
import com.amazonaws.services.cloudwatch.model.StandardUnit;

代码

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

Dimension dimension = new Dimension()
 .withName("UNIQUE_PAGES")
 .withValue("URLS");

MetricDatum datum = new MetricDatum()
 .withMetricName("PAGES_VISITED")
 .withUnit(StandardUnit.None)
 .withValue(data_point)
 .withDimensions(dimension);

PutMetricDataRequest request = new PutMetricDataRequest()
 .withNamespace("SITE/TRAFFIC")
 .withMetricData(datum);

PutMetricDataResult response = cw.putMetricData(request);

更多信息

• 《Amazon CloudWatch 用户指南》中的使用 Amazon CloudWatch 指标。

• 《Amazon CloudWatch 用户指南》中的Amazon 命名空间。

• 《Amazon CloudWatch API Reference》中的 PutMetricData。

发布自定义指标数据 51

https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/working_with_metrics.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/aws-namespaces.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/APIReference/API_PutMetricData.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

使用 CloudWatch 警报

创建警报

要根据 CloudWatch 指标创建警报，请使用已填充警报条件的 PutMetricAlarmRequest 调用
AmazonCloudWatchClient 的 putMetricAlarm 方法。

导入。

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;
import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;
import com.amazonaws.services.cloudwatch.model.ComparisonOperator;
import com.amazonaws.services.cloudwatch.model.Dimension;
import com.amazonaws.services.cloudwatch.model.PutMetricAlarmRequest;
import com.amazonaws.services.cloudwatch.model.PutMetricAlarmResult;
import com.amazonaws.services.cloudwatch.model.StandardUnit;
import com.amazonaws.services.cloudwatch.model.Statistic;

代码

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

Dimension dimension = new Dimension()
 .withName("InstanceId")
 .withValue(instanceId);

PutMetricAlarmRequest request = new PutMetricAlarmRequest()
 .withAlarmName(alarmName)
 .withComparisonOperator(
 ComparisonOperator.GreaterThanThreshold)
 .withEvaluationPeriods(1)
 .withMetricName("CPUUtilization")
 .withNamespace("{AWS}/EC2")
 .withPeriod(60)
 .withStatistic(Statistic.Average)
 .withThreshold(70.0)
 .withActionsEnabled(false)
 .withAlarmDescription(
 "Alarm when server CPU utilization exceeds 70%")
 .withUnit(StandardUnit.Seconds)
 .withDimensions(dimension);

使用 CloudWatch 警报 52

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/PutMetricAlarmRequest.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

PutMetricAlarmResult response = cw.putMetricAlarm(request);

列出警报

要列出您已创建的 CloudWatch 警报，请使用您可用来设置结果选项的 DescribeAlarmsRequest 调用
AmazonCloudWatchClient 的 describeAlarms 方法。

导入。

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;
import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;
import com.amazonaws.services.cloudwatch.model.DescribeAlarmsRequest;
import com.amazonaws.services.cloudwatch.model.DescribeAlarmsResult;
import com.amazonaws.services.cloudwatch.model.MetricAlarm;

代码

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

boolean done = false;
DescribeAlarmsRequest request = new DescribeAlarmsRequest();

while(!done) {

 DescribeAlarmsResult response = cw.describeAlarms(request);

 for(MetricAlarm alarm : response.getMetricAlarms()) {
 System.out.printf("Retrieved alarm %s", alarm.getAlarmName());
 }

 request.setNextToken(response.getNextToken());

 if(response.getNextToken() == null) {
 done = true;
 }
}

警报列表可以通过在 describeAlarms 返回的 DescribeAlarmsResult 中调用 getMetricAlarms 获
得。

使用 CloudWatch 警报 53

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/DescribeAlarmsRequest.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/DescribeAlarmsResult.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

结果可以分页。要检索下一批结果，请在原始请求对象中使用 setNextToken 对象的
DescribeAlarmsResult 方法的返回值调用 getNextToken，并将已修改的请求对象传回对
describeAlarms 的另一个调用。

Note

您还可以使用 AmazonCloudWatchClient 的 describeAlarmsForMetric 方法检索特定指
标的警报。它的使用类似于 describeAlarms。

删除警报

要删除 CloudWatch 警报，请使用 DeleteAlarmsRequest（包含您要删除的一个或更多警报名称）调用
AmazonCloudWatchClient 的 deleteAlarms 方法。

导入。

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;
import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;
import com.amazonaws.services.cloudwatch.model.DeleteAlarmsRequest;
import com.amazonaws.services.cloudwatch.model.DeleteAlarmsResult;

代码

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

DeleteAlarmsRequest request = new DeleteAlarmsRequest()
 .withAlarmNames(alarm_name);

DeleteAlarmsResult response = cw.deleteAlarms(request);

更多信息

• 《Amazon CloudWatch 用户指南》中的创建 Amazon CloudWatch 警报

• 《Amazon CloudWatch API Reference》中的 PutMetricAlarm

• 《Amazon CloudWatch API Reference》中的 DescribeAlarms

• 《Amazon CloudWatch API Reference》中的 DeleteAlarms

使用 CloudWatch 警报 54

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/DeleteAlarmsRequest.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/APIReference/API_PutMetricAlarm.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/APIReference/API_DescribeAlarms.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/APIReference/API_DeleteAlarms.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

在 CloudWatch 中使用警报操作

利用 CloudWatch 警报操作，您可创建执行自动停止、终止、重启或恢复 Amazon EC2 实例等操作的
警报。

Note

通过在创建警报时使用 setAlarmActionsPutMetricAlarmRequest 的 方法，可以将警报操
作添加到警报。

启用警报操作

要启用 CloudWatch 警报的警报操作，请使用 EnableAlarmActionsRequest（包含一个或多个您要启用
的警报的名称）调用 AmazonCloudWatchClient 的 enableAlarmActions。

导入。

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;
import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;
import com.amazonaws.services.cloudwatch.model.EnableAlarmActionsRequest;
import com.amazonaws.services.cloudwatch.model.EnableAlarmActionsResult;

代码

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

EnableAlarmActionsRequest request = new EnableAlarmActionsRequest()
 .withAlarmNames(alarm);

EnableAlarmActionsResult response = cw.enableAlarmActions(request);

禁用警报操作

要禁用 CloudWatch 警报的警报操作，请使用 DisableAlarmActionsRequest（包含一个或多个您要禁
用其操作的警报的名称）调用 AmazonCloudWatchClient 的 disableAlarmActions。

导入。

在 CloudWatch 中使用警报操作 55

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/PutMetricAlarmRequest.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/EnableAlarmActionsRequest.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/DisableAlarmActionsRequest.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;
import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;
import com.amazonaws.services.cloudwatch.model.DisableAlarmActionsRequest;
import com.amazonaws.services.cloudwatch.model.DisableAlarmActionsResult;

代码

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

DisableAlarmActionsRequest request = new DisableAlarmActionsRequest()
 .withAlarmNames(alarmName);

DisableAlarmActionsResult response = cw.disableAlarmActions(request);

更多信息

• 《Amazon CloudWatch 指南》中的创建警报以停止、终止、重启或恢复实例

• 《Amazon CloudWatch API Reference》中的 PutMetricAlarm

• 《Amazon CloudWatch API Reference》中的 EnableAlarmActions

• 《Amazon CloudWatch API Reference》中的 DisableAlarmActions

将 事件发送到 CloudWatch

CloudWatch Events 提供几乎实时的系统事件流，这些事件描述 Amazon 资源中对 Amazon EC2
实例、Lambda 函数、Kinesis 流、Amazon ECS 任务、 Step Functions 状态机、Amazon SNS 主
题、Amazon SQS 队列或内置目标的更改。通过使用简单的规则，您可以匹配事件并将事件路由到一
个或多个目标函数或流。

添加事件

要添加自定义 CloudWatch 事件，请使用包含一个或多个 PutEventsRequestEntry 对象（提供每个事
件的详细信息）的 PutEventsRequest 对象调用 AmazonCloudWatchEventsClient 的 putEvents 方
法。您可以为条目指定多个参数，例如事件的来源和类型、与事件相关联的资源等等。

Note

对于每个 putEvents 调用，您最多可以指定 10 个事件。

将 事件发送到 CloudWatch 56

https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/UsingAlarmActions.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/APIReference/API_PutMetricAlarm.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/APIReference/API_EnableAlarmActions.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/APIReference/API_DisableAlarmActions.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatchevents/model/PutEventsRequestEntry.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatchevents/model/PutEventsRequest.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

导入。

import com.amazonaws.services.cloudwatchevents.AmazonCloudWatchEvents;
import com.amazonaws.services.cloudwatchevents.AmazonCloudWatchEventsClientBuilder;
import com.amazonaws.services.cloudwatchevents.model.PutEventsRequest;
import com.amazonaws.services.cloudwatchevents.model.PutEventsRequestEntry;
import com.amazonaws.services.cloudwatchevents.model.PutEventsResult;

代码

final AmazonCloudWatchEvents cwe =
 AmazonCloudWatchEventsClientBuilder.defaultClient();

final String EVENT_DETAILS =
 "{ \"key1\": \"value1\", \"key2\": \"value2\" }";

PutEventsRequestEntry request_entry = new PutEventsRequestEntry()
 .withDetail(EVENT_DETAILS)
 .withDetailType("sampleSubmitted")
 .withResources(resource_arn)
 .withSource("aws-sdk-java-cloudwatch-example");

PutEventsRequest request = new PutEventsRequest()
 .withEntries(request_entry);

PutEventsResult response = cwe.putEvents(request);

添加规则

要创建或更新规则，请使用包含规则名称和可选参数的 PutRuleRequest 调用
AmazonCloudWatchEventsClient 的 putRule 方法，可选参数如事件模式、与规则相关联的 IAM 角
色以及描述规则运行频率的计划表达式。

导入。

import com.amazonaws.services.cloudwatchevents.AmazonCloudWatchEvents;
import com.amazonaws.services.cloudwatchevents.AmazonCloudWatchEventsClientBuilder;
import com.amazonaws.services.cloudwatchevents.model.PutRuleRequest;
import com.amazonaws.services.cloudwatchevents.model.PutRuleResult;
import com.amazonaws.services.cloudwatchevents.model.RuleState;

代码

将 事件发送到 CloudWatch 57

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatchevents/model/PutRuleRequest.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/events/CloudWatchEventsandEventPatterns.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/events/ScheduledEvents.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

final AmazonCloudWatchEvents cwe =
 AmazonCloudWatchEventsClientBuilder.defaultClient();

PutRuleRequest request = new PutRuleRequest()
 .withName(rule_name)
 .withRoleArn(role_arn)
 .withScheduleExpression("rate(5 minutes)")
 .withState(RuleState.ENABLED);

PutRuleResult response = cwe.putRule(request);

添加目标

目标是触发规则时调用的资源。示例目标包括 Amazon EC2 实例、Lambda 函数、Kinesis
流、Amazon ECS 任务、Step Functions 状态机和内置目标。

要向规则添加目标，请使用 PutTargetsRequest（包含要更新的规则和要添加到规则的目标列表）来调
用 AmazonCloudWatchEventsClient 的 putTargets 方法。

导入。

import com.amazonaws.services.cloudwatchevents.AmazonCloudWatchEvents;
import com.amazonaws.services.cloudwatchevents.AmazonCloudWatchEventsClientBuilder;
import com.amazonaws.services.cloudwatchevents.model.PutTargetsRequest;
import com.amazonaws.services.cloudwatchevents.model.PutTargetsResult;
import com.amazonaws.services.cloudwatchevents.model.Target;

代码

final AmazonCloudWatchEvents cwe =
 AmazonCloudWatchEventsClientBuilder.defaultClient();

Target target = new Target()
 .withArn(function_arn)
 .withId(target_id);

PutTargetsRequest request = new PutTargetsRequest()
 .withTargets(target)
 .withRule(rule_name);

PutTargetsResult response = cwe.putTargets(request);

将 事件发送到 CloudWatch 58

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatchevents/model/PutTargetsRequest.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

更多信息

• 《Amazon CloudWatch Events User Guide》中的 Adding Events with PutEvents

• 《Amazon CloudWatch Events User Guide》中的 Schedule Expressions for Rules

• 《Amazon CloudWatch Events User Guide》中的 Event Types for CloudWatch Events

• 《Amazon CloudWatch Events User Guide》中的 Events and Event Patterns

• 《Amazon CloudWatch Events API Reference》中的 PutEvents

• 《Amazon CloudWatch Events API Reference》中的 PutTargets

• 《Amazon CloudWatch Events API Reference》中的 PutRule

使用适用于 Java 的 Amazon SDK 的 DynamoDB 示例

此部分提供使用适用于 Java 的 Amazon SDK 对 DynamoDB 进行编程的示例。

Note

这些示例仅包含演示每种方法所需的代码。完整的示例代码在 GitHub 上提供。您可以在那里
下载单个源文件，也可以将存储库复制到本地以获得所有示例，然后构建并运行这些示例。

主题

• 使用基于 Amazon 账户的端点

• 处理 DynamoDB 中的表

• 处理 DynamoDB 中的项目

使用基于 Amazon 账户的端点

DynamoDB 提供基于 Amazon 账户的端点，通过使用您的 Amazon 账户 ID 来简化请求路由，从而提
升性能。

要使用此功能，您需要使用适用于 Java 的 Amazon SDK 版本 1 的 1.12.771 或更高版本。Maven
Central 存储库中列出了 SDK 的最新版本。在受支持的 SDK 版本处于活动状态后，它会自动使用新的
端点。

如果要选择退出基于账户的路由，您可以选择四个选项：

Amazon DynamoDB 示例 59

https://docs.amazonaws.cn/AmazonCloudWatch/latest/events/AddEventsPutEvents.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/events/ScheduledEvents.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/events/EventTypes.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/events/CloudWatchEventsandEventPatterns.html
https://docs.amazonaws.cn/AmazonCloudWatchEvents/latest/APIReference/API_PutEvents.html
https://docs.amazonaws.cn/AmazonCloudWatchEvents/latest/APIReference/API_PutTargets.html
https://docs.amazonaws.cn/AmazonCloudWatchEvents/latest/APIReference/API_PutRule.html
https://www.amazonaws.cn/sdk-for-java/
https://www.amazonaws.cn/dynamodb/
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Programming.SDKOverview.html#Programming.SDKs.endpoints
https://central.sonatype.com/artifact/com.amazonaws/aws-java-sdk-bom
https://central.sonatype.com/artifact/com.amazonaws/aws-java-sdk-bom

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

• 配置 DynamoDB 服务客户端，将 AccountIdEndpointMode 设置为 DISABLED。

• 设置环境变量。

• 设置 JVM 系统属性。

• 更新共享的 Amazon 配置文件设置。

以下代码片段演示了如何通过配置 DynamoDB 服务客户端来禁用基于账户的路由：

ClientConfiguration config = new ClientConfiguration()
 .withAccountIdEndpointMode(AccountIdEndpointMode.DISABLED);
AWSCredentialsProvider credentialsProvider = new
 EnvironmentVariableCredentialsProvider();

AmazonDynamoDB dynamodb = AmazonDynamoDBClientBuilder.standard()
 .withClientConfiguration(config)
 .withCredentials(credentialsProvider)
 .withRegion(Regions.US_WEST_2)
 .build();

《Amazon SDK 和工具参考指南》提供了有关最后三个配置选项的更多信息。

处理 DynamoDB 中的表

表是 DynamoDB 数据库中所有项目的容器。您必须先创建表，然后才能在 DynamoDB 中添加或删除
数据。

对于每个表，您必须定义：

• 表名称，它对于您的账户和所在区域是唯一的。

• 一个主键，每个值对于它都必须是唯一的；表中的任意两个项目不能具有相同的主键值。

主键可以是简单主键（包含单个分区 (HASH) 键）或复合主键（包含一个分区和一个排序 (RANGE)
键）。

每个键值均有一个由 ScalarAttributeType 类枚举的关联的数据类型。键值可以是二进制 (B)、数字
(N) 或字符串 (S)。有关更多信息，请参阅《Amazon DynamoDB 开发人员指南》中的命名规则和数
据类型。

• 预置吞吐量值，这些值定义为表保留的读取/写入容量单位数。

处理 DynamoDB 中的表 60

https://docs.amazonaws.cn/sdkref/latest/guide/feature-account-endpoints.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/ScalarAttributeType.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

Note

Amazon DynamoDB 定价基于您为表设置的预置吞吐量值，因此您应只为表保留可能需要的
容量。

表的预置吞吐量可随时修改，以便您能够在需要更改时调整容量。

创建表

使用 DynamoDB 客户端的 createTable 方法可创建新的 DynamoDB 表。您需要构造表属性和表架
构，二者用于标识表的主键。您还必须提供初始预置吞吐量值和表名。仅在创建 DynamoDB 表时定义
键表属性。

Note

如果使用您所选名称的表已存在，则将引发 AmazonServiceException。

导入。

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.AttributeDefinition;
import com.amazonaws.services.dynamodbv2.model.CreateTableRequest;
import com.amazonaws.services.dynamodbv2.model.CreateTableResult;
import com.amazonaws.services.dynamodbv2.model.KeySchemaElement;
import com.amazonaws.services.dynamodbv2.model.KeyType;
import com.amazonaws.services.dynamodbv2.model.ProvisionedThroughput;
import com.amazonaws.services.dynamodbv2.model.ScalarAttributeType;

创建具有简单主键的表

此代码使用简单主键 (“Name”) 创建表。

代码

CreateTableRequest request = new CreateTableRequest()

处理 DynamoDB 中的表 61

https://www.amazonaws.cn/dynamodb/pricing/
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/AmazonDynamoDB.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/AmazonServiceException.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 .withAttributeDefinitions(new AttributeDefinition(
 "Name", ScalarAttributeType.S))
 .withKeySchema(new KeySchemaElement("Name", KeyType.HASH))
 .withProvisionedThroughput(new ProvisionedThroughput(
 new Long(10), new Long(10)))
 .withTableName(table_name);

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {
 CreateTableResult result = ddb.createTable(request);
 System.out.println(result.getTableDescription().getTableName());
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

请参阅 GitHub 上的完整示例。

创建具有复合主键的表

添加另一个 AttributeDefinition 和 KeySchemaElement 到 CreateTableRequest。

代码

CreateTableRequest request = new CreateTableRequest()
 .withAttributeDefinitions(
 new AttributeDefinition("Language", ScalarAttributeType.S),
 new AttributeDefinition("Greeting", ScalarAttributeType.S))
 .withKeySchema(
 new KeySchemaElement("Language", KeyType.HASH),
 new KeySchemaElement("Greeting", KeyType.RANGE))
 .withProvisionedThroughput(
 new ProvisionedThroughput(new Long(10), new Long(10)))
 .withTableName(table_name);

请参阅 GitHub 上的完整示例。

列出表

您可以通过调用 DynamoDB 客户端的 listTables 方法列出特定区域中的表。

处理 DynamoDB 中的表 62

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/CreateTable.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/AttributeDefinition.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/KeySchemaElement.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/CreateTableRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/CreateTableCompositeKey.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/AmazonDynamoDB.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

Note

如果您的账户和区域没有该已命名的表，则将引发 ResourceNotFoundException 异常。

导入。

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.ListTablesRequest;
import com.amazonaws.services.dynamodbv2.model.ListTablesResult;

代码

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

ListTablesRequest request;

boolean more_tables = true;
String last_name = null;

while(more_tables) {
 try {
 if (last_name == null) {
 request = new ListTablesRequest().withLimit(10);
 }
 else {
 request = new ListTablesRequest()
 .withLimit(10)
 .withExclusiveStartTableName(last_name);
 }

 ListTablesResult table_list = ddb.listTables(request);
 List<String> table_names = table_list.getTableNames();

 if (table_names.size() > 0) {
 for (String cur_name : table_names) {
 System.out.format("* %s\n", cur_name);
 }
 } else {
 System.out.println("No tables found!");

处理 DynamoDB 中的表 63

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/ResourceNotFoundException.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 System.exit(0);
 }

 last_name = table_list.getLastEvaluatedTableName();
 if (last_name == null) {
 more_tables = false;
 }

默认情况下，每次调用将返回最多 100 个表 – 对返回的 ListTablesResult 对象使用
getLastEvaluatedTableName 可获得评估的上一个表。可使用此值在上一列出的最后一个返回值
后开始列出。

请参阅 GitHub 上的完整示例。

描述表（获取相关信息）

调用 DynamoDB 客户端的 describeTable 方法。

Note

如果您的账户和区域没有该已命名的表，则将引发 ResourceNotFoundException 异常。

导入。

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.AttributeDefinition;
import com.amazonaws.services.dynamodbv2.model.ProvisionedThroughputDescription;
import com.amazonaws.services.dynamodbv2.model.TableDescription;

代码

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {
 TableDescription table_info =
 ddb.describeTable(table_name).getTable();

 if (table_info != null) {
 System.out.format("Table name : %s\n",

处理 DynamoDB 中的表 64

https://docs.amazonaws.cn/AWSJavaSDK/latest/javadoc/com/amazonaws/services/dynamodbv2/model/ListTablesResult.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/ListTables.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/AmazonDynamoDB.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/ResourceNotFoundException.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 table_info.getTableName());
 System.out.format("Table ARN : %s\n",
 table_info.getTableArn());
 System.out.format("Status : %s\n",
 table_info.getTableStatus());
 System.out.format("Item count : %d\n",
 table_info.getItemCount().longValue());
 System.out.format("Size (bytes): %d\n",
 table_info.getTableSizeBytes().longValue());

 ProvisionedThroughputDescription throughput_info =
 table_info.getProvisionedThroughput();
 System.out.println("Throughput");
 System.out.format(" Read Capacity : %d\n",
 throughput_info.getReadCapacityUnits().longValue());
 System.out.format(" Write Capacity: %d\n",
 throughput_info.getWriteCapacityUnits().longValue());

 List<AttributeDefinition> attributes =
 table_info.getAttributeDefinitions();
 System.out.println("Attributes");
 for (AttributeDefinition a : attributes) {
 System.out.format(" %s (%s)\n",
 a.getAttributeName(), a.getAttributeType());
 }
 }
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

请参阅 GitHub 上的完整示例。

修改（更新）表

您可以通过调用 DynamoDB 客户端的 updateTable 方法随时修改表的预置吞吐量值。

Note

如果您的账户和区域没有该已命名的表，则将引发 ResourceNotFoundException 异常。

导入。

处理 DynamoDB 中的表 65

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/DescribeTable.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/AmazonDynamoDB.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/ResourceNotFoundException.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.ProvisionedThroughput;
import com.amazonaws.AmazonServiceException;

代码

ProvisionedThroughput table_throughput = new ProvisionedThroughput(
 read_capacity, write_capacity);

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {
 ddb.updateTable(table_name, table_throughput);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

请参阅 GitHub 上的完整示例。

删除表

调用 DynamoDB 客户端的 deleteTable 方法，并向其传递表名称。

Note

如果您的账户和区域没有该已命名的表，则将引发 ResourceNotFoundException 异常。

导入。

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;

代码

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {

处理 DynamoDB 中的表 66

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/UpdateTable.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/AmazonDynamoDB.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/ResourceNotFoundException.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 ddb.deleteTable(table_name);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

请参阅 GitHub 上的完整示例。

更多信息

• 《Amazon DynamoDB 开发人员指南》中的表处理准则

• 《Amazon DynamoDB 开发人员指南》中的处理 DynamoDB 中的表

处理 DynamoDB 中的项目

在 DynamoDB 中，项目是属性的集合，每个项目都包括一个名称和一个值。属性值可以为标量、集或
文档类型。有关更多信息，请参阅《Amazon DynamoDB 开发人员指南》中的命名规则和数据类型。

检索 (获取) 表中的项目

调用 AmazonDynamoDB 的 getItem 方法，并向其传递 GetItemRequest 对象，包含您所需项目的表
名称和主键值。它返回 GetItemResult 对象。

可以使用所返回 GetItemResult 对象的 getItem() 方法，检索与项目关联的映射（键（字符串）
和值 (AttributeValue) 对）。

导入。

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.AttributeValue;
import com.amazonaws.services.dynamodbv2.model.GetItemRequest;
import java.util.HashMap;
import java.util.Map;

代码

HashMap<String,AttributeValue> key_to_get =
 new HashMap<String,AttributeValue>();

处理 DynamoDB 中的项目 67

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/DeleteTable.java
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/GuidelinesForTables.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/WorkingWithTables.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/GetItemRequest.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/GetItemResult.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/Map.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/AttributeValue.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

key_to_get.put("DATABASE_NAME", new AttributeValue(name));

GetItemRequest request = null;
if (projection_expression != null) {
 request = new GetItemRequest()
 .withKey(key_to_get)
 .withTableName(table_name)
 .withProjectionExpression(projection_expression);
} else {
 request = new GetItemRequest()
 .withKey(key_to_get)
 .withTableName(table_name);
}

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {
 Map<String,AttributeValue> returned_item =
 ddb.getItem(request).getItem();
 if (returned_item != null) {
 Set<String> keys = returned_item.keySet();
 for (String key : keys) {
 System.out.format("%s: %s\n",
 key, returned_item.get(key).toString());
 }
 } else {
 System.out.format("No item found with the key %s!\n", name);
 }
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);

请参阅 GitHub 上的完整示例。

向表添加新项目

创建表示项目属性的键值对的映射。其中必须包括表的主键字段的值。如果主键标识的项目已存在，那
么其字段将通过该请求更新。

Note

如果您的账户和区域没有该已命名的表，则将引发 ResourceNotFoundException 异常。

处理 DynamoDB 中的项目 68

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/GetItem.java
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/Map.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/ResourceNotFoundException.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

导入。

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.AttributeValue;
import com.amazonaws.services.dynamodbv2.model.ResourceNotFoundException;
import java.util.ArrayList;

代码

HashMap<String,AttributeValue> item_values =
 new HashMap<String,AttributeValue>();

item_values.put("Name", new AttributeValue(name));

for (String[] field : extra_fields) {
 item_values.put(field[0], new AttributeValue(field[1]));
}

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {
 ddb.putItem(table_name, item_values);
} catch (ResourceNotFoundException e) {
 System.err.format("Error: The table \"%s\" can't be found.\n", table_name);
 System.err.println("Be sure that it exists and that you've typed its name
 correctly!");
 System.exit(1);
} catch (AmazonServiceException e) {
 System.err.println(e.getMessage());
 System.exit(1);

请参阅 GitHub 上的完整示例。

更新表中现有项目

可以使用 AmazonDynamoDB 的 updateItem 方法，通过提供要更新的表名称、主键值和字段映射，
更新表中已有项目的属性。

处理 DynamoDB 中的项目 69

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/PutItem.java

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

Note

如果您的账户和区域没有该已命名的表，或者不存在传入的主键标识的项目，会导致
ResourceNotFoundException 异常。

导入。

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.AttributeAction;
import com.amazonaws.services.dynamodbv2.model.AttributeValue;
import com.amazonaws.services.dynamodbv2.model.AttributeValueUpdate;
import com.amazonaws.services.dynamodbv2.model.ResourceNotFoundException;
import java.util.ArrayList;

代码

HashMap<String,AttributeValue> item_key =
 new HashMap<String,AttributeValue>();

item_key.put("Name", new AttributeValue(name));

HashMap<String,AttributeValueUpdate> updated_values =
 new HashMap<String,AttributeValueUpdate>();

for (String[] field : extra_fields) {
 updated_values.put(field[0], new AttributeValueUpdate(
 new AttributeValue(field[1]), AttributeAction.PUT));
}

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {
 ddb.updateItem(table_name, item_key, updated_values);
} catch (ResourceNotFoundException e) {
 System.err.println(e.getMessage());
 System.exit(1);
} catch (AmazonServiceException e) {
 System.err.println(e.getMessage());
 System.exit(1);

处理 DynamoDB 中的项目 70

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/ResourceNotFoundException.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

请参阅 GitHub 上的完整示例。

使用 DynamoDBMapper 类

适用于 Java 的 Amazon SDK 提供了 DynamoDBMapper 类，使您能够将客户端类映射到 Amazon
DynamoDB 表。要使用 DynamoDBMapper 类，您可以使用注释定义 DynamoDB 表中的项目与代码
中相应的对象实例之间的关系（如下面的代码示例所示）。利用 DynamoDBMapper 类，您能够访问
自己的表，执行各种创建、读取、更新和删除 (CRUD) 操作，并执行查询。

Note

DynamoDBMapper 类不允许创建、更新或删除表。

导入。

import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBAttribute;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBHashKey;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBMapper;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBTable;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBRangeKey;
import com.amazonaws.services.dynamodbv2.model.AmazonDynamoDBException;

代码

以下 Java 代码示例演示如何使用 DynamoDBMapper 类向 Music 表添加内容。将内容添加到表中后，
请注意使用 Partition (分区) 和 Sort (排序) 键加载项目。然后 Awards (奖项) 项目会更新。有关创建
Music 表的信息，请参阅《Amazon DynamoDB 开发人员指南》中的创建表。

 AmazonDynamoDB client = AmazonDynamoDBClientBuilder.standard().build();
 MusicItems items = new MusicItems();

 try{
 // Add new content to the Music table
 items.setArtist(artist);
 items.setSongTitle(songTitle);
 items.setAlbumTitle(albumTitle);
 items.setAwards(Integer.parseInt(awards)); //convert to an int

 // Save the item

处理 DynamoDB 中的项目 71

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/UpdateItem.java
https://www.amazonaws.cn/sdk-for-java/
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/datamodeling/DynamoDBMapper.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/datamodeling/DynamoDBMapper.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/datamodeling/DynamoDBMapper.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/datamodeling/DynamoDBMapper.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/datamodeling/DynamoDBMapper.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/getting-started-step-1.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 DynamoDBMapper mapper = new DynamoDBMapper(client);
 mapper.save(items);

 // Load an item based on the Partition Key and Sort Key
 // Both values need to be passed to the mapper.load method
 String artistName = artist;
 String songQueryTitle = songTitle;

 // Retrieve the item
 MusicItems itemRetrieved = mapper.load(MusicItems.class, artistName,
 songQueryTitle);
 System.out.println("Item retrieved:");
 System.out.println(itemRetrieved);

 // Modify the Award value
 itemRetrieved.setAwards(2);
 mapper.save(itemRetrieved);
 System.out.println("Item updated:");
 System.out.println(itemRetrieved);

 System.out.print("Done");
 } catch (AmazonDynamoDBException e) {
 e.getStackTrace();
 }
 }

 @DynamoDBTable(tableName="Music")
 public static class MusicItems {

 //Set up Data Members that correspond to columns in the Music table
 private String artist;
 private String songTitle;
 private String albumTitle;
 private int awards;

 @DynamoDBHashKey(attributeName="Artist")
 public String getArtist() {
 return this.artist;
 }

 public void setArtist(String artist) {
 this.artist = artist;
 }

处理 DynamoDB 中的项目 72

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 @DynamoDBRangeKey(attributeName="SongTitle")
 public String getSongTitle() {
 return this.songTitle;
 }

 public void setSongTitle(String title) {
 this.songTitle = title;
 }

 @DynamoDBAttribute(attributeName="AlbumTitle")
 public String getAlbumTitle() {
 return this.albumTitle;
 }

 public void setAlbumTitle(String title) {
 this.albumTitle = title;
 }

 @DynamoDBAttribute(attributeName="Awards")
 public int getAwards() {
 return this.awards;
 }

 public void setAwards(int awards) {
 this.awards = awards;
 }
 }

请参阅 GitHub 上的完整示例。

更多信息

• 《Amazon DynamoDB 开发人员指南》中的项目处理准则

• 《Amazon DynamoDB 开发人员指南》中的处理 DynamoDB 中的项目

Amazon EC2使用 的 示例适用于 Java 的 Amazon SDK

本部分提供使用适用于 Java 的 Amazon SDK 对 Amazon EC2 进行编程的示例。

主题

• 教程：启动 EC2 实例

Amazon EC2 示例 73

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/UseDynamoMapping.java
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/GuidelinesForItems.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/WorkingWithItems.html
https://www.amazonaws.cn/ec2/

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

• 使用 IAM 角色授予对 Amazon EC2 上的 Amazon 资源的访问权

• 教程：Amazon EC2 竞价型实例

• 教程：高级 Amazon EC2 竞价型实例请求管理

• 管理 Amazon EC2实例

• 在 Amazon EC2 中使用弹性 IP 地址

• 使用区域和可用区

• 使用 Amazon EC2 密钥对

• 在 Amazon EC2 中使用安全组

教程：启动 EC2 实例

本教程演示如何使用适用于 Java 的 Amazon SDK 启动 EC2 实例。

主题

• 先决条件

• 创建 Amazon EC2 安全组

• 创建密钥对

• 运行 Amazon EC2 实例

先决条件

在开始之前，请确保已创建 Amazon Web Services 账户并且已设置 Amazon 凭证。有关更多信息，请
参阅入门。

创建 Amazon EC2 安全组

EC2-Classic 将停用

Warning

我们将于 2022 年 8 月 15 日停用 EC2-Classic。我们建议您从 EC2-Classic 迁移到 VPC。
有关更多信息，请参阅博客文章 EC2-Classic-Classic Networking is Retiring – Here's How to
Prepare。

教程：启动 EC2 实例 74

https://www.amazonaws.cn/blogs/aws/ec2-classic-is-retiring-heres-how-to-prepare/
https://www.amazonaws.cn/blogs/aws/ec2-classic-is-retiring-heres-how-to-prepare/

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

创建一个安全组作为虚拟防火墙，控制一个或多个 EC2 实例的网络流量。默认情况下，Amazon EC2
将您的实例与不允许入站流量的安全组关联。可以创建允许您的 EC2 实例接受特定流量的安全组。例
如，如果需要连接到 Linux 实例，就必须将安全组配置为允许 SSH 流量。您可以使用 Amazon EC2 控
制台或适用于 Java 的 Amazon SDK创建安全组。

您可以创建在 EC2-Classic 或 EC2-VPC 中使用的安全组。有关 EC2-Classic 和 EC2-VPC 的更多信
息，请参阅《Amazon EC2 用户指南（适用于 Linux 实例）》中的支持的平台。

有关使用 Amazon EC2 控制台创建安全组的更多信息，请参阅《Amazon EC2 用户指南（适用于
Linux 实例）》中的 Amazon EC2 安全组。

1. 创建和初始化 CreateSecurityGroupRequest 实例。使用 withGroupName 方法设置安全组名称，使
用 withDescription 方法设置安全组的描述，如下所示：

CreateSecurityGroupRequest csgr = new CreateSecurityGroupRequest();
csgr.withGroupName("JavaSecurityGroup").withDescription("My security group");

在您初始化 Amazon EC2 客户端的 Amazon 区域内，安全组名称必须是唯一的。必须为安全组的名
称和描述使用 US-ASCII 字符。

2. 将请求对象作为参数传递给 createSecurityGroup 方法。该方法返回 CreateSecurityGroupResult 对
象，如下所示：

CreateSecurityGroupResult createSecurityGroupResult =
 amazonEC2Client.createSecurityGroup(csgr);

如果您尝试创建与现有安全组具有相同名称的安全组，createSecurityGroup 引发异常。

默认情况下，新安全组不允许 Amazon EC2 实例的任何入站流量。要允许入站流量，您必须对安全组
传入明确地授权。您可以对单个 IP 地址、IP 地址范围、特定协议以及 TCP/UDP 端口的传入进行授
权。

1. 创建并初始化 IpPermission 实例。使用 withIpv4Ranges 方法可以设置授权传入的 IP 地址范围，使
用 withIpProtocol 方法可以设置 IP 协议。使用 withFromPort 和 withToPort 方法可以指定授权传入
的端口范围，如下所示：

IpPermission ipPermission =
 new IpPermission();

IpRange ipRange1 = new IpRange().withCidrIp("111.111.111.111/32");

教程：启动 EC2 实例 75

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/ec2-supported-platforms.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/using-network-security.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateSecurityGroupRequest.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateSecurityGroupRequest.html#withGroupName-java.lang.String-
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateSecurityGroupRequest.html#withDescription-java.lang.String-
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/AmazonEC2.html#createSecurityGroup-com.amazonaws.services.ec2.model.CreateSecurityGroupRequest-
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateSecurityGroupResult.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/IpPermission.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/IpPermission.html#withIpv4Ranges-java.util.Collection-
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/IpPermission.html#withIpProtocol-java.lang.String-
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/IpPermission.html#withFromPort-java.lang.Integer-
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/IpPermission.html#withToPort-java.lang.Integer-

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

IpRange ipRange2 = new IpRange().withCidrIp("150.150.150.150/32");

ipPermission.withIpv4Ranges(Arrays.asList(new IpRange[] {ipRange1, ipRange2}))
 .withIpProtocol("tcp")
 .withFromPort(22)
 .withToPort(22);

必须满足在 IpPermission 对象中指定的所有条件，才能允许传入。

使用 CIDR 表示法指定 IP 地址。如果指定 TCP/UDP 协议，必须提供源端口和目标端口。仅在指定
TCP 或 UDP 时才能授权端口。

2. 创建和初始化 AuthorizeSecurityGroupIngressRequest 实例。使用 withGroupName 方法指定安全
组名称，并将之前初始化的 IpPermission 对象传递给 withIpPermissions 方法，如下所示：

AuthorizeSecurityGroupIngressRequest authorizeSecurityGroupIngressRequest =
 new AuthorizeSecurityGroupIngressRequest();

authorizeSecurityGroupIngressRequest.withGroupName("JavaSecurityGroup")
 .withIpPermissions(ipPermission);

3. 将请求对象传递给 authorizeSecurityGroupIngress 方法，如下所示：

amazonEC2Client.authorizeSecurityGroupIngress(authorizeSecurityGroupIngressRequest);

如果您使用已授权传入的 IP 地址调用 authorizeSecurityGroupIngress，该方法引发
异常。创建和初始化新的 IpPermission 对象，对不同 IP、端口和协议授权传入，然后调用
AuthorizeSecurityGroupIngress。

只要调用 authorizeSecurityGroupIngress 或 authorizeSecurityGroupEgress 方法，一条规则就会添加
到安全组中。

创建密钥对

启动 EC2 实例时必须指定密钥对，然后在连接到实例时指定密钥对的私有密钥。您可以创建密钥对，
也可以使用在启动其他实例时使用的现有密钥对。有关更多信息，请参阅《Amazon EC2 用户指南
（适用于 Linux 实例）》中的 Amazon EC2 密钥对。

1. 创建并启动 CreateKeyPairRequest 实例。使用 withKeyName 方法设置密钥对名称，如下所示：

CreateKeyPairRequest createKeyPairRequest = new CreateKeyPairRequest();

教程：启动 EC2 实例 76

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AuthorizeSecurityGroupEgressRequest.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AuthorizeSecurityGroupEgressRequest.html#withIpPermissions-com.amazonaws.services.ec2.model.IpPermission%E2%80%A6%E2%80%8B-
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/AmazonEC2Client.html#authorizeSecurityGroupIngress-com.amazonaws.services.ec2.model.AuthorizeSecurityGroupIngressRequest-
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/AmazonEC2Client.html#authorizeSecurityGroupIngress-com.amazonaws.services.ec2.model.AuthorizeSecurityGroupIngressRequest-
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/AmazonEC2Client.html#authorizeSecurityGroupEgress-com.amazonaws.services.ec2.model.AuthorizeSecurityGroupEgressRequest-
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateKeyPairRequest.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateKeyPairRequest.html#withKeyName-java.lang.String-

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

createKeyPairRequest.withKeyName(keyName);

Important

密钥对名称必须是唯一的。如果您尝试创建的密钥对名称与现有密钥对相同，将引发异常。

2. 将请求对象传送到 createKeyPair 方法。该方法返回 CreateKeyPairResult 实例，如下所示：

CreateKeyPairResult createKeyPairResult =
 amazonEC2Client.createKeyPair(createKeyPairRequest);

3. 调用结果对象的 getKeyPair 方法，以获取 KeyPair 对象。调用 KeyPair 对象的 getKeyMaterial 方
法，以获取未加密的 PEM 编码私有密钥，如下所示：

KeyPair keyPair = new KeyPair();

keyPair = createKeyPairResult.getKeyPair();

String privateKey = keyPair.getKeyMaterial();

运行 Amazon EC2 实例

使用以下过程从同一个 Amazon 系统映像 (AMI) 启动一个或多个具有相同配置的 EC2 实例。创建 EC2
实例后，您可以检查其状态。在您的 EC2 实例运行后，您可以连接这些实例。

1. 创建并初始化一个 RunInstancesRequest 实例。确保您指定的 AMI、密钥对和安全组在您创建客户
端对象时指定的区域中存在。

RunInstancesRequest runInstancesRequest =
 new RunInstancesRequest();

runInstancesRequest.withImageId("ami-a9d09ed1")
 .withInstanceType(InstanceType.T1Micro)
 .withMinCount(1)
 .withMaxCount(1)
 .withKeyName("my-key-pair")
 .withSecurityGroups("my-security-group");

教程：启动 EC2 实例 77

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/AmazonEC2.html#createKeyPair-com.amazonaws.services.ec2.model.CreateKeyPairRequest--
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateKeyPairResult.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateKeyPairResult.html#getKeyPair--
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/KeyPair.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/KeyPair.html#getKeyMaterial--
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesRequest.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

withImageId

• AMI 的 ID。要了解如何查找 Amazon 提供的公用 AMI 或创建您自己的 AMI，请参阅 Amazon
系统映像 (AMI)。

withInstanceType

• 与指定的 AMI 兼容的实例类型。有关更多信息，请参阅《Amazon EC2 用户指南（适用于
Linux 实例）》中的实例类型。

withMinCount

• 要启动的 EC2 实例的最小数量。如果此数量大于 Amazon EC2 可在目标可用区中启动的实例
数，则 Amazon EC2 不会启动任何实例。

withMaxCount

• 要启动的 EC2 实例的最大数量。如果此数量大于 Amazon EC2 可在目标可用区中启动的实例
数，则 Amazon EC2 将启动高于 MinCount 的最大可能数量的实例。您可以启动的实例数介
于 1 和您允许为该实例类型启动的最大实例数之间。有关更多信息，请参阅 Amazon EC2 常
见问题中的“我可以在 Amazon EC2 中运行多少个实例？”

withKeyName

• EC2 密钥对的名称。如果您在未指定密钥对的情况下启动实例，则无法连接到该实例。有关更
多信息，请参阅创建密钥对。

withSecurityGroups

• 一个或多个安全组。有关更多信息，请参阅创建 Amazon EC2 安全组。

2. 通过将请求对象传递到 runInstances 方法来启动实例。此方法返回一个 RunInstancesResult 对象，
如下所示：

RunInstancesResult result = amazonEC2Client.runInstances(
 runInstancesRequest);

在您的实例运行后，可使用您的密钥对连接到该实例。有关更多信息，请参阅《Amazon EC2 用户指
南（适用于 Linux 实例）》中的连接到您的 Linux 实例。

使用 IAM 角色授予对 Amazon EC2 上的 Amazon 资源的访问权

必须通过使用由 Amazon 颁发的凭证对发送到 Amazon Web Services (Amazon) 的所有请求进行加密
签名。可以使用 IAM 角色 方便地授予对 Amazon EC2 实例上的 Amazon 资源的安全访问权。

使用 IAM 角色授予对 Amazon EC2 上的 Amazon 资源的访问权 78

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesRequest.html#withImageId-java.lang.String-
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/AMIs.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/AMIs.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesRequest.html#withInstanceType-java.lang.String-
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/instance-types.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesRequest.html#withMinCount-java.lang.Integer-
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesRequest.html#withMaxCount-java.lang.Integer-
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesRequest.html#withKeyName-java.lang.String-
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesRequest.html#withSecurityGroups-java.util.Collection-
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/AmazonEC2Client.html#runInstances-com.amazonaws.services.ec2.model.RunInstancesRequest-
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesResult.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/AccessingInstances.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

本主题介绍如何将 IAM 角色与 Amazon EC2 上运行的 Java SDK 应用程序结合使用。有关 IAM 实例
的更多信息，请参阅《Amazon EC2 用户指南（适用于 Linux 实例）》中的适用于 Amazon EC2 的
IAM 角色。

默认提供程序链和 EC2 实例配置文件

如果您的应用程序使用默认构造函数创建 Amazon 客户端，则该客户端将按照以下顺序使用默认凭证
提供程序链 搜索凭证：

1. Java 系统属性：aws.accessKeyId 和 aws.secretKey。

2. 系统环境变量：AWS_ACCESS_KEY_ID 和 AWS_SECRET_ACCESS_KEY。

3. 默认凭证文件 (在不同平台上该文件位于不同位置)。

4. 如果已设置 AWS_CONTAINER_CREDENTIALS_RELATIVE_URI 环境变量且安全管理器有权访问该
变量，则为通过 Amazon EC2 容器服务传递的凭证。

5. 实例配置文件凭证，包含在与 EC2 实例的 IAM 角色关联的实例元数据中。

6. 来自环境或容器的 Web 身份令牌凭证。

只有在对 Amazon EC2 实例运行应用程序时，默认提供程序链中的实例配置文件凭证 步骤才可用，
但在处理 Amazon EC2 实例时，该步骤能够最大限度地简化使用过程并提高安全性。您还可以将
InstanceProfileCredentialsProvider 实例直接传递给客户端构造函数，这样无需执行整个默认提供程序
链即可获取实例配置文件凭证。

例如：

AmazonS3 s3 = AmazonS3ClientBuilder.standard()
 .withCredentials(new InstanceProfileCredentialsProvider(false))
 .build();

在使用该方法时，SDK 在其实例配置文件中，检索与 Amazon EC2 实例的关联 IAM 角色的关
联凭证具有相同权限的临时 Amazon 凭证。尽管这些凭证是临时凭证，而且最终会过期，但
InstanceProfileCredentialsProvider 会定期为您刷新它们，保证您收到的凭证可继续访问
Amazon。

Important

仅 在以下情况下执行自动凭证刷新：您使用默认客户端构造函数 (它会创建其自身的
InstanceProfileCredentialsProvider 作为默认提供程序链的内容) 时；或者您将

使用 IAM 角色授予对 Amazon EC2 上的 Amazon 资源的访问权 79

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/auth/InstanceProfileCredentialsProvider.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

InstanceProfileCredentialsProvider 实例直接传递给客户端构造函数时。如果您使
用其他方法获取或传送实例配置文件凭证，您将负责检查和刷新过期凭证。

如果客户端构造函数使用凭证提供程序链找不到凭证，它会引发 AmazonClientException。

演练：将 IAM 角色用于 EC2 实例

以下演练将介绍如何使用 IAM 角色从 Amazon S3 中检索对象以管理访问。

创建 IAM 角色

创建授予对 Amazon S3 的只读访问权的 IAM 角色。

1. 打开 IAM 管理控制台。

2. 在导航窗格中，选择 Roles 和 Create New Role。

3. 输入角色名称，然后选择 Next Step。请记住此名称，因为在启动 Amazon EC2 实例时会用到它。

4. 在选择角色类型页面的 Amazon Web Services 服务 角色下，选择 Amazon EC2。

5. 在设置权限页面的选择策略模板下，选择 Amazon S3 只读访问权限，然后选择下一步。

6. 在 Review 页面上，选择 Create Role。

启动 EC2 实例并指定您的 IAM 角色

您可通过 Amazon EC2 控制台或适用于 Java 的 Amazon SDK，使用 IAM 角色启动 Amazon EC2 实
例。

• 要使用控制台启动 Amazon EC2 实例，请按照《Amazon EC2 用户指南（适用于 Linux 实
例）》Amazon EC2 Linux 实例入门中的说明操作。

到达核查实例启动页面时，选择编辑实例详细信息。在 IAM 角色中，选择您之前创建的 IAM 角色。
按指示完成该过程。

Note

您需要创建或使用现有安全组和密钥对，才能连接到该实例。

• 要使用适用于 Java 的 Amazon SDK 通过 IAM 角色启动 Amazon EC2 实例，请参阅运行 Amazon
EC2 实例。

使用 IAM 角色授予对 Amazon EC2 上的 Amazon 资源的访问权 80

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/AmazonClientException.html
https://console.amazonaws.cn/iam/home
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/EC2_GetStarted.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

创建您的应用程序

让我们来构建在 EC2 实例上运行的示例应用程序。首先，创建一个目录来用于保存教程文件 (例
如，GetS3ObjectApp)。

然后，将适用于 Java 的 Amazon SDK 库复制到新创建的目录中。如果已将适用于 Java 的 Amazon
SDK下载到 ~/Downloads 目录中，可以使用以下命令进行复制：

cp -r ~/Downloads/aws-java-sdk-{1.7.5}/lib .
cp -r ~/Downloads/aws-java-sdk-{1.7.5}/third-party .

打开一个新文件，将其命名为 GetS3Object.java 并添加以下代码：

import java.io.*;

import com.amazonaws.auth.*;
import com.amazonaws.services.s3.*;
import com.amazonaws.services.s3.model.*;
import com.amazonaws.AmazonClientException;
import com.amazonaws.AmazonServiceException;

public class GetS3Object {
 private static final String bucketName = "text-content";
 private static final String key = "text-object.txt";

 public static void main(String[] args) throws IOException
 {
 AmazonS3 s3Client = AmazonS3ClientBuilder.defaultClient();

 try {
 System.out.println("Downloading an object");
 S3Object s3object = s3Client.getObject(
 new GetObjectRequest(bucketName, key));
 displayTextInputStream(s3object.getObjectContent());
 }
 catch(AmazonServiceException ase) {
 System.err.println("Exception was thrown by the service");
 }
 catch(AmazonClientException ace) {
 System.err.println("Exception was thrown by the client");
 }
 }

使用 IAM 角色授予对 Amazon EC2 上的 Amazon 资源的访问权 81

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 private static void displayTextInputStream(InputStream input) throws IOException
 {
 // Read one text line at a time and display.
 BufferedReader reader = new BufferedReader(new InputStreamReader(input));
 while(true)
 {
 String line = reader.readLine();
 if(line == null) break;
 System.out.println(" " + line);
 }
 System.out.println();
 }
}

打开一个新文件，将其命名为 build.xml 并添加以下行：

<project name="Get {S3} Object" default="run" basedir=".">
 <path id="aws.java.sdk.classpath">
 <fileset dir="./lib" includes="**/*.jar"/>
 <fileset dir="./third-party" includes="**/*.jar"/>
 <pathelement location="lib"/>
 <pathelement location="."/>
 </path>

 <target name="build">
 <javac debug="true"
 includeantruntime="false"
 srcdir="."
 destdir="."
 classpathref="aws.java.sdk.classpath"/>
 </target>

 <target name="run" depends="build">
 <java classname="GetS3Object" classpathref="aws.java.sdk.classpath" fork="true"/>
 </target>
</project>

构建并运行修改后的程序。请注意，该程序中未存储凭证。所以，除非您已经指定 Amazon 凭证，否
则代码会引发 AmazonServiceException。例如：

$ ant
Buildfile: /path/to/my/GetS3ObjectApp/build.xml

使用 IAM 角色授予对 Amazon EC2 上的 Amazon 资源的访问权 82

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

build:
 [javac] Compiling 1 source file to /path/to/my/GetS3ObjectApp

run:
 [java] Downloading an object
 [java] AmazonServiceException

BUILD SUCCESSFUL

传输已编译的程序到您的 EC2 实例

使用安全复制 (Amazon EC2)，将程序连同 库传输到适用于 Java 的 Amazon SDK 实例。该命令序
列与以下序列相似。

scp -p -i {my-key-pair}.pem GetS3Object.class ec2-user@{public_dns}:GetS3Object.class
scp -p -i {my-key-pair}.pem build.xml ec2-user@{public_dns}:build.xml
scp -r -p -i {my-key-pair}.pem lib ec2-user@{public_dns}:lib
scp -r -p -i {my-key-pair}.pem third-party ec2-user@{public_dns}:third-party

Note

根据您使用的 Linux 版本，用户名 可能是“ec2-user”、“root”或“ubuntu”。要获取实
例的公有 DNS 名称，请打开 EC2 控制台并在描述选项卡中查找公有 DNS 值（例如
ec2-198-51-100-1.compute-1.amazonaws.com）。

在上述命令中：

• GetS3Object.class 是已编译的程序

• build.xml 是用于构建和运行您的程序的 Ant 文件

• lib 和 third-party 目录是适用于 Java 的 Amazon SDK中对应的库文件夹。

• -r 开关指示 scp 应该对library版本的 third-party 和 适用于 Java 的 Amazon SDK 目录中的
所有内容以递归方式进行复制。

• -p 开关指示 scp 在将源文件复制到目标位置时，应保留对应文件的权限。

使用 IAM 角色授予对 Amazon EC2 上的 Amazon 资源的访问权 83

https://console.amazonaws.cn/ec2/home

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

Note

-p 开关仅适用于 Linux、macOS 或 Unix。如果您从 Windows 中复制文件，可能需要使用
以下命令在实例上修复文件权限：

chmod -R u+rwx GetS3Object.class build.xml lib third-party

在 EC2 实例上运行示例程序

要运行程序，请连接到 Amazon EC2 实例。有关更多信息，请参阅《Amazon EC2 用户指南（适用于
Linux 实例）》中的连接到您的 Linux 实例。

如果 ant 在您的实例上不可用，请使用以下命令安装它：

sudo yum install ant

然后使用 ant 运行程序，如下所示：

ant run

该程序会将 Amazon S3 对象的内容写入命令窗口。

教程：Amazon EC2 竞价型实例

概览

与按需实例价格相比，通过 Spot 实例，您可以对未使用的 Amazon Elastic Compute Cloud (Amazon
EC2) 容量进行出价（最高达 90%），并在出价高于当前 Spot 价格 时运行您购买的实例。根据供应和
需求情况，Amazon EC2 会定期更改 Spot 价格；出价达到或超过 Spot 价格的客户可获得可用的 Spot
实例。就像按需实例和预留实例， Spot 实例为您提供了另一种获得更多计算能力的选择。

Spot 实例可以大幅降低您用于批量处理、科学研究、图像处理、视频编码、数据和 Web 检索、财务分
析和测试的 Amazon EC2 成本。除此之外，在不急需容量的情况下， Spot 实例还能让您获得大量的
附加容量。

如要使用 Spot 实例，您就需要置入一个 Spot 实例请求，以便指定您愿意支付的每个实例每小时的最
高价格；这就是您的竞价。如果您的最高出价超出当前的 Spot 价格，则会满足您的请求，您的实例将
会运行，直到您选择终止它们或 Spot 价格增长到高于您的最高价格（以先到者为准）。

教程：Amazon EC2 竞价型实例 84

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/AccessingInstances.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

请务必记住：

• 您每小时支付的价格通常低于您的出价。随着请求的接收和现有供应的变化，Amazon EC2 会定期
调整 Spot 价格。在该期间内，无论每个人的最高出价是否更高，它们支付的 Spot 价格都是相同
的。因此，您的支付要低于您的出价，但永远不会支付超过您的出价。

• 如果您正在运行 Spot 实例，而您的出价不再达到或高于当前的 Spot 价格，则您的实例将会终止。
这意味着，您要确保工作负载和应用程序足够灵活，以便利用这一机会性的容量。

运行时，Spot 实例的操作方式与其他 Amazon EC2 实例完全相同，而且同其他 Amazon EC2 实例
一样，当您不再需要 Spot 实例时可以终止它们。如果终止了实例，您需要为不满一小时的时间付费
（与按需或预留实例相同）。不过，如果 Spot 价格超出您的最高价格，且 Amazon EC2 终止了您的
实例，则您无需对任何不满一小时的使用时间付费。

本教程介绍如何使用适用于 Java 的 Amazon SDK 执行以下操作。

• 提交一个 Spot 请求

• 判定何时执行该 Spot 请求

• 取消该 Spot 请求

• 终止相关实例

先决条件

要使用此指南，您必须已安装适用于 Java 的 Amazon SDK 并且已满足其基本安装先决条件。有关更
多信息，请参阅设置适用于 Java 的 Amazon SDK。

第 1 步：设置您的证书

要开始使用此代码示例，您需要设置 Amazon 凭证。有关具体操作说明，请参阅设置用于开发的
Amazon 凭证和区域。

Note

建议您使用 IAM 用户凭证来提供这些值。有关更多信息，请参阅注册 Amazon 并创建 IAM 用
户。

您既然已配置好了您的设置，现在就可以使用示例中的代码开始了。

教程：Amazon EC2 竞价型实例 85

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

第 2 步：设置安全组

一个安全组可作为一个控制流量进入和流出实例组的防火墙。默认情况下，实例开始运行时没有配
置任何安全组，这就意味着，从任何 TCP 端口传入的 IP 流量都将被拒绝。因此，在提交 Spot 请求
前，我们会设置一个安全组，以允许必要的网络流量传入。出于本教程的目的，我们将创建一个名
为“GettingStarted”的新安全组，以允许从您正在运行的应用程序的 IP 地址传入 Secure Shell (SSH) 流
量。要设置一个新的安全组，需要包含或运行下列通过编程的方式来设置安全组的代码示例。

创建 AmazonEC2 客户端数据元之后，我们会创建一个名
为“GettingStarted”的CreateSecurityGroupRequest数据元以及对安全组的描述。接下来，我们将
调用ec2.createSecurityGroup API 来创建安全组。

为访问安全组，我们将使用本地电脑子网的 CIDR 表示的 IP 地址范围创建一个 ipPermission
数据元，IP 地址的后缀“/10”指明了该指定 IP 地址的子网。我们还为 ipPermission
数据元配置了 TCP 协议和端口 22 (SSH)。最后一步是使用我们的安全组名称和
ec2.authorizeSecurityGroupIngress 数据元来调用 ipPermission。

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Create a new security group.
try {
 CreateSecurityGroupRequest securityGroupRequest = new
 CreateSecurityGroupRequest("GettingStartedGroup", "Getting Started Security Group");
 ec2.createSecurityGroup(securityGroupRequest);
} catch (AmazonServiceException ase) {
 // Likely this means that the group is already created, so ignore.
 System.out.println(ase.getMessage());
}

String ipAddr = "0.0.0.0/0";

// Get the IP of the current host, so that we can limit the Security
// Group by default to the ip range associated with your subnet.
try {
 InetAddress addr = InetAddress.getLocalHost();

 // Get IP Address
 ipAddr = addr.getHostAddress()+"/10";
} catch (UnknownHostException e) {
}

教程：Amazon EC2 竞价型实例 86

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

// Create a range that you would like to populate.
ArrayList<String> ipRanges = new ArrayList<String>();
ipRanges.add(ipAddr);

// Open up port 22 for TCP traffic to the associated IP
// from above (e.g. ssh traffic).
ArrayList<IpPermission> ipPermissions = new ArrayList<IpPermission> ();
IpPermission ipPermission = new IpPermission();
ipPermission.setIpProtocol("tcp");
ipPermission.setFromPort(new Integer(22));
ipPermission.setToPort(new Integer(22));
ipPermission.setIpRanges(ipRanges);
ipPermissions.add(ipPermission);

try {
 // Authorize the ports to the used.
 AuthorizeSecurityGroupIngressRequest ingressRequest =
 new AuthorizeSecurityGroupIngressRequest("GettingStartedGroup",ipPermissions);
 ec2.authorizeSecurityGroupIngress(ingressRequest);
} catch (AmazonServiceException ase) {
 // Ignore because this likely means the zone has
 // already been authorized.
 System.out.println(ase.getMessage());
}

请注意，要创建一个新的安全组，您只需要运行一次此应用程序。

您还可以使用 Amazon Toolkit for Eclipse 创建安全组。有关更多信息，请参阅通过 Amazon Cost
Explorer 管理安全组。

步骤 3：提交您的 Spot 请求

为了提交一个 Spot 请求，您首先需要确定该实例类型，Amazon 系统映像 (AMI)，和您要使用的最高
出价。还须包括我们先前配置好的安全组，这样一来，如果需要的话，您就可以登录到该实例中了。

有几个实例类型可供选择；请转到 Amazon EC2 实例类型获取完整列表。在本教程中，我们将使用最
便宜的实例类型 t1.micro。下一步是确定我们想用的 AMI 类型。在本教程中，我们使用的是最新版的
Amazon Linux AMI，即 ami-a9d09ed1。最新的 AMI 可能会随时间而改变，但您始终可以通过执行以
下步骤来确定最新版的 AMI：

1. 打开 Amazon EC2 管理控制台。

2. 选择 Launch Instance (启动实例) 按钮。

教程：Amazon EC2 竞价型实例 87

https://docs.amazonaws.cn/toolkit-for-eclipse/v1/user-guide/tke-sg.html
https://docs.amazonaws.cn/toolkit-for-eclipse/v1/user-guide/tke-sg.html
https://console.amazonaws.cn/ec2/home

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

3. 第一个窗口将显示可用的 AMI。每个 AMI 标题旁边都列出了 AMI ID。或者，您也可以使用
DescribeImages API，但该命令的使用不在本教程的范围之内。

有很多方法可以竞价 Spot 实例，如要大致了解各种方法，您应当观看对 Spot 实例出价视频。然而，
为了入门，我们将介绍三种常见的策略：确保成本低于按需定价的竞价；基于所得计算值的竞价；以便
尽可能快地获取计算能力的竞价。

• 降低成本至低于按需实例您需要进行花费数小时或数天的批处理工作。然而，您可以灵活调整启动和
完成时间。您希望看到是否以较低的成本完成了按需实例。您可以通过使用 Amazon Web Services
管理控制台或 Amazon EC2 API 来检查各个类型实例的 Spot 价格历史记录。如需更多信息，请转
到查看 Spot 价格历史记录。在您分析了给定可用区内所需实例类型的价格记录之后，您有两种可供
选择的方法进行竞价：

• 您可以在现货价格范围（这仍然低于按需定价）的上端竞价，预测您单次现货请求很有可能会达
成，并运行足够的连续计算时间来完成此项工作。

• 或者，您可以通过按需实例价格的百分比形式，指定您愿意为 Spot 实例支付的金额，并计划将持
久请求期间启动的许多实例结合起来。如果超过指定价格，则 Spot 实例将终止。（在本教程之后
我们会介绍如何自动运行该任务。）

• 支付不超过该结果的值您需要进行数据处理工作。您将会对该工作的结果有一个很好的了解，以便于
能够让您知道在计算成本方面它们的价值。当您分析了实例类型的 Spot 价格记录之后，选择一个计
算时间成本不高于该工作结果成本的竞价。由于 Spot 价格的波动，该价格可能会达到或低于您的竞
价，所以您要创建一个持久出价，并允许它间歇运行。

• 快速获取计算容量您对附加容量有一个无法预料的短期需求，该容量不能通过按需实例获取。当您分
析了实例类型的 Spot 价格记录之后，您出价高于历史最高价格，以便提供一个高的能很快执行实例
的可能性，并继续计算，直到完成实例。

在选择竞价之后，您可以请求一个 Spot 实例。考虑到本教程的目的，我们将以按需定价来出价
(0.03 US)，以便能最大化执行出价的机率。您可以通过进入 Amazon EC2 定价页面来确定可用实
例的类型和这些实例的按需价格。当 Spot 实例在运行时，您将支付实例运行期间生效的 Spot 价
格。Spot 实例的价格由 Amazon EC2 设置，并根据 Spot 实例容量的长期供求趋势逐步调整。您还
可以指定您愿意为 Spot 实例支付的金额作为按需实例价格的百分比。要请求 Spot 实例，您只需使
用先前选择的参数来构建请求。首先，我们创建一个RequestSpotInstanceRequest数据元。
数据元的请求需要要启动的实例数量及其竞价。此外，您还需要设置LaunchSpecification该请
求，其中包括实例类型、AMI ID，和要使用的安全组。在填写好该请求后，您可以调用该数据元上
的requestSpotInstances方法AmazonEC2Client。以下示例演示了如何请求一个 Spot 实例。

// Create the AmazonEC2 client so we can call various APIs.

教程：Amazon EC2 竞价型实例 88

https://www.youtube.com/watch?v=WD9N73F3Fao&feature=player_embedded
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/using-spot-instances-history.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(1));

// Setup the specifications of the launch. This includes the
// instance type (e.g. t1.micro) and the latest Amazon Linux
// AMI id available. Note, you should always use the latest
// Amazon Linux AMI id or another of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType(InstanceType.T1Micro);

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Add the launch specifications to the request.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult = ec2.requestSpotInstances(requestRequest);

此代码的运行将启动一个新的 Spot 实例请求。还有其他可用来配置 Spot 请求的选择。要了解更多
信息，请访问教程：高级 Amazon EC2 竞价型实例请求管理或《适用于 Java 的 Amazon SDK API
Reference》中的 RequestSpotInstances 类。

Note

您需为任何已启动的 Spot 实例付费，因此，请确保您取消了任何请求并终止了任何已启动的
实例，以便减少所有相关费用。

步骤 4：确定 Spot 请求的状态

下一步是，要一直等到在进行最后一步之前、Spot 请求达到“活跃”状态时再创建代码。为了确定 Spot
请求的状态，我们轮询了 describeSpotInstanceRequests方法来确定要监视的 Spot 请求 ID 的状态。

教程：Amazon EC2 竞价型实例 89

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RequestSpotInstancesRequest.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/AmazonEC2Client.html#describeSpotInstanceRequests

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

第 2 步中创建的请求 ID 内嵌在该requestSpotInstances请求响应中。以下示例代码显示了如何
从requestSpotInstances响应中收集请求 ID 和如何用它们填写一个ArrayList。

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult = ec2.requestSpotInstances(requestRequest);
List<SpotInstanceRequest> requestResponses = requestResult.getSpotInstanceRequests();

// Setup an arraylist to collect all of the request ids we want to
// watch hit the running state.
ArrayList<String> spotInstanceRequestIds = new ArrayList<String>();

// Add all of the request ids to the hashset, so we can determine when they hit the
// active state.
for (SpotInstanceRequest requestResponse : requestResponses) {
 System.out.println("Created Spot Request:
 "+requestResponse.getSpotInstanceRequestId());
 spotInstanceRequestIds.add(requestResponse.getSpotInstanceRequestId());
}

为哦了监控您的请求 ID，请调用describeSpotInstanceRequests方法来确定该请求的状态。然
后循环，直到该请求不处于“打开”的状态。请注意，我们监控的是“打开”这一状态，而不是“活跃”状态，
因为如果请求参数有问题，该请求可以直接“关闭”。以下代码示例提供了如何完成此项任务的详细信
息。

// Create a variable that will track whether there are any
// requests still in the open state.
boolean anyOpen;

do {
 // Create the describeRequest object with all of the request ids
 // to monitor (e.g. that we started).
 DescribeSpotInstanceRequestsRequest describeRequest = new
 DescribeSpotInstanceRequestsRequest();
 describeRequest.setSpotInstanceRequestIds(spotInstanceRequestIds);

 // Initialize the anyOpen variable to false - which assumes there
 // are no requests open unless we find one that is still open.
 anyOpen=false;

 try {
 // Retrieve all of the requests we want to monitor.

教程：Amazon EC2 竞价型实例 90

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 DescribeSpotInstanceRequestsResult describeResult =
 ec2.describeSpotInstanceRequests(describeRequest);
 List<SpotInstanceRequest> describeResponses =
 describeResult.getSpotInstanceRequests();

 // Look through each request and determine if they are all in
 // the active state.
 for (SpotInstanceRequest describeResponse : describeResponses) {
 // If the state is open, it hasn't changed since we attempted
 // to request it. There is the potential for it to transition
 // almost immediately to closed or cancelled so we compare
 // against open instead of active.
 if (describeResponse.getState().equals("open")) {
 anyOpen = true;
 break;
 }
 }
} catch (AmazonServiceException e) {
 // If we have an exception, ensure we don't break out of
 // the loop. This prevents the scenario where there was
 // blip on the wire.
 anyOpen = true;
 }

 try {
 // Sleep for 60 seconds.
 Thread.sleep(60*1000);
 } catch (Exception e) {
 // Do nothing because it woke up early.
 }
} while (anyOpen);

运行此代码后， Spot 实例请求会完成或失败，如果失败，将输出一个错误提示到屏幕上。在任一情况
下，我们都可以进行下一步，以便清理任何已活跃请求并终止任何正在运行的实例。

步骤 5：清理 Spot 请求和实例

最后，我们需要清理请求和实例。重要的是，要取消所有未完成的请求并终止所有实例。只取消请求不
会终止您的实例，这意味着您需要继续为它们支付费用。如果您终止了实例，那么 Spot 请求可能会被
取消，但在某些情况下，例如，如果您使用的是持久出价，那么终止实例则不足以阻止请求重新执行。
因此，最好的做法是取消所有已活跃出价并终止所有正在运行的实例。

以下代码演示了如何取消您的请求。

教程：Amazon EC2 竞价型实例 91

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

try {
 // Cancel requests.
 CancelSpotInstanceRequestsRequest cancelRequest =
 new CancelSpotInstanceRequestsRequest(spotInstanceRequestIds);
 ec2.cancelSpotInstanceRequests(cancelRequest);
} catch (AmazonServiceException e) {
 // Write out any exceptions that may have occurred.
 System.out.println("Error cancelling instances");
 System.out.println("Caught Exception: " + e.getMessage());
 System.out.println("Reponse Status Code: " + e.getStatusCode());
 System.out.println("Error Code: " + e.getErrorCode());
 System.out.println("Request ID: " + e.getRequestId());
}

要终止所有挂起的实例，您需要实例 ID 和启动它们的请求。以下代码示例采用了原代码来监控这些实
例，并增加了一个存储这些实例 ID 和相关联的ArrayList响应的describeInstance。

// Create a variable that will track whether there are any requests
// still in the open state.
boolean anyOpen;
// Initialize variables.
ArrayList<String> instanceIds = new ArrayList<String>();

do {
 // Create the describeRequest with all of the request ids to
 // monitor (e.g. that we started).
 DescribeSpotInstanceRequestsRequest describeRequest = new
 DescribeSpotInstanceRequestsRequest();
 describeRequest.setSpotInstanceRequestIds(spotInstanceRequestIds);

 // Initialize the anyOpen variable to false, which assumes there
 // are no requests open unless we find one that is still open.
 anyOpen = false;

 try {
 // Retrieve all of the requests we want to monitor.
 DescribeSpotInstanceRequestsResult describeResult =
 ec2.describeSpotInstanceRequests(describeRequest);

 List<SpotInstanceRequest> describeResponses =
 describeResult.getSpotInstanceRequests();

 // Look through each request and determine if they are all

教程：Amazon EC2 竞价型实例 92

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 // in the active state.
 for (SpotInstanceRequest describeResponse : describeResponses) {
 // If the state is open, it hasn't changed since we
 // attempted to request it. There is the potential for
 // it to transition almost immediately to closed or
 // cancelled so we compare against open instead of active.
 if (describeResponse.getState().equals("open")) {
 anyOpen = true; break;
 }
 // Add the instance id to the list we will
 // eventually terminate.
 instanceIds.add(describeResponse.getInstanceId());
 }
 } catch (AmazonServiceException e) {
 // If we have an exception, ensure we don't break out
 // of the loop. This prevents the scenario where there
 // was blip on the wire.
 anyOpen = true;
 }

 try {
 // Sleep for 60 seconds.
 Thread.sleep(60*1000);
 } catch (Exception e) {
 // Do nothing because it woke up early.
 }
} while (anyOpen);

使用存储在ArrayList中的实例 ID，通过使用以下代码片段来终止任何正在运行的实例。

try {
 // Terminate instances.
 TerminateInstancesRequest terminateRequest = new
 TerminateInstancesRequest(instanceIds);
 ec2.terminateInstances(terminateRequest);
} catch (AmazonServiceException e) {
 // Write out any exceptions that may have occurred.
 System.out.println("Error terminating instances");
 System.out.println("Caught Exception: " + e.getMessage());
 System.out.println("Reponse Status Code: " + e.getStatusCode());
 System.out.println("Error Code: " + e.getErrorCode());
 System.out.println("Request ID: " + e.getRequestId());
}

教程：Amazon EC2 竞价型实例 93

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

综述

为了将所有内容组合在一起，我们提供了一个更加面向数据元的方法，该方法结合了上文所示步骤：初
始化 EC2 客户端，提交 Spot 请求，确定何时 Spot 请求不再处于开放状态，并清理所有延迟的 Spot
请求和相关实例。我们建立一个执行这些操作的类别，命名为Requests。

我们还创建了一个 GettingStartedApp 类，为我们执行高级函数调用提供主要方法。具体地，我
们对之前所述的数据元Requests进行初始化。提交 Spot 实例请求。然后等待 Spot 请求达到“有效”状
态。最后，清理这些请求和实例。

可在 GitHub 查看和下载此示例的完整源代码。

恭喜您！您已经完成了用适用于 Java 的 Amazon SDK 开发 Spot 实例软件的入门教程。

后续步骤

继续阅览教程：高级 Amazon EC2 竞价型实例请求管理。

教程：高级 Amazon EC2 竞价型实例请求管理

Amazon EC2 Spot 实例允许您对未使用的 Amazon EC2 容量出价，并在出价高于当前 Spot 价格 的期
间运行此类实例。Amazon EC2 基于供给和需求定期更改 Spot 价格。有关竞价型实例的更多信息，请
参阅《Amazon EC2 用户指南（适用于 Linux 实例）》中的竞价型实例。

先决条件

要使用此指南，您必须已安装适用于 Java 的 Amazon SDK 并且已满足其基本安装先决条件。有关更
多信息，请参阅设置适用于 Java 的 Amazon SDK。

设置您的凭证

要开始使用此代码示例，您需要设置 Amazon 凭证。有关具体操作说明，请参阅设置用于开发的
Amazon 凭证和区域。

Note

建议您使用 IAM 用户凭证来提供这些值。有关更多信息，请参阅注册 Amazon 并创建 IAM 用
户。

您既然已配置好了您的设置，现在就可以使用示例中的代码开始了。

教程：高级 Amazon EC2 竞价型实例请求管理 94

https://github.com/aws/aws-sdk-java/tree/master/src/samples/AmazonEC2SpotInstances-GettingStarted
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/using-spot-instances.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

设置安全组

一个安全组可作为一个控制流量进入和流出实例组的防火墙。默认情况下，实例开始运行时没有配
置任何安全组，这就意味着，从任何 TCP 端口传入的 IP 流量都将被拒绝。因此，在提交 Spot 请求
前，我们会设置一个安全组，以允许必要的网络流量传入。出于本教程的目的，我们将创建一个名
为“GettingStarted”的新安全组，以允许从您正在运行的应用程序的 IP 地址传入 Secure Shell (SSH) 流
量。要设置一个新的安全组，需要包含或运行下列通过编程的方式来设置安全组的代码示例。

创建 AmazonEC2 客户端数据元之后，我们会创建一个名
为“GettingStarted”的CreateSecurityGroupRequest数据元以及对安全组的描述。接下来，我们将
调用ec2.createSecurityGroup API 来创建安全组。

为访问安全组，我们将使用本地电脑子网的 CIDR 表示的 IP 地址范围创建一个 ipPermission
数据元，IP 地址的后缀“/10”指明了该指定 IP 地址的子网。我们还为 ipPermission
数据元配置了 TCP 协议和端口 22 (SSH)。最后一步是使用我们的安全组名称和
ec2 .authorizeSecurityGroupIngress 数据元来调用 ipPermission。

（以下代码与我们在第一个教程中使用的代码相同。）

// Create the AmazonEC2Client object so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.standard()
 .withCredentials(credentials)
 .build();

// Create a new security group.
try {
 CreateSecurityGroupRequest securityGroupRequest =
 new CreateSecurityGroupRequest("GettingStartedGroup",
 "Getting Started Security Group");
 ec2.createSecurityGroup(securityGroupRequest);
} catch (AmazonServiceException ase) {
 // Likely this means that the group is already created, so ignore.
 System.out.println(ase.getMessage());
}

String ipAddr = "0.0.0.0/0";

// Get the IP of the current host, so that we can limit the Security Group
// by default to the ip range associated with your subnet.
try {
 // Get IP Address
 InetAddress addr = InetAddress.getLocalHost();

教程：高级 Amazon EC2 竞价型实例请求管理 95

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 ipAddr = addr.getHostAddress()+"/10";
}
catch (UnknownHostException e) {
 // Fail here...
}

// Create a range that you would like to populate.
ArrayList<String> ipRanges = new ArrayList<String>();
ipRanges.add(ipAddr);

// Open up port 22 for TCP traffic to the associated IP from
// above (e.g. ssh traffic).
ArrayList<IpPermission> ipPermissions = new ArrayList<IpPermission> ();
IpPermission ipPermission = new IpPermission();
ipPermission.setIpProtocol("tcp");
ipPermission.setFromPort(new Integer(22));
ipPermission.setToPort(new Integer(22));
ipPermission.setIpRanges(ipRanges);
ipPermissions.add(ipPermission);

try {
 // Authorize the ports to the used.
 AuthorizeSecurityGroupIngressRequest ingressRequest =
 new AuthorizeSecurityGroupIngressRequest(
 "GettingStartedGroup",ipPermissions);
 ec2.authorizeSecurityGroupIngress(ingressRequest);
}
catch (AmazonServiceException ase) {
 // Ignore because this likely means the zone has already
 // been authorized.
 System.out.println(ase.getMessage());
}

您可以在 advanced.CreateSecurityGroupApp.java 代码示例中查看整个代码示例。请注意，
要创建一个新的安全组，您只需要运行一次此应用程序。

Note

您还可以使用 Amazon Toolkit for Eclipse 创建安全组。有关更多信息，请参阅《Amazon
Toolkit for Eclipse User Guide》中的 Managing Security Groups from Amazon Cost
Explorer。

教程：高级 Amazon EC2 竞价型实例请求管理 96

https://docs.amazonaws.cn/toolkit-for-eclipse/v1/user-guide/tke-sg.html
https://docs.amazonaws.cn/toolkit-for-eclipse/v1/user-guide/tke-sg.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

详细 Spot 实例请求创建选项

正如我们在教程：Amazon EC2 竞价型实例中所介绍的，您需要通过实例类型、亚马逊机器映像 (AMI)
和最高竞标价格来创建您的请求。

让我们从创建 RequestSpotInstanceRequest 对象开始。请求数据元需要您所需的实例数量和竞
标价格。此外，我们需要为请求设置 LaunchSpecification，包括实例类型、AMI ID 和您需要使
用的安全组。填入请求后，我们将在 requestSpotInstances 数据元上调用 AmazonEC2Client
方法。以下是如何申请 Spot 实例的一个示例。

（以下代码与我们在第一个教程中使用的代码相同。）

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(1));

// Set up the specifications of the launch. This includes the
// instance type (e.g. t1.micro) and the latest Amazon Linux
// AMI id available. Note, you should always use the latest
// Amazon Linux AMI id or another of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType(InstanceType.T1Micro);

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult =
 ec2.requestSpotInstances(requestRequest);

教程：高级 Amazon EC2 竞价型实例请求管理 97

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

持久性请求和一次性请求

建立一个 Spot 请求时，您可以指定几个可选参数。首先是您的请求是一次性的还是持久性的。默认情
况下，一般是一次性请求。一次性请求可以只执行一次，请求实例终止后，请求将被关闭。同一请求中
没有 Spot 实例运行的任何时候，持久性请求都被视为已完成。要指定请求的类型，您只需要设置 Spot
请求的类型。您可以使用以下代码完成设置。

// Retrieves the credentials from an AWSCredentials.properties file.
AWSCredentials credentials = null;
try {
 credentials = new PropertiesCredentials(
 GettingStartedApp.class.getResourceAsStream("AwsCredentials.properties"));
}
catch (IOException e1) {
 System.out.println(
 "Credentials were not properly entered into AwsCredentials.properties.");
 System.out.println(e1.getMessage());
 System.exit(-1);
}

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest =
 new RequestSpotInstancesRequest();

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(1));

// Set the type of the bid to persistent.
requestRequest.setType("persistent");

// Set up the specifications of the launch. This includes the
// instance type (e.g. t1.micro) and the latest Amazon Linux
// AMI id available. Note, you should always use the latest
// Amazon Linux AMI id or another of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType(InstanceType.T1Micro);

// Add the security group to the request.

教程：高级 Amazon EC2 竞价型实例请求管理 98

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult =
 ec2.requestSpotInstances(requestRequest);

限制请求的持续时间

您还可以有选择地指定您的请求持续有效的时长。您可以指定有效期开始和结束的时间。默认情况下，
从创建那一刻开始，系统将默认执行 Spot 请求，直到该请求完成或被取消。然而，如果您有需要，您
可以限制有效期。以下代码显示了如何指定有效期的示例。

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(1));

// Set the valid start time to be two minutes from now.
Calendar cal = Calendar.getInstance();
cal.add(Calendar.MINUTE, 2);
requestRequest.setValidFrom(cal.getTime());

// Set the valid end time to be two minutes and two hours from now.
cal.add(Calendar.HOUR, 2);
requestRequest.setValidUntil(cal.getTime());

// Set up the specifications of the launch. This includes
// the instance type (e.g. t1.micro)

// and the latest Amazon Linux AMI id available.
// Note, you should always use the latest Amazon
// Linux AMI id or another of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();

教程：高级 Amazon EC2 竞价型实例请求管理 99

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType("t1.micro");

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult = ec2.requestSpotInstances(requestRequest);

将您的 Amazon EC2 Spot 实例请求分组

您可以选择几种不同方法为您的 Spot 实例请求分组。我们来看看使用启动组、可用区组和置放组的好
处。

如果您想要确保您的 Spot 实例全部一起启动和终止，您可以选择利用启动组。启动组是将一系列竞价
分在一组的标签。启动组内的所有实例都一起启动和终止。请注意，如果启动组内的实例已经完成了，
不能保证同一启动组新启动的实例也随之完成。以下代码示例显示了如何设置启动组的示例。

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 5 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(5));

// Set the launch group.
requestRequest.setLaunchGroup("ADVANCED-DEMO-LAUNCH-GROUP");

// Set up the specifications of the launch. This includes
// the instance type (e.g. t1.micro) and the latest Amazon Linux
// AMI id available. Note, you should always use the latest
// Amazon Linux AMI id or another of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType(InstanceType.T1Micro);

教程：高级 Amazon EC2 竞价型实例请求管理 100

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult =
 ec2.requestSpotInstances(requestRequest);

如果您要确保请求中的所有实例在同一可用区内启动，而对具体哪个可用区并没有要求，您可以利用可
用区组。可用区域组是将一系列同一可用区域内的实例分在一组的标签。共享同一可用区域组并同时完
成的所有实例将在同一可用区域内开始运行。以下是如何设置可用区域组的一个示例。

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 5 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(5));

// Set the availability zone group.
requestRequest.setAvailabilityZoneGroup("ADVANCED-DEMO-AZ-GROUP");

// Set up the specifications of the launch. This includes the instance
// type (e.g. t1.micro) and the latest Amazon Linux AMI id available.
// Note, you should always use the latest Amazon Linux AMI id or another
// of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType(InstanceType.T1Micro);

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

教程：高级 Amazon EC2 竞价型实例请求管理 101

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult =
 ec2.requestSpotInstances(requestRequest);

您可以为您的 Spot 实例指定一个可用区域。以下代码示例为您显示如何设置可用区域。

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(1));

// Set up the specifications of the launch. This includes the instance
// type (e.g. t1.micro) and the latest Amazon Linux AMI id available.
// Note, you should always use the latest Amazon Linux AMI id or another
// of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType(InstanceType.T1Micro);

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Set up the availability zone to use. Note we could retrieve the
// availability zones using the ec2.describeAvailabilityZones() API. For
// this demo we will just use us-east-1a.
SpotPlacement placement = new SpotPlacement("us-east-1b");
launchSpecification.setPlacement(placement);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult =

教程：高级 Amazon EC2 竞价型实例请求管理 102

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 ec2.requestSpotInstances(requestRequest);

最后，如果您使用的是高性能计算 (HPC) Spot 实例（例如，集群计算实例或集群 GPU 实例），则您
可以指定一个置放群组。置放组为您提供更低的延迟和实例之间的高带宽连接。以下是如何设置置放组
的一个示例。

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(1));

// Set up the specifications of the launch. This includes the instance
// type (e.g. t1.micro) and the latest Amazon Linux AMI id available.
// Note, you should always use the latest Amazon Linux AMI id or another
// of your choosing.

LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType(InstanceType.T1Micro);

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Set up the placement group to use with whatever name you desire.
// For this demo we will just use "ADVANCED-DEMO-PLACEMENT-GROUP".
SpotPlacement placement = new SpotPlacement();
placement.setGroupName("ADVANCED-DEMO-PLACEMENT-GROUP");
launchSpecification.setPlacement(placement);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult =
 ec2.requestSpotInstances(requestRequest);

教程：高级 Amazon EC2 竞价型实例请求管理 103

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

本节所显示的所有参数都是可选的。同样重要的是要认识到，这些参数中的大多数（您的
出价是一次性还是永久性出价除外）都可能降低出价实现的可能性。因此，只有当您需要
的时候才利用这些选择，这很重要。所有前面的代码示例被组合成一个长代码示例，可在
com.amazonaws.codesamples.advanced.InlineGettingStartedCodeSampleApp.java
类别中找到。

中断或终止发生后，如何持久保存一个根分区

管理竞价型实例中断最简单的方法之一是确保定期为您的数据执行到 Amazon Elastic Block Store
(Amazon Amazon EBS) 卷的检查点操作。通过定期执行点校验，如果发生中断，您只会丢失上一次点
校验后创建的数据（假设中间没有执行其他非幂等操作）。为了使这个过程变得更容易，您可以配置您
的 Spot 请求，以确保中断或终止发生时您的根分区不会被删除。在以下如何实现此方案的示例中，我
们插入了新代码。

在添加的代码中，我们创建了一个 BlockDeviceMapping 对象，并将与其相关联的 Amazon Elastic
Block Store (Amazon EBS) 设置到 Amazon EBS 对象，之前我们已对此对象进行配置，如果竞价型实
例被终止，此对象 not 随之删除。然后，我们将此 BlockDeviceMapping 添加到启动说明中所包含
的映射的 ArrayList。

// Retrieves the credentials from an AWSCredentials.properties file.
AWSCredentials credentials = null;
try {
 credentials = new PropertiesCredentials(
 GettingStartedApp.class.getResourceAsStream("AwsCredentials.properties"));
}
catch (IOException e1) {
 System.out.println(
 "Credentials were not properly entered into AwsCredentials.properties.");
 System.out.println(e1.getMessage());
 System.exit(-1);
}

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(1));

教程：高级 Amazon EC2 竞价型实例请求管理 104

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

// Set up the specifications of the launch. This includes the instance
// type (e.g. t1.micro) and the latest Amazon Linux AMI id available.
// Note, you should always use the latest Amazon Linux AMI id or another
// of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType(InstanceType.T1Micro);

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Create the block device mapping to describe the root partition.
BlockDeviceMapping blockDeviceMapping = new BlockDeviceMapping();
blockDeviceMapping.setDeviceName("/dev/sda1");

// Set the delete on termination flag to false.
EbsBlockDevice ebs = new EbsBlockDevice();
ebs.setDeleteOnTermination(Boolean.FALSE);
blockDeviceMapping.setEbs(ebs);

// Add the block device mapping to the block list.
ArrayList<BlockDeviceMapping> blockList = new ArrayList<BlockDeviceMapping>();
blockList.add(blockDeviceMapping);

// Set the block device mapping configuration in the launch specifications.
launchSpecification.setBlockDeviceMappings(blockList);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult =
 ec2.requestSpotInstances(requestRequest);

如果您想在启动时重新连接该卷到您的实例中，也可以使用数据块存储设备映射设置。另外，如果您
连接了一个非根分区，则可以指定您希望在竞价型实例恢复后连接到该实例的 Amazon Amazon EBS
卷。要实现此功能，您只需指定 EbsBlockDevice 数据元中的快照 ID 和 BlockDeviceMapping 数
据元中的替代设备名称。通过利用数据块存储设备映射，可以让引导实例变得更加容易。

使用根分区来对您的关键数据执行点校验是管理您的实例可能性中断的好方法。有关更多管理可能性中
断的方法，请参阅“Managing Interruption”视频。

教程：高级 Amazon EC2 竞价型实例请求管理 105

https://www.youtube.com/watch?feature=player_embedded&v=wcPNnUo60pc

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

如何标记您的 Spot 请求和实例

为 Amazon EC2 资源添加标签能简化您的云基础设施管理。某种形式的元数据、标记可用于创建用户
友好型名称、增强搜索能力，并改善多个用户之间的协作。您也可以使用标记来自动化脚本和部分进
程。要阅读有关为 Amazon EC2 资源添加标签的更多信息，请转至《Amazon EC2 用户指南（适用于
Linux 实例）》中的使用标签。

添加标签请求

要为您的 Spot 请求添加标签，您需要在提交请求之后 为它们添加标签。来自
requestSpotInstances() 的返回值将为您提供一个 RequestSpotInstancesResult 对象，此对象可
用于获取 Spot 请求 ID 以便添加标签：

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult = ec2.requestSpotInstances(requestRequest);
List<SpotInstanceRequest> requestResponses = requestResult.getSpotInstanceRequests();

// A list of request IDs to tag
ArrayList<String> spotInstanceRequestIds = new ArrayList<String>();

// Add the request ids to the hashset, so we can determine when they hit the
// active state.
for (SpotInstanceRequest requestResponse : requestResponses) {
 System.out.println("Created Spot Request:
 "+requestResponse.getSpotInstanceRequestId());
 spotInstanceRequestIds.add(requestResponse.getSpotInstanceRequestId());
}

在获得 ID 后，您可以通过将请求 ID 添加到 CreateTagsRequest 并调用 Amazon EC2 客户端的
createTags() 方法来为请求添加标签：

// The list of tags to create
ArrayList<Tag> requestTags = new ArrayList<Tag>();
requestTags.add(new Tag("keyname1","value1"));

// Create the tag request
CreateTagsRequest createTagsRequest_requests = new CreateTagsRequest();
createTagsRequest_requests.setResources(spotInstanceRequestIds);
createTagsRequest_requests.setTags(requestTags);

// Tag the spot request
try {

教程：高级 Amazon EC2 竞价型实例请求管理 106

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/Using_Tags.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RequestSpotInstancesResult.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateTagsRequest.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 ec2.createTags(createTagsRequest_requests);
}
catch (AmazonServiceException e) {
 System.out.println("Error terminating instances");
 System.out.println("Caught Exception: " + e.getMessage());
 System.out.println("Reponse Status Code: " + e.getStatusCode());
 System.out.println("Error Code: " + e.getErrorCode());
 System.out.println("Request ID: " + e.getRequestId());
}

标记实例

与 Spot 请求本身类似，您只能在创建实例后为其添加标签，此操作将在满足 Spot 请求后 (不再处于打
开 状态) 立即执行。

您可以通过使用 DescribeSpotInstanceRequestsRequest 对象调用 Amazon EC2 客
户端的 describeSpotInstanceRequests() 方法来检查请求的状态。返回的
DescribeSpotInstanceRequestsResult 对象包含 SpotInstanceRequest 对象的列表，可使用这些对象
查询 Spot 请求的状态并在其不再处于打开 状态后获取其实例 ID。

在 Spot 请求不在处于打开状态后，您可以通过调用其 SpotInstanceRequest 方法从
getInstanceId() 对象检索其实例 ID。

boolean anyOpen; // tracks whether any requests are still open

// a list of instances to tag.
ArrayList<String> instanceIds = new ArrayList<String>();

do {
 DescribeSpotInstanceRequestsRequest describeRequest =
 new DescribeSpotInstanceRequestsRequest();
 describeRequest.setSpotInstanceRequestIds(spotInstanceRequestIds);

 anyOpen=false; // assume no requests are still open

 try {
 // Get the requests to monitor
 DescribeSpotInstanceRequestsResult describeResult =
 ec2.describeSpotInstanceRequests(describeRequest);

 List<SpotInstanceRequest> describeResponses =
 describeResult.getSpotInstanceRequests();

教程：高级 Amazon EC2 竞价型实例请求管理 107

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeSpotInstanceRequestsRequest.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeSpotInstanceRequestsResult.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/SpotInstanceRequest.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 // are any requests open?
 for (SpotInstanceRequest describeResponse : describeResponses) {
 if (describeResponse.getState().equals("open")) {
 anyOpen = true;
 break;
 }
 // get the corresponding instance ID of the spot request
 instanceIds.add(describeResponse.getInstanceId());
 }
 }
 catch (AmazonServiceException e) {
 // Don't break the loop due to an exception (it may be a temporary issue)
 anyOpen = true;
 }

 try {
 Thread.sleep(60*1000); // sleep 60s.
 }
 catch (Exception e) {
 // Do nothing if the thread woke up early.
 }
} while (anyOpen);

现在，您可以为返回的实例添加标签：

// Create a list of tags to create
ArrayList<Tag> instanceTags = new ArrayList<Tag>();
instanceTags.add(new Tag("keyname1","value1"));

// Create the tag request
CreateTagsRequest createTagsRequest_instances = new CreateTagsRequest();
createTagsRequest_instances.setResources(instanceIds);
createTagsRequest_instances.setTags(instanceTags);

// Tag the instance
try {
 ec2.createTags(createTagsRequest_instances);
}
catch (AmazonServiceException e) {
 // Write out any exceptions that may have occurred.
 System.out.println("Error terminating instances");
 System.out.println("Caught Exception: " + e.getMessage());
 System.out.println("Reponse Status Code: " + e.getStatusCode());

教程：高级 Amazon EC2 竞价型实例请求管理 108

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 System.out.println("Error Code: " + e.getErrorCode());
 System.out.println("Request ID: " + e.getRequestId());
}

取消 Spot 请求并终止实例

取消 Spot 请求

要取消竞价型实例请求，请使用 CancelSpotInstanceRequestsRequest 对象调用 Amazon EC2 客户端
上的 cancelSpotInstanceRequests。

try {
 CancelSpotInstanceRequestsRequest cancelRequest = new
 CancelSpotInstanceRequestsRequest(spotInstanceRequestIds);
 ec2.cancelSpotInstanceRequests(cancelRequest);
} catch (AmazonServiceException e) {
 System.out.println("Error cancelling instances");
 System.out.println("Caught Exception: " + e.getMessage());
 System.out.println("Reponse Status Code: " + e.getStatusCode());
 System.out.println("Error Code: " + e.getErrorCode());
 System.out.println("Request ID: " + e.getRequestId());
}

终止 Spot 实例

您可以通过将任何正在运行的竞价型实例的 ID 传递到 Amazon EC2 客户端的
terminateInstances() 方法来终止该实例。

try {
 TerminateInstancesRequest terminateRequest = new
 TerminateInstancesRequest(instanceIds);
 ec2.terminateInstances(terminateRequest);
} catch (AmazonServiceException e) {
 System.out.println("Error terminating instances");
 System.out.println("Caught Exception: " + e.getMessage());
 System.out.println("Reponse Status Code: " + e.getStatusCode());
 System.out.println("Error Code: " + e.getErrorCode());
 System.out.println("Request ID: " + e.getRequestId());
}

教程：高级 Amazon EC2 竞价型实例请求管理 109

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CancelSpotInstanceRequestsRequest.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

综述

综述起来，我们提供一种更加以数据元为导向的方法，将此教程中所示步骤结合到一个易于使
用的类别。我们将执行这些操作的一个被称为 Requests 的类别实例化。我们还创建了一个
GettingStartedApp 类，为我们执行高级函数调用提供主要方法。

可在 GitHub 查看和下载此示例的完整源代码。

恭喜您！您已经学完了“高级请求功能”教程，了解如何使用适用于 Java 的 Amazon SDK 开发 Spot 实
例软件。

管理 Amazon EC2实例

创建实例

要创建新 Amazon EC2 实例，请调用 AmazonEC2Client 的 runInstances 方法，并为它提供
RunInstancesRequest，其中包含要使用的亚马逊机器映像 (AMI) 和一个实例类型。

导入。

import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.InstanceType;
import com.amazonaws.services.ec2.model.RunInstancesRequest;
import com.amazonaws.services.ec2.model.RunInstancesResult;
import com.amazonaws.services.ec2.model.Tag;

代码

RunInstancesRequest run_request = new RunInstancesRequest()
 .withImageId(ami_id)
 .withInstanceType(InstanceType.T1Micro)
 .withMaxCount(1)
 .withMinCount(1);

RunInstancesResult run_response = ec2.runInstances(run_request);

String reservation_id =
 run_response.getReservation().getInstances().get(0).getInstanceId();

请参阅完整示例。

管理 Amazon EC2实例 110

https://github.com/aws/aws-sdk-java/tree/master/src/samples/AmazonEC2SpotInstances-Advanced
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesRequest.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/AMIs.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/instance-types.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/CreateInstance.java

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

启动实例

要启动 Amazon EC2 实例，请调用 AmazonEC2Client 的 startInstances 方法，并为它提供
StartInstancesRequest，其中包含要启动实例的 ID。

导入。

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.StartInstancesRequest;

代码

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

StartInstancesRequest request = new StartInstancesRequest()
 .withInstanceIds(instance_id);

ec2.startInstances(request);

请参阅完整示例。

停止实例

要停止 Amazon EC2 实例，请调用 AmazonEC2Client 的 stopInstances 方法，并为它提供
StopInstancesRequest，其中包含要停止的实例的 ID。

导入。

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.StopInstancesRequest;

代码

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

StopInstancesRequest request = new StopInstancesRequest()
 .withInstanceIds(instance_id);

管理 Amazon EC2实例 111

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/StartInstancesRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/StartStopInstance.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/StopInstancesRequest.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

ec2.stopInstances(request);

请参阅完整示例。

重启实例

要重启 Amazon EC2 实例，请调用 AmazonEC2Client 的 rebootInstances 方法，并为它提供
RebootInstancesRequest，其中包含要重启实例的 ID。

导入。

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.RebootInstancesRequest;
import com.amazonaws.services.ec2.model.RebootInstancesResult;

代码

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

RebootInstancesRequest request = new RebootInstancesRequest()
 .withInstanceIds(instance_id);

RebootInstancesResult response = ec2.rebootInstances(request);

请参阅完整示例。

描述实例

要列出您的实例，您需要创建 DescribeInstancesRequest 并调用 AmazonEC2Client 的
describeInstances 方法。它将返回 DescribeInstancesResult 对象，您可以用它来列出您的账户
和区域的 Amazon EC2 实例。

实例按预留进行分组。每个预留对应对启动实例的 startInstances 的调用。要列出您的实例，您
必须首先在每个返回的 DescribeInstancesResultReservationgetReservations' method,
and then call `getInstances 对象上调用 类的 。

导入。

import com.amazonaws.services.ec2.AmazonEC2;

管理 Amazon EC2实例 112

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/StartStopInstance.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RebootInstancesRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/RebootInstance.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeInstancesRequest.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeInstancesResult.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/Reservation.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DescribeInstancesRequest;
import com.amazonaws.services.ec2.model.DescribeInstancesResult;
import com.amazonaws.services.ec2.model.Instance;
import com.amazonaws.services.ec2.model.Reservation;

代码

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();
boolean done = false;

DescribeInstancesRequest request = new DescribeInstancesRequest();
while(!done) {
 DescribeInstancesResult response = ec2.describeInstances(request);

 for(Reservation reservation : response.getReservations()) {
 for(Instance instance : reservation.getInstances()) {
 System.out.printf(
 "Found instance with id %s, " +
 "AMI %s, " +
 "type %s, " +
 "state %s " +
 "and monitoring state %s",
 instance.getInstanceId(),
 instance.getImageId(),
 instance.getInstanceType(),
 instance.getState().getName(),
 instance.getMonitoring().getState());
 }
 }

 request.setNextToken(response.getNextToken());

 if(response.getNextToken() == null) {
 done = true;
 }
}

结果将分页；您可以获取更多结果，方式是：将从结果对象的 getNextToken 方法返回的值传递到您
的原始请求对象的 setNextToken 方法，然后在下一个 describeInstances 调用中使用相同的请
求对象。

请参阅完整示例。

管理 Amazon EC2实例 113

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DescribeInstances.java

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

监控实例

您可以监控 Amazon EC2 实例的各方面，例如 CPU 和网络利用率、可用内存和剩余磁盘空间。要了
解有关实例监控的信息，请参阅《Amazon EC2 用户指南（适用于 Linux 实例）》中的监控 Amazon
EC2。

要开始监控实例，您必须用要监控实例的 ID 创建一个 MonitorInstancesRequest，并将其传递给
AmazonEC2Client 的 monitorInstances 方法。

导入。

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.MonitorInstancesRequest;

代码

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

MonitorInstancesRequest request = new MonitorInstancesRequest()
 .withInstanceIds(instance_id);

ec2.monitorInstances(request);

请参阅完整示例。

停止实例监控

要停止监控实例，您必须用要停止监控实例的 ID 创建一个 UnmonitorInstancesRequest，并将其传递
给 AmazonEC2Client 的 unmonitorInstances 方法。

导入。

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.UnmonitorInstancesRequest;

代码

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

管理 Amazon EC2实例 114

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/monitoring_ec2.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/monitoring_ec2.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/MonitorInstancesRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/MonitorInstance.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/UnmonitorInstancesRequest.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

UnmonitorInstancesRequest request = new UnmonitorInstancesRequest()
 .withInstanceIds(instance_id);

ec2.unmonitorInstances(request);

请参阅完整示例。

更多信息

• 《Amazon EC2 API Reference》中的 RunInstances

• 《Amazon EC2 API Reference》中的 DescribeInstances

• 《Amazon EC2 API Reference》中的 StartInstances

• 《Amazon EC2 API Reference》中的 StopInstances

• 《Amazon EC2 API Reference》中的 RebootInstances

• 《Amazon EC2 API Reference》中的 MonitorInstances

• 《Amazon EC2 API Reference》中的 UnmonitorInstances

在 Amazon EC2 中使用弹性 IP 地址

EC2-Classic 将停用

Warning

我们将于 2022 年 8 月 15 日停用 EC2-Classic。我们建议您从 EC2-Classic 迁移到 VPC。
有关更多信息，请参阅博客文章 EC2-Classic-Classic Networking is Retiring – Here's How to
Prepare。

分配弹性 IP 地址

要使用弹性 IP 地址，您应首先向您的账户分配这样一个地址，然后将其与您的实例或网络接口关联。

要分配弹性 IP 地址，请使用包含网络类型（经典 EC2 或 VPC）的 AllocateAddressRequest 对象调用
AmazonEC2Client 的 allocateAddress 方法。

返回的 AllocateAddressResult 包含一个分配 ID，您可以用它来将地址与实例关联，方法是在
AssociateAddressRequest 中将分配 ID 和实例 ID 传递给 AmazonEC2Client 的 associateAddress
方法。

在 Amazon EC2 中使用弹性 IP 地址 115

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/MonitorInstance.java
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_RunInstances.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_DescribeInstances.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_StartInstances.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_StopInstances.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_RebootInstances.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_MonitorInstances.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_UnmonitorInstances.html
https://www.amazonaws.cn/blogs/aws/ec2-classic-is-retiring-heres-how-to-prepare/
https://www.amazonaws.cn/blogs/aws/ec2-classic-is-retiring-heres-how-to-prepare/
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AllocateAddressRequest.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AllocateAddressResult.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AssociateAddressRequest.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

导入。

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.AllocateAddressRequest;
import com.amazonaws.services.ec2.model.AllocateAddressResult;
import com.amazonaws.services.ec2.model.AssociateAddressRequest;
import com.amazonaws.services.ec2.model.AssociateAddressResult;
import com.amazonaws.services.ec2.model.DomainType;

代码

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

AllocateAddressRequest allocate_request = new AllocateAddressRequest()
 .withDomain(DomainType.Vpc);

AllocateAddressResult allocate_response =
 ec2.allocateAddress(allocate_request);

String allocation_id = allocate_response.getAllocationId();

AssociateAddressRequest associate_request =
 new AssociateAddressRequest()
 .withInstanceId(instance_id)
 .withAllocationId(allocation_id);

AssociateAddressResult associate_response =
 ec2.associateAddress(associate_request);

请参阅完整示例。

描述弹性 IP 地址

要列出分配到您的账户的弹性 IP 地址，请调用 AmazonEC2Client 的 describeAddresses 方法。它
会返回 DescribeAddressesResult，您可以使用它来获取在账户中代表弹性 IP 地址的 Address 对象的
列表。

导入。

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;

在 Amazon EC2 中使用弹性 IP 地址 116

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/AllocateAddress.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeAddressesResult.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/Address.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

import com.amazonaws.services.ec2.model.Address;
import com.amazonaws.services.ec2.model.DescribeAddressesResult;

代码

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

DescribeAddressesResult response = ec2.describeAddresses();

for(Address address : response.getAddresses()) {
 System.out.printf(
 "Found address with public IP %s, " +
 "domain %s, " +
 "allocation id %s " +
 "and NIC id %s",
 address.getPublicIp(),
 address.getDomain(),
 address.getAllocationId(),
 address.getNetworkInterfaceId());
}

请参阅完整示例。

释放弹性 IP 地址

要释放弹性 IP 地址，请调用 AmazonEC2Client 的 releaseAddress 方法，向其传递
ReleaseAddressRequest，包含您要释放的弹性 IP 地址的分配 ID。

导入。

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.ReleaseAddressRequest;
import com.amazonaws.services.ec2.model.ReleaseAddressResult;

代码

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

ReleaseAddressRequest request = new ReleaseAddressRequest()
 .withAllocationId(alloc_id);

在 Amazon EC2 中使用弹性 IP 地址 117

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DescribeAddresses.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/ReleaseAddressRequest.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

ReleaseAddressResult response = ec2.releaseAddress(request);

在释放弹性 IP 地址后，它将回到 Amazon IP 地址池，您此后可能不能再使用该地址。请务必更新您的
DNS 记录和通过该地址进行通信的任何服务器或设备。如果您尝试释放已释放的弹性 IP 地址，且该地
址已分配到另一个 Amazon Web Services 账户 账户，您会收到 AuthFailure 错误。

如果您使用的是 EC2-Classic 或默认 VPC，则释放弹性 IP 地址会自动断开该地址与任何实例的关联。
要在不释放的情况下取消关联弹性 IP 地址，请使用 AmazonEC2Client 的 disassociateAddress
方法。

如果您使用的是非默认 VPC，则必须使用 disassociateAddress 取消弹性 IP 地址的关联，然后再
尝试释放它。否则，Amazon EC2 会返回错误 (InvalidIPAddress.InUse)。

请参阅完整示例。

更多信息

• 《Amazon EC2 用户指南（适用于 Linux 实例）》中的弹性 IP 地址

• 《Amazon EC2 API Reference》中的 AllocateAddress

• 《Amazon EC2 API Reference》中的 DescribeAddresses

• 《Amazon EC2 API Reference》中的 ReleaseAddress

使用区域和可用区

描述区域

要列出账户可用的区域，请调用 AmazonEC2Client 的 describeRegions 方法。该方法返回
DescribeRegionsResult。调用返回对象的 getRegions 方法，获取表示各个区域的 Region 对象的列
表。

导入。

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DescribeRegionsResult;
import com.amazonaws.services.ec2.model.Region;
import com.amazonaws.services.ec2.model.AvailabilityZone;
import com.amazonaws.services.ec2.model.DescribeAvailabilityZonesResult;

使用区域和可用区 118

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/ReleaseAddress.java
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_AllocateAddress.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_DescribeAddresses.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_ReleaseAddress.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeRegionsResult.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/Region.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

代码

DescribeRegionsResult regions_response = ec2.describeRegions();

for(Region region : regions_response.getRegions()) {
 System.out.printf(
 "Found region %s " +
 "with endpoint %s",
 region.getRegionName(),
 region.getEndpoint());
}

请参阅完整示例。

描述可用区

要列出账户可用的每个可用区，请调用 AmazonEC2Client 的 describeAvailabilityZones 方
法。该方法返回 DescribeAvailabilityZonesResult。调用其 getAvailabilityZones 方法，获取表
示各个可用区的 AvailabilityZone 对象的列表。

导入。

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DescribeRegionsResult;
import com.amazonaws.services.ec2.model.Region;
import com.amazonaws.services.ec2.model.AvailabilityZone;
import com.amazonaws.services.ec2.model.DescribeAvailabilityZonesResult;

代码

DescribeAvailabilityZonesResult zones_response =
 ec2.describeAvailabilityZones();

for(AvailabilityZone zone : zones_response.getAvailabilityZones()) {
 System.out.printf(
 "Found availability zone %s " +
 "with status %s " +
 "in region %s",
 zone.getZoneName(),
 zone.getState(),
 zone.getRegionName());

使用区域和可用区 119

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DescribeRegionsAndZones.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeAvailabilityZonesResult.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AvailabilityZone.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

}

请参阅完整示例。

描述账户

要描述您的账户，请调用 AmazonEC2Client 的 describeAccountAttributes 方法。此方法返
回 DescribeAccountAttributesResult 对象。调用此对象的 getAccountAttributes 方法以获取
AccountAttribute 对象的列表。您可以遍历该列表来检索 AccountAttribute 对象。

您可以通过调用 AccountAttribute 对象的 getAttributeValues 方法来获取您账户的属性值。此方
法返回 AccountAttributeValue 对象的列表。您可以遍历第二个列表来显示属性的值（请参阅以下代码
示例）。

导入。

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.AccountAttributeValue;
import com.amazonaws.services.ec2.model.DescribeAccountAttributesResult;
import com.amazonaws.services.ec2.model.AccountAttribute;
import java.util.List;
import java.util.ListIterator;

代码

AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

try{
 DescribeAccountAttributesResult accountResults = ec2.describeAccountAttributes();
 List<AccountAttribute> accountList = accountResults.getAccountAttributes();

 for (ListIterator iter = accountList.listIterator(); iter.hasNext();) {

 AccountAttribute attribute = (AccountAttribute) iter.next();
 System.out.print("\n The name of the attribute is
 "+attribute.getAttributeName());
 List<AccountAttributeValue> values = attribute.getAttributeValues();

 //iterate through the attribute values
 for (ListIterator iterVals = values.listIterator(); iterVals.hasNext();) {
 AccountAttributeValue myValue = (AccountAttributeValue) iterVals.next();

使用区域和可用区 120

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DescribeRegionsAndZones.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeAccountAttributesResult.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AccountAttribute.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AccountAttribute.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AccountAttribute.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AccountAttributeValue.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 System.out.print("\n The value of the attribute is
 "+myValue.getAttributeValue());
 }
 }
 System.out.print("Done");
}
catch (Exception e)
{
 e.getStackTrace();
}

请参阅 GitHub 上的完整示例。

更多信息

• 《Amazon EC2 用户指南（适用于 Linux 实例）》中的区域和可用区

• 《Amazon EC2 API Reference》中的 DescribeRegions

• 《Amazon EC2 API Reference》中的 DescribeAvailabilityZones

使用 Amazon EC2 密钥对

创建密钥对

要创建密钥对，请使用包含密钥名称的 CreateKeyPairRequest 调用 AmazonEC2Client 的
createKeyPair 方法。

导入。

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.CreateKeyPairRequest;
import com.amazonaws.services.ec2.model.CreateKeyPairResult;

代码

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

CreateKeyPairRequest request = new CreateKeyPairRequest()
 .withKeyName(key_name);

使用 Amazon EC2 密钥对 121

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DescribeAccount.java
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_DescribeRegions.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_DescribeAvailabilityZones.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateKeyPairRequest.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

CreateKeyPairResult response = ec2.createKeyPair(request);

请参阅完整示例。

描述密钥对

要列出密钥对或获取相关信息，请调用 AmazonEC2Client 的 describeKeyPairs 方法。它返回
DescribeKeyPairsResult，您可以通过调用其 getKeyPairs 方法来访问密钥对的列表，该方法返回一
个 KeyPairInfo 对象的列表。

导入。

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DescribeKeyPairsResult;
import com.amazonaws.services.ec2.model.KeyPairInfo;

代码

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

DescribeKeyPairsResult response = ec2.describeKeyPairs();

for(KeyPairInfo key_pair : response.getKeyPairs()) {
 System.out.printf(
 "Found key pair with name %s " +
 "and fingerprint %s",
 key_pair.getKeyName(),
 key_pair.getKeyFingerprint());
}

请参阅完整示例。

删除密钥对

要删除密钥对，请调用 AmazonEC2Client 的 deleteKeyPair 方法，将其传递给一个包含要删除密
钥对名称的 DeleteKeyPairRequest。

导入。

import com.amazonaws.services.ec2.AmazonEC2;

使用 Amazon EC2 密钥对 122

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/CreateKeyPair.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeKeyPairsResult.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/KeyPairInfo.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DescribeKeyPairs.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DeleteKeyPairRequest.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DeleteKeyPairRequest;
import com.amazonaws.services.ec2.model.DeleteKeyPairResult;

代码

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

DeleteKeyPairRequest request = new DeleteKeyPairRequest()
 .withKeyName(key_name);

DeleteKeyPairResult response = ec2.deleteKeyPair(request);

请参阅完整示例。

更多信息

• 《Amazon EC2 用户指南（适用于 Linux 实例）》中的 Amazon EC2 密钥对

• 《Amazon EC2 API Reference》中的 CreateKeyPair

• 《Amazon EC2 API Reference》中的 DescribeKeyPairs

• 《Amazon EC2 API Reference》中的 DeleteKeyPair

在 Amazon EC2 中使用安全组

正在创建安全组

要创建安全组，请使用包含密钥名称的 CreateSecurityGroupRequest 调用 AmazonEC2Client 的
createSecurityGroup 方法。

导入。

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.CreateSecurityGroupRequest;
import com.amazonaws.services.ec2.model.CreateSecurityGroupResult;

代码

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

在 Amazon EC2 中使用安全组 123

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DeleteKeyPair.java
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_CreateKeyPair.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_DescribeKeyPairs.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_DeleteKeyPair.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateSecurityGroupRequest.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

CreateSecurityGroupRequest create_request = new
 CreateSecurityGroupRequest()
 .withGroupName(group_name)
 .withDescription(group_desc)
 .withVpcId(vpc_id);

CreateSecurityGroupResult create_response =
 ec2.createSecurityGroup(create_request);

请参阅完整示例。

配置安全组

安全组可以控制对 Amazon EC2 实例的入站 (入口) 流量和出站 (出口) 流量。

要向安全组添加入口规则，请使用 AmazonEC2Client 的 authorizeSecurityGroupIngress 方
法，提供安全组的名称和您想要在 AuthorizeSecurityGroupIngressRequest 对象中分配给安全组的访
问规则 (IpPermission)。以下示例演示如何将 IP 权限添加到安全组。

导入。

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.CreateSecurityGroupRequest;
import com.amazonaws.services.ec2.model.CreateSecurityGroupResult;

代码

IpRange ip_range = new IpRange()
 .withCidrIp("0.0.0.0/0");

IpPermission ip_perm = new IpPermission()
 .withIpProtocol("tcp")
 .withToPort(80)
 .withFromPort(80)
 .withIpv4Ranges(ip_range);

IpPermission ip_perm2 = new IpPermission()
 .withIpProtocol("tcp")
 .withToPort(22)
 .withFromPort(22)

在 Amazon EC2 中使用安全组 124

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/CreateSecurityGroup.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AuthorizeSecurityGroupIngressRequest.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/IpPermission.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 .withIpv4Ranges(ip_range);

AuthorizeSecurityGroupIngressRequest auth_request = new
 AuthorizeSecurityGroupIngressRequest()
 .withGroupName(group_name)
 .withIpPermissions(ip_perm, ip_perm2);

AuthorizeSecurityGroupIngressResult auth_response =
 ec2.authorizeSecurityGroupIngress(auth_request);

要向安全组添加出口规则，请在 AuthorizeSecurityGroupEgressRequest 中向 AmazonEC2Client 的
authorizeSecurityGroupEgress 方法提供相似的数据。

请参阅完整示例。

描述安全组

要描述您的安全组或获取相关信息，请调用 AmazonEC2Client 的 describeSecurityGroups 方
法。它会返回 DescribeSecurityGroupsResult，您可以通过调用其 getSecurityGroups 方法来访问
安全组的列表，该方法返回一个 SecurityGroup 对象的列表。

导入。

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DescribeSecurityGroupsRequest;
import com.amazonaws.services.ec2.model.DescribeSecurityGroupsResult;

代码

final String USAGE =
 "To run this example, supply a group id\n" +
 "Ex: DescribeSecurityGroups <group-id>\n";

if (args.length != 1) {
 System.out.println(USAGE);
 System.exit(1);
}

String group_id = args[0];

请参阅完整示例。

在 Amazon EC2 中使用安全组 125

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AuthorizeSecurityGroupEgressRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/CreateSecurityGroup.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeSecurityGroupsResult.html
https://docs.amazonaws.cn/AWSJavaSDK/latest/javadoc/com/amazonaws/services/ec2/model/SecurityGroup.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DescribeSecurityGroups.java

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

正在删除安全组

要删除安全组，请调用 AmazonEC2Client 的 deleteSecurityGroup 方法，将其传递给一个包含要
删除安全组 ID 的 DeleteSecurityGroupRequest。

导入。

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DeleteSecurityGroupRequest;
import com.amazonaws.services.ec2.model.DeleteSecurityGroupResult;

代码

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

DeleteSecurityGroupRequest request = new DeleteSecurityGroupRequest()
 .withGroupId(group_id);

DeleteSecurityGroupResult response = ec2.deleteSecurityGroup(request);

请参阅完整示例。

更多信息

• 《Amazon EC2 用户指南（适用于 Linux 实例）》中的 Amazon EC2 安全组

• 《Amazon EC2 用户指南（适用于 Linux 实例）》中的为您的 Linux 实例授权入站流量

• 《Amazon EC2 API Reference》中的 CreateSecurityGroup

• 《Amazon EC2 API Reference》中的 DescribeSecurityGroups

• 《Amazon EC2 API Reference》中的 DeleteSecurityGroup

• 《Amazon EC2 API Reference》中的 AuthorizeSecurityGroupIngress

使用适用于 Java 的 Amazon SDK 的 IAM 示例
本部分提供使用适用于 Java 的 Amazon SDK 对 IAM 进行编程的示例。

Amazon Identity and Access Management (IAM) 使您能够安全地控制您的用户对 Amazon 服务和资
源的访问权限。使用 IAM，您可以创建和管理 Amazon 用户和组，并使用权限来允许和拒绝他们对
Amazon 资源的访问。有关 IAM 的完整说明，请访问《IAM 用户指南》。

Amazon Identity and Access Management (IAM) 示例 126

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DeleteSecurityGroupRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DeleteSecurityGroup.java
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/authorizing-access-to-an-instance.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_CreateSecurityGroup.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_DescribeSecurityGroups.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_DeleteSecurityGroup.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_AuthorizeSecurityGroupIngress.html
https://www.amazonaws.cn/sdk-for-java/
https://www.amazonaws.cn/iam/
https://docs.amazonaws.cn/IAM/latest/UserGuide/

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

Note

该示例仅包含演示每种方法所需的代码。完整的示例代码在 GitHub 上提供。您可以从中下载
单个源文件，也可以将存储库复制到本地以获得所有示例，然后构建并运行它们。

主题

• 管理 IAM 访问密钥

• 管理 IAM 用户

• 使用 IAM 账户别名

• 使用 IAM 策略

• 使用 IAM 服务器证书

管理 IAM 访问密钥

创建访问密钥

要创建 IAM 访问密钥，请使用 CreateAccessKeyRequest 对象调用
AmazonIdentityManagementClient 的 createAccessKey 方法。

CreateAccessKeyRequest 有两个构造函数，一个需要用户名，另一个不带参数。如果您使用不带
参数的版本，则必须使用 withUserName setter 设置用户名，然后再将其传递给 createAccessKey
方法。

导入。

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.CreateAccessKeyRequest;
import com.amazonaws.services.identitymanagement.model.CreateAccessKeyResult;

代码

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

CreateAccessKeyRequest request = new CreateAccessKeyRequest()
 .withUserName(user);

管理 IAM 访问密钥 127

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/CreateAccessKeyRequest.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

CreateAccessKeyResult response = iam.createAccessKey(request);

请参阅 GitHub 上的完整示例。

列出访问密钥

要列出指定用户的访问密钥，请创建一个 ListAccessKeysRequest 对象，其中包含要列出其密钥的用
户名，并将该对象传递给 AmazonIdentityManagementClient 的 listAccessKeys 方法。

Note

如果您未向 listAccessKeys 提供用户名，则它将尝试列出与签署该请求的 Amazon Web
Services 账户相关联的访问密钥。

导入。

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.AccessKeyMetadata;
import com.amazonaws.services.identitymanagement.model.ListAccessKeysRequest;
import com.amazonaws.services.identitymanagement.model.ListAccessKeysResult;

代码

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

boolean done = false;
ListAccessKeysRequest request = new ListAccessKeysRequest()
 .withUserName(username);

while (!done) {

 ListAccessKeysResult response = iam.listAccessKeys(request);

 for (AccessKeyMetadata metadata :
 response.getAccessKeyMetadata()) {
 System.out.format("Retrieved access key %s",
 metadata.getAccessKeyId());
 }

管理 IAM 访问密钥 128

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/CreateAccessKey.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/ListAccessKeysRequest.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 request.setMarker(response.getMarker());

 if (!response.getIsTruncated()) {
 done = true;
 }
}

listAccessKeys 的结果分页显示 (默认情况下，每个调用最多返回 100 个记录)。您可以调用返回的
ListAccessKeysResult 对象中的 getIsTruncated，以查看该查询返回的结果是否少于可用结果。如
果是这样，则在 setMarker 上调用 ListAccessKeysRequest 并将其传递回 listAccessKeys
的后续调用。

请参阅 GitHub 上的完整示例。

检索上次使用访问密钥的时间

要获取上次使用访问密钥的时间，请使用访问密钥 ID（可使用 GetAccessKeyLastUsedRequest 对
象传入，也可直接传给直接接收访问密钥 ID 的重载）调用 AmazonIdentityManagementClient 的
getAccessKeyLastUsed 方法。

然后，您可以使用返回的 GetAccessKeyLastUsedResult 对象检索上次使用密钥的时间。

导入。

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.GetAccessKeyLastUsedRequest;
import com.amazonaws.services.identitymanagement.model.GetAccessKeyLastUsedResult;

代码

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

GetAccessKeyLastUsedRequest request = new GetAccessKeyLastUsedRequest()
 .withAccessKeyId(access_id);

GetAccessKeyLastUsedResult response = iam.getAccessKeyLastUsed(request);

System.out.println("Access key was last used at: " +
 response.getAccessKeyLastUsed().getLastUsedDate());

管理 IAM 访问密钥 129

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/ListAccessKeysResult.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/ListAccessKeys.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/GetAccessKeyLastUsedRequest.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/GetAccessKeyLastUsedResult.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

请参阅 GitHub 上的完整示例。

激活或停用访问密钥

您可以激活或停用访问密钥，方式是创建 UpdateAccessKeyRequest 对象，提供访问密钥 ID、
用户名（可选）和所需状态，然后将请求对象传递给 AmazonIdentityManagementClient 的
updateAccessKey 方法。

导入。

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.UpdateAccessKeyRequest;
import com.amazonaws.services.identitymanagement.model.UpdateAccessKeyResult;

代码

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

UpdateAccessKeyRequest request = new UpdateAccessKeyRequest()
 .withAccessKeyId(access_id)
 .withUserName(username)
 .withStatus(status);

UpdateAccessKeyResult response = iam.updateAccessKey(request);

请参阅 GitHub 上的完整示例。

删除访问密钥

要永久删除访问密钥，请调用 AmazonIdentityManagementClient 的 deleteKey 方法，并为它提供
DeleteAccessKeyRequest，其中包含访问密钥的 ID 和用户名。

Note

密钥在删除后无法再检索或使用。要临时停用密钥，使其可以稍后再次激活，请改用
updateAccessKey 方法。

导入。

管理 IAM 访问密钥 130

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/AccessKeyLastUsed.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/UpdateAccessKeyRequest.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/StatusType.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/UpdateAccessKey.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/DeleteAccessKeyRequest.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.DeleteAccessKeyRequest;
import com.amazonaws.services.identitymanagement.model.DeleteAccessKeyResult;

代码

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

DeleteAccessKeyRequest request = new DeleteAccessKeyRequest()
 .withAccessKeyId(access_key)
 .withUserName(username);

DeleteAccessKeyResult response = iam.deleteAccessKey(request);

请参阅 GitHub 上的完整示例。

更多信息

• 《IAM API Reference》中的 CreateAccessKey

• 《IAM API Reference》中的 ListAccessKeys

• 《IAM API Reference》中的 GetAccessKeyLastUsed

• 《IAM API Reference》中的 UpdateAccessKey

• 《IAM API Reference》中的 DeleteAccessKey

管理 IAM 用户

创建用户

通过向 AmazonIdentityManagementClient 的 createUser 方法提供用户名来创建新 IAM 用户，用户
名可直接提供，也可以使用包含用户名的 CreateUserRequest 对象。

导入。

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.CreateUserRequest;
import com.amazonaws.services.identitymanagement.model.CreateUserResult;

管理 IAM 用户 131

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/DeleteAccessKey.java
https://docs.amazonaws.cn/IAM/latest/APIReference/API_CreateAccessKey.html
https://docs.amazonaws.cn/IAM/latest/APIReference/API_ListAccessKeys.html
https://docs.amazonaws.cn/IAM/latest/APIReference/API_GetAccessKeyLastUsed.html
https://docs.amazonaws.cn/IAM/latest/APIReference/API_UpdateAccessKey.html
https://docs.amazonaws.cn/IAM/latest/APIReference/API_DeleteAccessKey.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/CreateUserRequest.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

代码

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

CreateUserRequest request = new CreateUserRequest()
 .withUserName(username);

CreateUserResult response = iam.createUser(request);

请参阅 GitHub 上的完整示例。

列出用户

要列出您账户中的 IAM 用户，请创建新的 ListUsersRequest 并将其传递给
AmazonIdentityManagementClient 的 listUsers 方法。您可以通过在返回的 ListUsersResult 对象
上调用 getUsers 来检索用户列表。

listUsers 返回的用户列表已分页。您可以通过调用响应对象的 getIsTruncated 方法查看更多
可检索的结果。如果返回 true，则调用请求对象的 setMarker() 方法，并为其传递响应对象的
getMarker() 方法的返回值。

导入。

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.ListUsersRequest;
import com.amazonaws.services.identitymanagement.model.ListUsersResult;
import com.amazonaws.services.identitymanagement.model.User;

代码

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

boolean done = false;
ListUsersRequest request = new ListUsersRequest();

while(!done) {
 ListUsersResult response = iam.listUsers(request);

管理 IAM 用户 132

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/CreateUser.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/ListUsersRequest.html
https://docs.amazonaws.cn/AWSJavaSDK/latest/javadoc/com/amazonaws/services/identitymanagement/model/ListUsersResult.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 for(User user : response.getUsers()) {
 System.out.format("Retrieved user %s", user.getUserName());
 }

 request.setMarker(response.getMarker());

 if(!response.getIsTruncated()) {
 done = true;
 }
}

请参阅 GitHub 上的完整示例。

更新用户

要更新用户，请调用 AmazonIdentityManagementClient 对象的 updateUser 方法，该方法采用
UpdateUserRequest 对象，您可以使用它更改用户的名称 或路径。

导入。

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.UpdateUserRequest;
import com.amazonaws.services.identitymanagement.model.UpdateUserResult;

代码

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

UpdateUserRequest request = new UpdateUserRequest()
 .withUserName(cur_name)
 .withNewUserName(new_name);

UpdateUserResult response = iam.updateUser(request);

请参阅 GitHub 上的完整示例。

删除用户

要删除用户，请使用 UpdateUserRequest 对象调用 AmazonIdentityManagementClient 的
deleteUser 请求，该对象中设置了要删除的用户名。

管理 IAM 用户 133

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/ListUsers.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/UpdateUserRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/UpdateUser.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/UpdateUserRequest.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

导入。

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.DeleteConflictException;
import com.amazonaws.services.identitymanagement.model.DeleteUserRequest;

代码

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

DeleteUserRequest request = new DeleteUserRequest()
 .withUserName(username);

try {
 iam.deleteUser(request);
} catch (DeleteConflictException e) {
 System.out.println("Unable to delete user. Verify user is not" +
 " associated with any resources");
 throw e;
}

请参阅 GitHub 上的完整示例。

更多信息

• 《IAM 用户指南》中的 IAM 用户

• 《IAM 用户指南》中的管理 IAM 用户

• 《IAM API Reference》中的 CreateUser

• 《IAM API Reference》中的 ListUsers

• 《IAM API Reference》中的 UpdateUser

• 《IAM API Reference》中的 DeleteUser

使用 IAM 账户别名

如果您希望登录页面的 URL 包含贵公司名称（或其他友好标识符）而不是 Amazon Web Services 账
户 ID，则可以为 Amazon Web Services 账户创建别名。

使用 IAM 账户别名 134

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/DeleteUser.java
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users_manage.html
https://docs.amazonaws.cn/IAM/latest/APIReference/API_CreateUser.html
https://docs.amazonaws.cn/IAM/latest/APIReference/API_ListUsers.html
https://docs.amazonaws.cn/IAM/latest/APIReference/API_UpdateUser.html
https://docs.amazonaws.cn/IAM/latest/APIReference/API_DeleteUser.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

Note

Amazon 的每个账户支持一个账户别名。

创建账户别名

要创建账户别名，请使用包含别名的 CreateAccountAliasRequest 对象调用
AmazonIdentityManagementClient 的 createAccountAlias 方法。

导入。

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.CreateAccountAliasRequest;
import com.amazonaws.services.identitymanagement.model.CreateAccountAliasResult;

代码

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

CreateAccountAliasRequest request = new CreateAccountAliasRequest()
 .withAccountAlias(alias);

CreateAccountAliasResult response = iam.createAccountAlias(request);

请参阅 GitHub 上的完整示例。

列出账户别名

要列出您的账户别名（如果有），请调用 AmazonIdentityManagementClient 的
listAccountAliases 方法。

Note

返回的 ListAccountAliasesResult 支持与其他适用于 Java 的 Amazon SDK 列出 方法相同的
getIsTruncated 和 getMarker 方法，但一个 Amazon Web Services 账户只能有一个 账
户别名。

使用 IAM 账户别名 135

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/CreateAccountAliasRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/CreateAccountAlias.java
https://docs.amazonaws.cn/AWSJavaSDK/latest/javadoc/com/amazonaws/services/identitymanagement/model/ListAccountAliasesResult.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

导入

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.ListAccountAliasesResult;

代码

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

ListAccountAliasesResult response = iam.listAccountAliases();

for (String alias : response.getAccountAliases()) {
 System.out.printf("Retrieved account alias %s", alias);
}

请参阅 GitHub 上的完整示例。

删除账户别名

要删除您账户的别名，请调用 AmazonIdentityManagementClient 的 deleteAccountAlias 方法。
在删除账户别名时，您必须使用 DeleteAccountAliasRequest 对象提供其名称。

导入

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.DeleteAccountAliasRequest;
import com.amazonaws.services.identitymanagement.model.DeleteAccountAliasResult;

代码

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

DeleteAccountAliasRequest request = new DeleteAccountAliasRequest()
 .withAccountAlias(alias);

DeleteAccountAliasResult response = iam.deleteAccountAlias(request);

使用 IAM 账户别名 136

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/ListAccountAliases.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/DeleteAccountAliasRequest.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

请参阅 GitHub 上的完整示例。

更多信息

• 《IAM 用户指南》中的您的 Amazon 账户 ID 及其别名

• 《IAM API Reference》中的 CreateAccountAlias

• 《IAM API Reference》中的 ListAccountAliases

• 《IAM API Reference》中的 DeleteAccountAlias

使用 IAM 策略

创建策略

要创建新策略，请在 CreatePolicyRequest 中向 AmazonIdentityManagementClient 的
createPolicy 方法提供策略名称和 JSON 格式的策略文档。

导入。

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.CreatePolicyRequest;
import com.amazonaws.services.identitymanagement.model.CreatePolicyResult;

代码

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

CreatePolicyRequest request = new CreatePolicyRequest()
 .withPolicyName(policy_name)
 .withPolicyDocument(POLICY_DOCUMENT);

CreatePolicyResult response = iam.createPolicy(request);

IAM policy 文档是使用明确语法的 JSON 字符串。下面的示例中提供了向 DynamoDB 发出特定请求的
访问权。

public static final String POLICY_DOCUMENT =

使用 IAM 策略 137

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/DeleteAccountAlias.java
https://docs.amazonaws.cn/IAM/latest/UserGuide/console_account-alias.html
https://docs.amazonaws.cn/IAM/latest/APIReference/API_CreateAccountAlias.html
https://docs.amazonaws.cn/IAM/latest/APIReference/API_ListAccountAliases.html
https://docs.amazonaws.cn/IAM/latest/APIReference/API_DeleteAccountAlias.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/CreatePolicyRequest.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_grammar.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 "{" +
 " \"Version\": \"2012-10-17\", " +
 " \"Statement\": [" +
 " {" +
 " \"Effect\": \"Allow\"," +
 " \"Action\": \"logs:CreateLogGroup\"," +
 " \"Resource\": \"%s\"" +
 " }," +
 " {" +
 " \"Effect\": \"Allow\"," +
 " \"Action\": [" +
 " \"dynamodb:DeleteItem\"," +
 " \"dynamodb:GetItem\"," +
 " \"dynamodb:PutItem\"," +
 " \"dynamodb:Scan\"," +
 " \"dynamodb:UpdateItem\"" +
 "]," +
 " \"Resource\": \"RESOURCE_ARN\"" +
 " }" +
 "]" +
 "}";

请参阅 GitHub 上的完整示例。

获取策略

要检索现有策略，请调用 AmazonIdentityManagementClient 的 getPolicy 方法，并在
GetPolicyRequest 对象中提供策略的 ARN。

导入。

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.GetPolicyRequest;
import com.amazonaws.services.identitymanagement.model.GetPolicyResult;

代码

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

GetPolicyRequest request = new GetPolicyRequest()

使用 IAM 策略 138

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/CreatePolicy.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/GetPolicyRequest.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 .withPolicyArn(policy_arn);

GetPolicyResult response = iam.getPolicy(request);

请参阅 GitHub 上的完整示例。

附加角色策略

您可以通过调用 AmazonIdentityManagementClient 的 attachRolePolicy 方法，在
AttachRolePolicyRequest 中向其提供角色名称和策略 ARN 来将策略附加到 IAM 角色 (http://
docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html)。

导入。

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.AttachRolePolicyRequest;
import com.amazonaws.services.identitymanagement.model.AttachedPolicy;

代码

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

AttachRolePolicyRequest attach_request =
 new AttachRolePolicyRequest()
 .withRoleName(role_name)
 .withPolicyArn(POLICY_ARN);

iam.attachRolePolicy(attach_request);

请参阅 GitHub 上的完整示例。

列出附加的角色策略

通过调用 AmazonIdentityManagementClient 的 listAttachedRolePolicies 方法列出角色中附加
的策略。这需要 ListAttachedRolePoliciesRequest 对象，它包含要列出策略的角色名称。

在返回的 ListAttachedRolePoliciesResult 对象中调用 getAttachedPolicies 来获取所附加策
略的列表。如果 ListAttachedRolePoliciesResult 对象的 getIsTruncated 方法返回

使用 IAM 策略 139

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/GetPolicy.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/AttachRolePolicyRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/AttachRolePolicy.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/ListAttachedRolePoliciesRequest.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/ListAttachedRolePoliciesResult.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

true，调用 ListAttachedRolePoliciesRequest 对象的 setMarker 方法并使用其再次调用
listAttachedRolePolicies 来获取下一批结果，则结果可能被截断。

导入。

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.ListAttachedRolePoliciesRequest;
import com.amazonaws.services.identitymanagement.model.ListAttachedRolePoliciesResult;
import java.util.ArrayList;
import java.util.List;
import java.util.stream.Collectors;

代码

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

ListAttachedRolePoliciesRequest request =
 new ListAttachedRolePoliciesRequest()
 .withRoleName(role_name);

List<AttachedPolicy> matching_policies = new ArrayList<>();

boolean done = false;

while(!done) {
 ListAttachedRolePoliciesResult response =
 iam.listAttachedRolePolicies(request);

 matching_policies.addAll(
 response.getAttachedPolicies()
 .stream()
 .filter(p -> p.getPolicyName().equals(role_name))
 .collect(Collectors.toList()));

 if(!response.getIsTruncated()) {
 done = true;
 }
 request.setMarker(response.getMarker());
}

请参阅 GitHub 上的完整示例。

使用 IAM 策略 140

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/AttachRolePolicy.java

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

分离角色策略

要从角色分离策略，请调用 AmazonIdentityManagementClient 的 detachRolePolicy 方法，并在
DetachRolePolicyRequest 中为其提供角色名称和策略 ARN。

导入。

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.DetachRolePolicyRequest;
import com.amazonaws.services.identitymanagement.model.DetachRolePolicyResult;

代码

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

DetachRolePolicyRequest request = new DetachRolePolicyRequest()
 .withRoleName(role_name)
 .withPolicyArn(policy_arn);

DetachRolePolicyResult response = iam.detachRolePolicy(request);

请参阅 GitHub 上的完整示例。

更多信息

• 《IAM 用户指南》中的 IAM policy 概述。

• 《IAM 用户指南》中的 Amazon IAM policy 参考。

• 《IAM API Reference》中的 CreatePolicy

• 《IAM API Reference》中的 GetPolicy

• 《IAM API Reference》中的 AttachRolePolicy

• 《IAM API Reference》中的 ListAttachedRolePolicies

• 《IAM API Reference》中的 DetachRolePolicy

使用 IAM 服务器证书

要在 Amazon 上启用网站或应用程序的 HTTPS 连接，需要 SSL/TLS 服务器证书。您可以使用
Amazon Certificate Manager 提供的服务器证书或您从外部提供程序获得的服务器证书。

使用 IAM 服务器证书 141

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/DetachRolePolicyRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/DetachRolePolicy.java
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies.html
https://docs.amazonaws.cn/IAM/latest/APIReference/API_CreatePolicy.html
https://docs.amazonaws.cn/IAM/latest/APIReference/API_GetPolicy.html
https://docs.amazonaws.cn/IAM/latest/APIReference/API_AttachRolePolicy.html
https://docs.amazonaws.cn/IAM/latest/APIReference/API_ListAttachedRolePolicies.html
https://docs.amazonaws.cn/IAM/latest/APIReference/API_DetachRolePolicy.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

我们建议您使用 ACM 来预置、管理和部署您的服务器证书。利用 ACM，您可以申请证书，将其部署
到 Amazon 资源，然后让 ACM 为您处理证书续订事宜。ACM 提供的证书是免费的。有关 ACM 的更
多信息，请参阅 ACM 用户指南。

获取服务器证书

您可以通过调用 AmazonIdentityManagementClient 的 getServerCertificate 方法检索服务器证
书，将包含证书名称的 GetServerCertificateRequest 传递给它。

导入。

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.GetServerCertificateRequest;
import com.amazonaws.services.identitymanagement.model.GetServerCertificateResult;

代码

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

GetServerCertificateRequest request = new GetServerCertificateRequest()
 .withServerCertificateName(cert_name);

GetServerCertificateResult response = iam.getServerCertificate(request);

请参阅 GitHub 上的完整示例。

列出服务器证书

要列出您的服务器证书，请使用 ListServerCertificatesRequest 调用
AmazonIdentityManagementClient 的 listServerCertificates 方法。它返回
ListServerCertificatesResult。

调用返回的 ListServerCertificateResult 对象的 getServerCertificateMetadataList
方法获取 ServerCertificateMetadata 对象的列表，您可以用它来获取关于每个证书的信息。

如果 ListServerCertificateResult 对象的 getIsTruncated 方法返回 true，
调用 ListServerCertificatesRequest 对象的 setMarker 方法并使用其再次调用
listServerCertificates 来获取下一批结果，则结果可能被截断。

使用 IAM 服务器证书 142

https://docs.amazonaws.cn/acm/latest/userguide/
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/GetServerCertificateRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/GetServerCertificate.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/ListServerCertificatesRequest.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/ListServerCertificatesResult.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/ServerCertificateMetadata.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

导入。

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.ListServerCertificatesRequest;
import com.amazonaws.services.identitymanagement.model.ListServerCertificatesResult;
import com.amazonaws.services.identitymanagement.model.ServerCertificateMetadata;

代码

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

boolean done = false;
ListServerCertificatesRequest request =
 new ListServerCertificatesRequest();

while(!done) {

 ListServerCertificatesResult response =
 iam.listServerCertificates(request);

 for(ServerCertificateMetadata metadata :
 response.getServerCertificateMetadataList()) {
 System.out.printf("Retrieved server certificate %s",
 metadata.getServerCertificateName());
 }

 request.setMarker(response.getMarker());

 if(!response.getIsTruncated()) {
 done = true;
 }
}

请参阅 GitHub 上的完整示例。

更新服务器证书

您可以通过调用 AmazonIdentityManagementClient 的 updateServerCertificate 方法更新
服务器证书的名称或路径。这需要通过服务器证书的当前名称以及要使用的新名称或新路径来设置
UpdateServerCertificateRequest 对象。

使用 IAM 服务器证书 143

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/ListServerCertificates.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/UpdateServerCertificateRequest.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

导入。

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.UpdateServerCertificateRequest;
import com.amazonaws.services.identitymanagement.model.UpdateServerCertificateResult;

代码

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

UpdateServerCertificateRequest request =
 new UpdateServerCertificateRequest()
 .withServerCertificateName(cur_name)
 .withNewServerCertificateName(new_name);

UpdateServerCertificateResult response =
 iam.updateServerCertificate(request);

请参阅 GitHub 上的完整示例。

删除服务器证书

要删除服务器证书，请使用包含证书名称的 DeleteServerCertificateRequest 调用
AmazonIdentityManagementClient 的 deleteServerCertificate 方法。

导入。

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.DeleteServerCertificateRequest;
import com.amazonaws.services.identitymanagement.model.DeleteServerCertificateResult;

代码

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

DeleteServerCertificateRequest request =
 new DeleteServerCertificateRequest()
 .withServerCertificateName(cert_name);

使用 IAM 服务器证书 144

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/UpdateServerCertificate.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/DeleteServerCertificateRequest.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

DeleteServerCertificateResult response =
 iam.deleteServerCertificate(request);

请参阅 GitHub 上的完整示例。

更多信息

• 《IAM 用户指南》中的使用服务器证书

• 《IAM API Reference》中的 GetServerCertificate

• 《IAM API Reference》中的 ListServerCertificates

• 《IAM API Reference》中的 UpdateServerCertificate

• 《IAM API Reference》中的 DeleteServerCertificate

• ACM 用户指南

Lambda使用 的 示例适用于 Java 的 Amazon SDK

此部分提供使用Lambda 对 适用于 Java 的 Amazon SDK 进行编程的示例。

Note

该示例仅包含演示每种方法所需的代码。完整的示例代码在 GitHub 上提供。您可以从中下载
单个源文件，也可以将存储库复制到本地以获得所有示例，然后构建并运行它们。

主题

• 调用、列出和删除 Lambda 函数

调用、列出和删除 Lambda 函数

本部分提供使用适用于 Java 的 Amazon SDK 对 Lambda 服务客户端进行编程的示例。要了解如何创
建 Lambda 函数，请参阅如何创建 Amazon Lambda 函数。

主题

• 调用函数

• 列出函数

Amazon Lambda 示例 145

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/DeleteServerCertificate.java
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_server-certs.html
https://docs.amazonaws.cn/IAM/latest/APIReference/API_GetServerCertificate.html
https://docs.amazonaws.cn/IAM/latest/APIReference/API_ListServerCertificates.html
https://docs.amazonaws.cn/IAM/latest/APIReference/API_UpdateServerCertificate.html
https://docs.amazonaws.cn/IAM/latest/APIReference/API_DeleteServerCertificate.html
https://docs.amazonaws.cn/acm/latest/userguide/
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://docs.amazonaws.cn/toolkit-for-eclipse/v1/user-guide/lambda-tutorial.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

• 删除函数

调用函数

可以通过创建 AWSLambda 对并调用其 invoke 方法来调用 Lambda 函数。创建 InvokeRequest
对象可指定其他信息，例如函数名称和要传递给 Lambda 函数的负载。函数名称显示为
arn:aws:lambda:us-east-1:555556330391:function:HelloFunction。可以通过查看 Amazon Web
Services 管理控制台中的函数来检索值。

要将负载数据传递给函数，请调用 InvokeRequest 对象的 withPayload 方法并指定 JSON 格式的字
符串，如以下代码示例中所示。

导入。

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.lambda.AWSLambda;
import com.amazonaws.services.lambda.AWSLambdaClientBuilder;
import com.amazonaws.services.lambda.model.InvokeRequest;
import com.amazonaws.services.lambda.model.InvokeResult;
import com.amazonaws.services.lambda.model.ServiceException;

import java.nio.charset.StandardCharsets;

代码

以下代码示例演示如何调用 Lambda 函数。

 String functionName = args[0];

 InvokeRequest invokeRequest = new InvokeRequest()
 .withFunctionName(functionName)
 .withPayload("{\n" +
 " \"Hello \": \"Paris\",\n" +
 " \"countryCode\": \"FR\"\n" +
 "}");
 InvokeResult invokeResult = null;

 try {
 AWSLambda awsLambda = AWSLambdaClientBuilder.standard()
 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(Regions.US_WEST_2).build();

服务操作 146

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/lambda/AWSLambda.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/lambda/model/InvokeRequest.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/lambda/model/InvokeRequest.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 invokeResult = awsLambda.invoke(invokeRequest);

 String ans = new String(invokeResult.getPayload().array(),
 StandardCharsets.UTF_8);

 //write out the return value
 System.out.println(ans);

 } catch (ServiceException e) {
 System.out.println(e);
 }

 System.out.println(invokeResult.getStatusCode());

请参阅 Github 上的完整示例。

列出函数

构建一个 AWSLambda 对象并调用其 listFunctions 方法。此方法返回一个 ListFunctionsResult
对象。可以调用此对象的 getFunctions 方法来返回 FunctionConfiguration 对象的列表。可以遍历
该列表来检索有关函数的信息。例如，以下 Java 代码示例说明如何获取每个函数名称。

导入。

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.lambda.AWSLambda;
import com.amazonaws.services.lambda.AWSLambdaClientBuilder;
import com.amazonaws.services.lambda.model.FunctionConfiguration;
import com.amazonaws.services.lambda.model.ListFunctionsResult;
import com.amazonaws.services.lambda.model.ServiceException;
import java.util.Iterator;
import java.util.List;

代码

以下 Java 代码示例演示如何检索 Lambda 函数名称的列表。

 ListFunctionsResult functionResult = null;

 try {

服务操作 147

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/lambda/src/main/java/com/example/lambda/LambdaInvokeFunction.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/lambda/AWSLambda.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/lambda/model/ListFunctionsResult.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/lambda/model/FunctionConfiguration.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 AWSLambda awsLambda = AWSLambdaClientBuilder.standard()
 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(Regions.US_WEST_2).build();

 functionResult = awsLambda.listFunctions();

 List<FunctionConfiguration> list = functionResult.getFunctions();

 for (Iterator iter = list.iterator(); iter.hasNext();) {
 FunctionConfiguration config = (FunctionConfiguration)iter.next();

 System.out.println("The function name is "+config.getFunctionName());
 }

 } catch (ServiceException e) {
 System.out.println(e);
 }

请参阅 Github 上的完整示例。

删除函数

构建一个 AWSLambda 对象并调用其 deleteFunction 方法。创建一个 DeleteFunctionRequest 对
象并将该对象传递给 deleteFunction 方法。此对象包含要删除的函数的名称等信息。函数名称显
示为 arn:aws:lambda:us-east-1:555556330391:function:HelloFunction。可以通过查看 Amazon Web
Services 管理控制台中的函数来检索值。

导入。

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.lambda.AWSLambda;
import com.amazonaws.services.lambda.AWSLambdaClientBuilder;
import com.amazonaws.services.lambda.model.ServiceException;
import com.amazonaws.services.lambda.model.DeleteFunctionRequest;

代码

以下 Java 代码演示如何删除 Lambda 函数。

 String functionName = args[0];
 try {

服务操作 148

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/lambda/src/main/java/com/example/lambda/ListFunctions.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/lambda/AWSLambda.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/lambda/model/DeleteFunctionRequest.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 AWSLambda awsLambda = AWSLambdaClientBuilder.standard()
 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(Regions.US_WEST_2).build();

 DeleteFunctionRequest delFunc = new DeleteFunctionRequest();
 delFunc.withFunctionName(functionName);

 //Delete the function
 awsLambda.deleteFunction(delFunc);
 System.out.println("The function is deleted");

 } catch (ServiceException e) {
 System.out.println(e);
 }

请参阅 Github 上的完整示例。

使用适用于 Java 的 Amazon SDK 的 Amazon Pinpoint 示例

此部分提供使用适用于 Java 的 Amazon SDK 对 Amazon Pinpoint 进行编程的示例。

Note

这些示例仅包含演示每种方法所需的代码。完整的示例代码在 GitHub 上提供。您可以在那里
下载单个源文件，也可以将存储库复制到本地以获得所有示例，然后构建并运行这些示例。

主题

• 在 Amazon Pinpoint 中创建和删除应用程序

• 在 Amazon Pinpoint 中创建端点

• 在 Amazon Pinpoint 中创建分段

• 在 Amazon Pinpoint 中创建市场活动

• 在 Amazon Pinpoint 中更新渠道

在 Amazon Pinpoint 中创建和删除应用程序

应用程序是您在其中为不同应用程序定义受众并通过定制消息吸引此受众的 Amazon Pinpoint 项目。
此页中的示例演示如何创建新的应用程序或删除现有应用程序。

Amazon Pinpoint 示例 149

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/lambda/src/main/java/com/example/lambda/DeleteFunction.java
https://www.amazonaws.cn/sdk-for-java/
https://www.amazonaws.cn/pinpoint/
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

创建应用程序

通过向 CreateAppRequest 对象提供应用程序名称，然后将该对象传递到 AmazonPinpointClient 的
createApp 方法，在 Amazon Pinpoint 中创建新的应用程序。

导入。

import com.amazonaws.services.pinpoint.AmazonPinpoint;
import com.amazonaws.services.pinpoint.AmazonPinpointClientBuilder;
import com.amazonaws.services.pinpoint.model.CreateAppRequest;
import com.amazonaws.services.pinpoint.model.CreateAppResult;
import com.amazonaws.services.pinpoint.model.CreateApplicationRequest;

代码

CreateApplicationRequest appRequest = new CreateApplicationRequest()
 .withName(appName);

CreateAppRequest request = new CreateAppRequest();
request.withCreateApplicationRequest(appRequest);
CreateAppResult result = pinpoint.createApp(request);

请参阅 GitHub 上的完整示例。

删除应用程序

要删除应用程序，请使用 DeleteAppRequest 对象（其中设置了要删除的应用程序名称）调用
AmazonPinpointClient 的 deleteApp 请求。

导入。

import com.amazonaws.services.pinpoint.AmazonPinpoint;
import com.amazonaws.services.pinpoint.AmazonPinpointClientBuilder;

代码

DeleteAppRequest deleteRequest = new DeleteAppRequest()
 .withApplicationId(appID);

pinpoint.deleteApp(deleteRequest);

请参阅 GitHub 上的完整示例。

在 Amazon Pinpoint 中创建和删除应用程序 150

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/CreateAppRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/pinpoint/src/main/java/com/example/pinpoint/CreateApp.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/DeleteAppRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/pinpoint/src/main/java/com/example/pinpoint/DeleteApp.java

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

更多信息

• 《Amazon Pinpoint API Reference》中的 Apps

• 《Amazon Pinpoint API Reference》中的 App

在 Amazon Pinpoint 中创建端点

终端节点唯一地标识可以使用 Amazon Pinpoint 向其发送推送通知的用户设备。如果您的应用程序启
用了 Amazon Pinpoint 支持，则在新用户打开应用程序时，应用程序自动向 Amazon Pinpoint 注册终
端节点。以下示例演示如何以编程方式添加新的终端节点。

创建端点

通过在 Amazon PinpointEndpointRequest 对象中提供终端节点数据，在 中创建新的终端节点。

导入。

import com.amazonaws.services.pinpoint.AmazonPinpoint;
import com.amazonaws.services.pinpoint.AmazonPinpointClientBuilder;
import com.amazonaws.services.pinpoint.model.UpdateEndpointRequest;
import com.amazonaws.services.pinpoint.model.UpdateEndpointResult;
import com.amazonaws.services.pinpoint.model.EndpointDemographic;
import com.amazonaws.services.pinpoint.model.EndpointLocation;
import com.amazonaws.services.pinpoint.model.EndpointRequest;
import com.amazonaws.services.pinpoint.model.EndpointResponse;
import com.amazonaws.services.pinpoint.model.EndpointUser;
import com.amazonaws.services.pinpoint.model.GetEndpointRequest;
import com.amazonaws.services.pinpoint.model.GetEndpointResult;

代码

HashMap<String, List<String>> customAttributes = new HashMap<>();
List<String> favoriteTeams = new ArrayList<>();
favoriteTeams.add("Lakers");
favoriteTeams.add("Warriors");
customAttributes.put("team", favoriteTeams);

EndpointDemographic demographic = new EndpointDemographic()
 .withAppVersion("1.0")
 .withMake("apple")

在 Amazon Pinpoint 中创建端点 151

https://docs.amazonaws.cn/pinpoint/latest/apireference/rest-api-apps.html
https://docs.amazonaws.cn/pinpoint/latest/apireference/rest-api-app.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/EndpointRequest.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 .withModel("iPhone")
 .withModelVersion("7")
 .withPlatform("ios")
 .withPlatformVersion("10.1.1")
 .withTimezone("America/Los_Angeles");

EndpointLocation location = new EndpointLocation()
 .withCity("Los Angeles")
 .withCountry("US")
 .withLatitude(34.0)
 .withLongitude(-118.2)
 .withPostalCode("90068")
 .withRegion("CA");

Map<String,Double> metrics = new HashMap<>();
metrics.put("health", 100.00);
metrics.put("luck", 75.00);

EndpointUser user = new EndpointUser()
 .withUserId(UUID.randomUUID().toString());

DateFormat df = new SimpleDateFormat("yyyy-MM-dd'T'HH:mm'Z'"); // Quoted "Z" to
 indicate UTC, no timezone offset
String nowAsISO = df.format(new Date());

EndpointRequest endpointRequest = new EndpointRequest()
 .withAddress(UUID.randomUUID().toString())
 .withAttributes(customAttributes)
 .withChannelType("APNS")
 .withDemographic(demographic)
 .withEffectiveDate(nowAsISO)
 .withLocation(location)
 .withMetrics(metrics)
 .withOptOut("NONE")
 .withRequestId(UUID.randomUUID().toString())
 .withUser(user);

然后使用该 EndpointRequest 对象创建 UpdateEndpointRequest 对象。最后，将
UpdateEndpointRequest 对象传递到 AmazonPinpointClient 的 updateEndpoint 方法。

代码

UpdateEndpointRequest updateEndpointRequest = new UpdateEndpointRequest()

在 Amazon Pinpoint 中创建端点 152

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/UpdateEndpointRequest.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 .withApplicationId(appId)
 .withEndpointId(endpointId)
 .withEndpointRequest(endpointRequest);

UpdateEndpointResult updateEndpointResponse =
 client.updateEndpoint(updateEndpointRequest);
System.out.println("Update Endpoint Response: " +
 updateEndpointResponse.getMessageBody());

请参阅 GitHub 上的完整示例。

更多信息

• 《Amazon Pinpoint Developer Guide》中的 Adding Endpoint

• 《Amazon Pinpoint API Reference》中的 Endpoint

在 Amazon Pinpoint 中创建分段

用户分段表示基于共同的特征（例如用户最近什么时候打开了您的应用程序或他们使用哪个设备）的用
户子集。以下示例演示如何定义用户分段。

创建分段

通过在 Amazon PinpointSegmentDimensions 对象中创建分段的维度，在 中创建新的分段。

导入。

import com.amazonaws.services.pinpoint.AmazonPinpoint;
import com.amazonaws.services.pinpoint.AmazonPinpointClientBuilder;
import com.amazonaws.services.pinpoint.model.CreateSegmentRequest;
import com.amazonaws.services.pinpoint.model.CreateSegmentResult;
import com.amazonaws.services.pinpoint.model.AttributeDimension;
import com.amazonaws.services.pinpoint.model.AttributeType;
import com.amazonaws.services.pinpoint.model.RecencyDimension;
import com.amazonaws.services.pinpoint.model.SegmentBehaviors;
import com.amazonaws.services.pinpoint.model.SegmentDemographics;
import com.amazonaws.services.pinpoint.model.SegmentDimensions;
import com.amazonaws.services.pinpoint.model.SegmentLocation;
import com.amazonaws.services.pinpoint.model.SegmentResponse;
import com.amazonaws.services.pinpoint.model.WriteSegmentRequest;

在 Amazon Pinpoint 中创建分段 153

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/pinpoint/src/main/java/com/example/pinpoint/CreateEndpoint.java
https://docs.amazonaws.cn/pinpoint/latest/developerguide/endpoints.html
https://docs.amazonaws.cn/pinpoint/latest/apireference/rest-api-endpoint.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/SegmentDimensions.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

代码

Pinpoint pinpoint =
 AmazonPinpointClientBuilder.standard().withRegion(Regions.US_EAST_1).build();
Map<String, AttributeDimension> segmentAttributes = new HashMap<>();
segmentAttributes.put("Team", new
 AttributeDimension().withAttributeType(AttributeType.INCLUSIVE).withValues("Lakers"));

SegmentBehaviors segmentBehaviors = new SegmentBehaviors();
SegmentDemographics segmentDemographics = new SegmentDemographics();
SegmentLocation segmentLocation = new SegmentLocation();

RecencyDimension recencyDimension = new RecencyDimension();
recencyDimension.withDuration("DAY_30").withRecencyType("ACTIVE");
segmentBehaviors.setRecency(recencyDimension);

SegmentDimensions dimensions = new SegmentDimensions()
 .withAttributes(segmentAttributes)
 .withBehavior(segmentBehaviors)
 .withDemographic(segmentDemographics)
 .withLocation(segmentLocation);

接下来，在 WriteSegmentRequest 中设置 SegmentDimensions 对象，接着使用该对象创建
CreateSegmentRequest 对象。然后，将 CreateSegmentRequest 对象传递到 AmazonPinpointClient
的 createSegment 方法。

代码

WriteSegmentRequest writeSegmentRequest = new WriteSegmentRequest()
 .withName("MySegment").withDimensions(dimensions);

CreateSegmentRequest createSegmentRequest = new CreateSegmentRequest()
 .withApplicationId(appId).withWriteSegmentRequest(writeSegmentRequest);

CreateSegmentResult createSegmentResult = client.createSegment(createSegmentRequest);

请参阅 GitHub 上的完整示例。

更多信息

• 《Amazon Pinpoint User Guide》中的 Amazon Pinpoint Segments

• 《Amazon Pinpoint Developer Guide》中的 Creating Segments

在 Amazon Pinpoint 中创建分段 154

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/SegmentDimensions.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/WriteSegmentRequest.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/CreateSegmentRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/pinpoint/src/main/java/com/example/pinpoint/CreateSegment.java
https://docs.amazonaws.cn/pinpoint/latest/userguide/segments.html
https://docs.amazonaws.cn/pinpoint/latest/developerguide/segments.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

• 《Amazon Pinpoint API Reference》中的 Segments

• 《Amazon Pinpoint API Reference》中的 Segment

在 Amazon Pinpoint 中创建市场活动

您可以使用市场活动来帮助增加应用程序与用户之间的互动。您可以创建市场活动，通过定制消息或特
殊促销吸引特定的用户分段。此示例演示如何创建新的标准市场活动，以向特定的分段发送自定义推送
消息。

创建市场活动

创建新的市场活动之前，您必须定义计划和消息，并在 WriteCampaignRequest 对象中设置这些值。

导入。

import com.amazonaws.services.pinpoint.AmazonPinpoint;
import com.amazonaws.services.pinpoint.AmazonPinpointClientBuilder;
import com.amazonaws.services.pinpoint.model.CreateCampaignRequest;
import com.amazonaws.services.pinpoint.model.CreateCampaignResult;
import com.amazonaws.services.pinpoint.model.Action;
import com.amazonaws.services.pinpoint.model.CampaignResponse;
import com.amazonaws.services.pinpoint.model.Message;
import com.amazonaws.services.pinpoint.model.MessageConfiguration;
import com.amazonaws.services.pinpoint.model.Schedule;
import com.amazonaws.services.pinpoint.model.WriteCampaignRequest;

代码

Schedule schedule = new Schedule()
 .withStartTime("IMMEDIATE");

Message defaultMessage = new Message()
 .withAction(Action.OPEN_APP)
 .withBody("My message body.")
 .withTitle("My message title.");

MessageConfiguration messageConfiguration = new MessageConfiguration()
 .withDefaultMessage(defaultMessage);

WriteCampaignRequest request = new WriteCampaignRequest()
 .withDescription("My description.")

在 Amazon Pinpoint 中创建市场活动 155

https://docs.amazonaws.cn/pinpoint/latest/apireference/rest-api-segments.html
https://docs.amazonaws.cn/pinpoint/latest/apireference/rest-api-segment.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/Schedule.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/Message.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/WriteCampaignRequest.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 .withSchedule(schedule)
 .withSegmentId(segmentId)
 .withName("MyCampaign")
 .withMessageConfiguration(messageConfiguration);

然后通过将具有市场活动配置的 Amazon PinpointWriteCampaignRequest 提供给
CreateCampaignRequest 对象，在 中创建新的市场活动。最后，将 CreateCampaignRequest 对象传
递到 AmazonPinpointClient 的 createCampaign 方法。

代码

CreateCampaignRequest createCampaignRequest = new CreateCampaignRequest()
 .withApplicationId(appId).withWriteCampaignRequest(request);

CreateCampaignResult result = client.createCampaign(createCampaignRequest);

请参阅 GitHub 上的完整示例。

更多信息

• 《Amazon Pinpoint User Guide》中的 Amazon Pinpoint Campaigns

• 《Amazon Pinpoint Developer Guide》中的 Creating Campaigns。

• 《Amazon Pinpoint API Reference》中的 Campaigns

• 《Amazon Pinpoint API Reference》中的 Campaign

• 《Amazon Pinpoint API Reference》中的 Campaign Activities

• 《Amazon Pinpoint API Reference》中的 Campaign Versions

• 《Amazon Pinpoint API Reference》中的 Campaign Version

在 Amazon Pinpoint 中更新渠道

渠道定义您可将消息传递到的平台类型。此示例演示如何使用 APN 渠道发送消息。

更新渠道

通过提供应用程序 ID 以及您希望更新的渠道类型的请求对象，在 Amazon Pinpoint 中启用渠道。此示
例将更新 APN 渠道，这需要 APNSChannelRequest 对象。请在 UpdateApnsChannelRequest 中进行
设置并将该对象传递到 AmazonPinpointClient 的 updateApnsChannel 方法。

导入。

在 Amazon Pinpoint 中更新渠道 156

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/WriteCampaignRequest.html
https://docs.amazonaws.cn/AWSJavaSDK/latest/javadoc/com/amazonaws/services/pinpoint/model/CreateCampaignRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/pinpoint/src/main/java/com/example/pinpoint/CreateApp.java
https://docs.amazonaws.cn/pinpoint/latest/userguide/campaigns.html
https://docs.amazonaws.cn/pinpoint/latest/developerguide/campaigns.html
https://docs.amazonaws.cn/pinpoint/latest/apireference/rest-api-campaigns.html
https://docs.amazonaws.cn/pinpoint/latest/apireference/rest-api-campaign.html
https://docs.amazonaws.cn/pinpoint/latest/apireference/rest-api-campaign-activities.html
https://docs.amazonaws.cn/pinpoint/latest/apireference/rest-api-campaign-versions.html
https://docs.amazonaws.cn/pinpoint/latest/apireference/rest-api-campaign-version.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/APNSChannelRequest.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/UpdateApnsChannelRequest.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

import com.amazonaws.services.pinpoint.AmazonPinpoint;
import com.amazonaws.services.pinpoint.AmazonPinpointClientBuilder;
import com.amazonaws.services.pinpoint.model.APNSChannelRequest;
import com.amazonaws.services.pinpoint.model.APNSChannelResponse;
import com.amazonaws.services.pinpoint.model.GetApnsChannelRequest;
import com.amazonaws.services.pinpoint.model.GetApnsChannelResult;
import com.amazonaws.services.pinpoint.model.UpdateApnsChannelRequest;
import com.amazonaws.services.pinpoint.model.UpdateApnsChannelResult;

代码

APNSChannelRequest request = new APNSChannelRequest()
 .withEnabled(enabled);

UpdateApnsChannelRequest updateRequest = new UpdateApnsChannelRequest()
 .withAPNSChannelRequest(request)
 .withApplicationId(appId);
UpdateApnsChannelResult result = client.updateApnsChannel(updateRequest);

请参阅 GitHub 上的完整示例。

更多信息

• 《Amazon Pinpoint User Guide》中的 Amazon Pinpoint Channels

• 《Amazon Pinpoint API Reference》中的 ADM Channel

• 《Amazon Pinpoint API Reference》中的 APNs Channel

• 《Amazon Pinpoint API Reference》中的 APNs Sandbox Channel

• 《Amazon Pinpoint API Reference》中的 APNs VoIP Channel

• 《Amazon Pinpoint API Reference》中的 APNs VoIP Sandbox Channel

• 《Amazon Pinpoint API Reference》中的 Baidu Channel

• 《Amazon Pinpoint API Reference》中的 Email Channel

• 《Amazon Pinpoint API Reference》中的 GCM Channel

• 《Amazon Pinpoint API Reference》中的 SMS Channel

使用适用于 Java 的 Amazon SDK 的 Amazon S3 示例

此部分提供使用适用于 Java 的 Amazon SDK 对 Amazon S3 进行编程的示例。

Amazon S3 示例 157

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/pinpoint/src/main/java/com/example/pinpoint/UpdateChannel.java
https://docs.amazonaws.cn/pinpoint/latest/userguide/channels.html
https://docs.amazonaws.cn/pinpoint/latest/apireference/rest-api-adm-channel.html
https://docs.amazonaws.cn/pinpoint/latest/apireference/rest-api-apns-channel.html
https://docs.amazonaws.cn/pinpoint/latest/apireference/rest-api-apns-sandbox-channel.html
https://docs.amazonaws.cn/pinpoint/latest/apireference/rest-api-apns-voip-channel.html
https://docs.amazonaws.cn/pinpoint/latest/apireference/rest-api-apns-voip-sandbox-channel.html
https://docs.amazonaws.cn/pinpoint/latest/apireference/rest-api-baidu-channel.html
https://docs.amazonaws.cn/pinpoint/latest/apireference/rest-api-email-channel.html
https://docs.amazonaws.cn/pinpoint/latest/apireference/rest-api-gcm-channel.html
https://docs.amazonaws.cn/pinpoint/latest/apireference/rest-api-sms-channel.html
https://www.amazonaws.cn/sdk-for-java/
https://www.amazonaws.cn/s3/

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

Note

这些示例仅包含演示每种方法所需的代码。完整的示例代码在 GitHub 上提供。您可以在那里
下载单个源文件，也可以将存储库复制到本地以获得所有示例，然后构建并运行这些示例。

主题

• 创建、列出和删除 Amazon S3 桶

• 在 Amazon S3 对象上执行操作

• 管理对桶和对象的 Amazon S3 访问权限

• 使用桶策略管理对 Amazon S3 桶的访问

• 使用 TransferManager 执行 Amazon S3 操作

• 将 Amazon S3 桶配置为网站

• 使用 Amazon S3 客户端加密

创建、列出和删除 Amazon S3 桶

Amazon S3 中的每个对象（文件）必须放入存储桶，它代表对象的集合（容器）。每个存储桶使用必
须唯一的键 (名称) 命名。有关桶及其配置的详细信息，请参阅《Amazon Simple Storage Service 用户
指南》中的使用 Amazon S3 桶。

Note

最佳实践
建议您对 存储桶启用 AbortIncompleteMultipartUploadAmazon S3 生命周期规则。
该规则指示 Amazon S3 中止在启动后没有在指定天数内完成的分段上传。当超过设置的时间
限制时，Amazon S3 将中止上传，然后删除未完成的上传数据。
有关更多信息，请参阅《Amazon S3 用户指南》中的使用版本控制的桶生命周期配置。

Note

这些代码示例假定您了解使用适用于 Java 的 Amazon SDK 中的内容，并且已使用设置用于开
发的 Amazon 凭证和区域中的信息配置默认 Amazon 凭证。

创建、列出和删除 Amazon S3 桶 158

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://docs.amazonaws.cn/AmazonS3/latest/dev/UsingBucket.html
https://docs.amazonaws.cn/AmazonS3/latest/API/RESTBucketPUTlifecycle.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/lifecycle-configuration-bucket-with-versioning.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

创建存储桶

使用 AmazonS3 客户端的 createBucket 方法。会返回新的存储桶。如果存储桶已存
在，createBucket 方法将引发异常。

Note

要尝试创建一个具有相同名称的存储桶来检查存储桶是否已存在，请调用 doesBucketExist
方法。如果存储桶存在，它将返回 true，否则将返回 false。

导入。

import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.AmazonS3Exception;
import com.amazonaws.services.s3.model.Bucket;

import java.util.List;

代码

if (s3.doesBucketExistV2(bucket_name)) {
 System.out.format("Bucket %s already exists.\n", bucket_name);
 b = getBucket(bucket_name);
} else {
 try {
 b = s3.createBucket(bucket_name);
 } catch (AmazonS3Exception e) {
 System.err.println(e.getErrorMessage());
 }
}
return b;

请参阅 GitHub 上的完整示例。

列出存储桶

使用 AmazonS3 客户端的 listBucket 方法。如果成功，会返回存储桶的列表。

导入。

创建、列出和删除 Amazon S3 桶 159

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/Bucket.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/CreateBucket.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/Bucket.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.Bucket;

import java.util.List;

代码

List<Bucket> buckets = s3.listBuckets();
System.out.println("Your {S3} buckets are:");
for (Bucket b : buckets) {
 System.out.println("* " + b.getName());
}

请参阅 GitHub 上的完整示例。

删除存储桶

在删除 Amazon S3 存储桶前，必须先确保存储桶为空，否则会导致错误。如果您的存储桶受版本控
制，则必须同时删除与该存储桶关联的所有受版本控制对象。

Note

完整示例中依次包含上述每个步骤，提供用于删除 Amazon S3 存储桶及其内容的完整解决方
案。

主题

• 删除不受版本控制的存储桶之前先删除其中的对象

• 删除受版本控制的存储桶之前先删除其中的对象

• 删除空存储桶

删除不受版本控制的存储桶之前先删除其中的对象

使用 AmazonS3 客户端的 listObjects 方法来检索对象列表，并使用 deleteObject 删除每个对
象。

导入。

创建、列出和删除 Amazon S3 桶 160

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/ListBuckets.java
https://docs.amazonaws.cn/AmazonS3/latest/dev/Versioning.html
https://docs.amazonaws.cn/AmazonS3/latest/dev/Versioning.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteBucket.java

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.*;

import java.util.Iterator;

代码

System.out.println(" - removing objects from bucket");
ObjectListing object_listing = s3.listObjects(bucket_name);
while (true) {
 for (Iterator<?> iterator =
 object_listing.getObjectSummaries().iterator();
 iterator.hasNext();) {
 S3ObjectSummary summary = (S3ObjectSummary) iterator.next();
 s3.deleteObject(bucket_name, summary.getKey());
 }

 // more object_listing to retrieve?
 if (object_listing.isTruncated()) {
 object_listing = s3.listNextBatchOfObjects(object_listing);
 } else {
 break;
 }
}

请参阅 GitHub 上的完整示例。

删除受版本控制的存储桶之前先删除其中的对象

如果您使用受版本控制的存储桶，还需要先删除存储桶中存储的所有受版本控制对象，然后才能删除存
储桶。

使用在删除桶中的对象时所用的类似方法，通过使用 AmazonS3 客户端的 listVersions 方法列出
所有受版本控制的对象，然后使用 deleteVersion 删除各个对象。

导入。

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;

创建、列出和删除 Amazon S3 桶 161

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteBucket.java
https://docs.amazonaws.cn/AmazonS3/latest/dev/Versioning.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.*;

import java.util.Iterator;

代码

System.out.println(" - removing versions from bucket");
VersionListing version_listing = s3.listVersions(
 new ListVersionsRequest().withBucketName(bucket_name));
while (true) {
 for (Iterator<?> iterator =
 version_listing.getVersionSummaries().iterator();
 iterator.hasNext();) {
 S3VersionSummary vs = (S3VersionSummary) iterator.next();
 s3.deleteVersion(
 bucket_name, vs.getKey(), vs.getVersionId());
 }

 if (version_listing.isTruncated()) {
 version_listing = s3.listNextBatchOfVersions(
 version_listing);
 } else {
 break;
 }
}

请参阅 GitHub 上的完整示例。

删除空存储桶

在删除桶中的对象（包括所有受版本控制的对象）后，就可以使用 AmazonS3 客户端的
deleteBucket 方法删除桶本身。

导入。

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.*;

创建、列出和删除 Amazon S3 桶 162

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteBucket.java

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

import java.util.Iterator;

代码

System.out.println(" OK, bucket ready to delete!");
s3.deleteBucket(bucket_name);

请参阅 GitHub 上的完整示例。

在 Amazon S3 对象上执行操作

Amazon S3 对象表示一个文件 或数据集合。每个对象必须驻留在一个存储桶中。

Note

这些代码示例假定您了解使用适用于 Java 的 Amazon SDK 中的内容，并且已使用设置用于开
发的 Amazon 凭证和区域中的信息配置默认 Amazon 凭证。

主题

• 上传对象

• 列出对象

• 下载对象

• 复制、移动或重命名对象

• 删除对象

• 一次性删除多个对象

上传对象

使用 AmazonS3 客户端的 putObject 方法，并为其提供桶名称、键名称和要上传的文件。存储桶必
须存在，否则将出现错误。

导入。

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;

在 Amazon S3 对象上执行操作 163

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteBucket.java

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

代码

System.out.format("Uploading %s to S3 bucket %s...\n", file_path, bucket_name);
final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 s3.putObject(bucket_name, key_name, new File(file_path));
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

请参阅 GitHub 上的完整示例。

列出对象

要获取桶中的对象列表，请使用 AmazonS3 客户端的 listObjects 方法，并为其提供桶名称。

listObjects 方法返回一个 ObjectListing 对象，该对象提供有关存储桶中对象的信息。要列出对象
名称（键），可使用 getObjectSummaries 方法获取 S3ObjectSummary 对象的列表，其中每个对
象均表示存储桶中的一个对象。然后调用其 getKey 方法以检索对象名称。

导入。

import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.ListObjectsV2Result;
import com.amazonaws.services.s3.model.S3ObjectSummary;

代码

System.out.format("Objects in S3 bucket %s:\n", bucket_name);
final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
ListObjectsV2Result result = s3.listObjectsV2(bucket_name);
List<S3ObjectSummary> objects = result.getObjectSummaries();
for (S3ObjectSummary os : objects) {
 System.out.println("* " + os.getKey());
}

请参阅 GitHub 上的完整示例。

在 Amazon S3 对象上执行操作 164

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/PutObject.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/ObjectListing.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/S3ObjectSummary.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/ListObjects.java

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

下载对象

使用 AmazonS3 客户端的 getObject 方法，并向其传递要下载的桶和对象的名称。如果成功，此方
法将返回一个 S3Object。指定的存储桶和对象键必须存在，否则将出现错误。

您可以通过对 getObjectContent 调用 S3Object 来获取对象的内容。这将返回一个
S3ObjectInputStream，其行为与标准 Java InputStream 对象的相同。

以下示例从 S3 下载一个对象，然后将该对象的内容保存到一个文件（使用与对象键相同的名称）：

导入。

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.S3Object;
import com.amazonaws.services.s3.model.S3ObjectInputStream;

import java.io.File;

代码

System.out.format("Downloading %s from S3 bucket %s...\n", key_name, bucket_name);
final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 S3Object o = s3.getObject(bucket_name, key_name);
 S3ObjectInputStream s3is = o.getObjectContent();
 FileOutputStream fos = new FileOutputStream(new File(key_name));
 byte[] read_buf = new byte[1024];
 int read_len = 0;
 while ((read_len = s3is.read(read_buf)) > 0) {
 fos.write(read_buf, 0, read_len);
 }
 s3is.close();
 fos.close();
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
} catch (FileNotFoundException e) {
 System.err.println(e.getMessage());
 System.exit(1);

在 Amazon S3 对象上执行操作 165

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/S3Object.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/S3ObjectInputStream.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

} catch (IOException e) {
 System.err.println(e.getMessage());
 System.exit(1);
}

请参阅 GitHub 上的完整示例。

复制、移动或重命名对象

您可以使用 AmazonS3 客户端的 copyObject 方法将对象从一个桶复制到另一个桶。它采用要从中复
制的存储桶的名称、要复制的对象以及目标存储桶名称。

导入。

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;

代码

try {
 s3.copyObject(from_bucket, object_key, to_bucket, object_key);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
System.out.println("Done!");

请参阅 GitHub 上的完整示例。

Note

您可以将 copyObject 与 deleteObject 配合使用来移动或重命名对象，方式是先将对象复制
到新名称（您可以使用与源和目标相同的存储桶），然后从对象的旧位置删除对象。

删除对象

使用 AmazonS3 客户端的 deleteObject 方法，并向其传递要删除的桶和对象的名称。指定的存储
桶和对象键必须存在，否则将出现错误。

导入。

在 Amazon S3 对象上执行操作 166

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/GetObject.java
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/CopyObject.java

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;

代码

final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 s3.deleteObject(bucket_name, object_key);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

请参阅 GitHub 上的完整示例。

一次性删除多个对象

使用 AmazonS3 客户端 deleteObjects 的方法，您可以将同一个桶中的多个对象的名称传递给
link:sdk-for-java/v1/reference/com/amazonaws/services/s3/model/DeleteObjectsRequest.html 方法，
从而删除这些对象。

导入。

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;

代码

final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 DeleteObjectsRequest dor = new DeleteObjectsRequest(bucket_name)
 .withKeys(object_keys);
 s3.deleteObjects(dor);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

在 Amazon S3 对象上执行操作 167

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteObject.java

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

请参阅 GitHub 上的完整示例。

管理对桶和对象的 Amazon S3 访问权限

您可以为 Amazon S3 存储桶和对象使用访问控制列表 (ACL)，以实现对 Amazon S3 资源的精细控
制。

Note

这些代码示例假定您了解使用适用于 Java 的 Amazon SDK 中的内容，并且已使用设置用于开
发的 Amazon 凭证和区域中的信息配置默认 Amazon 凭证。

获取存储桶的访问控制列表

要获取桶的当前 ACL，请调用 AmazonS3 的 getBucketAcl 方法，将桶名称 传递给它以进行查询。
此方法将返回 AccessControlList 对象。要获取列表中的每个访问授权，请调用其 getGrantsAsList
方法，这会返回一个包含 Grant 对象的标准 Java 列表。

导入。

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.AccessControlList;
import com.amazonaws.services.s3.model.Grant;

代码

final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 AccessControlList acl = s3.getBucketAcl(bucket_name);
 List<Grant> grants = acl.getGrantsAsList();
 for (Grant grant : grants) {
 System.out.format(" %s: %s\n", grant.getGrantee().getIdentifier(),
 grant.getPermission().toString());
 }
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());

管理对桶和对象的 Amazon S3 访问权限 168

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteObjects.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/AccessControlList.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/Grant.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 System.exit(1);
}

请参阅 GitHub 上的完整示例。

设置存储桶的访问控制列表

要添加或修改存储桶对 ACL 的权限，请调用 AmazonS3 的 setBucketAcl 方法。这需要一个
AccessControlList 对象，它包含被授权者和要设置的访问级别的列表。

导入。

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.AccessControlList;
import com.amazonaws.services.s3.model.EmailAddressGrantee;

代码

final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 // get the current ACL
 AccessControlList acl = s3.getBucketAcl(bucket_name);
 // set access for the grantee
 EmailAddressGrantee grantee = new EmailAddressGrantee(email);
 Permission permission = Permission.valueOf(access);
 acl.grantPermission(grantee, permission);
 s3.setBucketAcl(bucket_name, acl);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

Note

您可以使用 Grantee 类直接提供被授权者的唯一标识符，也可以使用 EmailAddressGrantee 类
通过电子邮件设置被授权者，这里采用后者。

管理对桶和对象的 Amazon S3 访问权限 169

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/GetAcl.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/AccessControlList.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/Grantee.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/EmailAddressGrantee.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

请参阅 GitHub 上的完整示例。

获取对象的访问控制列表

要获取对象的当前 ACL，请调用 AmazonS3 的 getObjectAcl 方法，将桶名称 和对象名称 传递给它
以进行查询。和 getBucketAcl 类似，此方法将返回一个 AccessControlList 对象，您可以用它来检
查每个 Grant。

导入。

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.AccessControlList;
import com.amazonaws.services.s3.model.Grant;

代码

try {
 AccessControlList acl = s3.getObjectAcl(bucket_name, object_key);
 List<Grant> grants = acl.getGrantsAsList();
 for (Grant grant : grants) {
 System.out.format(" %s: %s\n", grant.getGrantee().getIdentifier(),
 grant.getPermission().toString());
 }
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

请参阅 GitHub 上的完整示例。

设置对象的访问控制列表

要添加或修改对象对 ACL 的权限，请调用 AmazonS3 的 setObjectAcl 方法。这需要一个
AccessControlList 对象，它包含被授权者和要设置的访问级别的列表。

导入。

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;

管理对桶和对象的 Amazon S3 访问权限 170

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/SetAcl.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/AccessControlList.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/Grant.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/GetAcl.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/AccessControlList.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.AccessControlList;
import com.amazonaws.services.s3.model.EmailAddressGrantee;

代码

 try {
 // get the current ACL
 AccessControlList acl = s3.getObjectAcl(bucket_name, object_key);
 // set access for the grantee
 EmailAddressGrantee grantee = new EmailAddressGrantee(email);
 Permission permission = Permission.valueOf(access);
 acl.grantPermission(grantee, permission);
 s3.setObjectAcl(bucket_name, object_key, acl);
 } catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
 }
}

Note

您可以使用 Grantee 类直接提供被授权者的唯一标识符，也可以使用 EmailAddressGrantee 类
通过电子邮件设置被授权者，这里采用后者。

请参阅 GitHub 上的完整示例。

更多信息

• 《Amazon S3 API Reference》中的 GET Bucket acl

• 《Amazon S3 API Reference》中的 PUT Bucket acl

• 《Amazon S3 API Reference》中的 GET Object acl

• 《Amazon S3 API Reference》中的 PUT Object acl

使用桶策略管理对 Amazon S3 桶的访问

您可以设置、获取或删除存储桶策略 来管理对 Amazon S3 存储桶的访问。

使用桶策略管理对 Amazon S3 桶的访问 171

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/Grantee.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/EmailAddressGrantee.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/SetAcl.java
https://docs.amazonaws.cn/AmazonS3/latest/API/RESTBucketGETacl.html
https://docs.amazonaws.cn/AmazonS3/latest/API/RESTBucketPUTacl.html
https://docs.amazonaws.cn/AmazonS3/latest/API/RESTObjectGETacl.html
https://docs.amazonaws.cn/AmazonS3/latest/API/RESTObjectPUTacl.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

设置存储桶策略

您可以通过以下方式为特定的 S3 存储桶设置存储桶策略：

• 调用 AmazonS3 客户端的 setBucketPolicy 并为其提供 SetBucketPolicyRequest

• 使用接收存储桶名称和策略文本 (JSON 格式) 的 setBucketPolicy 重载直接设置策略

导入。

import com.amazonaws.AmazonServiceException;
import com.amazonaws.auth.policy.Policy;
import com.amazonaws.auth.policy.Principal;

代码

 s3.setBucketPolicy(bucket_name, policy_text);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

使用策略类生成或验证策略

为 setBucketPolicy 提供存储桶策略时，您可以执行以下操作：

• 使用 JSON 格式的文本字符串直接指定策略

• 使用 Policy 类构建策略

使用 Policy 类，您不必担心如何正确设置文本字符串的格式。要从 Policy 类获取 JSON 策略文
本，请使用其 toJson 方法。

导入。

import com.amazonaws.auth.policy.Resource;
import com.amazonaws.auth.policy.Statement;
import com.amazonaws.auth.policy.actions.S3Actions;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;

使用桶策略管理对 Amazon S3 桶的访问 172

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/SetBucketPolicyRequest.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/auth/policy/Policy.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

import com.amazonaws.services.s3.AmazonS3ClientBuilder;

代码

 new Statement(Statement.Effect.Allow)
 .withPrincipals(Principal.AllUsers)
 .withActions(S3Actions.GetObject)
 .withResources(new Resource(
 "{region-arn}s3:::" + bucket_name + "/*")));
return bucket_policy.toJson();

Policy 类还提供 fromJson 方法，它会尝试使用传入的 JSON 字符串构建策略。该
方法会验证文本以确保可以转换为有效策略结构，如果策略文本无效，就会失败并引发
IllegalArgumentException。

Policy bucket_policy = null;
try {
 bucket_policy = Policy.fromJson(file_text.toString());
} catch (IllegalArgumentException e) {
 System.out.format("Invalid policy text in file: \"%s\"",
 policy_file);
 System.out.println(e.getMessage());
}

您可以使用此方法，提前验证您从文件读入或通过其他方法得到的策略。

请参阅 GitHub 上的完整示例。

获取存储桶策略

要检索 Amazon S3 桶的策略，请调用 AmazonS3 客户端的 getBucketPolicy 方法，将桶名称传递
给它以获取策略。

导入。

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;

代码

使用桶策略管理对 Amazon S3 桶的访问 173

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/SetBucketPolicy.java

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 try {
 BucketPolicy bucket_policy = s3.getBucketPolicy(bucket_name);
 policy_text = bucket_policy.getPolicyText();
 } catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
 }

如果指定的存储桶不存在、您没有访问该存储桶的权限或者其中不包含存储桶策略，会引发
AmazonServiceException。

请参阅 GitHub 上的完整示例。

删除存储桶策略

要删除桶策略，请调用 AmazonS3 客户端的 deleteBucketPolicy，并为其提供桶名称。

导入。

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;

代码

 try {
 s3.deleteBucketPolicy(bucket_name);
 } catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
 }

即使存储桶中还没有策略，该方法也会成功。如果您指定的存储桶名称不存在，或者您没有访问该存储
桶的权限，会引发 AmazonServiceException。

请参阅 GitHub 上的完整示例。

更多信息

• 《Amazon Simple Storage Service 用户指南》中的访问策略语言概述

使用桶策略管理对 Amazon S3 桶的访问 174

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/GetBucketPolicy.java
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteBucketPolicy.java
https://docs.amazonaws.cn/AmazonS3/latest/dev/access-policy-language-overview.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

• 《Amazon Simple Storage Service 用户指南》中的桶策略示例

使用 TransferManager 执行 Amazon S3 操作

您可以使用适用于 Java 的 Amazon SDK TransferManager 类可靠地将文件从本地环境传输到
Amazon S3 并将对象从一个 S3 位置复制到另一个 S3 位置。TransferManager 可获取传输进度，
以及暂停或恢复上传和下载。

Note

最佳实践
建议您对 存储桶启用 AbortIncompleteMultipartUploadAmazon S3 生命周期规则。
该规则指示 Amazon S3 中止在启动后没有在指定天数内完成的分段上传。当超过设置的时间
限制时，Amazon S3 将中止上传，然后删除未完成的上传数据。
有关更多信息，请参阅《Amazon S3 用户指南》中的使用版本控制的桶生命周期配置。

Note

这些代码示例假定您了解使用适用于 Java 的 Amazon SDK 中的内容，并且已使用设置用于开
发的 Amazon 凭证和区域中的信息配置默认 Amazon 凭证。

上传文件和目录

TransferManager 可将文件、文件列表和目录上传到您之前创建的任何 Amazon S3 桶。

主题

• 上传单个文件

• 上传文件列表

• 上传目录

上传单个文件

调用 TransferManager 的 upload 方法，提供 Amazon S3 桶名称、键（对象）名称和代表要上传的
文件的标准 Java File 对象。

使用 TransferManager 执行 Amazon S3 操作 175

https://docs.amazonaws.cn/AmazonS3/latest/dev/example-bucket-policies.html
https://docs.amazonaws.cn/AmazonS3/latest/API/RESTBucketPUTlifecycle.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/lifecycle-configuration-bucket-with-versioning.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

导入。

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.transfer.MultipleFileUpload;
import com.amazonaws.services.s3.transfer.TransferManager;
import com.amazonaws.services.s3.transfer.TransferManagerBuilder;
import com.amazonaws.services.s3.transfer.Upload;

import java.io.File;
import java.util.ArrayList;
import java.util.Arrays;

代码

File f = new File(file_path);
TransferManager xfer_mgr = TransferManagerBuilder.standard().build();
try {
 Upload xfer = xfer_mgr.upload(bucket_name, key_name, f);
 // loop with Transfer.isDone()
 XferMgrProgress.showTransferProgress(xfer);
 // or block with Transfer.waitForCompletion()
 XferMgrProgress.waitForCompletion(xfer);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
xfer_mgr.shutdownNow();

upload 方法立即返回值，为您提供一个 Upload 对象，用于检查传输状态或等待传输完成。

请参阅等待传输完成以了解有关在调用 TransferManager 的 shutdownNow 方法之前使用
waitForCompletion 成功完成传输的信息。在等待传输完成时，您可以轮询或侦听有关其状态和进
度的更新。有关更多信息，请参阅获取传输状态和进度。

请参阅 GitHub 上的完整示例。

上传文件列表

要通过一次操作上传多个文件，请调用 TransferManager uploadFileList 方法，并为其提供：

• Amazon S3 存储桶名称

使用 TransferManager 执行 Amazon S3 操作 176

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrUpload.java

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

• 一个键前缀，它将添加到创建的对象名称的前面 (将对象放置到的存储桶中的路径)

• 一个 File 对象，此对象表示将从中创建文件路径的相对目录

• 一个 List 对象，包含一组要上传的 File 对象

导入。

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.transfer.MultipleFileUpload;
import com.amazonaws.services.s3.transfer.TransferManager;
import com.amazonaws.services.s3.transfer.TransferManagerBuilder;
import com.amazonaws.services.s3.transfer.Upload;

import java.io.File;
import java.util.ArrayList;
import java.util.Arrays;

代码

ArrayList<File> files = new ArrayList<File>();
for (String path : file_paths) {
 files.add(new File(path));
}

TransferManager xfer_mgr = TransferManagerBuilder.standard().build();
try {
 MultipleFileUpload xfer = xfer_mgr.uploadFileList(bucket_name,
 key_prefix, new File("."), files);
 // loop with Transfer.isDone()
 XferMgrProgress.showTransferProgress(xfer);
 // or block with Transfer.waitForCompletion()
 XferMgrProgress.waitForCompletion(xfer);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
xfer_mgr.shutdownNow();

请参阅等待传输完成以了解有关在调用 TransferManager 的 shutdownNow 方法之前使用
waitForCompletion 成功完成传输的信息。在等待传输完成时，您可以轮询或侦听有关其状态和进
度的更新。有关更多信息，请参阅获取传输状态和进度。

使用 TransferManager 执行 Amazon S3 操作 177

https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/List.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

可使用由 uploadFileList 返回的 MultipleFileUpload 对象来查询传输状态或进度。有关更多信息，
请参阅轮询传输的当前进度和使用 ProgressListener 获取传输进度。

您也可以使用 MultipleFileUpload 的 getSubTransfers 方法为要传输的每个文件获取单个
Upload 对象。有关更多信息，请参阅获取子传输的进度。

请参阅 GitHub 上的完整示例。

上传目录

可使用 TransferManager 的 uploadDirectory 方法通过用于以递归方式复制子目录中的文件的选项
来上传整个文件目录。您提供一个 Amazon S3 存储桶名称、一个 S3 键前缀、一个表示要复制的本地
目录的 File 对象和一个 boolean 值，该值指示您是否需要以递归方式复制子目录（true 或 false）。

导入。

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.transfer.MultipleFileUpload;
import com.amazonaws.services.s3.transfer.TransferManager;
import com.amazonaws.services.s3.transfer.TransferManagerBuilder;
import com.amazonaws.services.s3.transfer.Upload;

import java.io.File;
import java.util.ArrayList;
import java.util.Arrays;

代码

TransferManager xfer_mgr = TransferManagerBuilder.standard().build();
try {
 MultipleFileUpload xfer = xfer_mgr.uploadDirectory(bucket_name,
 key_prefix, new File(dir_path), recursive);
 // loop with Transfer.isDone()
 XferMgrProgress.showTransferProgress(xfer);
 // or block with Transfer.waitForCompletion()
 XferMgrProgress.waitForCompletion(xfer);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
xfer_mgr.shutdownNow();

使用 TransferManager 执行 Amazon S3 操作 178

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/MultipleFileUpload.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrUpload.java
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

请参阅等待传输完成以了解有关在调用 TransferManager 的 shutdownNow 方法之前使用
waitForCompletion 成功完成传输的信息。在等待传输完成时，您可以轮询或侦听有关其状态和进
度的更新。有关更多信息，请参阅获取传输状态和进度。

可使用由 uploadFileList 返回的 MultipleFileUpload 对象来查询传输状态或进度。有关更多信息，
请参阅轮询传输的当前进度和使用 ProgressListener 获取传输进度。

您也可以使用 MultipleFileUpload 的 getSubTransfers 方法为要传输的每个文件获取单个
Upload 对象。有关更多信息，请参阅获取子传输的进度。

请参阅 GitHub 上的完整示例。

下载文件或目录

使用 TransferManager 类从 Amazon S3 下载单个文件（Amazon S3 对象）或目录（一个 Amazon S3
桶名称，后跟对象前缀）。

主题

• 下载单个文件

• 下载目录

下载单个文件

使用 TransferManager 的 download 方法，并为其提供包含要下载的对象的 Amazon S3 桶名称、键
（对象）名称和一个 File 对象（该对象表示要在本地系统上创建的文件）。

导入。

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.transfer.Download;
import com.amazonaws.services.s3.transfer.MultipleFileDownload;
import com.amazonaws.services.s3.transfer.TransferManager;
import com.amazonaws.services.s3.transfer.TransferManagerBuilder;

import java.io.File;

代码

File f = new File(file_path);

使用 TransferManager 执行 Amazon S3 操作 179

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/MultipleFileUpload.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrUpload.java
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

TransferManager xfer_mgr = TransferManagerBuilder.standard().build();
try {
 Download xfer = xfer_mgr.download(bucket_name, key_name, f);
 // loop with Transfer.isDone()
 XferMgrProgress.showTransferProgress(xfer);
 // or block with Transfer.waitForCompletion()
 XferMgrProgress.waitForCompletion(xfer);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
xfer_mgr.shutdownNow();

请参阅等待传输完成以了解有关在调用 TransferManager 的 shutdownNow 方法之前使用
waitForCompletion 成功完成传输的信息。在等待传输完成时，您可以轮询或侦听有关其状态和进
度的更新。有关更多信息，请参阅获取传输状态和进度。

请参阅 GitHub 上的完整示例。

下载目录

要从 Amazon S3 下载一组共享一个公共键前缀的文件（类似于文件系统上的目录），可使用
TransferManager downloadDirectory 方法。该方法需要包含要下载的对象的 Amazon S3 存储桶
名称、所有对象共享的对象前缀和一个 File 对象（此对象表示要将文件下载到的本地系统目录）。如
果指定目录尚不存在，将创建此目录。

导入。

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.transfer.Download;
import com.amazonaws.services.s3.transfer.MultipleFileDownload;
import com.amazonaws.services.s3.transfer.TransferManager;
import com.amazonaws.services.s3.transfer.TransferManagerBuilder;

import java.io.File;

代码

TransferManager xfer_mgr = TransferManagerBuilder.standard().build();

try {

使用 TransferManager 执行 Amazon S3 操作 180

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrDownload.java
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 MultipleFileDownload xfer = xfer_mgr.downloadDirectory(
 bucket_name, key_prefix, new File(dir_path));
 // loop with Transfer.isDone()
 XferMgrProgress.showTransferProgress(xfer);
 // or block with Transfer.waitForCompletion()
 XferMgrProgress.waitForCompletion(xfer);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
xfer_mgr.shutdownNow();

请参阅等待传输完成以了解有关在调用 TransferManager 的 shutdownNow 方法之前使用
waitForCompletion 成功完成传输的信息。在等待传输完成时，您可以轮询或侦听有关其状态和进
度的更新。有关更多信息，请参阅获取传输状态和进度。

请参阅 GitHub 上的完整示例。

复制对象

要将对象从一个 S3 桶复制到另一个 S3 桶，可使用 TransferManager copy 方法。

导入。

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.transfer.Copy;
import com.amazonaws.services.s3.transfer.TransferManager;
import com.amazonaws.services.s3.transfer.TransferManagerBuilder;

代码

System.out.println("Copying s3 object: " + from_key);
System.out.println(" from bucket: " + from_bucket);
System.out.println(" to s3 object: " + to_key);
System.out.println(" in bucket: " + to_bucket);

TransferManager xfer_mgr = TransferManagerBuilder.standard().build();
try {
 Copy xfer = xfer_mgr.copy(from_bucket, from_key, to_bucket, to_key);
 // loop with Transfer.isDone()
 XferMgrProgress.showTransferProgress(xfer);
 // or block with Transfer.waitForCompletion()

使用 TransferManager 执行 Amazon S3 操作 181

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrDownload.java

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 XferMgrProgress.waitForCompletion(xfer);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
xfer_mgr.shutdownNow();

请参阅 GitHub 上的完整示例。

请等待传输完成。

如果可以在传输完成前阻止您的应用程序（或线程），则可使用 Transfer 接口的
waitForCompletion 方法来阻止它，直至传输完成或出现异常。

try {
 xfer.waitForCompletion();
} catch (AmazonServiceException e) {
 System.err.println("Amazon service error: " + e.getMessage());
 System.exit(1);
} catch (AmazonClientException e) {
 System.err.println("Amazon client error: " + e.getMessage());
 System.exit(1);
} catch (InterruptedException e) {
 System.err.println("Transfer interrupted: " + e.getMessage());
 System.exit(1);
}

如果您在调用 之前waitForCompletion 轮询事件、在单独线程上实施轮询机制或使用
ProgressListener 异步接收进度更新，则可获取传输进度。

请参阅 GitHub 上的完整示例。

获取传输状态和进度

TransferManager upload*、download* 和 copy 方法所返回的每个类均返回以下某个类的实例，具
体取决于它是单文件操作还是多文件操作。

类 返回方

Copy（复制 copy

使用 TransferManager 执行 Amazon S3 操作 182

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrCopy.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/Transfer.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/event/ProgressListener.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrProgress.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/Copy.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

类 返回方

下载 。 download

MultipleFileDownload downloadDirectory

上传 upload

MultipleFileUpload uploadFileList , uploadDirectory

所有这些类都实施 Transfer 接口。Transfer 提供了用于获取传输进度、暂停或恢复传输以及获取传
输的当前状态或最终状态的有用方法。

主题

• 轮询传输的当前进度

• 使用 ProgressListener 获取传输进度

• 获取子传输的进度

轮询传输的当前进度

此循环打印传输的进度，在其运行时检查其当前进度，然后在传输完成时打印最终状态。

导入。

import com.amazonaws.AmazonClientException;
import com.amazonaws.AmazonServiceException;
import com.amazonaws.event.ProgressEvent;
import com.amazonaws.event.ProgressListener;
import com.amazonaws.services.s3.transfer.*;
import com.amazonaws.services.s3.transfer.Transfer.TransferState;

import java.io.File;
import java.util.ArrayList;
import java.util.Collection;

代码

// print the transfer's human-readable description

使用 TransferManager 执行 Amazon S3 操作 183

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/Download.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/MultipleFileDownload.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/Upload.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/MultipleFileUpload.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/Transfer.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

System.out.println(xfer.getDescription());
// print an empty progress bar...
printProgressBar(0.0);
// update the progress bar while the xfer is ongoing.
do {
 try {
 Thread.sleep(100);
 } catch (InterruptedException e) {
 return;
 }
 // Note: so_far and total aren't used, they're just for
 // documentation purposes.
 TransferProgress progress = xfer.getProgress();
 long so_far = progress.getBytesTransferred();
 long total = progress.getTotalBytesToTransfer();
 double pct = progress.getPercentTransferred();
 eraseProgressBar();
 printProgressBar(pct);
} while (xfer.isDone() == false);
// print the final state of the transfer.
TransferState xfer_state = xfer.getState();
System.out.println(": " + xfer_state);

请参阅 GitHub 上的完整示例。

使用 ProgressListener 获取传输进度

您可以使用 Transfer 接口的 addProgressListener 方法将 ProgressListener 附加到任何传输中。

ProgressListener 只需要一个方法，即 progressChanged，此方法将采用 ProgressEvent 对象。您
可以使用此对象获取操作的总字节数 (通过调用其 getBytes 方法) 和目前已传输的字节数 (通过调用
getBytesTransferred)。

导入。

import com.amazonaws.AmazonClientException;
import com.amazonaws.AmazonServiceException;
import com.amazonaws.event.ProgressEvent;
import com.amazonaws.event.ProgressListener;
import com.amazonaws.services.s3.transfer.*;
import com.amazonaws.services.s3.transfer.Transfer.TransferState;

import java.io.File;

使用 TransferManager 执行 Amazon S3 操作 184

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrProgress.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/Transfer.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/event/ProgressListener.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/event/ProgressListener.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/event/ProgressEvent.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

import java.util.ArrayList;
import java.util.Collection;

代码

File f = new File(file_path);
TransferManager xfer_mgr = TransferManagerBuilder.standard().build();
try {
 Upload u = xfer_mgr.upload(bucket_name, key_name, f);
 // print an empty progress bar...
 printProgressBar(0.0);
 u.addProgressListener(new ProgressListener() {
 public void progressChanged(ProgressEvent e) {
 double pct = e.getBytesTransferred() * 100.0 / e.getBytes();
 eraseProgressBar();
 printProgressBar(pct);
 }
 });
 // block with Transfer.waitForCompletion()
 XferMgrProgress.waitForCompletion(u);
 // print the final state of the transfer.
 TransferState xfer_state = u.getState();
 System.out.println(": " + xfer_state);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
xfer_mgr.shutdownNow();

请参阅 GitHub 上的完整示例。

获取子传输的进度

MultipleFileUpload 类可通过调用其 getSubTransfers 方法来返回有关其子传输的信息。它将返回
Upload 对象的不可修改的 Collection，并单独提供每个子传输的传输状态和进度。

导入。

import com.amazonaws.AmazonClientException;
import com.amazonaws.AmazonServiceException;
import com.amazonaws.event.ProgressEvent;
import com.amazonaws.event.ProgressListener;

使用 TransferManager 执行 Amazon S3 操作 185

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrProgress.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/MultipleFileUpload.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/Collection.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/Upload.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

import com.amazonaws.services.s3.transfer.*;
import com.amazonaws.services.s3.transfer.Transfer.TransferState;

import java.io.File;
import java.util.ArrayList;
import java.util.Collection;

代码

Collection<? extends Upload> sub_xfers = new ArrayList<Upload>();
sub_xfers = multi_upload.getSubTransfers();

do {
 System.out.println("\nSubtransfer progress:\n");
 for (Upload u : sub_xfers) {
 System.out.println(" " + u.getDescription());
 if (u.isDone()) {
 TransferState xfer_state = u.getState();
 System.out.println(" " + xfer_state);
 } else {
 TransferProgress progress = u.getProgress();
 double pct = progress.getPercentTransferred();
 printProgressBar(pct);
 System.out.println();
 }
 }

 // wait a bit before the next update.
 try {
 Thread.sleep(200);
 } catch (InterruptedException e) {
 return;
 }
} while (multi_upload.isDone() == false);
// print the final state of the transfer.
TransferState xfer_state = multi_upload.getState();
System.out.println("\nMultipleFileUpload " + xfer_state);

请参阅 GitHub 上的完整示例。

更多信息

• 《Amazon Simple Storage Service 用户指南》中的对象键

使用 TransferManager 执行 Amazon S3 操作 186

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrProgress.java
https://docs.amazonaws.cn/AmazonS3/latest/dev/UsingMetadata.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

将 Amazon S3 桶配置为网站

您可以配置 Amazon S3 存储桶，使其具有与网站类似的行为。要执行此操作，您需要设置其网站配
置。

Note

这些代码示例假定您了解使用适用于 Java 的 Amazon SDK 中的内容，并且已使用设置用于开
发的 Amazon 凭证和区域中的信息配置默认 Amazon 凭证。

设置存储桶的网站配置

要设置 Amazon S3 桶网站配置，请使用要设置配置的桶名称，以及包含桶网站配置的
BucketWebsiteConfiguration 对象，来调用 AmazonS3 的 setWebsiteConfiguration 方法。

设置索引文档是必需的；所有其他参数都是可选的。

导入。

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.BucketWebsiteConfiguration;

代码

 String bucket_name, String index_doc, String error_doc) {
BucketWebsiteConfiguration website_config = null;

if (index_doc == null) {
 website_config = new BucketWebsiteConfiguration();
} else if (error_doc == null) {
 website_config = new BucketWebsiteConfiguration(index_doc);
} else {
 website_config = new BucketWebsiteConfiguration(index_doc, error_doc);
}

final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();

将 Amazon S3 桶配置为网站 187

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/BucketWebsiteConfiguration.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

try {
 s3.setBucketWebsiteConfiguration(bucket_name, website_config);
} catch (AmazonServiceException e) {
 System.out.format(
 "Failed to set website configuration for bucket '%s'!\n",
 bucket_name);
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

Note

设置网站配置不会修改您的存储桶的访问权限。要使您的文件在 Web 上可见，您还需要设置
一个存储桶策略，允许对存储桶中文件的公共读取访问权限。有关更多信息，请参阅使用桶策
略管理对 Amazon S3 桶的访问。

请参阅 GitHub 上的完整示例。

获取存储桶的网站配置

要获取 Amazon S3 桶的网站配置，请使用要检索其配置的桶的名称来调用 AmazonS3 的
getWebsiteConfiguration 方法。

将以 BucketWebsiteConfiguration 对象的形式返回配置。如果该存储桶没有网站配置，则会返回
null。

导入。

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.BucketWebsiteConfiguration;

代码

final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 BucketWebsiteConfiguration config =

将 Amazon S3 桶配置为网站 188

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/SetWebsiteConfiguration.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/BucketWebsiteConfiguration.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 s3.getBucketWebsiteConfiguration(bucket_name);
 if (config == null) {
 System.out.println("No website configuration found!");
 } else {
 System.out.format("Index document: %s\n",
 config.getIndexDocumentSuffix());
 System.out.format("Error document: %s\n",
 config.getErrorDocument());
 }
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.out.println("Failed to get website configuration!");
 System.exit(1);
}

请参阅 GitHub 上的完整示例。

删除存储桶的网站配置

要删除 Amazon S3 桶的网站配置，请使用要从中删除配置的桶的名称来调用 AmazonS3 的
deleteWebsiteConfiguration 方法。

导入。

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;

代码

final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 s3.deleteBucketWebsiteConfiguration(bucket_name);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.out.println("Failed to delete website configuration!");
 System.exit(1);
}

请参阅 GitHub 上的完整示例。

将 Amazon S3 桶配置为网站 189

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/GetWebsiteConfiguration.java
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteWebsiteConfiguration.java

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

更多信息

• 《Amazon S3 API Reference》中的 PUT Bucket website

• 《Amazon S3 API Reference》中的 GET Bucket website

• 《Amazon S3 API Reference》中的 DELETE Bucket website

使用 Amazon S3 客户端加密

使用 Amazon S3 加密客户端加密数据是您可以用于为存储在 Amazon S3 中的敏感信息提供一层额外
保护的一种方法。此部分中的示例演示如何为您的应用程序创建和配置 Amazon S3 加密客户端。

如果您不熟悉加密，请参阅《Amazon KMS 开发人员指南》中的加密基础知识，大致了解加密术语和
加密算法。要了解有关所有 Amazon SDK 的加密支持信息，请参阅 Amazon Web Services 一般参考
中的 Amazon S3 客户端加密的 Amazon SDK 支持。

Note

这些代码示例假定您了解使用适用于 Java 的 Amazon SDK 中的内容，并且已使用设置用于开
发的 Amazon 凭证和区域中的信息配置默认 Amazon 凭证。

如果您使用的是 1.11.836 或更低版本的适用于 Java 的 Amazon SDK，请参阅 Amazon S3 加密客户
端迁移，了解有关将应用程序迁移到更高版本的信息。如果您无法迁移，请参阅 GitHub 上的此完整示
例。

如果您使用的是 1.11.837 或更高版本的适用于 Java 的 Amazon SDK，请浏览下面列出的示例主题以
使用 Amazon S3 客户端加密。

主题

• Amazon S3 客户端加密配合客户端主密钥

• Amazon S3 客户端加密配合 Amazon KMS 托管密钥

Amazon S3 客户端加密配合客户端主密钥

以下示例使用 AmazonS3EncryptionClientV2Builder 类创建启用客户端加密的 Amazon S3 客户端。启
用后，您使用此客户端上传到 Amazon S3 的任何对象都将加密。您使用此客户端从 Amazon S3 获取
的任何对象都将自动解密。

使用 Amazon S3 客户端加密 190

https://docs.amazonaws.cn/AmazonS3/latest/API/RESTBucketPUTwebsite.html
https://docs.amazonaws.cn/AmazonS3/latest/API/RESTBucketGETwebsite.html
https://docs.amazonaws.cn/AmazonS3/latest/API/RESTBucketDELETEwebsite.html
https://docs.amazonaws.cn/kms/latest/developerguide/crypto-intro.html
https://docs.amazonaws.cn/general/latest/gr/aws_sdk_cryptography.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/S3Encrypt.java
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/S3Encrypt.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/s3/AmazonS3EncryptionClientV2Builder.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

Note

以下示例演示如何配合使用 Amazon S3 客户端加密和客户托管的客户端主密钥。要了解如何
配合使用加密和 Amazon KMS 托管密钥，请参阅 Amazon S3 客户端加密配合 Amazon 托管
密钥。

启用客户端 Amazon S3 加密时，您可以从两种加密模式中进行选择：经严格身份验证或经身份验证。
以下部分说明了如何启用每种类型。要了解每种模式使用哪种算法，请参阅 CryptoMode 定义。

必需的导入

为这些示例导入以下类。

导入。

import com.amazonaws.ClientConfiguration;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3EncryptionClientV2Builder;
import com.amazonaws.services.s3.AmazonS3EncryptionV2;
import com.amazonaws.services.s3.model.CryptoConfigurationV2;
import com.amazonaws.services.s3.model.CryptoMode;
import com.amazonaws.services.s3.model.EncryptionMaterials;
import com.amazonaws.services.s3.model.StaticEncryptionMaterialsProvider;

经严格身份验证加密

如果未指定 CryptoMode，则默认模式为经严格身份验证加密。

要显式启用此模式，请在 withCryptoConfiguration 方法中指定
StrictAuthenticatedEncryption 值。

Note

要使用客户端经身份验证加密，您必须将最新的 Bouncy Castle jar 文件加入应用程序的类路径
中。

代码

使用 Amazon S3 客户端加密 191

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/CryptoMode.html
https://www.bouncycastle.org/download/bouncy-castle-java/

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

AmazonS3EncryptionV2 s3Encryption = AmazonS3EncryptionClientV2Builder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCryptoConfiguration(new
 CryptoConfigurationV2().withCryptoMode((CryptoMode.StrictAuthenticatedEncryption)))
 .withEncryptionMaterialsProvider(new StaticEncryptionMaterialsProvider(new
 EncryptionMaterials(secretKey)))
 .build();

s3Encryption.putObject(bucket_name, ENCRYPTED_KEY2, "This is the 2nd content to
 encrypt");

经身份验证加密模式

使用 AuthenticatedEncryption 模式时，在加密期间会应用改进的密钥包装算法。在此模式下解
密时，该算法会验证已解密对象的完整性，如果检查失败，则引发异常。有关经身份验证加密模式工作
原理的更多详细信息，请参阅博客文章 Amazon S3 Client-Side Authenticated Encryption。

Note

要使用客户端经身份验证加密，您必须将最新的 Bouncy Castle jar 文件加入应用程序的类路径
中。

要启用此模式，请在 AuthenticatedEncryption 方法中指定 withCryptoConfiguration 值。

代码

AmazonS3EncryptionV2 s3EncryptionClientV2 =
 AmazonS3EncryptionClientV2Builder.standard()
 .withRegion(Regions.DEFAULT_REGION)
 .withClientConfiguration(new ClientConfiguration())
 .withCryptoConfiguration(new
 CryptoConfigurationV2().withCryptoMode(CryptoMode.AuthenticatedEncryption))
 .withEncryptionMaterialsProvider(new StaticEncryptionMaterialsProvider(new
 EncryptionMaterials(secretKey)))
 .build();

s3EncryptionClientV2.putObject(bucket_name, ENCRYPTED_KEY1, "This is the 1st content to
 encrypt");

使用 Amazon S3 客户端加密 192

https://www.amazonaws.cn/blogs/developer/amazon-s3-client-side-authenticated-encryption
https://www.bouncycastle.org/download/bouncy-castle-java/

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

Amazon S3 客户端加密配合 Amazon KMS 托管密钥

以下示例使用 AmazonS3EncryptionClientV2Builder 类创建启用客户端加密的 Amazon S3 客户端。配
置后，您使用此客户端上传到 Amazon S3 的任何对象都将加密。您使用此客户端从 Amazon S3 获取
的任何对象都将自动解密。

Note

以下示例演示如何将 Amazon S3 客户端加密和 Amazon 托管密钥配合使用。要了解如何将加
密与您自己的密钥配合使用，请参阅 Amazon S3 客户端加密配合客户端主密钥。

启用客户端 Amazon S3 加密时，您可以从两种加密模式中进行选择：经严格身份验证或经身份验证。
以下部分说明了如何启用每种类型。要了解每种模式使用哪种算法，请参阅 CryptoMode 定义。

必需的导入

为这些示例导入以下类。

导入。

import com.amazonaws.ClientConfiguration;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.kms.AWSKMS;
import com.amazonaws.services.kms.AWSKMSClientBuilder;
import com.amazonaws.services.kms.model.GenerateDataKeyRequest;
import com.amazonaws.services.kms.model.GenerateDataKeyResult;
import com.amazonaws.services.s3.AmazonS3EncryptionClientV2Builder;
import com.amazonaws.services.s3.AmazonS3EncryptionV2;
import com.amazonaws.services.s3.model.CryptoConfigurationV2;
import com.amazonaws.services.s3.model.CryptoMode;
import com.amazonaws.services.s3.model.EncryptionMaterials;
import com.amazonaws.services.s3.model.KMSEncryptionMaterialsProvider;

经严格身份验证加密

如果未指定 CryptoMode，则默认模式为经严格身份验证加密。

要显式启用此模式，请在 withCryptoConfiguration 方法中指定
StrictAuthenticatedEncryption 值。

使用 Amazon S3 客户端加密 193

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/s3/AmazonS3EncryptionClientV2Builder.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/CryptoMode.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

Note

要使用客户端经身份验证加密，您必须将最新的 Bouncy Castle jar 文件加入应用程序的类路径
中。

代码

AmazonS3EncryptionV2 s3Encryption = AmazonS3EncryptionClientV2Builder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCryptoConfiguration(new
 CryptoConfigurationV2().withCryptoMode((CryptoMode.StrictAuthenticatedEncryption)))
 .withEncryptionMaterialsProvider(new KMSEncryptionMaterialsProvider(keyId))
 .build();

s3Encryption.putObject(bucket_name, ENCRYPTED_KEY3, "This is the 3rd content to encrypt
 with a key created in the {console}");
System.out.println(s3Encryption.getObjectAsString(bucket_name, ENCRYPTED_KEY3));

对 putObject 加密客户端调用 Amazon S3 方法以上传对象。

代码

s3Encryption.putObject(bucket_name, ENCRYPTED_KEY3, "This is the 3rd content to encrypt
 with a key created in the {console}");

您可以使用同一个客户端检索该对象。此示例调用 getObjectAsString 方法以检索存储的字符串。

代码

System.out.println(s3Encryption.getObjectAsString(bucket_name, ENCRYPTED_KEY3));

经身份验证加密模式

使用 AuthenticatedEncryption 模式时，在加密期间会应用改进的密钥包装算法。在此模式下解
密时，该算法会验证已解密对象的完整性，如果检查失败，则引发异常。有关经身份验证加密模式工作
原理的更多详细信息，请参阅博客文章 Amazon S3 Client-Side Authenticated Encryption。

使用 Amazon S3 客户端加密 194

https://www.bouncycastle.org/download/bouncy-castle-java/
https://www.amazonaws.cn/blogs/developer/amazon-s3-client-side-authenticated-encryption

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

Note

要使用客户端经身份验证加密，您必须将最新的 Bouncy Castle jar 文件加入应用程序的类路径
中。

要启用此模式，请在 AuthenticatedEncryption 方法中指定 withCryptoConfiguration 值。

代码

AmazonS3EncryptionV2 s3Encryption = AmazonS3EncryptionClientV2Builder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCryptoConfiguration(new
 CryptoConfigurationV2().withCryptoMode((CryptoMode.AuthenticatedEncryption)))
 .withEncryptionMaterialsProvider(new KMSEncryptionMaterialsProvider(keyId))
 .build();

配置 Amazon KMS 客户端

除非明确指定了 Amazon KMS 客户端，否则默认情况下，Amazon S3 加密客户端会创建一个该客户
端。

要为这个自动创建的 Amazon KMS 客户端设置区域，请设置 awsKmsRegion。

代码

Region kmsRegion = Region.getRegion(Regions.AP_NORTHEAST_1);

AmazonS3EncryptionV2 s3Encryption = AmazonS3EncryptionClientV2Builder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCryptoConfiguration(new
 CryptoConfigurationV2().withAwsKmsRegion(kmsRegion))
 .withEncryptionMaterialsProvider(new KMSEncryptionMaterialsProvider(keyId))
 .build();

或者，您可以使用自己的 Amazon KMS 客户端来初始化加密客户端。

代码

AWSKMS kmsClient = AWSKMSClientBuilder.standard()

使用 Amazon S3 客户端加密 195

https://www.bouncycastle.org/download/bouncy-castle-java/

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 .withRegion(Regions.US_WEST_2);
 .build();

AmazonS3EncryptionV2 s3Encryption = AmazonS3EncryptionClientV2Builder.standard()
 .withRegion(Regions.US_WEST_2)
 .withKmsClient(kmsClient)
 .withCryptoConfiguration(new
 CryptoConfigurationV2().withCryptoMode((CryptoMode.AuthenticatedEncryption)))
 .withEncryptionMaterialsProvider(new KMSEncryptionMaterialsProvider(keyId))
 .build();

使用适用于 Java 的 Amazon SDK 的 Amazon SQS 示例

此部分提供使用适用于 Java 的 Amazon SDK 对 Amazon SQS 进行编程的示例。

Note

这些示例仅包含演示每种方法所需的代码。完整的示例代码在 GitHub 上提供。您可以在那里
下载单个源文件，也可以将存储库复制到本地以获得所有示例，然后构建并运行这些示例。

主题

• 使用 Amazon SQS 消息队列

• 发送、接收和删除 Amazon SQS 消息

• 为 Amazon SQS 消息队列启用长轮询

• 在 Amazon SQS 中设置可见性超时

• 在 Amazon SQS 中使用死信队列

使用 Amazon SQS 消息队列

消息队列 是用于在 Amazon SQS 中可靠地发送消息的逻辑容器。有两种类型的队列：标准 和先进先
出 (FIFO)。要了解有关队列以及这些类型之间的差异的更多信息，请参阅《Amazon SQS Developer
Guide》。

本主题介绍如何使用适用于 Java 的 Amazon SDK 来创建、列出、删除和获取 Amazon SQS 队列的
URL。

Amazon SQS 示例 196

https://www.amazonaws.cn/sdk-for-java/
https://www.amazonaws.cn/sqs/
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

创建队列

请使用 AmazonSQS 客户端的 createQueue 方法，并提供一个描述队列参数的
CreateQueueRequest 对象。

导入。

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.AmazonSQSException;
import com.amazonaws.services.sqs.model.CreateQueueRequest;

代码

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();
CreateQueueRequest create_request = new CreateQueueRequest(QUEUE_NAME)
 .addAttributesEntry("DelaySeconds", "60")
 .addAttributesEntry("MessageRetentionPeriod", "86400");

try {
 sqs.createQueue(create_request);
} catch (AmazonSQSException e) {
 if (!e.getErrorCode().equals("QueueAlreadyExists")) {
 throw e;
 }
}

您可以使用 createQueue 的简化形式，这只需要队列名称即可创建标准队列。

sqs.createQueue("MyQueue" + new Date().getTime());

请参阅 GitHub 上的完整示例。

列出队列

要列出您的账户的 Amazon SQS 队列，可调用 AmazonSQS 客户端的 listQueues 方法。

导入。

import com.amazonaws.services.sqs.AmazonSQS;

使用 Amazon SQS 消息队列 197

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/CreateQueueRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/UsingQueues.java

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.ListQueuesResult;

代码

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();
ListQueuesResult lq_result = sqs.listQueues();
System.out.println("Your SQS Queue URLs:");
for (String url : lq_result.getQueueUrls()) {
 System.out.println(url);
}

使用 listQueues 重载 (不带任何参数) 将返回所有队列。您可以通过向其传递一个
ListQueuesRequest 对象来筛选返回的结果。

导入。

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.ListQueuesRequest;

代码

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();
String name_prefix = "Queue";
lq_result = sqs.listQueues(new ListQueuesRequest(name_prefix));
System.out.println("Queue URLs with prefix: " + name_prefix);
for (String url : lq_result.getQueueUrls()) {
 System.out.println(url);
}

请参阅 GitHub 上的完整示例。

获取队列的 URL

调用 AmazonSQS 客户端的 getQueueUrl 方法。

导入。

import com.amazonaws.services.sqs.AmazonSQS;

使用 Amazon SQS 消息队列 198

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/UsingQueues.java

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

import com.amazonaws.services.sqs.AmazonSQSClientBuilder;

代码

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();
String queue_url = sqs.getQueueUrl(QUEUE_NAME).getQueueUrl();

请参阅 GitHub 上的完整示例。

删除队列

向 AmazonSQS 客户端的 deleteQueue 方法提供队列的 URL。

导入。

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;

代码

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();
sqs.deleteQueue(queue_url);

请参阅 GitHub 上的完整示例。

更多信息

• 《Amazon SQS Developer Guide》中的 How Amazon SQS Queues Work

• 《Amazon SQS API Reference》中的 CreateQueue

• 《Amazon SQS API Reference》中的 GetQueueUrl

• 《Amazon SQS API Reference》中的 ListQueues

• 《Amazon SQS API Reference》中的 DeleteQueues

发送、接收和删除 Amazon SQS 消息

本主题描述了如何发送、接收和删除 Amazon SQS 消息。始终使用 SQS 队列发送消息。

发送、接收和删除 Amazon SQS 消息 199

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/UsingQueues.java
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/UsingQueues.java
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-how-it-works.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_GetQueueUrl.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ListQueues.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_DeleteQueues.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

发送消息

通过调用 AmazonSQS 客户端的 sendMessage 方法，将单个消息添加到 Amazon SQS 队列。提供
包含队列 URL、消息正文和可选延迟值（以秒为单位）的 SendMessageRequest 对象。

导入。

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.SendMessageRequest;

代码

SendMessageRequest send_msg_request = new SendMessageRequest()
 .withQueueUrl(queueUrl)
 .withMessageBody("hello world")
 .withDelaySeconds(5);
sqs.sendMessage(send_msg_request);

请参阅 GitHub 上的完整示例。

一次性发送多条消息

您可以在一个请求中发送多条消息。要发送多条消息，可使用 AmazonSQS 客户端的
sendMessageBatch 方法，此方法采用 SendMessageBatchRequest，后者包含队列 URL 和要发送
的消息列表（每条消息对应一个 SendMessageBatchRequestEntry）。您也可以为每条消息设置一个
可选延迟值。

导入。

import com.amazonaws.services.sqs.model.SendMessageBatchRequest;
import com.amazonaws.services.sqs.model.SendMessageBatchRequestEntry;

代码

SendMessageBatchRequest send_batch_request = new SendMessageBatchRequest()
 .withQueueUrl(queueUrl)
 .withEntries(
 new SendMessageBatchRequestEntry(
 "msg_1", "Hello from message 1"),
 new SendMessageBatchRequestEntry(
 "msg_2", "Hello from message 2")

发送、接收和删除 Amazon SQS 消息 200

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/SendMessageRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/SendReceiveMessages.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/SendMessageBatchRequest.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/SendMessageBatchRequestEntry.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 .withDelaySeconds(10));
sqs.sendMessageBatch(send_batch_request);

请参阅 GitHub 上的完整示例。

接收消息

可通过调用 AmazonSQS 客户端的 receiveMessage 方法并为其传递队列的 URL，来检索当前位于
队列中的任何消息。消息将作为一系列 Message 对象返回。

导入。

import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.AmazonSQSException;
import com.amazonaws.services.sqs.model.SendMessageBatchRequest;

代码

List<Message> messages = sqs.receiveMessage(queueUrl).getMessages();

收到后删除消息

在收到消息并处理其内容后，可通过将消息的接收句柄和队列 URL 发送到 AmazonSQS 客户端的
deleteMessage 方法来从队列中删除消息。

代码

for (Message m : messages) {
 sqs.deleteMessage(queueUrl, m.getReceiptHandle());
}

请参阅 GitHub 上的完整示例。

更多信息

• 《Amazon SQS Developer Guide》中的 How Amazon SQS Queues Work

• 《Amazon SQS API Reference》中的 SendMessage

• 《Amazon SQS API Reference》中的 SendMessageBatch

• 《Amazon SQS API Reference》中的 ReceiveMessage

• 《Amazon SQS API Reference》中的 DeleteMessage

发送、接收和删除 Amazon SQS 消息 201

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/SendReceiveMessages.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/Message.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/SendReceiveMessages.java
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-how-it-works.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatch.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

为 Amazon SQS 消息队列启用长轮询

默认情况下，Amazon SQS 使用短轮询，此时仅查询服务器的一个子集（基于加权随机分布），以确
定是否有任何消息可包含在响应中。

长轮询有助于降低使用 Amazon SQS 的费用，它可在答复发送到 Amazon SQS 队列的
ReceiveMessage 请求时，减少因没有消息可返回而造成的空响应数，还可消除假的空响应。

Note

您可以设置 1 到 20 秒的长轮询频率。

创建队列时启用长轮询

要在创建 Amazon SQS 队列时启用长轮询，请设置 CreateQueueRequest 对象的
ReceiveMessageWaitTimeSeconds 属性，然后再调用 AmazonSQS 类的 createQueue 方法。

导入。

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.AmazonSQSException;
import com.amazonaws.services.sqs.model.CreateQueueRequest;

代码

final AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();

// Enable long polling when creating a queue
CreateQueueRequest create_request = new CreateQueueRequest()
 .withQueueName(queue_name)
 .addAttributesEntry("ReceiveMessageWaitTimeSeconds", "20");

try {
 sqs.createQueue(create_request);
} catch (AmazonSQSException e) {
 if (!e.getErrorCode().equals("QueueAlreadyExists")) {
 throw e;
 }
}

为 Amazon SQS 消息队列启用长轮询 202

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/CreateQueueRequest.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

请参阅 GitHub 上的完整示例。

在现有队列上启用长轮询

除了在创建队列时启用长轮询之外，您也可以通过在 SetQueueAttributesRequest 上设置
ReceiveMessageWaitTimeSeconds，然后再调用 AmazonSQS 类的 setQueueAttributes 方
法，在现有队列上启用长轮询。

导入。

import com.amazonaws.services.sqs.model.SetQueueAttributesRequest;

代码

SetQueueAttributesRequest set_attrs_request = new SetQueueAttributesRequest()
 .withQueueUrl(queue_url)
 .addAttributesEntry("ReceiveMessageWaitTimeSeconds", "20");
sqs.setQueueAttributes(set_attrs_request);

请参阅 GitHub 上的完整示例。

在接收消息时启用长轮询

您可以在接收消息时启用长轮询，方法是在您提供给 AmazonSQS 类的 receiveMessage 方法的
ReceiveMessageRequest 中设置等待时间（以秒为单位）。

Note

您应确保 Amazon 客户端的请求超时时间大于最大长轮询时间（20 秒），以确保您的
receiveMessage 请求在等待下一轮询事件时不会超时！

导入。

import com.amazonaws.services.sqs.model.ReceiveMessageRequest;

代码

ReceiveMessageRequest receive_request = new ReceiveMessageRequest()

为 Amazon SQS 消息队列启用长轮询 203

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/LongPolling.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/SetQueueAttributesRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/LongPolling.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/ReceiveMessageRequest.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 .withQueueUrl(queue_url)
 .withWaitTimeSeconds(20);
sqs.receiveMessage(receive_request);

请参阅 GitHub 上的完整示例。

更多信息

• 《Amazon SQS Developer Guide》中的 Amazon SQS Long Polling

• 《Amazon SQS API Reference》中的 CreateQueue

• 《Amazon SQS API Reference》中的 ReceiveMessage

• 《Amazon SQS API Reference》中的 SetQueueAttributes

在 Amazon SQS 中设置可见性超时

为了确保消息接收，在 Amazon SQS 中收到的消息会保留在队列中，直到被删除。在指定的可见性超
时时间后，已接收但未删除的消息将可以在后续请求中使用，以帮助防止在对消息进行处理和删除之前
重复接收消息。

Note

使用标准队列时，可见性超时无法保证不会接收消息两次。如果您使用的是标准队列，请确保
您的代码能够处理多次收到同一条消息的情况。

为单个消息设置消息可见性超时

当您收到消息时，您可以通过在 ChangeMessageVisibilityRequest 中将消息的接收句柄传递到
AmazonSQS 类的 changeMessageVisibility 方法来修改其可见性超时。

导入。

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;

代码

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();

在 Amazon SQS 中设置可见性超时 204

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/LongPolling.java
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-long-polling.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/standard-queues.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/ChangeMessageVisibilityRequest.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

// Get the receipt handle for the first message in the queue.
String receipt = sqs.receiveMessage(queue_url)
 .getMessages()
 .get(0)
 .getReceiptHandle();

sqs.changeMessageVisibility(queue_url, receipt, timeout);

请参阅 GitHub 上的完整示例。

一次性为多条消息设置的消息可见性超时

要一次性设置多条消息的可见性超时，请创建 ChangeMessageVisibilityBatchRequestEntry 对
象的列表，每个对象包含唯一的 ID 和接收句柄。然后将该列表传递给 Amazon SQS 客户端类的
changeMessageVisibilityBatch 方法。

导入。

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.ChangeMessageVisibilityBatchRequestEntry;
import java.util.ArrayList;
import java.util.List;

代码

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();

List<ChangeMessageVisibilityBatchRequestEntry> entries =
 new ArrayList<ChangeMessageVisibilityBatchRequestEntry>();

entries.add(new ChangeMessageVisibilityBatchRequestEntry(
 "unique_id_msg1",
 sqs.receiveMessage(queue_url)
 .getMessages()
 .get(0)
 .getReceiptHandle())
 .withVisibilityTimeout(timeout));

entries.add(new ChangeMessageVisibilityBatchRequestEntry(
 "unique_id_msg2",

在 Amazon SQS 中设置可见性超时 205

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/VisibilityTimeout.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/ChangeMessageVisibilityBatchRequestEntry.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 sqs.receiveMessage(queue_url)
 .getMessages()
 .get(0)
 .getReceiptHandle())
 .withVisibilityTimeout(timeout + 200));

sqs.changeMessageVisibilityBatch(queue_url, entries);

请参阅 GitHub 上的完整示例。

更多信息

• 《Amazon SQS Developer Guide》中的 Visibility Timeout

• 《Amazon SQS API Reference》中的 SetQueueAttributes

• 《Amazon SQS API Reference》中的 GetQueueAttributes

• 《Amazon SQS API Reference》中的 ReceiveMessage

• 《Amazon SQS API Reference》中的 ChangeMessageVisibility

• 《Amazon SQS API Reference》中的 ChangeMessageVisibilityBatch

在 Amazon SQS 中使用死信队列

Amazon SQS 支持死信队列。死信队列是其他（源）队列可将其作为无法成功处理的消息的目标的队
列。您可以在死信队列中留出和隔离这些消息以确定其处理失败的原因。

创建死信队列

死信队列的创建方式与常规队列相同，但有以下限制：

• 死信队列必须与源队列属于相同的队列类型 (FIFO 或标准)。

• 死信队列必须与源队列使用相同的 Amazon Web Services 账户和区域创建。

在这里，我们创建两个相同的 Amazon SQS 队列，其中一个用作死信队列：

导入。

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.AmazonSQSException;

在 Amazon SQS 中使用死信队列 206

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/VisibilityTimeout.java
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-visibility-timeout.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibility.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibilityBatch.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

代码

final AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();

// Create source queue
try {
 sqs.createQueue(src_queue_name);
} catch (AmazonSQSException e) {
 if (!e.getErrorCode().equals("QueueAlreadyExists")) {
 throw e;
 }
}

// Create dead-letter queue
try {
 sqs.createQueue(dl_queue_name);
} catch (AmazonSQSException e) {
 if (!e.getErrorCode().equals("QueueAlreadyExists")) {
 throw e;
 }
}

请参阅 GitHub 上的完整示例。

为源队列指定死信队列

要指定死信队列，您必须先创建一个重新驱动策略，然后在队列属性中设置该策略。重新驱动策略以
JSON 指定，并指定死信队列的 ARN，以及在向死信队列发送消息之前，允许接收但不处理消息的最
大次数。

要为源队列设置重新驱动策略，请使用 SetQueueAttributesRequest 对象调用 AmazonSQS 类的
setQueueAttributes 方法，并使用您的 JSON 重新驱动策略为该对象设置 RedrivePolicy 属
性。

导入。

import com.amazonaws.services.sqs.model.GetQueueAttributesRequest;
import com.amazonaws.services.sqs.model.GetQueueAttributesResult;
import com.amazonaws.services.sqs.model.SetQueueAttributesRequest;

代码

在 Amazon SQS 中使用死信队列 207

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/DeadLetterQueues.java
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/SetQueueAttributesRequest.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

String dl_queue_url = sqs.getQueueUrl(dl_queue_name)
 .getQueueUrl();

GetQueueAttributesResult queue_attrs = sqs.getQueueAttributes(
 new GetQueueAttributesRequest(dl_queue_url)
 .withAttributeNames("QueueArn"));

String dl_queue_arn = queue_attrs.getAttributes().get("QueueArn");

// Set dead letter queue with redrive policy on source queue.
String src_queue_url = sqs.getQueueUrl(src_queue_name)
 .getQueueUrl();

SetQueueAttributesRequest request = new SetQueueAttributesRequest()
 .withQueueUrl(src_queue_url)
 .addAttributesEntry("RedrivePolicy",
 "{\"maxReceiveCount\":\"5\", \"deadLetterTargetArn\":\""
 + dl_queue_arn + "\"}");

sqs.setQueueAttributes(request);

请参阅 GitHub 上的完整示例。

更多信息

• 《Amazon SQS Developer Guide》中的 Using Amazon SQS Dead Letter Queues

• 《Amazon SQS API Reference》中的 SetQueueAttributes

Amazon SWF使用 的 示例适用于 Java 的 Amazon SDK

Amazon SWF 是一项工作流管理服务，可帮助开发人员构建和扩展分布式工作流，这些工作流可具有
包含活动、子工作流或 Lambda 任务的并行或顺序步骤。

通过适用于 Java 的 Amazon SDK 使用 Amazon SWF 有两种方法：使用 SWF client 对象或者使用适
用于 Java 的 Amazon Flow Framework。适用于 Java 的 Amazon Flow Framework 的初始配置难度更
大，因为它使用了大量批注并依赖其他库，例如 AspectJ 和 Spring Framework。但对于大型项目或复
杂项目，您可使用适用于 Java 的 Amazon Flow Framework 来节省编写代码的时间。有关更多信息，
请参阅《Amazon Flow Framework for Java Developer Guide》。

此部分提供了直接使用Amazon SWF客户端来为 适用于 Java 的 Amazon SDK 编程的示例。

Amazon SWF 示例 208

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/DeadLetterQueues.java
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-dead-letter-queues.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
https://www.amazonaws.cn/swf/
https://www.amazonaws.cn/lambda/
https://docs.amazonaws.cn/amazonswf/latest/awsflowguide/

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

主题

• SWF 基本知识

• 构建简单 Amazon SWF 应用程序

• Lambda 任务

• 适当地关闭活动和工作流工作线程

• 注册域

• 列出域

SWF 基本知识

这些是通过 Amazon SWF 使用适用于 Java 的 Amazon SDK的一般模式。这意味着它主要用于参考。
有关更完整的介绍性教程，请参阅构建简单 Amazon SWF 应用程序。

依赖项

基本 Amazon SWF 应用程序将需要适用于 Java 的 Amazon SDK附带的以下依赖项：

• aws-java-sdk-1.12.*.jar

• commons-logging-1.2.*.jar

• httpclient-4.3.*.jar

• httpcore-4.3.*.jar

• jackson-annotations-2.12.*.jar

• jackson-core-2.12.*.jar

• jackson-databind-2.12.*.jar

• joda-time-2.8.*.jar

Note

虽然这些程序包的版本号将因您拥有的 SDK 版本而异，但 SDK 附带的版本已经过兼容性测
试，并且您应使用这些版本。

适用于 Java 的 Amazon Flow Framework 应用程序需要其他设置和 其他依赖项。有关使用框架的更多
信息，请参阅《Amazon Flow Framework for Java Developer Guide》。

SWF 基本知识 209

https://docs.amazonaws.cn/amazonswf/latest/awsflowguide/

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

导入

通常，您可以将以下导入用于代码开发：

import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClientBuilder;
import com.amazonaws.services.simpleworkflow.model.*;

不过，好的做法是仅导入您所需的类。您可能最终会在
com.amazonaws.services.simpleworkflow.model 工作区中指定特定的类：

import com.amazonaws.services.simpleworkflow.model.PollForActivityTaskRequest;
import com.amazonaws.services.simpleworkflow.model.RespondActivityTaskCompletedRequest;
import com.amazonaws.services.simpleworkflow.model.RespondActivityTaskFailedRequest;
import com.amazonaws.services.simpleworkflow.model.TaskList;

如果您使用适用于 Java 的 Amazon Flow Framework，则将从
com.amazonaws.services.simpleworkflow.flow 工作区导入类。例如：

import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.flow.ActivityWorker;

Note

除了适用于 Java 的 Amazon SDK 的基本要求外，适用于 Java 的 Amazon Flow Framework
还有额外要求。有关更多信息，请参阅《Amazon Flow Framework for Java Developer
Guide》。

使用 SWF 客户端类

您通过 Amazon SWFAmazonSimpleWorkflowClient 或 AmazonSimpleWorkflowAsyncClient 类与 进
行基本交互。二者之间的主要差异是，*AsyncClient 类返回 Future 对象以进行并发 (异步) 编程。

AmazonSimpleWorkflowClient swf = AmazonSimpleWorkflowClientBuilder.defaultClient();

构建简单 Amazon SWF 应用程序

此主题探讨如何使用适用于 Java 的 Amazon SDK 编写 Amazon SWF 应用程序，并在此过程中介绍了
一些重要概念。

构建简单 Amazon SWF 应用程序 210

https://docs.amazonaws.cn/amazonswf/latest/awsflowguide/
https://docs.amazonaws.cn/amazonswf/latest/awsflowguide/
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowAsyncClient.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/concurrent/Future.html
https://www.amazonaws.cn/swf/

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

关于示例

示例项目将创建带有一个活动的工作流，接受通过 Amazon Cloud 传递的工作流数据（在 HelloWorld
的传统中，这应该是要问候的某个人的名字）并在响应中打印问候语。

虽然表面上看起来这非常简单，不过 Amazon SWF 应用程序由多个协同工作的部件组成：

• 一个域，用作工作流执行数据的逻辑容器。

• 一个或多个工作流程，它们表示代码组件，这些组件定义工作流程的活动和子工作流程执行的逻辑顺
序。

• 一个工作流工作线程，也称为决策程序，轮询决策任务并在响应中计划活动或子工作流。

• 一个或多个活动，每个活动表示工作流中的一个工作单元。

• 一个活动工作线程，轮询活动任务并在响应中运行活动方法。

• 一个或多个任务列表，这是由 Amazon SWF 维护的队列，用于发布请求到工作流和活动工作线程。
任务列表上用于工作流工作线程的任务称为决策任务。用于活动工作线程的任务称为活动任务。

• 一个工作流启动程序，用于开始工作流的执行。

在后台，Amazon SWF 协调这些组件的操作，协调从 Amazon Cloud 的传输，在它们之间传递数据，
处理超时和检测信号通知，以及记录工作流执行历史记录。

先决条件

开发环境

此教程中使用的开发环境包括：

• -适用于 Java 的 Amazon SDK 。

• Apache Maven (3.3.1)。

• JDK 1.7 或更高版本。本教程使用 JDK 1.8.0 开发和测试。

• 一个适用的 Java 文本编辑器 (由您选择)。

Note

如果您使用的构建系统不是 Maven，则仍可以使用适用于您环境的相应步骤创建项目，并在这
个过程中使用此处提供的概念。适用于 Java 的 Amazon SDK入门中提供了在不同编译系统中
配置和使用 的更多信息。

构建简单 Amazon SWF 应用程序 211

https://www.amazonaws.cn/sdk-for-java/
http://maven.apache.org/

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

与此类似，但需要更多工作，此处列出的步骤也可以使用支持 Amazon SWF 的任意 Amazon
SDK 实施。

所有必需的外部依赖项包括在适用于 Java 的 Amazon SDK 中，因此无需下载其他内容。

Amazon 访问

要成功完成本教程，您必须有权访问 Amazon 访问门户，如本指南的基本设置部分所述。

这些说明描述了如何访问您复制并粘贴到本地共享 credentials 文件中的临时凭证。您粘贴的临时
凭证必须与 Amazon IAM Identity Center 中有权访问 Amazon SWF 的 IAM 角色关联。粘贴临时凭证
后，您的 credentials 文件将类似于以下内容。

[default]
aws_access_key_id=AKIAIOSFODNN7EXAMPLE
aws_secret_access_key=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
aws_session_token=IQoJb3JpZ2luX2IQoJb3JpZ2luX2IQoJb3JpZ2luX2IQoJb3JpZ2luX2IQoJb3JpZVERYLONGSTRINGEXAMPLE

这些临时凭证与 default 配置文件相关联。

创建 SWF 项目

1. 使用 Maven 启动新项目：

mvn archetype:generate -DartifactId=helloswf \
-DgroupId=aws.example.helloswf -DinteractiveMode=false

这将创建具有标准 maven 项目结构的新项目：

helloswf
pom.xml
src
 ### main
 # ### java
 # ### aws
 # ### example
 # ### helloswf
 # ### App.java
 ### test

构建简单 Amazon SWF 应用程序 212

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 ### ...

您可以忽略或删除 test 目录及其中包含的所有内容，我们不会将其用于此教程。您还可以删除
App.java，因为我们将使用新类来替换它。

2. 编辑项目的 pom.xml 文件，通过将 aws-java-sdk-simpleworkflow 模块的依赖项添加到
<dependencies> 块中来添加该模块。

<dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-simpleworkflow</artifactId>
 <version>1.11.1000</version>
 </dependency>
</dependencies>

3. 确保 Maven 使用 JDK 1.7+ 支持构建您的项目。将以下内容添加到您项目 (在 <dependencies>
块之前或之后) 的 pom.xml 中：

<build>
 <plugins>
 <plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.6.1</version>
 <configuration>
 <source>1.8</source>
 <target>1.8</target>
 </configuration>
 </plugin>
 </plugins>
</build>

编码项目

示例项目包括四个独立的应用程序，我们将逐个查看：

• HelloTypes.java -- 包含项目的域、活动和工作流类型数据，与其他组件共享。它还处理这些类型在
SWF 中的注册。

• ActivityWorker.java -- 包含活动工作线程，将轮询活动任务并在响应中运行活动。

• WorkflowWorker.java -- 包含工作流工作线程（决策程序），将轮询决策任务并计划新活动。

构建简单 Amazon SWF 应用程序 213

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

• WorkflowStarter.java -- 包含工作流启动程序，将启动新的工作流执行，这将导致 SWF 开始生成决
策和工作流任务供工作线程使用。

所有源文件的常见步骤

您创建的用于托管 Java 类的所有文件都有几个共同点。出于时间考虑，这些步骤在每次添加新文件到
项目时是隐含的：

1. 在项目的 src/main/java/aws/example/helloswf/ 目录中创建文件。

2. 添加 package 声明到每个文件的开头用于声明其命名空间。示例项目使用：

package aws.example.helloswf;

3. 为 AmazonSimpleWorkflowClient 类和 com.amazonaws.services.simpleworkflow.model
命名空间中的多个类添加 import 声明。为了简化操作，我们使用：

import com.amazonaws.regions.Regions;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClientBuilder;
import com.amazonaws.services.simpleworkflow.model.*;

注册域、工作流程和活动类型

我们将从创建新的可执行类 HelloTypes.java 开始。此文件将包含共享数据，您的工作流中的不同
部分需要这些数据，例如活动的名称和版本以及工作流类型，域名和任务列表名称。

1. 打开文本编辑器并创建文件 HelloTypes.java，添加程序包声明并根据通用步骤导入。

2. 声明 HelloTypes 类并向其提供值，以供注册的活动和工作流类型使用：

 public static final String DOMAIN = "HelloDomain";
 public static final String TASKLIST = "HelloTasklist";
 public static final String WORKFLOW = "HelloWorkflow";
 public static final String WORKFLOW_VERSION = "1.0";
 public static final String ACTIVITY = "HelloActivity";
 public static final String ACTIVITY_VERSION = "1.0";

这些值将在代码中使用。

构建简单 Amazon SWF 应用程序 214

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

3. 在字符串声明之后，创建 AmazonSimpleWorkflowClient 类的实例。这是由Amazon SWF向 适用于
Java 的 Amazon SDK 方法提供的基本接口。

private static final AmazonSimpleWorkflow swf =

 AmazonSimpleWorkflowClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();

前面的代码片段假设临时凭证与 default 配置文件相关联。如果您使用其他配置文件，请按如下方
式修改上面的代码，然后将 profile_name 替换为实际配置文件的名称。

private static final AmazonSimpleWorkflow swf =
 AmazonSimpleWorkflowClientBuilder
 .standard()
 .withCredentials(new ProfileCredentialsProvider("profile_name"))
 .withRegion(Regions.DEFAULT_REGION)
 .build();

4. 添加新函数以注册到 SWF 域。域 是多种相关 SWF 活动和工作流类型的逻辑容器。SWF 组件只有
在位于同一个域中时才能彼此通信。

 try {
 System.out.println("** Registering the domain '" + DOMAIN + "'.");
 swf.registerDomain(new RegisterDomainRequest()
 .withName(DOMAIN)
 .withWorkflowExecutionRetentionPeriodInDays("1"));
 } catch (DomainAlreadyExistsException e) {
 System.out.println("** Domain already exists!");
 }

在注册域时，您需要提供名称（不含 :、/、|、控制字符或文本字符串“arn”的 1 至 256 个字符组
合）以及保留期，这是在工作流执行完成后，Amazon SWF 保留工作流执行历史记录数据的天数。
最长的工作流执行保留期为 90 天。有关更多信息，请参阅 RegisterDomainRequest。

如果具有该名称的域已存在，则将引发 DomainAlreadyExistsException。因为我们并不关注是否已
经创建了域，因此可以忽略此异常。

构建简单 Amazon SWF 应用程序 215

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/RegisterDomainRequest.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/DomainAlreadyExistsException.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

Note

此代码演示了使用适用于 Java 的 Amazon SDK方法时的一个通用模式，方法的数据由
simpleworkflow.model 命名空间中的类提供，该命名空间使用可链接的 0with* 方法
实例化和填充。

5. 添加函数以注册新活动类型。活动 表示工作流中的一个工作单元。

 try {
 System.out.println("** Registering the activity type '" + ACTIVITY +
 "-" + ACTIVITY_VERSION + "'.");
 swf.registerActivityType(new RegisterActivityTypeRequest()
 .withDomain(DOMAIN)
 .withName(ACTIVITY)
 .withVersion(ACTIVITY_VERSION)
 .withDefaultTaskList(new TaskList().withName(TASKLIST))
 .withDefaultTaskScheduleToStartTimeout("30")
 .withDefaultTaskStartToCloseTimeout("600")
 .withDefaultTaskScheduleToCloseTimeout("630")
 .withDefaultTaskHeartbeatTimeout("10"));
 } catch (TypeAlreadyExistsException e) {
 System.out.println("** Activity type already exists!");
 }

活动类型由名称和版本标识，它们在所注册到的域中用于将活动与任何其他活动区分开。活动还包
含多种可选参数，例如用于从 SWF 接收任务和数据的默认任务列表，以及您可用来对活动各个部分
执行所用时长施加限制的不同超时。有关更多信息，请参阅 RegisterActivityTypeRequest。

Note

所有超时值以秒 为单位指定。有关超时如何影响工作流执行的完整说明，请参阅 Amazon
SWF Timeout Types。

如果您尝试注册的活动类型已存在，则将引发 TypeAlreadyExistsException。添加函数以注册新工作流
类型。工作流程 也称为决策程序，表示工作流程执行的逻辑。

+

构建简单 Amazon SWF 应用程序 216

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/RegisterActivityTypeRequest.html
https://docs.amazonaws.cn/amazonswf/latest/developerguide/swf-timeout-types.html
https://docs.amazonaws.cn/amazonswf/latest/developerguide/swf-timeout-types.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/TypeAlreadyExistsException.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 try {
 System.out.println("** Registering the workflow type '" + WORKFLOW +
 "-" + WORKFLOW_VERSION + "'.");
 swf.registerWorkflowType(new RegisterWorkflowTypeRequest()
 .withDomain(DOMAIN)
 .withName(WORKFLOW)
 .withVersion(WORKFLOW_VERSION)
 .withDefaultChildPolicy(ChildPolicy.TERMINATE)
 .withDefaultTaskList(new TaskList().withName(TASKLIST))
 .withDefaultTaskStartToCloseTimeout("30"));
 } catch (TypeAlreadyExistsException e) {
 System.out.println("** Workflow type already exists!");
 }

+

与活动类型类似，工作流类型由名称 和版本 标识，也具有可配置的超时。有关更多信息，请参阅
RegisterWorkflowTypeRequest。

+

如果您尝试注册的工作流类型已存在，则将引发 TypeAlreadyExistsException。最后，请通过向类提供
main 方法确保其可执行，这反过来会注册域、活动类型和工作流类型：

+

 registerDomain();
 registerWorkflowType();
 registerActivityType();

现在，您可以编译并运行应用程序来运行注册脚本，或者继续对活动和工作流工作线程编写代码。注册
了域、工作流和活动之后，您无需重新运行此步骤，这些内容将保留，直至您自行弃用它们。

实施活动工作线程

活动 是工作流中的基本工作单元。工作流提供逻辑、要运行的计划活动 (或要采取的其他操作) 来响应
决策任务。典型的工作流通常包含多种活动，可以同步、异步或者以两种方式结合运行。

活动工作线程 是一段代码，轮询由 Amazon SWF 生成的活动任务来响应工作流决策。在收到活动任务
时，它将运行对应的活动并将成功/失败响应返回到工作流。

我们将实施驱动单个活动的简单活动工作线程。

构建简单 Amazon SWF 应用程序 217

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/RegisterWorkflowTypeRequest.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/TypeAlreadyExistsException.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

1. 打开文本编辑器并创建文件 ActivityWorker.java，添加程序包声明并根据通用步骤导入。

import com.amazonaws.regions.Regions;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClientBuilder;
import com.amazonaws.services.simpleworkflow.model.*;

2. 向文件中添加 ActivityWorker 类，并向其提供数据成员以保存用来与 Amazon SWF 交互的
SWF 客户端：

 private static final AmazonSimpleWorkflow swf =

 AmazonSimpleWorkflowClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();

3. 添加将用作活动的方法：

private static String sayHello(String input) throws Throwable {
 return "Hello, " + input + "!";
}

该活动就是获取字符串，将其组合到问候语中，然后返回结果。虽然此活动有很小的可能性会引发
异常，但最好的做法是将活动设计为在出现问题时会引发错误。

4. 添加我们将用作活动任务轮询方法的 main 方法。我们首先添加一些代码来轮询任务列表中的活动
任务：

 System.out.println("Polling for an activity task from the tasklist '"
 + HelloTypes.TASKLIST + "' in the domain '" +
 HelloTypes.DOMAIN + "'.");

 ActivityTask task = swf.pollForActivityTask(
 new PollForActivityTaskRequest()
 .withDomain(HelloTypes.DOMAIN)
 .withTaskList(
 new TaskList().withName(HelloTypes.TASKLIST)));

 String task_token = task.getTaskToken();

活动通过调用 Amazon SWF 客户端的 pollForActivityTask 方法从 SWF 接收任务，指定在传
入的 PollForActivityTaskRequest 中使用的域和任务列表。

构建简单 Amazon SWF 应用程序 218

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/PollForActivityTaskRequest.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

一旦收到任务，我们将通过调用任务的 getTaskToken 方法来检索它的唯一标识符。

5. 接下来，写入一些代码来处理传入的任务。将以下内容添加到您的 main 方法，就在轮询任务和检
索其任务令牌代码的后方。

 if (task_token != null) {
 String result = null;
 Throwable error = null;

 try {
 System.out.println("Executing the activity task with input '" +
 task.getInput() + "'.");
 result = sayHello(task.getInput());
 } catch (Throwable th) {
 error = th;
 }

 if (error == null) {
 System.out.println("The activity task succeeded with result '"
 + result + "'.");
 swf.respondActivityTaskCompleted(
 new RespondActivityTaskCompletedRequest()
 .withTaskToken(task_token)
 .withResult(result));
 } else {
 System.out.println("The activity task failed with the error '"
 + error.getClass().getSimpleName() + "'.");
 swf.respondActivityTaskFailed(
 new RespondActivityTaskFailedRequest()
 .withTaskToken(task_token)
 .withReason(error.getClass().getSimpleName())
 .withDetails(error.getMessage()));
 }
 }

如果任务令牌不是 null，则我们可以开始运行活动方法 (sayHello)，只要它具有随任务发送的输
入数据。

如果任务成功（未生成任何错误），则 worker 通过调用 SWF 客户端的
respondActivityTaskCompleted 方法来响应 SWF，该方法使用包含任务令牌和活动结果数据
的 RespondActivityTaskCompletedRequest 对象。

构建简单 Amazon SWF 应用程序 219

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/RespondActivityTaskCompletedRequest.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

另一方面，如果任务失败，则我们通过调用带有 RespondActivityTaskFailedRequest 对象的
respondActivityTaskFailed 方法进行响应，向其传递任务令牌和有关错误的信息。

Note

如果终止，此活动不会正常关闭。虽然这超出了本教程的范围，不过在相关主题适当地关闭活
动和工作流工作线程中提供了此活动工作线程的替代实施方法。

实施工作流工作线程

您的工作流逻辑位于称为工作流工作线程的代码块中。工作流工作线程在工作流类型注册到的默认任务
列表上，轮询域中 Amazon SWF 发送的决策任务。

工作流工作线程接收任务时，它会做出某种类型的决策 (通常为是否计划新活动) 并采取相应操作 (例如
计划活动)。

1. 打开文本编辑器并创建文件 WorkflowWorker.java，添加程序包声明并根据通用步骤导入。

2. 将一些额外的导入添加到文件中：

import com.amazonaws.regions.Regions;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClientBuilder;
import com.amazonaws.services.simpleworkflow.model.*;
import java.util.ArrayList;
import java.util.List;
import java.util.UUID;

3. 声明 WorkflowWorker 类，创建用于访问 SWF 方法的 AmazonSimpleWorkflowClient 类的实例。

 private static final AmazonSimpleWorkflow swf =

 AmazonSimpleWorkflowClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();

4. 添加 main 方法。该方法持续循环，使用 SWF 客户端的 pollForDecisionTask 方法轮询决策任
务。PollForDecisionTaskRequest 提供详细信息。

 PollForDecisionTaskRequest task_request =
 new PollForDecisionTaskRequest()

构建简单 Amazon SWF 应用程序 220

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/RespondActivityTaskFailedRequest.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/PollForDecisionTaskRequest.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 .withDomain(HelloTypes.DOMAIN)
 .withTaskList(new TaskList().withName(HelloTypes.TASKLIST));

 while (true) {
 System.out.println(
 "Polling for a decision task from the tasklist '" +
 HelloTypes.TASKLIST + "' in the domain '" +
 HelloTypes.DOMAIN + "'.");

 DecisionTask task = swf.pollForDecisionTask(task_request);

 String taskToken = task.getTaskToken();
 if (taskToken != null) {
 try {
 executeDecisionTask(taskToken, task.getEvents());
 } catch (Throwable th) {
 th.printStackTrace();
 }
 }
 }

在收到任务之后，我们调用其 getTaskToken 方法，这会返回可用于标识任务的字符串。如果返回
的令牌不是 null，则我们在 executeDecisionTask 方法中进一步处理它，向它传递随任务发送
的任务令牌以及 HistoryEvent 对象的列表。

5. 添加 executeDecisionTask 方法，获取任务令牌 (String) 和 HistoryEvent 列表。

 List<Decision> decisions = new ArrayList<Decision>();
 String workflow_input = null;
 int scheduled_activities = 0;
 int open_activities = 0;
 boolean activity_completed = false;
 String result = null;

我们还可以设置一些数据成员来跟踪内容，例如：

• 用于报告任务处理结果的决策对象列表。

• 用于保存由“WorkflowExecutionStarted”事件提供的工作流输入的字符串

• 已计划和打开 (正在运行) 活动的计数，用于避免再次计划已经计划或者当前正在运行的相同活
动。

• 用于指示活动已完成的布尔值。

构建简单 Amazon SWF 应用程序 221

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/HistoryEvent.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/Decision.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

• 用于保存活动结果的字符串，以将其作为我们的工作流结果返回。

6. 接下来，添加一些代码到 executeDecisionTask，基于 HistoryEvent 方法报告的事件类型处
理随任务发送的 getEventType 对象。

System.out.println("Executing the decision task for the history events: [");
for (HistoryEvent event : events) {
 System.out.println(" " + event);
 switch(event.getEventType()) {
 case "WorkflowExecutionStarted":
 workflow_input =
 event.getWorkflowExecutionStartedEventAttributes()
 .getInput();
 break;
 case "ActivityTaskScheduled":
 scheduled_activities++;
 break;
 case "ScheduleActivityTaskFailed":
 scheduled_activities--;
 break;
 case "ActivityTaskStarted":
 scheduled_activities--;
 open_activities++;
 break;
 case "ActivityTaskCompleted":
 open_activities--;
 activity_completed = true;
 result = event.getActivityTaskCompletedEventAttributes()
 .getResult();
 break;
 case "ActivityTaskFailed":
 open_activities--;
 break;
 case "ActivityTaskTimedOut":
 open_activities--;
 break;
 }
}
System.out.println("]");

对于我们的工作流，我们最感兴趣的是：

构建简单 Amazon SWF 应用程序 222

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

• “WorkflowExecutionStarted”事件，这指示工作流执行已启动 (通常意味着您应该运行工作流中的
第一个活动)，并且这提供了初始输入 (提供到工作流中)。在这种情况下，这是我们问候语的名称
部分，因此将其保存在字符串中以在计划活动运行时使用。

• “ActivityTaskCompleted”事件在计划的活动完成后立即发送。事件数据还包括已完成活动的返回
值。因为我们仅有一个活动，我们将使用该值作为整个工作流程的结果。

其他事件类型在工作流需要时可以使用。有关各个事件类型的信息，请参阅 HistoryEvent 类说明。

+ 注意：switch 语句中的字符串在 Java 7 中引入。如果您使用的是 Java 的较早版本，则可以使
用 EventType 类将 history_event.getType() 返回的 String 转换为枚举值，然后可在需要
时将其转换回 String：

EventType et = EventType.fromValue(event.getEventType());

1. 在 switch 语句之后，添加更多代码，根据所收到的任务采用合适的决策 进行响应。

if (activity_completed) {
 decisions.add(
 new Decision()
 .withDecisionType(DecisionType.CompleteWorkflowExecution)
 .withCompleteWorkflowExecutionDecisionAttributes(
 new CompleteWorkflowExecutionDecisionAttributes()
 .withResult(result)));
} else {
 if (open_activities == 0 && scheduled_activities == 0) {

 ScheduleActivityTaskDecisionAttributes attrs =
 new ScheduleActivityTaskDecisionAttributes()
 .withActivityType(new ActivityType()
 .withName(HelloTypes.ACTIVITY)
 .withVersion(HelloTypes.ACTIVITY_VERSION))
 .withActivityId(UUID.randomUUID().toString())
 .withInput(workflow_input);

 decisions.add(
 new Decision()
 .withDecisionType(DecisionType.ScheduleActivityTask)
 .withScheduleActivityTaskDecisionAttributes(attrs));
 } else {

构建简单 Amazon SWF 应用程序 223

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/HistoryEvent.html
https://docs.amazonaws.cn/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/model/EventType.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 // an instance of HelloActivity is already scheduled or running. Do nothing,
 another
 // task will be scheduled once the activity completes, fails or times out
 }
}

System.out.println("Exiting the decision task with the decisions " + decisions);

• 如果尚未计划活动，我们使用 ScheduleActivityTask 决策进行响应，这在
ScheduleActivityTaskDecisionAttributes 结构中提供关于 Amazon SWF 接下来应计划的活动的信
息，也包括 Amazon SWF 应发送到活动的任何数据。

• 如果活动已完成，则我们将考虑完成的整个工作流，并使用 CompletedWorkflowExecution
决策进行响应，填入 CompleteWorkflowExecutionDecisionAttributes 结构以提供有关已完成工作
流的详细信息。在这种情况下，我们将返回活动的结果。

在任何一种情况下，决策信息将添加到在方法顶部声明的 Decision 列表。

2. 返回在处理任务时收集的 Decision 对象列表来完成决策任务。在我们所编写的
executeDecisionTask 方法尾部添加此代码：

swf.respondDecisionTaskCompleted(
 new RespondDecisionTaskCompletedRequest()
 .withTaskToken(taskToken)
 .withDecisions(decisions));

SWF 客户端的 respondDecisionTaskCompleted 方法获取标识任务的任务令牌以及
Decision 对象列表。

实施工作流启动程序

最后，我们将编写一些代码用于启动工作流程执行。

1. 打开文本编辑器并创建文件 WorkflowStarter.java，添加程序包声明并根据通用步骤导入。

2. 添加 WorkflowStarter 类：

package aws.example.helloswf;

import com.amazonaws.regions.Regions;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;

构建简单 Amazon SWF 应用程序 224

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/ScheduleActivityTaskDecisionAttributes.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/CompleteWorkflowExecutionDecisionAttributes.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClientBuilder;
import com.amazonaws.services.simpleworkflow.model.*;

public class WorkflowStarter {
 private static final AmazonSimpleWorkflow swf =

 AmazonSimpleWorkflowClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
 public static final String WORKFLOW_EXECUTION = "HelloWorldWorkflowExecution";

 public static void main(String[] args) {
 String workflow_input = "{SWF}";
 if (args.length > 0) {
 workflow_input = args[0];
 }

 System.out.println("Starting the workflow execution '" + WORKFLOW_EXECUTION +
 "' with input '" + workflow_input + "'.");

 WorkflowType wf_type = new WorkflowType()
 .withName(HelloTypes.WORKFLOW)
 .withVersion(HelloTypes.WORKFLOW_VERSION);

 Run run = swf.startWorkflowExecution(new StartWorkflowExecutionRequest()
 .withDomain(HelloTypes.DOMAIN)
 .withWorkflowType(wf_type)
 .withWorkflowId(WORKFLOW_EXECUTION)
 .withInput(workflow_input)
 .withExecutionStartToCloseTimeout("90"));

 System.out.println("Workflow execution started with the run id '" +
 run.getRunId() + "'.");
 }
}

WorkflowStarter 类包含一个方法 main，它获取命令行上传递的可选参数作为工作流的输入数
据。

SWF 客户端方法 startWorkflowExecution，获取 StartWorkflowExecutionRequest 对象作为
输入。此处，除了指定要运行的域和工作流类型之外，我们提供了：

• 便于阅读的工作流执行名称

• 工作流输入数据 (我们的示例中在命令行上提供)

• 超时值，以秒为单位，表示整个工作流运行所应使用的时长。

构建简单 Amazon SWF 应用程序 225

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/StartWorkflowExecutionRequest.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

返回的运行startWorkflowExecution对象提供了运行 ID，这是用于在 Amazon SWF 的工作流
执行历史记录中标识此特定工作流执行的值。

+ 注意：运行 ID 由 Amazon SWF 生成，不同于 您在启动工作流执行时传入的工作流执行名称。

编译示例

要使用 Maven 编译示例项目，请转到 helloswf 目录并键入：

mvn package

生成的 helloswf-1.0.jar 将在 target 目录中生成。

运行示例

示例包括四个独立的可执行类，彼此独立运行。

Note

如果您使用的是 Linux、macOS 或 Unix 系统，您可以在单个终端窗口中将它们全部逐个运
行。如果您运行的是 Windows，则应该打开两个额外的命令行实例并分别导航到 helloswf
目录。

设置 Java 类路径

虽然 Maven 已经为您处理了依赖项来运行示例，您仍需要在 Java 类路径上提供 Amazon SDK 库及其
依赖项。您可以将 CLASSPATH 环境变量设置为 Amazon SDK 库的位置，以及 SDK 中包括必要依赖
项的 third-party/lib 目录：

export CLASSPATH='target/helloswf-1.0.jar:/path/to/sdk/lib/*:/path/to/sdk/third-party/
lib/*'
java example.swf.hello.HelloTypes

或者使用 java 命令的 -cp 选项在运行各个应用程序时设置类路径。

java -cp target/helloswf-1.0.jar:/path/to/sdk/lib/*:/path/to/sdk/third-party/lib/* \

构建简单 Amazon SWF 应用程序 226

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/Run.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 example.swf.hello.HelloTypes

您使用的样式由您决定。如果您在编译代码时没有问题，但在尝试运行示例时遇到一系
列“NoClassDefFound”错误，则可能是因为类路径设置不正确。

注册域、工作流程和活动类型

在运行工作线程和工作流程启动程序之前，您需要注册域以及工作流程和活动类型。执行此操作的代码
在注册域、工作流和活动类型中实施。

在编译之后，如果您已设置 CLASSPATH，则可以通过执行以下命令运行注册代码：

 echo 'Supply the name of one of the example classes as an argument.'

启动活动和工作流工作线程

现在类型已注册，您可以启动活动和工作流工作线程。它们将持续运行并轮询任务，直至终止，因此您
应该在单独终端窗口中运行它们，或者，如果您在 Linux、macOS 或 Unix 上运行它们，则可以使用 &
运算符来使得它们中的每一个在运行时生成单独进程。

 echo 'If there are arguments to the class, put them in quotes after the class
 name.'
 exit 1

如果您在单独窗口中运行这些命令，则忽略每一行最后的 & 运算符。

启动工作流执行

现在正在轮询您的活动和工作流工作线程，您可以启动工作流执行。此进程将运行直至工作流返回已完
成状态。您应在新终端窗口中运行它 (除非您使用 & 运算符将工作线程作为新生成的进程运行)。

fi

Note

如果您要提供自己的输入数据 (这将首先传递到工作流，然后传递到活动)，则将其添加到命令
行中。例如：

echo "## Running $className..."

构建简单 Amazon SWF 应用程序 227

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

一旦开始工作流执行，您应该开始查看这两种工作线程以及工作流执行本身提供的输出。工作流最终完
成之后，其输出将显示在屏幕上。

此示例的完整源代码

您可以在 Github 的 aws-java-developer-guide 存储库中浏览此示例的完整源代码。

有关更多信息

• 如果在工作流轮询仍在进行时关闭此处提供的工作线程，则它们会导致任务丢失。要了解如何适当地
关闭工作线程，请参阅适当地关闭活动和工作流工作线程。

• 如需了解有关 Amazon SWF 的更多信息，请访问 Amazon SWF 主页或查看《Amazon SWF
Developer Guide》。

• 您可以使用适用于 Java 的 Amazon Flow Framework，使用注释以更讲究的 Java 样式编写更复杂的
工作流。如需了解更多信息，请参阅《Amazon Flow Framework for Java Developer Guide》。

Lambda 任务

另一个方法是与 Amazon SWF 活动一起使用，就是使用 Lambda 函数代表工作流中的工作单元，并按
照安排活动的相似方法安排它们。

本主题主要介绍如何使用适用于 Java 的 Amazon SDK 实施 Amazon SWF Lambda 任务。有关
Lambda 任务的更多一般性信息，请参阅《Amazon SWF Developer Guide》中的 Amazon Lambda
Tasks。

设置跨服务 IAM 角色以运行 Lambda 函数

在 Amazon SWF 能够运行您的 Lambda 函数前，需要设置一个 IAM 角色，授予让它代表您运行
Lambda 函数的 Amazon SWF 权限。有关如何完成该操作的完整信息，请参阅 Amazon Lambda
Tasks。

在注册将使用 Lambda 任务的工作流时，将需要此 IAM 角色的 Amazon 资源名称 (ARN)。

创建 Lambda 函数

您可以使用包括 Java 在内的多种不同语言编写 Lambda 函数。有关如何编写、部署和使用 Lambda 函
数的完整信息，请参阅《Amazon Lambda 开发人员指南》。

Lambda 任务 228

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java/example_code/swf
https://www.amazonaws.cn/swf/
https://docs.amazonaws.cn/amazonswf/latest/developerguide/
https://docs.amazonaws.cn/amazonswf/latest/developerguide/
https://docs.amazonaws.cn/amazonswf/latest/awsflowguide/
https://www.amazonaws.cn/lambda/
https://docs.amazonaws.cn/amazonswf/latest/developerguide/lambda-task.html
https://docs.amazonaws.cn/amazonswf/latest/developerguide/lambda-task.html
https://docs.amazonaws.cn/amazonswf/latest/developerguide/lambda-task.html
https://docs.amazonaws.cn/amazonswf/latest/developerguide/lambda-task.html
https://docs.amazonaws.cn/lambda/latest/dg/

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

Note

使用哪种语言编写 Lambda 函数并不重要，无论使用哪种语言编写工作流代码，所有 Amazon
SWF 工作流都可以安排和运行您的函数。Amazon SWF 处理运行函数和传入传出数据的详细
信息。

下面是一个简单的 Lambda 函数，它可以用于代替构建简单 Amazon SWF 应用程序中的活动。

• 该版本使用 JavaScript 编写，使用 Amazon Web Services 管理控制台可以直接输入。

exports.handler = function(event, context) {
 context.succeed("Hello, " + event.who + "!");
};

• 以下是使用 Java 编写的相同函数，您同样可以在 Lambda 上部署和运行它：

package example.swf.hellolambda;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.util.json.JSONException;
import com.amazonaws.util.json.JSONObject;

public class SwfHelloLambdaFunction implements RequestHandler<Object, Object> {
 @Override
 public Object handleRequest(Object input, Context context) {
 String who = "{SWF}";
 if (input != null) {
 JSONObject jso = null;
 try {
 jso = new JSONObject(input.toString());
 who = jso.getString("who");
 } catch (JSONException e) {
 e.printStackTrace();
 }
 }
 return ("Hello, " + who + "!");
 }
}

Lambda 任务 229

https://console.amazonaws.cn/console/home

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

Note

要了解有关将 Java 函数部署到 Lambda 的更多信息，请参阅《Amazon Lambda 开发人员
指南》中的创建部署包 (Java)。您可能还希望查看标题为使用 Java 编写 Lambda 函数的编
程模型的章节。

Lambda 函数使用 event 或 input 对象作为第一个参数，使用 context 对象作为第二个参数，提供有关
运行 Lambda 函数的请求的相关信息。该特定函数要求使用 JSON 提供输入，并将 who 字段设置为用
于创建问候语的名称。

注册用于 Lambda 的工作流

对于预定 Lambda 函数的工作流，必须提供 IAM 角色的名称，由其为 Amazon
SWF 提供调用 Lambda 函数的权限。您可以在工作流注册期间，使用
withDefaultLambdaRoleRegisterWorkflowTypeRequestsetDefaultLambdaRole 的 或 方法完
成该设置。

System.out.println("** Registering the workflow type '" + WORKFLOW + "-" +
 WORKFLOW_VERSION
 + "'.");
try {
 swf.registerWorkflowType(new RegisterWorkflowTypeRequest()
 .withDomain(DOMAIN)
 .withName(WORKFLOW)
 .withDefaultLambdaRole(lambda_role_arn)
 .withVersion(WORKFLOW_VERSION)
 .withDefaultChildPolicy(ChildPolicy.TERMINATE)
 .withDefaultTaskList(new TaskList().withName(TASKLIST))
 .withDefaultTaskStartToCloseTimeout("30"));
}
catch (TypeAlreadyExistsException e) {

调度 Lambda 任务

调度 Lambda 任务与调度活动相似。您提供一条决策，该决策具
有“ScheduleLambdaFunction”DecisionType 和 ScheduleLambdaFunctionDecisionAttributes。

running_functions == 0 && scheduled_functions == 0) {

Lambda 任务 230

https://docs.amazonaws.cn/lambda/latest/dg/lambda-java-how-to-create-deployment-package.html
https://docs.amazonaws.cn/lambda/latest/dg/java-programming-model.html
https://docs.amazonaws.cn/lambda/latest/dg/java-programming-model.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/RegisterWorkflowTypeRequest.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/Decision.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/DecisionType.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/ScheduleLambdaFunctionDecisionAttributes.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

AWSLambda lam = AWSLambdaClientBuilder.defaultClient();
GetFunctionConfigurationResult function_config =
 lam.getFunctionConfiguration(
 new GetFunctionConfigurationRequest()
 .withFunctionName("HelloFunction"));
String function_arn = function_config.getFunctionArn();

ScheduleLambdaFunctionDecisionAttributes attrs =
 new ScheduleLambdaFunctionDecisionAttributes()
 .withId("HelloFunction (Lambda task example)")
 .withName(function_arn)
 .withInput(workflow_input);

decisions.add(

在 ScheduleLambdaFuntionDecisionAttributes 中，必须提供 name，这是要调用的 Lambda
函数的 ARN；还必须提供 id，这是 Amazon SWF 用于在历史记录日志中标识 Lambda 函数的名称。

还可以为 Lambda 函数提供可选的 input 并设置其 start to close timeout 值，这是在生成
LambdaFunctionTimedOut 事件之前允许 Lambda 函数运行的秒数。

Note

在给出函数名称后，该代码使用 AWSLambdaClient 检索 Lambda 函数的 ARN。您可以使
用该方法，以避免您的代码中包含完整 ARN 的硬编码（包括 Amazon Web Services 账户
ID）。

在决策程序中处理 Lambda 函数事件

Lambda 任务会使用 LambdaEventType 值 (如 、LambdaFunctionScheduled 和
LambdaFunctionStarted) 生成与 LambdaFunctionCompleted 任务生命周期对应的多个事件，
在工作流工作线程中轮询决策任务时可以对这些事件执行操作。如果 Lambda 函数失败或运行时间超
出其超时值，您会分别收到 LambdaFunctionFailed 或 LambdaFunctionTimedOut 事件类型。

boolean function_completed = false;
String result = null;

System.out.println("Executing the decision task for the history events: [");
for (HistoryEvent event : events) {
 System.out.println(" " + event);

Lambda 任务 231

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/lambda/AWSLambdaClient.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/EventType.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 EventType event_type = EventType.fromValue(event.getEventType());
 switch(event_type) {
 case WorkflowExecutionStarted:
 workflow_input =
 event.getWorkflowExecutionStartedEventAttributes()
 .getInput();
 break;
 case LambdaFunctionScheduled:
 scheduled_functions++;
 break;
 case ScheduleLambdaFunctionFailed:
 scheduled_functions--;
 break;
 case LambdaFunctionStarted:
 scheduled_functions--;
 running_functions++;
 break;
 case LambdaFunctionCompleted:
 running_functions--;
 function_completed = true;
 result = event.getLambdaFunctionCompletedEventAttributes()
 .getResult();
 break;
 case LambdaFunctionFailed:
 running_functions--;
 break;
 case LambdaFunctionTimedOut:
 running_functions--;
 break;

从您的 Lambda 函数接收输出

在 HistoryEvent 上接收 LambdaFunctionCompleted`EventType, you
can retrieve your 0 function’s return value by first
calling `getLambdaFunctionCompletedEventAttributes 时，以获取
LambdaFunctionCompletedEventAttributes 对象，然后调用其 getResult 方法以检索 Lambda 函数
的输出：

 LambdaFunctionCompleted:
running_functions--;

Lambda 任务 232

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/HistoryEvent.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/EventType.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/LambdaFunctionCompletedEventAttributes.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

此示例的完整源代码

您可以在 Github 上的 aws-java-developer-guide 存储库中，浏览 complete source :github:`<awsdocs/
aws-java-developer-guide/tree/master/doc_source/snippets/helloswf_lambda/>，以查看此示例。

适当地关闭活动和工作流工作线程

构建简单 Amazon SWF 应用程序主题中介绍实施包括注册应用程序、活动、工作流工作线程以及工作
流启动程序的简单工作流应用程序的整个过程。

工作线程类设计为持续运行，轮询 Amazon SWF 发送的任务，以便运行活动或返回决策。完成轮询请
求后，Amazon SWF 会记录轮询器，并尝试为其分配任务。

如果工作流工作线程在长轮询过程中终止，Amazon SWF 可能仍然会尝试向终止的工作线程发送任
务，导致该任务丢失 (直至该任务超时)。

解决上述情况的一个方法是等待所有长轮询请求返回，然后再终止工作线程。

在该主题中，我们会使用 Java 的关闭挂钩来重写 helloswf 中的活动工作线程，以尝试适当地关闭
活动工作线程。

以下是完整的代码：

import java.util.concurrent.CountDownLatch;
import java.util.concurrent.TimeUnit;

import com.amazonaws.regions.Regions;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClientBuilder;
import com.amazonaws.services.simpleworkflow.model.ActivityTask;
import com.amazonaws.services.simpleworkflow.model.PollForActivityTaskRequest;
import com.amazonaws.services.simpleworkflow.model.RespondActivityTaskCompletedRequest;
import com.amazonaws.services.simpleworkflow.model.RespondActivityTaskFailedRequest;
import com.amazonaws.services.simpleworkflow.model.TaskList;

public class ActivityWorkerWithGracefulShutdown {

 private static final AmazonSimpleWorkflow swf =

 AmazonSimpleWorkflowClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
 private static final CountDownLatch waitForTermination = new CountDownLatch(1);
 private static volatile boolean terminate = false;

适当地关闭活动和工作流工作线程 233

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 private static String executeActivityTask(String input) throws Throwable {
 return "Hello, " + input + "!";
 }

 public static void main(String[] args) {
 Runtime.getRuntime().addShutdownHook(new Thread() {
 @Override
 public void run() {
 try {
 terminate = true;
 System.out.println("Waiting for the current poll request" +
 " to return before shutting down.");
 waitForTermination.await(60, TimeUnit.SECONDS);
 }
 catch (InterruptedException e) {
 // ignore
 }
 }
 });
 try {
 pollAndExecute();
 }
 finally {
 waitForTermination.countDown();
 }
 }

 public static void pollAndExecute() {
 while (!terminate) {
 System.out.println("Polling for an activity task from the tasklist '"
 + HelloTypes.TASKLIST + "' in the domain '" +
 HelloTypes.DOMAIN + "'.");

 ActivityTask task = swf.pollForActivityTask(new
 PollForActivityTaskRequest()
 .withDomain(HelloTypes.DOMAIN)
 .withTaskList(new TaskList().withName(HelloTypes.TASKLIST)));

 String taskToken = task.getTaskToken();

 if (taskToken != null) {
 String result = null;
 Throwable error = null;

适当地关闭活动和工作流工作线程 234

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 try {
 System.out.println("Executing the activity task with input '"
 + task.getInput() + "'.");
 result = executeActivityTask(task.getInput());
 }
 catch (Throwable th) {
 error = th;
 }

 if (error == null) {
 System.out.println("The activity task succeeded with result '"
 + result + "'.");
 swf.respondActivityTaskCompleted(
 new RespondActivityTaskCompletedRequest()
 .withTaskToken(taskToken)
 .withResult(result));
 }
 else {
 System.out.println("The activity task failed with the error '"
 + error.getClass().getSimpleName() + "'.");
 swf.respondActivityTaskFailed(
 new RespondActivityTaskFailedRequest()
 .withTaskToken(taskToken)
 .withReason(error.getClass().getSimpleName())
 .withDetails(error.getMessage()));
 }
 }
 }
 }
}

在该版本中，原始版本的 main 功能中的轮询代码已被移至其自己的 pollAndExecute 方法中。

现在，main 功能使用 CountDownLatch 以及关闭挂钩，实现了在收到终止线程的请求后，让线程等待
最多 60 秒才允许线程关闭。

注册域

Amazon SWF 中的每个工作流和活动均需包含一个域，以在其中运行。

1. 创建新的 RegisterDomainRequest 对象，并至少为该对象提供域名和工作流执行保留期 (这两个参
数是必需的)。

2. 使用 RegisterDomainRequest 对象调用 AmazonSimpleWorkflowClient.registerDomain 方法。

注册域 235

https://docs.oracle.com/javase/8/docs/api/index.html?java/util/concurrent/CountDownLatch.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/lang/Runtime.html
https://www.amazonaws.cn/swf/
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/RegisterDomainRequest.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html#registerDomain-com.amazonaws.services.simpleworkflow.model.RegisterDomainRequest-

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

3. 如果您请求的域已存在（在此情况下，通常不需要任何操作），则将捕获
DomainAlreadyExistsException。

以下代码演示了此过程：

public void register_swf_domain(AmazonSimpleWorkflowClient swf, String name)
{
 RegisterDomainRequest request = new RegisterDomainRequest().withName(name);
 request.setWorkflowExecutionRetentionPeriodInDays("10");
 try
 {
 swf.registerDomain(request);
 }
 catch (DomainAlreadyExistsException e)
 {
 System.out.println("Domain already exists!");
 }
}

列出域

您可以按照注册类型，列出与账户和 Amazon 区域关联的 Amazon SWF 域。

1. 创建 ListDomainsRequest 对象，然后指定目标域的注册状态（必填项）。

2. 使用 ListDomainRequest 对象调用 AmazonSimpleWorkflowClient.listDomains。结果在
DomainInfos 对象中提供。

3. 对返回的对象调用 getDomainInfos，以获取 DomainInfo 对象的列表。

4. 在每个 DomainInfo 对象上调用 getName 来获取其名称。

以下代码演示了此过程：

public void list_swf_domains(AmazonSimpleWorkflowClient swf)
{
 ListDomainsRequest request = new ListDomainsRequest();
 request.setRegistrationStatus("REGISTERED");
 DomainInfos domains = swf.listDomains(request);
 System.out.println("Current Domains:");
 for (DomainInfo di : domains.getDomainInfos())
 {

列出域 236

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/DomainAlreadyExistsException.html
https://www.amazonaws.cn/swf/
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/ListDomainsRequest.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html#listDomains-com.amazonaws.services.simpleworkflow.model.ListDomainsRequest-
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/DomainInfos.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/DomainInfos.html#getDomainInfos--
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/DomainInfo.html
https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/DomainInfo.html#getName--

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 System.out.println(" * " + di.getName());
 }
}

SDK 中包含的代码示例
适用于 Java 的 Amazon SDK 附带代码示例，这些示例在可构建且可运行的程序中演示了该开发工
具包的许多功能。您可以学习或修改这些程序，以使用适用于 Java 的 Amazon SDK 实现您自己的
Amazon 解决方案。

如何获取示例

适用于 Java 的 Amazon SDK代码示例在开发工具包的 samples 目录中提供。如果您已使用设置适用
于 Java 的 Amazon SDK 中的信息下载并安装 SDK，则您的系统中已包含示例。

您也可以在适用于 Java 的 Amazon SDK GitHub 存储库中查看最新示例（位于 src/samples 目录
中）。

使用命令行构建并运行示例

示例包含 Ant 构建脚本，以便您从命令行轻松构建和运行这些脚本。每个示例还包含一个 HTML 格式
的 README 文件，此文件包含每个示例特定的信息。

Note

如果您浏览 GitHub 上的代码示例，请在查看示例的 README.html 文件时单击源代码显示中
的 Raw (原始) 按钮。在原始模式中，HTML 将在浏览器中按预期方式呈现。

先决条件

在运行任何适用于 Java 的 Amazon SDK 示例之前，您需要在环境中或使用 Amazon CLI 设置
Amazon 凭证，如设置用于开发的 Amazon 凭证和区域中所述。这些示例使用默认凭证提供程序链 (如
果可能)。因此，您可以通过此方式设置凭证以消除将 Amazon 凭证插入源代码目录中的文件（可能无
意中签入并公开共享这些凭证）的有风险的实践。

运行示例

1. 对包含示例代码的目录所做的更改。例如，如果您在 Amazon SDK 下载的根目录中，并且希望运行
AwsConsoleApp 示例，则可键入：

SDK 中包含的代码示例 237

https://github.com/aws/aws-sdk-java/tree/master/src/samples
http://ant.apache.org/

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

cd samples/AwsConsoleApp

2. 使用 Ant 构建和运行示例。默认构建目标将执行这两项操作，您只需输入：

ant

该示例将信息打印到标准输出，例如：

===

Welcome to the {AWS} Java SDK!

===
You have access to 4 Availability Zones.

You have 0 {EC2} instance(s) running.

You have 13 Amazon SimpleDB domain(s) containing a total of 62 items.

You have 23 {S3} bucket(s), containing 44 objects with a total size of 154767691 bytes.

使用 Eclipse IDE 构建并运行示例

如果您使用 Amazon Toolkit for Eclipse，也可以基于适用于 Java 的 Amazon SDK在 Eclipse 中启动新
项目或将该开发工具包添加到现有 Java 项目。

先决条件

在安装 Amazon Toolkit for Eclipse 后，建议您使用安全凭证配置此工具包。您可以随时通过以下方式
执行此操作：从 Eclipse 中的窗口菜单选择首选项，然后选择 Amazon Toolkit 部分。

运行示例

1. 打开 Eclipse。

2. 创建新的 Amazon Java 项目。在 Eclipse 中的 File 菜单上，选择 New，然后单击 Project。New
Project 向导随即打开。

3. 展开 Amazon 类别，然后选择 Amazon Java 项目。

4. 选择下一步。项目设置页面随即显示。

使用 Eclipse IDE 构建并运行示例 238

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

5. 在 Project Name 框中输入名称。适用于 Java 的 Amazon SDK 示例组显示了 SDK 中可用的示例，
如前所述。

6. 通过选中每个复选框，选择要包含在项目中的示例。

7. 输入 Amazon 凭证。如果您已使用您的凭证配置 Amazon Toolkit for Eclipse，则将自动填入该凭
证。

8. 选择完成。这将创建项目并将其添加到 Project Explorer。

9. 选择要运行的示例 .java 文件。例如，对于 Amazon S3 示例，选择 S3Sample.java。

10.从 Run 菜单中选择 Run。

11.右键单击 Project Explorer 中的项目，指向 Build Path，然后选择 Add Libraries。

12.选择 Amazon Java SDK，然后选择下一步，并按照其余的屏幕说明执行操作。

使用 Eclipse IDE 构建并运行示例 239

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

为用户提供安全保障 适用于 Java 的 Amazon SDK
云安全性一直是 Amazon Web Services（Amazon）的重中之重。作为 Amazon 客户，您将从专为满
足大多数安全敏感型企业的要求而打造的数据中心和网络架构中受益。安全是双方共同承担 Amazon
的责任。责任共担模式将其描述为云的安全性和云中的安全性。

云安全 — Amazon 负责保护运行 Amazon 云中提供的所有服务的基础架构，并为您提供可以安全使用
的服务。我们的安全责任是重中之重 Amazon，作为Amazon 合规计划的一部分，第三方审计师定期测
试和验证我们安全的有效性。

云端安全 — 您的责任由您使用的 Amazon 服务以及其他因素决定，包括数据的敏感性、组织的要求以
及适用的法律和法规。

本 Amazon 产品或服务通过其支持的特定 Amazon Web Services (Amazon) 服务遵循分担责任模式。
有关 Amazon 服务安全信息，请参阅Amazon 服务安全文档页面和合规计划合 Amazon 规工作范围内
的Amazon 服务。

主题

• 适用于 Java 的 Amazon SDK 1.x 中的数据保护

• 适用于 Java 的 Amazon SDK 支持 TLS

• 身份和访问管理

• 此 Amazon 产品或服务的合规性验证

• 本 Amazon 产品或服务的弹性

• 本 Amazon 产品或服务的基础设施安全

• Amazon S3 加密客户端迁移

适用于 Java 的 Amazon SDK 1.x 中的数据保护

责任共担模式适用于本 Amazon 产品或服务中的数据保护。如本模型所述 Amazon ，负责保护运行所
有 Amazon 云的全球基础架构。您负责维护对托管在此基础设施上的内容的控制。此内容包括您所使
用的 Amazon 服务的安全配置和管理任务。有关数据隐私的更多信息，请参阅数据隐私常见问题。有
关欧洲数据保护的信息，请参阅 Amazon 安全博客上的责任Amazon 共担模型和 GDPR 博客文章。

出于数据保护目的，我们建议您保护 Amazon Web Services 账户 凭据并使用 Amazon Identity and
Access Management (IAM) 设置个人用户帐户。这仅向每个用户授予履行其工作职责所需的权限。我
们还建议您通过以下方式保护数据：

数据保护 240

https://www.amazonaws.cn/compliance/shared-responsibility-model/
https://www.amazonaws.cn/compliance/programs/
https://www.amazonaws.cn/compliance/shared-responsibility-model/
https://docs.amazonaws.cn/security/?id=docs_gateway#aws-security
https://www.amazonaws.cn/compliance/services-in-scope/
https://www.amazonaws.cn/compliance/services-in-scope/
https://www.amazonaws.cn/compliance/shared-responsibility-model
https://www.amazonaws.cn/compliance/data-privacy-faq
https://www.amazonaws.cn/blogs/security/the-aws-shared-responsibility-model-and-gdpr

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

• 对每个账户使用多重身份验证（MFA）。

• 用于 SSL/TLS 与 Amazon 资源通信。

• 使用设置 API 和用户活动日志 Amazon CloudTrail。

• 使用 Amazon 加密解决方案，在 Amazon 服务中使用所有默认安全控制。

• 使用高级托管安全服务，例如 Amazon Macie，该服务有助于发现和保护存储在 Amazon S3中的个
人数据。

• 如果您在 Amazon 通过命令行界面或 API 进行访问时需要经过 FIPS 140-2 验证的加密模块，请使
用 FIPS 端点。有关可用的 FIPS 端点的更多信息，请参阅美国联邦信息处理标准（FIPS）第 140-2
版。

我们强烈建议您切勿将敏感的可识别信息（例如您客户的账号）放入自由格式字段（例如名称字段）。
这包括您使用控制台、API 或使用本 Amazon 产品或 Amazon 服务或其他服务时 Amazon SDKs。
Amazon CLI您在本 Amazon 产品或服务或其他服务中输入的任何数据都可能会被提取以包含在诊断日
志中。当您向外部服务器提供 URL 时，请勿在 URL 中包含凭证信息来验证您对该服务器的请求。

适用于 Java 的 Amazon SDK 支持 TLS

以下信息仅适用于 Java SSL 实现（中的默认 SSL 实现 适用于 Java 的 Amazon SDK）。如果您使用
的是其他 SSL 实现，请参阅与该特定 SSL 实现相关的信息，以了解如何强制执行 TLS 版本。

如何查看 TLS 版本

请查阅 Java 虚拟机 (JVM) 提供商的文档，以确定您的平台支持哪些 TLS 版本。对于某些人来说
JVMs，以下代码将打印支持哪些 SSL 版本。

System.out.println(Arrays.toString(SSLContext.getDefault().getSupportedSSLParameters().getProtocols()));

要查看 SSL 握手的运行情况以及使用的 TLS 版本，可使用系统属性 javax.net.debug。

java app.jar -Djavax.net.debug=ssl

Note

TLS 1.3 与适用于 Java 的 SDK 版本 1.9.5 至 1.10.31 不兼容。有关更多信息，请参阅以下博
客文章。

强制实施最低 TLS 版本 241

https://www.amazonaws.cn/compliance/fips
https://www.amazonaws.cn/compliance/fips

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

https://aws.amazon.com/blogs/开发者/tls-1-3--1-9-5-to-1-10-31/ incompatibility-with-aws-sdk
for-java-versions

强制实施最低 TLS 版本

SDK 始终会将平台和服务支持的最新 TLS 版本作为其首选。如果您希望强制指定特定
的最低 TLS 版本，请查阅 JVM 的文档。对于基于 OpenJDK JVMs，您可以使用系统属
性。jdk.tls.client.protocols

java app.jar -Djdk.tls.client.protocols=PROTOCOLS

有关支持的 PROTOCOLS 值，请参阅您的 JVM 文档。

身份和访问管理

Amazon Identity and Access Management (IAM) Amazon Web Services 服务 可帮助管理员安全地控
制对 Amazon 资源的访问权限。IAM 管理员控制谁可以进行身份验证（登录）和授权（拥有权限）使
用 Amazon 资源。您可以使用 IAM Amazon Web Services 服务 ，无需支付额外费用。

主题

• 受众

• 使用身份进行身份验证

• 使用策略管理访问

• 如何 Amazon Web Services 服务 使用 IAM

• 对 Amazon 身份和访问进行故障排除

受众

您的使用方式 Amazon Identity and Access Management (IAM) 会有所不同，具体取决于您所做的工作
Amazon。

服务用户-如果您 Amazon Web Services 服务 曾经完成工作，则您的管理员会为您提供所需的凭证和
权限。当你使用更多 Amazon 功能来完成工作时，你可能需要额外的权限。了解如何管理访问权限有
助于您向管理员请求适合的权限。如果您无法访问中的功能 Amazon，请参阅对 Amazon 身份和访问
进行故障排除或 Amazon Web Services 服务 您正在使用的用户指南。

强制实施最低 TLS 版本 242

https://www.amazonaws.cn/blogs/developer/tls-1-3-incompatibility-with-aws-sdk-for-java-versions-1-9-5-to-1-10-31/
https://www.amazonaws.cn/blogs/developer/tls-1-3-incompatibility-with-aws-sdk-for-java-versions-1-9-5-to-1-10-31/

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

服务管理员-如果您负责公司的 Amazon 资源，则可能拥有完全访问权限 Amazon。您的工作是确定您
的服务用户应访问哪些 Amazon 功能和资源。然后，您必须向 IAM 管理员提交请求以更改服务用户的
权限。请查看该页面上的信息以了解 IAM 的基本概念。要详细了解您的公司如何使用 IAM Amazon，
请参阅 Amazon Web Services 服务 您正在使用的用户指南。

IAM 管理员：如果您是 IAM 管理员，您可能希望了解如何编写策略以管理对 Amazon的访问权限的详
细信息。要查看您可以在 IAM 中使用的 Amazon 基于身份的策略示例，请参阅 Amazon Web Services
服务 您正在使用的用户指南。

使用身份进行身份验证

身份验证是您 Amazon 使用身份凭证登录的方式。您必须以 IAM 用户身份进行身份验证 Amazon Web
Services 账户根用户，或者通过担任 IAM 角色进行身份验证。

对于编程访问， Amazon 提供 SDK 和 CLI 来对请求进行加密签名。有关更多信息，请参阅《IAM 用户
指南》中的适用于 API 请求的Amazon 签名版本 4。

Amazon Web Services 账户 root 用户

创建时 Amazon Web Services 账户，首先会有一个名为 Amazon Web Services 账户 root 用户的登录
身份，该身份可以完全访问所有资源 Amazon Web Services 服务 和资源。我们强烈建议不要使用根
用户进行日常任务。有关需要根用户凭证的任务，请参阅《IAM 用户指南》中的需要根用户凭证的任
务。

联合身份

作为最佳实践，要求人类用户使用与身份提供商的联合身份验证才能 Amazon Web Services 服务 使用
临时证书进行访问。

联合身份是指来自您的企业目录、Web 身份提供商的用户 Amazon Directory Service ，或者 Amazon
Web Services 服务 使用来自身份源的凭据进行访问的用户。联合身份代入可提供临时凭证的角色。

IAM 用户和群组

IAM 用户是对某个人员或应用程序具有特定权限的一个身份。建议使用临时凭证，而非具有长期凭证
的 IAM 用户。有关更多信息，请参阅 IAM 用户指南中的要求人类用户使用身份提供商的联合身份验证
才能 Amazon 使用临时证书进行访问。

IAM 组指定一组 IAM 用户，便于更轻松地对大量用户进行权限管理。有关更多信息，请参阅《IAM 用
户指南》中的 IAM 用户使用案例。

使用身份进行身份验证 243

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_sigv.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp
https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_groups.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/gs-identities-iam-users.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

IAM 角色

IAM 角色是具有特定权限的身份，可提供临时凭证。您可以通过从用户切换到 IAM 角色（控制台）或
调用 Amazon CLI 或 Amazon API 操作来代入角色。有关更多信息，请参阅《IAM 用户指南》中的担
任角色的方法。

IAM 角色对于联合用户访问、临时 IAM 用户权限、跨账户访问、跨服务访问以及在 Amazon 上运行的
应用程序非常有用。 EC2有关更多信息，请参阅《IAM 用户指南》中的 IAM 中的跨账户资源访问。

使用策略管理访问

您可以 Amazon 通过创建策略并将其附加到 Amazon 身份或资源来控制中的访问权限。策略定义了与
身份或资源关联时的权限。 Amazon 在委托人提出请求时评估这些政策。大多数策略都以 JSON 文档
的 Amazon 形式存储在中。有关 JSON 策略文档的更多信息，请参阅《IAM 用户指南》中的 JSON 策
略概述。

管理员使用策略，通过定义哪个主体可以在什么条件下对哪些资源执行哪些操作来指定谁有权访问什
么。

默认情况下，用户和角色没有权限。IAM 管理员创建 IAM 策略并将其添加到角色中，然后用户可以担
任这些角色。IAM 策略定义权限，与执行操作所用的方法无关。

基于身份的策略

基于身份的策略是您附加到身份（用户、组或角色）的 JSON 权限策略文档。这些策略控制身份可
以执行什么操作、对哪些资源执行以及在什么条件下执行。要了解如何创建基于身份的策略，请参阅
《IAM 用户指南》中的使用客户管理型策略定义自定义 IAM 权限。

基于身份的策略可以是内联策略（直接嵌入到单个身份中）或托管策略（附加到多个身份的独立策
略）。要了解如何在托管策略和内联策略之间进行选择，请参阅《IAM 用户指南》中的在托管策略与
内联策略之间进行选择。

基于资源的策略

基于资源的策略是附加到资源的 JSON 策略文档。示例包括 IAM 角色信任策略和 Amazon S3 存储桶
策略。在支持基于资源的策略的服务中，服务管理员可以使用它们来控制对特定资源的访问。您必须在
基于资源的策略中指定主体。

基于资源的策略是位于该服务中的内联策略。您不能在基于资源的策略中使用 IAM 中的 Amazon 托管
策略。

使用策略管理访问 244

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_principal.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

访问控制列表 (ACLs)

访问控制列表 (ACLs) 控制哪些委托人（账户成员、用户或角色）有权访问资源。 ACLs 与基于资源的
策略类似，尽管它们不使用 JSON 策略文档格式。

Amazon S3 和 Amazon VPC 就是支持的服务示例 ACLs。 Amazon WAF要了解更多信息 ACLs，请参
阅《亚马逊简单存储服务开发者指南》中的访问控制列表 (ACL) 概述。

其他策略类型

Amazon 支持其他策略类型，这些策略类型可以设置更常见的策略类型授予的最大权限：

• 权限边界 – 设置基于身份的策略可以授予 IAM 实体的最大权限。有关更多信息，请参阅《 IAM 用户
指南》中的 IAM 实体的权限边界。

• 服务控制策略 (SCPs)-在中指定组织或组织单位的最大权限 Amazon Organizations。有关更多信
息，请参阅《Amazon Organizations 用户指南》中的服务控制策略。

• 资源控制策略 (RCPs)-设置账户中资源的最大可用权限。有关更多信息，请参阅《Amazon
Organizations 用户指南》中的资源控制策略 (RCPs)。

• 会话策略 – 在为角色或联合用户创建临时会话时，作为参数传递的高级策略。有关更多信息，请参
阅《IAM 用户指南》中的会话策略。

多个策略类型

当多个类型的策略应用于一个请求时，生成的权限更加复杂和难以理解。要了解在涉及多种策略类型时
如何 Amazon 确定是否允许请求，请参阅 IAM 用户指南中的策略评估逻辑。

如何 Amazon Web Services 服务 使用 IAM

要全面了解如何 Amazon Web Services 服务 使用大多数 IAM 功能，请参阅 IAM 用户指南中的与 IAM
配合使用的Amazon 服务。

要了解如何在 IAM 中 Amazon Web Services 服务 使用特定的，请参阅相关服务的《用户指南》的安
全部分。

对 Amazon 身份和访问进行故障排除

使用以下信息来帮助您诊断和修复在使用 Amazon 和 IAM 时可能遇到的常见问题。

主题

• 我无权在以下位置执行操作 Amazon

如何 Amazon Web Services 服务 使用 IAM 245

https://docs.amazonaws.cn/AmazonS3/latest/userguide/acl-overview.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.amazonaws.cn/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.amazonaws.cn/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

• 我无权执行 iam：PassRole

• 我想允许我以外的人 Amazon Web Services 账户 访问我的 Amazon 资源

我无权在以下位置执行操作 Amazon

如果您收到错误提示，指明您无权执行某个操作，则必须更新策略以允许执行该操作。

当 mateojackson IAM 用户尝试使用控制台查看有关虚构 my-example-widget 资源的详细信息，
但不拥有虚构 awes:GetWidget 权限时，会发生以下示例错误。

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 awes:GetWidget on resource: my-example-widget

在此情况下，必须更新 mateojackson 用户的策略，以允许使用 awes:GetWidget 操作访问 my-
example-widget 资源。

如果您需要帮助，请联系您的 Amazon 管理员。您的管理员是提供登录凭证的人。

我无权执行 iam：PassRole

如果您收到一个错误，表明您无权执行 iam:PassRole 操作，则必须更新策略以允许您将角色传递
给。 Amazon

有些 Amazon Web Services 服务 允许您将现有角色传递给该服务，而不是创建新的服务角色或服务相
关角色。为此，您必须具有将角色传递到服务的权限。

当名为 marymajor 的 IAM 用户尝试使用控制台在 Amazon中执行操作时，会发生以下示例错误。但
是，服务必须具有服务角色所授予的权限才可执行此操作。Mary 不具有将角色传递到服务的权限。

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

在这种情况下，必须更新 Mary 的策略以允许她执行 iam:PassRole 操作。

如果您需要帮助，请联系您的 Amazon 管理员。您的管理员是提供登录凭证的人。

我想允许我以外的人 Amazon Web Services 账户 访问我的 Amazon 资源

您可以创建一个角色，以便其他账户中的用户或您组织外的人员可以使用该角色来访问您的资源。您可
以指定谁值得信赖，可以代入角色。对于支持基于资源的策略或访问控制列表 (ACLs) 的服务，您可以
使用这些策略向人们授予访问您的资源的权限。

对 Amazon 身份和访问进行故障排除 246

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

要了解更多信息，请参阅以下内容：

• 要了解是否 Amazon 支持这些功能，请参阅如何 Amazon Web Services 服务 使用 IAM。

• 要了解如何提供对您拥有的资源的访问权限 Amazon Web Services 账户 ，请参阅 IAM 用户指南中
的向您拥有 Amazon Web Services 账户 的另一个 IAM 用户提供访问权限。

• 要了解如何向第三方提供对您的资源的访问权限 Amazon Web Services 账户，请参阅 IAM 用户指
南中的向第三方提供访问权限。 Amazon Web Services 账户

• 要了解如何通过身份联合验证提供访问权限，请参阅《IAM 用户指南》中的为经过外部身份验证的
用户（身份联合验证）提供访问权限。

• 要了解使用角色和基于资源的策略进行跨账户访问之间的差别，请参阅《IAM 用户指南》中的 IAM
中的跨账户资源访问。

此 Amazon 产品或服务的合规性验证

要了解是否属于特定合规计划的范围，请参阅Amazon Web Services 服务 “” Amazon Web Services 服
务 中的 “按合规计划划分的范围”，然后选择您感兴趣的合规计划。 Amazon Web Services 服务 有关
一般信息，请参阅合规计划。

您可以使用下载第三方审计报告 Amazon Artifact。有关更多信息，请参阅中的 “下载报告” Amazon
Artifact。

您在使用 Amazon Web Services 服务 时的合规责任取决于您的数据的敏感性、贵公司的合规目标
以及适用的法律和法规。有关您在使用时的合规责任的更多信息 Amazon Web Services 服务，请参
阅Amazon 安全文档。

本 Amazon 产品或服务通过其支持的特定 Amazon Web Services (Amazon) 服务遵循分担责任模式。
有关 Amazon 服务安全信息，请参阅Amazon 服务安全文档页面和合规计划合 Amazon 规工作范围内
的Amazon 服务。

本 Amazon 产品或服务的弹性

Amazon 全球基础设施是围绕 Amazon Web Services 区域 可用区构建的。

Amazon Web Services 区域 提供多个物理分隔和隔离的可用区，这些可用区通过低延迟、高吞吐量和
高度冗余的网络连接。

利用可用区，您可以设计和操作在可用区之间无中断地自动实现失效转移的应用程序和数据库。与传统
的单个或多个数据中心基础设施相比，可用区具有更高的可用性、容错能力和可扩展性。

合规性验证 247

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://www.amazonaws.cn/compliance/services-in-scope/
https://www.amazonaws.cn/compliance/services-in-scope/
https://www.amazonaws.cn/compliance/programs/
https://docs.amazonaws.cn/artifact/latest/ug/downloading-documents.html
https://docs.amazonaws.cn/artifact/latest/ug/downloading-documents.html
https://docs.amazonaws.cn/security/
https://www.amazonaws.cn/compliance/shared-responsibility-model/
https://docs.amazonaws.cn/security/?id=docs_gateway#aws-security
https://www.amazonaws.cn/compliance/services-in-scope/
https://www.amazonaws.cn/compliance/services-in-scope/

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

有关 Amazon 区域和可用区的更多信息，请参阅Amazon 全球基础设施。

本 Amazon 产品或服务通过其支持的特定 Amazon Web Services (Amazon) 服务遵循分担责任模式。
有关 Amazon 服务安全信息，请参阅Amazon 服务安全文档页面和合规计划合 Amazon 规工作范围内
的Amazon 服务。

本 Amazon 产品或服务的基础设施安全
本 Amazon 产品或服务使用托管服务，因此受到 Amazon 全球网络安全的保护。有关 Amazon 安全服
务以及如何 Amazon 保护基础设施的信息，请参阅Amazon 云安全。要使用基础设施安全的最佳实践
来设计您的 Amazon 环境，请参阅 S Amazon ecurity Pillar Well-Architected Fram ework 中的基础设
施保护。

您可以使用 Amazon 已发布的 API 调用通过网络访问此 Amazon 产品或服务。客户端必须支持以下内
容：

• 传输层安全性协议（TLS）。我们要求使用 TLS 1.2，建议使用 TLS 1.3。

• 具有完全向前保密（PFS）的密码套件，例如 DHE（临时 Diffie-Hellman）或 ECDHE（临时椭圆曲
线 Diffie-Hellman）。大多数现代系统（如 Java 7 及更高版本）都支持这些模式。

此外，必须使用访问密钥 ID 和与 IAM 主体关联的秘密访问密钥来对请求进行签名。或者，您可以使用
Amazon Security Token Service（Amazon STS）生成临时安全凭证来对请求进行签名。

本 Amazon 产品或服务通过其支持的特定 Amazon Web Services (Amazon) 服务遵循分担责任模式。
有关 Amazon 服务安全信息，请参阅Amazon 服务安全文档页面和合规计划合 Amazon 规工作范围内
的Amazon 服务。

Amazon S3 加密客户端迁移
本主题介绍如何将应用程序从 () 加密客户端的版本 1 (V1) 迁移到版本 2 Amazon Simple Storage
Service (Amazon S3 V2)，并确保应用程序在整个迁移过程中的可用性。

先决条件

Amazon S3 客户端加密需要满足以下条件：

• 应用程序环境中安装了 Java 8 或更高版本。 适用于 Java 的 Amazon SDK 它可与 Oracle Java SE
开发套件以及红帽 OpenJDK 和 JDK Amazon Corretto等开放 Java 开发套件 (OpenJDK) 的发行版
配合使用。AdoptOpen

基础设施安全性 248

https://www.amazonaws.cn/about-aws/global-infrastructure/
https://www.amazonaws.cn/compliance/shared-responsibility-model/
https://docs.amazonaws.cn/security/?id=docs_gateway#aws-security
https://www.amazonaws.cn/compliance/services-in-scope/
https://www.amazonaws.cn/compliance/services-in-scope/
https://www.amazonaws.cn/security/
https://docs.amazonaws.cn/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.amazonaws.cn/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.amazonaws.cn/STS/latest/APIReference/Welcome.html
https://www.amazonaws.cn/compliance/shared-responsibility-model/
https://docs.amazonaws.cn/security/?id=docs_gateway#aws-security
https://www.amazonaws.cn/compliance/services-in-scope/
https://www.amazonaws.cn/compliance/services-in-scope/
https://www.oracle.com/java/technologies/javase-downloads.html
https://adoptopenjdk.net/
https://www.oracle.com/java/technologies/javase-downloads.html
https://developers.redhat.com/products/openjdk
https://www.amazonaws.cn/corretto/
https://adoptopenjdk.net/
https://adoptopenjdk.net/

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

• Bouncy Castle 加密套餐。你可以将 Bouncy Castle .jar 文件放在应用程序环境的类路径
上，也可以在 Maven pom.xml 文件中添加 artifactId bcprov-ext-jdk15on（groupId 为
org.bouncycastle）的依赖项。

迁移概述

此迁移分为两个阶段：

1. 更新现有客户端以读取新格式。将您的应用程序更新为使用 1.11.837 或更高版本， 适用于 Java 的
Amazon SDK 然后重新部署该应用程序。这使应用程序中的 Amazon S3 客户端加密服务客户端能
够解密由 V2 服务客户端创建的对象。如果您的应用程序使用多个 SDK Amazon SDKs，则必须分
别更新每个 SDK。

2. 将加密和解密客户端迁移到 V2。在所有 V1 加密客户端都能读取 V2 加密格式后，请更新应用程序
代码中的 Amazon S3 客户端加密和解密客户端，以使用其 V2 等效格式。

更新现有客户端以读取新格式

V2 加密客户端使用旧版本 适用于 Java 的 Amazon SDK 不支持的加密算法。

迁移的第一步是更新您的 V1 加密客户端，使其使用版本 1.11.837 或更高版本的 适用于 Java 的
Amazon SDK。（建议您更新到最新发行版本，您可以在 Java API Reference version 1.x 中找到该版
本。） 为此，请更新项目配置中的依赖项。更新项目配置后，重新构建项目并重新部署。

完成这些步骤后，应用程序的 V1 加密客户端将能够读取 V2 加密客户端写入的对象。

更新项目配置中的依赖项

修改项目配置文件（例如 pom.xml 或 build.gradle）以使用版本 1.11.837 或更高版本的 适用于 Java
的 Amazon SDK。然后重新构建项目并重新部署。

在部署新的应用程序代码之前完成此步骤，有助于确保整个实例集在迁移过程中的加密和解密操作保持
一致。

使用 Maven 的 示例

pom.xml 文件中的代码段：

<dependencyManagement>
 <dependencies>

迁移概述 249

https://www.bouncycastle.org/download/bouncy-castle-java/
https://docs.amazonaws.cn/AWSJavaSDK/latest/javadoc

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-bom</artifactId>
 <version>1.11.837</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

使用 Gradle 的示例

build.gradle 文件中的代码段：

dependencies {
 implementation platform('com.amazonaws:aws-java-sdk-bom:1.11.837')
 implementation 'com.amazonaws:aws-java-sdk-s3'
}

将加密和解密客户端迁移到 V2

使用最新的 SDK 版本更新项目后，您可以修改应用程序代码以使用 V2 客户端。为此，请先更新您的
代码以使用新的服务客户端生成器。然后在该生成器上使用已重命名的方法提供加密材料，并根据需要
进一步配置您的服务客户端。

这些代码片段演示了如何使用客户端加密 适用于 Java 的 Amazon SDK，并提供了 V1 和 V2 加密客户
端之间的比较。

V1

// minimal configuration in V1; default CryptoMode.EncryptionOnly.
EncryptionMaterialsProvider encryptionMaterialsProvider = ...
AmazonS3Encryption encryptionClient = AmazonS3EncryptionClient.encryptionBuilder()
 .withEncryptionMaterials(encryptionMaterialsProvider)
 .build();

V2

// minimal configuration in V2; default CryptoMode.StrictAuthenticatedEncryption.
EncryptionMaterialsProvider encryptionMaterialsProvider = ...
AmazonS3EncryptionV2 encryptionClient = AmazonS3EncryptionClientV2.encryptionBuilder()

将加密和解密客户端迁移到 V2 250

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 .withEncryptionMaterialsProvider(encryptionMaterialsProvider)
 .withCryptoConfiguration(new CryptoConfigurationV2()
 // The following setting allows the client to read V1
 encrypted objects
 .withCryptoMode(CryptoMode.AuthenticatedEncryption)
)
 .build();

上面的示例将 cryptoMode 设置为 AuthenticatedEncryption。此设置允许 V2 加密客户端读取
V1 加密客户端写入的对象。如果您的客户端不需要读取 V1 客户端写入的对象的功能，建议改用默认
设置 StrictAuthenticatedEncryption。

构建 V2 加密客户端

V2 加密客户端可以通过调用 AmazonS3 EncryptionClient v2. EncryptionBuilder () 来构建。

您可以将所有现有的 V1 加密客户端替换为 V2 加密客户端。只要您通过将 V2 加密客户端配置为使用
`来允许 V2 加密客户端写入的任何对象，V2 加密客户端将始终能够读取 V1 加密客户端写入的任何对
象。AuthenticatedEncryption `cryptoMode

创建新的 V2 加密客户端与创建 V1 加密客户端的方式非常相似。但还是有几个区别：

• 您将使用 CryptoConfigurationV2 对象而不是 CryptoConfiguration 对象来配置客户端。
此参数为必需参数。

• V2 加密客户端的默认 cryptoMode 设置是 StrictAuthenticatedEncryption。对于 V1 加密
客户端，该默认设置是 EncryptionOnly。

• 加密客户端生成器上的方法 withEncryptionMaterials() 已重命名为 Prov withEncryptionMaterialsider
()。这只是一个表面更改，可以更准确地反映参数类型。配置服务客户端时必须使用新方法。

Note

使用 AES-GCM 解密时，在开始使用解密的数据之前，请通读整个对象。这是为了验证自加密
以来是否未对对象进行过修改。

使用加密材料提供程序

您可以继续使用与 V1 加密客户端相同的加密材料提供程序和加密材料对象。这些类负责提供加密客户
端用来保护数据的密钥。它们可以在 V2 和 V1 加密客户端中互换使用。

将加密和解密客户端迁移到 V2 251

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

配置 V2 加密客户端

V2 加密客户端配置了一个 CryptoConfigurationV2 对象。可以通过调用其默认构造函数，然后根
据需要修改其属性的默认值来构造此对象。

CryptoConfigurationV2 默认值如下所示：

• cryptoMode = CryptoMode.StrictAuthenticatedEncryption

• storageMode = CryptoStorageMode.ObjectMetadata

• secureRandom = SecureRandom 的实例

• rangeGetMode = CryptoRangeGetMode.DISABLED

• unsafeUndecryptableObjectPassthrough = false

请注意 EncryptionOnly，V2 加密客户端不支持cryptoMode该功能。V2 加密客户端将始终使用经过
身份验证的加密来加密内容，并使用 V KeyWrap 2 对象保护内容加密密钥 (CEKs)。

以下示例演示如何在 V1 中指定加密配置，以及如何实例化 CryptoConfigurationV2 对象以传递给 V2
加密客户端生成器。

V1

CryptoConfiguration cryptoConfiguration = new CryptoConfiguration()
 .withCryptoMode(CryptoMode.StrictAuthenticatedEncryption);

V2

CryptoConfigurationV2 cryptoConfiguration = new CryptoConfigurationV2()
 .withCryptoMode(CryptoMode.StrictAuthenticatedEncryption);

其他示例

以下示例演示如何解决与从 V1 迁移到 V2 相关的特定用例。

将服务客户端配置为读取 V1 加密客户端创建的对象

要读取以前使用 V1 加密客户端写入的对象，请将设置 cryptoMode 为
AuthenticatedEncryption。以下代码段演示如何使用此设置构造配置对象。

CryptoConfigurationV2 cryptoConfiguration = new CryptoConfigurationV2()

其他示例 252

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

 .withCryptoMode(CryptoMode.AuthenticatedEncryption);

配置服务客户端以获取对象的字节范围

要能够从加密的 S3 对象中 get 字节范围，请启用新的配置设置 rangeGetMode。默认情况下，此
设置在 V2 加密客户端上处于禁用状态。请注意，即使启用了此设置，具有范围的 get 也只能对使用
客户端 cryptoMode 设置支持的算法进行加密的对象起作用。有关更多信息，请参阅 适用于 Java 的
Amazon SDK API 参考CryptoRangeGetMode中的。

如果您计划使用 V2 加密客户端 Amazon S3 TransferManager 对加密 Amazon S3 对象执行分段下
载，则必须先在 V2 加密客户端上启用该rangeGetMode设置。

以下代码段演示如何配置 V2 客户端以执行具有范围的 get。

// Allows range gets using AES/CTR, for V2 encrypted objects only
CryptoConfigurationV2 cryptoConfiguration = new CryptoConfigurationV2()
 .withRangeGetMode(CryptoRangeGetMode.ALL);

// Allows range gets using AES/CTR and AES/CBC, for V1 and V2 objects
CryptoConfigurationV2 cryptoConfiguration = new CryptoConfigurationV2()
 .withCryptoMode(CryptoMode.AuthenticatedEncryption)
 .withRangeGetMode(CryptoRangeGetMode.ALL);

其他示例 253

https://docs.amazonaws.cn/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/CryptoRangeGetMode.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

适用于 适用于 Java 的 Amazon SDK 的 OpenPGP 密钥
适用于 Java 的 Amazon SDK 的所有公开可用的 Maven 构件均使用 OpenPGP 标准进行签名。验证构
件签名所需的公有密钥可在下一部分中找到。

当前密钥

下表显示了 SDK for Java 1x 和 SDK for Java 2.x 的当前版本的 OpenPGP 密钥信息。

密钥 ID 0xAC107B386692DADD

类型 RSA

大小 4096/4096

创建时间 2016-06-30

过期时间 2026-09-27

用户 ID Amazon SDK 和工具 <aws-dr-tools@amaz
on.com>

密钥指纹 FEB9 209F 2F2F 3F46 6484 1E55 AC10 7B38
6692 DADD

要将以下适用于 SDK for Java 的 OpenPGP 公有密钥复制到剪贴板，请选择右上角的“复制”图标。

-----BEGIN PGP PUBLIC KEY BLOCK-----
Comment: Hostname:
Version: Hockeypuck 2.2

xsFNBFd1gAUBEACqbmmFbxdJgz1lD7wrlskQA1LLuSAC4p8ny9u/D2zLR8Ynk3Yz
mzJuQ+Kfjne2t+xTDex6MPJlMYpOviSWsX2psgvdmeyUpW9ap0lrThNYkc+W5fRc
buFehfbi9LSATZGJi8RG0sCCr5FsYVz0gEk85M2+PeM24cXhQIOZtQUjswX/pdk/
KduGtZASqNAYLKROmRODzUuaokLPo24pfm9bnr1RnRtwt5ktPAA5bM9ZZaGKriej
kT2lPffbBjp8F5AZvmGLtNm2Cmg4FKBvI04SQjy2jjrQ3wBzi5Lc9HTxDuHK/rtV
u6PewUe2WPlnxlXenhMZU1UK4YoSB9E9StQ2VxQiySLHSdxR7Ma4WgYdVLn9bOie
nj3QxLuQ1ZUKF79ES6JaM4tOz1gGcQeU1+UklgjFLuKwmzWRdEIFfxMyvH6qgKnd
U+DioH5mcUwhwffAAsuIJyAdMIEUYh7IfzJJXQf+fF+XfOCl6byOJFWrIGQkAzMu

当前密钥 254

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

CEvaCfwtHC2Lpzo33/WRFeMAuzzd0QJ4uz4xFFvaSOSZHMLHWI9YV/+Pea3X99Ms
0Nlek/LolAJh67MynHeVBOHKrq+fluorWepQivctzN6Y1NOkx5naTPGGaKWK7G2q
TbcY5SMnkIWfLFSougj0Fvmjczq8iZRwYxWA+i+LQvsR9WEXEiQffIWRoQARAQAB
zSxBV1MgU0RLcyBhbmQgVG9vbHMgPGF3cy1kci10b29sc0BhbWF6b24uY29tPsLB
lAQTAQoAPgIbAwULCQgHAwUVCgkICwUWAgMBAAIeAQIXgBYhBP65IJ8vLz9GZIQe
VawQezhmktrdBQJo12ZrBQkTQxnmAAoJEKwQezhmktrdi18P/A3De83MBx8bdcWJ
Fot71Vk1TyBQFErgrtcytSU0czEHx3tGbzgQLbMlyzjirOT03usxEkOeqTVK+RU+
5uFXNZYQLwMJlHJ6S8tnfLe/ExM5WQ2KPwIUPfZs1GDDRQB2dIKSc+qYrP1O1vf4
O4iPgfLHMW2bFh3zjjxcaHCJyqc7Cau33eZFBAsRni1jOUo7MeyX0hlXfW8pd48Q
wZllQVZ/6KmDiFWA0CZ+2svJ5cL0tgPoh1OQjoz0nHpNfuDILMrZ+e7tx2VTlkGH
UGeNSydnrK8v9ztFn34KtU/k7NEWoVSyEi+5ICZL18FBwPqTwdVWXwXrqZCKiIpr
8ZdJWDz2sJfgDFNCC6rKgCQ6FrmaD9G76dYWkQ4AbZqABlUzU3q36W1K0r3iOAb5
G4tdOt4yqXHTe1x+ZUNaeW7gaCmtXAxLw0OfeJrcq/44b/SQP+qJ8sSOv76Yg2oF
BsF5DWOVUFghbTyokHAoVROyhBR4dUUisY39AqLSL8+Lp9Pr3wNuGl9GLrMD5701
piUb88B3Gwe1EiKV1gaKrvZ3mECDUiSMVO0Z5iG8E4QDpNmVbJbV1uT821ubvtOv
2Ko10Fa0uwCYGssdRGqEXNy6jz/Er8LAC3+nmGINDJQzrF+loYoSSkI2Nu7lhMuL
7iWwUPF7OhDXoVSAn4X3x6q2rGK0wsGUBBMBCgA+AhsDBQsJCAcDBRUKCQgLBRYC
AwEAAh4BAheAFiEE/rkgny8vP0ZkhB5VrBB7OGaS2t0FAmjXZTsFCRNDGLYACgkQ
rBB7OGaS2t0/Ow//YIv51vHtD+kwMmIvk3zpizDHY0zW2dOezAo+C/DsSyC7wDll
Dixw34EQ1yLXH5xLR8CH1zupl3JmmEp1ucdQggoefbidxDl8Fld7tJOD1y3GGnTD
0jAl2ZC+W65Oh+wS1mD1FlaKjMGGkvJf0dA7RtU2T8dv3vt8dsxg76FMFS3+fqlC
FNOAsNTn9zWR1SqBIfkMJK83aq6s/rcEV9VrAYgDgqex58fygB5EuTf842/IF7WZ
Q9gd6fupB0mMZP5YWd2uj/vsBTYakG+mgQwDxZuKPeEzAqnqqS7biSQOUO6Wozlq
Yy4fSczE9GkBAvg0pGmbko+zHvpnjvX/h1CUpC6odvFyOAhZp6zyhs0QWz9thfqV
lU8WlbgJ2atFDn5GUSxF/fe0Yzovlbbs6sbYXuvMG9RiEOuJ1mBbZR3aIdZ1U6Do
BHc/vjc5mWcV7JQSP7i4W/8W7X3UAuN9LdxB+IvF3Cwrgtlw2BWvA5Alco5Tnz8t
P/CIVmBjk+sLme8W4kfLK3IWEbwClOdNnErI/MHRm65A2Y5EMIhwjrOi07SU1Pxa
nPpg3OYJCdvjzdB8QE3/DBiMfOl4dISfKDVEWnfK8mZaYd/BeRm2gUAa9UrqSFCG
BlA7Lg+eLI3US0FvwWJ4j5bBJqgLu+y7crIkiUOPAQuLk3lO+5uYU/I3DuLCwZQE
EwEKAD4CGwMFCwkIBwMFFQoJCAsFFgIDAQACHgECF4AWIQT+uSCfLy8/RmSEHlWs
EHs4ZpLa3QUCZwAXCAUJEWvKgwAKCRCsEHs4ZpLa3ZdTEACMBLg2q9zk8ZH02nDz
Sg5zc8Wlqq8WdxU0Pj8qx4UOrrMca7wyiUvrgoxPW5lh1RVNUeMkDRfu9pSXcOVI
V9LvmYE/WnwKROubgGbsC4T7M/LqV0/AulXil4d7IXcO6l4toa8LTNWtD5bODgrN
gvay1AzCU8kq1Qw1cKZ2gAfvA3Ba7PWyLeUN4HTlGrXcw73G+0CofY1L8wqWxHCJ
29XqQzeTEc6MDEeIlNlVdUcy8Qr5uwkEsl34H9AxS5F1opJ4TqvXiDZsrSRRv57R
XYmRZDWeYT+9PZaMsHXza5qgej7BfATxhYfICsNaY6MK3x6b+nDSKkoZgO+i09zh
1YjpahhQe6G336v/3mRj0dKGCRQ6znQ9ghUaB5z9zfvgH5AOEkTe3l8MqM+j5A6P
VjSBBJAHKejxr7+wKJKIA6P+DqpsYAunzftwUzrLVqb+BZQ+DcTmVrE7OPcMYJD5
QglX/Le+WmWZHI154NXgpWWUOUgZUbUge4DKrT+zCJ9iecPLKTW7OcULyXO+rjb8
8BGrD5GPlHB3dOUXXTlMKCqg3qy1Bu2KnZTQiaEEdZgSIGQbrW0JTMmmXJkKjokd
JMA4vYeg5en51G9nRQjScPngx77IxvByNyFWTJdG1ENpJpsK9TtmENcpyUJtJZTJ
ZSOIRVPP5RzR5vInuXWq6VV0BMLBlAQTAQoAPgIbAwULCQgHAwUVCgkICwUWAgMB
AAIeAQIXgBYhBP65IJ8vLz9GZIQeVawQezhmktrdBQJlJEoiBQkPj/2dAAoJEKwQ
ezhmktrdx1YP/0vvym3jgX/pwnR7K1rafZMb1iKQBr0ISG8cdbaf4pqX5vuUZnyj

当前密钥 255

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

w9Cl/oONn7jJjnQxOIIzuBoxne2WN28ftM2w0nVXm85mAmz2fwQz/fdKDyonXcOh
pfD2iMqn7gESjhEgRE7wMDYMDuLdqHI7OKWGVfgrh7xEmKapLh45h7cnumo2VjL9
uDYY1aOBHz993T7oE41y43rhk+6kKbGFd2uuo7h5j1ZF8Lj6sYfcEzXOU1OhRlD0
nyBjDy9MYWu0YNouc70WgMceGx6hjvCAM/5fxP7SZFecZ7ePeB0GpvVA24hSNENE
0r3tUekuOf1I0FunMnMnbh7ZO9rPYqWvWDNIpU3S4CjFhY82L+IeKnmLy8N6ASRk
HsPiNCOHSK8C/0ynrd9xLhX8Jsk/TGiQYaleoHhWkNLlZsL86QHL8SKEqkqZCQf5
AEqghDP6NEGS7lnOenA7JjIrA9KLlT7fnNWZOwFi5X+o/CymE2ytEMS0Yf3nmY4U
n9x56Wgn6J2zqB5nqOXf6NxGdAIgOBm098YEnKCIFzk+yhoDlprVpHcnd2b5f6Oq
uh8KYOEbKgpMJ3zZuWSL5kwGF1nNoYiAkonMaz9H3pOQnOMVYCUeUTDRsiO/prrd
UhNlry4TAsBMpeXnFhdLVM3vFQZVpByadGOJNmnaN/Wavw2a00UGBFa4wsF9BBMB
CgAnAhsDBQsJCAcDBRUKCQgLBRYCAwEAAh4BAheABQJhMqGaBQkLnlUVAAoJEKwQ
ezhmktrd2sQP/3YHM+U+BbOy1nSEAfykZ71+uCM2hkHMLdxQYWB/rBWkmg/pbu+d
r4t45RsTASrNjRcZOntlPMQRIq973ymHfpmeS+noFwvTGH7zDv1BRBR9wPrd1XUz
iSuEUHGi/fqxUVXQ5mbonzfThX8tuXeuiQmeToqoB00FYlZm6xsNnEHcjVl66mC4
IPoJLWnZJs4rOCeoRf5XvDTgX6xt5/kLYRZf79qaWGFvaZpsc1CH+rQJUdVa/D4T
7pI7hX6zy0S91z4iuC5HZUiOTF+y5auEZHGTdTWNS1kvOvfcCTi0XK/GkGL82SZu
7X2VGnpCeUnFyViRGlk+KaDG1sVyDY+lcBPg6ilr45M6MQV0iHS5OF04QNXSKt5+
UnzJH7lldgNsR6ibRMyNV3k5v3fyUcSBvIYyLORTTBiVEjQDSbk1QNqbrQlX9CWz
+EJWn16BFTmMFvxBSWPm640GncHP5J3/0MbMw3Cm90x7k8UfNANIemcrJrSxIDwm
g9cVAg3a+D+wxjrVe8jGg0ejvECpm+0yswigj5x6Lqj09A4UgdjEauN+/pn0nhBo
Gv7DzMXtM/LoDtgp6wn93qZVN2TsuHnkEk4UyntB6eWJbBdXHWUr47exiWh0dvQN
tpwCWPT6I7ZTPtA5K/zx+q9m6797BLgAkTYc6gloQL3vs1Z1S3m/hZNawsF9BBMB
CgAnAhsDBQsJCAcDBRUKCQgLBRYCAwEAAh4BAheABQJgmrz2BQkLBnBxAAoJEKwQ
ezhmktrd36oP/2rB2EkwSOCKC4m0heWSfDWi6OBKoEbbDtFtc6/HwqBW8SPsiKlq
zV0e3qBY/LVju04+ktJEK+EGXLnC3iC36MegrQ8zt391kEx/Zv9LIuVOCX90QIAX
dL8MVUkkjRLCFFH8pTgRy1cJYWk1X4dYdXWYc29fCwNVartNdNBhsb2ht3VJeKDE
kUivBHmkjuISDPEnI1coY7Lj0ZtY5cHdRF2eZpB0RkTBpsIt18rCYyHkERZrhmvb
j3rOyPyvOa+1/dQS8/hv5pEmbKx8cy8RdJkmbUHYatPBsjHkJSWr7O7G9VFW4GoN
9CRAI4KkbDSEDjCL5dv2pq0Sew1MkLuWJGULAMgiIUlWcOs5SZZGFSksNQrtSFV9
Z/wGocecMGkGQNXQ06JV/Fry/TvyphBlmylEqL+NLqEcEjnlz90IVu+ZA+M09J96
UlHO7V5GvBgM+QK/q/dJeMHPWrNlo1gA6Nwl/HBdM0DqzdZ2jEPvsQSABvZrPMty
+BAqEar4wqY1AH4X5ccEjO7nJQoBQSDRSki1fkBsc1nx44N/m0kHdIa0Z/Y+Mw4v
WiZhREkOospG1I4lBa3CNTVAhSs9msGsYfkqvFJGHL7sZY8XSv82GBBvA0nUNrsJ
bLBwo2FaQG9eoatRAGkqp4b/OtNtBuGeiQoNwFGbfUZTAaStj5/zZj0swsF9BBMB
CgAnAhsDBQsJCAcDBRUKCQgLBRYCAwEAAh4BAheABQJe+9bwBQkJZ4plAAoJEKwQ
ezhmktrd+ScP/RoaUKriVVAgLHOGs+/mnfKtnfTlClzi5dsdI9/6H0vLpmSWK/Cl
2cT6gary45VMgAeVK+H1lQXafYj+FY++I5kYoe2GrSvIXhpjaFAJyNf/dKleTsqR
Tm371i8b3FDYs5kvy2CnTbmHB8MsOGxck8/YHd1x+g8WpO2IgF89yYCSF3CAdxC3
6bHbs6Z3C3lcM/3SoWF+Yie2P8XeBMPCGp/BcjQzUcHF6G06TwDDYhixucUi6vEY
EH5JtOwVVQ7bubT8OFeOoJwVxlzYz4UoqxjKDWymarTzu03AUIT0PXPece94bJAK
mSh68ItQe3H8tSPMubERWz2tEV3lVkChDGXcC7BYQmxHseolxz/qzCtJ0iX9BvZR
dniZNeNJ/Cu8M2pDp47zdNFXzf/Q/sQ9pQlws22G2g119rWDneBku9n1vTP80/er
SB+VLTBjDiArlCY5y9+BG8wbscExJySoQxkB9j/nlMzPY5rgk0SyxsNj9GbqH+hr
EjS3/uacNwSLxGcOT2E9Teot5pfTEO6fQVq+35QhfAlP8c8jze01W/+u+wXu1Ui9

当前密钥 256

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

azRSzYtCHanGyyet6U1mlBpAkqkZzH6t3CA5czc9i6FbzjvFVZnbRUZIRzfISYew
lF5WqgTn2iYVdxagPRvLF5kjd696brGW9d5HwirCVGaK04VsXWlAblB9wsF9BBMB
CgAnBQJXdYAFAhsDBQkHhh+ABQsJCAcDBRUKCQgLBRYCAwEAAh4BAheAAAoJEKwQ
ezhmktrdWigP/3QWl7aO81BUWyby4HEhN4SdAoWGY/FLqO4mCtuplcnMgRUCSiL9
l2BSCTMCtUcdSWtYwOgSChN2mMsdi1U2FNR5HvNunYR/pFdqjfQurf1ZmKVeG5/4
uuKaOxMw9e8pK5uYAfs+O7gr8gu/f6/Drp7NZk3/yVKpf4WCY9oX9TA1q9O/11nN
cwS45U/d7YP+N1YM9cBXa1DnDcdfm0BlykzouAF0qd1Lwi/tmLENvybD3+2c2WsE
rlFZGSa5ZafO0tTIWXh5k6wh5FdRRycrnSyRK3B9N9+yaXfMQ0XpOypa8dqQEnCi
IsngDCJPxtTrhMWKhBFRUMzK/WZTDboTQSQDK+YVRrE4K8MtoZSKwZLV2r9O3TpX
kpbKsPVYmexerfdMeZfjZMF1bC7BmEs7jciH6JjbqAoAPnHzN0481aeNarINSViX
PQWr2mp9qShei2/RavLtx2ZNrvmGW72ZKpF8E3WWUDpBJqFVeGNRvOm3aZj8o/Hl
ewtNjcT4ouJfqlfKiULv+g7ANEMDLQTFDTg5twRdvmZlB7oTBsavf+LwxPIXhH32
IR7TX7VeicMMxmZnmZK2ANT/QBi3laf+ojVHvB+f6D74eLNq0Zqjfi/3UFNYsYjg
E+YgCqEUBpHbl61nOHwGOSsQwfap2uKKlzukD/KxH5SPBC3DYGBI+KCbzsFNBFd1
gAUBEAC8zNArPWb3dPMThL2xAY+fS60vXdB1SkOtYJpDWpFgvo0d+VQ+hV6XulGA
HAS6xG1WHysPT9KejIRSgLG+e9CaM5yhsxNa1WFGUM4Q9ESo3t+a75Go7xHIxgFj
C046/O6Vh3g9N/PREeuG8zkZ3H2v5fmD+ejyPgk4W9sFL00zjRiZD0FKVYR/j9ue
nEC/2NBcLuFy3q6cDfmCoDEOO62kXMnaGz3knzEK/X1SkcjsxRDq7zaQlQ1Kou+3
dICwy4x5SJQ8jl+eeeEvF2C2/dXmDohb57tqUwioohMUQkmCtvZgEHjypUwgp0MT
o25gWxkvJlSJKUOb6b1786WNySIzF2gxqlkkEmBl4RAssQkeXjrSmGwsMDyHNqyJ
eYFusl8sPaSpo+V2n0z+2B070Uq+wmf1S5A5FpegH0PZzzoNZo8I6QxaZje9YSZU
ijGmZIdEBleRVt3Svhi8MYlnasd4bW2RK1sr7plkBf8QRe6biiQRF3KDOSn5CbmX
pAcHJ1ZHzRRdkXZDNQC6vCJxsy13O0TrhJtAV1Yq347uyUbVi291ISVgroUVtprs
mHoEk5GoOTHbg9SCSt+xi/FiJQC+ubWmIGXoFKMR3UmhDnnzobKcbnbs/Hd981Fd
VghYYvq//gTAkJk0WxfGqO30wtXRndPOA0T+qhP3TE+LtGRJ+wARAQABwsF8BBgB
CgAmAhsMFiEE/rkgny8vP0ZkhB5VrBB7OGaS2t0FAmjXZm4FCRNDGegACgkQrBB7
OGaS2t3y5g/7BFXp/fdanzuQPToJTPen7AVwhLloKaiYhG3GjdXfMPLvu6UtaaGm
qynLolUNNooobptFqc1G9BKoAghQrta7CsDHtsQF2xyc3Mfu0gmpL/7X5a7sFIeJ
j08UjfweHx4DSG4LEZgNaAoWFjZltp4+8cqijkAHXt+r+1ayQG4VVHOWyXXqmSH4
9HqtbPcPyRzxdoVLeshZC9jmhHhhKqw/LwGyipWSOUKQDjWarBwdyhNmWCaLvxH1
ndMp4tq8DPGC3G4T9tYAbANrn7nKfZgHebMSzMw9kSp0L6QvwwTDjJyIWz85WyeH
WHeBysDaBOit3XDlehUew27y7N6a9hQSYjnXuwvre5mjDIOqJon/31R6ui2Z1y9P
a+bC11hbLXXh9tLCXRuoOt6thh9Cq5X1a76PPpEv30o3bpsb6l2hbrut1OKezwvK
l7txito/jfMiWfsZHA9O4SoM+8GnmVingHtZ805n1T4RddJvT/vaqplfI6zf7jmf
a69lALP420riFOQcwntNUM5tVmFUZsnFp2YRd4Ls7MiXVjtABahlSbb94l5WSVc0
jrOLDf94edvzk4R8i2Ob8CfVZNqEsTR6bHz8dT7Q+xQzEdjUujyyZY1UUl157Qeb
OsHjhCtuZYCI04X9hZ37nKnZXSxRlRDCnt5BEiyFu2WD1RscUe6PcVDCwXwEGAEK
ACYCGwwWIQT+uSCfLy8/RmSEHlWsEHs4ZpLa3QUCaNdlPQUJE0MYuAAKCRCsEHs4
ZpLa3XCpD/42DrcveE+q2ulrAIYPDlUlHiwIMejqBDRm6zmr1KSAeb4E6/MFcP4s
rXSSscMlrqG6NVynjNCXjD2YzWii68EwoXLJkgoD3r2ifzkV62EX2MIEeNZAVwuy
KNxorzmy6bhuWltRYNK/hITs2AG5orOk9ADEJ8PixKymrWlhesPaWX6Yhp9/tWaC
RHOSRiLbRVaJ+7sqT88urLmkV9Hqx949Zxv4+cgBVUGL6WXKsfWhHjbDMNJnozWB
SZaIJznLApOM8z+1DNrqUYyfR8SkF4IOVmg6HDzoyuseJJ8JvMAlkvT6F9VBq/iE
yeDYdEEQxwHwozKrEx5Ybxl5mntbqwCXy6kHSx2+/3RZWpZQ8K29YP9QEk0KeGF8

当前密钥 257

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

9Vap3jjNrX4u3cuRNQpeblQc4uFn3Nzaj+cVV4YzcRw94NifecXpujSvk8XU2ytJ
/JgMBxPIBKglN4eEMet9b4FRB5XeBdPAm19/LXyb4IlIipGNXlgNz/HCuBzidzHT
QQdqfA9rZVx1hwFr7AJCVqWaXVsx1oEAhKqpTtsLMyj594DvnRuwKw5Vse+1eydW
MIHYdbxmJccsTGIt/hsOpc8zfm+QYk5752jshhOKEBy+Ey3QZI1WbO547NOb2Hwr
Pgt7fw2NCKMPElSu98zmneFPhqNHf7L5urBe5gADj81E8lm6t/oVxcLBfAQYAQoA
JgIbDBYhBP65IJ8vLz9GZIQeVawQezhmktrdBQJnABcLBQkRa8qFAAoJEKwQezhm
ktrde3MP/13CLWp99XvRROrzD/bWOfWjAenT2PE/tYdOY9YcTQFbnIUhaVUDWAo3
pibR3D4u9LlY4olpGfJ7BTIHFa9myfpaVvmrNjueYI4omli24JQ/CKqNdY8Qzxz+
/QyiNK7Aw5cEBWIu84WGB1SsefWWT3rZe9YBb77gNcWHZ15pXTXrcgUxGY4808MC
I9YFWq8EA0iHawtFnmB3UFfClWt37Hy3PKvr1is3uG60+ULI8RQz3/+ZwSG8U+xt
b+I7H9+gITc1eFCb+tIwp5xWflyxcFXYk6UzOL7y3Fg2tIEuSNtIHUC9NDVobf6c
I0KAzZcMvKiPQiuBnVOjgDLmCZM5H6axj9x+gi4oVh6ea3HLqMzyjm5JkeCGgKWv
H0gD3yGEZDvcbavkQOle5T+4JefndKzCPrluX0iyx+oQiiOL8WieSSkSB6BsZcUN
SeuGJwM79Y7Oqld/YVrQNBZj5Vz+m3nZ+0EWDDMI0hRgMpSEIc+dnTC0u103Z+Rc
c2IJq8INmU653sUcfCZE12ParW4rF7ib6kViYrABT8f4e2TP0aOyP5kp51ied9qL
azaBA6tt/C9X1V2EJZK4srXtmcZO2Im45RAiVXyfpBAmmiF3eZWCbKe7qBC4rDRh
LZG4RQW/S86Da0BID7gQz9IFSkaG504MsDhvnA7iAqaHUHUepCsiwsF8BBgBCgAm
AhsMFiEE/rkgny8vP0ZkhB5VrBB7OGaS2t0FAmUkSiQFCQ+P/Z8ACgkQrBB7OGaS
2t3AwA/9GkXKUgvjKGCxwE4SdDt7c2jw6to2TTP9iFJ3Xbk3+5BURT3gkZCuu9D7
gt+97aVo/B4EM7Xz8DQKyY7Ic9VAwDRra/Hwi1V0hw1zyIWQ/gAnX3baU6qLRWHR
vVR5meV8r35C+rg9DaWFYmvS7PIv9LfxESwBPUjbmx8k4/5EJpHUwf12bzkTnot5
7q5lHxKQa6IvqQak+Hp9ZM2KPdsgKO2HWJJIIvYcI5byW9zBKV0O7YR8gtRAJKp9
IbtsXx0WT6cqHOFVc5SSzdcaMt0gLFl7BTnJyvKK2l9GABGBmzYDjeCyF2J+Ippf
oqxqfTe6EoOsuEMc2PbLTs9SsWjyCC2VGlX8+uUH9SoKwL0VQ6LFsP6fhkVKqi/a
rB6UuPR/iZnrKIuxMNQ4U+t2Q6UdMlmXsAXTNdkwzoK9oJRokIrH0ZV1KtH4sjjA
tCic+tOddq+GQLiKe2WpJfxlA0uESCB0TxjAwQmfn1H+dUhPeLlbNimHlH0/hXPd
ifuNGozzADIRseQDyzjl8xGL1qRZLD3cfmda6RyZ+S3dQRuaRrcFCDccpY/pO+F8
jbx64zyqqNs+KV+SkQGOcKFhWTZGCfQ/zMDtDmQKjb3eTAkv1zdEOMw9zEjjmS0q
8FNl+2wO3VnvXwvBbtDdVCIaIq+jVcsy5XtnnV+bJ19Q9yue/XvCwWUEGAEKAA8C
GwwFAmEyoZoFCQueVRUACgkQrBB7OGaS2t1uHBAAhOYVvrtchRmzCvdNER1DtkIs
bgQPJ9OxbyfvmvoD06qxH7PrycLZKbt7yYpAUU/CMc86GwaEe0I5Nm1CTs6NvDIv
g3e7EPIS859tyQflbM56NlwbsopCuoCJYknuroIf/M6dW6vJKNXLMmnL/AtalUBw
X+5pblmGUUJep49oTOxQEnvnuqyvaGjXgFXix5PVFJD2ed5NnQeFpvfCpc/ioNOj
z7ORO82j1ht5nWqPraXX5AYhQFM/kwR1cK4LV7gVDd/q+dfGYHzpxQ/HtyX/Lasi
N6I52QqA95SM1ZZLPFLaNh6EvnB7uC9pLCYS8nvilX7/cez5PFff1e1gXCOT0jv3
mJ2exLmXV0BbfKgjccFCxhrdRLtukfiDfJkySy1zdscnpfng8wJ3xKRv43cUTz7M
Z24OYNMqK26aJZVXEQUYjCwsBylY/F5wjYAwgwZ8yF5RFix28P/K8JsIHb3QrAJK
sNWQAb03ZWis3N3spR5M9Mw3VuDZ3WUXq7mxB5M3kpVoZ3vETU5cwTbADYNPf4Sw
BDK2uIVtxabezxSBtz0FcyYoF+OW8q7r4WvoyC9/+3GfnozZLJcEIVDk4W2pMW4A
UhG/6drKTm3HkSDWIDu7d1sHWMffLEYfUHtN5DKkDkGoPfHvZvu9teR5yLfUrPTf
ktihPn/JMrmwa9pwi8LCwWUEGAEKAA8CGwwFAmCavPcFCQsGcHIACgkQrBB7OGaS
2t0uaA//UWRaRiHEAKeRqBG/T2ak+XZJNu7QHfNgoUEAub9Zru8oPPXx2AJLcHEN
KWmeFlLxADdWOZs4Bm9oOew3VQnR/dBqjnXfob9Rc+eYUjA3rXazM/QrqcU8Syi3
MjNGUmjdL5aQF+IppAMgOBLG1TEnM7C5/PvrGJuYpGEnkKEwMK/GYhqg2V60pHEV

当前密钥 258

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

Pvs66mefJpCzbZSy56qtknSt6yBNWc14XgDX6VTn2kW4CV/3vVJUuvjvYs9SPyY8
mKEXa6QvUd3PcXv6RiWk4lGYuT1+jh2VkcFQ+JnUwv9TbKFB9b5jq1bvW9+LMDEl
YXux7pBP5RPk+OLpyiExIRFWhi3x7aMWOzQ+I9yuNTeYkTHiEAQRUhs/1Fh4oLgI
v9QZgC0mRSN3zm8plQdivs1ZlAosAqqkA9BQwqsgosQe7P92irYIJqay0si9wGCD
wSMsmeXdIF6wW3/UMJZl66aarPeiZApGX0QdTZwjMh/QK/8gTKyeZulKmNkNfwWq
O17OirWqLKssVHtg3VUM8EIdh+oNqDDXSeWtYUmpPpWp+yWZ0x1MFFZhUQHQZTGu
TIj4A92LQzbrfj/jXRvWm2SrJMivUoiDUn+qxKIpVwFlI5gVb+uyTFhw89PCkphr
JwRi052RLoU9yd6Ek46UH4XfZZWrZuzY+zzB7oqGONphLgi/h3DCwWUEGAEKAA8C
GwwFAl771b8FCQlniTUACgkQrBB7OGaS2t2/MxAAjoEGPdzavhsOlXdPCRd1D5QJ
r8T/NSEV2z1cp8ZvdrkjNF09TBP4qsBnKJiuvY1Iw7OGX9W2okvXxgJizE45v9MH
WEMz4hmIjmAfRwcqENgpOc1IY/T0/+kkCW8dB6d30J1kT0n2PCRzN9L5vPqZXGTG
mLvd9MOjH1256w4uxLb+e1HMDTCqEN1ppq9G+EAR/29q8JZWs1marbZZWxSWcg/E
1YYbNafzklgjq4CLh/j8AEWSvLr39zRy9uvQ/yqAKZ4K4aZfh/SPupGDvsD6ZK54
EPHxErQ7aiXTbUHtvwhxWLOP6WmxFA3Shr6L6YUb6jq+0PVliFC517g3mxFHJtwt
yXGNIKhmzmr0l9OlsHafulJ/9QPfK3Ce32SkPhW/11MYA8HzduMv5Arp7cBczXSP
EUTmNIVKv3gTjSQrzRhwhHmMuqyDZ/rXQQ1jl2sxIDjO4MUMvVjYKF+OCNm42gVs
8ca3/wN9ZNU6hyFWeKQDuCAqPPbT5GO/DKseFEwB+07wwyH1RXbyl0v4fneg605X
S7lqhNtw2p1hDL0HYHDiV+aPZ+LoOmX6+dmnqE6bQJaIlVb922KWmliO7F3DkqP7
0jFlhoE1gfiXWkxP4Gy8wOobNfEMgvz02djkGQy+oQqeNdIcZFZgzPTGKB/nVgpt
9CcRDWjPltFCd2e1FBbCwWUEGAEKAA8FAld1gAUCGwwFCQeGH4AACgkQrBB7OGaS
2t1PIQ//Qc5VYfBCxpaMysaPQ44wXPEZSjxIGZhhMGzb1UzzAEYOw+RgKN5nNTXq
L2KoOkOrGnKqZOKByMdXwIPH/rGwwEsbbIpopnibf5ic5B/+xCTIK+qLIwX2ZLuk
NhbL6Y+E+7DxMMh+KqBWHONKkgwVY+rFWOfoops839ABKvc9/Ry4/qqkcb40AzpD
l1iQJ5vK/DMuaDWxWeKXqJLIl3WMGPcPfheuBZL1u7LEEHYKMgzvpbF81WIn3MBo
8jvxf2/o+kMafSSDqgvOu6yu8GOhmScpCbRJn7jV/HrG+tM+zy48TN6/MkGWSR7q
TD34pqBjyatVfVl6dGD6xj/i/Emt5hZB6qXruCDH7AWMoNx+FkDubs4sc4PKysZU
Itya6KdQFo2UeYsNwZhdn6QwKhd85um4JUHJCY0mARvjsQgWXH/5MR40cow77bbE
vVq0XNd+QRVlyT42CEtnIUOFLeDVuZrum5Tuvvna6ImMDoi/z6QcNeL79XsY2m6I
QVRiHr1BDb/8JLkfnWiwL8GRv169Kf8unx0y5u1YBpcMYkyDD2+pnnk3TY0rR+8X
8goecaS8fbyu/Q48K85ZMD8wKW/bzLQ+tK9y8xed24u2QERftMhIw9b6f45Nrrf/
PhgV8RnuwUusSbdDe8kw3eYTmLdzD4kZc9K7SdO2CqT+hm//9JI=
=uGHC
-----END PGP PUBLIC KEY BLOCK-----

以前的密钥

Important

在之前的密钥过期之前会创建新密钥。因此，在任何给定时刻，可能会有多个密钥有效。从构
件创建之日起，密钥就用于对其进行签名，因此当密钥的有效性重叠时，请使用最近发布的密
钥。

以前的密钥 259

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

到期日期：2025 年 10 月 4 日

密钥 ID 0xAC107B386692DADD

类型 RSA

大小 4096/4096

创建时间 2016-06-30

到期日期 2025-10-04

用户 ID Amazon SDK 和工具 <aws-dr-tools@amaz
on.com>

密钥指纹 FEB9 209F 2F2F 3F46 6484 1E55 AC10 7B38
6692 DADD

要将以下适用于 SDK for Java 的 OpenPGP 公有密钥复制到剪贴板，请选择右上角的“复制”图标。

-----BEGIN PGP PUBLIC KEY BLOCK-----
Comment: Hostname:
Version: Hockeypuck 2.2

xsFNBFd1gAUBEACqbmmFbxdJgz1lD7wrlskQA1LLuSAC4p8ny9u/D2zLR8Ynk3Yz
mzJuQ+Kfjne2t+xTDex6MPJlMYpOviSWsX2psgvdmeyUpW9ap0lrThNYkc+W5fRc
buFehfbi9LSATZGJi8RG0sCCr5FsYVz0gEk85M2+PeM24cXhQIOZtQUjswX/pdk/
KduGtZASqNAYLKROmRODzUuaokLPo24pfm9bnr1RnRtwt5ktPAA5bM9ZZaGKriej
kT2lPffbBjp8F5AZvmGLtNm2Cmg4FKBvI04SQjy2jjrQ3wBzi5Lc9HTxDuHK/rtV
u6PewUe2WPlnxlXenhMZU1UK4YoSB9E9StQ2VxQiySLHSdxR7Ma4WgYdVLn9bOie
nj3QxLuQ1ZUKF79ES6JaM4tOz1gGcQeU1+UklgjFLuKwmzWRdEIFfxMyvH6qgKnd
U+DioH5mcUwhwffAAsuIJyAdMIEUYh7IfzJJXQf+fF+XfOCl6byOJFWrIGQkAzMu
CEvaCfwtHC2Lpzo33/WRFeMAuzzd0QJ4uz4xFFvaSOSZHMLHWI9YV/+Pea3X99Ms
0Nlek/LolAJh67MynHeVBOHKrq+fluorWepQivctzN6Y1NOkx5naTPGGaKWK7G2q
TbcY5SMnkIWfLFSougj0Fvmjczq8iZRwYxWA+i+LQvsR9WEXEiQffIWRoQARAQAB
zSxBV1MgU0RLcyBhbmQgVG9vbHMgPGF3cy1kci10b29sc0BhbWF6b24uY29tPsLB
lAQTAQoAPgIbAwULCQgHAwUVCgkICwUWAgMBAAIeAQIXgBYhBP65IJ8vLz9GZIQe
VawQezhmktrdBQJnABcIBQkRa8qDAAoJEKwQezhmktrdl1MQAIwEuDar3OTxkfTa
cPNKDnNzxaWqrxZ3FTQ+PyrHhQ6usxxrvDKJS+uCjE9bmWHVFU1R4yQNF+72lJdw
5UhX0u+ZgT9afApE65uAZuwLhPsz8upXT8C6VeKXh3shdw7qXi2hrwtM1a0Pls4O
Cs2C9rLUDMJTySrVDDVwpnaAB+8DcFrs9bIt5Q3gdOUatdzDvcb7QKh9jUvzCpbE

以前的密钥 260

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

cInb1epDN5MRzowMR4iU2VV1RzLxCvm7CQSyXfgf0DFLkXWiknhOq9eINmytJFG/
ntFdiZFkNZ5hP709loywdfNrmqB6PsF8BPGFh8gKw1pjowrfHpv6cNIqShmA76LT
3OHViOlqGFB7obffq//eZGPR0oYJFDrOdD2CFRoHnP3N++AfkA4SRN7eXwyoz6Pk
Do9WNIEEkAcp6PGvv7AokogDo/4OqmxgC6fN+3BTOstWpv4FlD4NxOZWsTs49wxg
kPlCCVf8t75aZZkcjXng1eClZZQ5SBlRtSB7gMqtP7MIn2J5w8spNbs5xQvJc76u
NvzwEasPkY+UcHd05RddOUwoKqDerLUG7YqdlNCJoQR1mBIgZButbQlMyaZcmQqO
iR0kwDi9h6Dl6fnUb2dFCNJw+eDHvsjG8HI3IVZMl0bUQ2kmmwr1O2YQ1ynJQm0l
lMllI4hFU8/lHNHm8ie5darpVXQEwsGUBBMBCgA+AhsDBQsJCAcDBRUKCQgLBRYC
AwEAAh4BAheAFiEE/rkgny8vP0ZkhB5VrBB7OGaS2t0FAmUkSiIFCQ+P/Z0ACgkQ
rBB7OGaS2t3HVg//S+/KbeOBf+nCdHsrWtp9kxvWIpAGvQhIbxx1tp/impfm+5Rm
fKPD0KX+g42fuMmOdDE4gjO4GjGd7ZY3bx+0zbDSdVebzmYCbPZ/BDP990oPKidd
w6Gl8PaIyqfuARKOESBETvAwNgwO4t2ocjs4pYZV+CuHvESYpqkuHjmHtye6ajZW
Mv24NhjVo4EfP33dPugTjXLjeuGT7qQpsYV3a66juHmPVkXwuPqxh9wTNc5TU6FG
UPSfIGMPL0xha7Rg2i5zvRaAxx4bHqGO8IAz/l/E/tJkV5xnt494HQam9UDbiFI0
Q0TSve1R6S45/UjQW6cycyduHtk72s9ipa9YM0ilTdLgKMWFjzYv4h4qeYvLw3oB
JGQew+I0I4dIrwL/TKet33EuFfwmyT9MaJBhqV6geFaQ0uVmwvzpAcvxIoSqSpkJ
B/kASqCEM/o0QZLuWc56cDsmMisD0ouVPt+c1Zk7AWLlf6j8LKYTbK0QxLRh/eeZ
jhSf3HnpaCfonbOoHmeo5d/o3EZ0AiA4GbT3xgScoIgXOT7KGgOWmtWkdyd3Zvl/
o6q6Hwpg4RsqCkwnfNm5ZIvmTAYXWc2hiICSicxrP0fek5Cc4xVgJR5RMNGyI7+m
ut1SE2WvLhMCwEyl5ecWF0tUze8VBlWkHJp0Y4k2ado39Zq/DZrTRQYEVrjCwX0E
EwEKACcCGwMFCwkIBwMFFQoJCAsFFgIDAQACHgECF4AFAmEyoZoFCQueVRUACgkQ
rBB7OGaS2t3axA//dgcz5T4Fs7LWdIQB/KRnvX64IzaGQcwt3FBhYH+sFaSaD+lu
752vi3jlGxMBKs2NFxk6e2U8xBEir3vfKYd+mZ5L6egXC9MYfvMO/UFEFH3A+t3V
dTOJK4RQcaL9+rFRVdDmZuifN9OFfy25d66JCZ5OiqgHTQViVmbrGw2cQdyNWXrq
YLgg+gktadkmzis4J6hF/le8NOBfrG3n+QthFl/v2ppYYW9pmmxzUIf6tAlR1Vr8
PhPukjuFfrPLRL3XPiK4LkdlSI5MX7Llq4RkcZN1NY1LWS8699wJOLRcr8aQYvzZ
Jm7tfZUaekJ5ScXJWJEaWT4poMbWxXINj6VwE+DqKWvjkzoxBXSIdLk4XThA1dIq
3n5SfMkfuWV2A2xHqJtEzI1XeTm/d/JRxIG8hjIs5FNMGJUSNANJuTVA2putCVf0
JbP4QlafXoEVOYwW/EFJY+brjQadwc/knf/QxszDcKb3THuTxR80A0h6ZysmtLEg
PCaD1xUCDdr4P7DGOtV7yMaDR6O8QKmb7TKzCKCPnHouqPT0DhSB2MRq437+mfSe
EGga/sPMxe0z8ugO2CnrCf3eplU3ZOy4eeQSThTKe0Hp5YlsF1cdZSvjt7GJaHR2
9A22nAJY9PojtlM+0Dkr/PH6r2brv3sEuACRNhzqCWhAve+zVnVLeb+Fk1rCwX0E
EwEKACcCGwMFCwkIBwMFFQoJCAsFFgIDAQACHgECF4AFAmCavPYFCQsGcHEACgkQ
rBB7OGaS2t3fqg//asHYSTBI4IoLibSF5ZJ8NaLo4EqgRtsO0W1zr8fCoFbxI+yI
qWrNXR7eoFj8tWO7Tj6S0kQr4QZcucLeILfox6CtDzO3f3WQTH9m/0si5U4Jf3RA
gBd0vwxVSSSNEsIUUfylOBHLVwlhaTVfh1h1dZhzb18LA1Vqu0100GGxvaG3dUl4
oMSRSK8EeaSO4hIM8ScjVyhjsuPRm1jlwd1EXZ5mkHRGRMGmwi3XysJjIeQRFmuG
a9uPes7I/K85r7X91BLz+G/mkSZsrHxzLxF0mSZtQdhq08GyMeQlJavs7sb1UVbg
ag30JEAjgqRsNIQOMIvl2/amrRJ7DUyQu5YkZQsAyCIhSVZw6zlJlkYVKSw1Cu1I
VX1n/Aahx5wwaQZA1dDTolX8WvL9O/KmEGWbKUSov40uoRwSOeXP3QhW75kD4zT0
n3pSUc7tXka8GAz5Ar+r90l4wc9as2WjWADo3CX8cF0zQOrN1naMQ++xBIAG9ms8
y3L4ECoRqvjCpjUAfhflxwSM7uclCgFBINFKSLV+QGxzWfHjg3+bSQd0hrRn9j4z
Di9aJmFESQ6iykbUjiUFrcI1NUCFKz2awaxh+Sq8UkYcvuxljxdK/zYYEG8DSdQ2
uwlssHCjYVpAb16hq1EAaSqnhv86020G4Z6JCg3AUZt9RlMBpK2Pn/NmPSzCwX0E

以前的密钥 261

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

EwEKACcCGwMFCwkIBwMFFQoJCAsFFgIDAQACHgECF4AFAl771vAFCQlnimUACgkQ
rBB7OGaS2t35Jw/9GhpQquJVUCAsc4az7+ad8q2d9OUKXOLl2x0j3/ofS8umZJYr
8KXZxPqBqvLjlUyAB5Ur4fWVBdp9iP4Vj74jmRih7YatK8heGmNoUAnI1/90qV5O
ypFObfvWLxvcUNizmS/LYKdNuYcHwyw4bFyTz9gd3XH6Dxak7YiAXz3JgJIXcIB3
ELfpsduzpncLeVwz/dKhYX5iJ7Y/xd4Ew8Ian8FyNDNRwcXobTpPAMNiGLG5xSLq
8RgQfkm07BVVDtu5tPw4V46gnBXGXNjPhSirGMoNbKZqtPO7TcBQhPQ9c95x73hs
kAqZKHrwi1B7cfy1I8y5sRFbPa0RXeVWQKEMZdwLsFhCbEex6iXHP+rMK0nSJf0G
9lF2eJk140n8K7wzakOnjvN00VfN/9D+xD2lCXCzbYbaDXX2tYOd4GS72fW9M/zT
96tIH5UtMGMOICuUJjnL34EbzBuxwTEnJKhDGQH2P+eUzM9jmuCTRLLGw2P0Zuof
6GsSNLf+5pw3BIvEZw5PYT1N6i3ml9MQ7p9BWr7flCF8CU/xzyPN7TVb/677Be7V
SL1rNFLNi0IdqcbLJ63pTWaUGkCSqRnMfq3cIDlzNz2LoVvOO8VVmdtFRkhHN8hJ
h7CUXlaqBOfaJhV3FqA9G8sXmSN3r3pusZb13kfCKsJUZorThWxdaUBuUH3CwX0E
EwEKACcFAld1gAUCGwMFCQeGH4AFCwkIBwMFFQoJCAsFFgIDAQACHgECF4AACgkQ
rBB7OGaS2t1aKA//dBaXto7zUFRbJvLgcSE3hJ0ChYZj8Uuo7iYK26mVycyBFQJK
Iv2XYFIJMwK1Rx1Ja1jA6BIKE3aYyx2LVTYU1Hke826dhH+kV2qN9C6t/VmYpV4b
n/i64po7EzD17ykrm5gB+z47uCvyC79/r8Ouns1mTf/JUql/hYJj2hf1MDWr07/X
Wc1zBLjlT93tg/43Vgz1wFdrUOcNx1+bQGXKTOi4AXSp3UvCL+2YsQ2/JsPf7ZzZ
awSuUVkZJrllp87S1MhZeHmTrCHkV1FHJyudLJErcH0337Jpd8xDRek7Klrx2pAS
cKIiyeAMIk/G1OuExYqEEVFQzMr9ZlMNuhNBJAMr5hVGsTgrwy2hlIrBktXav07d
OleSlsqw9ViZ7F6t90x5l+NkwXVsLsGYSzuNyIfomNuoCgA+cfM3TjzVp41qsg1J
WJc9Bavaan2pKF6Lb9Fq8u3HZk2u+YZbvZkqkXwTdZZQOkEmoVV4Y1G86bdpmPyj
8eV7C02NxPii4l+qV8qJQu/6DsA0QwMtBMUNODm3BF2+ZmUHuhMGxq9/4vDE8heE
ffYhHtNftV6JwwzGZmeZkrYA1P9AGLeVp/6iNUe8H5/oPvh4s2rRmqN+L/dQU1ix
iOAT5iAKoRQGkduXrWc4fAY5KxDB9qna4oqXO6QP8rEflI8ELcNgYEj4oJvOwU0E
V3WABQEQALzM0Cs9Zvd08xOEvbEBj59LrS9d0HVKQ61gmkNakWC+jR35VD6FXpe6
UYAcBLrEbVYfKw9P0p6MhFKAsb570JoznKGzE1rVYUZQzhD0RKje35rvkajvEcjG
AWMLTjr87pWHeD0389ER64bzORncfa/l+YP56PI+CThb2wUvTTONGJkPQUpVhH+P
256cQL/Y0Fwu4XLerpwN+YKgMQ47raRcydobPeSfMQr9fVKRyOzFEOrvNpCVDUqi
77d0gLDLjHlIlDyOX5554S8XYLb91eYOiFvnu2pTCKiiExRCSYK29mAQePKlTCCn
QxOjbmBbGS8mVIkpQ5vpvXvzpY3JIjMXaDGqWSQSYGXhECyxCR5eOtKYbCwwPIc2
rIl5gW6yXyw9pKmj5XafTP7YHTvRSr7CZ/VLkDkWl6AfQ9nPOg1mjwjpDFpmN71h
JlSKMaZkh0QGV5FW3dK+GLwxiWdqx3htbZErWyvumWQF/xBF7puKJBEXcoM5KfkJ
uZekBwcnVkfNFF2RdkM1ALq8InGzLXc7ROuEm0BXVirfju7JRtWLb3UhJWCuhRW2
muyYegSTkag5MduD1IJK37GL8WIlAL65taYgZegUoxHdSaEOefOhspxuduz8d33z
UV1WCFhi+r/+BMCQmTRbF8ao7fTC1dGd084DRP6qE/dMT4u0ZEn7ABEBAAHCwXwE
GAEKACYCGwwWIQT+uSCfLy8/RmSEHlWsEHs4ZpLa3QUCZwAXCwUJEWvKhQAKCRCs
EHs4ZpLa3XtzD/9dwi1qffV70UTq8w/21jn1owHp09jxP7WHTmPWHE0BW5yFIWlV
A1gKN6Ym0dw+LvS5WOKJaRnyewUyBxWvZsn6Wlb5qzY7nmCOKJpYtuCUPwiqjXWP
EM8c/v0MojSuwMOXBAViLvOFhgdUrHn1lk962XvWAW++4DXFh2deaV0163IFMRmO
PNPDAiPWBVqvBANIh2sLRZ5gd1BXwpVrd+x8tzyr69YrN7hutPlCyPEUM9//mcEh
vFPsbW/iOx/foCE3NXhQm/rSMKecVn5csXBV2JOlMzi+8txYNrSBLkjbSB1AvTQ1
aG3+nCNCgM2XDLyoj0IrgZ1To4Ay5gmTOR+msY/cfoIuKFYenmtxy6jM8o5uSZHg
hoClrx9IA98hhGQ73G2r5EDpXuU/uCXn53Sswj65bl9IssfqEIoji/FonkkpEgeg
bGXFDUnrhicDO/WOzqpXf2Fa0DQWY+Vc/pt52ftBFgwzCNIUYDKUhCHPnZ0wtLtd

以前的密钥 262

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

N2fkXHNiCavCDZlOud7FHHwmRNdj2q1uKxe4m+pFYmKwAU/H+Htkz9Gjsj+ZKedY
nnfai2s2gQOrbfwvV9VdhCWSuLK17ZnGTtiJuOUQIlV8n6QQJpohd3mVgmynu6gQ
uKw0YS2RuEUFv0vOg2tASA+4EM/SBUpGhudODLA4b5wO4gKmh1B1HqQrIsLBfAQY
AQoAJgIbDBYhBP65IJ8vLz9GZIQeVawQezhmktrdBQJlJEokBQkPj/2fAAoJEKwQ
ezhmktrdwMAP/RpFylIL4yhgscBOEnQ7e3No8OraNk0z/YhSd125N/uQVEU94JGQ
rrvQ+4Lfve2laPweBDO18/A0CsmOyHPVQMA0a2vx8ItVdIcNc8iFkP4AJ1922lOq
i0Vh0b1UeZnlfK9+Qvq4PQ2lhWJr0uzyL/S38REsAT1I25sfJOP+RCaR1MH9dm85
E56Lee6uZR8SkGuiL6kGpPh6fWTNij3bICjth1iSSCL2HCOW8lvcwSldDu2EfILU
QCSqfSG7bF8dFk+nKhzhVXOUks3XGjLdICxZewU5ycryitpfRgARgZs2A43gshdi
fiKaX6Ksan03uhKDrLhDHNj2y07PUrFo8ggtlRpV/PrlB/UqCsC9FUOixbD+n4ZF
Sqov2qwelLj0f4mZ6yiLsTDUOFPrdkOlHTJZl7AF0zXZMM6CvaCUaJCKx9GVdSrR
+LI4wLQonPrTnXavhkC4intlqSX8ZQNLhEggdE8YwMEJn59R/nVIT3i5WzYph5R9
P4Vz3Yn7jRqM8wAyEbHkA8s45fMRi9akWSw93H5nWukcmfkt3UEbmka3BQg3HKWP
6TvhfI28euM8qqjbPilfkpEBjnChYVk2Rgn0P8zA7Q5kCo293kwJL9c3RDjMPcxI
45ktKvBTZftsDt1Z718LwW7Q3VQiGiKvo1XLMuV7Z51fmydfUPcrnv17wsFlBBgB
CgAPAhsMBQJhMqGaBQkLnlUVAAoJEKwQezhmktrdbhwQAITmFb67XIUZswr3TREd
Q7ZCLG4EDyfTsW8n75r6A9OqsR+z68nC2Sm7e8mKQFFPwjHPOhsGhHtCOTZtQk7O
jbwyL4N3uxDyEvOfbckH5WzOejZcG7KKQrqAiWJJ7q6CH/zOnVurySjVyzJpy/wL
WpVAcF/uaW5ZhlFCXqePaEzsUBJ757qsr2ho14BV4seT1RSQ9nneTZ0Hhab3wqXP
4qDTo8+zkTvNo9YbeZ1qj62l1+QGIUBTP5MEdXCuC1e4FQ3f6vnXxmB86cUPx7cl
/y2rIjeiOdkKgPeUjNWWSzxS2jYehL5we7gvaSwmEvJ74pV+/3Hs+TxX39XtYFwj
k9I795idnsS5l1dAW3yoI3HBQsYa3US7bpH4g3yZMkstc3bHJ6X54PMCd8Skb+N3
FE8+zGduDmDTKitumiWVVxEFGIwsLAcpWPxecI2AMIMGfMheURYsdvD/yvCbCB29
0KwCSrDVkAG9N2VorNzd7KUeTPTMN1bg2d1lF6u5sQeTN5KVaGd7xE1OXME2wA2D
T3+EsAQytriFbcWm3s8Ugbc9BXMmKBfjlvKu6+Fr6Mgvf/txn56M2SyXBCFQ5OFt
qTFuAFIRv+nayk5tx5Eg1iA7u3dbB1jH3yxGH1B7TeQypA5BqD3x72b7vbXkeci3
1Kz035LYoT5/yTK5sGvacIvCwsFlBBgBCgAPAhsMBQJgmrz3BQkLBnByAAoJEKwQ
ezhmktrdLmgP/1FkWkYhxACnkagRv09mpPl2STbu0B3zYKFBALm/Wa7vKDz18dgC
S3BxDSlpnhZS8QA3VjmbOAZvaDnsN1UJ0f3Qao5136G/UXPnmFIwN612szP0K6nF
PEsotzIzRlJo3S+WkBfiKaQDIDgSxtUxJzOwufz76xibmKRhJ5ChMDCvxmIaoNle
tKRxFT77OupnnyaQs22UsueqrZJ0resgTVnNeF4A1+lU59pFuAlf971SVLr472LP
Uj8mPJihF2ukL1Hdz3F7+kYlpOJRmLk9fo4dlZHBUPiZ1ML/U2yhQfW+Y6tW71vf
izAxJWF7se6QT+UT5Pji6cohMSERVoYt8e2jFjs0PiPcrjU3mJEx4hAEEVIbP9RY
eKC4CL/UGYAtJkUjd85vKZUHYr7NWZQKLAKqpAPQUMKrIKLEHuz/doq2CCamstLI
vcBgg8EjLJnl3SBesFt/1DCWZeummqz3omQKRl9EHU2cIzIf0Cv/IEysnmbpSpjZ
DX8Fqjtezoq1qiyrLFR7YN1VDPBCHYfqDagw10nlrWFJqT6VqfslmdMdTBRWYVEB
0GUxrkyI+APdi0M2634/410b1ptkqyTIr1KIg1J/qsSiKVcBZSOYFW/rskxYcPPT
wpKYaycEYtOdkS6FPcnehJOOlB+F32WVq2bs2Ps8we6KhjjaYS4Iv4dwwsFlBBgB
CgAPAhsMBQJe+9W/BQkJZ4k1AAoJEKwQezhmktrdvzMQAI6BBj3c2r4bDpV3TwkX
dQ+UCa/E/zUhFds9XKfGb3a5IzRdPUwT+KrAZyiYrr2NSMOzhl/VtqJL18YCYsxO
Ob/TB1hDM+IZiI5gH0cHKhDYKTnNSGP09P/pJAlvHQend9CdZE9J9jwkczfS+bz6
mVxkxpi73fTDox9duesOLsS2/ntRzA0wqhDdaaavRvhAEf9vavCWVrNZmq22WVsU
lnIPxNWGGzWn85JYI6uAi4f4/ABFkry69/c0cvbr0P8qgCmeCuGmX4f0j7qRg77A
+mSueBDx8RK0O2ol021B7b8IcVizj+lpsRQN0oa+i+mFG+o6vtD1ZYhQude4N5sR

以前的密钥 263

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

RybcLclxjSCoZs5q9JfTpbB2n7pSf/UD3ytwnt9kpD4Vv9dTGAPB83bjL+QK6e3A
XM10jxFE5jSFSr94E40kK80YcIR5jLqsg2f610ENY5drMSA4zuDFDL1Y2ChfjgjZ
uNoFbPHGt/8DfWTVOochVnikA7ggKjz20+RjvwyrHhRMAftO8MMh9UV28pdL+H53
oOtOV0u5aoTbcNqdYQy9B2Bw4lfmj2fi6Dpl+vnZp6hOm0CWiJVW/dtilppYjuxd
w5Kj+9IxZYaBNYH4l1pMT+BsvMDqGzXxDIL89NnY5BkMvqEKnjXSHGRWYMz0xigf
51YKbfQnEQ1oz5bRQndntRQWwsFlBBgBCgAPBQJXdYAFAhsMBQkHhh+AAAoJEKwQ
ezhmktrdTyEP/0HOVWHwQsaWjMrGj0OOMFzxGUo8SBmYYTBs29VM8wBGDsPkYCje
ZzU16i9iqDpDqxpyqmTigcjHV8CDx/6xsMBLG2yKaKZ4m3+YnOQf/sQkyCvqiyMF
9mS7pDYWy+mPhPuw8TDIfiqgVhzjSpIMFWPqxVjn6KKbPN/QASr3Pf0cuP6qpHG+
NAM6Q5dYkCebyvwzLmg1sVnil6iSyJd1jBj3D34XrgWS9buyxBB2CjIM76WxfNVi
J9zAaPI78X9v6PpDGn0kg6oLzrusrvBjoZknKQm0SZ+41fx6xvrTPs8uPEzevzJB
lkke6kw9+KagY8mrVX1ZenRg+sY/4vxJreYWQeql67ggx+wFjKDcfhZA7m7OLHOD
ysrGVCLcmuinUBaNlHmLDcGYXZ+kMCoXfObpuCVByQmNJgEb47EIFlx/+TEeNHKM
O+22xL1atFzXfkEVZck+NghLZyFDhS3g1bma7puU7r752uiJjA6Iv8+kHDXi+/V7
GNpuiEFUYh69QQ2//CS5H51osC/Bkb9evSn/Lp8dMubtWAaXDGJMgw9vqZ55N02N
K0fvF/IKHnGkvH28rv0OPCvOWTA/MClv28y0PrSvcvMXnduLtkBEX7TISMPW+n+O
Ta63/z4YFfEZ7sFLrEm3Q3vJMN3mE5i3cw+JGXPSu0nTtgqk/oZv//SS
=bboB
-----END PGP PUBLIC KEY BLOCK-----

到期日期：2024 年 10 月 8 日

密钥 ID 0xAC107B386692DADD

类型 RSA

大小 4096/4096

创建时间 2016-06-30

到期日期 2024-10-08

用户 ID Amazon SDK 和工具 <aws-dr-tools@amaz
on.com>

密钥指纹 FEB9 209F 2F2F 3F46 6484 1E55 AC10 7B38
6692 DADD

要将以下适用于 SDK for Java 的 OpenPGP 公有密钥复制到剪贴板，请选择右上角的“复制”图标。

-----BEGIN PGP PUBLIC KEY BLOCK-----

以前的密钥 264

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

xsFNBFd1gAUBEACqbmmFbxdJgz1lD7wrlskQA1LLuSAC4p8ny9u/D2zLR8Ynk3Yz
mzJuQ+Kfjne2t+xTDex6MPJlMYpOviSWsX2psgvdmeyUpW9ap0lrThNYkc+W5fRc
buFehfbi9LSATZGJi8RG0sCCr5FsYVz0gEk85M2+PeM24cXhQIOZtQUjswX/pdk/
KduGtZASqNAYLKROmRODzUuaokLPo24pfm9bnr1RnRtwt5ktPAA5bM9ZZaGKriej
kT2lPffbBjp8F5AZvmGLtNm2Cmg4FKBvI04SQjy2jjrQ3wBzi5Lc9HTxDuHK/rtV
u6PewUe2WPlnxlXenhMZU1UK4YoSB9E9StQ2VxQiySLHSdxR7Ma4WgYdVLn9bOie
nj3QxLuQ1ZUKF79ES6JaM4tOz1gGcQeU1+UklgjFLuKwmzWRdEIFfxMyvH6qgKnd
U+DioH5mcUwhwffAAsuIJyAdMIEUYh7IfzJJXQf+fF+XfOCl6byOJFWrIGQkAzMu
CEvaCfwtHC2Lpzo33/WRFeMAuzzd0QJ4uz4xFFvaSOSZHMLHWI9YV/+Pea3X99Ms
0Nlek/LolAJh67MynHeVBOHKrq+fluorWepQivctzN6Y1NOkx5naTPGGaKWK7G2q
TbcY5SMnkIWfLFSougj0Fvmjczq8iZRwYxWA+i+LQvsR9WEXEiQffIWRoQARAQAB
zsFNBFd1gAUBEAC8zNArPWb3dPMThL2xAY+fS60vXdB1SkOtYJpDWpFgvo0d+VQ+
hV6XulGAHAS6xG1WHysPT9KejIRSgLG+e9CaM5yhsxNa1WFGUM4Q9ESo3t+a75Go
7xHIxgFjC046/O6Vh3g9N/PREeuG8zkZ3H2v5fmD+ejyPgk4W9sFL00zjRiZD0FK
VYR/j9uenEC/2NBcLuFy3q6cDfmCoDEOO62kXMnaGz3knzEK/X1SkcjsxRDq7zaQ
lQ1Kou+3dICwy4x5SJQ8jl+eeeEvF2C2/dXmDohb57tqUwioohMUQkmCtvZgEHjy
pUwgp0MTo25gWxkvJlSJKUOb6b1786WNySIzF2gxqlkkEmBl4RAssQkeXjrSmGws
MDyHNqyJeYFusl8sPaSpo+V2n0z+2B070Uq+wmf1S5A5FpegH0PZzzoNZo8I6Qxa
Zje9YSZUijGmZIdEBleRVt3Svhi8MYlnasd4bW2RK1sr7plkBf8QRe6biiQRF3KD
OSn5CbmXpAcHJ1ZHzRRdkXZDNQC6vCJxsy13O0TrhJtAV1Yq347uyUbVi291ISVg
roUVtprsmHoEk5GoOTHbg9SCSt+xi/FiJQC+ubWmIGXoFKMR3UmhDnnzobKcbnbs
/Hd981FdVghYYvq//gTAkJk0WxfGqO30wtXRndPOA0T+qhP3TE+LtGRJ+wARAQAB
wsFlBBgBCgAPBQJXdYAFAhsMBQkHhh+AAAoJEKwQezhmktrdTyEP/0HOVWHwQsaW
jMrGj0OOMFzxGUo8SBmYYTBs29VM8wBGDsPkYCjeZzU16i9iqDpDqxpyqmTigcjH
V8CDx/6xsMBLG2yKaKZ4m3+YnOQf/sQkyCvqiyMF9mS7pDYWy+mPhPuw8TDIfiqg
VhzjSpIMFWPqxVjn6KKbPN/QASr3Pf0cuP6qpHG+NAM6Q5dYkCebyvwzLmg1sVni
l6iSyJd1jBj3D34XrgWS9buyxBB2CjIM76WxfNViJ9zAaPI78X9v6PpDGn0kg6oL
zrusrvBjoZknKQm0SZ+41fx6xvrTPs8uPEzevzJBlkke6kw9+KagY8mrVX1ZenRg
+sY/4vxJreYWQeql67ggx+wFjKDcfhZA7m7OLHODysrGVCLcmuinUBaNlHmLDcGY
XZ+kMCoXfObpuCVByQmNJgEb47EIFlx/+TEeNHKMO+22xL1atFzXfkEVZck+NghL
ZyFDhS3g1bma7puU7r752uiJjA6Iv8+kHDXi+/V7GNpuiEFUYh69QQ2//CS5H51o
sC/Bkb9evSn/Lp8dMubtWAaXDGJMgw9vqZ55N02NK0fvF/IKHnGkvH28rv0OPCvO
WTA/MClv28y0PrSvcvMXnduLtkBEX7TISMPW+n+OTa63/z4YFfEZ7sFLrEm3Q3vJ
MN3mE5i3cw+JGXPSu0nTtgqk/oZv//SS
=Z9u3
-----END PGP PUBLIC KEY BLOCK-----

以前的密钥 265

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

文档历史记录
本页列出了《适用于 Java 的 Amazon SDK 开发人员指南》在其发展历程中的重要更改。

本指南发布于：2025 年 10 月 1 日。

2025 年 10 月 1 日

添加将于 2026 年 9 月 27 日到期的新 PGP 密钥。

2024 年 10 月 5 日

更新当前 OpenPGP 密钥信息。

2024 年 9 月 4 日

为 DynamoDB 添加基于 Amazon 账户的端点的相关信息。请参阅the section called “使用基于
Amazon 账户的端点”。

2024 年 5 月 21 日

移除有关使用 java 命令行系统属性设置 networkaddress.cache.ttl 安全属性的说明。请参
阅如何设置 JVM TTL。

2024 年 1 月 12 日

添加宣布终止对 适用于 Java 的 Amazon SDK v1.x 的支持的横幅。

2023 年 12 月 6 日

• 提供当前 OpenPGP 密钥。

2023 年 3 月 14 日

• 更新了指南，使其符合 IAM 最佳实践。有关更多信息，请参阅 IAM 安全最佳实践。

2022 年 7 月 28 日

• 添加了 EC2-Classic 将于 2022 年 8 月 15 日停用的提醒。

2018 年 3 月 22 日

• 删除了在 DynamoDB 中管理 Tomcat 会话的示例，因为该工具不再受到支持。

2017 年 11 月 2 日

• 添加了 Amazon S3 加密客户端的加密示例，包括新主题：使用 Amazon S3 客户端加
密、Amazon S3 客户端加密配合 Amazon KMS 托管密钥和 Amazon S3 客户端加密配合客户端
主密钥。

266

https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

2017 年 8 月 14 日

• 对使用适用于 Java 的 Amazon SDK 的 Amazon S3 示例部分进行了多处更新，包括新主题：管
理对桶和对象的 Amazon S3 访问权限和将 Amazon S3 桶配置为网站。

2017 年 4 月 4 日

• 新增主题为适用于 Java 的 Amazon SDK 启用指标，描述如何为适用于 Java 的 Amazon SDK 生
成应用程序和 SDK 性能指标。

2017 年 4 月 3 日

• 使用适用于 Java 的 Amazon SDK 的 CloudWatch 示例部分添加了新的 CloudWatch 示例：从
CloudWatch 获取指标、发布自定义指标数据、使用 CloudWatch 警报、在 CloudWatch 中使用
警报操作和将事件发送到 CloudWatch

2017 年 3 月 27 日

• 在使用适用于 Java 的 Amazon SDK 的 Amazon EC2 示例部分添加了更多 Amazon EC2 示
例：管理 Amazon EC2 实例、在 Amazon EC2 中使用弹性 IP 地址、使用区域和可用区、使用
Amazon EC2 密钥对以及在 Amazon EC2 中使用安全组。

2017 年 3 月 21 日

• 使用适用于 Java 的 Amazon SDK 的 IAM 示例部分添加了一组新的 IAM 示例：管理 IAM 访问密
钥、管理 IAM 用户、使用 IAM 账户别名、使用 IAM policy 和使用 IAM 服务器证书

2017 年 3 月 13 日

• Amazon SQS 部分添加了三个新主题：为 Amazon SQS 消息队列启用长轮询、在 Amazon SQS
中设置可见性超时和在 Amazon SQS 中使用死信队列。

2017 年 1 月 26 日

• 增加了新的 Amazon S3 主题（使用 TransferManager 执行 Amazon S3 操作）以及使用适用于
Java 的 Amazon SDK 部分的新主题使用适用于 Java 的 Amazon SDK 进行 Amazon 开发的最佳
实践。

2017 年 1 月 16 日

• 增加了一个新的 Amazon S3 主题（使用桶策略管理对 Amazon S3 桶的访问）和两个新的
Amazon SQS 主题（使用 Amazon SQS 消息队列和发送、接收和删除 Amazon SQS 消息。

2016 年 12 月 16 日

• 增加了面向 DynamoDB 的新示例主题：处理 DynamoDB 中的表和处理 DynamoDB 中的项目。

2016 年 9 月 26 日

• 高级部分中的主题已移入使用适用于 Java 的 Amazon SDK 中，因为这些主题实际上是有关使用
SDK 的中心主题。

267

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

2016 年 8 月 25 日

• 已将一个新的创建服务客户端主题添加到使用适用于 Java 的 Amazon SDK 中，该主题说明如何
使用客户端生成器更轻松地生成 Amazon Web Services 服务客户端。

适用于 Java 的 Amazon SDK 代码示例部分已用新的 S3 示例进行了更新，这些示例由包含完整
示例代码的 GitHub 上的存储库提供支持。

2016 年 5 月 2 日

• 已将一个新的异步编程主题添加到使用适用于 Java 的 Amazon SDK 部分，此主题说明如何使用
返回 Future 对象或采用 AsyncHandler 的异步客户端方法。

2016 年 4 月 26 日

• 已删除 SSL 证书要求 主题，因为该主题不再相关。2015 版本中已弃用对 SHA-1 签名证书的支
持，并且已删除包含测试脚本的站点。

2016 年 3 月 14 日

• Amazon SWF 部分添加了一个新的 Lambda 任务主题，该主题说明如何实施 Amazon SWF 工作
流，此工作流将 Lambda 函数作为任务进行调用，以作为使用传统 Amazon SWF 活动的替代方
法。

2016 年 3 月 4 日

• 已使用新内容更新使用适用于 Java 的 Amazon SDK 的 Amazon SWF 示例部分：

• Amazon SWF 基础知识 – 提供有关如何在项目中包含 SWF 的基本信息。

• 构建简单 Amazon SWF 应用程序 – 一个新的教程，为初次使用 Amazon SWF 的 Java 开发人
员提供分步指南。

• 适当地关闭活动工作线程和工作流工作线程 – 说明如何使用 Java 的并发类适当地关闭
Amazon SWF 工作线程类。

2016 年 2 月 23 日

• 《适用于 Java 的 Amazon SDK 开发人员指南》的来源已移至 aws-java-developer-guide。

2015 年 12 月 28 日

• the section called “为 DNS 名称查找设置 JVM TTL” 已从高级部分移入使用适用于 Java 的
Amazon SDK 部分，并且为清楚起见，已重新编写此主题。

已使用有关如何在项目中包含开发工具包的物料清单 (BOM) 的信息更新将开发工具包与 Apache
Maven 一起使用。

268

https://github.com/awsdocs/aws-doc-sdk-examples
https://github.com/awsdocs/aws-java-developer-guide

适用于 Java 的 Amazon SDK 1.x 版本 1.x 开发人员指南

2015 年 8 月 4 日

• SSL 证书要求 是入门部分中的一个新主题，此主题说明 Amazon 如何移至 SSL 连接的 SHA256
签名证书，以及如何修复 1.6 版和以前的 Java 环境以使用这些证书（自 2015 年 9 月 30 日
起，需要 这些证书才能访问 Amazon）。

Note

Java 1.7+ 已能够使用 SHA256 签名证书。

2014 年 5 月 14 日

• 已对简介和入门内容进行大量修订以支持新的指南结构，并且现在包含有关如何设置用于开发的
Amazon 凭证和区域的指南。

对代码示例的讨论已移至其在其他文档和资源部分中所对应的主题。

有关如何查看开发工具包修订历史记录的信息已移入简介部分。

2014 年 5 月 9 日

• 简化了适用于 Java 的 Amazon SDK文档的总体结构，并更新了入门和其他文档和资源主题。

添加了新主题：

• 使用 Amazon 凭证 – 讨论可用于指定要与适用于 Java 的 Amazon SDK 配合使用的凭证的各种
方式。

• 使用 IAM 角色授予对 Amazon EC2 上的 Amazon 资源的访问权 – 提供了有关如何安全地为
EC2 实例上运行的应用程序指定凭证的信息。

2013 年 9 月 9 日

• 此文档历史记录 主题跟踪对《适用于 Java 的 Amazon SDK 开发人员指南》所做的更改。它旨在
与发布说明历史记录一起提供。

269

	适用于 Java 的 Amazon SDK 1.x
	Table of Contents
	
	开发人员指南 – 适用于 Java 的 Amazon SDK 1.x
	发布了 SDK 的版本 2
	其他文档和资源
	Eclipse IDE 支持
	开发适用于 Android 的应用程序
	查看开发工具包的修订历史记录
	构建早期版本开发工具包的 Java 参考文档

	入门
	使用 Amazon Web Services 服务所需的基本设置
	概览
	能够登录到 Amazon 访问门户。
	设置共享配置文件
	设置共享 config 文件
	为 SDK 设置临时凭证

	安装 Java 开发环境

	获取适用于 Java 的 Amazon SDK 的方法
	先决条件
	使用构建工具管理适用于 Java 的 SDK 的依赖项（推荐）
	下载并解压缩 SDK（不推荐）
	从源代码构建 SDK 的早期版本（不推荐）

	使用构建工具
	将 SDK 与 Apache Maven 结合使用
	创建新的 Maven 软件包
	将开发工具包配置为 Maven 依赖项
	指定单独的开发工具包模块
	导入所有开发工具包模块

	重新构建项目。
	使用 Maven 构建开发工具包

	将 SDK 与 Gradle 结合使用
	Gradle 4.6 或更高版本的项目设置
	用于 4.6 之前的 Gradle 版本的项目设置

	设置用于开发的 Amazon 临时凭证和 Amazon Web Services 区域
	配置临时凭证
	刷新 IMDS 凭证
	设置 Amazon Web Services 区域

	使用 适用于 Java 的 Amazon SDK
	使用 Amazon 开发的最佳实践 适用于 Java 的 Amazon SDK
	S3
	避免 ResetExceptions

	创建服务客户端
	获取客户端生成器
	创建异步客户端
	使用默认值创建异步 DynamoDB 客户端 ExecutorService
	使用自定义执行程序创建异步客户端

	使用 DefaultClient
	创建默认服务客户端

	客户端生命周期
	关闭客户端

	向提供临时证书 适用于 Java 的 Amazon SDK
	使用默认凭证提供程序链
	设置临时凭证
	设置备用凭证配置文件
	设置备用凭证文件位置
	覆盖默认凭证文件位置

	Credentials 文件格式
	加载凭证

	指定凭证提供程序或提供程序链
	明确指定临时凭证
	更多信息

	Amazon Web Services 区域 选择
	查看区域的服务可用性
	选择区域
	选择特定终端节点
	根据环境自动确定区域
	默认区域提供程序链

	异常处理
	为什么使用未选中的异常？
	AmazonServiceException （和子类）
	AmazonClientException

	异步编程
	Java Futures
	异步回调
	最佳实践
	回调执行
	线程池配置
	异步访问

	记录 适用于 Java 的 Amazon SDK 通话
	下载 Log4J JAR
	设置类路径
	特定服务的错误消息和警告
	请求/响应摘要日志记录
	详细线路日志记录
	延迟指标日志记录

	客户端配置
	代理配置
	HTTP 传输配置
	最大连接数
	超时和错误处理
	本地地址

	TCP 套接字缓冲区大小提示

	访问控制策略
	Amazon S3 示例
	Amazon SQS 示例
	Amazon SNS 示例

	为 DNS 名称查找设置 JVM TTL
	如何设置 JVM TTL

	为启用指标 适用于 Java 的 Amazon SDK
	如何启用 Java SDK 指标生成
	可用指标类型
	更多信息

	适用于 Java 的 Amazon SDK 代码示例
	适用于 Java 的 Amazon SDK 2.x
	使用适用于 Java 的 Amazon SDK 的 CloudWatch 示例
	从 CloudWatch 获取指标
	列出指标
	更多信息

	发布自定义指标数据
	发布自定义指标数据
	更多信息

	使用 CloudWatch 警报
	创建警报
	列出警报
	删除警报
	更多信息

	在 CloudWatch 中使用警报操作
	启用警报操作
	禁用警报操作
	更多信息

	将 事件发送到 CloudWatch
	添加事件
	添加规则
	添加目标
	更多信息

	使用适用于 Java 的 Amazon SDK 的 DynamoDB 示例
	使用基于 Amazon 账户的端点
	处理 DynamoDB 中的表
	创建表
	创建具有简单主键的表
	创建具有复合主键的表

	列出表
	描述表（获取相关信息）
	修改（更新）表
	删除表
	更多信息

	处理 DynamoDB 中的项目
	检索 (获取) 表中的项目
	向表添加新项目
	更新表中现有项目
	使用 DynamoDBMapper 类
	更多信息

	Amazon EC2使用 的 示例适用于 Java 的 Amazon SDK
	教程：启动 EC2 实例
	先决条件
	创建 Amazon EC2 安全组
	EC2-Classic 将停用

	创建密钥对
	运行 Amazon EC2 实例

	使用 IAM 角色授予对 Amazon EC2 上的 Amazon 资源的访问权
	默认提供程序链和 EC2 实例配置文件
	演练：将 IAM 角色用于 EC2 实例
	创建 IAM 角色
	启动 EC2 实例并指定您的 IAM 角色
	创建您的应用程序
	传输已编译的程序到您的 EC2 实例
	在 EC2 实例上运行示例程序

	教程：Amazon EC2 竞价型实例
	概览
	先决条件
	第 1 步：设置您的证书
	第 2 步：设置安全组
	步骤 3：提交您的 Spot 请求
	步骤 4：确定 Spot 请求的状态
	步骤 5：清理 Spot 请求和实例
	综述
	后续步骤

	教程：高级 Amazon EC2 竞价型实例请求管理
	先决条件
	设置您的凭证
	设置安全组
	详细 Spot 实例请求创建选项
	持久性请求和一次性请求
	限制请求的持续时间
	将您的 Amazon EC2 Spot 实例请求分组
	中断或终止发生后，如何持久保存一个根分区
	如何标记您的 Spot 请求和实例
	添加标签请求
	标记实例

	取消 Spot 请求并终止实例
	取消 Spot 请求
	终止 Spot 实例

	综述

	管理 Amazon EC2实例
	创建实例
	启动实例
	停止实例
	重启实例
	描述实例
	监控实例
	停止实例监控
	更多信息

	在 Amazon EC2 中使用弹性 IP 地址
	EC2-Classic 将停用
	分配弹性 IP 地址
	描述弹性 IP 地址
	释放弹性 IP 地址
	更多信息

	使用区域和可用区
	描述区域
	描述可用区
	描述账户
	更多信息

	使用 Amazon EC2 密钥对
	创建密钥对
	描述密钥对
	删除密钥对
	更多信息

	在 Amazon EC2 中使用安全组
	正在创建安全组
	配置安全组
	描述安全组
	正在删除安全组
	更多信息

	使用适用于 Java 的 Amazon SDK 的 IAM 示例
	管理 IAM 访问密钥
	创建访问密钥
	列出访问密钥
	检索上次使用访问密钥的时间
	激活或停用访问密钥
	删除访问密钥
	更多信息

	管理 IAM 用户
	创建用户
	列出用户
	更新用户
	删除用户
	更多信息

	使用 IAM 账户别名
	创建账户别名
	列出账户别名
	删除账户别名
	更多信息

	使用 IAM 策略
	创建策略
	获取策略
	附加角色策略
	列出附加的角色策略
	分离角色策略
	更多信息

	使用 IAM 服务器证书
	获取服务器证书
	列出服务器证书
	更新服务器证书
	删除服务器证书
	更多信息

	Lambda使用 的 示例适用于 Java 的 Amazon SDK
	调用、列出和删除 Lambda 函数
	调用函数
	列出函数
	删除函数

	使用适用于 Java 的 Amazon SDK 的 Amazon Pinpoint 示例
	在 Amazon Pinpoint 中创建和删除应用程序
	创建应用程序
	删除应用程序
	更多信息

	在 Amazon Pinpoint 中创建端点
	创建端点
	更多信息

	在 Amazon Pinpoint 中创建分段
	创建分段
	更多信息

	在 Amazon Pinpoint 中创建市场活动
	创建市场活动
	更多信息

	在 Amazon Pinpoint 中更新渠道
	更新渠道
	更多信息

	使用适用于 Java 的 Amazon SDK 的 Amazon S3 示例
	创建、列出和删除 Amazon S3 桶
	创建存储桶
	列出存储桶
	删除存储桶
	删除不受版本控制的存储桶之前先删除其中的对象
	删除受版本控制的存储桶之前先删除其中的对象
	删除空存储桶

	在 Amazon S3 对象上执行操作
	上传对象
	列出对象
	下载对象
	复制、移动或重命名对象
	删除对象
	一次性删除多个对象

	管理对桶和对象的 Amazon S3 访问权限
	获取存储桶的访问控制列表
	设置存储桶的访问控制列表
	获取对象的访问控制列表
	设置对象的访问控制列表
	更多信息

	使用桶策略管理对 Amazon S3 桶的访问
	设置存储桶策略
	使用策略类生成或验证策略

	获取存储桶策略
	删除存储桶策略
	更多信息

	使用 TransferManager 执行 Amazon S3 操作
	上传文件和目录
	上传单个文件
	上传文件列表
	上传目录

	下载文件或目录
	下载单个文件
	下载目录

	复制对象
	请等待传输完成。
	获取传输状态和进度
	轮询传输的当前进度
	使用 ProgressListener 获取传输进度
	获取子传输的进度

	更多信息

	将 Amazon S3 桶配置为网站
	设置存储桶的网站配置
	获取存储桶的网站配置
	删除存储桶的网站配置
	更多信息

	使用 Amazon S3 客户端加密
	Amazon S3 客户端加密配合客户端主密钥
	必需的导入
	经严格身份验证加密
	经身份验证加密模式

	Amazon S3 客户端加密配合 Amazon KMS 托管密钥
	必需的导入
	经严格身份验证加密
	经身份验证加密模式
	配置 Amazon KMS 客户端

	使用适用于 Java 的 Amazon SDK 的 Amazon SQS 示例
	使用 Amazon SQS 消息队列
	创建队列
	列出队列
	获取队列的 URL
	删除队列
	更多信息

	发送、接收和删除 Amazon SQS 消息
	发送消息
	一次性发送多条消息

	接收消息
	收到后删除消息
	更多信息

	为 Amazon SQS 消息队列启用长轮询
	创建队列时启用长轮询
	在现有队列上启用长轮询
	在接收消息时启用长轮询
	更多信息

	在 Amazon SQS 中设置可见性超时
	为单个消息设置消息可见性超时
	一次性为多条消息设置的消息可见性超时
	更多信息

	在 Amazon SQS 中使用死信队列
	创建死信队列
	为源队列指定死信队列
	更多信息

	Amazon SWF使用 的 示例适用于 Java 的 Amazon SDK
	SWF 基本知识
	依赖项
	导入
	使用 SWF 客户端类

	构建简单 Amazon SWF 应用程序
	关于示例
	先决条件
	开发环境
	Amazon 访问

	创建 SWF 项目
	编码项目
	所有源文件的常见步骤
	注册域、工作流程和活动类型
	实施活动工作线程
	实施工作流工作线程
	实施工作流启动程序

	编译示例
	运行示例
	设置 Java 类路径
	注册域、工作流程和活动类型
	启动活动和工作流工作线程
	启动工作流执行

	此示例的完整源代码
	有关更多信息

	Lambda 任务
	设置跨服务 IAM 角色以运行 Lambda 函数
	创建 Lambda 函数
	注册用于 Lambda 的工作流
	调度 Lambda 任务
	在决策程序中处理 Lambda 函数事件
	从您的 Lambda 函数接收输出
	此示例的完整源代码

	适当地关闭活动和工作流工作线程
	注册域
	列出域

	SDK 中包含的代码示例
	如何获取示例
	使用命令行构建并运行示例
	先决条件
	运行示例

	使用 Eclipse IDE 构建并运行示例
	先决条件
	运行示例

	为用户提供安全保障 适用于 Java 的 Amazon SDK
	适用于 Java 的 Amazon SDK 1.x 中的数据保护
	适用于 Java 的 Amazon SDK 支持 TLS
	如何查看 TLS 版本
	强制实施最低 TLS 版本

	身份和访问管理
	受众
	使用身份进行身份验证
	Amazon Web Services 账户 root 用户
	联合身份
	IAM 用户和群组
	IAM 角色

	使用策略管理访问
	基于身份的策略
	基于资源的策略
	访问控制列表 (ACLs)
	其他策略类型
	多个策略类型

	如何 Amazon Web Services 服务 使用 IAM
	对 Amazon 身份和访问进行故障排除
	我无权在以下位置执行操作 Amazon
	我无权执行 iam：PassRole
	我想允许我以外的人 Amazon Web Services 账户 访问我的 Amazon 资源

	此 Amazon 产品或服务的合规性验证
	本 Amazon 产品或服务的弹性
	本 Amazon 产品或服务的基础设施安全
	Amazon S3 加密客户端迁移
	先决条件
	迁移概述
	更新现有客户端以读取新格式
	更新项目配置中的依赖项
	使用 Maven 的 示例
	使用 Gradle 的示例

	将加密和解密客户端迁移到 V2
	构建 V2 加密客户端
	使用加密材料提供程序
	配置 V2 加密客户端

	其他示例
	将服务客户端配置为读取 V1 加密客户端创建的对象
	配置服务客户端以获取对象的字节范围

	适用于 适用于 Java 的 Amazon SDK 的 OpenPGP 密钥
	当前密钥
	以前的密钥
	到期日期：2025 年 10 月 4 日
	到期日期：2024 年 10 月 8 日

	文档历史记录

