
SDK 版本 3 开发人员指南

适用于 JavaScript 的 Amazon SDK

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript 的 Amazon SDK: SDK 版本 3 开发人员指南

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon 的商标和商业外观不得用于任何非 Amazon 的商品或服务，也不得以任何可能引起客户混
淆、贬低或诋毁 Amazon 的方式使用。所有非 Amazon 拥有的其他商标均为各自所有者的财产，这些
所有者可能附属于 Amazon、与 Amazon 有关联或由 Amazon 赞助，也可能不是如此。

Amazon Web Services 文档中描述的 Amazon Web Services 服务或功能可能因区域而异。要查看适
用于中国区域的差异，请参阅 中国的 Amazon Web Services 服务入门 (PDF)。

https://docs.amazonaws.cn/aws/latest/userguide/services.html
https://docs.amazonaws.cn/aws/latest/userguide/aws-ug.pdf#services

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

Table of Contents
... xii
适用于 JavaScript 的 Amazon SDK 是什么？ ... 1

开始使用 SDK .. 1
SDK 主要版本的维护和支持 .. 2
将 SDK 与 Node.js 配合使用 ... 2
将 SDK 与 Amazon Amplify 结合使用 ... 2
将 SDK 与 Web 浏览器结合使用 ... 2

在 V3 中使用浏览器 .. 3
常见使用案例 ... 3
关于示例 .. 4
资源 ... 4

开始使用 .. 5
使用 SDK 进行身份验证 Amazon .. 5

启动 Amazon 访问门户会话 .. 6
使用控制台登录凭证 .. 7
更多身份验证信息 .. 7

开始使用 Node.js ... 8
情景 ... 8
先决条件 .. 8
步骤 1：设置软件包结构并安装客户端程序包 ... 8
步骤 2：添加必要的导入和 SDK 代码 .. 9
步骤 3：运行示例 .. 11

开始使用浏览器 .. 12
情景 ... 12
步骤 1：创建一个 Amazon Cognito 身份池和 IAM 角色 .. 12
步骤 2：将策略添加到创建的 IAM 角色 .. 13
步骤 3：添加 Amazon S3 存储桶和对象 .. 14
步骤 4：设置浏览器代码 ... 15
步骤 5：运行示例 .. 16
清理 ... 16

React Native 入门 .. 16
情景 ... 17
完成先决条件任务 .. 17
步骤 1：创建一个 Amazon Cognito 身份池 .. 18

iii

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

步骤 2：将策略添加到创建的 IAM 角色 .. 19
第 3 步：使用创建应用程序 create-react-native-app .. 19
步骤 4：安装 Amazon S3 程序包和其他依赖项 ... 19
步骤 5：编写 React Native 代码 .. 20
步骤 6：运行示例 .. 23
可能的增强功能 ... 25

设置 SDK 适用于 JavaScript .. 26
先决条件 ... 26

设置 Amazon Node.js 环境 ... 26
支持的 Web 浏览器 ... 27

安装 SDK ... 28
加载 SDK ... 29

配置适用于 JavaScript 的 SDK .. 30
每个服务的配置 .. 30

设置每个服务的配置 .. 31
设置 Amazon 区域 ... 31

在客户端类构造函数中 .. 31
使用环境变量 ... 31
使用共享配置文件 .. 32
设置区域的优先顺序 .. 32

设置凭证 ... 32
凭证的最佳实践 ... 33
在 Node.js 中设置凭证 .. 33
在 Web 浏览器中设置凭证 .. 36

Node.js 注意事项 ... 39
使用内置 Node.js 模块 .. 39
使用 npm 程序包 ... 40
在 Node.js 中配置 maxSockets .. 40
在 Node.js 中重复使用具有保持连接功能的连接 .. 41
配置 Node.js 的代理 ... 42
在 Node.js 中注册证书包 .. 42

浏览器脚本注意事项 ... 43
为浏览器构建 SDK .. 43
跨源资源共享 (CORS) ... 44
使用 Webpack 捆绑 .. 47

使用 Amazon 服务 .. 52

iv

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

创建和调用服务对象。 ... 52
指定服务对象参数 .. 53
使用 @smithy/types 生成的客户端 ... 53

异步调用服务 .. 55
管理异步调用 ... 56
使用异步/等待 .. 57
使用 Promise ... 58
使用回调函数 ... 59

创建服务客户端请求 ... 60
处理服务客户端响应 ... 61

访问在响应中返回的数据 ... 61
访问错误信息 ... 61

使用 JSON ... 62
将 JSON 作为服务对象参数 .. 62

记录适用于 JavaScript 的 Amazon SDK调用 .. 63
使用中间件记录请求 .. 64

在 DynamoDB 中使用基于 Amazon 账户的端点 ... 64
Amazon S3 校验和 .. 65

上传对象 .. 65
包含指导的代码示例子集 .. 67

JavaScript ES6/CommonJS 语法 ... 68
AWS Elemental MediaConvert 示例 ... 71
Amazon Lambda 示例 .. 87
Amazon Lex 示例 ... 88
Amazon Polly 示例 ... 88
Amazon Redshift 示例 .. 91
Amazon SES 示例 .. 98
Amazon SNS 示例 .. 124
Amazon Transcribe 示例 .. 156
跨服务：在亚马逊 EC2 实例上设置 Node.js ... 167
跨服务：Amazon API Gateway 和 Lambda ... 169
跨服务：计划的 Lambda 事件 .. 183
跨服务：Amazon Lex 示例 ... 194

代码示例 .. 209
API Gateway .. 211

场景 ... 211

v

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

Aurora .. 212
场景 ... 211

Auto Scaling ... 213
操作 ... 214
场景 ... 211

Amazon Bedrock ... 256
开始使用 .. 256
操作 ... 214

Amazon Bedrock 运行时系统 .. 260
开始使用 .. 256
场景 ... 211
Amazon Nova ... 274
Amazon Nova Canvas .. 291
Anthropic Claude .. 293
Cohere Command ... 304
Meta Llama ... 307
Mistral AI ... 314

Amazon 基岩代理商 ... 319
开始使用 .. 256
操作 ... 214

Amazon Bedrock 代理运行时 .. 332
操作 ... 214

CloudWatch .. 337
操作 ... 214

CloudWatch 活动 ... 347
操作 ... 214

CloudWatch 日志 ... 351
操作 ... 214
场景 ... 211

CodeBuild ... 367
操作 ... 214

Amazon Cognito Identity ... 370
场景 ... 211

Amazon Cognito 身份提供者 ... 371
开始使用 .. 256
操作 ... 214

vi

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

场景 ... 211
Amazon Comprehend .. 412

场景 ... 211
Amazon DocumentDB ... 417

无服务器示例 ... 417
DynamoDB ... 419

开始使用 .. 256
基本功能 .. 420
操作 ... 214
场景 ... 211
无服务器示例 ... 417

Amazon EC2 .. 611
开始使用 .. 256
基本功能 .. 420
操作 ... 214
场景 ... 211

ELB – 版本 2 ... 708
开始使用 .. 256
操作 ... 214
场景 ... 211

Amazon Entity Resolution 数据匹配服务 ... 757
开始使用 .. 256
操作 ... 214

EventBridge .. 771
操作 ... 214
场景 ... 211

Amazon Glacier ... 776
操作 ... 214

Amazon Glue ... 779
开始使用 .. 256
基本功能 .. 420
操作 ... 214

HealthImaging .. 804
开始使用 .. 256
操作 ... 214
场景 ... 211

vii

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

IAM ... 867
开始使用 .. 256
基本功能 .. 420
操作 ... 214
场景 ... 211

Amazon IoT SiteWise .. 961
开始使用 .. 256
基本功能 .. 420
操作 ... 214

Kinesis .. 993
操作 ... 214
无服务器示例 ... 417

Lambda .. 999
开始使用 .. 256
基本功能 .. 420
操作 ... 214
场景 ... 211
无服务器示例 ... 417

Amazon Lex ... 1054
场景 ... 211

Amazon Location ... 1055
开始使用 .. 256
基本功能 .. 420
操作 ... 214

Amazon MSK ... 1087
无服务器示例 ... 417

Amazon Personalize .. 1089
操作 ... 214

Amazon Personalize Events .. 1105
操作 ... 214

Amazon Personalize Runtime ... 1109
操作 ... 214

Amazon Pinpoint .. 1113
操作 ... 214

Amazon Polly ... 1118
场景 ... 211

viii

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

Amazon RDS ... 1123
场景 ... 211
无服务器示例 ... 417

Amazon RDS 数据服务 ... 1127
场景 ... 211

Amazon Redshift ... 1128
操作 ... 214

Amazon Rekognition .. 1134
场景 ... 211

Amazon S3 .. 1135
开始使用 .. 256
基本功能 .. 420
操作 ... 214
场景 ... 211
无服务器示例 ... 417

SageMaker AI .. 1269
开始使用 .. 256
操作 ... 214
场景 ... 211

Secrets Manager ... 1307
操作 ... 214

Amazon SES ... 1309
操作 ... 214
场景 ... 211

Amazon SNS ... 1334
开始使用 .. 256
操作 ... 214
场景 ... 211
无服务器示例 ... 417

Amazon SQS ... 1375
开始使用 .. 256
操作 ... 214
场景 ... 211
无服务器示例 ... 417

Step Functions ... 1407
操作 ... 214

ix

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

Amazon STS .. 1408
操作 ... 214

Amazon Web Services 支持 .. 1410
开始使用 .. 256
基本功能 .. 420
操作 ... 214

Systems Manager .. 1428
开始使用 .. 256
基本功能 .. 420
操作 ... 214

Amazon Textract .. 1456
场景 ... 211

Amazon Transcribe .. 1461
操作 ... 214
场景 ... 211

Amazon Translate .. 1471
场景 ... 211

安全性 ... 1477
数据保护 ... 1477
身份和访问管理 .. 1478

受众 ... 1478
使用身份进行身份验证 .. 1479
使用策略管理访问 .. 1480
如何 Amazon Web Services 服务 使用 IAM .. 1481
对 Amazon 身份和访问进行故障排除 ... 1482

合规性验证 ... 1483
恢复能力 ... 1484
基础设施安全性 .. 1484
强制使用最低版本的 TLS ... 1485

在 Node.js 中验证并强制执行 TLS ... 1485
在浏览器脚本中验证并强制执行 TLS .. 1488
在 v 适用于 JavaScript 的 Amazon SDK 3 请求中检索 TLS 版本 .. 1489

迁移到 v3 .. 1490
使用 codemod 迁移到 v3 ... 1490

使用 codemod 迁移现有的 v2 代码 .. 1490
版本 3 中的新增功能 .. 1491

x

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

模块化软件包 .. 1491
比较代码大小 ... 1492
在 v3 中调用命令 .. 1494

新的中间件堆栈 .. 1496
v2 和 v3 之间的区别 .. 1496

客户端构造函数 ... 1497
凭证提供程序 ... 1501
Amazon S3 注意事项 .. 1507
DynamoDB 文档客户端 ... 1509
等待器和签名器 ... 1510
有关特定服务客户端的说明 ... 1512

补充文档 ... 1514
文档历史记录 .. 1516

文档历史记录 .. 1516

xi

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript 的 Amazon SDK V3 API 参考指南详细描述了 适用于 JavaScript 的 Amazon SDK
版本 3 (V3) 的所有 API 操作。

本文属于机器翻译版本。若本译文内容与英语原文存在差异，则一律以英文原文为准。

xii

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript 的 Amazon SDK 是什么？

欢迎阅读《适用于 JavaScript 的 Amazon SDK 开发人员指南》。本指南提供有关设置和配置 适用于
JavaScript 的 Amazon SDK 的一般信息。它还会引导您完成使用 适用于 JavaScript 的 Amazon SDK
运行各种 Amazon 服务的示例和教程。

适用于 JavaScript 的 Amazon SDK v3 API 参考指南为 Amazon 服务提供了 JavaScript API。您可以
使用 JavaScript API 构建适用于 Node.js 或浏览器的库或应用程序。

开始使用 SDK

如果您已准备好亲身体验 SDK，请遵循开始使用 中的示例。

要设置开发环境，请参阅设置 SDK 适用于 JavaScript。

如果您当前使用的是适用于 JavaScript 的 SDK 2.x 版，请参阅迁移到 3.x 版，获取具体指导。

如需查找 Amazon Web Services 服务的代码示例，请参阅适用于 JavaScript (v3) 代码示例的 SDK。

开始使用 SDK 1

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/
https://nodejs.org/en/

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

SDK 主要版本的维护和支持

有关维护和支持 SDK 主要版本及其基础依赖关系的信息，请参阅 Amazon SDK 和工具参考指南中的
以下内容：

• Amazon SDK 和工具维护策略

• Amazon SDK 和工具版本支持矩阵

将 SDK 与 Node.js 配合使用

Node.js 是一个用于运行服务器端 JavaScript 应用程序的跨平台运行时系统。您可以在 Amazon
Elastic Compute Cloud (Amazon EC2) 实例上设置 Node.js 以在服务器上运行。您还可以使用 Node.js
来编写按需 Amazon Lambda 函数。

使用 SDK for Node.js 与在 Web 浏览器中将其用于 JavaScript 的方式不同。区别在于，您加载 SDK
以及获取访问特定 Web 服务所需凭证的方法有所不同。如果在 Node.js 与浏览器之间使用特定 API 存
在差别时，我们将对这些差别进行说明。

将 SDK 与 Amazon Amplify 结合使用

对于基于浏览器的 Web、移动和混合应用程序，您也可以使用 GitHub 上的 Amazon Amplify 库。它扩
展了 SDK for JavaScript，提供了一个声明性接口。

Note

Amplify 等框架可能无法提供与 SDK for JavaScript 相同的浏览器支持。有关详细信息，请查
看框架文档。

将 SDK 与 Web 浏览器结合使用

所有主流 Web 浏览器支持 JavaScript 的执行。在 Web 浏览器中运行的 JavaScript 代码通常称为客户
端 JavaScript。

有关 适用于 JavaScript 的 Amazon SDK 支持的浏览器列表，请参阅支持的 Web 浏览器。

SDK 主要版本的维护和支持 2

https://docs.amazonaws.cn/sdkref/latest/guide/overview.html
https://docs.amazonaws.cn/sdkref/latest/guide/maint-policy.html
https://docs.amazonaws.cn/sdkref/latest/guide/version-support-matrix.html
https://github.com/aws/aws-amplify

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

在 Web 浏览器中使用 SDK for JavaScript 与在 Node.js 中使用它的方式不同。区别在于，您加载 SDK
以及获取访问特定 Web 服务所需凭证的方法有所不同。如果在 Node.js 与浏览器之间使用特定 API 存
在差别时，我们将对这些差别进行说明。

在 V3 中使用浏览器

V3 允许您仅将所需的 SDK for JavaScript 文件捆绑和包含在浏览器中，从而减少开销。

要在 HTML 页面中使用 SDK for JavaScript V3，必须使用 Webpack 将所需的客户端模块和所有必需
的 JavaScript 函数捆绑到一个 JavaScript 文件中，然后将其添加到 HTML 页面 <head> 的脚本标签
中。例如：

<script src="./main.js"></script>

Note

有关 Webpack 的更多信息，请参阅使用 Webpack 捆绑应用程序。

要使用 SDK for JavaScript V2，您需要添加一个指向 V2 SDK 最新版本的脚本标签。有关更多信息，
请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南 v2》中的示例。

常见使用案例

在浏览器脚本中使用 SDK for JavaScript 实现了多种颇具吸引力的使用案例。通过使用 SDK for
JavaScript 访问各种 Web 服务，您可以在浏览器应用程序中构建一些东西，此处介绍了几个相关想
法。

• 构建 Amazon 服务的自定义控制台，在其中您可以跨区域和服务访问并组合功能，从而最好地满足
您的组织或项目需求。

• 使用 Amazon Cognito 以启用对您的浏览器应用程序和网站的经身份验证用户的访问，包括使用来自
Facebook 和其他提供商的第三方身份验证。

• 使用 Amazon Kinesis 实时处理点击流或其他营销数据。

• 为无服务器数据持久性使用 Amazon DynamoDB，例如针对网站访问者或应用程序用户的单独用户
首选项。

• 使用 Amazon Lambda 封装专有逻辑，您可以从浏览器脚本调用逻辑而无需下载和向用户泄露您的
知识产权。

在 V3 中使用浏览器 3

https://docs.amazonaws.cn/sdk-for-javascript/v2/developer-guide/getting-started-browser.html#getting-started-browser-write-sample

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

关于示例

您可以在 Amazon 代码示例存储库中浏览 SDK for JavaScript 示例。

资源

除了本指南外，还有以下适用于 SDK for JavaScript 开发人员的在线资源：

• 适用于 JavaScript 的 Amazon SDK V3 API 参考指南

• Amazon SDK 和工具参考指南：包含 Amazon SDK 中常见的设置、功能和其他基础概念。

• JavaScript 开发人员博客

• Amazon re:Post

• Amazon 代码库中的 JavaScript 示例

• Amazon 代码示例存储库

• Gitter 频道

• 堆栈溢出

• 堆栈溢出问题 taggedAWS -sdk-js

• GitHub

• SDK 源

• 文档源

关于示例 4

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascriptv3/example_code
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/
https://docs.amazonaws.cn/sdkref/latest/guide/
https://www.amazonaws.cn/blogs/developer/category/programing-language/javascript/
https://repost.aws/en/search/content?globalSearch=aws-sdk-js
https://docs.amazonaws.cn/code-library/latest/ug/javascript_3_code_examples.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascriptv3/example_code
https://gitter.im/aws/aws-sdk-js
https://stackoverflow.com/search?tab=newest&q=aws-sdk-js
https://stackoverflow.com/questions/tagged/aws-sdk-js?sort=newest
https://github.com/aws/aws-sdk-js-v3/
https://github.com/awsdocs/aws-sdk-for-javascript-v3

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

开始使用 Amazon 适用的 SDK JavaScript
的 Amazon SDK JavaScript 提供在浏览器或 Node.js 环境中对 Web 服务的访问。本节包含入门练
习，向您展示如何在每种 JavaScript 环境 JavaScript 中使用 Amazon SDK。

主题

• 使用 SDK 进行身份验证 Amazon

• 开始使用 Node.js

• 开始使用浏览器

• React Native 入门

使用 SDK 进行身份验证 Amazon

使用开发 Amazon 时，您必须确定您的代码是如何进行身份验证的。 Amazon Web Services 服务您可
以根据环境和可用的访问权限以不同的方式配置对 Amazon 资源的编程 Amazon 访问权限。

要选择您的身份验证方法并针对 SDK 进行配置，请参阅和工具参考指南中的身份验证Amazon SDKs
和访问。

我们建议在本地开发且雇主未向其提供身份验证方法的新用户进行设置 Amazon IAM Identity Center。
此方法包括安装 Amazon CLI 以便于配置和定期登录 Amazon 访问门户。如果您选择此方法，则在完
成Amazon SDKs 和工具参考指南中的 IAM Identity Center 身份验证程序后，您的环境应包含以下元
素：

• Amazon CLI，用于在运行应用程序之前启动 Amazon 访问门户会话。

• 共享 Amazonconfig 文件，其 [default] 配置文件包含一组可从 SDK 中引用的配置值。要查找
此文件的位置，请参阅Amazon SDKs 和工具参考指南中的共享文件的位置。

• 共享 config 文件设置了 region 设置。这将设置 SDK 用于 Amazon 请求的默认值 Amazon Web
Services 区域 。此区域用于未指定使用区域的 SDK 服务请求。

• 在向 Amazon发送请求之前，SDK 使用配置文件的 SSO 令牌提供程序配置来获取凭证。
该sso_role_name值是与 IAM 身份中心权限集关联的 IAM 角色，允许访问您的应用程序中的用
户。 Amazon Web Services 服务

以下示例 config 文件展示了使用 SSO 令牌提供程序配置来设置的默认配置文件。配置文件的
sso_session 设置是指所指定的 sso-session 节。该sso-session部分包含启动 Amazon 访问
门户会话的设置。

使用 SDK 进行身份验证 Amazon 5

https://docs.amazonaws.cn/sdkref/latest/guide/access.html
https://docs.amazonaws.cn/sdkref/latest/guide/access.html
https://docs.amazonaws.cn/sdkref/latest/guide/access-sso.html
https://docs.amazonaws.cn/sdkref/latest/guide/file-format.html
https://docs.amazonaws.cn/sdkref/latest/guide/file-location.html
https://docs.amazonaws.cn/sdkref/latest/guide/feature-region.html
https://docs.amazonaws.cn/sdkref/latest/guide/feature-sso-credentials.html#feature-sso-credentials-profile
https://docs.amazonaws.cn/sdkref/latest/guide/file-format.html#section-session

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

[default]
sso_session = my-sso
sso_account_id = 111122223333
sso_role_name = SampleRole
region = us-east-1
output = json

[sso-session my-sso]
sso_region = us-east-1
sso_start_url = https://provided-domain.awsapps.com/start
sso_registration_scopes = sso:account:access

JavaScript v3 版 S Amazon DK 无需向您的应用程序添加其他软件包（例如SSO和SSOOIDC）即可使
用 IAM 身份中心身份验证。

有关明确使用此凭证提供程序的详细信息，请参阅 npm（Node.js 程序包管理器）网站上的
fromSSO()。

启动 Amazon 访问门户会话

在运行可访问的应用程序之前 Amazon Web Services 服务，您需要为软件开发工具包进行有效的
Amazon 访问门户会话，才能使用 IAM Identity Center 身份验证来解析证书。根据配置的会话时长，
访问权限最终将过期，并且开发工具包将遇到身份验证错误。要登录 Amazon 访问门户，请在中运行
以下命令 Amazon CLI。

aws sso login

如果遵循引导并具有默认的配置文件设置，则无需使用 --profile 选项来调用该命令。如果您的
SSO 令牌提供程序配置在使用指定的配置文件，则命令为 aws sso login --profile named-
profile。

要选择性地测试是否已有活动会话，请运行以下 Amazon CLI 命令。

aws sts get-caller-identity

如果会话是活动的，则对此命令的响应会报告共享 config 文件中配置的 IAM Identity Center 账户和
权限集。

启动 Amazon 访问门户会话 6

https://www.npmjs.com/package/@aws-sdk/credential-providers#fromsso

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

Note

如果您已经有一个有效的 Amazon 访问门户会话并且aws sso login正在运行，则无需提供
凭据。
登录过程可能会提示您允许 Amazon CLI 访问您的数据。由于 Amazon CLI 是在适用于 Python
的 SDK 之上构建的，因此权限消息可能包含botocore名称的变体。

使用控制台登录凭证

您可以使用现有的 Amazon 管理控制台登录凭据以编程方式访问 Amazon 服务。在基于浏览器的身份
验证流程之后， Amazon 生成可在本地开发工具（如 CL Amazon I 和 Amazon SDK）上使用的临时证
书。 JavaScript此功能简化了配置和管理 Amazon CLI 凭证的过程。要了解如何开始使用，请按照使用
控制台凭据登录进行 Amazon 本地开发的说明进行操作。

运行该aws login命令时，您可以从活动控制台会话中进行选择，也可以通过基于浏览器的身份验证流
程登录，这将自动生成临时证书。的 Amazon SDK 会在证书到期前 5 分钟 JavaScript 自动刷新证书，
每组凭证的有效期最长 12 小时。有关更多信息，请参阅 fromLoginCredentials()。

更多身份验证信息

人类用户，也称为人类身份，是应用程序的人员、管理员、开发人员、操作员和使用者。他们必须具有
身份才能访问您的 Amazon 环境和应用程序。作为组织成员的人类用户（即您、开发人员）也称为工
作人员身份。

访问时使用临时证书 Amazon。您可以为人类用户使用身份提供商，通过扮演提供临时证书的角色来
提供对 Amazon 账户的联合访问权限。对于集中式访问权限管理，我们建议使用 Amazon IAM Identity
Center (IAM Identity Center) 来管理对您账户的访问权限以及这些账户中的其他权限。有关更多替代方
案，请参阅以下内容：

• 有关最佳实践的更多信息，请参阅《IAM 用户指南》中的 IAM 中的安全最佳实践。

• 要创建短期 Amazon 证书，请参阅 IAM 用户指南中的临时安全证书。

• 要了解其他 Amazon SDK fo JavaScript r V3 凭据提供商，请参阅工具参考指南中的标准化凭证提供
商。Amazon SDKs

使用控制台登录凭证 7

https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-sign-in.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-sign-in.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-credential-providers/#fromlogincredentials
https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.amazonaws.cn/sdkref/latest/guide/standardized-credentials.html
https://docs.amazonaws.cn/sdkref/latest/guide/standardized-credentials.html

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

开始使用 Node.js

本指南介绍如何初始化 NPM 包、向包中添加服务客户端以及如何使用 JavaScript SDK 调用服务操
作。

情景

使用一个执行以下操作的主文件创建一个新的 NPM 软件包：

• 创建 Amazon Simple Storage Service 存储桶

• 将对象放入 Amazon S3 存储桶

• 读取 Amazon S3 存储桶中的对象

• 确认用户是否要删除资源

先决条件

在运行示例之前，您必须先执行以下操作：

• 配置 SDK 身份验证。有关更多信息，请参阅 使用 SDK 进行身份验证 Amazon。

• 安装 Node.js。 Amazon 建议使用 Active LTS 版本的 Node.js 进行开发。

步骤 1：设置软件包结构并安装客户端程序包

设置程序包结构并安装客户端程序包：

1. 创建一个新文件夹 nodegetstarted 用于包含程序包。

2. 从命令行导航到新文件夹。

3. 运行以下命令以创建默认的 package.json 文件：

npm init -y

4. 要安装 Amazon S3 客户端程序包，请运行以下命令：

npm i @aws-sdk/client-s3

5. 将 "type": "module" 添加到 package.json 文件。这会告诉 Node.js 使用现代 ESM 语法。
最终的 package.json 应类似于以下内容：

开始使用 Node.js 8

https://nodejs.org/en/download

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

{
 "name": "example-javascriptv3-get-started-node",
 "version": "1.0.0",
 "description": "This guide shows you how to initialize an NPM package, add a
 service client to your package, and use the JavaScript SDK to call a service
 action.",
 "main": "index.js",
 "scripts": {
"test": "vitest run **/*.unit.test.js"
 },
 "author": "Your Name",
 "license": "Apache-2.0",
 "dependencies": {
 "@aws-sdk/client-s3": "^3.420.0"
 },
 "type": "module"
}

步骤 2：添加必要的导入和 SDK 代码

将以下代码添加到 nodegetstarted 文件夹中名为 index.js 的文件中。

// This is used for getting user input.
import { createInterface } from "node:readline/promises";

import {
 S3Client,
 PutObjectCommand,
 CreateBucketCommand,
 DeleteObjectCommand,
 DeleteBucketCommand,
 paginateListObjectsV2,
 GetObjectCommand,
} from "@aws-sdk/client-s3";

export async function main() {
 // A region and credentials can be declared explicitly. For example
 // `new S3Client({ region: 'us-east-1', credentials: {...} })` would
 //initialize the client with those settings. However, the SDK will

步骤 2：添加必要的导入和 SDK 代码 9

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // use your local configuration and credentials if those properties
 // are not defined here.
 const s3Client = new S3Client({});

 // Create an Amazon S3 bucket. The epoch timestamp is appended
 // to the name to make it unique.
 const bucketName = `test-bucket-${Date.now()}`;
 await s3Client.send(
 new CreateBucketCommand({
 Bucket: bucketName,
 }),
);

 // Put an object into an Amazon S3 bucket.
 await s3Client.send(
 new PutObjectCommand({
 Bucket: bucketName,
 Key: "my-first-object.txt",
 Body: "Hello JavaScript SDK!",
 }),
);

 // Read the object.
 const { Body } = await s3Client.send(
 new GetObjectCommand({
 Bucket: bucketName,
 Key: "my-first-object.txt",
 }),
);

 console.log(await Body.transformToString());

 // Confirm resource deletion.
 const prompt = createInterface({
 input: process.stdin,
 output: process.stdout,
 });

 const result = await prompt.question("Empty and delete bucket? (y/n) ");
 prompt.close();

 if (result === "y") {
 // Create an async iterator over lists of objects in a bucket.
 const paginator = paginateListObjectsV2(

步骤 2：添加必要的导入和 SDK 代码 10

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 { client: s3Client },
 { Bucket: bucketName },
);
 for await (const page of paginator) {
 const objects = page.Contents;
 if (objects) {
 // For every object in each page, delete it.
 for (const object of objects) {
 await s3Client.send(
 new DeleteObjectCommand({ Bucket: bucketName, Key: object.Key }),
);
 }
 }
 }

 // Once all the objects are gone, the bucket can be deleted.
 await s3Client.send(new DeleteBucketCommand({ Bucket: bucketName }));
 }
}

// Call a function if this file was run directly. This allows the file
// to be runnable without running on import.
import { fileURLToPath } from "node:url";
if (process.argv[1] === fileURLToPath(import.meta.url)) {
 main();
}

示例代码可以在此处找到 GitHub。

步骤 3：运行示例

Note

请记得登录！如果您使用 IAM Identity Center 进行身份验证，请记住使用 Amazon CLI aws
sso login命令登录。

1. 运行 node index.js。

2. 选择是否清空并删除存储桶。

3. 如果您不删除存储桶，请务必手动清空并稍后将其删除。

步骤 3：运行示例 11

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/nodegetstarted/index.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

开始使用浏览器
本节将引导您完成一个示例，该示例演示了如何在浏览器 JavaScript 中运行 Amazon SDK 的版本 3
(V3)。

Note

在浏览器中运行 V3 与版本 2（V2）略有不同。有关更多信息，请参阅 在 V3 中使用浏览器。

有关使用 (V3) 的 Amazon SDK 的其他示例 JavaScript，请参阅适用于 JavaScript (v3) 代码示例的
SDK。

此 Web 应用程序示例向您展示：

• 如何使用 Amazon Cognito 访问 Amazon 服务进行身份验证。

• 如何使用 Amazon Identity and Access Management (IAM) 角色读取亚马逊简单存储服务 (Amazon
S3) 存储桶中的对象列表。

Note

此示例不 Amazon IAM Identity Center 用于身份验证。

情景

Amazon S3 是一项对象存储服务，提供行业领先的可扩展性、数据可用性、安全性和性能。您可以
使用 Amazon S3 将数据作为对象存储在名为存储桶的容器中。有关 Amazon S3 的更多信息，请参阅
Amazon S3 用户指南。

此示例向您展示如何设置和运行代入 IAM 角色的 Web 应用程序，以便从 Amazon S3 存储桶中进行
读取。该示例使用 React 前端库和 Vite 前端工具来提供开发环境。 JavaScript 该网络应用程序使用
Amazon Cognito 身份池来提供访问 Amazon 服务所需的凭证。随附的代码示例演示了 JavaScript 在
Web 应用程序中加载和使用 S Amazon DK 的基本模式。

步骤 1：创建一个 Amazon Cognito 身份池和 IAM 角色

在本练习中，您将创建并使用一个 Amazon Cognito 身份池，为 Web 应用程序提供对 Amazon S3 服
务的无需验证身份的访问权限。创建身份池还会创建一个 Amazon Identity and Access Management

开始使用浏览器 12

https://docs.amazonaws.cn/AmazonS3/latest/userguide/

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

(IAM) 角色来支持未经身份验证的访客用户。在本练习中，我们仅使用未经身份验证的用户角色，将
重点放在任务上。您可在以后集成对身份提供商和通过身份验证的用户的支持。有关添加 Amazon
Cognito 身份池的更多信息，请参阅《Amazon Cognito 开发人员指南》中的教程：创建身份池。

创建一个 Amazon Cognito 身份池和关联的 IAM 角色

1. 登录 Amazon Web Services 管理控制台 并打开 Amazon Cognito 控制台，网址为。https://
console.aws.amazon.com/cognito/

2. 在左侧导航窗格中，选择身份池。

3. 选择创建身份池。

4. 在配置身份池信任中，选择来宾访问权限进行用户身份验证。

5. 在配置权限中，选择创建新的 IAM 角色并在 I AM 角色名称中输入名称（例如 getStartedRole）。

6. 在配置属性中，在身份池名称中输入名称（例如 getStartedPool）。

7. 在查看并创建中，确认您为新身份池所做的选择。选择编辑以返回向导并更改任何设置。完成后，
选择创建身份池。

8. 记下新创建的 Amazon Cognito 身份池的身份池 ID 和区域。您需要用这些值来替
换IDENTITY_POOL_ID和输REGION入步骤 4：设置浏览器代码。

在创建 Amazon Cognito 身份池之后，您已准备好添加 Web 应用程序所需的 Amazon S3 的权限。

步骤 2：将策略添加到创建的 IAM 角色

要允许访问您的 Web 应用程序中的 Amazon S3 存储桶，请使用为您的 Amazon Cognito 身份池（例
如 getStartedRole）创建的未经身份验证的 IAM 角色（例如 getStartedPool）。这需要您将 IAM 策略
添加到角色。有关修改 IAM 角色的更多信息，请参阅《IAM 用户指南》中的修改角色权限策略。

将 Amazon S3 策略添加到与未经身份验证用户关联的 IAM 角色

1. 登录 Amazon Web Services 管理控制台 并打开 IAM 控制台，网址为https://
console.aws.amazon.com/iam/。

2. 在左侧导航窗格中，选择 角色。

3. 选择要修改的角色的名称（例如 getStartedRole），然后选择 “权限” 选项卡。

4. 选择添加权限，然后选择附加策略。

5. 在为该角色添加权限页面中，找到并选中 AmazonS3 ReadOnlyAccess 的复选框。

步骤 2：将策略添加到创建的 IAM 角色 13

https://docs.amazonaws.cn/cognito/latest/developerguide/tutorial-create-identity-pool.html
https://console.amazonaws.cn/cognito/
https://console.amazonaws.cn/cognito/
https://docs.amazonaws.cn/IAM/latest/UserGuide/roles-managingrole-editing-console.html#roles-modify_permissions-policy
https://console.amazonaws.cn/iam/
https://console.amazonaws.cn/iam/

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

Note

您可以使用此过程来启用对任何 Amazon 服务的访问权限。

6. 选择添加权限。

在您创建 Amazon Cognito 身份池并将 Amazon S3 的权限添加到未验证身份用户的 IAM 角色之后，您
已准备好添加并配置 Amazon S3 存储桶。

步骤 3：添加 Amazon S3 存储桶和对象

在此步骤中，您将为示例添加 Amazon S3 存储桶和对象。您还将启用存储桶的跨源资源共享
(CORS)。有关创建 Amazon S3 存储桶和对象的更多信息，请参阅《Amazon S3 入门指南》中的
Amazon S3 入门。

使用 CORS 添加 Amazon S3 存储桶和对象

1. 登录 Amazon Web Services 管理控制台 并打开 Amazon S3 控制台，网址为https://
console.aws.amazon.com/s3/。

2. 在左侧的导航窗格中，选择存储桶，然后选择创建存储桶。

3. 输入符合存储桶命名规则的存储桶名称（例如 getstartedbucket），然后选择创建存储桶。

4. 选择您创建的存储桶，然后选择对象选项卡。然后选择上传。

5. 在文件和文件夹下，选择添加文件。

6. 选择要上传的文件，然后选择打开。然后选择上传以完成将对象上传到您的存储桶。

7. 接下来，选择存储桶的权限选项卡，然后在跨源资源共享（CORS）部分选择编辑。输入以下
JSON：

[
 {
 "AllowedHeaders": [
 "*"
],
 "AllowedMethods": [
 "GET"
],
 "AllowedOrigins": [
 "*"

步骤 3：添加 Amazon S3 存储桶和对象 14

https://docs.amazonaws.cn/AmazonS3/latest/userguide/GetStartedWithS3.html
https://console.amazonaws.cn/s3/
https://console.amazonaws.cn/s3/
https://docs.amazonaws.cn/AmazonS3/latest/userguide/bucketnamingrules.html

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

],
 "ExposeHeaders": []
 }
]

8. 选择保存更改。

添加 Amazon S3 存储桶并添加对象后，您就可以设置浏览器代码了。

步骤 4：设置浏览器代码

示例应用程序包含一个单页的 React 应用程序。可以在此处找到此示例的文件 GitHub。

设置示例应用程序

1. 安装 Node.js。

2. 从命令行中克隆 Amazon 代码示例存储库：

git clone --depth 1 https://github.com/awsdocs/aws-doc-sdk-examples.git

3. 导航到示例应用程序：

cd aws-doc-sdk-examples/javascriptv3/example_code/web/s3/list-objects/

4. 要安装所需的程序包，请运行以下命令：

npm install

5. 接下来，在文本编辑器中打开 src/App.tsx 并完成以下操作：

• YOUR_IDENTITY_POOL_ID替换为您在中记下的 Amazon Cognito 身份池 ID。步骤 1：创建一
个 Amazon Cognito 身份池和 IAM 角色

• 将区域值替换为为您的 Amazon S3 存储桶和 Amazon Cognito 身份池分配的区域。请注意，两
种服务的区域必须相同（例如 us-east-2）。

• bucket-name替换为您在中创建的存储桶名称步骤 3：添加 Amazon S3 存储桶和对象。

替换完文本后，保存 App.tsx 文件。现在您可以运行该 Web 应用程序了。

步骤 4：设置浏览器代码 15

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/web/s3/list-objects
https://nodejs.org/en/download
https://github.com/awsdocs/aws-doc-sdk-examples/

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

步骤 5：运行示例

运行示例应用程序

1. 从命令行中导航到示例应用程序：

cd aws-doc-sdk-examples/javascriptv3/example_code/web/s3/list-objects/

2. 在命令行中，运行以下命令：

npm run dev

Vite 开发环境将运行，并显示以下消息：

VITE v4.3.9 ready in 280 ms

Local: http://localhost:5173/
Network: use --host to expose
press h to show help

3. 在您的 Web 浏览器中，导航到上面显示的 URL（例如 http://localhost:5173）。该示例应用程序
将向您显示 Amazon S3 存储桶中的对象文件名列表。

清理

要清除您在本教程中创建的资源，请执行以下操作：

• 在 Amazon S3 控制台中，删除创建的所有对象和所有存储桶（例如 getstartedbucket）。

• 在 IAM 控制台中，删除角色名称（例如 getStartedRole）。

• 在 Amazon Cognito 控制台中，删除身份池名称（例如）。getStartedPool

React Native 入门
本教程将向您展示如何使用 React Native CLI 创建 React Native 应用程序。

步骤 5：运行示例 16

https://console.amazonaws.cn/s3/
https://console.amazonaws.cn/iam/home#/roles
https://console.amazonaws.cn/cognito/home#/identity
https://reactnative.dev/docs/environment-setup

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

本教程将向您展示：

• 如何安装和包含项目使用的 JavaScript 版本 3 (V3) 模块的 Amazon SDK。

• 如何编写代码连接到 Amazon Simple Storage Service（Amazon S3），以创建和删除 Amazon S3
存储桶。

情景

Amazon S3 是一项云服务，让您可以随时在 Web 上的任何位置存储和检索任意数量的数据。React
Native 是一个开发框架，可用于创建移动应用程序。本教程展示了如何创建一个 React Native 应用程
序，以连接到 Amazon S3 来创建和删除 Amazon S3 存储桶。

该应用程序使用以下 Amazon SDK 用于 JavaScript APIs：

• CognitoIdentityClient 构造函数

• S3 构造函数

完成先决条件任务

Note

如果已通过其他教程或现有配置完成以下任意步骤，请跳过这些步骤。

本节介绍完成本教程所需的最低设置。您不应将此视为完整设置。为此，请参阅设置 SDK 适用于
JavaScript。

• 安装以下工具：

• npm

• Node.js

• Xcode（如果您在 iOS 上测试）

• Android Studio（如果您在 Android 上测试）

• 设置 React Native 开发环境

• 设置项目环境以运行这些 Node TypeScript 示例， JavaScript 并为第三方模块安装所需的 Amazon
SDK。按照上的说明进行操作 GitHub。

情景 17

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity/
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/s3/
https://docs.npmjs.com/getting-started/
https://nodejs.org/en/download/
https://developer.apple.com/xcode/
https://developer.android.com/studio/
https://reactnative.dev/docs/environment-setup
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/nodegetstarted/README.md

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 在使用 Amazon 服务进行开发 Amazon 时，您必须确定您的代码是如何进行身份验证的。有关更多
信息，请参阅 使用 SDK 进行身份验证 Amazon。

Note

本示例的 IAM 角色应设置为使用 AmazonS3 FullAccess 权限。

步骤 1：创建一个 Amazon Cognito 身份池

在本练习中，您将创建并使用一个 Amazon Cognito 身份池，为应用程序提供对 Amazon S3 服务的无
需验证身份的访问权限。创建身份池还会创建两个 Amazon Identity and Access Management (IAM) 角
色，一个用于支持由身份提供商进行身份验证的用户，另一个用于支持未经身份验证的访客用户。

在本练习中，我们仅使用未经身份验证的用户角色，将重点放在任务上。您可在以后集成对身份提供商
和通过身份验证的用户的支持。

创建 Amazon Cognito 身份池

1. 登录 Amazon Web Services 管理控制台 并在亚马逊 Web Services 控制台上打开 Amazon
Cognito 控制台。

2. 在控制台打开页面上，选择身份池。

3. 在下一页上，选择创建新的身份池。

Note

如果没有其他身份池，则 Amazon Cognito 控制台会跳过此页面并打开下一页。

4. 在配置身份池信任中，选择来宾访问权限进行用户身份验证。

5. 在配置权限中，选择创建新的 IAM 角色并在 IA M getStartedReact角色名称中输入名称（例如角
色）。

6. 在配置属性中，在身份getStartedReact池名称中输入名称（例如池）。

7. 在查看并创建中，确认您为新身份池所做的选择。选择编辑以返回向导并更改任何设置。完成后，
选择创建身份池。

8. 记下新创建的身份池的身份池 ID 和区域。您需要在浏览器脚本identityPoolId中替
换region和这些值。

步骤 1：创建一个 Amazon Cognito 身份池 18

https://console.amazonaws.cn/cognito/

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

在创建 Amazon Cognito 身份池之后，您已准备好添加 React Native 应用程序所需的 Amazon S3 的权
限。

步骤 2：将策略添加到创建的 IAM 角色

要使浏览器脚本能够访问 Amazon S3 以创建和删除 Amazon S3 存储桶，请使用为您的 Amazon
Cognito 身份池创建的未经身份验证的 IAM 角色。这需要您将 IAM policy 添加到角色。有关 IAM 角色
的更多信息，请参阅 I A M 用户指南中的创建角色以向 Amazon 服务委派权限。

将 Amazon S3 策略添加到与未经身份验证用户关联的 IAM 角色

1. 登录 Amazon Web Services 管理控制台 并打开 IAM 控制台，网址为https://
console.aws.amazon.com/iam/。

2. 在左侧导航窗格中，选择 角色。

3. 选择要修改的角色的名称（例如 getStartedRole），然后选择 “权限” 选项卡。

4. 选择添加权限，然后选择附加策略。

5. 在为该角色添加权限页面中，找到并选中 AmazonS3 ReadOnlyAccess 的复选框。

Note

您可以使用此过程来启用对任何 Amazon 服务的访问权限。

6. 选择添加权限。

创建 Amazon Cognito 身份池并将 Amazon S3 的权限添加到未验证身份用户的 IAM 角色之后，您已准
备好构建应用程序。

第 3 步：使用创建应用程序 create-react-native-app

通过运行以下命令创建 React Native 应用程序。

npx react-native init ReactNativeApp --npm

步骤 4：安装 Amazon S3 程序包和其他依赖项

在项目目录中，运行以下命令来安装 Amazon S3 程序包。

npm install @aws-sdk/client-s3

步骤 2：将策略添加到创建的 IAM 角色 19

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-service.html
https://console.amazonaws.cn/iam/
https://console.amazonaws.cn/iam/

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

此命令在项目中安装 Amazon S3 程序包，并更新 package.json，将 Amazon S3 列为项目依赖项。
您可以在 https://www.npmjs.com/npm 网站上搜索“@aws-sdk”找到有关此程序包的信息。

这些程序包及其关联的代码将安装在项目的 node_modules 子目录中。

有关安装 Node.js 程序包的更多信息，请参阅 npm（Node.js 程序包管理器）网站上的 Downloading
and installing packages locally 和 Creating Node.js Modules。有关下载和安装适用的 Amazon SDK
的信息 JavaScript，请参阅安装适用于 JavaScript。

安装身份验证所需的其他依赖项。

npm install @aws-sdk/client-cognito-identity @aws-sdk/credential-provider-cognito-
identity

步骤 5：编写 React Native 代码

将以下代码添加到 App.tsx。将identityPoolId和region替换为身份池 ID 和将在其中创建
Amazon S3 存储桶的区域。

import React, { useCallback, useState } from "react";
import { Button, StyleSheet, Text, TextInput, View } from "react-native";
import "react-native-get-random-values";
import "react-native-url-polyfill/auto";

import {
 S3Client,
 CreateBucketCommand,
 DeleteBucketCommand,
} from "@aws-sdk/client-s3";
import { fromCognitoIdentityPool } from "@aws-sdk/credential-providers";

const client = new S3Client({
 // The AWS Region where the Amazon Simple Storage Service (Amazon S3) bucket will be
 created. Replace this with your Region.
 region: "us-east-1",
 credentials: fromCognitoIdentityPool({
 // Replace the value of 'identityPoolId' with the ID of an Amazon Cognito identity
 pool in your Amazon Cognito Region.
 identityPoolId: "us-east-1:edbe2c04-7f5d-469b-85e5-98096bd75492",
 // Replace the value of 'region' with your Amazon Cognito Region.
 clientConfig: { region: "us-east-1" },
 }),
});

步骤 5：编写 React Native 代码 20

https://www.npmjs.com/
https://www.npmjs.com/
https://docs.npmjs.com/downloading-and-installing-packages-locally
https://docs.npmjs.com/downloading-and-installing-packages-locally
https://docs.npmjs.com/creating-node-js-modules

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

enum MessageType {
 SUCCESS = 0,
 FAILURE = 1,
 EMPTY = 2,
}

const App = () => {
 const [bucketName, setBucketName] = useState("");
 const [msg, setMsg] = useState<{ message: string; type: MessageType }>({
 message: "",
 type: MessageType.EMPTY,
 });

 const createBucket = useCallback(async () => {
 setMsg({ message: "", type: MessageType.EMPTY });

 try {
 await client.send(new CreateBucketCommand({ Bucket: bucketName }));
 setMsg({
 message: `Bucket "${bucketName}" created.`,
 type: MessageType.SUCCESS,
 });
 } catch (e) {
 console.error(e);
 setMsg({
 message: e instanceof Error ? e.message : "Unknown error",
 type: MessageType.FAILURE,
 });
 }
 }, [bucketName]);

 const deleteBucket = useCallback(async () => {
 setMsg({ message: "", type: MessageType.EMPTY });

 try {
 await client.send(new DeleteBucketCommand({ Bucket: bucketName }));
 setMsg({
 message: `Bucket "${bucketName}" deleted.`,
 type: MessageType.SUCCESS,
 });
 } catch (e) {
 setMsg({
 message: e instanceof Error ? e.message : "Unknown error",

步骤 5：编写 React Native 代码 21

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 type: MessageType.FAILURE,
 });
 }
 }, [bucketName]);

 return (
 <View style={styles.container}>
 {msg.type !== MessageType.EMPTY && (
 <Text
 style={
 msg.type === MessageType.SUCCESS
 ? styles.successText
 : styles.failureText
 }
 >
 {msg.message}
 </Text>
)}
 <View>
 <TextInput
 onChangeText={(text) => setBucketName(text)}
 autoCapitalize={"none"}
 value={bucketName}
 placeholder={"Enter Bucket Name"}
 />
 <Button color="#68a0cf" title="Create Bucket" onPress={createBucket} />
 <Button color="#68a0cf" title="Delete Bucket" onPress={deleteBucket} />
 </View>
 </View>
);
};

const styles = StyleSheet.create({
 container: {
 flex: 1,
 alignItems: "center",
 justifyContent: "center",
 },
 successText: {
 color: "green",
 },
 failureText: {
 color: "red",
 },

步骤 5：编写 React Native 代码 22

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

});

export default App;

首先导入的代码需要依赖 Amazon 于 React、React Native 和 SDK。

在函数 APP 中：

• S3Client 对象已创建，使用先前创建的 Amazon Cognito 身份池指定凭证。

• createBucket 和 deleteBucket 方法分别用于创建和删除指定存储桶。

• React Native View 显示文本输入字段，供用户输入 Amazon S3 存储桶名称，并提供用于创建和删
除指定 Amazon S3 存储桶的按钮。

完整 JavaScript 页面可在此处获得 GitHub。

步骤 6：运行示例

Note

请记得登录！如果您使用 IAM Identity Center 进行身份验证，请记住使用 Amazon CLI aws
sso login命令登录。

要运行示例，请使用 npm 执行 web、ios 或 android 命令。

以下是在 macOS 上运行 ios 命令的示例输出。

$ npm run ios

> ReactNativeApp@0.0.1 ios /Users/trivikr/workspace/ReactNativeApp
> react-native run-ios

info Found Xcode workspace "ReactNativeApp.xcworkspace"
info Launching iPhone 11 (iOS 14.2)
info Building (using "xcodebuild -workspace ReactNativeApp.xcworkspace -configuration
 Debug -scheme ReactNativeApp -destination id=706C1A97-FA38-407D-AD77-CB4FCA9134E9")
success Successfully built the app
info Installing "/Users/trivikr/Library/Developer/Xcode/DerivedData/ReactNativeApp-
cfhmsyhptwflqqejyspdqgjestra/Build/Products/Debug-iphonesimulator/ReactNativeApp.app"
info Launching "org.reactjs.native.example.ReactNativeApp"

步骤 6：运行示例 23

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/reactnative/ReactNativeApp/App.tsx

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

success Successfully launched the app on the simulator

以下是在 macOS 上运行 android 命令的示例输出。

$ npm run android

> ReactNativeApp@0.0.1 android
> react-native run-android

info Running jetifier to migrate libraries to AndroidX. You can disable it using "--no-
jetifier" flag.
Jetifier found 970 file(s) to forward-jetify. Using 12 workers...
info Starting JS server...
info Launching emulator...
info Successfully launched emulator.
info Installing the app...

> Task :app:stripDebugDebugSymbols UP-TO-DATE
Compatible side by side NDK version was not found.

> Task :app:installDebug
02:18:38 V/ddms: execute: running am get-config
02:18:38 V/ddms: execute 'am get-config' on 'emulator-5554' : EOF hit. Read: -1
02:18:38 V/ddms: execute: returning
Installing APK 'app-debug.apk' on 'Pixel_3a_API_30_x86(AVD) - 11' for app:debug
02:18:38 D/app-debug.apk: Uploading app-debug.apk onto device 'emulator-5554'
02:18:38 D/Device: Uploading file onto device 'emulator-5554'
02:18:38 D/ddms: Reading file permission of /Users/trivikr/workspace/ReactNativeApp/
android/app/build/outputs/apk/debug/app-debug.apk as: rw-r--r--
02:18:40 V/ddms: execute: running pm install -r -t "/data/local/tmp/app-debug.apk"
02:18:41 V/ddms: execute 'pm install -r -t "/data/local/tmp/app-debug.apk"' on
 'emulator-5554' : EOF hit. Read: -1
02:18:41 V/ddms: execute: returning
02:18:41 V/ddms: execute: running rm "/data/local/tmp/app-debug.apk"
02:18:41 V/ddms: execute 'rm "/data/local/tmp/app-debug.apk"' on 'emulator-5554' : EOF
 hit. Read: -1
02:18:41 V/ddms: execute: returning
Installed on 1 device.

Deprecated Gradle features were used in this build, making it incompatible with Gradle
 7.0.
Use '--warning-mode all' to show the individual deprecation warnings.

步骤 6：运行示例 24

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

See https://docs.gradle.org/6.2/userguide/
command_line_interface.html#sec:command_line_warnings

BUILD SUCCESSFUL in 6s
27 actionable tasks: 2 executed, 25 up-to-date
info Connecting to the development server...
8081
info Starting the app on "emulator-5554"...
Starting: Intent { cmp=com.reactnativeapp/.MainActivity }

输入您要创建或删除的存储桶名称，然后点击创建存储桶或删除存储桶。相应命令将发送至 Amazon
S3，并显示成功或错误信息。

可能的增强功能

以下是此应用程序的变体，您可以使用该应用程序在 React Native 应用程序 JavaScript 中使用
Amazon SDK 进一步探索。

• 添加一个按钮以列出 Amazon S3 存储桶，并在每个列出的存储桶旁提供删除按钮。

• 添加一个按钮，用于将文本对象放入存储桶。

• 集成 Facebook 或 Amazon 等外部身份提供商，以使用经过身份验证的 IAM 角色。

可能的增强功能 25

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

设置 SDK 适用于 JavaScript
本节中的主题说明如何安装和加载的软件开发工具包， JavaScript 以便您可以访问该软件开发工具包
支持的 Web 服务。

主题

• 先决条件

• 安装适用于 JavaScript

• 加载适用于 JavaScript

先决条件

安装 Node.js。 Amazon 建议使用 Active LTS 版本的 Node.js 进行开发。

主题

• 设置 Amazon Node.js 环境

• 支持的 Web 浏览器

设置 Amazon Node.js 环境

要设置可以在其中运行应用程序 Amazon 的 Node.js 环境，请使用以下任一方法：

• 选择已预安装 Node.js 的 Amazon 机器映像 (AMI)。然后使用该 AMI 创建一个 Amazon EC2 实例。
创建您的 Amazon EC2 实例时，请从中选择您的 AMI Amazon Web Services Marketplace。在中
Amazon Web Services Marketplace 搜索 Node.js，然后选择包含预装版本的 Node.js（32 位或 64
位）的 AMI 选项。

• 创建亚马逊 EC2 实例并在其上安装 Node.js。有关如何在 Amazon Linux 实例上安装 Node.js 的更多
信息，请参阅在亚马逊 EC2 实例上设置 Node.js。

• 使用 Amazon Lambda 创建无服务器环境，将 Node.js 作为 Lambda 函数运行。有关在 Lambda
函数中使用 Node.js 的更多信息，请参阅《Amazon Lambda 开发人员指南》 中的编程模型
(Node.js)。

• 将你的 Node.js 应用程序部署到 Amazon Elastic Beanstalk。有关将 Node.js 与 Elastic Beanstalk 结
合使用的更多信息，请参阅《Amazon Elastic Beanstalk 开发人员指南》 中的将 Node.js 应用程序
部署到 Amazon Elastic Beanstalk。

先决条件 26

https://nodejs.org/en/download
https://docs.amazonaws.cn/lambda/latest/dg/programming-model.html
https://docs.amazonaws.cn/lambda/latest/dg/programming-model.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/create_deploy_nodejs.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/create_deploy_nodejs.html

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 使用创建 Node.js 应用服务器 Amazon OpsWorks。有关将 Node.js 与配合使用的更多信息 Amazon
OpsWorks，请参阅《Amazon OpsWorks 用户指南》中的创建第一个 Node.js 堆栈。

支持的 Web 浏览器

适用于 JavaScript 的 Amazon SDK 支持所有现代 Web 浏览器。

在 3.567.0 或更高版本中，适用的 SDK 会 JavaScript 发出 ES2 021 个工件，它支持以下最低版本。

浏览器 版本

Google Chrome 85.0+

Mozilla Firefox 80.0+

Opera 71.0+

Microsoft Edge 85.0+

Apple Safari 14.1+

Samsung Internet 14.0+

在 3.183.0 到 3.566.0 版本中，适用于 SDK JavaScript 使用 ES2 020 个工件，它支持以下最低版本。

浏览器 版本

Google Chrome 80.0+

Mozilla Firefox 80.0+

Opera 63.0+

Microsoft Edge 80.0+

Apple Safari 14.1+

Samsung Internet 12.0+

支持的 Web 浏览器 27

https://docs.amazonaws.cn/opsworks/latest/userguide/gettingstarted-node.html

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

在 3.182.0 或更早版本中，SDK JavaScript 使用 ES5 工件，它支持以下最低版本。

浏览器 版本

Google Chrome 49.0+

Mozilla Firefox 45.0+

Opera 36.0+

Microsoft Edge 12.0+

Windows Internet Explorer 不适用

Apple Safari 9.0+

Android 浏览器 76.0+

UC 浏览器 12.12+

Samsung Internet 5.0+

Note

诸如之类的框架 Amazon Amplify 可能无法提供与 SDK 相同的浏览器支持 JavaScript。有关详
细信息，请参阅 Amazon Amplify 文档。

安装适用于 JavaScript

并非所有服务都可立即在 SDK 中或在所有 Amazon 地区提供。

要 适用于 JavaScript 的 Amazon SDK 通过使用 npm（Node.js 软件包管理器）安装服务，请在命令提
示符下输入以下命令，其中SERVICE是服务的名称，例如s3。

npm install @aws-sdk/client-SERVICE

有关 适用于 JavaScript 的 Amazon SDK 服务客户端软件包的完整列表，请参阅 适用于 JavaScript 的
Amazon SDK API 参考指南。

安装 SDK 28

https://docs.amazonaws.cn/amplify/latest/userguide/welcome.html
https://www.npmjs.com/
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

加载适用于 JavaScript

安装 SDK 之后，您可以使用 import，将客户端程序包加载到节点应用程序中。例如，要加载
Amazon S3 客户端和 Amazon S3 ListBuckets命令，请使用以下命令。

import { S3Client, ListBucketsCommand } from "@aws-sdk/client-s3";

加载 SDK 29

https://docs.amazonaws.cn//AmazonS3/latest/API/API_ListBuckets.html

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

配置适用于 JavaScript 的 SDK

使用 SDK for JavaScript 通过 API 调用 Web 服务之前，您必须配置 SDK。至少，您必须配置以下
项：

• 您将在其中请求服务的 Amazon 区域

• 您的代码与 Amazon 进行身份验证的方式

除了这些设置，您可能还必须配置您的 Amazon 资源的权限。例如，您可以限制对 Amazon S3 存储桶
的访问或者限制 Amazon DynamoDB 表只能进行只读访问。

《Amazon SDK和工具参考指南》https://docs.amazonaws.cn/sdkref/latest/guide/还包含许多 Amazon
SDK 中常见的设置、功能和其他基础概念。

本部分中的主题描述了为 Web 浏览器中运行的 Node.js 和 JavaScript 配置 SDK for JavaScript 的方
法。

主题

• 每个服务的配置

• 设置 Amazon 区域

• 设置凭证

• Node.js 注意事项

• 浏览器脚本注意事项

每个服务的配置

您可以通过将配置信息传递给服务对象来配置 SDK。

服务级别配置提供了对各项服务的有效控制，使您能够在需求与默认配置不同时更新各项服务对象的配
置。

Note

在 适用于 JavaScript 的 Amazon SDK 2.x 版本中，可以将服务配置传递给各个客户端构造函
数。但是，这些配置将首先自动合并到全局 SDK 配置 AWS.config 的副本中。

每个服务的配置 30

https://docs.amazonaws.cn/sdkref/latest/guide/

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

此外，调用 AWS.config.update({/* params *}) 仅更新在执行更新调用后实例化的服
务客户端的配置，而不是任何现有客户端的配置。
这种行为经常引起混乱，因此很难向仅以向前兼容的方式影响一部分服务客户端的全局对象添
加配置。在版本 3 中，不再有由 SDK 管理的全局配置。必须将配置传递至每个实例化的服务
客户端。仍然可以在多个客户端之间共享相同的配置，但是该配置不会自动与全局状态合并。

设置每个服务的配置

您在 SDK for JavaScript 中使用的每个服务都是通过服务对象访问的，该服务对象是该服务的 API 的
一部分。例如，要访问 Amazon S3 服务，您需要创建 Amazon S3 服务对象。您可以将特定于某项服
务的配置设置指定为该服务对象的构造函数的一部分。

例如，如果需要访问多个 Amazon 区域中的 Amazon EC2 对象，请为每个区域创建一个 Amazon EC2
服务对象，然后相应地设置每个服务对象的区域配置。

var ec2_regionA = new EC2({region: 'ap-southeast-2', maxAttempts: 15});
var ec2_regionB = new EC2({region: 'us-west-2', maxAttempts: 15});

设置 Amazon 区域

Amazon 区域是同一地理区域中的一组指定的 Amazon 资源。区域的示例是 us-east-1，即美国东部
（弗吉尼亚州北部）区域。在 SDK for JavaScript 中创建服务客户端时，您需要指定一个区域，这样
SDK 就可以访问该区域中的服务。有些服务仅在特定区域中提供。

默认情况下，SDK for JavaScript 不选择区域。但是，您可以使用环境变量或共享的配置 config 文件
来设置 Amazon 区域。

在客户端类构造函数中

实例化服务对象时，可以将该资源的 Amazon 区域指定为客户端类构造函数的一部分，如此处所示。

const s3Client = new S3.S3Client({region: 'us-west-2'});

使用环境变量

您可以使用 AWS_REGION 环境变量设置区域。如果您定义此变量，则 SDK for JavaScript 会读取并使
用它。

设置每个服务的配置 31

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

使用共享配置文件

您可以存储共享凭证文件供 SDK 使用的凭证，共享配置文件与之非常相似，您可以将 Amazon 区域和
其他配置设置保存在供 SDK 使用的名为 config 的共享文件中。如果 AWS_SDK_LOAD_CONFIG 环境
变量已设置为真值，则在加载时 SDK for JavaScript 会自动搜索 config 文件。保存 config 文件的
位置取决于您的操作系统：

• Linux、macOS 或 Unix 用户 - ~/.aws/config

• Windows 用户 - C:\Users\USER_NAME\.aws\config

如果您还没有共享 config 文件，您可以在指定的目录中创建一个。在以下示例中，config 文件设
置区域和输出格式。

[default]
 region=us-west-2
 output=json

有关使用共享 config 和 credentials 文件的更多信息，请参阅 Amazon SDK 和工具参考指南 中
的共享配置和凭证文件。

设置区域的优先顺序

区域设置的优先顺序如下：

1. 如果将某个区域传递给客户端类构造函数，则使用该区域。

2. 如果在环境变量中设置了某区域，则使用该区域。

3. 如果 AMAZON_REGION 环境变量是真值，则使用该区域。

4. 否则，将使用共享配置文件中定义的区域。

设置凭证
Amazon 使用凭证来识别谁正在调用服务以及是否允许访问所请求的资源。

无论是在 Web 浏览器中运行还是在 Node.js 服务器中运行，您的 JavaScript 代码都必须先获取有效凭
证，然后才能通过 API 访问服务。可以针对每个服务设置凭证，方法是将凭证直接传递给服务对象。

有几种方法可以设置在 Node.js 和 Web 浏览器中的 JavaScript 之间不同的凭证。本部分中的主题介绍
如何在 Node.js 或 Web 浏览器中设置凭证。在每种情况下，选项以推荐顺序显示。

使用共享配置文件 32

https://docs.amazonaws.cn/sdkref/latest/guide/file-format.html

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

凭证的最佳实践

正确设置凭证可确保您的应用程序或浏览器脚本可以访问所需的服务和资源，同时最大限度地减少可能
影响关键任务型应用程序或危及敏感数据的安全问题。

设置凭证时应用的一个重要原则是始终授予您的任务所需的最小权限。提供对资源的最小权限并根据需
要添加更多权限更安全，而不是提供超过最小权限的权限，因此需要修复以后可能发现的安全问题。例
如，除非您需要读取和写入单独的资源（例如 Amazon S3 存储桶或 DynamoDB 表中的对象），否则
请将这些权限设置为只读。

有关授予最低权限的更多信息，请参阅《IAM 用户指南》最佳实践主题中的授予最低权限部分。

主题

• 在 Node.js 中设置凭证

• 在 Web 浏览器中设置凭证

在 Node.js 中设置凭证

我们建议在本地开发且雇主未向其提供身份验证方法的新用户进行设置 Amazon IAM Identity Center。
有关更多信息，请参阅 使用 SDK 进行身份验证 Amazon。

Node.js 有几种方法可以为 SDK 提供凭证。其中一些方法更安全，而另一些方法则在开发应用程序时
可以提供更大的便利。在 Node.js 中获取凭证时，请注意依赖多个源，例如环境变量和您加载的 JSON
文件。您可以更改运行代码的权限，而不会意识到已发生更改。

适用于 JavaScript 的 Amazon SDK V3 在 Node.js 中提供了默认的凭证提供者链，因此您无需明确提
供凭证提供商。默认凭证提供程序链会尝试按给定优先级解析来自各种不同源的凭证，直到从其中一个
源返回凭证。您可以在此处找到适用于 JavaScript V3 的 SDK 的凭证提供商链。

凭证提供程序链

所有 SDKs 人都有一系列地点（或来源）供他们检查，以便获得用于向某人提出请求的有效凭证
Amazon Web Services 服务。找到有效凭证后，搜索即告停止。这种系统性搜索被称为默认凭证提供
程序链。

对于链中的每个步骤，都有不同的设置值的方法。直接在代码中设置值始终优先，然后设置为环境
变量，然后在共享 Amazon config文件中设置。有关更多信息，请参阅《工具参考指南》Amazon
SDKs 和《工具参考指南》中的设置优先级。

凭证的最佳实践 33

https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://docs.amazonaws.cn/sdkref/latest/guide/standardized-credentials.html#credentialProviderChain
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-credential-providers/#fromnodeproviderchain
https://docs.amazonaws.cn/sdkref/latest/guide/settings-reference.html#precedenceOfSettings
https://docs.amazonaws.cn/sdkref/latest/guide/settings-reference.html#precedenceOfSettings

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

《Amazon SDKs 和工具参考指南》包含有关所有 Amazon SDKs 人使用的 SDK 配置设置的信息
Amazon CLI。要详细了解如何通过共享 Amazon config文件配置 SDK，请参阅共享配置和凭据文
件。要详细了解如何通过设置环境变量来配置 SDK，请参阅环境变量支持。

要进行身份验证 Amazon，请按下表所列顺序 适用于 JavaScript 的 Amazon SDK 检查凭证提供商。

适用于 JavaScript 的 Amazon
SDK 按优先级划@@ 分的 API
参考凭证提供者方法

可用的凭证提供程序 Amazon SDKs 和工具参考指
南

fromEnv() Amazon 来自环境变量的访问
密钥

Amazon 访问密钥

fromSSO() Amazon IAM Identity Center。
在本指南中，请参阅使用 SDK
进行身份验证 Amazon。

IAM Identity Center 凭证提供
程序

Amazon 来自共享credentia
ls 文件config和文件的访问
密钥

Amazon 访问密钥

可信实体提供商（例如
AWS_ROLE_ARN ）

代入 IAM 角色

来自 Amazon Security Token
Service (Amazon STS) 的
Web 身份令牌

使用 Web 身份或 OpenID
Connect 进行联合

Amazon Elastic Container
Service（Amazon ECS）凭证

容器凭证提供程序

亚马逊弹性计算云 (Amazon
EC2) 实例配置文件证书（
IMDS 凭证提供商）

IMDS 凭证提供程序

流程凭证提供程序 流程凭证提供程序

fromIni()

Amazon IAM 身份中心 IAM Identity Center 凭证提供
程序

在 Node.js 中设置凭证 34

https://docs.amazonaws.cn/sdkref/latest/guide/file-format.html
https://docs.amazonaws.cn/sdkref/latest/guide/file-format.html
https://docs.amazonaws.cn/sdkref/latest/guide/environment-variables.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-credential-providers/#fromenv
https://docs.amazonaws.cn/sdkref/latest/guide/feature-static-credentials.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-credential-providers/#fromsso
https://docs.amazonaws.cn/sdkref/latest/guide/feature-sso-credentials.html
https://docs.amazonaws.cn/sdkref/latest/guide/feature-sso-credentials.html
https://docs.amazonaws.cn/sdkref/latest/guide/feature-static-credentials.html
https://docs.amazonaws.cn/sdkref/latest/guide/feature-assume-role-credentials.html#credOrSourceAssumeRole
https://docs.amazonaws.cn/sdkref/latest/guide/feature-assume-role-credentials.html#webidentity
https://docs.amazonaws.cn/sdkref/latest/guide/feature-assume-role-credentials.html#webidentity
https://docs.amazonaws.cn/sdkref/latest/guide/feature-container-credentials.html
https://docs.amazonaws.cn/sdkref/latest/guide/feature-imds-credentials.html
https://docs.amazonaws.cn/sdkref/latest/guide/feature-process-credentials.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-credential-providers/#fromini
https://docs.amazonaws.cn/sdkref/latest/guide/feature-sso-credentials.html
https://docs.amazonaws.cn/sdkref/latest/guide/feature-sso-credentials.html

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript 的 Amazon
SDK 按优先级划@@ 分的 API
参考凭证提供者方法

可用的凭证提供程序 Amazon SDKs 和工具参考指
南

登录凭证提供商 登录凭证提供商

fromLoginCredentia
ls()

登录凭证提供商 登录凭证提供商

fromProcess() 流程凭证提供程序 流程凭证提供程序

fromTokenFile() 来自 Amazon Security Token
Service (Amazon STS) 的
Web 身份令牌

使用 Web 身份或 OpenID
Connect 进行联合

fromContainerMetad
ata()

Amazon Elastic Container
Service（Amazon ECS）凭证

容器凭证提供程序

fromInstanceMetada
ta()

亚马逊弹性计算云 (Amazon
EC2) 实例配置文件证书（
IMDS 凭证提供商）

IMDS 凭证提供程序

如果您遵循推荐的新用户入门方法，则可以在入门主题的 使用 SDK 进行身份验证 Amazon 中设置
Amazon IAM Identity Center 身份验证。其他身份验证方法适用于不同的情况。为避免安全风险，我们
建议始终使用短期凭证。有关其他身份验证方法的步骤，请参阅和工具参考指南中的身份验证Amazon
SDKs 和访问。

本部分中的主题介绍如何将凭证加载到 Node.js 中。

主题

• 从 IAM 角色在 Node.js 中加载适用于亚马逊的证书 EC2

• 加载 Node.js Lambda 函数的凭证

从 IAM 角色在 Node.js 中加载适用于亚马逊的证书 EC2

如果您在亚马逊 EC2 实例上运行 Node.js 应用程序，则可以利用亚马逊的 IAM 角色自动 EC2 为该实
例提供证书。如果将实例配置为使用 IAM 角色，则 SDK 会自动为您的应用程序选择 IAM 凭证，从而
无需手动提供凭证。

在 Node.js 中设置凭证 35

https://docs.amazonaws.cn/sdkref/latest/guide/access-login.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-credential-providers/#fromlogincredentials
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-credential-providers/#fromlogincredentials
https://docs.amazonaws.cn/sdkref/latest/guide/access-login.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-credential-providers/#fromprocess
https://docs.amazonaws.cn/sdkref/latest/guide/feature-process-credentials.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-credential-providers/#fromtokenfile
https://docs.amazonaws.cn/sdkref/latest/guide/feature-assume-role-credentials.html#webidentity
https://docs.amazonaws.cn/sdkref/latest/guide/feature-assume-role-credentials.html#webidentity
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-credential-providers/#fromcontainermetadata-and-frominstancemetadata
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-credential-providers/#fromcontainermetadata-and-frominstancemetadata
https://docs.amazonaws.cn/sdkref/latest/guide/feature-container-credentials.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-credential-providers/#fromcontainermetadata-and-frominstancemetadata
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-credential-providers/#fromcontainermetadata-and-frominstancemetadata
https://docs.amazonaws.cn/sdkref/latest/guide/feature-imds-credentials.html
https://docs.amazonaws.cn/sdkref/latest/guide/access.html
https://docs.amazonaws.cn/sdkref/latest/guide/access.html

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

有关向亚马逊 EC2 实例添加 IAM 角色的更多信息，请参阅亚马逊的 IAM 角色 EC2。

加载 Node.js Lambda 函数的凭证

创建 Amazon Lambda 函数时，必须创建一个有权执行该函数的特殊 IAM 角色。此角色称为执行角
色。当您设置 Lambda 函数时，您必须指定您创建的 IAM 角色作为相应的执行角色。

执行角色为 Lambda 函数提供运行和调用其他 Web 服务所需的凭证。因此，您不需要为在 Lambda 函
数中编写的 Node.js 代码提供凭证。

有关您创建 Lambda 执行角色的更多信息，请参阅《Amazon Lambda 开发人员指南》 中的管理权
限：使用 IAM 角色（执行角色）。

在 Web 浏览器中设置凭证

有几种方法可以从浏览器脚本为 SDK 提供凭证。其中一些方法更安全，而另一些方法则在开发脚本时
可以提供更大的便利。

下面是按推荐顺序提供凭证的方法：

1. 使用 Amazon Cognito 验证用户身份和提供凭证

2. 使用 Web 联合身份验证

Warning

我们不建议在脚本中对您的 Amazon 凭证进行硬编码。硬编码凭证存在暴露您的访问密钥 ID
和秘密访问密钥的风险。

主题

• 使用 Amazon Cognito 身份对用户进行身份验证

使用 Amazon Cognito 身份对用户进行身份验证

获取浏览器脚本的 Amazon 凭证的推荐方法是使用 Amazon Cognito Identity 凭证客户端
CognitoIdentityClient。Amazon Cognito 支持通过第三方身份提供商对用户进行身份验证。

要使用 Amazon Cognito Identity，您必须先在 Amazon Cognito 控制台中创建一个身份池。身份池表
示应用程序为用户提供的身份组。为用户提供的身份唯一地标识每个用户账户。Amazon Cognito 身份

在 Web 浏览器中设置凭证 36

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://docs.amazonaws.cn/lambda/latest/dg/intro-permission-model.html#lambda-intro-execution-role
https://docs.amazonaws.cn/lambda/latest/dg/intro-permission-model.html#lambda-intro-execution-role

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

并不是凭证。可以在 Amazon Security Token Service (Amazon STS) 中使用 Web 联合身份验证支持
为凭证交换这些身份。

Amazon Cognito 可帮助您管理跨多个身份提供商的身份抽象。然后，在 Amazon STS 中为凭证交换
加载的身份。

配置 Amazon Cognito 身份凭证对象

如果您尚未创建身份池，则在配置 Amazon Cognito 客户端之前，请先创建一个以与 Amazon Cognito
控制台中的浏览器脚本一起使用。为身份池创建并关联经过身份验证和未经身份验证的 IAM 角色。有
关更多信息，请参阅《Amazon Cognito 开发人员指南》中的教程：创建身份池。

未经身份验证的用户的身份未经过验证，因此，该角色很适合您的应用程序的来宾用户或用户身份验证
与否无关紧要的情形。经过身份验证的用户可以通过证实其身份的第三方身份提供商登录到您的应用程
序。确保您的资源的权限范围适当，让未经身份验证的用户无权访问这些资源。

配置身份池后，可使用 @aws-sdk/credential-providers 中的 fromCognitoIdentityPool
方法从身份池中检索凭证。在以下创建 Amazon S3 客户端的示例中，将 AWS_REGION 替换为区域，
将 IDENTITY_POOL_ID 替换为身份池 ID。

// Import required AWS SDK clients and command for Node.js
import {S3Client} from "@aws-sdk/client-s3";
import {fromCognitoIdentityPool} from "@aws-sdk/credential-providers";

const REGION = AWS_REGION;

const s3Client = new S3Client({
 region: REGION,
 credentials: fromCognitoIdentityPool({
 clientConfig: { region: REGION }, // Configure the underlying
 CognitoIdentityClient.
 identityPoolId: 'IDENTITY_POOL_ID',
 logins: {
 // Optional tokens, used for authenticated login.
 },
 })
});

可选的 logins 属性是身份提供商名称到这些提供商身份令牌的映射。您如何从身份提供商获得令牌
的方式取决于您使用的提供商。例如，如果您使用 Amazon Cognito 用户池作为身份验证提供商，则可
以使用类似于以下方法的方法。

在 Web 浏览器中设置凭证 37

https://console.amazonaws.cn/cognito
https://console.amazonaws.cn/cognito
https://docs.amazonaws.cn/cognito/latest/developerguide/tutorial-create-identity-pool.html

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

// Get the Amazon Cognito ID token for the user. 'getToken()' below.
let idToken = getToken();
let COGNITO_ID = "COGNITO_ID"; // 'COGNITO_ID' has the format 'cognito-
idp.REGION.amazonaws.com/COGNITO_USER_POOL_ID'
let loginData = {
 [COGNITO_ID]: idToken,
};
const s3Client = new S3Client({
 region: REGION,
 credentials: fromCognitoIdentityPool({
 clientConfig: { region: REGION }, // Configure the underlying
 CognitoIdentityClient.
 identityPoolId: 'IDENTITY_POOL_ID',
 logins: loginData
 })
});

// Strips the token ID from the URL after authentication.
window.getToken = function () {
 var idtoken = window.location.href;
 var idtoken1 = idtoken.split("=")[1];
 var idtoken2 = idtoken1.split("&")[0];
 var idtoken3 = idtoken2.split("&")[0];
 return idtoken3;
};

将未经身份验证的用户切换为经过身份验证的用户

Amazon Cognito 同时支持经过身份验证的用户和未经身份验证的用户。即使未经身份验证的用户不通
过任何身份提供商登录，这些用户也有权访问您的资源。此级别的访问可用于向尚未登录的用户显示内
容。即使每个未经身份验证的用户尚未单独登录和经过身份验证，这些用户在 Amazon Cognito 中也都
具有唯一的身份。

最初未经身份验证的用户

用户通常从未经身份验证的角色开始，为此需要设置配置对象的凭证属性而不是 logins 属性。在这
种情况下，您的默认凭证可能如下所示：

// Import the required ### JavaScript # Amazon SDK v3 modules.
import {fromCognitoIdentityPool} from "@aws-sdk/credential-providers";
// Set the default credentials.
const creds = fromCognitoIdentityPool({

在 Web 浏览器中设置凭证 38

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 identityPoolId: 'IDENTITY_POOL_ID',
 clientConfig: { region: REGION } // Configure the underlying CognitoIdentityClient.
});

切换为经过身份验证的用户

当未经身份验证的用户登录身份提供商并且您拥有令牌时，您可以通过调用可更新凭证对象和添加
logins 令牌的自定义函数，来将用户从未经身份验证的用户切换为经过身份验证的用户。

// Called when an identity provider has a token for a logged in user
function userLoggedIn(providerName, token) {
 creds.params.Logins = creds.params.logins || {};
 creds.params.Logins[providerName] = token;

 // Expire credentials to refresh them on the next request
 creds.expired = true;
}

Node.js 注意事项
虽然 Node.js 代码是 JavaScript，但在 Node.js 中使用 适用于 JavaScript 的 Amazon SDK 与在浏览
器脚本中使用 SDK 有所不同。一些 API 方法在 Node.js 中有效，但在浏览器脚本以及其他方法中不
起作用。成功使用某些 API 取决于您对常见 Node.js 代码编写模式的熟悉程度，例如导入和使用其他
Node.js 模块，如 File System (fs) 模块。

Note

Amazon 建议在开发过程中使用 Node.js 的活动 LTS 版本。

使用内置 Node.js 模块

Node.js 提供了一组内置模块，无需安装即可使用它们。要使用这些模块，请使用 require 方法创建
一个对象以指定模块名称。例如，要包含内置的 HTTP 模块，请使用以下方法。

import http from 'http';

调用模块的方法，就好像它们是该对象的方法一样。例如，下面的代码读取您的 HTML 文件。

// include File System module

Node.js 注意事项 39

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

import fs from "fs";
// Invoke readFile method
fs.readFile('index.html', function(err, data) {
 if (err) {
 throw err;
 } else {
 // Successful file read
 }
});

有关 Node.js 提供的所有内置模块的完整列表，请参阅 Node.js 网站上的 Node.js 文档。

使用 npm 程序包

除了内置模块，您还可以包含并合并来自 npm（即 Node.js 程序包管理器）的第三方代码。这是一个
开源 Node.js 程序包的存储库和一个用于安装这些程序包的命令行界面。有关 npm 和当前可用程序包
列表的更多信息，请参阅 https://www.npmjs.com。您还可以在此处了解可在 GitHub 上使用的其他
Node.js 程序包。

在 Node.js 中配置 maxSockets

在 Node.js 中，您可以设置每个源的最大连接数。如果设置了 maxSockets，则低级 HTTP 客户端会
将请求排队，并在它们可用时将它们分配给套接字。

这使您可以设置在某个时间对给定源的并发请求数的上限。降低此值可以减少收到的限制或超时错误的
数量。但是，它还会增加内存使用量，因为请求进行排队，直到套接字变为可用状态。

以下示例演示了如何为 DynamoDB 客户端设置 maxSockets：

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";
import { NodeHttpHandler } from "@smithy/node-http-handler";
import https from "https";
let agent = new https.Agent({
 maxSockets: 25
});

let dynamodbClient = new DynamoDBClient({
 requestHandler: new NodeHttpHandler({
 requestTimeout: 3_000,
 httpsAgent: agent
 });
});

使用 npm 程序包 40

https://nodejs.org/api/modules.html
https://www.npmjs.com
https://github.com/sindresorhus/awesome-nodejs

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

如果您未提供值或 Agent 对象，则适用于 JavaScript 的 SDK 将使用 50 作为 maxSockets 的值。如
果您提供了 Agent 对象，则系统将使用其 maxSockets 值。有关在 Node.js 中设置 maxSockets 的
更多信息，请参阅 Node.js 文档。

从适用于 JavaScript 的 Amazon SDK v3.521.0 起，您可以使用以下速记语法配置
requestHandler。

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";

const client = new DynamoDBClient({
 requestHandler: {
 requestTimeout: 3_000,
 httpsAgent: { maxSockets: 25 },
 },
});

在 Node.js 中重复使用具有保持连接功能的连接

默认的 Node.js HTTP/HTTPS 代理会为每个新请求创建一个新的 TCP 连接。为了避免重建连接的成
本，适用于 JavaScript 的 Amazon SDK 默认会重复使用 TCP 连接。

对于短期操作（如 Amazon DynamoDB 查询），设置 TCP 连接的延迟开销可能大于操作本身。此
外，由于 DynamoDB 静态加密与 Amazon KMS 集成，因此您可能会遇到数据库延迟，必须为每个操
作重新建立新的 Amazon KMS 缓存条目。

如果您不想重复使用 TCP 连接，可以通过 keepAlive 在每个服务客户端级别，禁用重复使用这些活
跃连接，如以下 DynamoDB 客户端示例所示。

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";
import { NodeHttpHandler } from "@smithy/node-http-handler";
import { Agent } from "https";

const dynamodbClient = new DynamoDBClient({
 requestHandler: new NodeHttpHandler({
 httpsAgent: new Agent({ keepAlive: false })
 })
});

如果已启用 keepAlive，您还可以使用 keepAliveMsecs 设置 TCP Keep-Alive 数据包的初始延
迟，默认值为 1000ms。有关详细信息，请参阅 Node.js 文档。

在 Node.js 中重复使用具有保持连接功能的连接 41

https://nodejs.org/dist/latest/docs/api/http.html#http_agent_maxsockets
https://github.com/aws/aws-sdk-js-v3/blob/main/supplemental-docs/CLIENTS.md#new-in-v35210
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/encryption.howitworks.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/encryption.howitworks.html
https://nodejs.org/api/http.html#new-agentoptions

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

配置 Node.js 的代理

如果您无法直接连接到 Internet，则 SDK for JavaScript 支持通过第三方 HTTP 代理使用 HTTP 或
HTTPS 代理。

要查找第三方 HTTP 代理，请在 npm 上搜索“HTTP 代理”。

要安装第三方 HTTP 代理的代理，请在命令提示符下输入以下内容，其中 PROXY 是 npm 软件包的名
称。

npm install PROXY --save

要在应用程序中使用代理，请使用 httpAgent 和 httpsAgent 属性，如以下 DynamoDB 客户端示
例所示。

import { DynamoDBClient } from '@aws-sdk/client-dynamodb';
import { NodeHttpHandler } from "@smithy/node-http-handler";
import { HttpsProxyAgent } from "hpagent";
const agent = new HttpsProxyAgent({ proxy: "http://internal.proxy.com" });
const dynamodbClient = new DynamoDBClient({
 requestHandler: new NodeHttpHandler({
 httpAgent: agent,
 httpsAgent: agent
 }),
});

Note

httpAgent 与 httpsAgent，而且由于来自客户端的大多数调用都是指向 https，因此两者
都应设置。

在 Node.js 中注册证书包

Node.js 的默认信任存储包含访问 Amazon 服务所需的证书。在某些情况下，最好只包括一组特定的证
书。

在本示例中，使用磁盘上的特定证书创建 https.Agent，除非提供指定的证书，否则它会拒绝连
接。然后，DynamoDB 客户端将使用新创建的 https.Agent。

配置 Node.js 的代理 42

https://www.npmjs.com/

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";
import { NodeHttpHandler } from "@smithy/node-http-handler";
import { Agent } from "https";
import { readFileSync } from "fs";
const certs = [readFileSync("/path/to/cert.pem")];
const agent = new Agent({
 rejectUnauthorized: true,
 ca: certs
});
const dynamodbClient = new DynamoDBClient({
 requestHandler: new NodeHttpHandler({
 httpAgent: agent,
 httpsAgent: agent
 })
});

浏览器脚本注意事项

以下主题介绍了在浏览器脚本中使用 适用于 JavaScript 的 Amazon SDK 的特殊注意事项。

主题

• 为浏览器构建 SDK

• 跨源资源共享 (CORS)

• 使用 Webpack 捆绑应用程序

为浏览器构建 SDK

与 SDK for JavaScript 版本 2 (V2) 不同，V3 作为 JavaScript 文件提供，其中包含一组默认服务的
支持。V3 允许您仅将所需的 SDK for JavaScript 文件捆绑和包含在浏览器中，从而减少开销。我们
建议使用 Webpack 将 JavaScript 文件所需的 SDK 以及您需要的任何其他第三方软件包捆绑到一个
Javascript 文件中，然后使用 <script> 标签将其加载到浏览器脚本中。有关 Webpack 的更多信
息，请参阅使用 Webpack 捆绑应用程序。

如果您在强制浏览器使用 CORS 的环境之外使用 SDK，并且您希望访问 SDK for JavaScript 提供的所
有服务，则可以通过克隆存储库并运行相同的构建工具（这些工具构建了 SDK 的默认托管版本）在本
地构建 SDK 的自定义副本。下面几部分介绍使用额外服务和 API 版本构建 SDK 的步骤。

浏览器脚本注意事项 43

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

使用 SDK 生成器构建适用于 JavaScript 的 SDK

Note

Amazon Web Services 版本 3 (V3) 不再支持浏览器生成器。为了最大限度地减少浏览器应用
程序的带宽使用量，我们建议您导入命名模块，然后捆绑它们以减小大小。有关捆绑的更多信
息，请参阅使用 Webpack 捆绑应用程序。

跨源资源共享 (CORS)

跨源资源共享（即 CORS）是一项现代 Web 浏览器的安全功能。它使得 Web 浏览器可以协商哪些域
能够发出对外部网站或服务的请求。

在使用 适用于 JavaScript 的 Amazon SDK 开发浏览器应用程序时，CORS 是一个重要的考虑因素，
因为对资源的大部分请求发送到外部域，例如 Web 服务的端点。如果您的 JavaScript 环境实施 CORS
安全性，则必须对该服务配置 CORS。

CORS 根据以下条件，确定是否允许跨源请求中的共享：

• 发出请求的特定域

• 发出的 HTTP 请求的类型（GET、PUT、POST、DELETE 等等）

CORS 工作原理

在最简单的情况下，浏览器脚本从其他域中的服务器发出对某个资源的 GET 请求。根据该服务器的
CORS 配置，如果请求来自已授权提交 GET 请求的域，则跨来源服务器通过返回请求的资源做出响
应。

如果请求域或者 HTTP 请求的类型未获得授权，则将拒绝请求。但是，CORS 实现了在实际提交请求
之前进行预检。在这种情况下将提交预检请求，在其中发送 OPTIONS 访问请求操作。如果跨来源服务
器的 CORS 配置授予对请求域的访问权限，则服务器发送回预检响应，其中列出请求域可以对所请求
资源发出的所有 HTTP 请求类型。

跨源资源共享 (CORS) 44

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

是否需要 CORS 配置？

Amazon S3 存储桶需要 CORS 配置，然后才能在存储桶上执行操作。在某些 JavaScript 环境
中，CORS 可能未实施，因此不需要配置 CORS。例如，如果您在 Amazon S3 存储桶中托管应用程
序并访问 *.s3.amazonaws.com 或某个其它特定端点的资源，您的请求不会访问外部域。因此，此
配置不需要 CORS。在这种情况下，Amazon S3 之外的服务仍使用 CORS。

配置 Amazon S3 存储桶的 CORS

您可以在 Amazon S3 控制台中配置 Amazon S3 存储桶，以使用 CORS。

如果要在 Amazon Web Services Management 控制台中配置 CORS，则必须使用 JSON 来创建
CORS 配置。新的 Amazon Web Services Management 控制台仅支持 JSON CORS 配置。

Important

在新的 Amazon Web Services Management 控制台中，CORS 配置必须是 JSON。

1. 在 Amazon Web Services Management 控制台中，打开 Amazon S3 控制台，找到要配置的存储
桶，然后选中其复选框。

2. 在打开的窗格中，选择权限。

3. 在权限选项卡中，选择 CORS 配置。

跨源资源共享 (CORS) 45

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

4. 在 CORS 配置编辑器 中输入您的 CORS 配置，然后选择保存。

CORS 配置是一个 XML 文件，在 <CORSRule> 中包含了一系列规则。一个配置最多可以有 100 个规
则。规则由以下标签之一定义：

• <AllowedOrigin> - 指定您允许发出跨域请求的域源。

• <AllowedMethod> - 指定您允许在跨域请求中使用的请求类型
（GET、PUT、POST、DELETE、HEAD）。

• <AllowedHeader> - 指定预检请求中允许的标头。

有关示例配置，请参阅《Amazon Simple Storage Service 用户指南》中的如何在我的存储桶上配置
CORS？。

CORS 配置示例

以下 CORS 配置示例允许用户从域 example.org 中查看、添加、移除或更新存储桶内的对象。不
过，我们建议您将 <AllowedOrigin> 的范围限定到您的网站域名。您可以指定 "*" 以允许任意源。

Important

在新的 S3 控制台中，CORS 配置必须是 JSON。

XML

<?xml version="1.0" encoding="UTF-8"?>
<CORSConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <CORSRule>
 <AllowedOrigin>https://example.org</AllowedOrigin>
 <AllowedMethod>HEAD</AllowedMethod>
 <AllowedMethod>GET</AllowedMethod>
 <AllowedMethod>PUT</AllowedMethod>
 <AllowedMethod>POST</AllowedMethod>
 <AllowedMethod>DELETE</AllowedMethod>
 <AllowedHeader>*</AllowedHeader>
 <ExposeHeader>ETag</ExposeHeader>
 <ExposeHeader>x-amz-meta-custom-header</ExposeHeader>
 </CORSRule>
</CORSConfiguration>

跨源资源共享 (CORS) 46

https://docs.amazonaws.cn/AmazonS3/latest/userguide/cors.html#how-do-i-enable-cors
https://docs.amazonaws.cn/AmazonS3/latest/userguide/cors.html#how-do-i-enable-cors

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

JSON

[
 {
 "AllowedHeaders": [
 "*"
],
 "AllowedMethods": [
 "HEAD",
 "GET",
 "PUT",
 "POST",
 "DELETE"
],
 "AllowedOrigins": [
 "https://www.example.org"
],
 "ExposeHeaders": [
 "ETag",
 "x-amz-meta-custom-header"]
 }
]

此配置不授权用户在存储桶上执行操作。它使浏览器的安全模型允许对 Amazon S3 的请求。必须通过
存储桶权限或 IAM 角色权限来配置权限。

您可以使用 ExposeHeader，让 SDK 读取从 Amazon S3 返回的响应标头。例如，如果要从 PUT 或
分段上传读取 ETag 标头，则需要在配置中包括 ExposeHeader 标签，如上例中所示。SDK 只能访
问通过 CORS 配置公开的标头。如果您在对象上设置元数据，则将值作为标头返回并带有 x-amz-
meta- 前缀，例如 x-amz-meta-my-custom-header，并且也必须通过相同的方式公开。

使用 Webpack 捆绑应用程序

浏览器脚本或 Node.js 中使用代码模块的 Web 应用程序会创建依赖关系。这些代码模块可能会具有自
身的依赖关系，导致您的应用程序需要一组互连的模块才能正常工作。要管理依赖关系，您可以使用
webpack 等模块捆绑程序。

webpack 模块捆绑程序解析您的应用程序代码，搜索 import 或 require 语句，创建包含您应用程
序所需的全部资产的捆绑。这样可以轻松地通过网页提供资产服务。SDK for JavaScript 可以作为包括
在输出包中的依赖项之一包括在 webpack 中。

使用 Webpack 捆绑 47

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

有关 webpack 的更多信息，请参阅 GitHub 上的 webpack 模块捆绑程序。

安装 Webpack

要安装 webpack 模块捆绑程序，您必须已经安装了 npm（Node.js 程序包管理器）。键入以下命令以
安装 webpack CLI 和 JavaScript 模块。

npm install --save-dev webpack

要使用 path 模块来处理文件和目录路径（该模块是通过 webpack 自动安装的），您可能需要安装
Node.js path-browserify 软件包。

npm install --save-dev path-browserify

配置 Webpack

默认情况下，webpack 在项目的根目录中搜索名为 webpack.config.js 的 JavaScript 文件。此文
件指定您的配置选项。以下是 WebPack 版本 5.0.0 及更高版本的 webpack.config.js 配置文件示
例。

Note

Webpack 配置要求因您安装的 Webpack 版本而异。有关更多信息，请参阅 Webpack 文档。

// Import path for resolving file paths
var path = require("path");
module.exports = {
 // Specify the entry point for our app.
 entry: [path.join(__dirname, "browser.js")],
 // Specify the output file containing our bundled code.
 output: {
 path: __dirname,
 filename: 'bundle.js'
 },
 // Enable WebPack to use the 'path' package.
 resolve:{
 fallback: { path: require.resolve("path-browserify")}
 }
 /**

使用 Webpack 捆绑 48

https://webpack.github.io/
https://webpack.js.org/configuration/

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * In Webpack version v2.0.0 and earlier, you must tell
 * webpack how to use "json-loader" to load 'json' files.
 * To do this Enter 'npm --save-dev install json-loader' at the
 * command line to install the "json-loader' package, and include the
 * following entry in your webpack.config.js.
 * module: {
 rules: [{test: /\.json$/, use: use: "json-loader"}]
 }
 **/
};

在本示例中，指定 browser.js 为入口点。入口点 是 webpack 开始搜索导入的模块所用的文件。输
出的文件名指定为 bundle.js。此输出文件包含应用程序运行所需的全部 JavaScript。如果入口点中
指定的代码导入或需要其它模块（例如 SDK for JavaScript），则将捆绑该代码而无需在配置中指定
它。

运行 Webpack

要生成应用程序以使用 webpack，请将以下内容添加到您 package.json 文件的 scripts 对象。

"build": "webpack"

以下是演示如何添加 webpack 的示例 package.json 文件。

{
 "name": "aws-webpack",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1",
 "build": "webpack"
 },
 "author": "",
 "license": "ISC",
 "dependencies": {
 "@aws-sdk/client-iam": "^3.32.0",
 "@aws-sdk/client-s3": "^3.32.0"
 },
 "devDependencies": {
 "webpack": "^5.0.0"
 }

使用 Webpack 捆绑 49

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

}

要生成应用程序，请输入以下命令。

npm run build

随后，webpack 模块捆绑程序生成您在项目的根目录中指定的 JavaScript 文件。

使用 Webpack 捆绑

要在浏览器脚本中使用捆绑，您可以使用 <script> 标签整合捆绑，如下例中所示。

<!DOCTYPE html>
<html>
 <head>
 <title>Amazon SDK with webpack</title>
 </head>
 <body>
 <div id="list"></div>
 <script src="bundle.js"></script>
 </body>
</html>

适用于 Node.js 的捆绑

您可以通过在配置中将 node 指定为目标，使用 webpack 生成在 Node.js 中运行的捆绑。

target: "node"

在磁盘空间有限的环境中运行 Node.js 应用程序时，这非常有用。此处是将 Node.js 指定为输出目标的
示例 webpack.config.js 配置。

// Import path for resolving file paths
var path = require("path");
module.exports = {
 // Specify the entry point for our app.
 entry: [path.join(__dirname, "browser.js")],
 // Specify the output file containing our bundled code.
 output: {
 path: __dirname,
 filename: 'bundle.js'

使用 Webpack 捆绑 50

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 },
 // Let webpack know to generate a Node.js bundle.
 target: "node",
 // Enable WebPack to use the 'path' package.
 resolve:{
 fallback: { path: require.resolve("path-browserify")}
 /**
 * In Webpack version v2.0.0 and earlier, you must tell
 * webpack how to use "json-loader" to load 'json' files.
 * To do this Enter 'npm --save-dev install json-loader' at the
 * command line to install the "json-loader' package, and include the
 * following entry in your webpack.config.js.
 module: {
 rules: [{test: /\.json$/, use: use: "json-loader"}]
 }
 **/
};

使用 Webpack 捆绑 51

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

在适用于 JavaScript 的 SDK 中使用 Amazon 服务
适用于 JavaScript 的 Amazon SDK v3 通过一组客户端类提供对所支持服务的访问。从这些客户端
类，您可以创建服务接口对象，这些对象通常称为服务对象。所支持的每个 Amazon 服务有一个或
多个客户端类，提供低级别 API 来使用服务功能和资源。例如，Amazon DynamoDB API 可通过
DynamoDB 类提供。

通过 SDK for JavaScript 公开的服务采用请求/响应模式与调用应用程序交换消息。在此模式中，调用
服务的代码向服务的端点提交 HTTP/HTTPS 请求。请求中包含成功调用特定功能所需的参数。调用的
服务将生成发送回请求方的响应。如果操作成功，则响应包含数据，如果操作不成功，则包含错误消
息。

调用 Amazon 服务包括某个服务对象上的操作的完整请求和响应生命周期，包括所执行的任何重试。
一个请求包含零个或多个属性作为 JSON 参数。响应封装在一个与运算相关的对象中，通过多种技术
之一返回给请求方，例如回调函数或 JavaScript promise。

主题

• 创建和调用服务对象。

• 异步调用服务

• 创建服务客户端请求

• 处理服务客户端响应

• 使用 JSON

• 记录适用于 JavaScript 的 Amazon SDK调用

• 在 DynamoDB 中使用基于 Amazon 账户的端点

• 使用 Amazon S3 校验和实现数据完整性保护

• JavaScript 代码示例的 SDK

创建和调用服务对象。

JavaScript API 支持大多数可用的 Amazon 服务。JavaScript API 中的每项服务都为一个客户端类提供
了一个 send 方法，您可以使用该方法来调用该服务支持的每个 API。有关 JavaScript API 中服务类、
运算和参数的更多信息，请参阅 API 参考。

在 Node.js 中使用 SDK 时，您使用 import 将每个所需服务的 SDK 添加到应用程序，这为所有当前
服务提供支持。以下示例在 us-west-1 区域中创建一个 Amazon S3 服务对象。

创建和调用服务对象。 52

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-transcribe/

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

// Import the Amazon S3 service client
import { S3Client } from "@aws-sdk/client-s3";
// Create an S3 client in the us-west-1 Region
const s3Client = new S3Client({
 region: "us-west-1"
});

指定服务对象参数

调用服务对象的方法时，根据 API 的需要在 JSON 中传递参数。例如，在 Amazon S3 中，要获取指
定存储桶和键的对象，需向 S3Client 的 GetObjectCommand 方法传递以下参数。有关传递 JSON
参数的更多信息，请参阅使用 JSON。

s3Client.send(new GetObjectCommand({Bucket: 'bucketName', Key: 'keyName'}));

有关 Amazon S3 参数的更多信息，请参阅 API 参考中的 @aws-sdk/client-s3。

在 TypeScript 中使用 @smithy/types 生成客户端

如果您使用的是 TypeScript，@smithy/types 程序包可让您操作客户端的输入和输出结数据形状。

场景：从输入和输出结构中移除 undefined

生成的数据形状的成员在输入形状中与 undefined 合并，在输出形状中标记为 ?（可选）。对于输
入，这会将验证操作推迟到服务端进行。对于输出，强烈建议您在运行时检查输出数据。

如需跳过这些步骤，请使用 AssertiveClient 或 UncheckedClient 类型帮助程序。以下示例展
示了在 Amazon S3 服务中使用类型帮助程序的方法。

import { S3 } from "@aws-sdk/client-s3";
import type { AssertiveClient, UncheckedClient } from "@smithy/types";

const s3a = new S3({}) as AssertiveClient<S3>;
const s3b = new S3({}) as UncheckedClient<S3>;

// AssertiveClient enforces required inputs are not undefined
// and required outputs are not undefined.
const get = await s3a.getObject({
 Bucket: "",
 // @ts-expect-error (undefined not assignable to string)

指定服务对象参数 53

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-s3/

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 Key: undefined,
});

// UncheckedClient makes output fields non-nullable.
// You should still perform type checks as you deem
// necessary, but the SDK will no longer prompt you
// with nullability errors.
const body = await (
 await s3b.getObject({
 Bucket: "",
 Key: "",
 })
).Body.transformToString();

在非聚合客户端使用 Command 语法进行转换时，无法对输入进行验证，因为它需要经过另一个类，如
下例所示。

import { S3Client, ListBucketsCommand, GetObjectCommand, GetObjectCommandInput } from
 "@aws-sdk/client-s3";
import type { AssertiveClient, UncheckedClient, NoUndefined } from "@smithy/types";

const s3 = new S3Client({}) as UncheckedClient<S3Client>;

const list = await s3.send(
 new ListBucketsCommand({
 // command inputs are not validated by the type transform.
 // because this is a separate class.
 })
);

/**
 * Although less ergonomic, you can use the NoUndefined<T>
 * transform on the input type.
 */
const getObjectInput: NoUndefined<GetObjectCommandInput> = {
 Bucket: "undefined",
 // @ts-expect-error (undefined not assignable to string)
 Key: undefined,
 // optional params can still be undefined.
 SSECustomerAlgorithm: undefined,
};

const get = s3.send(new GetObjectCommand(getObjectInput));

使用 @smithy/types 生成的客户端 54

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

// outputs are still transformed.
await get.Body.TransformToString();

场景：缩小 Smithy-TypeScript 生成的客户端的输出有效载荷 blob 类型

此类场景主要与使用流媒体主体的操作有关，例如在适用于 JavaScript 的 Amazon SDK v3 中的
S3Client 内。

由于 blob 有效载荷类型取决于平台，您可能需要在应用程序中指明客户端正在特定环境中运行。这将
缩小 blob 有效载荷类型的范围，如下例所示：

import { GetObjectCommand, S3Client } from "@aws-sdk/client-s3";
import type { NodeJsClient, SdkStream, StreamingBlobPayloadOutputTypes } from "@smithy/
types";
import type { IncomingMessage } from "node:http";

// default client init.
const s3Default = new S3Client({});

// client init with type narrowing.
const s3NarrowType = new S3Client({}) as NodeJsClient<S3Client>;

// The default type of blob payloads is a wide union type including multiple possible
// request handlers.
const body1: StreamingBlobPayloadOutputTypes = (await s3Default.send(new
 GetObjectCommand({ Key: "", Bucket: "" })))
 .Body!;

// This is of the narrower type SdkStream<IncomingMessage> representing
// blob payload responses using specifically the node:http request handler.
const body2: SdkStream<IncomingMessage> = (await s3NarrowType.send(new
 GetObjectCommand({ Key: "", Bucket: "" })))
 .Body!;

异步调用服务

通过 SDK 发出的所有请求均为异步。在编写浏览器脚本时，务必记住这一点。在 Web 浏览器中运行
的 JavaScript 通常只有一个执行线程。在对 Amazon 服务进行异步调用之后，浏览器脚本继续运行，
并可在该过程中结果返回之前，尝试执行依赖于该异步结果的代码。

异步调用服务 55

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

对 Amazon 服务进行异步调用包括管理这些调用，使得您的代码不会在数据可用之前尝试使用这些数
据。本部分中的主题说明管理异步调用的需求，以及在管理它们时可以使用的具体不同技术。

尽管您可以使用这些技术中的任何一种来管理异步调用，但我们建议您对所有新代码使用异步/等待。

异步/等待

我们建议您使用此技术，因为这是 V3 中的默认行为。

Promise

在不支持异步/等待的浏览器中使用此技术。

回调

除非在非常简单的情况下，否则请避免使用回调。但是，您可能会发现它对迁移场景很有用。

主题

• 管理异步调用

• 使用异步/等待

• 使用 JavaScript Promise

• 使用匿名回调函数

管理异步调用

例如，电子商务网站的主页会让返回的客户登录。客户登录可以获得的一部分好处在于，登录之后网站
可以根据其特定首选项进行自定义。要做到这一点：

1. 客户必须登录并使用其登录凭证进行验证。

2. 从客户数据库中请求客户的首选项。

3. 数据库提供客户的首选项，这些首选项用于在页面加载之前自定义网站。

如果这些任务同步执行，则必须在每个任务完成之后才能执行下一个任务。在数据库返回客户首选项之
前，网页无法完成加载。但是，在数据库查询发送到服务器之后，由于网络瓶颈、极高的数据库流量或
者糟糕的移动设备连接，客户数据的接收可能会延迟甚至失败。

要避免网站在这些情况下停滞不前，可以异步调用数据库。数据库调用执行之后，发送您的异步请求，
您的代码继续按预期方式执行。如果您未能正确地管理异步调用的响应，代码会在数据尚不可用时，尝
试使用预期从数据库返回的信息。

管理异步调用 56

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

使用异步/等待

您应该考虑使用异步/等待，而不是 Promise。与使用 Promise 相比，异步函数更简单，并且需要的样
板文件更少。等待只能在异步函数中用于异步等待值。

以下示例使用异步/等待来列出您在 us-west-2 中的所有 Amazon DynamoDB 表。

Note

运行此示例需执行的操作：

• 通过在项目的命令行中输入 npm install @aws-sdk/client-dynamodb 来安装 适用于
JavaScript 的 Amazon SDK DynamoDB 客户端。

• 确保您的 Amazon 凭证配置正确。有关更多信息，请参阅 设置凭证。

import {
 DynamoDBClient,
 ListTablesCommand
} from "@aws-sdk/client-dynamodb";
(async function () {

使用异步/等待 57

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const dbClient = new DynamoDBClient({ region: "us-west-2" });
 const command = new ListTablesCommand({});

 try {
 const results = await dbClient.send(command);
 console.log(results.TableNames.join('\n'));
 } catch (err) {
 console.error(err)
 }
})();

Note

并非所有浏览器都支持异步/等待。有关支持异步/等待的浏览器列表，请参阅异步函数。

使用 JavaScript Promise

使用服务客户端的 适用于 JavaScript 的 Amazon SDK v3 方法 (ListTablesCommand) 进行服务调用
和管理异步流，而不是使用回调。以下示例演示如何获取 us-west-2 中您的 Amazon DynamoDB 表
的名称。

import {
 DynamoDBClient,
 ListTablesCommand
} from "@aws-sdk/client-dynamodb";
const dbClient = new DynamoDBClient({ region: 'us-west-2' });

dbClient.listtables(new ListTablesCommand({}))
 .then(response => {
 console.log(response.TableNames.join('\n'));
 })
 .catch((error) => {
 console.error(error);
 });

协调多个 Promise

在某些情况下，您的代码必须进行多个异步调用，这些调用只有在它们都成功返回时才需要执行操作。
如果您使用 promise 管理这些单独的异步方法调用，则可以创建使用 all 方法的额外 promise。

使用 Promise 58

https://caniuse.com/#feat=async-functions

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

此方法只有在执行了您传递到方法中的 promise 数组时，才会执行此伞形 promise。回调函数将
promise 的值数组传递到 all 方法。

在以下示例中，Amazon Lambda 函数必须对 Amazon DynamoDB 进行三个异步调用，但只有在执行
了各个调用的 promise 时才能完成。

const values = await Promise.all([firstPromise, secondPromise, thirdPromise]);

console.log("Value 0 is " + values[0].toString);
console.log("Value 1 is " + values[1].toString);
console.log("Value 2 is " + values[2].toString);

return values;

Promise 的浏览器和 Node.js 支持

对原生 JavaScript promise (ECMAScript 2015) 的支持取决于执行代码的 JavaScript 引擎和版
本。为帮助确定您要运行代码的各个环境中的 JavaScript promise 支持情况，请参阅 GitHub 上的
ECMAScript 兼容性表。

使用匿名回调函数

每个服务对象方法都可以接受匿名回调函数作为最后一个参数。此回调函数的签名如下。

function(error, data) {
 // callback handling code
};

此回调函数在返回成功响应或错误数据时执行。如果方法调用成功，则响应的内容在 data 参数中供回
调函数使用。如果调用不成功，则在 error 参数中提供有关失败的详细信息。

通常，回调函数内部的代码经过了错误测试，在返回错误时会进行处理。如果未返回错误，则代码从
data 参数检索响应中的数据。回调函数的基本格式如此例中所示。

function(error, data) {
 if (error) {
 // error handling code
 console.log(error);
 } else {
 // data handling code
 console.log(data);

使用回调函数 59

https://compat-table.github.io/compat-table/es6/

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }
};

在以上示例中，错误的详细信息或者返回的数据记录到控制台中。此处的示例演示了作为对服务对象调
用方法的一部分传递的回调函数。

ec2.describeInstances(function(error, data) {
 if (error) {
 console.log(error); // an error occurred
 } else {
 console.log(data); // request succeeded
 }
});

创建服务客户端请求

向 Amazon 服务客户端提出请求很简单。SDK for JavaScript 版本 3 (V3) 支持您发送请求。

Note

在使用 SDK for JavaScript V3 时，也可以使用版本 2 (V2) 命令执行操作。有关更多信息，请
参阅 使用 v2 命令。

发送请求：

1. 使用所需的配置初始化一个客户端对象，例如一个特定的 Amazon 区域。

2. （可选）使用请求的值（例如特定 Amazon S3 存储桶的名称）创建请求 JSON 对象。您可以检查
请求的参数，方法是查看“API 参考”主题以了解具有与客户端方法关联的名称的接口。例如，如果
您使用 AbcCommand 客户端方法，则请求接口为 AbcInput。

3. （可选）使用请求对象作为输入来初始化服务命令。

4. 使用命令对象作为输入在客户端上调用 send。

例如，要列出您在 us-west-2 的 Amazon DynamoDB 表，可以使用异步/等待来完成。

import {
 DynamoDBClient,
 ListTablesCommand

创建服务客户端请求 60

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

} from "@aws-sdk/client-dynamodb";

(async function () {
 const dbClient = new DynamoDBClient({ region: 'us-west-2' });
 const command = new ListTablesCommand({});

 try {
 const results = await dbClient.send(command);
 console.log(results.TableNames.join('\n'));
 } catch (err) {
 console.error(err);
 }
})();

处理服务客户端响应
调用服务客户端方法后，它会返回一个接口的响应对象实例，其名称与该客户端方法相关联。例如，如
果您使用 AbcCommand 客户端方法，则响应对象的类型为 AbcResponse（接口）。

访问在响应中返回的数据

响应对象包含服务请求返回的数据作为属性。

在创建服务客户端请求中， ListTablesCommand 命令在响应的 TableNames 属性中返回了表名。

访问错误信息

如果命令失败，则将引发异常。下面的代码片段展示了一种处理服务异常的方法。

try {
 await client.send(someCommand);
} catch (e) {
 if (e.name === "InvalidSignatureException") {
 // Handle InvalidSignatureException
 } else if (e.name === "ResourceNotFoundException") {
 // Handle ResourceNotFoundException
 } else if (e.name === "FooServiceException") {
 // Handle all other server-side exceptions from Foo service
 } else {
 // Handle errors from SDK
 }
}

处理服务客户端响应 61

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

使用 JSON

JSON 是一种数据交换格式，便于人类阅读，并且是机器可读的。虽然名称 JSON 是 JavaScript 对象
表示法 (JavaScript Object Notation) 的缩写，但 JSON 的格式独立于任何编程语言。

适用于 JavaScript 的 Amazon SDK 在发出请求时使用 JSON 将数据发送到服务对象，并从服务对象以
JSON 格式接收数据。有关 JSON 的更多信息，请参阅 json.org。

JSON 通过两种方式表示数据：

• 对象，其是无序名称-值对集合。对象在左大括号 ({) 和右大括号 (}) 内定义。每个名称-值对以名称
开头，后接一个冒号，再接值。名称/值对以逗号分隔。

• 数组，其是有序值集合。数组在左方括号 ([) 和右方括号 (]) 内定义。数组中的项目以逗号分隔。

下面是 JSON 对象示例，其中包含一个对象数组，这些对象表示扑克游戏中的扑克。每张扑克都由两
个名称/值对定义，一个指定用于表示扑克的唯一值，另一个指定指向对应扑克图像的 URL。

var cards = [
 {"CardID":"defaultname", "Image":"defaulturl"},
 {"CardID":"defaultname", "Image":"defaulturl"},
 {"CardID":"defaultname", "Image":"defaulturl"},
 {"CardID":"defaultname", "Image":"defaulturl"},
 {"CardID":"defaultname", "Image":"defaulturl"}
];

将 JSON 作为服务对象参数

以下是一个简单 JSON 示例，用于定义对 Amazon Lambda 服务对象的调用的参数。

const params = {
 FunctionName : funcName,

使用 JSON 62

https://json.org

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 Payload : JSON.stringify(payload),
 LogType : LogType.Tail,
};

params 对象由三个名称/值对定义，在左右大括号中以逗号分隔。向服务对象方法调用
提供参数时，名称由您计划调用的服务对象方法的参数名称确定。调用 Lambda 函数
时，FunctionName、Payload 和 LogType 都是用于在 Lambda 服务对象上调用 invoke 方法的
参数。

将参数传递给服务对象方法调用时，将 JSON 对象提供给方法调用，如下面调用 Lambda 函数的示例
中所示。

const invoke = async (funcName, payload) => {
 const client = new LambdaClient({});
 const command = new InvokeCommand({
 FunctionName: funcName,
 Payload: JSON.stringify(payload),
 LogType: LogType.Tail,
 });

 const { Payload, LogResult } = await client.send(command);
 const result = Buffer.from(Payload).toString();
 const logs = Buffer.from(LogResult, "base64").toString();
 return { logs, result };
};

记录适用于 JavaScript 的 Amazon SDK调用
适用于 JavaScript 的 Amazon SDK 具备内置的日志记录程序，因此您可以记录使用 SDK for
JavaScript 发出的 API 调用。

要启用日志记录程序并在控制台打印日志条目，请使用可选的 logger 参数配置服务客户端。以下示
例启用了客户端日志记录，同时忽略了跟踪和调试输出。

new S3Client({
 logger: {
 ...console,
 debug(...args) {},
 trace(...args) {},
 },
});

记录适用于 JavaScript 的 Amazon SDK调用 63

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

使用中间件记录请求

适用于 JavaScript 的 Amazon SDK 用户现在可以使用中间件堆栈来控制操作调用的生命周期。堆栈中
的每个中间件都会在对请求对象进行任何更改后调用下一个中间件。这也使调试堆栈中的问题变得更加
容易，因为您可以准确地看到哪些被调用的中间件导致了错误。下面是使用中间件记录请求的示例：

const client = new DynamoDB({ region: "us-west-2" });

client.middlewareStack.add(
 (next, context) => async (args) => {
 console.log("AWS SDK context", context.clientName, context.commandName);
 console.log("AWS SDK request input", args.input);
 const result = await next(args);
 console.log("AWS SDK request output:", result.output);
 return result;
 },
 {
 name: "MyMiddleware",
 step: "build",
 override: true,
 }
);

await client.listTables({});

在上面的示例中，向 DynamoDB 客户端的中间件堆栈添加了一个中间件。第一个参数是一个函数，该
函数接受 next（即堆栈中下一个待调用的中间件）和 context（一个对象，包含有关正在调用的操
作的一些信息）。它会返回另一个函数，该函数接受 args（一个对象，包含传递给操作的参数）和请
求，并返回使用 args 调用下一个中间件的结果。

在 DynamoDB 中使用基于 Amazon 账户的端点

DynamoDB 提供基于 Amazon 账户的端点，通过使用您的 Amazon 账户 ID 来简化请求路由，从而提
升性能。

要使用此功能，您需要使用适用于 JavaScript 的 Amazon SDK 版本 3 的 3.656.0 或更高版本。这一基
于账户的端点功能在此新版本中默认启用。

如果要选择退出基于账户的路由，您可以选择以下选项：

• 配置 DynamoDB 服务客户端，将 accountIdEndpointMode 参数设置为 disabled。

使用中间件记录请求 64

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Programming.SDKOverview.html#Programming.SDKs.endpoints

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 将环境变量 AWS_ACCOUNT_ID_ENDPOINT_MODE 设置为 disabled。

• 更新共享的 Amazon 配置文件，将 account_id_endpoint_mode 设置为 disabled。

以下代码片段演示了如何通过配置 DynamoDB 服务客户端来禁用基于账户的路由：

const ddbClient = new DynamoDBClient({
 region: "us-west-2",
 accountIdEndpointMode: "disabled" // Disable account ID in the endpoint
});

《Amazon SDK 和工具参考指南》提供了有关其他配置选项的更多信息。

使用 Amazon S3 校验和实现数据完整性保护

Amazon Simple Storage Service (Amazon S3) 允许您在上传对象时指定校验和。当您指定校验和时，
校验和与对象一起存储，并且可以在下载对象时验证该校验和。

传输文件时，校验和可提供额外的数据层完整性。使用校验和，您可以通过确认收到文件与原始文件
是否匹配来验证数据一致性。有关 Amazon S3 校验和的更多信息，请参阅 Amazon Simple Storage
Service 用户指南，包括支持的算法。

您可以灵活地选择最适合自己需求的算法，并让 SDK 计算校验和。或者，您也可以使用任一受支持的
算法，提供预先计算好的校验和值。

Note

从适用于 JavaScript 的 Amazon SDK 3.729.0 开始，该 SDK 通过自动计算上传文件的 CRC32
校验和来提供默认的完整性保护。如果您未提供预先计算的校验和值，或未指定 SDK 计算校
验和时应使用的算法，SDK 将自动计算此校验和。
该 SDK 还提供了可在外部设置的数据完整性保护全局设置，您可以在 Amazon SDK 和工具参
考指南中查阅相关说明。

上传对象

您可以使用通过 S3Client 的 PutObject 命令将对象上传至 Amazon S3。请使用
PutObjectRequest 生成器的 ChecksumAlgorithm 参数启用校验和计算并指定算法。请参阅支持
的校验和算法，获取有效值。

Amazon S3 校验和 65

https://docs.amazonaws.cn/sdkref/latest/guide/feature-account-endpoints.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/checking-object-integrity.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/checking-object-integrity.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/checking-object-integrity.html#using-additional-checksums
https://docs.amazonaws.cn/sdkref/latest/guide/feature-dataintegrity.html
https://docs.amazonaws.cn/sdkref/latest/guide/feature-dataintegrity.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/s3/command/PutObjectCommand/
https://docs.amazonaws.cn/AmazonS3/latest/userguide/checking-object-integrity.html#using-additional-checksums
https://docs.amazonaws.cn/AmazonS3/latest/userguide/checking-object-integrity.html#using-additional-checksums

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

以下代码片段展示了上传具有 CRC-32 校验和的对象的请求。当 SDK 发送此请求时，它会计算
CRC-32 校验和并上传对象。Amazon S3 将校验和与对象一起存储。

import { ChecksumAlgorithm, S3 } from "@aws-sdk/client-s3";

const client = new S3();
const response = await client.putObject({
 Bucket: "my-bucket",
 Key: "my-key",
 Body: "Hello, world!",
 ChecksumAlgorithm: ChecksumAlgorithm.CRC32,
});

如果您未在请求中提供校验和算法，则校验和行为将根据您使用的 SDK 版本而异，具体如下表所示。

未提供校验和算法时的校验和行为

适用于 JavaScript 的 SDK 版本 校验和行为

版本 3.729.0 之前的版本 SDK 不会自动计算基于 CRC 的校验和，也不会
在请求中提供该值。

3.729.0 或更高版本 SDK 采用 CRC32 算法计算校验和，并在请求中
提供该值。Amazon S3 通过计算自己的 CRC32
校验和来验证传输的完整性，并将其与 SDK 提
供的校验和进行对比。如果校验和匹配，则校验
和将与对象一起保存。

如果 SDK 计算的校验和与 Amazon S3 在收到请求时计算的校验和不匹配，则会返回错误。

使用预先计算的校验和值

与请求一起提供的预先计算校验和值会禁用 SDK 的自动计算，而是使用提供的值。

以下示例展示了具有预先计算的 SHA-256 校验和的请求。

import { S3 } from "@aws-sdk/client-s3";
import { createHash } from "node:crypto";

const client = new S3();

上传对象 66

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const Body = "Hello, world!";
const ChecksumSHA256 = await createHash("sha256").update(Body).digest("base64");

const response = await client.putObject({
 Bucket: "my-bucket",
 Key: "my-key",
 Body,
 ChecksumSHA256,
});

如果 Amazon S3 确定指定算法的校验和值不正确，服务就会返回错误响应。

分段上传

您也可以将校验和用于分段上传。适用于 JavaScript 的 Amazon SDK 可通过 @aws-sdk/lib-
storage 提供的 Upload 库选项，在分段上传中使用校验和。

import { ChecksumAlgorithm, S3 } from "@aws-sdk/client-s3";
import { Upload } from "@aws-sdk/lib-storage";
import { createReadStream } from "node:fs";

const client = new S3();
const filePath = "/path/to/file";
const Body = createReadStream(filePath);

const upload = new Upload({
 client,
 params: {
 Bucket: "my-bucket",
 Key: "my-key",
 Body,
 ChecksumAlgorithm: ChecksumAlgorithm.CRC32,
 },
});
await upload.done();

JavaScript 代码示例的 SDK

本节中的主题包含如何将 适用于 JavaScript 的 Amazon SDK 与各种服务结合使用来执行常见任务
APIs 的示例。

包含指导的代码示例子集 67

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

在上的 “代码示例存储库” 中查找这些示例和其他示例的源Amazon 代码 GitHub。要提出一个新的代码
示例供 Amazon 文档团队考虑制作，请创建请求。该团队正在寻求生成涵盖更多应用场景和使用情形
的代码示例，而不仅仅是涵盖个别 API 调用的简单代码片段。有关说明，请参阅的贡献指南中的 “创作
代码” 部分。 GitHub

Important

这些示例使用 ECMAScript6 导入/导出语法。

• 这需要使用 Node.js 版本 14.17 或更高版本。要下载并安装最新版本的 Node.js，请参阅
Node.js 下载。

• 如果您更喜欢使用 CommonJS 语法，请参阅 JavaScript ES6/CommonJS 语法以获取转换
指南。

主题

• JavaScript ES6/CommonJS 语法

• AWS Elemental MediaConvert 示例

• Amazon Lambda 示例

• Amazon Lex 示例

• Amazon Polly 示例

• Amazon Redshift 示例

• Amazon Simple Email Service 示例

• Amazon Simple Notification Service 示例

• Amazon Transcribe 示例

• 在亚马逊 EC2 实例上设置 Node.js

• 使用 API Gateway 调用 Lambda

• 创建计划事件以执行 Amazon Lambda 函数

• 构建 Amazon Lex 聊天机器人

JavaScript ES6/CommonJS 语法

适用于 JavaScript 的 Amazon SDK 代码示例是使用 ECMAScript 6 (ES6) 编写的。ES6 带来了新的语
法和新功能，使您的代码更现代、更具可读性，并能做到更多的事情。

JavaScript ES6/CommonJS 语法 68

https://github.com/awsdocs/aws-doc-sdk-examples
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/CONTRIBUTING.md
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/CONTRIBUTING.md
https://nodejs.org/en/download

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

要使用 ES6，您需要使用 Node.js 版本 13.x 或更高版本。要下载并安装最新版本的 Node.js，请参阅
Node.js 下载。但是，如果您愿意，可以使用以下指南将我们的任何示例转换为 CommonJS 语法：

• 从您的项目环境中的 package.json 中移除 "type" : "module"。

• 将所有 ES6 import 语句转换为 CommonJS require 语句。例如，将以下内容：

import { CreateBucketCommand } from "@aws-sdk/client-s3";
import { s3 } from "./libs/s3Client.js";

转换为其 CommonJS 等效语句：

const { CreateBucketCommand } = require("@aws-sdk/client-s3");
const { s3 } = require("./libs/s3Client.js");

• 将所有 ES6 export 语句转换为 CommonJS module.exports 语句。例如，将以下内容：

export {s3}

转换为其 CommonJS 等效语句：

module.exports = {s3}

以下示例演示了用于在 ES6 和 CommonJS 中创建 Amazon S3 存储桶的代码示例。

ES6

libs/s3Client.js

// Create service client module using ES6 syntax.
import { S3Client } from "@aws-sdk/client-s3";
// Set the AWS region
const REGION = "eu-west-1"; //e.g. "us-east-1"
// Create Amazon S3 service object.
const s3 = new S3Client({ region: REGION });
// Export 's3' constant.
export {s3};

JavaScript ES6/CommonJS 语法 69

https://nodejs.org/en/download

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

s3_createbucket.js

// Get service clients module and commands using ES6 syntax.
 import { CreateBucketCommand } from "@aws-sdk/client-s3";
 import { s3 } from "./libs/s3Client.js";

// Get service clients module and commands using CommonJS syntax.
// const { CreateBucketCommand } = require("@aws-sdk/client-s3");
// const { s3 } = require("./libs/s3Client.js");

// Set the bucket parameters
const bucketParams = { Bucket: "BUCKET_NAME" };

// Create the Amazon S3 bucket.
const run = async () => {
 try {
 const data = await s3.send(new CreateBucketCommand(bucketParams));
 console.log("Success", data.Location);
 return data;
 } catch (err) {
 console.log("Error", err);
 }
};
run();

CommonJS

libs/s3Client.js

// Create service client module using CommonJS syntax.
 const { S3Client } = require("@aws-sdk/client-s3");
// Set the AWS Region.
const REGION = "REGION"; //e.g. "us-east-1"
 // Create Amazon S3 service object.
const s3 = new S3Client({ region: REGION });
// Export 's3' constant.
 module.exports ={s3};

JavaScript ES6/CommonJS 语法 70

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

s3_createbucket.js

// Get service clients module and commands using CommonJS syntax.
const { CreateBucketCommand } = require("@aws-sdk/client-s3");
const { s3 } = require("./libs/s3Client.js");

// Set the bucket parameters
const bucketParams = { Bucket: "BUCKET_NAME" };

// Create the Amazon S3 bucket.
const run = async () => {
 try {
 const data = await s3.send(new CreateBucketCommand(bucketParams));
 console.log("Success", data.Location);
 return data;
 } catch (err) {
 console.log("Error", err);
 }
};
run();

AWS Elemental MediaConvert 示例

AWS Elemental MediaConvert 是基于文件的视频转码服务与广播级的功能。您可以使用它来创建资产
广播并为视频点播 (VOD) 交付整个 Internet。有关更多信息，请参阅 AWS Elemental MediaConvert
用户指南。

适用于 MediaConvert 的 JavaScript API 通过 MediaConvert 客户端类公开。有关更多信息，请参阅
《API 参考》中的类：MediaConvert。

主题

• 在 MediaConvert 中创建和管理转码作业

• 在 MediaConvert 中使用作业模板

AWS Elemental MediaConvert 示例 71

https://docs.amazonaws.cn/mediaconvert/latest/ug/
https://docs.amazonaws.cn/mediaconvert/latest/ug/
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-mediaconvert/

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

在 MediaConvert 中创建和管理转码作业

此 Node.js 代码示例演示：

• 如何在 MediaConvert 中创建转码作业。

• 如何取消转码作业。

• 如何检索已完成转码作业的 JSON。

• 如何检索最多 20 个最新创建的作业的 JSON 数组。

情景

在此示例中，您使用 Node.js 模块调用 MediaConvert 来创建和管理转码作业。该代码使用 SDK for
JavaScript，通过 MediaConvert 客户端类的以下方法来完成此操作：

• CreateJobCommand

• CancelJobCommand

• GetJobCommand

• ListJobsCommand

完成先决条件任务

要设置和运行此示例，请先完成以下任务：

• 设置项目环境以运行这些 Node TypeScript 示例，并安装所需的 适用于 JavaScript 的 Amazon SDK
和第三方模块。请按照 GitHub 上的说明进行操作。

• 使用用户凭证创建共享配置文件。有关提供共享凭证文件的更多信息，请参阅《Amazon SDK 和工
具参考指南》中的共享配置和凭证文件。

• 创建和配置 Amazon S3 存储桶，提供作业输入文件和输出文件的存储。有关详细信息，请参阅
《AWS Elemental MediaConvert 用户指南》中的创建用于文件的存储。

• 将输入视频上传到您为输入存储预置的 Amazon S3 存储桶。有关支持的输入视频编解码器和容器的
列表，请参阅《AWS Elemental MediaConvert 用户指南》中的支持的输入编解码器和容器。

AWS Elemental MediaConvert 示例 72

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-mediaconvert/Class/CreateJobCommand/
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-mediaconvert/Class/CancelJobCommand/
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-mediaconvert/Class/GetJobCommand/
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-mediaconvert/Class/ListJobsCommand/
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascriptv3/example_code/mediaconvert/README.md
https://docs.amazonaws.cn/sdkref/latest/guide/file-format.html
https://docs.amazonaws.cn/mediaconvert/latest/ug/set-up-file-locations.html
https://docs.amazonaws.cn/mediaconvert/latest/ug/reference-codecs-containers-input.html

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 创建一个 IAM 角色，该角色使 MediaConvert 能够访问输入文件以及存储输出文件的 Amazon S3 存
储桶。有关更多信息，请参阅《AWS Elemental MediaConvert 用户指南》中的设置 IAM 权限。

Important

此示例使用 ECMAScript6 (ES6)。这需要使用 Node.js 版本 13.x 或更高版本。要下载并安装最
新版本的 Node.js，请参阅 Node.js 下载。
但是，如果您更喜欢使用 CommonJS 语法，请参阅 JavaScript ES6/CommonJS 语法。

定义简单的转码作业

创建文件名为 emc_createjob.js 的 Node.js 模块。确保如前所示配置 SDK，包括安装所需的客户
端和软件包。创建定义转码任务参数的 JSON。

这些参数有非常详细的说明。您可以使用 AWS Elemental MediaConvert 控制台生成 JSON 作业参
数，方法是在控制台中选择您的作业设置，然后选择作业部分底部的显示作业 JSON。本示例说明了简
单作业的 JSON。

Note

将 JOB_QUEUE_ARN 替换为 MediaConvert 作业队列，将 IAM_ROLE_ARN 替换为 IAM 角色的
Amazon 资源名称（ARN），将 OUTPUT_BUCKET_NAME 替换为目标存储桶名称（例如“s3://
OUTPUT_BUCKET_NAME/”），将 INPUT_BUCKET_AND_FILENAME 替换为输入存储桶和文
件名，例如“s3://INPUT_BUCKET/FILE_NAME”。

const params = {
 Queue: "JOB_QUEUE_ARN", //JOB_QUEUE_ARN
 UserMetadata: {
 Customer: "Amazon",
 },
 Role: "IAM_ROLE_ARN", //IAM_ROLE_ARN
 Settings: {
 OutputGroups: [
 {
 Name: "File Group",
 OutputGroupSettings: {
 Type: "FILE_GROUP_SETTINGS",

AWS Elemental MediaConvert 示例 73

https://docs.amazonaws.cn/mediaconvert/latest/ug/iam-role.html
https://nodejs.org/en/download
https://console.amazonaws.cn/mediaconvert/

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 FileGroupSettings: {
 Destination: "OUTPUT_BUCKET_NAME", //OUTPUT_BUCKET_NAME, e.g., "s3://
BUCKET_NAME/"
 },
 },
 Outputs: [
 {
 VideoDescription: {
 ScalingBehavior: "DEFAULT",
 TimecodeInsertion: "DISABLED",
 AntiAlias: "ENABLED",
 Sharpness: 50,
 CodecSettings: {
 Codec: "H_264",
 H264Settings: {
 InterlaceMode: "PROGRESSIVE",
 NumberReferenceFrames: 3,
 Syntax: "DEFAULT",
 Softness: 0,
 GopClosedCadence: 1,
 GopSize: 90,
 Slices: 1,
 GopBReference: "DISABLED",
 SlowPal: "DISABLED",
 SpatialAdaptiveQuantization: "ENABLED",
 TemporalAdaptiveQuantization: "ENABLED",
 FlickerAdaptiveQuantization: "DISABLED",
 EntropyEncoding: "CABAC",
 Bitrate: 5000000,
 FramerateControl: "SPECIFIED",
 RateControlMode: "CBR",
 CodecProfile: "MAIN",
 Telecine: "NONE",
 MinIInterval: 0,
 AdaptiveQuantization: "HIGH",
 CodecLevel: "AUTO",
 FieldEncoding: "PAFF",
 SceneChangeDetect: "ENABLED",
 QualityTuningLevel: "SINGLE_PASS",
 FramerateConversionAlgorithm: "DUPLICATE_DROP",
 UnregisteredSeiTimecode: "DISABLED",
 GopSizeUnits: "FRAMES",
 ParControl: "SPECIFIED",
 NumberBFramesBetweenReferenceFrames: 2,

AWS Elemental MediaConvert 示例 74

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 RepeatPps: "DISABLED",
 FramerateNumerator: 30,
 FramerateDenominator: 1,
 ParNumerator: 1,
 ParDenominator: 1,
 },
 },
 AfdSignaling: "NONE",
 DropFrameTimecode: "ENABLED",
 RespondToAfd: "NONE",
 ColorMetadata: "INSERT",
 },
 AudioDescriptions: [
 {
 AudioTypeControl: "FOLLOW_INPUT",
 CodecSettings: {
 Codec: "AAC",
 AacSettings: {
 AudioDescriptionBroadcasterMix: "NORMAL",
 RateControlMode: "CBR",
 CodecProfile: "LC",
 CodingMode: "CODING_MODE_2_0",
 RawFormat: "NONE",
 SampleRate: 48000,
 Specification: "MPEG4",
 Bitrate: 64000,
 },
 },
 LanguageCodeControl: "FOLLOW_INPUT",
 AudioSourceName: "Audio Selector 1",
 },
],
 ContainerSettings: {
 Container: "MP4",
 Mp4Settings: {
 CslgAtom: "INCLUDE",
 FreeSpaceBox: "EXCLUDE",
 MoovPlacement: "PROGRESSIVE_DOWNLOAD",
 },
 },
 NameModifier: "_1",
 },
],
 },

AWS Elemental MediaConvert 示例 75

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

],
 AdAvailOffset: 0,
 Inputs: [
 {
 AudioSelectors: {
 "Audio Selector 1": {
 Offset: 0,
 DefaultSelection: "NOT_DEFAULT",
 ProgramSelection: 1,
 SelectorType: "TRACK",
 Tracks: [1],
 },
 },
 VideoSelector: {
 ColorSpace: "FOLLOW",
 },
 FilterEnable: "AUTO",
 PsiControl: "USE_PSI",
 FilterStrength: 0,
 DeblockFilter: "DISABLED",
 DenoiseFilter: "DISABLED",
 TimecodeSource: "EMBEDDED",
 FileInput: "INPUT_BUCKET_AND_FILENAME", //INPUT_BUCKET_AND_FILENAME, e.g.,
 "s3://BUCKET_NAME/FILE_NAME"
 },
],
 TimecodeConfig: {
 Source: "EMBEDDED",
 },
 },
};

创建转码作业

在创建作业参数 JSON 后，调用异步 run 方法以调用 MediaConvert 客户端服务对象并传递参数。
所创建作业的 ID 在响应 data 中返回。

const run = async () => {
 try {
 const data = await emcClient.send(new CreateJobCommand(params));
 console.log("Job created!", data);
 return data;

AWS Elemental MediaConvert 示例 76

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 } catch (err) {
 console.log("Error", err);
 }
};
run();

要运行示例，请在命令提示符中键入以下内容。

node emc_createjob.js

此完整示例代码可在 GitHub 上的此处找到。

取消转码作业

创建文件名为 emc_canceljob.js 的 Node.js 模块。请务必如前所示配置 SDK，包括下载所需
的客户端和软件包。创建包含要取消的作业的 ID 的 JSON。然后，通过创建一个 promise 来调用
MediaConvert 客户端服务对象并传递参数，以此调用 CancelJobCommand 方法。承诺处理响应中
的回调。

Note

将 JOB_ID 替换为要取消的作业的 ID。

// Import required AWS-SDK clients and commands for Node.js
import { CancelJobCommand } from "@aws-sdk/client-mediaconvert";
import { emcClient } from "./libs/emcClient.js";

// Set the parameters
const params = { Id: "JOB_ID" }; //JOB_ID

const run = async () => {
 try {
 const data = await emcClient.send(new CancelJobCommand(params));
 console.log(`Job ${params.Id} is canceled`);
 return data;
 } catch (err) {
 console.log("Error", err);
 }
};
run();

AWS Elemental MediaConvert 示例 77

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascriptv3/example_code/mediaconvert/src/emc_createjob.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

要运行示例，请在命令提示符中键入以下内容。

node ec2_canceljob.js

此示例代码可在 GitHub 上的此处找到。

列出最近的转码作业

创建文件名为 emc_listjobs.js 的 Node.js 模块。确保如前所示配置 SDK，包括安装所需的客户端
和软件包。

创建包括值的参数 JSON，这些值指定是按 ASCENDING 还是 DESCENDING 对列表排序、要检查的作
业队列的 Amazon 资源名称 (ARN)，以及要包含的作业的状态。然后，通过创建一个 promise 来调用
MediaConvert 客户端服务对象并传递参数，以此调用 ListJobsCommand 方法。

Note

将 QUEUE_ARN 替换为要检查的作业队列的 Amazon 资源名称 (ARN)，将 STATUS 替换为队列
的状态。

// Import required AWS-SDK clients and commands for Node.js
import { ListJobsCommand } from "@aws-sdk/client-mediaconvert";
import { emcClient } from "./libs/emcClient.js";

// Set the parameters
const params = {
 MaxResults: 10,
 Order: "ASCENDING",
 Queue: "QUEUE_ARN",
 Status: "SUBMITTED", // e.g., "SUBMITTED"
};

const run = async () => {
 try {
 const data = await emcClient.send(new ListJobsCommand(params));
 console.log("Success. Jobs: ", data.Jobs);
 } catch (err) {
 console.log("Error", err);
 }

AWS Elemental MediaConvert 示例 78

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascriptv3/example_code/mediaconvert/src/emc_canceljob.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

};
run();

要运行示例，请在命令提示符中键入以下内容。

node emc_listjobs.js

此示例代码可在 GitHub 上的此处找到。

在 MediaConvert 中使用作业模板

此 Node.js 代码示例演示：

• 如何创建 AWS Elemental MediaConvert 作业模板。

• 如何使用作业模板来创建转码作业。

• 如何列出您的所有作业模板。

• 如何删除作业模板。

情景

在 MediaConvert 中创建转码作业所需的 JSON 有详细说明，包含大量设置。您可以将已知工作
正常的设置保存在作业模板中并用于创建以后的作业，从而节省大量时间。在此示例中，您使用
Node.js 模块调用 MediaConvert 来创建、使用和管理作业模板。该代码使用 SDK for JavaScript，通
过 MediaConvert 客户端类的以下方法来完成此操作：

• CreateJobTemplateCommand

• CreateJobCommand

• DeleteJobTemplateCommand

• ListJobTemplatesCommand

完成先决条件任务

要设置和运行此示例，请先完成以下任务：

AWS Elemental MediaConvert 示例 79

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascriptv3/example_code/mediaconvert/src/emc_listjobs.js
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-mediaconvert/Class/CreateJobTemplateCommand/
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-mediaconvert/Class/CreateJobCommand/
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-mediaconvert/Class/DeleteJobTemplateCommand/
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-mediaconvert/Class/ListJobTemplatesCommand/

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 设置项目环境以运行这些 Node TypeScript 示例，并安装所需的 适用于 JavaScript 的 Amazon SDK
和第三方模块。请按照 GitHub 上的说明进行操作。

• 使用用户凭证创建共享配置文件。有关提供共享凭证文件的更多信息，请参阅《Amazon SDK 和工
具参考指南》中的共享配置和凭证文件。

• 创建一个 IAM 角色，该角色使 MediaConvert 能够访问输入文件以及存储输出文件的 Amazon S3 存
储桶。有关更多信息，请参阅《AWS Elemental MediaConvert 用户指南》中的设置 IAM 权限。

Important

这些示例使用 ECMAScript6 (ES6)。这需要使用 Node.js 版本 13.x 或更高版本。要下载并安装
最新版本的 Node.js，请参阅 Node.js 下载。
但是，如果您更喜欢使用 CommonJS 语法，请参阅 JavaScript ES6/CommonJS 语法。

创建作业模板

创建文件名为 emc_create_jobtemplate.js 的 Node.js 模块。确保如前所示配置 SDK，包括安装
所需的客户端和软件包。

指定用于创建模板的参数 JSON。您可以使用来自以前成功作业中的大部分 JSON 参数来指定模板中
的 Settings 值。此示例使用来自 在 MediaConvert 中创建和管理转码作业 的作业设置。

通过创建一个 promise 来调用 MediaConvert 服务对象并传递参数，以此调用
CreateJobTemplateCommand 方法。

Note

将 JOB_QUEUE_ARN 替换为要检查的作业队列的 Amazon 资源名称 (ARN)，将
BUCKET_NAME 替换为目标 Amazon S3 存储桶的名称，例如“s3://BUCKET_NAME/”。

// Import required AWS-SDK clients and commands for Node.js
import { CreateJobTemplateCommand } from "@aws-sdk/client-mediaconvert";
import { emcClient } from "./libs/emcClient.js";

const params = {
 Category: "YouTube Jobs",
 Description: "Final production transcode",
 Name: "DemoTemplate",

AWS Elemental MediaConvert 示例 80

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascriptv3/example_code/mediaconvert/README.md
https://docs.amazonaws.cn/sdkref/latest/guide/file-format.html
https://docs.amazonaws.cn/mediaconvert/latest/ug/iam-role.html
https://nodejs.org/en/download

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 Queue: "JOB_QUEUE_ARN", //JOB_QUEUE_ARN
 Settings: {
 OutputGroups: [
 {
 Name: "File Group",
 OutputGroupSettings: {
 Type: "FILE_GROUP_SETTINGS",
 FileGroupSettings: {
 Destination: "BUCKET_NAME", // BUCKET_NAME e.g., "s3://BUCKET_NAME/"
 },
 },
 Outputs: [
 {
 VideoDescription: {
 ScalingBehavior: "DEFAULT",
 TimecodeInsertion: "DISABLED",
 AntiAlias: "ENABLED",
 Sharpness: 50,
 CodecSettings: {
 Codec: "H_264",
 H264Settings: {
 InterlaceMode: "PROGRESSIVE",
 NumberReferenceFrames: 3,
 Syntax: "DEFAULT",
 Softness: 0,
 GopClosedCadence: 1,
 GopSize: 90,
 Slices: 1,
 GopBReference: "DISABLED",
 SlowPal: "DISABLED",
 SpatialAdaptiveQuantization: "ENABLED",
 TemporalAdaptiveQuantization: "ENABLED",
 FlickerAdaptiveQuantization: "DISABLED",
 EntropyEncoding: "CABAC",
 Bitrate: 5000000,
 FramerateControl: "SPECIFIED",
 RateControlMode: "CBR",
 CodecProfile: "MAIN",
 Telecine: "NONE",
 MinIInterval: 0,
 AdaptiveQuantization: "HIGH",
 CodecLevel: "AUTO",
 FieldEncoding: "PAFF",
 SceneChangeDetect: "ENABLED",

AWS Elemental MediaConvert 示例 81

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 QualityTuningLevel: "SINGLE_PASS",
 FramerateConversionAlgorithm: "DUPLICATE_DROP",
 UnregisteredSeiTimecode: "DISABLED",
 GopSizeUnits: "FRAMES",
 ParControl: "SPECIFIED",
 NumberBFramesBetweenReferenceFrames: 2,
 RepeatPps: "DISABLED",
 FramerateNumerator: 30,
 FramerateDenominator: 1,
 ParNumerator: 1,
 ParDenominator: 1,
 },
 },
 AfdSignaling: "NONE",
 DropFrameTimecode: "ENABLED",
 RespondToAfd: "NONE",
 ColorMetadata: "INSERT",
 },
 AudioDescriptions: [
 {
 AudioTypeControl: "FOLLOW_INPUT",
 CodecSettings: {
 Codec: "AAC",
 AacSettings: {
 AudioDescriptionBroadcasterMix: "NORMAL",
 RateControlMode: "CBR",
 CodecProfile: "LC",
 CodingMode: "CODING_MODE_2_0",
 RawFormat: "NONE",
 SampleRate: 48000,
 Specification: "MPEG4",
 Bitrate: 64000,
 },
 },
 LanguageCodeControl: "FOLLOW_INPUT",
 AudioSourceName: "Audio Selector 1",
 },
],
 ContainerSettings: {
 Container: "MP4",
 Mp4Settings: {
 CslgAtom: "INCLUDE",
 FreeSpaceBox: "EXCLUDE",
 MoovPlacement: "PROGRESSIVE_DOWNLOAD",

AWS Elemental MediaConvert 示例 82

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 },
 },
 NameModifier: "_1",
 },
],
 },
],
 AdAvailOffset: 0,
 Inputs: [
 {
 AudioSelectors: {
 "Audio Selector 1": {
 Offset: 0,
 DefaultSelection: "NOT_DEFAULT",
 ProgramSelection: 1,
 SelectorType: "TRACK",
 Tracks: [1],
 },
 },
 VideoSelector: {
 ColorSpace: "FOLLOW",
 },
 FilterEnable: "AUTO",
 PsiControl: "USE_PSI",
 FilterStrength: 0,
 DeblockFilter: "DISABLED",
 DenoiseFilter: "DISABLED",
 TimecodeSource: "EMBEDDED",
 },
],
 TimecodeConfig: {
 Source: "EMBEDDED",
 },
 },
};

const run = async () => {
 try {
 // Create a promise on a MediaConvert object
 const data = await emcClient.send(new CreateJobTemplateCommand(params));
 console.log("Success!", data);
 return data;
 } catch (err) {
 console.log("Error", err);

AWS Elemental MediaConvert 示例 83

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }
};
run();

要运行示例，请在命令提示符中键入以下内容。

node emc_create_jobtemplate.js

此示例代码可在 GitHub 上的此处找到。

从作业模板创建转码作业

创建文件名为 emc_template_createjob.js 的 Node.js 模块。确保如前所示配置 SDK，包括安装
所需的客户端和软件包。

创建作业创建参数 JSON，其中包括要使用的作业模板名称，以及所要使用的特定于您正在创建的作业
的 Settings。然后，通过创建一个 promise 来调用 MediaConvert 客户端服务对象并传递参数，以
此调用 CreateJobsCommand 方法。

Note

将 JOB_QUEUE_ARN 替换为要检查的作业队列的 Amazon 资源名称 (ARN)，将
KEY_PAIR_NAME 替换为，将 TEMPLATE_ NAME 替换为，将 ROLE_ARN 替换为 Amazon
资源名称（ARN），将 INPUT_BUCKET_AND_FILENAME 替换为输入存储桶和文件名，例
如“s3://BUCKET_NAME/FILE_NAME”。

// Import required AWS-SDK clients and commands for Node.js
import { CreateJobCommand } from "@aws-sdk/client-mediaconvert";
import { emcClient } from "./libs/emcClient.js";

const params = {
 Queue: "QUEUE_ARN", //QUEUE_ARN
 JobTemplate: "TEMPLATE_NAME", //TEMPLATE_NAME
 Role: "ROLE_ARN", //ROLE_ARN
 Settings: {
 Inputs: [
 {
 AudioSelectors: {
 "Audio Selector 1": {
 Offset: 0,

AWS Elemental MediaConvert 示例 84

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascriptv3/example_code/mediaconvert/src/emc_create_jobtemplate.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 DefaultSelection: "NOT_DEFAULT",
 ProgramSelection: 1,
 SelectorType: "TRACK",
 Tracks: [1],
 },
 },
 VideoSelector: {
 ColorSpace: "FOLLOW",
 },
 FilterEnable: "AUTO",
 PsiControl: "USE_PSI",
 FilterStrength: 0,
 DeblockFilter: "DISABLED",
 DenoiseFilter: "DISABLED",
 TimecodeSource: "EMBEDDED",
 FileInput: "INPUT_BUCKET_AND_FILENAME", //INPUT_BUCKET_AND_FILENAME, e.g.,
 "s3://BUCKET_NAME/FILE_NAME"
 },
],
 },
};

const run = async () => {
 try {
 const data = await emcClient.send(new CreateJobCommand(params));
 console.log("Success! ", data);
 return data;
 } catch (err) {
 console.log("Error", err);
 }
};
run();

要运行示例，请在命令提示符中键入以下内容。

node emc_template_createjob.js

此示例代码可在 GitHub 上的此处找到。

列出作业模板

创建文件名为 emc_listtemplates.js 的 Node.js 模块。确保如前所示配置 SDK，包括安装所需的
客户端和软件包。

AWS Elemental MediaConvert 示例 85

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascriptv3/example_code/mediaconvert/src/emc_template_createjob.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

创建一个对象以传递 listTemplates 客户端类的 MediaConvert 方法的请求参数。包含值以确定
要列出哪些模板（NAME、CREATION DATE、SYSTEM）、要列出多少个模板及其排序顺序。要调用
ListTemplatesCommand 方法，请创建一个 promise 来调用 MediaConvert 客户端服务对象并传递
参数。

// Import required AWS-SDK clients and commands for Node.js
import { ListJobTemplatesCommand } from "@aws-sdk/client-mediaconvert";
import { emcClient } from "./libs/emcClient.js";

const params = {
 ListBy: "NAME",
 MaxResults: 10,
 Order: "ASCENDING",
};

const run = async () => {
 try {
 const data = await emcClient.send(new ListJobTemplatesCommand(params));
 console.log("Success ", data.JobTemplates);
 return data;
 } catch (err) {
 console.log("Error", err);
 }
};
run();

要运行示例，请在命令提示符中键入以下内容。

node emc_listtemplates.js

此示例代码可在 GitHub 上的此处找到。

删除作业模板

创建文件名为 emc_deletetemplate.js 的 Node.js 模块。确保如前所示配置 SDK，包括安装所需
的客户端和软件包。

创建一个对象，以将您要删除的作业模板的名称作为 DeleteJobTemplateCommand 客户端类
的 MediaConvert 方法的参数传递。要调用 DeleteJobTemplateCommand 方法，请创建一个
promise 来调用 MediaConvert 客户端服务对象并传递参数。

AWS Elemental MediaConvert 示例 86

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascriptv3/example_code/mediaconvert/src/emc_template_createjob.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

// Import required AWS-SDK clients and commands for Node.js
import { DeleteJobTemplateCommand } from "@aws-sdk/client-mediaconvert";
import { emcClient } from "./libs/emcClient.js";

// Set the parameters
const params = { Name: "test" }; //TEMPLATE_NAME

const run = async () => {
 try {
 const data = await emcClient.send(new DeleteJobTemplateCommand(params));
 console.log(
 "Success, template deleted! Request ID:",
 data.$metadata.requestId,
);
 return data;
 } catch (err) {
 console.log("Error", err);
 }
};
run();

要运行示例，请在命令提示符中键入以下内容。

node emc_deletetemplate.js

此示例代码可在 GitHub 上的此处找到。

Amazon Lambda 示例

Amazon Lambda 是一项无服务器计算服务，可使您无需预置或管理服务器即可运行代码，创建工作负
载感知型集群扩展逻辑，维护事件集成，或管理运行时。

适用于 Amazon Lambda 的 JavaScript API 通过 LambdaService 客户端类公开。

以下是演示如何借助 适用于 JavaScript 的 Amazon SDK v3 创建和使用 Lambda 函数的示例列表：

• 使用 API Gateway 调用 Lambda

• 创建计划事件以执行 Amazon Lambda 函数

Amazon Lambda 示例 87

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascriptv3/example_code/mediaconvert/src/emc_deletetemplate.js
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-lambda/

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

Amazon Lex 示例

Amazon Lex 是一项用于使用语音和文本将对话界面内置到应用程序中的 Amazon 服务。

适用于 Amazon Lex 的 JavaScript API 通过 Lex Runtime Service 客户端类公开。

• 构建 Amazon Lex 聊天机器人

Amazon Polly 示例

此 Node.js 代码示例演示：

• 将使用 Amazon Polly 录制的音频上传到 Amazon S3

情景

在此示例中，将使用一系列 Node.js 模块，通过 Amazon S3 客户端类的以下方法将使用 Amazon
Polly 录制的音频自动上传到 Amazon S3：

• StartSpeechSynthesisTaskCommand

先决条件任务

要设置和运行此示例，您必须先完成以下任务：

• 按照中的说明设置项目环境以运行 Node JavaScript 示例 GitHub。

• 使用用户凭证创建共享配置文件。有关提供共享凭据文件的更多信息，请参阅和工具参考指南中的共
享配置Amazon SDKs 和凭据文件。

• 创建一个 Amazon Identity and Access Management (IAM) 未经身份验证的 Amazon Cognito 用户角
色投票SynthesizeSpeech ：权限，以及一个附有 IAM 角色的 Amazon Cognito 身份池。下面的使用
创建 Amazon 资源 Amazon CloudFormation部分将介绍如何创建这些资源。

Amazon Lex 示例 88

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-lex-runtime-service/
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-polly/Class/StartSpeechSynthesisTaskCommand/
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascriptv3/example_code/s3/README.md
https://docs.amazonaws.cn/sdkref/latest/guide/file-format.html
https://docs.amazonaws.cn/sdkref/latest/guide/file-format.html

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

Note

此示例使用 Amazon Cognito，但是如果您不使用 Amazon Cognito，则 Amazon 您的用户必
须具有以下 IAM 权限策略

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Action": [
 "mobileanalytics:PutEvents",
 "cognito-sync:*"
],
 "Resource": "*",
 "Effect": "Allow"
 },
 {
 "Action": "polly:SynthesizeSpeech",
 "Resource": "*",
 "Effect": "Allow"
 }
]
}

使用创建 Amazon 资源 Amazon CloudFormation

Amazon CloudFormation 使您能够以可预测的方式重复创建和配置 Amazon 基础架构部署。有关的更
多信息 Amazon CloudFormation，请参阅《Amazon CloudFormation 用户指南》。

要创建 Amazon CloudFormation 堆栈，请执行以下操作：

1. 按照《 Amazon CLI Amazon CLI 用户指南》中的说明进行安装和配置。

2. 在项目文件夹的根目录setup.yaml中创建一个名为的文件，然后将此处的内容复制 GitHub到该
文件中。

Amazon Polly 示例 89

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/
https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-welcome.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/polly/general-examples/src/setup.yaml

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

Note

该 Amazon CloudFormation 模板是使用此处 Amazon CDK 提供的模板生成的 GitHub。
有关更多信息 Amazon CDK，请参阅《Amazon Cloud Development Kit (Amazon CDK)
开发人员指南》。

3. 从命令行运行以下命令，STACK_NAME替换为堆栈的唯一名称。

Important

堆栈名称在 Amazon 区域和 Amazon 账户中必须是唯一的。您最多可指定 128 个字符，
支持数字和连字符。

aws cloudformation create-stack --stack-name STACK_NAME --template-body file://
setup.yaml --capabilities CAPABILITY_IAM

有关 create-stack 命令参数的更多信息，请参阅 Amazon CLI 命令参考指南和 Amazon
CloudFormation 用户指南。

4. 导航到 Amazon CloudFormation 管理控制台，选择堆栈，选择堆栈名称，然后选择资源选项卡以
查看已创建资源的列表。

将使用 Amazon Polly 录制的音频上传到 Amazon S3

创建文件名为 polly_synthesize_to_s3.js 的 Node.js 模块。确保如前所示配置 SDK，包括安装
所需的客户端和软件包。在代码中，输入REGION、和BUCKET_NAME。要访问 Amazon Polly，请创建
一个 Polly 客户端服务对象。"IDENTITY_POOL_ID"替换为您为此示例创建的 Amazon Cognito 身
份池示例页面中的。IdentityPoolId这也被传递给每个客户端对象。

调用 Amazon Polly 客户端服务对象的 StartSpeechSynthesisCommand 方法以合成语音消息，将
其上传到 Amazon S3 存储桶。

import { StartSpeechSynthesisTaskCommand } from "@aws-sdk/client-polly";
import { pollyClient } from "./libs/pollyClient.js";

// Create the parameters
const params = {

Amazon Polly 示例 90

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/resources/cdk/javascript_example_code_polly_aws_service/
https://docs.amazonaws.cn/cdk/latest/guide/
https://docs.amazonaws.cn/cdk/latest/guide/
https://docs.amazonaws.cn/cli/latest/reference/cloudformation/create-stack.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/using-cfn-cli-creating-stack.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/using-cfn-cli-creating-stack.html

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 OutputFormat: "mp3",
 OutputS3BucketName: "videoanalyzerbucket",
 Text: "Hello David, How are you?",
 TextType: "text",
 VoiceId: "Joanna",
 SampleRate: "22050",
};

const run = async () => {
 try {
 await pollyClient.send(new StartSpeechSynthesisTaskCommand(params));
 console.log(`Success, audio file added to ${params.OutputS3BucketName}`);
 } catch (err) {
 console.log("Error putting object", err);
 }
};
run();

可以在此处找到此示例代码 GitHub。

Amazon Redshift 示例

Amazon Redshift 是云中一种完全托管的 PB 级数据仓库服务。Amazon Redshift 数据仓库是一个由称
作节点的各种计算资源构成的集合，这些节点已整理到名为集群的组中。每个集群运行一个 Amazon
Redshift 引擎并包含一个或多个数据库。

适用于 Amazon Redshift 的 JavaScript API 通过 Amazon Redshift 客户端类公开。

主题

• Amazon Redshift 示例

Amazon Redshift 示例 91

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascriptv3/example_code/polly/general-examples/src/polly_synthesize_to_s3.js
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-redshift/Class/Redshift/

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

Amazon Redshift 示例

此示例使用一系列 Node.js 模块来创建、修改、描述 Amazon Redshift 集群的参数，然后使用
Redshift 客户端类的以下方法删除这些集群：

• CreateClusterCommand

• ModifyClusterCommand

• DescribeClustersCommand

• DeleteClusterCommand

有关 Amazon Redshift 用户的更多信息，请参阅 Amazon Redshift 入门指南。

先决条件任务

要设置和运行此示例，您必须先完成以下任务：

• 设置项目环境以运行这些 Node TypeScript 示例，并安装所需的 适用于 JavaScript 的 Amazon SDK
和第三方模块。请按照 GitHub 上的说明进行操作。

• 使用用户凭证创建共享配置文件。有关提供共享凭证文件的更多信息，请参阅《Amazon SDK 和工
具参考指南》 中的共享配置和凭证文件。

Important

这些示例演示了如何使用 ECMAScript6（ES6）导入/导出客户端服务对象和命令。

• 这需要使用 Node.js 版本 13.x 或更高版本。要下载并安装最新版本的 Node.js，请参阅
Node.js 下载。

• 如果您更喜欢使用 CommonJS 语法，请参阅 JavaScript ES6/CommonJS 语法

创建 Amazon Redshift 集群

此示例演示如何使用 适用于 JavaScript 的 Amazon SDK 创建 Amazon Redshift 集群。有关更多信
息，请参阅 CreateCluster。

Amazon Redshift 示例 92

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-redshift/Class/CreateClusterCommand/
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-redshift/Class/ModifyClusterCommand/
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-redshift/Class/DescribeClustersCommand/
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-redshift/Class/DeleteClusterCommand/
https://docs.amazonaws.cn/redshift/latest/gsg/getting-started.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/redshift/README.md
https://docs.amazonaws.cn/sdkref/latest/guide/file-format.html
https://nodejs.org/en/download
https://docs.amazonaws.cn/redshift/latest/APIReference/API_CreateCluster

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

Important

您即将创建的集群将是活跃的（且不在沙盒中运行）。您需要为该集群支付标准 Amazon
Redshift 使用费，直到删除它为止。如果您在创建集群的相同位置删除了集群，则产生的总费
用其实是很少的。

创建一个 libs 目录，然后使用文件名 redshiftClient.js 创建一个 Node.js 模块。将以下代码复
制并粘贴到其中，这将创建 Amazon Redshift 客户端对象。将 REGION 替换为您的 Amazon 区域。

import { RedshiftClient } from "@aws-sdk/client-redshift";
// Set the AWS Region.
const REGION = "REGION"; //e.g. "us-east-1"
// Create Redshift service object.
const redshiftClient = new RedshiftClient({ region: REGION });
export { redshiftClient };

此示例代码可在 GitHub 上的此处找到。

创建文件名为 redshift-create-cluster.js 的 Node.js 模块。确保如前所示配置 SDK，包括安
装所需的客户端和软件包。创建参数对象，指定要预置的节点类型，以及在集群中自动创建的数据库实
例的主登录凭证，最后指定集群类型。

Note

将 CLUSTER_NAME 替换为集群的名称。对于 NODE_TYPE，请指定要预置的节点类型，例如
“dc2.large”。MASTER_USERNAME 和 MASTER_USER_PASSWORD 是集群中数据库实例的主用
户的登录凭证。对于 CLUSTER_TYPE，输入集群的类型。如果指定 single-node，则不需要
NumberOfNodes 参数。其余参数均为可选参数。

// Import required AWS SDK clients and commands for Node.js
import { CreateClusterCommand } from "@aws-sdk/client-redshift";
import { redshiftClient } from "./libs/redshiftClient.js";

const params = {
 ClusterIdentifier: "CLUSTER_NAME", // Required
 NodeType: "NODE_TYPE", //Required
 MasterUsername: "MASTER_USER_NAME", // Required - must be lowercase

Amazon Redshift 示例 93

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/redshift/src/libs/redshiftClient.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 MasterUserPassword: "MASTER_USER_PASSWORD", // Required - must contain at least one
 uppercase letter, and one number
 ClusterType: "CLUSTER_TYPE", // Required
 IAMRoleARN: "IAM_ROLE_ARN", // Optional - the ARN of an IAM role with permissions
 your cluster needs to access other AWS services on your behalf, such as Amazon S3.
 ClusterSubnetGroupName: "CLUSTER_SUBNET_GROUPNAME", //Optional - the name of a
 cluster subnet group to be associated with this cluster. Defaults to 'default' if not
 specified.
 DBName: "DATABASE_NAME", // Optional - defaults to 'dev' if not specified
 Port: "PORT_NUMBER", // Optional - defaults to '5439' if not specified
};

const run = async () => {
 try {
 const data = await redshiftClient.send(new CreateClusterCommand(params));
 console.log(
 `Cluster ${data.Cluster.ClusterIdentifier} successfully created`,
);
 return data; // For unit tests.
 } catch (err) {
 console.log("Error", err);
 }
};
run();

要运行示例，请在命令提示符中键入以下内容。

node redshift-create-cluster.js

此示例代码可在 GitHub 上的此处找到。

修改 Amazon Redshift 集群

此示例展示了如何使用 适用于 JavaScript 的 Amazon SDK 修改 Amazon Redshift 集群的主用户密
码。有关您可以修改的其他设置的更多信息，请参阅 ModifyCluster。

创建一个 libs 目录，然后使用文件名 redshiftClient.js 创建一个 Node.js 模块。将以下代码复
制并粘贴到其中，这将创建 Amazon Redshift 客户端对象。将 REGION 替换为您的 Amazon 区域。

import { RedshiftClient } from "@aws-sdk/client-redshift";
// Set the AWS Region.
const REGION = "REGION"; //e.g. "us-east-1"

Amazon Redshift 示例 94

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/redshift/src/redshift-create-cluster.js
https://docs.amazonaws.cn/redshift/latest/APIReference/API_ModifyCluster.html

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

// Create Redshift service object.
const redshiftClient = new RedshiftClient({ region: REGION });
export { redshiftClient };

此示例代码可在 GitHub 上的此处找到。

创建文件名为 redshift-modify-cluster.js 的 Node.js 模块。确保如前所示配置 SDK，包括安
装所需的客户端和软件包。指定 Amazon 区域、要修改的集群名称和新的主用户密码。

Note

将 CLUSTER_NAME 替换为集群名称，将 MASTER_USER_PASSWORD 替换为新的主用户密码。

// Import required AWS SDK clients and commands for Node.js
import { ModifyClusterCommand } from "@aws-sdk/client-redshift";
import { redshiftClient } from "./libs/redshiftClient.js";

// Set the parameters
const params = {
 ClusterIdentifier: "CLUSTER_NAME",
 MasterUserPassword: "NEW_MASTER_USER_PASSWORD",
};

const run = async () => {
 try {
 const data = await redshiftClient.send(new ModifyClusterCommand(params));
 console.log("Success was modified.", data);
 return data; // For unit tests.
 } catch (err) {
 console.log("Error", err);
 }
};
run();

要运行示例，请在命令提示符中键入以下内容。

node redshift-modify-cluster.js

此示例代码可在 GitHub 上的此处找到。

Amazon Redshift 示例 95

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/redshift/src/libs/redshiftClient.js
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/redshift/src/redshift-modify-cluster.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

查看 Amazon Redshift 集群的详细信息

此示例说明了如何使用 适用于 JavaScript 的 Amazon SDK 查看 Amazon Redshift 集群的详细信息。
有关可选内容的更多信息，请参见 DescribeClusters。

创建一个 libs 目录，然后使用文件名 redshiftClient.js 创建一个 Node.js 模块。将以下代码复
制并粘贴到其中，这将创建 Amazon Redshift 客户端对象。将 REGION 替换为您的 Amazon 区域。

import { RedshiftClient } from "@aws-sdk/client-redshift";
// Set the AWS Region.
const REGION = "REGION"; //e.g. "us-east-1"
// Create Redshift service object.
const redshiftClient = new RedshiftClient({ region: REGION });
export { redshiftClient };

此示例代码可在 GitHub 上的此处找到。

创建文件名为 redshift-describe-clusters.js 的 Node.js 模块。确保如前所示配置 SDK，包
括安装所需的客户端和软件包。指定 Amazon 区域、要修改的集群名称和新的主用户密码。

Note

将 CLUSTER_NAME 替换为集群的名称。

// Import required AWS SDK clients and commands for Node.js
import { DescribeClustersCommand } from "@aws-sdk/client-redshift";
import { redshiftClient } from "./libs/redshiftClient.js";

const params = {
 ClusterIdentifier: "CLUSTER_NAME",
};

const run = async () => {
 try {
 const data = await redshiftClient.send(new DescribeClustersCommand(params));
 console.log("Success", data);
 return data; // For unit tests.
 } catch (err) {
 console.log("Error", err);
 }
};

Amazon Redshift 示例 96

https://docs.amazonaws.cn/redshift/latest/APIReference/API_DescribeClusters.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/redshift/src/libs/redshiftClient.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

run();

要运行示例，请在命令提示符中键入以下内容。

node redshift-describe-clusters.js

此示例代码可在 GitHub 上的此处找到。

删除 Amazon Redshift 集群

此示例说明了如何使用 适用于 JavaScript 的 Amazon SDK 查看 Amazon Redshift 集群的详细信息。
有关您可以删除的其他设置的更多信息，请参阅 DeleteCluster。

创建一个 libs 目录，然后使用文件名 redshiftClient.js 创建一个 Node.js 模块。将以下代码复
制并粘贴到其中，这将创建 Amazon Redshift 客户端对象。将 REGION 替换为您的 Amazon 区域。

import { RedshiftClient } from "@aws-sdk/client-redshift";
// Set the AWS Region.
const REGION = "REGION"; //e.g. "us-east-1"
// Create Redshift service object.
const redshiftClient = new RedshiftClient({ region: REGION });
export { redshiftClient };

此示例代码可在 GitHub 上的此处找到。

创建文件名为 redshift-delete-clusters.js 的 Node.js 模块。确保如前所示配置 SDK，包括
安装所需的客户端和软件包。指定 Amazon 区域、要修改的集群名称和新的主用户密码。指定是否要
在删除集群之前保存集群的最终快照，如果是，则指定快照的 ID。

Note

将 CLUSTER_NAME 替换为集群的名称。对于 SkipFinalClusterSnapshot，请指定是否要
在删除集群前对其创建最终快照。如果指定“false”，请在 CLUSTER_SNAPSHOT_ID 中指定最
终集群快照的 ID。要获取此 ID，请单击集群仪表板上集群对应的快照列中的链接，然后滚动
到快照窗格。请注意，词干 rs: 不是快照 ID 的一部分。

// Import required AWS SDK clients and commands for Node.js
import { DeleteClusterCommand } from "@aws-sdk/client-redshift";
import { redshiftClient } from "./libs/redshiftClient.js";

Amazon Redshift 示例 97

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/redshift/src/redshift-describe-clusters.js
https://docs.amazonaws.cn/redshift/latest/APIReference/API_DeleteCluster.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/redshift/src/libs/redshiftClient.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const params = {
 ClusterIdentifier: "CLUSTER_NAME",
 SkipFinalClusterSnapshot: false,
 FinalClusterSnapshotIdentifier: "CLUSTER_SNAPSHOT_ID",
};

const run = async () => {
 try {
 const data = await redshiftClient.send(new DeleteClusterCommand(params));
 console.log("Success, cluster deleted. ", data);
 return data; // For unit tests.
 } catch (err) {
 console.log("Error", err);
 }
};
run();

要运行示例，请在命令提示符中键入以下内容。

node redshift-delete-cluster.js

此示例代码可在 GitHub 上的此处找到。

Amazon Simple Email Service 示例

Amazon Simple Email Service (Amazon SES) 是一项基于云端的电子邮件发送服务，旨在帮助数字营
销人员和应用程序开发人员发送营销、通知和事务电子邮件。对于使用电子邮件联系客户的所有规模的
企业来说，它是一种可靠且经济实用的服务。

适用于 Amazon SES 的 JavaScript API 通过 SES 客户端类公开。有关使用 Amazon SES 客户端类的
更多信息，请参阅《API 参考》中的类：SES。

Amazon SES 示例 98

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/redshift/src/redshift-delete-cluster.js
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-ses/Class/SES/

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

主题

• 管理 Amazon SES 身份

• 在 Amazon SES 中使用电子邮件模板

• 使用 Amazon SES 发送电子邮件

管理 Amazon SES 身份

此 Node.js 代码示例演示：

• 如何验证用于 Amazon SES 的电子邮件地址和域。

• 如何将 Amazon Identity and Access Management (IAM) 策略分配到您的 Amazon SES 身份。

• 如何列出您 Amazon 账户中的所有 Amazon SES 身份。

• 如何删除用于 Amazon SES 的身份。

Amazon SES 身份 是 Amazon SES 用来发送电子邮件的电子邮件地址或域。Amazon SES 要求您验
证电子邮件身份，以确认您拥有该身份，并防止他人使用。

有关如何在 Amazon SES 中验证电子邮件地址和域名的详细信息，请参阅《Amazon Simple Email
Service 开发人员指南》中的在 Amazon SES 中验证电子邮件地址和域。有关在 Amazon SES 中发送
授权的信息，请参阅 Amazon SES 发送授权概述。

情景

在本示例中，您使用一系列 Node.js 模块验证和管理 Amazon SES 身份。Node.js 模块使用 SDK for
JavaScript，通过 SES 客户端类的以下方法来验证电子邮件地址和域：

• ListIdentitiesCommand

• DeleteIdentityCommand

• VerifyEmailIdentityCommand

• VerifyDomainIdentityCommand

Amazon SES 示例 99

https://docs.amazonaws.cn/ses/latest/DeveloperGuide/verify-addresses-and-domains.html
Amazon%20Simple%20Email%20Service%20Developer%20Guidesending-authorization-overview.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-ses/Class/ListIdentitiesCommand/
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-ses/Class/DeleteIdentityCommand/
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-ses/Class/VerifyEmailIdentityCommand/
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-ses/Class/VerifyDomainIdentityCommand/

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

先决条件任务

要设置和运行此示例，您必须先完成以下任务：

• 设置项目环境以运行这些 Node TypeScript 示例，并安装所需的 适用于 JavaScript 的 Amazon SDK
和第三方模块。请按照 GitHub 上的说明进行操作。

• 使用用户凭证创建共享配置文件。有关提供共享凭证文件的更多信息，请参阅《Amazon SDK 和工
具参考指南》 中的共享配置和凭证文件。

Important

这些示例演示了如何使用 ECMAScript6（ES6）导入/导出客户端服务对象和命令。

• 这需要使用 Node.js 版本 13.x 或更高版本。要下载并安装最新版本的 Node.js，请参阅
Node.js 下载。

• 如果您更喜欢使用 CommonJS 语法，请参阅 JavaScript ES6/CommonJS 语法。

列出身份

在本示例中，使用 Node.js 模块列出用于 Amazon SES 的电子邮件地址和域。

创建一个 libs 目录，然后使用文件名 sesClient.js 创建一个 Node.js 模块。将以下代码复制并粘
贴到其中，这将创建 Amazon SES 客户端对象。将 REGION 替换为您的 Amazon 区域。

import { SESClient } from "@aws-sdk/client-ses";
// Set the AWS Region.
const REGION = "us-east-1";
// Create SES service object.
const sesClient = new SESClient({ region: REGION });
export { sesClient };

此示例代码可在 GitHub 上的此处找到。

创建文件名为 ses_listidentities.js 的 Node.js 模块。如前所示配置 SDK，包括安装所需的客
户端和软件包。

创建对象，为 IdentityType 客户端类的 ListIdentitiesCommand 方法传递 SES 及其他参数。
要调用 ListIdentitiesCommand 方法，请调用一个 Amazon SES 服务对象来传递参数对象。

Amazon SES 示例 100

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ses/README.md
https://docs.amazonaws.cn/sdkref/latest/guide/file-format.html
https://nodejs.org/en/download
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/ses/src/libs/sesClient.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

返回的 data 包含 IdentityType 参数所指定的域身份数组。

Note

将 IdentityType 替换为身份类型，该身份类型可以是“电子邮件地址”或“域”。

import { ListIdentitiesCommand } from "@aws-sdk/client-ses";
import { sesClient } from "./libs/sesClient.js";

const createListIdentitiesCommand = () =>
 new ListIdentitiesCommand({ IdentityType: "EmailAddress", MaxItems: 10 });

const run = async () => {
 const listIdentitiesCommand = createListIdentitiesCommand();

 try {
 return await sesClient.send(listIdentitiesCommand);
 } catch (err) {
 console.log("Failed to list identities.", err);
 return err;
 }
};

要运行示例，请在命令提示符中键入以下内容。

node ses_listidentities.js

此示例代码可在 GitHub 上的此处找到。

验证电子邮件地址身份

在本示例中，使用 Node.js 模块验证用于 Amazon SES 的电子邮件发送方。

创建一个 libs 目录，然后使用文件名 sesClient.js 创建一个 Node.js 模块。将以下代码复制并粘
贴到其中，这将创建 Amazon SES 客户端对象。将 REGION 替换为您的 Amazon 区域。

import { SESClient } from "@aws-sdk/client-ses";
// Set the AWS Region.
const REGION = "us-east-1";
// Create SES service object.

Amazon SES 示例 101

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/ses/src/ses_listidentities.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const sesClient = new SESClient({ region: REGION });
export { sesClient };

此示例代码可在 GitHub 上的此处找到。

创建文件名为 ses_verifyemailidentity.js 的 Node.js 模块。如前所示配置 SDK，包括下载所
需的客户端和软件包。

创建对象，为 EmailAddress 客户端类的 VerifyEmailIdentityCommand 方法传递 SES 参数。
要调用 VerifyEmailIdentityCommand 方法，请调用一个 Amazon SES 客户端服务对象来传递参
数。

Note

将 EMAIL_ADDRESS 替换为电子邮件地址，例如 name@example.com。

// Import required AWS SDK clients and commands for Node.js
import { VerifyEmailIdentityCommand } from "@aws-sdk/client-ses";
import { sesClient } from "./libs/sesClient.js";

const EMAIL_ADDRESS = "name@example.com";

const createVerifyEmailIdentityCommand = (emailAddress) => {
 return new VerifyEmailIdentityCommand({ EmailAddress: emailAddress });
};

const run = async () => {
 const verifyEmailIdentityCommand =
 createVerifyEmailIdentityCommand(EMAIL_ADDRESS);
 try {
 return await sesClient.send(verifyEmailIdentityCommand);
 } catch (err) {
 console.log("Failed to verify email identity.", err);
 return err;
 }
};

要运行示例，请在命令提示符中键入以下内容。域会添加到 Amazon SES 等待验证。

node ses_verifyemailidentity.js

Amazon SES 示例 102

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/ses/src/libs/sesClient.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

此示例代码可在 GitHub 上的此处找到。

验证域身份

在本示例中，使用 Node.js 模块验证用于 Amazon SES 的电子邮件域。

创建一个 libs 目录，然后使用文件名 sesClient.js 创建一个 Node.js 模块。将以下代码复制并粘
贴到其中，这将创建 Amazon SES 客户端对象。将 REGION 替换为您的 Amazon 区域。

import { SESClient } from "@aws-sdk/client-ses";
// Set the AWS Region.
const REGION = "us-east-1";
// Create SES service object.
const sesClient = new SESClient({ region: REGION });
export { sesClient };

此示例代码可在 GitHub 上的此处找到。

创建文件名为 ses_verifydomainidentity.js 的 Node.js 模块。如前所示配置 SDK，包括安装
所需的客户端和软件包。

创建对象，为 Domain 客户端类的 VerifyDomainIdentityCommand 方法传递 SES 参数。要调用
VerifyDomainIdentityCommand 方法，请调用一个 Amazon SES 客户端服务对象来传递参数对
象。

Note

此示例导入并使用所需的 Amazon 服务 V3 软件包客户端、V3 命令，并以异步/等待模式使用
send 方法。您可以改用 V2 命令创建此示例，方法是进行一些细微的更改。有关更多信息，请
参阅 使用 v3 命令。

Note

将 DOMAIN_NAME 替换为域名。

import { VerifyDomainIdentityCommand } from "@aws-sdk/client-ses";
import {
 getUniqueName,

Amazon SES 示例 103

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/ses/src/ses_verifyemailidentity.js
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/ses/src/libs/sesClient.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 postfix,
} from "@aws-doc-sdk-examples/lib/utils/util-string.js";
import { sesClient } from "./libs/sesClient.js";

/**
 * You must have access to the domain's DNS settings to complete the
 * domain verification process.
 */
const DOMAIN_NAME = postfix(getUniqueName("Domain"), ".example.com");

const createVerifyDomainIdentityCommand = () => {
 return new VerifyDomainIdentityCommand({ Domain: DOMAIN_NAME });
};

const run = async () => {
 const VerifyDomainIdentityCommand = createVerifyDomainIdentityCommand();

 try {
 return await sesClient.send(VerifyDomainIdentityCommand);
 } catch (err) {
 console.log("Failed to verify domain.", err);
 return err;
 }
};

要运行示例，请在命令提示符中键入以下内容。域会添加到 Amazon SES 等待验证。

node ses_verifydomainidentity.js

此示例代码可在 GitHub 上的此处找到。

删除身份

在本示例中，使用 Node.js 模块删除用于 Amazon SES 的电子邮件地址或域。

创建一个 libs 目录，然后使用文件名 sesClient.js 创建一个 Node.js 模块。将以下代码复制并粘
贴到其中，这将创建 Amazon SES 客户端对象。将 REGION 替换为您的 Amazon 区域。

import { SESClient } from "@aws-sdk/client-ses";
// Set the AWS Region.
const REGION = "us-east-1";
// Create SES service object.
const sesClient = new SESClient({ region: REGION });

Amazon SES 示例 104

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/ses/src/ses_verifydomainidentity.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

export { sesClient };

此示例代码可在 GitHub 上的此处找到。

创建文件名为 ses_deleteidentity.js 的 Node.js 模块。如前所示配置 SDK，包括安装所需的客
户端和软件包。

创建对象，为 Identity 客户端类的 DeleteIdentityCommand 方法传递 SES 参数。要调用
DeleteIdentityCommand 方法，请创建一个 request 来调用 Amazon SES 客户端服务对象并传
递参数。

Note

此示例导入并使用所需的 Amazon 服务 V3 软件包客户端、V3 命令，并以异步/等待模式使用
send 方法。您可以改用 V2 命令创建此示例，方法是进行一些细微的更改。有关更多信息，请
参阅 使用 v3 命令。

Note

将 IDENTITY_EMAIL 替换为要删除的身份的电子邮件地址。

import { DeleteIdentityCommand } from "@aws-sdk/client-ses";
import { sesClient } from "./libs/sesClient.js";

const IDENTITY_EMAIL = "fake@example.com";

const createDeleteIdentityCommand = (identityName) => {
 return new DeleteIdentityCommand({
 Identity: identityName,
 });
};

const run = async () => {
 const deleteIdentityCommand = createDeleteIdentityCommand(IDENTITY_EMAIL);

 try {
 return await sesClient.send(deleteIdentityCommand);
 } catch (err) {

Amazon SES 示例 105

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/ses/src/libs/sesClient.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 console.log("Failed to delete identity.", err);
 return err;
 }
};

要运行示例，请在命令提示符中键入以下内容。

node ses_deleteidentity.js

此示例代码可在 GitHub 上的此处找到。

在 Amazon SES 中使用电子邮件模板

此 Node.js 代码示例演示：

• 如何获取所有电子邮件模板的列表。

• 如何检索和更新电子邮件模板。

• 如何创建和删除电子邮件模板。

通过 Amazon SES，您可以使用电子邮件模板发送个性化的电子邮件。有关如何在 Amazon SES 中创
建和使用电子邮件模板的详细信息，请参阅《Amazon Simple Email Service 开发人员指南》中的通过
Amazon SES API 发送个性化电子邮件。

情景

在本示例中，您使用一系列 Node.js 模块来处理电子邮件模板。Node.js 模块使用 SDK for
JavaScript，通过 SES 客户端类的以下方法来创建和使用电子邮件模板：

• ListTemplatesCommand

• CreateTemplateCommand

• GetTemplateCommand

• DeleteTemplateCommand

• UpdateTemplateCommand

Amazon SES 示例 106

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/ses/src/ses_deleteidentity.js
https://docs.amazonaws.cn/ses/latest/DeveloperGuide/send-personalized-email-api.html
https://docs.amazonaws.cn/ses/latest/DeveloperGuide/send-personalized-email-api.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-ses/Class/ListTemplatesCommand/
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-ses/Class/CreateTemplateCommand/
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-ses/Class/GetTemplateCommand/
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-ses/Class/DeleteTemplateCommand/
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-ses/Class/UpdateTemplateCommand/

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

先决条件任务

要设置和运行此示例，您必须先完成以下任务：

• 设置项目环境以运行这些 Node TypeScript 示例，并安装所需的 适用于 JavaScript 的 Amazon SDK
和第三方模块。请按照 GitHub 上的说明进行操作。

• 使用用户凭证创建共享配置文件。有关提供共享凭证文件的更多信息，请参阅《Amazon SDK 和工
具参考指南》 中的共享配置和凭证文件。

Important

这些示例演示了如何使用 ECMAScript6（ES6）导入/导出客户端服务对象和命令。

• 这需要使用 Node.js 版本 13.x 或更高版本。要下载并安装最新版本的 Node.js，请参阅
Node.js 下载。

• 如果您更喜欢使用 CommonJS 语法，请参阅 JavaScript ES6/CommonJS 语法。

列出电子邮件模板

在本示例中，使用 Node.js 模块创建用于 Amazon SES 的电子邮件模板。

创建一个 libs 目录，然后使用文件名 sesClient.js 创建一个 Node.js 模块。将以下代码复制并粘
贴到其中，这将创建 Amazon SES 客户端对象。将 REGION 替换为您的 Amazon 区域。

import { SESClient } from "@aws-sdk/client-ses";
// Set the AWS Region.
const REGION = "us-east-1";
// Create SES service object.
const sesClient = new SESClient({ region: REGION });
export { sesClient };

此示例代码可在 GitHub 上的此处找到。

创建文件名为 ses_listtemplates.js 的 Node.js 模块。如前所示配置 SDK，包括安装所需的客户
端和软件包。

创建对象，为 ListTemplatesCommand 客户端类的 SES 方法传递参数。要调用
ListTemplatesCommand 方法，请调用一个 Amazon SES 客户端服务对象来传递参数。

Amazon SES 示例 107

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ses/README.md
https://docs.amazonaws.cn/sdkref/latest/guide/file-format.html
https://nodejs.org/en/download
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/ses/src/libs/sesClient.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

Note

此示例导入并使用所需的 Amazon 服务 V3 软件包客户端、V3 命令，并以异步/等待模式使用
send 方法。您可以改用 V2 命令创建此示例，方法是进行一些细微的更改。有关更多信息，请
参阅 使用 v3 命令。

import { ListTemplatesCommand } from "@aws-sdk/client-ses";
import { sesClient } from "./libs/sesClient.js";

const createListTemplatesCommand = (maxItems) =>
 new ListTemplatesCommand({ MaxItems: maxItems });

const run = async () => {
 const listTemplatesCommand = createListTemplatesCommand(10);

 try {
 return await sesClient.send(listTemplatesCommand);
 } catch (err) {
 console.log("Failed to list templates.", err);
 return err;
 }
};

要运行示例，请在命令提示符中键入以下内容。Amazon SES 会返回模板列表。

node ses_listtemplates.js

此示例代码可在 GitHub 上的此处找到。

获取电子邮件模板

在本示例中，使用 Node.js 模块获取用于 Amazon SES 的电子邮件模板。

创建一个 libs 目录，然后使用文件名 sesClient.js 创建一个 Node.js 模块。将以下代码复制并粘
贴到其中，这将创建 Amazon SES 客户端对象。将 REGION 替换为您的 Amazon 区域。

import { SESClient } from "@aws-sdk/client-ses";
// Set the AWS Region.
const REGION = "us-east-1";
// Create SES service object.

Amazon SES 示例 108

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/ses/src/ses_listtemplates.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const sesClient = new SESClient({ region: REGION });
export { sesClient };

此示例代码可在 GitHub 上的此处找到。

创建文件名为 ses_gettemplate.js 的 Node.js 模块。如前所示配置 SDK，包括安装所需的客户端
和软件包。

创建对象，为 TemplateName 客户端类的 GetTemplateCommand 方法传递 SES 参数。要调用
GetTemplateCommand 方法，请调用一个 Amazon SES 客户端服务对象来传递参数。

Note

此示例导入并使用所需的 Amazon 服务 V3 软件包客户端、V3 命令，并以异步/等待模式使用
send 方法。您可以改用 V2 命令创建此示例，方法是进行一些细微的更改。有关更多信息，请
参阅 使用 v3 命令。

Note

将 TEMPLATE_NAME 替换为要返回的模板的名称。

import { GetTemplateCommand } from "@aws-sdk/client-ses";
import { getUniqueName } from "@aws-doc-sdk-examples/lib/utils/util-string.js";
import { sesClient } from "./libs/sesClient.js";

const TEMPLATE_NAME = getUniqueName("TemplateName");

const createGetTemplateCommand = (templateName) =>
 new GetTemplateCommand({ TemplateName: templateName });

const run = async () => {
 const getTemplateCommand = createGetTemplateCommand(TEMPLATE_NAME);

 try {
 return await sesClient.send(getTemplateCommand);
 } catch (caught) {
 if (caught instanceof Error && caught.name === "MessageRejected") {
 /** @type { import('@aws-sdk/client-ses').MessageRejected} */
 const messageRejectedError = caught;

Amazon SES 示例 109

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/ses/src/libs/sesClient.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 return messageRejectedError;
 }
 throw caught;
 }
};

要运行示例，请在命令提示符中键入以下内容。Amazon SES 会返回模板详细信息。

node ses_gettemplate.js

此示例代码可在 GitHub 上的此处找到。

创建电子邮件模板

在本示例中，使用 Node.js 模块创建用于 Amazon SES 的电子邮件模板。

创建一个 libs 目录，然后使用文件名 sesClient.js 创建一个 Node.js 模块。将以下代码复制并粘
贴到其中，这将创建 Amazon SES 客户端对象。将 REGION 替换为您的 Amazon 区域。

import { SESClient } from "@aws-sdk/client-ses";
// Set the AWS Region.
const REGION = "us-east-1";
// Create SES service object.
const sesClient = new SESClient({ region: REGION });
export { sesClient };

此示例代码可在 GitHub 上的此处找到。

创建文件名为 ses_createtemplate.js 的 Node.js 模块。如前所示配置 SDK，包括安装所需的客
户端和软件包。

创建一个对象来为 CreateTemplateCommand 客户端类的 SES 方法传递参数，其中包括
TemplateName、HtmlPart、SubjectPart 和 TextPart。要调用 CreateTemplateCommand
方法，请调用一个 Amazon SES 客户端服务对象来传递参数。

Note

此示例导入并使用所需的 Amazon 服务 V3 软件包客户端、V3 命令，并以异步/等待模式使用
send 方法。您可以改用 V2 命令创建此示例，方法是进行一些细微的更改。有关更多信息，请
参阅 使用 v3 命令。

Amazon SES 示例 110

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/ses/src/ses_gettemplate.js
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/ses/src/libs/sesClient.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

Note

将 TEMPLATE_NAME 替换为新模板的名称，将 HtmlPart 替换为带有 HTML 标签的电子邮件
内容，将 SubjectPart 替换为电子邮件的主题。

import { CreateTemplateCommand } from "@aws-sdk/client-ses";
import { sesClient } from "./libs/sesClient.js";
import { getUniqueName } from "@aws-doc-sdk-examples/lib/utils/util-string.js";

const TEMPLATE_NAME = getUniqueName("TestTemplateName");

const createCreateTemplateCommand = () => {
 return new CreateTemplateCommand({
 /**
 * The template feature in Amazon SES is based on the Handlebars template system.
 */
 Template: {
 /**
 * The name of an existing template in Amazon SES.
 */
 TemplateName: TEMPLATE_NAME,
 HtmlPart: `
 <h1>Hello, {{contact.firstName}}!</h1>
 <p>
 Did you know Amazon has a mascot named Peccy?
 </p>
 `,
 SubjectPart: "Amazon Tip",
 },
 });
};

const run = async () => {
 const createTemplateCommand = createCreateTemplateCommand();

 try {
 return await sesClient.send(createTemplateCommand);
 } catch (err) {
 console.log("Failed to create template.", err);
 return err;

Amazon SES 示例 111

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }
};

要运行示例，请在命令提示符中键入以下内容。该模板已添加到 Amazon SES。

node ses_createtemplate.js

此示例代码可在 GitHub 上的此处找到。

更新电子邮件模板

在本示例中，使用 Node.js 模块创建用于 Amazon SES 的电子邮件模板。

创建一个 libs 目录，然后使用文件名 sesClient.js 创建一个 Node.js 模块。将以下代码复制并粘
贴到其中，这将创建 Amazon SES 客户端对象。将 REGION 替换为您的 Amazon 区域。

import { SESClient } from "@aws-sdk/client-ses";
// Set the AWS Region.
const REGION = "us-east-1";
// Create SES service object.
const sesClient = new SESClient({ region: REGION });
export { sesClient };

此示例代码可在 GitHub 上的此处找到。

创建文件名为 ses_updatetemplate.js 的 Node.js 模块。如前所示配置 SDK，包括安装所需的客
户端和软件包。

创建一个对象来传递您在模板中要更新的 Template 参数值，并将必需的 TemplateName 参数传递
到 UpdateTemplateCommand 客户端类的 SES 方法。要调用 UpdateTemplateCommand 方法，请
调用一个 Amazon SES 服务对象来传递参数。

Note

此示例导入并使用所需的 Amazon 服务 V3 软件包客户端、V3 命令，并以异步/等待模式使用
send 方法。您可以改用 V2 命令创建此示例，方法是进行一些细微的更改。有关更多信息，请
参阅 使用 v3 命令。

Amazon SES 示例 112

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/ses/src/ses_createtemplate.js
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/ses/src/libs/sesClient.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

Note

将 TEMPLATE_NAME 替换为模板名称，将 HTML_PART 替换为带有 HTML 标签的电子邮件内
容。

import { UpdateTemplateCommand } from "@aws-sdk/client-ses";
import { getUniqueName } from "@aws-doc-sdk-examples/lib/utils/util-string.js";
import { sesClient } from "./libs/sesClient.js";

const TEMPLATE_NAME = getUniqueName("TemplateName");
const HTML_PART = "<h1>Hello, World!</h1>";

const createUpdateTemplateCommand = () => {
 return new UpdateTemplateCommand({
 Template: {
 TemplateName: TEMPLATE_NAME,
 HtmlPart: HTML_PART,
 SubjectPart: "Example",
 TextPart: "Updated template text.",
 },
 });
};

const run = async () => {
 const updateTemplateCommand = createUpdateTemplateCommand();

 try {
 return await sesClient.send(updateTemplateCommand);
 } catch (err) {
 console.log("Failed to update template.", err);
 return err;
 }
};

要运行示例，请在命令提示符中键入以下内容。Amazon SES 会返回模板详细信息。

node ses_updatetemplate.js

此示例代码可在 GitHub 上的此处找到。

Amazon SES 示例 113

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/ses/src/ses_updatetemplate.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

删除电子邮件模板

在本示例中，使用 Node.js 模块创建用于 Amazon SES 的电子邮件模板。

创建一个 libs 目录，然后使用文件名 sesClient.js 创建一个 Node.js 模块。将以下代码复制并粘
贴到其中，这将创建 Amazon SES 客户端对象。将 REGION 替换为您的 Amazon 区域。

import { SESClient } from "@aws-sdk/client-ses";
// Set the AWS Region.
const REGION = "us-east-1";
// Create SES service object.
const sesClient = new SESClient({ region: REGION });
export { sesClient };

此示例代码可在 GitHub 上的此处找到。

创建文件名为 ses_deletetemplate.js 的 Node.js 模块。如前所示配置 SDK，包括安装所需的客
户端和软件包。

创建对象，将必需的 TemplateName 参数传递到 DeleteTemplateCommand 客户端类的 SES 方
法。要调用 DeleteTemplateCommand 方法，请调用一个 Amazon SES 服务对象来传递参数。

Note

此示例导入并使用所需的 Amazon 服务 V3 软件包客户端、V3 命令，并以异步/等待模式使用
send 方法。您可以改用 V2 命令创建此示例，方法是进行一些细微的更改。有关更多信息，请
参阅 使用 v3 命令。

Note

将 TEMPLATE_NAME 替换为要删除的模板的名称。

import { DeleteTemplateCommand } from "@aws-sdk/client-ses";
import { getUniqueName } from "@aws-doc-sdk-examples/lib/utils/util-string.js";
import { sesClient } from "./libs/sesClient.js";

const TEMPLATE_NAME = getUniqueName("TemplateName");

Amazon SES 示例 114

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/ses/src/libs/sesClient.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const createDeleteTemplateCommand = (templateName) =>
 new DeleteTemplateCommand({ TemplateName: templateName });

const run = async () => {
 const deleteTemplateCommand = createDeleteTemplateCommand(TEMPLATE_NAME);

 try {
 return await sesClient.send(deleteTemplateCommand);
 } catch (err) {
 console.log("Failed to delete template.", err);
 return err;
 }
};

要运行示例，请在命令提示符中键入以下内容。Amazon SES 会返回模板详细信息。

node ses_deletetemplate.js

此示例代码可在 GitHub 上的此处找到。

使用 Amazon SES 发送电子邮件

此 Node.js 代码示例演示：

• 发送文本或 HTML 电子邮件。

• 根据电子邮件模板发送电子邮件。

• 根据电子邮件模板批量发送电子邮件。

Amazon SES API 为您提供了两种不同的方法来发送电子邮件，具体取决于您对电子邮件内容的控
制程度：格式化和原始。有关详细信息，请参阅使用 Amazon SES API 发送格式化电子邮件和使用
Amazon SES API 发送原始电子邮件。

情景

在本示例中，您使用一系列 Node.js 模块以多种方式发送电子邮件。Node.js 模块使用 SDK for
JavaScript，通过 SES 客户端类的以下方法来创建和使用电子邮件模板：

Amazon SES 示例 115

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/ses/src/ses_deletetemplate.js
https://docs.amazonaws.cn/ses/latest/DeveloperGuide/send-email-formatted.html
https://docs.amazonaws.cn/ses/latest/DeveloperGuide/send-email-raw.html
https://docs.amazonaws.cn/ses/latest/DeveloperGuide/send-email-raw.html

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• SendEmailCommand

• SendTemplatedEmailCommand

• SendBulkTemplatedEmailCommand

先决条件任务

要设置和运行此示例，您必须先完成以下任务：

• 设置项目环境以运行这些 Node TypeScript 示例，并安装所需的 适用于 JavaScript 的 Amazon SDK
和第三方模块。请按照 GitHub 上的说明进行操作。

• 使用用户凭证创建共享配置文件。有关提供共享凭证文件的更多信息，请参阅《Amazon SDK 和工
具参考指南》 中的共享配置和凭证文件。

Important

这些示例演示了如何使用 ECMAScript6（ES6）导入/导出客户端服务对象和命令。

• 这需要使用 Node.js 版本 13.x 或更高版本。要下载并安装最新版本的 Node.js，请参阅
Node.js 下载。

• 如果您更喜欢使用 CommonJS 语法，请参阅 JavaScript ES6/CommonJS 语法。

电子邮件发送要求

Amazon SES 编写电子邮件并立即将其加入队列等待发送。要使用 SendEmailCommand 方法发送电
子邮件，您的邮件必须满足以下要求：

• 您必须从已验证的电子邮件地址或域发送邮件。如果您尝试使用未验证的地址或域发送电子邮件，则
操作会导致 "Email address not verified" 错误。

• 如果您的账户仍在 Amazon SES 沙盒中，则只能发送到经验证的地址或域，或者与 Amazon SES 邮
箱模拟器关联的电子邮件地址。有关更多信息，请参阅《Amazon Simple Email Service 开发人员指
南》中的验证电子邮件地址和域。

• 邮件（包括附件）的总大小必须小于 10 MB。

• 邮件必须包含至少一个收件人电子邮件地址。收件人地址可以是“收件人：”地址、“抄
送：”地址或“密件抄送：”地址。如果某个收件人的电子邮件地址无效（即，未使用格式

Amazon SES 示例 116

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-ses/Class/SendEmailCommand/
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-ses/Class/SendTemplatedEmailCommand/
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-ses/Class/SendBulkTemplatedEmailCommand/
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ses/README.md
https://docs.amazonaws.cn/sdkref/latest/guide/file-format.html
https://nodejs.org/en/download
https://docs.amazonaws.cn/ses/latest/DeveloperGuide/verify-addresses-and-domains.html

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

UserName@[SubDomain.]Domain.TopLevelDomain），则将拒绝整个邮件，即使邮件包含的
其他收件人有效。

• 邮件在“收件人：”、“抄送：”和“密件抄送：”字段中包含的收件人不能超过 50 个。如果您需要将电子
邮件发送给更多的受众，可以将收件人列表划分为不超过 50 个人的组，然后多次调用 sendEmail
方法来发送邮件到各个组。

发送电子邮件

在本示例中，使用 Node.js 模块通过 Amazon SES 发送电子邮件。

创建一个 libs 目录，然后使用文件名 sesClient.js 创建一个 Node.js 模块。将以下代码复制并粘
贴到其中，这将创建 Amazon SES 客户端对象。将 REGION 替换为您的 Amazon 区域。

import { SESClient } from "@aws-sdk/client-ses";
// Set the AWS Region.
const REGION = "us-east-1";
// Create SES service object.
const sesClient = new SESClient({ region: REGION });
export { sesClient };

此示例代码可在 GitHub 上的此处找到。

创建文件名为 ses_sendemail.js 的 Node.js 模块。如前所示配置 SDK，包括安装所需的客户端和
软件包。

创建一个对象以将定义要发送的电子邮件的参数值传递到 SES 客户端类的 SendEmailCommand 方
法，这些参数值包括发件人和收件人地址、主题、纯文本和 HTML 格式的电子邮件正文。要调用
SendEmailCommand 方法，请调用一个 Amazon SES 服务对象来传递参数。

Note

此示例导入并使用所需的 Amazon 服务 V3 软件包客户端、V3 命令，并以异步/等待模式使用
send 方法。您可以改用 V2 命令创建此示例，方法是进行一些细微的更改。有关更多信息，请
参阅 使用 v3 命令。

Amazon SES 示例 117

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/ses/src/libs/sesClient.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

Note

将 toAddress 替换为要接收电子邮件的电子邮件地址，将 fromAddress 替换为发送电子邮
件的电子邮件地址。

import { SendEmailCommand } from "@aws-sdk/client-ses";
import { sesClient } from "./libs/sesClient.js";

const createSendEmailCommand = (toAddress, fromAddress) => {
 return new SendEmailCommand({
 Destination: {
 /* required */
 CcAddresses: [
 /* more items */
],
 ToAddresses: [
 toAddress,
 /* more To-email addresses */
],
 },
 Message: {
 /* required */
 Body: {
 /* required */
 Html: {
 Charset: "UTF-8",
 Data: "HTML_FORMAT_BODY",
 },
 Text: {
 Charset: "UTF-8",
 Data: "TEXT_FORMAT_BODY",
 },
 },
 Subject: {
 Charset: "UTF-8",
 Data: "EMAIL_SUBJECT",
 },
 },
 Source: fromAddress,
 ReplyToAddresses: [
 /* more items */

Amazon SES 示例 118

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

],
 });
};

const run = async () => {
 const sendEmailCommand = createSendEmailCommand(
 "recipient@example.com",
 "sender@example.com",
);

 try {
 return await sesClient.send(sendEmailCommand);
 } catch (caught) {
 if (caught instanceof Error && caught.name === "MessageRejected") {
 /** @type { import('@aws-sdk/client-ses').MessageRejected} */
 const messageRejectedError = caught;
 return messageRejectedError;
 }
 throw caught;
 }
};

要运行示例，请在命令提示符中键入以下内容。电子邮件会排队，等待由 Amazon SES 发送。

node ses_sendemail.js

此示例代码可在 GitHub 上的此处找到。

使用模板发送电子邮件

在本示例中，使用 Node.js 模块通过 Amazon SES 发送电子邮件。创建文件名为
ses_sendtemplatedemail.js 的 Node.js 模块。如前所示配置 SDK，包括安装所需的客户端和软
件包。

创建一个对象以将定义要发送的电子邮件的参数值传递到 SendTemplatedEmailCommand 客户端类
的 SES 方法，这些参数值包括发件人和收件人地址、主题、纯文本和 HTML 格式的电子邮件正文。
要调用 SendTemplatedEmailCommand 方法，请调用一个 Amazon SES 客户端服务对象来传递参
数。

Amazon SES 示例 119

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/ses/src/ses_sendemail.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

Note

此示例导入并使用所需的 Amazon 服务 V3 软件包客户端、V3 命令，并以异步/等待模式使用
send 方法。您可以改用 V2 命令创建此示例，方法是进行一些细微的更改。有关更多信息，请
参阅 使用 v3 命令。

Note

将 REGION 替换为您的 Amazon 区域，将 USER 替换为要接收电子邮件的电子邮件地址，将
VERIFIED_EMAIL 替换为发送电子邮件的电子邮件地址，将 TEMPLATE_NAME 替换为模板名
称。

import { SendTemplatedEmailCommand } from "@aws-sdk/client-ses";
import {
 getUniqueName,
 postfix,
} from "@aws-doc-sdk-examples/lib/utils/util-string.js";
import { sesClient } from "./libs/sesClient.js";

/**
 * Replace this with the name of an existing template.
 */
const TEMPLATE_NAME = getUniqueName("ReminderTemplate");

/**
 * Replace these with existing verified emails.
 */
const VERIFIED_EMAIL = postfix(getUniqueName("Bilbo"), "@example.com");

const USER = { firstName: "Bilbo", emailAddress: VERIFIED_EMAIL };

/**
 *
 * @param { { emailAddress: string, firstName: string } } user
 * @param { string } templateName - The name of an existing template in Amazon SES.
 * @returns { SendTemplatedEmailCommand }
 */
const createReminderEmailCommand = (user, templateName) => {
 return new SendTemplatedEmailCommand({

Amazon SES 示例 120

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 /**
 * Here's an example of how a template would be replaced with user data:
 * Template: <h1>Hello {{contact.firstName}},</h1><p>Don't forget about the party
 gifts!</p>
 * Destination: <h1>Hello Bilbo,</h1><p>Don't forget about the party gifts!</p>
 */
 Destination: { ToAddresses: [user.emailAddress] },
 TemplateData: JSON.stringify({ contact: { firstName: user.firstName } }),
 Source: VERIFIED_EMAIL,
 Template: templateName,
 });
};

const run = async () => {
 const sendReminderEmailCommand = createReminderEmailCommand(
 USER,
 TEMPLATE_NAME,
);
 try {
 return await sesClient.send(sendReminderEmailCommand);
 } catch (caught) {
 if (caught instanceof Error && caught.name === "MessageRejected") {
 /** @type { import('@aws-sdk/client-ses').MessageRejected} */
 const messageRejectedError = caught;
 return messageRejectedError;
 }
 throw caught;
 }
};

要运行示例，请在命令提示符中键入以下内容。电子邮件会排队，等待由 Amazon SES 发送。

node ses_sendtemplatedemail.js

此示例代码可在 GitHub 上的此处找到。

使用模板批量发送电子邮件

在本示例中，使用 Node.js 模块通过 Amazon SES 发送电子邮件。

创建一个 libs 目录，然后使用文件名 sesClient.js 创建一个 Node.js 模块。将以下代码复制并粘
贴到其中，这将创建 Amazon SES 客户端对象。将 REGION 替换为您的 Amazon 区域。

Amazon SES 示例 121

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/ses/src/ses_sendtemplatedemail.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

import { SESClient } from "@aws-sdk/client-ses";
// Set the AWS Region.
const REGION = "us-east-1";
// Create SES service object.
const sesClient = new SESClient({ region: REGION });
export { sesClient };

此示例代码可在 GitHub 上的此处找到。

创建文件名为 ses_sendbulktemplatedemail.js 的 Node.js 模块。如前所示配置 SDK，包括安
装所需的客户端和软件包。

创建一个对象以将定义要发送的电子邮件的参数值传递到 SES 客户端类的
SendBulkTemplatedEmailCommand 方法，这些参数值包括发件人和收件人地址、主题、纯文本
和 HTML 格式的电子邮件正文。要调用 SendBulkTemplatedEmailCommand 方法，请调用一个
Amazon SES 服务对象来传递参数。

Note

此示例导入并使用所需的 Amazon 服务 V3 软件包客户端、V3 命令，并以异步/等待模式使用
send 方法。您可以改用 V2 命令创建此示例，方法是进行一些细微的更改。有关更多信息，请
参阅 使用 v3 命令。

Note

将 USERS 替换为要接收电子邮件的电子邮件地址，将 VERIFIED_EMAIL_1 替换为发送电子
邮件的电子邮件地址，将 TEMPLATE_NAME 替换为模板名称。

import { SendBulkTemplatedEmailCommand } from "@aws-sdk/client-ses";
import {
 getUniqueName,
 postfix,
} from "@aws-doc-sdk-examples/lib/utils/util-string.js";
import { sesClient } from "./libs/sesClient.js";

/**
 * Replace this with the name of an existing template.
 */

Amazon SES 示例 122

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/ses/src/libs/sesClient.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const TEMPLATE_NAME = getUniqueName("ReminderTemplate");

/**
 * Replace these with existing verified emails.
 */
const VERIFIED_EMAIL_1 = postfix(getUniqueName("Bilbo"), "@example.com");
const VERIFIED_EMAIL_2 = postfix(getUniqueName("Frodo"), "@example.com");

const USERS = [
 { firstName: "Bilbo", emailAddress: VERIFIED_EMAIL_1 },
 { firstName: "Frodo", emailAddress: VERIFIED_EMAIL_2 },
];

/**
 *
 * @param { { emailAddress: string, firstName: string }[] } users
 * @param { string } templateName the name of an existing template in SES
 * @returns { SendBulkTemplatedEmailCommand }
 */
const createBulkReminderEmailCommand = (users, templateName) => {
 return new SendBulkTemplatedEmailCommand({
 /**
 * Each 'Destination' uses a corresponding set of replacement data. We can map each
 user
 * to a 'Destination' and provide user specific replacement data to create
 personalized emails.
 *
 * Here's an example of how a template would be replaced with user data:
 * Template: <h1>Hello {{name}},</h1><p>Don't forget about the party gifts!</p>
 * Destination 1: <h1>Hello Bilbo,</h1><p>Don't forget about the party gifts!</p>
 * Destination 2: <h1>Hello Frodo,</h1><p>Don't forget about the party gifts!</p>
 */
 Destinations: users.map((user) => ({
 Destination: { ToAddresses: [user.emailAddress] },
 ReplacementTemplateData: JSON.stringify({ name: user.firstName }),
 })),
 DefaultTemplateData: JSON.stringify({ name: "Shireling" }),
 Source: VERIFIED_EMAIL_1,
 Template: templateName,
 });
};

const run = async () => {
 const sendBulkTemplateEmailCommand = createBulkReminderEmailCommand(

Amazon SES 示例 123

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 USERS,
 TEMPLATE_NAME,
);
 try {
 return await sesClient.send(sendBulkTemplateEmailCommand);
 } catch (caught) {
 if (caught instanceof Error && caught.name === "MessageRejected") {
 /** @type { import('@aws-sdk/client-ses').MessageRejected} */
 const messageRejectedError = caught;
 return messageRejectedError;
 }
 throw caught;
 }
};

要运行示例，请在命令提示符中键入以下内容。电子邮件会排队，等待由 Amazon SES 发送。

node ses_sendbulktemplatedemail.js

此示例代码可在 GitHub 上的此处找到。

Amazon Simple Notification Service 示例

Amazon Simple Notification Service (Amazon SNS) 是一项 Web 服务，用于协调和管理向订阅端点或
客户端交付或发送消息的过程。

在 Amazon SNS 中有两种类型的客户端：发布者和订阅者，也称为生产者和消费者。

发布者通过创建消息并将消息发送至主题与订阅者进行异步交流，主题是一个逻辑访问点和通信渠道。
订阅者（网络服务器、电子邮件地址、Amazon SQS 队列、 Amazon Lambda 函数）在订阅主题时，
通过支持的协议之一（Amazon SQS、HTTP/S、电子邮件 Amazon Lambda、短信）使用或接收消息
或通知。

Amazon SNS 的 JavaScript API 通过类别：SNS 公开。

主题

• 在 Amazon SNS 中管理主题

• 在 Amazon SNS 中发布消息

• 在 Amazon SNS 中管理订阅

• 使用 Amazon SNS 发送 SMS 消息

Amazon SNS 示例 124

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/ses/src/ses_sendbulktemplatedemail.js
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-sns/Class/SNS/

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

在 Amazon SNS 中管理主题

此 Node.js 代码示例演示：

• 如何在 Amazon SNS 中创建可以将通知发布到的主题。

• 如何删除在 Amazon SNS 中创建的主题。

• 如何获取可用主题的列表。

• 如何获取和设置主题属性。

情景

在本示例中，您使用一系列 Node.js 模块来创建、列出和删除 Amazon SNS 主题，以及处理主题属
性。Node.js 模块使用的 SDK JavaScript ，通过SNS客户端类的以下方法来管理主题：

• CreateTopicCommand

• ListTopicsCommand

• DeleteTopicCommand

• GetTopicAttributesCommand

• SetTopicAttributesCommand

先决条件任务

要设置和运行此示例，您必须先完成以下任务：

• 设置项目环境以运行这些 Node TypeScript 示例，并安装所需的模块 适用于 JavaScript 的 Amazon
SDK 和第三方模块。按照上的说明进行操作 GitHub。

• 使用用户凭证创建共享配置文件。有关提供共享凭据文件的更多信息，请参阅和工具参考指南中的共
享配置Amazon SDKs 和凭据文件。

Important

这些示例演示了如何使用 ECMAScript6 (ES6) 来 import/export 客户端服务对象和命令。

Amazon SNS 示例 125

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-sns/Class/CreateTopicCommand/
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-sns/Class/ListTopicsCommand/
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-sns/Class/DeleteTopicCommand/
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-sns/Class/GetTopicAttributesCommand/
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-sns/Class/SetTopicAttributesCommand/
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/sns/README.md
https://docs.amazonaws.cn/sdkref/latest/guide/file-format.html
https://docs.amazonaws.cn/sdkref/latest/guide/file-format.html

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 这需要使用 Node.js 版本 13.x 或更高版本。要下载并安装最新版本的 Node.js，请参阅
Node.js 下载。

• 如果您更喜欢使用 CommonJS 语法，请参阅 JavaScript ES6/CommonJS 语法。

创建主题

在本示例中，使用 Node.js 模块创建 Amazon SNS 主题。

创建一个 libs 目录，然后使用文件名 snsClient.js 创建一个 Node.js 模块。将以下代码复制并粘
贴到其中，这将创建 Amazon SNS 客户端对象。REGION替换为您所在 Amazon 的地区。

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave it
 blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

可以在此处找到此示例代码 GitHub。

创建文件名为 create-topic.js 的 Node.js 模块。如前所示配置 SDK，包括安装所需的客户端和软
件包。

创建对象，将新主题的 Name 传递到 SNS 客户端类的 CreateTopicCommand 方法。要调用
CreateTopicCommand 方法，请创建一个用于调用 Amazon SNS 服务对象的异步函数并传递参数对
象。返回的 data 包含主题的 ARN。

Note

TOPIC_NAME替换为主题的名称。

import { CreateTopicCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

/**
 * @param {string} topicName - The name of the topic to create.

Amazon SNS 示例 126

https://nodejs.org/en/download
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/sns/libs/snsClient.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 */
export const createTopic = async (topicName = "TOPIC_NAME") => {
 const response = await snsClient.send(
 new CreateTopicCommand({ Name: topicName }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '087b8ad2-4593-50c4-a496-d7e90b82cf3e',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // TopicArn: 'arn:aws:sns:us-east-1:xxxxxxxxxxxx:TOPIC_NAME'
 // }
 return response;
};

要运行示例，请在命令提示符中键入以下内容。

node create-topic.js

可以在此处找到此示例代码 GitHub。

列出主题

在本示例中，使用 Node.js 模块列出所有 Amazon SNS 主题。

创建一个 libs 目录，然后使用文件名 snsClient.js 创建一个 Node.js 模块。将以下代码复制并粘
贴到其中，这将创建 Amazon SNS 客户端对象。REGION替换为您所在 Amazon 的地区。

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave it
 blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

可以在此处找到此示例代码 GitHub。

Amazon SNS 示例 127

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/sns/actions/create-topic.js
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/sns/libs/snsClient.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

创建文件名为 list-topics.js 的 Node.js 模块。如前所示配置 SDK，包括安装所需的客户端和软
件包。

创建一个空对象以传递到 SNS 客户端类的 ListTopicsCommand 方法。要调用
ListTopicsCommand 方法，请创建一个用于调用 Amazon SNS 服务对象的异步函数并传递参数对
象。data返回的内容包含您的主题 Amazon 资源名称 (ARNs) 的数组。

import { ListTopicsCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

export const listTopics = async () => {
 const response = await snsClient.send(new ListTopicsCommand({}));
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '936bc5ad-83ca-53c2-b0b7-9891167b909e',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // Topics: [{ TopicArn: 'arn:aws:sns:us-east-1:xxxxxxxxxxxx:mytopic' }]
 // }
 return response;
};

要运行示例，请在命令提示符中键入以下内容。

node list-topics.js

可以在此处找到此示例代码 GitHub。

删除主题

在本示例中，使用 Node.js 模块删除 Amazon SNS 主题。

创建一个 libs 目录，然后使用文件名 snsClient.js 创建一个 Node.js 模块。将以下代码复制并粘
贴到其中，这将创建 Amazon SNS 客户端对象。REGION替换为您所在 Amazon 的地区。

import { SNSClient } from "@aws-sdk/client-sns";

Amazon SNS 示例 128

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/sns/actions/list-topics.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

// The AWS Region can be provided here using the `region` property. If you leave it
 blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

可以在此处找到此示例代码 GitHub。

创建文件名为 delete-topic.js 的 Node.js 模块。如前所示配置 SDK，包括安装所需的客户端和软
件包。

创建包含要删除的主题的 TopicArn 的对象，将其传递到 SNS 客户端类的 DeleteTopicCommand
方法。要调用 DeleteTopicCommand方法，请创建一个异步函数，调用 Amazon SNS 客户端服务对
象并传递参数对象。

Note

TOPIC_ARN替换为您要删除的主题的亚马逊资源名称 (ARN)。

import { DeleteTopicCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

/**
 * @param {string} topicArn - The ARN of the topic to delete.
 */
export const deleteTopic = async (topicArn = "TOPIC_ARN") => {
 const response = await snsClient.send(
 new DeleteTopicCommand({ TopicArn: topicArn }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: 'a10e2886-5a8f-5114-af36-75bd39498332',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // }
 // }
};

Amazon SNS 示例 129

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/sns/libs/snsClient.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

要运行示例，请在命令提示符中键入以下内容。

node delete-topic.js

可以在此处找到此示例代码 GitHub。

获取主题属性

在本示例中，使用 Node.js 模块检索 Amazon SNS 主题的属性。

创建一个 libs 目录，然后使用文件名 snsClient.js 创建一个 Node.js 模块。将以下代码复制并粘
贴到其中，这将创建 Amazon SNS 客户端对象。REGION替换为您所在 Amazon 的地区。

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave it
 blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

可以在此处找到此示例代码 GitHub。

创建文件名为 get-topic-attributes.js 的 Node.js 模块。按前面所示配置 SDK。

创建包含要删除主题的 TopicArn 的对象，将其传递到 SNS 客户端类的
GetTopicAttributesCommand 方法。要调用 GetTopicAttributesCommand 方法，请调用一个
Amazon SNS 客户端服务对象来传递参数对象。

Note

TOPIC_ARN替换为主题的 ARN。

import { GetTopicAttributesCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

/**
 * @param {string} topicArn - The ARN of the topic to retrieve attributes for.
 */
export const getTopicAttributes = async (topicArn = "TOPIC_ARN") => {
 const response = await snsClient.send(

Amazon SNS 示例 130

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/sns/actions/delete-topic.js
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/sns/libs/snsClient.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 new GetTopicAttributesCommand({
 TopicArn: topicArn,
 }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '36b6a24e-5473-5d4e-ac32-ff72d9a73d94',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // Attributes: {
 // Policy: '{...}',
 // Owner: 'xxxxxxxxxxxx',
 // SubscriptionsPending: '1',
 // TopicArn: 'arn:aws:sns:us-east-1:xxxxxxxxxxxx:mytopic',
 // TracingConfig: 'PassThrough',
 // EffectiveDeliveryPolicy: '{"http":{"defaultHealthyRetryPolicy":
{"minDelayTarget":20,"maxDelayTarget":20,"numRetries":3,"numMaxDelayRetries":0,"numNoDelayRetries":0,"numMinDelayRetries":0,"backoffFunction":"linear"},"disableSubscriptionOverrides":false,"defaultRequestPolicy":
{"headerContentType":"text/plain; charset=UTF-8"}}}',
 // SubscriptionsConfirmed: '0',
 // DisplayName: '',
 // SubscriptionsDeleted: '1'
 // }
 // }
 return response;
};

要运行示例，请在命令提示符中键入以下内容。

node get-topic-attributes.js

可以在此处找到此示例代码 GitHub。

设置主题属性

在本示例中，使用 Node.js 模块设置 Amazon SNS 主题的可变属性。

创建一个 libs 目录，然后使用文件名 snsClient.js 创建一个 Node.js 模块。将以下代码复制并粘
贴到其中，这将创建 Amazon SNS 客户端对象。REGION替换为您所在 Amazon 的地区。

Amazon SNS 示例 131

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/sns/actions/get-topic-attributes.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave it
 blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

可以在此处找到此示例代码 GitHub。

创建文件名为 set-topic-attributes.js 的 Node.js 模块。按前面所示配置 SDK。

创建包含用于属性更新参数的对象，这包括要设置其属性的主题的 TopicArn、要设置的属性的名称
以及该属性的新值。您只能设置 Policy、DisplayName 和 DeliveryPolicy 属性。将参数传递到
SNS 客户端类的 SetTopicAttributesCommand 方法。要调用 SetTopicAttributesCommand方
法，请创建一个异步函数，调用 Amazon SNS 客户端服务对象并传递参数对象。

Note

ATTRIBUTE_NAME替换为您正在设置的属性名称、TOPIC_ARN要设置其属性的主题的
Amazon 资源名称 (ARN) 以及该属NEW_ATTRIBUTE_VALUE性的新值。

import { SetTopicAttributesCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

export const setTopicAttributes = async (
 topicArn = "TOPIC_ARN",
 attributeName = "DisplayName",
 attributeValue = "Test Topic",
) => {
 const response = await snsClient.send(
 new SetTopicAttributesCommand({
 AttributeName: attributeName,
 AttributeValue: attributeValue,
 TopicArn: topicArn,
 }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,

Amazon SNS 示例 132

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/sns/libs/snsClient.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // requestId: 'd1b08d0e-e9a4-54c3-b8b1-d03238d2b935',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // }
 // }
 return response;
};

要运行示例，请在命令提示符中键入以下内容。

node set-topic-attributes.js

可以在此处找到此示例代码 GitHub。

在 Amazon SNS 中发布消息

此 Node.js 代码示例演示：

• 如何将消息发布到 Amazon SNS 主题。

情景

在本示例中，您使用一系列 Node.js 模块，将消息从 Amazon SNS 发布到主题端点、电子邮件或电话
号码。Node.js 模块使用的 JavaScript SDK 通过SNS客户端类的以下方法发送消息：

• PublishCommand

先决条件任务

要设置和运行此示例，您必须先完成以下任务：

• 设置项目环境以运行这些 Node TypeScript 示例，并安装所需的模块 适用于 JavaScript 的 Amazon
SDK 和第三方模块。按照上的说明进行操作 GitHub。

Amazon SNS 示例 133

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/sns/actions/set-topic-attributes.js
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-sns/Class/PublishCommand/
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/sns/README.md

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 使用用户凭证创建共享配置文件。有关提供共享凭据文件的更多信息，请参阅和工具参考指南中的共
享配置Amazon SDKs 和凭据文件。

Important

这些示例演示了如何使用 ECMAScript6 (ES6) 来 import/export 客户端服务对象和命令。

• 这需要使用 Node.js 版本 13.x 或更高版本。要下载并安装最新版本的 Node.js，请参阅
Node.js 下载。

• 如果您更喜欢使用 CommonJS 语法，请参阅 JavaScript ES6/CommonJS 语法。

将消息发布到 SNS 主题

在本示例中，使用 Node.js 模块将消息发布到 Amazon SNS 主题。

创建一个 libs 目录，然后使用文件名 snsClient.js 创建一个 Node.js 模块。将以下代码复制并粘
贴到其中，这将创建 Amazon SNS 客户端对象。REGION替换为您所在 Amazon 的地区。

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave it
 blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

可以在此处找到此示例代码 GitHub。

创建文件名为 publish-topic.js 的 Node.js 模块。按前面所示配置 SDK。

创建一个对象，其中包含用于发布消息的参数，包括消息文本和亚马逊的亚马逊资源名称 (ARN)。
SNStopic有关可用短信属性的详细信息，请参阅设置SMSAttributes。

将参数传递到 SNS 客户端类的 PublishCommand 方法。创建一个异步函数，调用 Amazon SNS 客户
端服务对象并传递参数对象。

Note

MESSAGE_TEXT替换为消息文本和 TOPIC_ARN SNS 主题的 ARN。

Amazon SNS 示例 134

https://docs.amazonaws.cn/sdkref/latest/guide/file-format.html
https://docs.amazonaws.cn/sdkref/latest/guide/file-format.html
https://nodejs.org/en/download
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/sns/libs/snsClient.js
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SNS.html#setSMSAttributes-property

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

import { PublishCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

/**
 * @param {string | Record<string, any>} message - The message to send. Can be a plain
 string or an object
 * if you are using the `json`
 `MessageStructure`.
 * @param {string} topicArn - The ARN of the topic to which you would like to publish.
 */
export const publish = async (
 message = "Hello from SNS!",
 topicArn = "TOPIC_ARN",
) => {
 const response = await snsClient.send(
 new PublishCommand({
 Message: message,
 TopicArn: topicArn,
 }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: 'e7f77526-e295-5325-9ee4-281a43ad1f05',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // MessageId: 'xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx'
 // }
 return response;
};

要运行示例，请在命令提示符中键入以下内容。

node publish-topic.js

可以在此处找到此示例代码 GitHub。

Amazon SNS 示例 135

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/sns/actions/publish-topic.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

在 Amazon SNS 中管理订阅

此 Node.js 代码示例演示：

• 如何列出对 Amazon SNS 主题的所有订阅。

• 如何将电子邮件地址、应用程序端点或 Amazon Lambda 函数订阅到 Amazon SNS 主题。

• 如何从 Amazon SNS 主题取消订阅。

情景

在本示例中，您使用一系列 Node.js 模块将通知消息发布到 Amazon SNS 主题。Node.js 模块使用的
SDK JavaScript ，通过SNS客户端类的以下方法来管理主题：

• ListSubscriptionsByTopicCommand

• SubscribeCommand

• ConfirmSubscriptionCommand

• UnsubscribeCommand

先决条件任务

要设置和运行此示例，您必须先完成以下任务：

• 设置项目环境以运行这些 Node TypeScript 示例，并安装所需的模块 适用于 JavaScript 的 Amazon
SDK 和第三方模块。按照上的说明进行操作 GitHub。

• 使用用户凭证创建共享配置文件。有关提供共享凭据文件的更多信息，请参阅和工具参考指南中的共
享配置Amazon SDKs 和凭据文件。

Important

这些示例演示了如何使用 ECMAScript6 (ES6) 来 import/export 客户端服务对象和命令。

• 这需要使用 Node.js 版本 13.x 或更高版本。要下载并安装最新版本的 Node.js，请参阅
Node.js 下载。

Amazon SNS 示例 136

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-sns/Class/ListSubscriptionsByTopicCommand/
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-sns/Class/SubscribeCommand/
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-sns/Class/ConfirmSubscriptionCommand/
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-sns/Class/UnsubscribeCommand/
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/sns/README.md
https://docs.amazonaws.cn/sdkref/latest/guide/file-format.html
https://docs.amazonaws.cn/sdkref/latest/guide/file-format.html
https://nodejs.org/en/download

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 如果您更喜欢使用 CommonJS 语法，请参阅 JavaScript ES6/CommonJS 语法。

列出对主题的订阅

在本示例中，使用 Node.js 模块以列出对 Amazon SNS 主题的所有订阅。

创建一个 libs 目录，然后使用文件名 snsClient.js 创建一个 Node.js 模块。将以下代码复制并粘
贴到其中，这将创建 Amazon SNS 客户端对象。REGION替换为您所在 Amazon 的地区。

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave it
 blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

可以在此处找到此示例代码 GitHub。

创建文件名为 list-subscriptions-by-topic.js 的 Node.js 模块。按前面所示配置 SDK。

创建一个对象，其中包含您要列出其订阅的主题的 TopicArn 参数。将参数传递到 SNS 客户端类的
ListSubscriptionsByTopicCommand 方法。要调用 ListSubscriptionsByTopicCommand方
法，请创建一个异步函数，调用 Amazon SNS 客户端服务对象并传递参数对象。

Note

TOPIC_ARN替换为您要列出其订阅的主题的 Amazon 资源名称 (ARN)。

import { ListSubscriptionsByTopicCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

/**
 * @param {string} topicArn - The ARN of the topic for which you wish to list
 subscriptions.
 */
export const listSubscriptionsByTopic = async (topicArn = "TOPIC_ARN") => {
 const response = await snsClient.send(
 new ListSubscriptionsByTopicCommand({ TopicArn: topicArn }),
);

Amazon SNS 示例 137

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/sns/libs/snsClient.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '0934fedf-0c4b-572e-9ed2-a3e38fadb0c8',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // Subscriptions: [
 // {
 // SubscriptionArn: 'PendingConfirmation',
 // Owner: '901487484989',
 // Protocol: 'email',
 // Endpoint: 'corepyle@amazon.com',
 // TopicArn: 'arn:aws:sns:us-east-1:901487484989:mytopic'
 // }
 //]
 // }
 return response;
};

要运行示例，请在命令提示符中键入以下内容。

node list-subscriptions-by-topic.js

可以在此处找到此示例代码 GitHub。

将电子邮件地址订阅到主题

在本示例中，使用 Node.js 模块来订阅电子邮件地址，使其从 Amazon SNS 主题接收 SMTP 电子邮
件。

创建一个 libs 目录，然后使用文件名 snsClient.js 创建一个 Node.js 模块。将以下代码复制并粘
贴到其中，这将创建 Amazon SNS 客户端对象。REGION替换为您所在 Amazon 的地区。

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave it
 blank

Amazon SNS 示例 138

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/sns/actions/list-subscriptions-by-topic.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

可以在此处找到此示例代码 GitHub。

创建文件名为 subscribe-email.js 的 Node.js 模块。按前面所示配置 SDK。

创建包含 Protocol 参数的对象，用于指定 email 协议、要订阅到的主题的 TopicArn 以及作为邮
件 Endpoint 的电子邮件地址。将参数传递到 SNS 客户端类的 SubscribeCommand 方法。您可以使
用 subscribe 方法，根据在所传递参数中使用的值，将多种不同的端点订阅到某个 Amazon SNS 主
题，如本主题中的其他示例所示。

要调用 SubscribeCommand方法，请创建一个异步函数，调用 Amazon SNS 客户端服务对象并传递
参数对象。

Note

TOPIC_ARN替换为主题的 Amazon 资源名称 (ARN)，并EMAIL_ADDRESS替换为要订阅的电子
邮件地址。

import { SubscribeCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

/**
 * @param {string} topicArn - The ARN of the topic for which you wish to confirm a
 subscription.
 * @param {string} emailAddress - The email address that is subscribed to the topic.
 */
export const subscribeEmail = async (
 topicArn = "TOPIC_ARN",
 emailAddress = "usern@me.com",
) => {
 const response = await snsClient.send(
 new SubscribeCommand({
 Protocol: "email",
 TopicArn: topicArn,
 Endpoint: emailAddress,
 }),
);

Amazon SNS 示例 139

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/sns/libs/snsClient.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: 'c8e35bcd-b3c0-5940-9f66-06f6fcc108f0',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // SubscriptionArn: 'pending confirmation'
 // }
};

要运行示例，请在命令提示符中键入以下内容。

node subscribe-email.js

可以在此处找到此示例代码 GitHub。

确认订阅

在本示例中，使用 Node.js 模块，通过验证之前的 SUBSCRIBE 操作发送到端点的令牌来验证端点所
有者接收消息的意图。

创建一个 libs 目录，然后使用文件名 snsClient.js 创建一个 Node.js 模块。将以下代码复制并粘
贴到其中，这将创建 Amazon SNS 客户端对象。REGION替换为您所在 Amazon 的地区。

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave it
 blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

可以在此处找到此示例代码 GitHub。

创建文件名为 confirm-subscription.js 的 Node.js 模块。如前所示配置 SDK，包括安装所需的
客户端和软件包。

定义参数，包括 TOPIC_ARN 和 TOKEN，然后为 AuthenticateOnUnsubscribe 定义值 TRUE 或
FALSE。

Amazon SNS 示例 140

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/sns/actions/subscribe-email.js
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/sns/libs/snsClient.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

令牌是在之前的 SUBSCRIBE 操作中发送给端点所有者的短期令牌。例如，对于电子邮件端点，TOKEN
可在发送给电子邮件所有者的确认订阅电子邮件的 URL 中找到。例如，在以下 URL 中，abc123 是令
牌。

要调用 ConfirmSubscriptionCommand方法，请创建一个异步函数，调用 Amazon SNS 客户端服
务对象并传递参数对象。

Note

将主题的 Amazon 资源名称 (ARN) 替换TOPIC_ARN为之前Subscribe操作中发送给终端
节点所有者的 URL 中的令牌值，然后定义AuthenticateOnUnsubscribe. 的TRUE值为
或。。TOKEN FALSE

import { ConfirmSubscriptionCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

/**
 * @param {string} token - This token is sent the subscriber. Only subscribers
 * that are not AWS services (HTTP/S, email) need to be
 confirmed.
 * @param {string} topicArn - The ARN of the topic for which you wish to confirm a
 subscription.
 */
export const confirmSubscription = async (
 token = "TOKEN",
 topicArn = "TOPIC_ARN",
) => {
 const response = await snsClient.send(
 // A subscription only needs to be confirmed if the endpoint type is
 // HTTP/S, email, or in another AWS account.
 new ConfirmSubscriptionCommand({
 Token: token,
 TopicArn: topicArn,
 // If this is true, the subscriber cannot unsubscribe while unauthenticated.

Amazon SNS 示例 141

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 AuthenticateOnUnsubscribe: "false",
 }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '4bb5bce9-805a-5517-8333-e1d2cface90b',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // SubscriptionArn: 'arn:aws:sns:us-east-1:xxxxxxxxxxxx:TOPIC_NAME:xxxxxxxx-xxxx-
xxxx-xxxx-xxxxxxxxxxxx'
 // }
 return response;
};

要运行示例，请在命令提示符中键入以下内容。

node confirm-subscription.js

可以在此处找到此示例代码 GitHub。

将应用程序端点订阅到主题

在本示例中，使用 Node.js 模块来订阅移动应用程序端点，使其从 Amazon SNS 主题接收通知。

创建一个 libs 目录，然后使用文件名 snsClient.js 创建一个 Node.js 模块。将以下代码复制并粘
贴到其中，这将创建 Amazon SNS 客户端对象。REGION替换为您所在 Amazon 的地区。

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave it
 blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

可以在此处找到此示例代码 GitHub。

创建文件名为 subscribe-app.js 的 Node.js 模块。如前所示配置 SDK，包括安装所需的模块和软
件包。

Amazon SNS 示例 142

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/sns/actions/confirm-subscription.js
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/sns/libs/snsClient.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

创建一个包含 Protocol 参数的对象，用于指定 application 协议、要订阅到的主题的 TopicArn
以及 Endpoint 参数的移动应用程序端点的 Amazon 资源名称 (ARN)。将参数传递到 SNS 客户端类的
SubscribeCommand 方法。

要调用 SubscribeCommand 方法，请创建一个用于调用 Amazon SNS 服务对象的异步函数并传递参
数对象。

Note

TOPIC_ARN替换为主题的 Amazon 资源名称 (ARN)，以及MOBILE_ENDPOINT_ARN您订阅该
主题的终端节点。

import { SubscribeCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

/**
 * @param {string} topicArn - The ARN of the topic the subscriber is subscribing to.
 * @param {string} endpoint - The Endpoint ARN of an application. This endpoint is
 created
 * when an application registers for notifications.
 */
export const subscribeApp = async (
 topicArn = "TOPIC_ARN",
 endpoint = "ENDPOINT",
) => {
 const response = await snsClient.send(
 new SubscribeCommand({
 Protocol: "application",
 TopicArn: topicArn,
 Endpoint: endpoint,
 }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: 'c8e35bcd-b3c0-5940-9f66-06f6fcc108f0',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0

Amazon SNS 示例 143

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // },
 // SubscriptionArn: 'pending confirmation'
 // }
 return response;
};

要运行示例，请在命令提示符中键入以下内容。

node subscribe-app.js

可以在此处找到此示例代码 GitHub。

将 Lambda 函数订阅到主题

在此示例中，使用 Node.js 模块订阅 Amazon Lambda 函数，使其接收来自亚马逊 SNS 主题的通知。

创建一个 libs 目录，然后使用文件名 snsClient.js 创建一个 Node.js 模块。将以下代码复制并粘
贴到其中，这将创建 Amazon SNS 客户端对象。REGION替换为您所在 Amazon 的地区。

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave it
 blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

可以在此处找到此示例代码 GitHub。

创建文件名为 subscribe-lambda.js 的 Node.js 模块。按前面所示配置 SDK。

创建包含Protocol参数的对象，指定lambda协议、要订阅TopicArn的主题以及 Amazon
Lambda 函数的 Amazon 资源名称 (ARN) 作为参数。Endpoint将参数传递到 SNS 客户端类的
SubscribeCommand 方法。

要调用 SubscribeCommand方法，请创建一个异步函数，调用 Amazon SNS 客户端服务对象并传递
参数对象。

Note

TOPIC_ARN替换为主题的亚马逊资源名称 (ARN)，并LAMBDA_FUNCTION_ARN替换为
Lambda 函数的亚马逊资源名称 (ARN)。

Amazon SNS 示例 144

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/sns/actions/subscribe-app.js
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/sns/libs/snsClient.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

import { SubscribeCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

/**
 * @param {string} topicArn - The ARN of the topic the subscriber is subscribing to.
 * @param {string} endpoint - The Endpoint ARN of and AWS Lambda function.
 */
export const subscribeLambda = async (
 topicArn = "TOPIC_ARN",
 endpoint = "ENDPOINT",
) => {
 const response = await snsClient.send(
 new SubscribeCommand({
 Protocol: "lambda",
 TopicArn: topicArn,
 Endpoint: endpoint,
 }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: 'c8e35bcd-b3c0-5940-9f66-06f6fcc108f0',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // SubscriptionArn: 'pending confirmation'
 // }
 return response;
};

要运行示例，请在命令提示符中键入以下内容。

node subscribe-lambda.js

可以在此处找到此示例代码 GitHub。

从主题取消订阅

在本示例中，使用 Node.js 模块取消订阅 Amazon SNS 主题订阅。

Amazon SNS 示例 145

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/sns/actions/subscribe-lambda.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

创建一个 libs 目录，然后使用文件名 snsClient.js 创建一个 Node.js 模块。将以下代码复制并粘
贴到其中，这将创建 Amazon SNS 客户端对象。REGION替换为您所在 Amazon 的地区。

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave it
 blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

可以在此处找到此示例代码 GitHub。

创建文件名为 unsubscribe.js 的 Node.js 模块。如前所示配置 SDK，包括安装所需的客户端和软
件包。

创建一个包含 SubscriptionArn 参数的对象，指定要取消订阅的订阅的 Amazon 资源名称 (ARN)。
将参数传递到 SNS 客户端类的 UnsubscribeCommand 方法。

要调用 UnsubscribeCommand方法，请创建一个异步函数，调用 Amazon SNS 客户端服务对象并传
递参数对象。

Note

TOPIC_SUBSCRIPTION_ARN替换为订阅的 Amazon 资源名称 (ARN) 即可取消订阅。

import { UnsubscribeCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

/**
 * @param {string} subscriptionArn - The ARN of the subscription to cancel.
 */
const unsubscribe = async (
 subscriptionArn = "arn:aws:sns:us-east-1:xxxxxxxxxxxx:mytopic:xxxxxxxx-xxxx-xxxx-
xxxx-xxxxxxxxxxxx",
) => {
 const response = await snsClient.send(
 new UnsubscribeCommand({
 SubscriptionArn: subscriptionArn,
 }),
);

Amazon SNS 示例 146

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/sns/libs/snsClient.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '0178259a-9204-507c-b620-78a7570a44c6',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // }
 // }
 return response;
};

要运行示例，请在命令提示符中键入以下内容。

node unsubscribe.js

可以在此处找到此示例代码 GitHub。

使用 Amazon SNS 发送 SMS 消息

此 Node.js 代码示例演示：

• 如何获取和设置 Amazon SNS 的 SMS 消息发送首选项。

• 如何检查电话号码以确定是否选择退出接收 SMS 消息。

• 如何获取已选择退出接收 SMS 消息的电话号码列表。

• 如何发送 SMS 消息。

情景

您可以使用 Amazon SNS 将文本消息或 SMS 消息发送到支持 SMS 的设备上。您可以直接向电话号码
发送消息，也可以使用多个电话号码订阅主题，然后通过向该主题发送消息来一次向这些电话号码发送
消息。

Amazon SNS 示例 147

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/sns/actions/unsubscribe.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

在本示例中，您使用一系列 Node.js 模块将 SMS 文本消息从 Amazon SNS 发送到支持 SMS 的设
备。Node.js 模块使用的 SDK 使用以下SNS客户端类的方法发布 SMS 消息： JavaScript

• GetSMSAttributesCommand

• SetSMSAttributesCommand

• CheckIfPhoneNumberIsOptedOutCommand

• ListPhoneNumbersOptedOutCommand

• PublishCommand

先决条件任务

要设置和运行此示例，您必须先完成以下任务：

• 设置项目环境以运行这些 Node TypeScript 示例，并安装所需的模块 适用于 JavaScript 的 Amazon
SDK 和第三方模块。按照上的说明进行操作 GitHub。

• 使用用户凭证创建共享配置文件。有关提供共享凭据文件的更多信息，请参阅和工具参考指南中的共
享配置Amazon SDKs 和凭据文件。

Important

这些示例演示了如何使用 ECMAScript6 (ES6) 来 import/export 客户端服务对象和命令。

• 这需要使用 Node.js 版本 13.x 或更高版本。要下载并安装最新版本的 Node.js，请参阅
Node.js 下载。

• 如果您更喜欢使用 CommonJS 语法，请参阅 JavaScript ES6/CommonJS 语法。

获取 SMS 属性

使用 Amazon SNS 来指定发送 SMS 消息的首选项，例如如何优化消息传输（在成本或可靠传输方
面）、您的每月支出限额、如何记录消息传输以及是否要订阅每日 SMS 使用率报告。这些首选项通过
检索得到，并设置为 Amazon SNS 的 SMS 属性。

在本示例中，使用 Node.js 模块获取 Amazon SNS 中的当前 SMS 属性。

创建一个 libs 目录，然后使用文件名 snsClient.js 创建一个 Node.js 模块。将以下代码复制并粘
贴到其中，这将创建 Amazon SNS 客户端对象。REGION替换为您所在 Amazon 的地区。

Amazon SNS 示例 148

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-sns/Class/GetSMSAttributesCommand/
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-sns/Class/SetSMSAttributesCommand/
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-sns/Class/CheckIfPhoneNumberIsOptedOutCommand/
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-sns/Class/ListPhoneNumbersOptedOutCommand/
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-sns/Class/PublishCommand/
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/sns/README.md
https://docs.amazonaws.cn/sdkref/latest/guide/file-format.html
https://docs.amazonaws.cn/sdkref/latest/guide/file-format.html
https://nodejs.org/en/download

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave it
 blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

可以在此处找到此示例代码 GitHub。

创建文件名为 get-sms-attributes.js 的 Node.js 模块。

如前所示配置 SDK，包括下载所需的客户端和软件包。创建包含用于获取 SMS 属性的参数的对象，
包括要获取的单个属性的名称。有关可用短信属性的详细信息，请参阅《亚马逊简单通知服务 API 参
考》SMSAttributes中的 “设置”。

此示例获取 DefaultSMSType 属性，该属性控制 SMS 消息是作为 Promotional 发送（这将
优化消息传送以尽可能降低成本）还是作为 Transactional 发送（这将优化消息传送以实现最
高的可靠性）。将参数传递到 SNS 客户端类的 SetTopicAttributesCommand 方法。要调用
SetSMSAttributesCommand方法，请创建一个异步函数，调用 Amazon SNS 客户端服务对象并传
递参数对象。

Note

ATTRIBUTE_NAME替换为属性的名称。

import { GetSMSAttributesCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

export const getSmsAttributes = async () => {
 const response = await snsClient.send(
 // If you have not modified the account-level mobile settings of SNS,
 // the DefaultSMSType is undefined. For this example, it was set to
 // Transactional.
 new GetSMSAttributesCommand({ attributes: ["DefaultSMSType"] }),
);

 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,

Amazon SNS 示例 149

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/sns/libs/snsClient.js
https://docs.amazonaws.cn/sns/latest/api/API_SetSMSAttributes.html

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // requestId: '67ad8386-4169-58f1-bdb9-debd281d48d5',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // attributes: { DefaultSMSType: 'Transactional' }
 // }
 return response;
};

要运行示例，请在命令提示符中键入以下内容。

node get-sms-attributes.js

可以在此处找到此示例代码 GitHub。

设置 SMS 属性

在本示例中，使用 Node.js 模块获取 Amazon SNS 中的当前 SMS 属性。

创建一个 libs 目录，然后使用文件名 snsClient.js 创建一个 Node.js 模块。将以下代码复制并粘
贴到其中，这将创建 Amazon SNS 客户端对象。REGION替换为您所在 Amazon 的地区。

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave it
 blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

可以在此处找到此示例代码 GitHub。

创建文件名为 set-sms-attribute-type.js 的 Node.js 模块。如前所示配置 SDK，包括安装所
需的客户端和软件包。创建包含用于设置 SMS 属性的参数的对象，其中包括要设置的单个属性的名
称以及为各个属性设置的值。有关可用短信属性的详细信息，请参阅《亚马逊简单通知服务 API 参
考》SMSAttributes中的 “设置”。

此示例将 DefaultSMSType 属性设置为 Transactional，这会优化消息传送以实现最高
的可靠性。将参数传递到 SNS 客户端类的 SetTopicAttributesCommand 方法。要调用
SetSMSAttributesCommand方法，请创建一个异步函数，调用 Amazon SNS 客户端服务对象并传
递参数对象。

Amazon SNS 示例 150

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/sns/actions/get-sms-attributes.js
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/sns/libs/snsClient.js
https://docs.amazonaws.cn/sns/latest/api/API_SetSMSAttributes.html

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

import { SetSMSAttributesCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

/**
 * @param {"Transactional" | "Promotional"} defaultSmsType
 */
export const setSmsType = async (defaultSmsType = "Transactional") => {
 const response = await snsClient.send(
 new SetSMSAttributesCommand({
 attributes: {
 // Promotional – (Default) Noncritical messages, such as marketing messages.
 // Transactional – Critical messages that support customer transactions,
 // such as one-time passcodes for multi-factor authentication.
 DefaultSMSType: defaultSmsType,
 },
 }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '1885b977-2d7e-535e-8214-e44be727e265',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // }
 // }
 return response;
};

要运行示例，请在命令提示符中键入以下内容。

node set-sms-attribute-type.js

可以在此处找到此示例代码 GitHub。

检查电话号码是否已选择不接收消息

在本示例中，使用 Node.js 模块检查电话号码，确定该号码是否已退出接收 SMS 消息。

创建一个 libs 目录，然后使用文件名 snsClient.js 创建一个 Node.js 模块。将以下代码复制并粘
贴到其中，这将创建 Amazon SNS 客户端对象。REGION替换为您所在 Amazon 的地区。

Amazon SNS 示例 151

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/sns/actions/set-sms-attribute-type.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave it
 blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

可以在此处找到此示例代码 GitHub。

创建文件名为 check-if-phone-number-is-opted-out.js 的 Node.js 模块。按前面所示配置
SDK。创建一个对象，其中将要检查的电话号码包含作为参数。

此示例设置 PhoneNumber 参数以指定要检查的电话号码。将对象发布到 SNS
客户端类的 CheckIfPhoneNumberIsOptedOutCommand 方法。要调用
CheckIfPhoneNumberIsOptedOutCommand方法，请创建一个异步函数，调用 Amazon SNS 客户
端服务对象并传递参数对象。

Note

1.

PHONE_NUMBER替换为电话号码。

import { CheckIfPhoneNumberIsOptedOutCommand } from "@aws-sdk/client-sns";

import { snsClient } from "../libs/snsClient.js";

export const checkIfPhoneNumberIsOptedOut = async (
 phoneNumber = "5555555555",
) => {
 const command = new CheckIfPhoneNumberIsOptedOutCommand({
 phoneNumber,
 });

 const response = await snsClient.send(command);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,

Amazon SNS 示例 152

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/sns/libs/snsClient.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // requestId: '3341c28a-cdc8-5b39-a3ee-9fb0ee125732',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // isOptedOut: false
 // }
 return response;
};

要运行示例，请在命令提示符中键入以下内容。

node check-if-phone-number-is-opted-out.js

可以在此处找到此示例代码 GitHub。

列出已退出的电话号码

在本示例中，使用 Node.js 模块获取已退出接收 SMS 消息的电话号码列表。

创建一个 libs 目录，然后使用文件名 snsClient.js 创建一个 Node.js 模块。将以下代码复制并粘
贴到其中，这将创建 Amazon SNS 客户端对象。REGION替换为您所在 Amazon 的地区。

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave it
 blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

可以在此处找到此示例代码 GitHub。

创建文件名为 list-phone-numbers-opted-out.js 的 Node.js 模块。按前面所示配置 SDK。创
建一个空对象作为参数。

将对象发布到 SNS 客户端类的 ListPhoneNumbersOptedOutCommand 方法。要调用
ListPhoneNumbersOptedOutCommand方法，请创建一个异步函数，调用 Amazon SNS 客户端服
务对象并传递参数对象。

import { ListPhoneNumbersOptedOutCommand } from "@aws-sdk/client-sns";

Amazon SNS 示例 153

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/sns/actions/check-if-phone-number-is-opted-out.js
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/sns/libs/snsClient.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

import { snsClient } from "../libs/snsClient.js";

export const listPhoneNumbersOptedOut = async () => {
 const response = await snsClient.send(
 new ListPhoneNumbersOptedOutCommand({}),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '44ff72fd-1037-5042-ad96-2fc16601df42',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // phoneNumbers: ['+15555550100']
 // }
 return response;
};

要运行示例，请在命令提示符中键入以下内容。

node list-phone-numbers-opted-out.js

可以在此处找到此示例代码 GitHub。

发布 SMS 消息

在本示例中，使用 Node.js 模块将 SMS 消息发布到电话号码。

创建一个 libs 目录，然后使用文件名 snsClient.js 创建一个 Node.js 模块。将以下代码复制并粘
贴到其中，这将创建 Amazon SNS 客户端对象。REGION替换为您所在 Amazon 的地区。

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave it
 blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

可以在此处找到此示例代码 GitHub。

Amazon SNS 示例 154

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/sns/actions/list-phone-numbers-opted-out.js
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/sns/libs/snsClient.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

创建文件名为 publish-sms.js 的 Node.js 模块。如前所示配置 SDK，包括安装所需的客户端和软
件包。创建一个包含 Message 和 PhoneNumber 参数的对象。

在发送 SMS 消息时，请使用 E.164 格式指定电话号码。E.164 是用于国际电信的电话号码结构标准。
遵循此格式的电话号码最多可包含 15 位，并以加号 (+) 和国家/地区代码作为前缀。例如，E.164 格式
的美国电话号码将显示为 +1001 0100 XXX555。

此示例设置 PhoneNumber 参数以指定将消息发送到的电话号码。将对象发布到 SNS 客户端类的
PublishCommand 方法。要调用 PublishCommand 方法，请创建一个用于调用 Amazon SNS 服务
对象的异步函数并传递参数对象。

Note

TEXT_MESSAGE替换为PHONE_NUMBER短信和电话号码。

import { PublishCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

/**
 * @param {string | Record<string, any>} message - The message to send. Can be a plain
 string or an object
 * if you are using the `json`
 `MessageStructure`.
 * @param {*} phoneNumber - The phone number to send the message to.
 */
export const publish = async (
 message = "Hello from SNS!",
 phoneNumber = "+15555555555",
) => {
 const response = await snsClient.send(
 new PublishCommand({
 Message: message,
 // One of PhoneNumber, TopicArn, or TargetArn must be specified.
 PhoneNumber: phoneNumber,
 }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '7410094f-efc7-5f52-af03-54737569ab77',

Amazon SNS 示例 155

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // MessageId: 'xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx'
 // }
 return response;
};

要运行示例，请在命令提示符中键入以下内容。

node publish-sms.js

可以在此处找到此示例代码 GitHub。

Amazon Transcribe 示例

Amazon Transcribe 使开发人员能够轻松地向其应用程序添加语音到文本转换功能。

适用于 Amazon Transcribe 的 JavaScript API 通过 TranscribeService 客户端类公开。

主题

• Amazon Transcribe 示例

• Amazon Transcribe Medical 示例

Amazon Transcribe 示例

在此示例中，使用一系列 Node.js 模块通过 TranscribeService 客户端类的以下方法创建、列出和
删除转录作业：

Amazon Transcribe 示例 156

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/sns/actions/publish-sms.js
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-transcribe/Class/Transcribe/

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• StartTranscriptionJobCommand

• ListTranscriptionJobsCommand

• DeleteTranscriptionJobCommand

有关 Amazon Transcribe 的更多信息，请参阅 Amazon Transcribe 开发人员指南。

先决条件任务

要设置和运行此示例，您必须先完成以下任务：

• 设置项目环境以运行这些 Node TypeScript 示例，并安装所需的 适用于 JavaScript 的 Amazon SDK
和第三方模块。请按照 GitHub 上的说明进行操作。

• 使用用户凭证创建共享配置文件。有关提供共享凭证文件的更多信息，请参阅《Amazon SDK 和工
具参考指南》 中的共享配置和凭证文件。

Important

这些示例演示了如何使用 ECMAScript6（ES6）导入/导出客户端服务对象和命令。

• 这需要使用 Node.js 版本 13.x 或更高版本。要下载并安装最新版本的 Node.js，请参阅
Node.js 下载。

• 如果您更喜欢使用 CommonJS 语法，请参阅 JavaScript ES6/CommonJS 语法

启动 Amazon Transcribe 作业

此示例演示如何使用 适用于 JavaScript 的 Amazon SDK 启动 Amazon Transcribe 转录作业。有关更
多信息，请参阅 StartTranscriptionJobCommand。

创建一个 libs 目录，然后使用文件名 transcribeClient.js 创建一个 Node.js 模块。将以下代
码复制并粘贴到其中，这将创建 Amazon Transcribe 客户端对象。将 REGION 替换为您的 Amazon 区
域。

import { TranscribeClient } from "@aws-sdk/client-transcribe";
// Set the AWS Region.
const REGION = "REGION"; //e.g. "us-east-1"
// Create an Amazon Transcribe service client object.
const transcribeClient = new TranscribeClient({ region: REGION });

Amazon Transcribe 示例 157

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-transcribe/Class/StartTranscriptionJobCommand/
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-transcribe/Class/ListTranscriptionJobsCommand/
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-transcribe/Class/DeleteTranscriptionJobCommand/
https://docs.amazonaws.cn//transcribe/latest/dg/what-is-transcribe.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/transcribe/README.md
https://docs.amazonaws.cn/sdkref/latest/guide/file-format.html
https://nodejs.org/en/download
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-transcribe/Class/StartTranscriptionJobCommand/

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

export { transcribeClient };

此示例代码可在 GitHub 上的此处找到。

创建文件名为 transcribe-create-job.js 的 Node.js 模块。确保如前所示配置
SDK，包括安装所需的客户端和软件包。创建一个参数对象，指定所需的参数。使用
StartMedicalTranscriptionJobCommand 命令启动作业。

Note

将 MEDICAL_JOB_NAME 替换为转录作业的名称。对于 OUTPUT_BUCKET_NAME，
指定用于保存输出的 Amazon S3 存储桶。对于 JOB_TYPE，请指定作业类型。对于
SOURCE_LOCATION，指定源文件的位置。对于 SOURCE_FILE_LOCATION，指定输入媒体文
件的位置。

// Import the required AWS SDK clients and commands for Node.js
import { StartTranscriptionJobCommand } from "@aws-sdk/client-transcribe";
import { transcribeClient } from "./libs/transcribeClient.js";

// Set the parameters
export const params = {
 TranscriptionJobName: "JOB_NAME",
 LanguageCode: "LANGUAGE_CODE", // For example, 'en-US'
 MediaFormat: "SOURCE_FILE_FORMAT", // For example, 'wav'
 Media: {
 MediaFileUri: "SOURCE_LOCATION",
 // For example, "https://transcribe-demo.s3-REGION.amazonaws.com/hello_world.wav"
 },
 OutputBucketName: "OUTPUT_BUCKET_NAME",
};

export const run = async () => {
 try {
 const data = await transcribeClient.send(
 new StartTranscriptionJobCommand(params),
);
 console.log("Success - put", data);
 return data; // For unit tests.
 } catch (err) {
 console.log("Error", err);
 }

Amazon Transcribe 示例 158

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/transcribe/src/libs/transcribeClient.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

};
run();

要运行示例，请在命令提示符中键入以下内容。

node transcribe-create-job.js

此示例代码可在 GitHub 上的此处找到。

列出 Amazon Transcribe 作业

此示例演示如何使用 适用于 JavaScript 的 Amazon SDK 列出 Amazon Transcribe 转录作业。有关您
可以修改的其他设置的更多信息，请参阅 ListTranscriptionJobCommand。

创建一个 libs 目录，然后使用文件名 transcribeClient.js 创建一个 Node.js 模块。将以下代
码复制并粘贴到其中，这将创建 Amazon Transcribe 客户端对象。将 REGION 替换为您的 Amazon 区
域。

import { TranscribeClient } from "@aws-sdk/client-transcribe";
// Set the AWS Region.
const REGION = "REGION"; //e.g. "us-east-1"
// Create an Amazon Transcribe service client object.
const transcribeClient = new TranscribeClient({ region: REGION });
export { transcribeClient };

此示例代码可在 GitHub 上的此处找到。

创建文件名为 transcribe-list-jobs.js 的 Node.js 模块。确保如前所示配置 SDK，包括安装所
需的客户端和软件包。使用所需参数创建参数对象。

Note

将 KEY_WORD 替换为返回的作业名称必须包含的关键字。

// Import the required AWS SDK clients and commands for Node.js

import { ListTranscriptionJobsCommand } from "@aws-sdk/client-transcribe";
import { transcribeClient } from "./libs/transcribeClient.js";

Amazon Transcribe 示例 159

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/transcribe/src/transcribe_create_job.js
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-transcribe/Class/ListTranscriptionJobsCommand/
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/transcribe/src/libs/transcribeClient.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

// Set the parameters
export const params = {
 JobNameContains: "KEYWORD", // Not required. Returns only transcription
 // job names containing this string
};

export const run = async () => {
 try {
 const data = await transcribeClient.send(
 new ListTranscriptionJobsCommand(params),
);
 console.log("Success", data.TranscriptionJobSummaries);
 return data; // For unit tests.
 } catch (err) {
 console.log("Error", err);
 }
};
run();

要运行示例，请在命令提示符中键入以下内容。

node transcribe-list-jobs.js

此示例代码可在 GitHub 上的此处找到。

删除 Amazon Transcribe 作业

此示例演示如何使用 适用于 JavaScript 的 Amazon SDK 删除 Amazon Transcribe 转录作业。有关选
项的更多信息，请参阅 DeleteTranscriptionJobCommand。

创建一个 libs 目录，然后使用文件名 transcribeClient.js 创建一个 Node.js 模块。将以下代
码复制并粘贴到其中，这将创建 Amazon Transcribe 客户端对象。将 REGION 替换为您的 Amazon 区
域。

import { TranscribeClient } from "@aws-sdk/client-transcribe";
// Set the AWS Region.
const REGION = "REGION"; //e.g. "us-east-1"
// Create Transcribe service object.
const transcribeClient = new TranscribeClient({ region: REGION });
export { transcribeClient };

此示例代码可在 GitHub 上的此处找到。

Amazon Transcribe 示例 160

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/transcribe/src/transcribe_list_jobs.js
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-transcribe/Class/DeleteTranscriptionJobCommand/
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/transcribe/src/libs/transcribeClient.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

创建文件名为 transcribe-delete-job.js 的 Node.js 模块。确保如前所示配置 SDK，包括安装
所需的客户端和软件包。指定要删除的作业的 Amazon 区域和名称。

Note

将 JOB_NAME 替换为要删除的作业的名称。

// Import the required AWS SDK clients and commands for Node.js
import { DeleteTranscriptionJobCommand } from "@aws-sdk/client-transcribe";
import { transcribeClient } from "./libs/transcribeClient.js";

// Set the parameters
export const params = {
 TranscriptionJobName: "JOB_NAME", // Required. For example, 'transciption_demo'
};

export const run = async () => {
 try {
 const data = await transcribeClient.send(
 new DeleteTranscriptionJobCommand(params),
);
 console.log("Success - deleted");
 return data; // For unit tests.
 } catch (err) {
 console.log("Error", err);
 }
};
run();

要运行示例，请在命令提示符中键入以下内容。

node transcribe-delete-job.js

此示例代码可在 GitHub 上的此处找到。

Amazon Transcribe Medical 示例

在此示例中，使用一系列 Node.js 模块通过 TranscribeService 客户端类的以下方法创建、列出和
删除医疗转录作业：

Amazon Transcribe 示例 161

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/transcribe/src/transcribe_delete_job.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• StartMedicalTranscriptionJobCommand

• ListMedicalTranscriptionJobsCommand

• DeleteMedicalTranscriptionJobCommand

有关 Amazon Transcribe 的更多信息，请参阅 Amazon Transcribe 开发人员指南。

先决条件任务

要设置和运行此示例，您必须先完成以下任务：

• 设置项目环境以运行这些 Node TypeScript 示例，并安装所需的 适用于 JavaScript 的 Amazon SDK
和第三方模块。请按照 GitHub 上的说明进行操作。

• 使用用户凭证创建共享配置文件。有关提供共享凭证文件的更多信息，请参阅《Amazon SDK 和工
具参考指南》 中的共享配置和凭证文件。

Important

这些示例演示了如何使用 ECMAScript6（ES6）导入/导出客户端服务对象和命令。

• 这需要使用 Node.js 版本 13.x 或更高版本。要下载并安装最新版本的 Node.js，请参阅
Node.js 下载。

• 如果您更喜欢使用 CommonJS 语法，请参阅 JavaScript ES6/CommonJS 语法

启动 Amazon Transcribe Medical 转录作业

此示例演示如何使用 适用于 JavaScript 的 Amazon SDK 启动 Amazon Transcribe Medical 转录作业。
有关更多信息，请参阅 startMedicalTranscriptionJob。

创建一个 libs 目录，然后使用文件名 transcribeClient.js 创建一个 Node.js 模块。将以下代
码复制并粘贴到其中，这将创建 Amazon Transcribe 客户端对象。将 REGION 替换为您的 Amazon 区
域。

import { TranscribeClient } from "@aws-sdk/client-transcribe";
// Set the AWS Region.
const REGION = "REGION"; //e.g. "us-east-1"
// Create Transcribe service object.
const transcribeClient = new TranscribeClient({ region: REGION });

Amazon Transcribe 示例 162

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-transcribe/Class/StartMedicalTranscriptionJobCommand/
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-transcribe/Class/ListTranscriptionJobsCommand/
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-transcribe/Class/DeleteTranscriptionJobCommand/
https://docs.amazonaws.cn//transcribe/latest/dg/what-is-transcribe.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/transcribe/README.md
https://docs.amazonaws.cn/sdkref/latest/guide/file-format.html
https://nodejs.org/en/download
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-transcribe/Class/StartMedicalTranscriptionJobCommand/

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

export { transcribeClient };

此示例代码可在 GitHub 上的此处找到。

创建文件名为 transcribe-create-medical-job.js 的 Node.js 模块。确保如前所示
配置 SDK，包括安装所需的客户端和软件包。创建一个参数对象，指定所需的参数。使用
StartMedicalTranscriptionJobCommand 命令启动医疗作业。

Note

将 MEDICAL_JOB_NAME 替换为医疗转录作业的名称。对于 OUTPUT_BUCKET_NAME，
指定用于保存输出的 Amazon S3 存储桶。对于 JOB_TYPE，请指定作业类型。对于
SOURCE_LOCATION，指定源文件的位置。对于 SOURCE_FILE_LOCATION，指定输入媒体文
件的位置。

// Import the required AWS SDK clients and commands for Node.js
import { StartMedicalTranscriptionJobCommand } from "@aws-sdk/client-transcribe";
import { transcribeClient } from "./libs/transcribeClient.js";

// Set the parameters
export const params = {
 MedicalTranscriptionJobName: "MEDICAL_JOB_NAME", // Required
 OutputBucketName: "OUTPUT_BUCKET_NAME", // Required
 Specialty: "PRIMARYCARE", // Required. Possible values are 'PRIMARYCARE'
 Type: "JOB_TYPE", // Required. Possible values are 'CONVERSATION' and 'DICTATION'
 LanguageCode: "LANGUAGE_CODE", // For example, 'en-US'
 MediaFormat: "SOURCE_FILE_FORMAT", // For example, 'wav'
 Media: {
 MediaFileUri: "SOURCE_FILE_LOCATION",
 // The S3 object location of the input media file. The URI must be in the same
 region
 // as the API endpoint that you are calling.For example,
 // "https://transcribe-demo.s3-REGION.amazonaws.com/hello_world.wav"
 },
};

export const run = async () => {
 try {
 const data = await transcribeClient.send(
 new StartMedicalTranscriptionJobCommand(params),

Amazon Transcribe 示例 163

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/transcribe/src/libs/transcribeClient.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

);
 console.log("Success - put", data);
 return data; // For unit tests.
 } catch (err) {
 console.log("Error", err);
 }
};
run();

要运行示例，请在命令提示符中键入以下内容。

node transcribe-create-medical-job.js

此示例代码可在 GitHub 上的此处找到。

列出 Amazon Transcribe Medical 作业

此示例演示如何使用 适用于 JavaScript 的 Amazon SDK 列出 Amazon Transcribe 转录作业。有关更
多信息，请参阅 ListTranscriptionMedicalJobsCommand。

创建一个 libs 目录，然后使用文件名 transcribeClient.js 创建一个 Node.js 模块。将以下代
码复制并粘贴到其中，这将创建 Amazon Transcribe 客户端对象。将 REGION 替换为您的 Amazon 区
域。

import { TranscribeClient } from "@aws-sdk/client-transcribe";
// Set the AWS Region.
const REGION = "REGION"; //e.g. "us-east-1"
// Create an Amazon Transcribe service client object.
const transcribeClient = new TranscribeClient({ region: REGION });
export { transcribeClient };

此示例代码可在 GitHub 上的此处找到。

创建文件名为 transcribe-list-medical-jobs.js 的 Node.js 模块。确保如前所
示配置 SDK，包括安装所需的客户端和软件包。使用所需参数创建参数对象，并使用
ListMedicalTranscriptionJobsCommand 命令列出医疗作业。

Note

将 KEYWORD 替换为返回的作业名称必须包含的关键字。

Amazon Transcribe 示例 164

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/transcribe/src/transcribe_create_medical_job.js
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-transcribe/Class/ListMedicalTranscriptionJobsCommand/
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/transcribe/src/libs/transcribeClient.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

// Import the required AWS SDK clients and commands for Node.js

import { ListMedicalTranscriptionJobsCommand } from "@aws-sdk/client-transcribe";
import { transcribeClient } from "./libs/transcribeClient.js";

// Set the parameters
export const params = {
 JobNameContains: "KEYWORD", // Returns only transcription job names containing this
 string
};

export const run = async () => {
 try {
 const data = await transcribeClient.send(
 new ListMedicalTranscriptionJobsCommand(params),
);
 console.log("Success", data.MedicalTranscriptionJobName);
 return data; // For unit tests.
 } catch (err) {
 console.log("Error", err);
 }
};
run();

要运行示例，请在命令提示符中键入以下内容。

node transcribe-list-medical-jobs.js

此示例代码可在 GitHub 上的此处找到。

删除 Amazon Transcribe Medical 作业

此示例演示如何使用 适用于 JavaScript 的 Amazon SDK 删除 Amazon Transcribe 转录作业。有关选
项的更多信息，请参阅 DeleteTranscriptionMedicalJobCommand。

创建一个 libs 目录，然后使用文件名 transcribeClient.js 创建一个 Node.js 模块。将以下代
码复制并粘贴到其中，这将创建 Amazon Transcribe 客户端对象。将 REGION 替换为您的 Amazon 区
域。

import { TranscribeClient } from "@aws-sdk/client-transcribe";
// Set the AWS Region.

Amazon Transcribe 示例 165

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/transcribe/src/transcribe_list_medical_jobs.js
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-transcribe/Class/DeleteMedicalTranscriptionJobCommand/

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const REGION = "REGION"; //e.g. "us-east-1"
// Create Transcribe service object.
const transcribeClient = new TranscribeClient({ region: REGION });
export { transcribeClient };

此示例代码可在 GitHub 上的此处找到。

创建文件名为 transcribe-delete-job.js 的 Node.js 模块。确保如前所示配置 SDK，包括安装
所需的客户端和软件包。使用所需参数创建参数对象，并使用 DeleteMedicalJobCommand 命令删
除医疗作业。

Note

将 JOB_NAME 替换为要删除的作业的名称。

// Import the required AWS SDK clients and commands for Node.js
import { DeleteMedicalTranscriptionJobCommand } from "@aws-sdk/client-transcribe";
import { transcribeClient } from "./libs/transcribeClient.js";

// Set the parameters
export const params = {
 MedicalTranscriptionJobName: "MEDICAL_JOB_NAME", // For example,
 'medical_transciption_demo'
};

export const run = async () => {
 try {
 const data = await transcribeClient.send(
 new DeleteMedicalTranscriptionJobCommand(params),
);
 console.log("Success - deleted");
 return data; // For unit tests.
 } catch (err) {
 console.log("Error", err);
 }
};
run();

Amazon Transcribe 示例 166

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/transcribe/src/libs/transcribeClient.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

要运行示例，请在命令提示符中键入以下内容。

node transcribe-delete-medical-job.js

此示例代码可在 GitHub 上的此处找到。

在亚马逊 EC2 实例上设置 Node.js

将 Node.js 与软件开发工具包配合使用的常见场景 JavaScript 是在亚马逊弹性计算云 (Amazon EC2)
实例上设置和运行 Node.js Web 应用程序。在本教程中，您将创建一个 Linux 实例，使用 SSH 连接到
该实例，然后安装 Node.js 以在该实例上运行。

先决条件

本教程假定您已经使用公有 DNS 名称启动 Linux 实例，该实例可从 Internet 访问并且您可以使用 SSH
来连接。有关更多信息，请参阅 Amazon EC2 用户指南中的步骤 1：启动实例。

Important

启动新的亚马逊 EC2 实例时，请使用亚马逊 Linux 2023 亚马逊系统映像 (AMI)。

还必须将安全组配置为允许 SSH（端口 22）、 HTTP（端口 80）和 HTTPS（端口 443）连接。有关
这些先决条件的更多信息，请参阅《亚马逊 EC2 用户指南》 EC2中的使用亚马逊进行设置。

过程

以下过程可帮助您在 Amazon Linux 实例上安装 Node.js。您可以使用此服务器来托管 Node.js Web 应
用程序。

在 Linux 实例上设置 Node.js

1. 使用 SSH 以 ec2-user 身份连接您的 Linux 实例。

2. 通过在命令行中键入以下内容，安装节点版本管理器 (nvm)。

Warning

Amazon 不控制以下代码。在运行之前，请务必验证其真实性和完整性。有关此代码的更
多信息可以在 nvm GitHub 存储库中找到。

跨服务：在亚马逊 EC2 实例上设置 Node.js 167

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/transcribe/src/transcribe_delete_medical_job.js
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/EC2_GetStarted.html#ec2-launch-instance
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html
https://github.com/nvm-sh/nvm/blob/master/README.md

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.7/install.sh | bash

由于 nvm 可以安装多个版本的 Node.js 并允许您在各个版本之间切换，我们将使用 nvm 安装
Node.js。

3. 通过在命令行中键入以下内容来加载 nvm。

source ~/.bashrc

4. 通过在命令行键入以下命令，使用 nvm 安装 Node.js 的最新 LTS 版本。

nvm install --lts

安装 Node.js 还会安装节点程序包管理器 (npm)，以便您根据需要安装其它模块。

5. 通过在命令行键入以下内容，测试 Node.js 已安装并正确运行。

node -e "console.log('Running Node.js ' + process.version)"

这将显示以下消息，其中显示正在运行的 Node.js 的版本。

Running Node.js VERSION

Note

节点安装仅适用于当前 Amazon EC2 会话。如果您重启 CLI 会话，则需要再次使用 nvm 来启
用已安装的节点版本。如果实例终止，则需要重新安装节点。另一种方法是在获得要保留的配
置后，制作亚马逊 EC2 实例的Amazon系统映像 (AMI)，如以下主题所述。

创建 Amazon 机器映像 (AMI)

在亚马逊实例上安装 Node.js 后，您可以从该 EC2 实例创建亚马逊系统映像 (AMI)。创建 AMI 可以轻
松配置安装相同的 Node.js 的多个亚马逊 EC2实例。有关从现有实例创建 AMI 的更多信息，请参阅亚
马逊 EC2 用户指南中的创建亚马逊 EBS 支持的 Linux AMI。

跨服务：在亚马逊 EC2 实例上设置 Node.js 168

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/creating-an-ami-ebs.html

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

相关资源

有关本主题中使用的命令和软件的更多信息，请参阅以下网页：

• 节点版本管理器 (nvm)-参见 nvm 存储库。 GitHub

• 节点程序包管理器 (npm)：请参阅 npm 网站。

使用 API Gateway 调用 Lambda

您可以使用 Amazon API Gateway 调用 Lambda 函数，该 Amazon 服务用于大规模创建、发布、维
护、监控和保护 REST、HTTP。 WebSocket APIs API 开发人员可以创建 APIs 该访问权限 Amazon
或其他网络服务，以及存储在 Amazon 云端的数据。作为 API Gateway 开发者，您可以创建 APIs 用
于自己的客户端应用程序。有关更多信息，请参阅什么是 Amazon API Gateway。

Amazon Lambda 是一项计算服务，使您无需预置或管理服务器即可运行代码。您可以使用各种编程语
言创建 Lambda 函数。有关的更多信息 Amazon Lambda，请参阅什么是 Amazon Lambda。

在此示例中，您将使用 Lambda 运行时 API 创建一个 Lambda 函数。 JavaScript 此示例调用不同的
Amazon 服务来执行特定的用例。例如，假设组织在员工入职一周年纪念日时向员工发送移动短信表示
祝贺，如下图所示。

完成此示例大约需要 20 分钟。

此示例向您展示如何使用 JavaScript 逻辑来创建执行此用例的解决方案。例如，您将学习如何使用
Lambda 函数读取数据库以确定哪些员工已达到入职一周年纪念日、如何处理数据以及如何发送短信。
然后，您将学习如何使用 API Gateway 通过 Rest 端点调用此 Amazon Lambda 函数。例如，您可以
使用以下 curl 命令调用 Lambda 函数：

curl -XGET "https://xxxxqjko1o3.execute-api.us-east-1.amazonaws.com/cronstage/
employee"

跨服务：Amazon API Gateway 和 Lambda 169

https://github.com/creationix/nvm
https://www.npmjs.com
https://docs.amazonaws.cn/apigateway/latest/developerguide/welcome.html
https://docs.amazonaws.cn/lambda/latest/dg/welcome.html

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

本 Amazon 教程使用名为 Employee 的 Amazon DynamoDB 表，其中包含这些字段。

• id - 表的主键。

• firstName - 员工的名字。

• phone - 员工的电话号码。

• startDate - 员工的入职日期。

Important

完成费用：本文档中包含的 Amazon 服务包含在 Amazon 免费套餐中。但是，请务必在完成此
示例后终止所有资源，以确保系统不会向您收费。

构建应用程序：

1. 满足先决条件

2. 创建 Amazon 资源

3. 准备浏览器脚本

4. 创建并上传 Lambda 函数

5. 部署 Lambda 函数

6. 运行应用程序

7. 删除资源

跨服务：Amazon API Gateway 和 Lambda 170

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

完成先决条件任务

要设置和运行此示例，您必须先完成以下任务：

• 设置项目环境以运行这些 Node TypeScript 示例，并安装所需的模块 适用于 JavaScript 的 Amazon
SDK 和第三方模块。按照上的说明进行操作 GitHub。

• 使用用户凭证创建共享配置文件。有关提供共享凭据文件的更多信息，请参阅和工具参考指南中的共
享配置Amazon SDKs 和凭据文件。

创建 Amazon 资源

本教程要求具有以下资源:

• 一个名为 Employee 的 Amazon DynamoDB 表，其键名为 Id，其字段如上图所示。请务必输入正
确的数据，包括要用来测试此使用案例的有效手机号。有关更多信息，请参阅创建表。

• 具有执行 Lambda 函数的附加权限的 IAM 角色。

• 一个用于托管 Lambda 函数的 Amazon S3 存储桶。

您可以手动创建这些资源，但我们建议 Amazon CloudFormation 按照本教程中的说明使用配置这些资
源。

使用创建 Amazon 资源 Amazon CloudFormation

Amazon CloudFormation 使您能够以可预测的方式重复创建和配置 Amazon 基础架构部署。有关的更
多信息 Amazon CloudFormation，请参阅《Amazon CloudFormation 用户指南》。

要使用以下方法创建 Amazon CloudFormation 堆栈 Amazon CLI：

1. 按照《 Amazon CLI Amazon CLI 用户指南》中的说明进行安装和配置。

2. 在项目文件夹的根目录setup.yaml中创建一个名为的文件，然后将此处的内容复制 GitHub到该
文件中。

Note

该 Amazon CloudFormation 模板是使用此处 Amazon CDK 提供的模板生成的 GitHub。
有关更多信息 Amazon CDK，请参阅《Amazon Cloud Development Kit (Amazon CDK)
开发人员指南》。

跨服务：Amazon API Gateway 和 Lambda 171

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/lambda-api-gateway/README.md
https://docs.amazonaws.cn/sdkref/latest/guide/file-format.html
https://docs.amazonaws.cn/sdkref/latest/guide/file-format.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/getting-started-step-1.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/
https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-welcome.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/cross-services/lambda-api-gateway/setup.yaml
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/resources/cdk/lambda_using_api_gateway
https://docs.amazonaws.cn/cdk/latest/guide/
https://docs.amazonaws.cn/cdk/latest/guide/

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

3. 从命令行运行以下命令，STACK_NAME替换为堆栈的唯一名称。

Important

堆栈名称在 Amazon 区域和 Amazon 账户中必须是唯一的。您最多可指定 128 个字符，
支持数字和连字符。

aws cloudformation create-stack --stack-name STACK_NAME --template-body file://
setup.yaml --capabilities CAPABILITY_IAM

有关 create-stack 命令参数的更多信息，请参阅 Amazon CLI 命令参考指南和 Amazon
CloudFormation 用户指南。

4. 接下来，按照填充表过程填充表。

填充表

要填充表，请先创建一个名为 libs 的目录，然后在其中创建一个名为 dynamoClient.js 的文件，
再将下面的内容粘贴到其中。

const { DynamoDBClient } = require ("@aws-sdk/client-dynamodb");
// Set the AWS Region.
const REGION = "REGION"; // e.g. "us-east-1"
 // Create an Amazon Lambda service client object.
const dynamoClient = new DynamoDBClient({region:REGION});
module.exports = { dynamoClient };

此代码可在此处获得 GitHub。

接下来，在项目文件夹的根目录populate-table.js中创建一个名为的文件，并将此处的内容复
制 GitHub到该文件中。对于其中一项，将 phone 属性的值替换为 E.164 格式的有效手机号码，将
startDate 的值替换为今天的日期。

在命令行处，运行以下命令。

node populate-table.js

跨服务：Amazon API Gateway 和 Lambda 172

https://docs.amazonaws.cn/cli/latest/reference/cloudformation/create-stack.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/using-cfn-cli-creating-stack.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/using-cfn-cli-creating-stack.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/cross-services/lambda-api-gateway/src/libs/dynamoClient.js
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/cross-services/lambda-api-gateway/src/helper-functions/populate-table.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const { BatchWriteItemCommand } = require ("aws-sdk/client-dynamodb");
const {dynamoClient} = require ("./libs/dynamoClient");

// Set the parameters.
export const params = {
 RequestItems: {
 Employees: [
 {
 PutRequest: {
 Item: {
 id: { N: "1" },
 firstName: { S: "Bob" },
 phone: { N: "155555555555654" },
 startDate: { S: "2019-12-20" },
 },
 },
 },
 {
 PutRequest: {
 Item: {
 id: { N: "2" },
 firstName: { S: "Xing" },
 phone: { N: "155555555555653" },
 startDate: { S: "2019-12-17" },
 },
 },
 },
 {
 PutRequest: {
 Item: {
 id: { N: "55" },
 firstName: { S: "Harriette" },
 phone: { N: "155555555555652" },
 startDate: { S: "2019-12-19" },
 },
 },
 },
],
 },
};

export const run = async () => {
 try {
 const data = await dbclient.send(new BatchWriteItemCommand(params));

跨服务：Amazon API Gateway 和 Lambda 173

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 console.log("Success", data);
 } catch (err) {
 console.log("Error", err);
 }
};
run();

此代码可在此处获得 GitHub。

创建 Amazon Lambda 函数

配置 SDK

在 libs 目录中，创建名为 snsClient.js 和 lambdaClient.js 的文件，并将以下内容分别粘贴
到这些文件中。

const { SNSClient } = require("@aws-sdk/client-sns");
// Set the AWS Region.
const REGION = "REGION"; //e.g. "us-east-1"
// Create an Amazon SNS service client object.
const snsClient = new SNSClient({ region: REGION });
module.exports = { snsClient };

REGION替换为 Amazon 区域。此代码可在此处获得 GitHub。

const { LambdaClient } = require("@aws-sdk/client-lambda");
// Set the AWS Region.
const REGION = "REGION"; //e.g. "us-east-1"
// Create an Amazon Lambda service client object.
const lambdaClient = new LambdaClient({ region: REGION });
module.exports = { lambdaClient };

REGION替换为 Amazon 区域。此代码可在此处获得 GitHub。

首先，导入所需的 适用于 JavaScript 的 Amazon SDK (v3) 模块和命令。然后计算今天的日期并将其
分配给一个参数。然后，为 ScanCommand 创建参数。TABLE_NAME替换为您在本示例创建 Amazon
资源 部分中创建的表的名称。

下面的代码段演示了此步骤。（有关完整示例，请参阅捆绑 Lambda 函数。）

跨服务：Amazon API Gateway 和 Lambda 174

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/cross-services/lambda-api-gateway/src/helper-functions/populate-table.js
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/cross-services/lambda-api-gateway/src/libs/snsClient.js
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/cross-services/lambda-api-gateway/src/libs/lambdaClient.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const { ScanCommand } = require("@aws-sdk/client-dynamodb");
const { PublishCommand } = require("@aws-sdk/client-sns");
const { snsClient } = require("./libs/snsClient");
const { dynamoClient } = require("./libs/dynamoClient");

// Get today's date.
const today = new Date();
const dd = String(today.getDate()).padStart(2, "0");
const mm = String(today.getMonth() + 1).padStart(2, "0"); //January is 0!
const yyyy = today.getFullYear();
const date = `${yyyy}-${mm}-${dd}`;

// Set the parameters for the ScanCommand method.
const params = {
 // Specify which items in the results are returned.
 FilterExpression: "startDate = :topic",
 // Define the expression attribute value, which are substitutes for the values you
 want to compare.
 ExpressionAttributeValues: {
 ":topic": { S: date },
 },
 // Set the projection expression, which are the attributes that you want.
 ProjectionExpression: "firstName, phone",
 TableName: "Employees",
};

扫描 DynamoDB 表

首先，创建一个名为的 async/await 函数sendText，用于使用 Amazon SNS PublishCommand 发布
一条短信。然后，添加一个 try 块模式，用于扫描 DynamoDB 表中是否有工作周年纪念日在今天的
员工，然后调用 sendText 函数向这些员工发送短信。如果发生错误，则将调用 catch 块。

下面的代码段演示了此步骤。（有关完整示例，请参阅捆绑 Lambda 函数。）

// Helper function to send message using Amazon SNS.
exports.handler = async () => {
 // Helper function to send message using Amazon SNS.
 async function sendText(textParams) {
 try {
 await snsClient.send(new PublishCommand(textParams));
 console.log("Message sent");
 } catch (err) {
 console.log("Error, message not sent ", err);

跨服务：Amazon API Gateway 和 Lambda 175

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }
 }
 try {
 // Scan the table to identify employees with work anniversary today.
 const data = await dynamoClient.send(new ScanCommand(params));
 for (const element of data.Items) {
 const textParams = {
 PhoneNumber: element.phone.N,
 Message: `Hi ${element.firstName.S}; congratulations on your work anniversary!
`,
 };
 // Send message using Amazon SNS.
 sendText(textParams);
 }
 } catch (err) {
 console.log("Error, could not scan table ", err);
 }
};

捆绑 Lambda 函数

本主题介绍如何将本示例的模块mylambdafunction.ts和必需的 适用于 JavaScript 的 Amazon
SDK 模块捆绑到名index.js为的捆绑文件中。

1. 如果您尚未安装 Webpack，请按照本示例中的完成先决条件任务部分进行安装。

Note

有关 Webpack 的信息，请参阅使用 Webpack 捆绑应用程序。

2. 在命令行中运行以下命令，将本示例 JavaScript 的捆绑到名为的文件中<index.js>：

webpack mylambdafunction.ts --mode development --target node --devtool false --
output-library-target umd -o index.js

Important

请注意，输出被命名为 index.js。这是因为 Lambda 函数必须有一个 index.js 处理
程序才能工作。

3. 将捆绑的输出文件 index.js 压缩到名为 mylambdafunction.zip 的 ZIP 文件中。

跨服务：Amazon API Gateway 和 Lambda 176

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

4. 将 mylambdafunction.zip 上传到您在本教程的创建 Amazon 资源 主题中创建的 Amazon S3
存储桶。

部署 Lambda 函数

在项目的根目录中，创建一个 lambda-function-setup.ts 文件，然后将以下内容粘贴到其中。

BUCKET_NAME替换为您将 Lambda 函数的 ZIP 版本上传到的 Amazon S3 存储桶的名称。将
ZIP_FILE_NAME Lambda 函数的 ZIP 版本替换为命名的名称。ROLE替换为您在本教程创建 Amazon
资源 主题中创建的 IAM 角色的 Amazon 资源编号 (ARN)。LAMBDA_FUNCTION_NAME替换为 Lambda
函数的名称。

// Load the required Lambda client and commands.
const {
 CreateFunctionCommand
} = require ("@aws-sdk/client-lambda");
const { lambdaClient} = require ("./libs/lambdaClient.js);

// Set the parameters.
const params = {
 Code: {
 S3Bucket: "BUCKET_NAME", // BUCKET_NAME
 S3Key: "ZIP_FILE_NAME", // ZIP_FILE_NAME
 },
 FunctionName: "LAMBDA_FUNCTION_NAME",
 Handler: "index.handler",
 Role: "IAM_ROLE_ARN", // IAM_ROLE_ARN; e.g., arn:aws:iam::650138640062:role/v3-
lambda-tutorial-lambda-role
 Runtime: "nodejs12.x",
 Description:
 "Scans a DynamoDB table of employee details and using Amazon Simple Notification
 Services (Amazon SNS) to " +
 "send employees an email on each anniversary of their start-date.",
};

const run = async () => {
 try {
 const data = await lambdaClient.send(new CreateFunctionCommand(params));
 console.log("Success", data); // successful response
 } catch (err) {
 console.log("Error", err); // an error occurred
 }

跨服务：Amazon API Gateway 和 Lambda 177

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

};
run();

在命令行中输入以下内容以部署 Lambda 函数。

node lambda-function-setup.ts

此代码示例可在此处找到 GitHub。

配置 API Gateway 以调用 Lambda 函数

构建应用程序：

1. 创建 rest API

2. 测试 API Gateway 方法

3. 部署 API Gateway 方法

创建 rest API

您可以使用 API Gateway 控制台为 Lambda 函数创建 rest 端点。完成后，您就可以使用 restful 调用
来调用 Lambda 函数。

1. 登录 Amazon API Gateway 控制台。

2. 在 Rest API 下，选择生成。

3. 选择新建 API。

4. 指定 Employee 作为 API 名称并提供描述。

跨服务：Amazon API Gateway 和 Lambda 178

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/cross-services/lambda-api-gateway/src/helper-functions/lambda-function-setup.js
https://console.amazonaws.cn/apigateway

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

5. 选择创建 API。

6. 在 Employee 部分下选择资源。

7. 在名称字段中，指定员工。

8. 选择创建资源。

9. 从操作下拉菜单中，选择创建资源。

跨服务：Amazon API Gateway 和 Lambda 179

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

10. 选择 /employees，从操作中选择创建方法，然后从 /employees 下的下拉菜单中选择 GET。选择
复选标记图标。

11. 选择 Lambda 函数并输入 mmylambdafunction 作为 Lambda 函数名称。选择保存。

测试 API Gateway 方法

在本教程中，您可以测试调用 mylambdafunction Lambda 函数的 API Gateway 方法。要测试该方法，
请选择测试，如下图所示。

跨服务：Amazon API Gateway 和 Lambda 180

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

调用 Lambda 函数后，您可以查看日志文件以查看成功消息。

部署 API Gateway 方法

测试成功后，您可以从 Amazon API Gateway 控制台部署该方法。

1. 选择 GET。

2. 从操作下拉列表中，选择部署 API。

跨服务：Amazon API Gateway 和 Lambda 181

https://console.amazonaws.cn/apigateway

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

3. 填写部署 API 表单，然后选择部署。

4. 选择保存更改。

5. 再次选择 GET，可以看到 URL 已更改。这是您可以用来调用 Lambda 函数的调用 URL。

跨服务：Amazon API Gateway 和 Lambda 182

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

删除资源

恭喜您！您已使用 适用于 JavaScript 的 Amazon SDK通过 Amazon API Gateway 调用了 Lambda 函
数。如本教程开头所述，请务必在学习本教程时终止您创建的所有资源，以确保系统不会向您收费。
为此，您可以删除在本教程创建 Amazon 资源 主题中创建的 Amazon CloudFormation 堆栈，如下所
示：

1. Amazon CloudFormation 在 Amazon 管理控制台中打开。

2. 打开堆栈页面，然后选择堆栈。

3. 选择删除。

创建计划事件以执行 Amazon Lambda 函数

您可以使用 Ama CloudWatch zon 事件创建调用 Amazon Lambda 函数的计划事件。您可以将
CloudWatch 事件配置为使用 cron 表达式来安排何时调用 Lambda 函数。例如，您可以安排一个
CloudWatch 事件，使其在每个工作日调用 Lambda 函数。

Amazon Lambda 是一项计算服务，使您无需预置或管理服务器即可运行代码。您可以使用各种编程语
言创建 Lambda 函数。有关的更多信息 Amazon Lambda，请参阅什么是 Amazon Lambda。

在本教程中，您将使用 Lambda 运行时 API 创建 Lambda 函数。 JavaScript此示例调用不同的
Amazon 服务来执行特定的用例。例如，假设组织在员工入职一周年纪念日时向员工发送移动短信表示
祝贺，如下图所示。

跨服务：计划的 Lambda 事件 183

https://console.aws.amazon.com/cloudformation/home
https://docs.amazonaws.cn/lambda/latest/dg/welcome.html

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

完成本教程大约需要 20 分钟。

本教程向您展示如何使用 JavaScript 逻辑来创建执行此用例的解决方案。例如，您将学习如何使用
Lambda 函数读取数据库以确定哪些员工已达到入职一周年纪念日、如何处理数据以及如何发送短信。
然后，您将学习如何使用 cron 表达式在每个工作日调用 Lambda 函数。

本 Amazon 教程使用名为 Employee 的 Amazon DynamoDB 表，其中包含这些字段。

• id - 表的主键。

• firstName - 员工的名字。

• phone - 员工的电话号码。

• startDate - 员工的入职日期。

Important

完成费用：本文档中包含的 Amazon 服务包含在 Amazon 免费套餐中。但是，请务必在完成本
教程后终止所有资源，以确保系统不会向您收费。

跨服务：计划的 Lambda 事件 184

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

构建应用程序：

1. 满足先决条件

2. 创建 Amazon 资源

3. 准备浏览器脚本

4. 创建并上传 Lambda 函数

5. 部署 Lambda 函数

6. 运行应用程序

7. 删除资源

完成先决条件任务

要设置和运行此示例，您必须先完成以下任务：

• 设置项目环境以运行这些 Node.js TypeScript 示例，并安装所需的模块 适用于 JavaScript 的
Amazon SDK 和第三方模块。按照上的说明进行操作 GitHub。

• 使用用户凭证创建共享配置文件。有关提供共享凭据文件的更多信息，请参阅和工具参考指南中的共
享配置Amazon SDKs 和凭据文件。

创建 Amazon 资源

本教程要求具有以下资源。

• 一个名为 Employee 的 Amazon DynamoDB 表，其键名为 Id，其字段如上图所示。请务必输入正确
的数据，包括要用来测试此使用案例的有效手机号。有关更多信息，请参阅创建表。

• 具有执行 Lambda 函数的附加权限的 IAM 角色。

• 一个用于托管 Lambda 函数的 Amazon S3 存储桶。

您可以手动创建这些资源，但我们建议 Amazon CloudFormation 按照本教程中的说明使用配置这些资
源。

使用创建 Amazon 资源 Amazon CloudFormation

Amazon CloudFormation 使您能够以可预测的方式重复创建和配置 Amazon 基础架构部署。有关的更
多信息 Amazon CloudFormation，请参阅《Amazon CloudFormation 用户指南》。

要使用以下方法创建 Amazon CloudFormation 堆栈 Amazon CLI：

跨服务：计划的 Lambda 事件 185

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/cross-services/lex-bot/README.md
https://docs.amazonaws.cn/sdkref/latest/guide/file-format.html
https://docs.amazonaws.cn/sdkref/latest/guide/file-format.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/getting-started-step-1.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

1. 按照《 Amazon CLI Amazon CLI 用户指南》中的说明进行安装和配置。

2. 在项目文件夹的根目录setup.yaml中创建一个名为的文件，然后将此处的内容复制 GitHub到该
文件中。

Note

该 Amazon CloudFormation 模板是使用此处 Amazon CDK 提供的模板生成的 GitHub。
有关更多信息 Amazon CDK，请参阅《Amazon Cloud Development Kit (Amazon CDK)
开发人员指南》。

3. 从命令行运行以下命令，STACK_NAME替换为堆栈的唯一名称。

Important

堆栈名称在 Amazon 区域和 Amazon 账户中必须是唯一的。您最多可指定 128 个字符，
支持数字和连字符。

aws cloudformation create-stack --stack-name STACK_NAME --template-body file://
setup.yaml --capabilities CAPABILITY_IAM

有关 create-stack 命令参数的更多信息，请参阅 Amazon CLI 命令参考指南和 Amazon
CloudFormation 用户指南。

在控制台中打开堆栈，然后选择 “资源” 选项卡， Amazon CloudFormation 即可查看控制台中的资
源列表。您将在本教程中需要这些内容。

4. 创建堆栈后，使用填充 DynamoDB 表，如中所述。 适用于 JavaScript 的 Amazon SDK 填充
DynamoDB 表

填充 DynamoDB 表

要填充表，请先创建一个名为 libs 的目录，然后在其中创建一个名为 dynamoClient.js 的文件，
再将下面的内容粘贴到其中。

const { DynamoDBClient } = require("@aws-sdk/client-dynamodb");
// Set the AWS Region.
const REGION = "REGION"; // e.g. "us-east-1"
// Create an Amazon DynamoDB service client object.

跨服务：计划的 Lambda 事件 186

https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-welcome.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/cross-services/lambda-scheduled-events/setup.yaml
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/resources/cdk/lambda_using_scheduled_events
https://docs.amazonaws.cn/cdk/latest/guide/
https://docs.amazonaws.cn/cdk/latest/guide/
https://docs.amazonaws.cn/cli/latest/reference/cloudformation/create-stack.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/using-cfn-cli-creating-stack.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/using-cfn-cli-creating-stack.html

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const dynamoClient = new DynamoDBClient({region:REGION});
module.exports = { dynamoClient };

此代码可从此处获得 GitHub。

接下来，在项目文件夹的根目录populate-table.js中创建一个名为的文件，并将此处的内容复
制 GitHub到该文件中。对于其中一项，将 phone 属性的值替换为 E.164 格式的有效手机号码，将
startDate 的值替换为今天的日期。

在命令行处，运行以下命令。

node populate-table.js

const {
BatchWriteItemCommand } = require("aws-sdk/client-dynamodb");
const {dynamoClient} = require("./libs/dynamoClient");
// Set the parameters.
const params = {
 RequestItems: {
 Employees: [
 {
 PutRequest: {
 Item: {
 id: { N: "1" },
 firstName: { S: "Bob" },
 phone: { N: "155555555555654" },
 startDate: { S: "2019-12-20" },
 },
 },
 },
 {
 PutRequest: {
 Item: {
 id: { N: "2" },
 firstName: { S: "Xing" },
 phone: { N: "155555555555653" },
 startDate: { S: "2019-12-17" },
 },
 },
 },
 {

跨服务：计划的 Lambda 事件 187

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/cross-services/lambda-scheduled-events/src/libs/dynamoClient.js
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/cross-services/lambda-api-gateway/src/helper-functions/populate-table.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 PutRequest: {
 Item: {
 id: { N: "55" },
 firstName: { S: "Harriette" },
 phone: { N: "155555555555652" },
 startDate: { S: "2019-12-19" },
 },
 },
 },
],
 },
};

export const run = async () => {
 try {
 const data = await dbclient.send(new BatchWriteItemCommand(params));
 console.log("Success", data);
 } catch (err) {
 console.log("Error", err);
 }
};
run();

此代码可从此处获得 GitHub。

创建 Amazon Lambda 函数

配置 SDK

首先导入所需的 适用于 JavaScript 的 Amazon SDK (v3) 模块和命令：DynamoDBClient以及
Dynamo ScanCommand DB SNSClient 和 Amazon SNS 命令。PublishCommandREGION替换为
Amazon 区域。然后计算今天的日期并将其分配给一个参数。然后使用您在本示例创建 Amazon 资源
部分中创建TABLE_NAME的表的名称为 ScanCommand .Replace 创建参数。

下面的代码段演示了此步骤。（有关完整示例，请参阅捆绑 Lambda 函数。）

"use strict";
// Load the required clients and commands.
const { DynamoDBClient, ScanCommand } = require("@aws-sdk/client-dynamodb");
const { SNSClient, PublishCommand } = require("@aws-sdk/client-sns");

//Set the AWS Region.
const REGION = "REGION"; //e.g. "us-east-1"

跨服务：计划的 Lambda 事件 188

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/cross-services/lambda-scheduled-events/src/helper-functions/populate-table.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

// Get today's date.
const today = new Date();
const dd = String(today.getDate()).padStart(2, "0");
const mm = String(today.getMonth() + 1).padStart(2, "0"); //January is 0!
const yyyy = today.getFullYear();
const date = yyyy + "-" + mm + "-" + dd;

// Set the parameters for the ScanCommand method.
const params = {
 // Specify which items in the results are returned.
 FilterExpression: "startDate = :topic",
 // Define the expression attribute value, which are substitutes for the values you
 want to compare.
 ExpressionAttributeValues: {
 ":topic": { S: date },
 },
 // Set the projection expression, which the the attributes that you want.
 ProjectionExpression: "firstName, phone",
 TableName: "TABLE_NAME",
};

扫描 DynamoDB 表

首先创建一个名为的 async/await 函数sendText，用于使用 Amazon SNS PublishCommand 发布一
条短信。然后，添加一个 try 块模式，用于扫描 DynamoDB 表中是否有工作周年纪念日在今天的员
工，然后调用 sendText 函数向这些员工发送短信。如果发生错误，则将调用 catch 块。

下面的代码段演示了此步骤。（有关完整示例，请参阅捆绑 Lambda 函数。）

exports.handler = async (event, context, callback) => {
 // Helper function to send message using Amazon SNS.
 async function sendText(textParams) {
 try {
 const data = await snsclient.send(new PublishCommand(textParams));
 console.log("Message sent");
 } catch (err) {
 console.log("Error, message not sent ", err);
 }
 }
 try {
 // Scan the table to check identify employees with work anniversary today.
 const data = await dbclient.send(new ScanCommand(params));

跨服务：计划的 Lambda 事件 189

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 data.Items.forEach(function (element, index, array) {
 const textParams = {
 PhoneNumber: element.phone.N,
 Message:
 "Hi " +
 element.firstName.S +
 "; congratulations on your work anniversary!",
 };
 // Send message using Amazon SNS.
 sendText(textParams);
 });
 } catch (err) {
 console.log("Error, could not scan table ", err);
 }
};

捆绑 Lambda 函数

本主题介绍如何将本示例的模块mylambdafunction.js和必需的 适用于 JavaScript 的 Amazon
SDK 模块捆绑到名index.js为的捆绑文件中。

1. 如果您尚未安装 Webpack，请按照本示例中的完成先决条件任务部分进行安装。

Note

有关 webpack 的信息，请参阅使用 Webpack 捆绑应用程序。

2. 在命令行中运行以下命令，将本示例的捆绑到名 JavaScript 为的文件中<index.js>：

webpack mylamdbafunction.js --mode development --target node --devtool false --
output-library-target umd -o index.js

Important

请注意，输出被命名为 index.js。这是因为 Lambda 函数必须有一个 index.js 处理
程序才能工作。

3. 将捆绑的输出文件 index.js 压缩到名为 my-lambda-function.zip 的 ZIP 文件中。

4. 将 mylambdafunction.zip 上传到您在本教程的创建 Amazon 资源 主题中创建的 Amazon S3
存储桶。

跨服务：计划的 Lambda 事件 190

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

以下是 mylambdafunction.js 的完整的浏览器脚本代码。

"use strict";
// Load the required clients and commands.
const { DynamoDBClient, ScanCommand } = require("@aws-sdk/client-dynamodb");
const { SNSClient, PublishCommand } = require("@aws-sdk/client-sns");

//Set the AWS Region.
const REGION = "REGION"; //e.g. "us-east-1"

// Get today's date.
const today = new Date();
const dd = String(today.getDate()).padStart(2, "0");
const mm = String(today.getMonth() + 1).padStart(2, "0"); //January is 0!
const yyyy = today.getFullYear();
const date = yyyy + "-" + mm + "-" + dd;

// Set the parameters for the ScanCommand method.
const params = {
 // Specify which items in the results are returned.
 FilterExpression: "startDate = :topic",
 // Define the expression attribute value, which are substitutes for the values you
 want to compare.
 ExpressionAttributeValues: {
 ":topic": { S: date },
 },
 // Set the projection expression, which the the attributes that you want.
 ProjectionExpression: "firstName, phone",
 TableName: "TABLE_NAME",
};

// Create the client service objects.
const dbclient = new DynamoDBClient({ region: REGION });
const snsclient = new SNSClient({ region: REGION });

exports.handler = async (event, context, callback) => {
 // Helper function to send message using Amazon SNS.
 async function sendText(textParams) {
 try {
 const data = await snsclient.send(new PublishCommand(textParams));
 console.log("Message sent");
 } catch (err) {
 console.log("Error, message not sent ", err);
 }

跨服务：计划的 Lambda 事件 191

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }
 try {
 // Scan the table to check identify employees with work anniversary today.
 const data = await dbclient.send(new ScanCommand(params));
 data.Items.forEach(function (element, index, array) {
 const textParams = {
 PhoneNumber: element.phone.N,
 Message:
 "Hi " +
 element.firstName.S +
 "; congratulations on your work anniversary!",
 };
 // Send message using Amazon SNS.
 sendText(textParams);
 });
 } catch (err) {
 console.log("Error, could not scan table ", err);
 }
};

部署 Lambda 函数

在项目的根目录中，创建一个 lambda-function-setup.js 文件，然后将以下内容粘贴到其中。

BUCKET_NAME替换为您将 Lambda 函数的 ZIP 版本上传到的 Amazon S3 存储桶的名称。将
ZIP_FILE_NAME Lambda 函数的 ZIP 版本替换为命名的名称。IAM_ROLE_ARN替换为您在本教程创
建 Amazon 资源 主题中创建的 IAM 角色的 Amazon 资源编号 (ARN)。LAMBDA_FUNCTION_NAME替
换为 Lambda 函数的名称。

// Load the required Lambda client and commands.
const {
 CreateFunctionCommand,
} = require("@aws-sdk/client-lambda");
const {
 lambdaClient
} = require("..libs/lambdaClient.js");

// Instantiate an Lambda client service object.
const lambda = new LambdaClient({ region: REGION });

// Set the parameters.
const params = {
 Code: {

跨服务：计划的 Lambda 事件 192

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 S3Bucket: "BUCKET_NAME", // BUCKET_NAME
 S3Key: "ZIP_FILE_NAME", // ZIP_FILE_NAME
 },
 FunctionName: "LAMBDA_FUNCTION_NAME",
 Handler: "index.handler",
 Role: "IAM_ROLE_ARN", // IAM_ROLE_ARN; e.g., arn:aws:iam::650138640062:role/v3-
lambda-tutorial-lambda-role
 Runtime: "nodejs12.x",
 Description:
 "Scans a DynamoDB table of employee details and using Amazon Simple Notification
 Services (Amazon SNS) to " +
 "send employees an email the each anniversary of their start-date.",
};

const run = async () => {
 try {
 const data = await lambda.send(new CreateFunctionCommand(params));
 console.log("Success", data); // successful response
 } catch (err) {
 console.log("Error", err); // an error occurred
 }
};
run();

在命令行中输入以下内容以部署 Lambda 函数。

node lambda-function-setup.js

此代码示例可在此处找到 GitHub。

配置 CloudWatch 为调用 Lambda 函数

CloudWatch 要配置为调用 Lambda 函数，请执行以下操作：

1. 打开 Lambda 控制台的函数页面。

2. 选择 Lambda 函数。

3. 在设计器下方，选择添加触发器。

4. 将触发器类型设置为 CloudWatch Events/ EventBridge。

5. 对于“规则”，选择创建新规则。

6. 填写“规则名称”和“规则描述”。

跨服务：计划的 Lambda 事件 193

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/cross-services/lambda-scheduled-events/src/helper-functions/lambda-function-setup.js

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

7. 对于规则类型，请选择计划表达式。

8. 在计划表达式字段中，输入一个 cron 表达式。例如，cron(0 12 ? * MON-FRI *)。

9. 选择添加。

Note

有关更多信息，请参阅将 Lambda 与事件配合 CloudWatch 使用。

删除资源

恭喜您！您已使用亚马逊 CloudWatch 计划的事件调用了 Lambda 函数。 适用于 JavaScript 的
Amazon SDK如本教程开头所述，请务必在学习本教程时终止您创建的所有资源，以确保系统不会向您
收费。为此，您可以删除在本教程创建 Amazon 资源 主题中创建的 Amazon CloudFormation 堆栈，
如下所示：

1. 打开 Amazon CloudFormation 控制台。

2. 在堆栈页面上，选择堆栈。

3. 选择删除。

构建 Amazon Lex 聊天机器人

您可以在 Web 应用程序中创建 Amazon Lex 聊天机器人来吸引您的网站访问者。Amazon Lex 聊天机
器人是一种无需与人直接接触即可与用户进行在线聊天对话的功能。例如，下图显示了一个 Amazon
Lex 聊天机器人，该聊天机器人针对预订酒店房间与用户进行交流。

跨服务：Amazon Lex 示例 194

https://docs.amazonaws.cn/lambda/latest/dg/services-cloudwatchevents.html
https://console.aws.amazon.com/cloudformation/home

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

在本 Amazon 教程中创建的 Amazon Lex 聊天机器人能够处理多种语言。例如，说法语的用户可以输
入法语文本并收到以法语返回的回复。

跨服务：Amazon Lex 示例 195

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

同样，用户可以用意大利语与 Amazon Lex 聊天机器人进行交流。

跨服务：Amazon Lex 示例 196

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

本 Amazon 教程将指导你创建 Amazon Lex 聊天机器人并将其集成到 Node.js 网络应用程序中。 适用
于 JavaScript 的 Amazon SDK (v3) 用于调用以下 Amazon 服务：

• Amazon Lex

• Amazon Comprehend

• Amazon Translate

完成费用：本文档中包含的 Amazon 服务包含在Amazon 免费套餐中。

注意：在学习本教程时，请务必终止您创建的所有资源，以确保系统不会向您收费。

构建应用程序：

1. 先决条件

2. 预置资源

3. 创建 Amazon Lex 聊天机器人

4. 创建 HTML

跨服务：Amazon Lex 示例 197

https://www.amazonaws.cn/free/?all-free-tier.sort-by=item.additionalFields.SortRank&all-free-tier.sort-order=asc

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

5. 创建浏览器脚本

6. 后续步骤

先决条件

要设置和运行此示例，您必须先完成以下任务：

• 设置项目环境以运行这些 Node TypeScript 示例，并安装所需的模块 适用于 JavaScript 的 Amazon
SDK 和第三方模块。按照上的说明进行操作 GitHub。

• 使用用户凭证创建共享配置文件。有关提供共享凭据文件的更多信息，请参阅和工具参考指南中的共
享配置Amazon SDKs 和凭据文件。

Important

此示例使用 ECMAScript6 (ES6)。这需要使用 Node.js 版本 13.x 或更高版本。要下载并安装最
新版本的 Node.js，请参阅 Node.js 下载。
但是，如果您更喜欢使用 CommonJS 语法，请参阅 JavaScript ES6/CommonJS 语法。

创建 Amazon 资源

本教程要求具有以下资源。

• 一个未经身份验证的 IAM 角色，附加了以下权限：

• Amazon Comprehend

• Amazon Translate

• Amazon Lex

您可以手动创建这些资源，但我们建议使用本教程 Amazon CloudFormation 中所述配置这些资源。

使用创建 Amazon 资源 Amazon CloudFormation

Amazon CloudFormation 使您能够以可预测的方式重复创建和配置 Amazon 基础架构部署。有关的更
多信息 Amazon CloudFormation，请参阅《Amazon CloudFormation 用户指南》。

要使用以下方法创建 Amazon CloudFormation 堆栈 Amazon CLI：

跨服务：Amazon Lex 示例 198

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/lambda-scheduled-events/README.md
https://docs.amazonaws.cn/sdkref/latest/guide/file-format.html
https://docs.amazonaws.cn/sdkref/latest/guide/file-format.html
https://nodejs.org/en/download
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

1. 按照《 Amazon CLI Amazon CLI 用户指南》中的说明进行安装和配置。

2. 在项目文件夹的根目录setup.yaml中创建一个名为的文件，然后将此处的内容复制 GitHub到该
文件中。

Note

该 Amazon CloudFormation 模板是使用此处 Amazon CDK 提供的模板生成的 GitHub。
有关更多信息 Amazon CDK，请参阅《Amazon Cloud Development Kit (Amazon CDK)
开发人员指南》。

3. 从命令行运行以下命令，STACK_NAME替换为堆栈的唯一名称。

Important

堆栈名称在 Amazon 区域和 Amazon 账户中必须是唯一的。您最多可指定 128 个字符，
支持数字和连字符。

aws cloudformation create-stack --stack-name STACK_NAME --template-body file://
setup.yaml --capabilities CAPABILITY_IAM

有关 create-stack 命令参数的更多信息，请参阅 Amazon CLI 命令参考指南和 Amazon
CloudFormation 用户指南。

要查看创建的资源，请打开 Amazon Lex 控制台，选择堆栈，然后选择资源选项卡。

创建 Amazon Lex 机器人

Important

使用 Amazon Lex 控制台的 V1 创建机器人。此示例不适用于使用 V2 创建的机器人。

第一步是使用 Amazon Web Services 管理控制台创建 Amazon Lex 聊天机器人。在本示例中，使用了
Amazon Lex BookTrip示例。有关更多信息，请参阅 BookTrip。

• 在 Amazon Web Services 控制台上登录 Amazon Web Services 管理控制台并打开 Amazon Lex 控
制台。

跨服务：Amazon Lex 示例 199

https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-welcome.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascriptv3/example_code/cross-services/lex-bot/setup.yaml
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/resources/cdk/lex_bot_example_iam_unauth_role
https://docs.amazonaws.cn/cdk/latest/guide/
https://docs.amazonaws.cn/cdk/latest/guide/
https://docs.amazonaws.cn/cli/latest/reference/cloudformation/create-stack.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/using-cfn-cli-creating-stack.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/using-cfn-cli-creating-stack.html
https://docs.amazonaws.cn/lex/latest/dg/ex-book-trip.html
https://console.amazonaws.cn/lex/

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 在“机器人”页面上，选择创建。

• 选择BookTrip蓝图（保留默认的机器人名称 BookTrip）。

• 填写默认设置并选择创建（控制台显示BookTrip机器人）。在“编辑器”选项卡上，查看预配置目的的
详细信息。

• 在测试窗口中测试机器人。输入我想预订酒店房间，，开始测试。

跨服务：Amazon Lex 示例 200

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 选择 “发布” 并指定别名（使用时需要此值 适用于 JavaScript 的 Amazon SDK）。

Note

你需要在 JavaScript 代码中引用机器人名称和机器人别名。

创建 HTML

创建一个名为 index.html的文件。将以下代码复制并粘贴到 index.html。此 HTML 引用
main.js。这是 index.js 的捆绑版本，其中包含所需的 适用于 JavaScript 的 Amazon SDK 模块。您
将在 创建 HTML 中创建此文件。 index.html 也引用 style.css，后者用于添加样式。

<!doctype html>
<head>
 <title>Amazon Lex - Sample Application (BookTrip)</title>
 <link type="text/css" rel="stylesheet" href="style.css" />
</head>

跨服务：Amazon Lex 示例 201

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

<body>
 <h1 id="title">Amazon Lex - BookTrip</h1>
 <p id="intro">
 This multiple language chatbot shows you how easy it is to incorporate
 <a
 href="https://aws.amazon.com/lex/"
 title="Amazon Lex (product)"
 target="_new"
 >Amazon Lex
 into your web apps. Try it out.
 </p>
 <div id="conversation"></div>
 <input
 type="text"
 id="wisdom"
 size="80"
 value=""
 placeholder="J'ai besoin d'une chambre d'hôtel"
 />

 <button onclick="createResponse()">Send Text</button>
 <script type="text/javascript" src="./main.js"></script>
</body>

此代码也可以在此处找到 GitHub。

创建浏览器脚本

创建一个名为 index.js的文件。将以下代码复制并粘贴到 index.js。导入所需的 适用于
JavaScript 的 Amazon SDK 模块和命令。为 Amazon Lex、Amazon Comprehend 和 Amazon
Translate 创建客户端。REGION替换为 Amazon 区域，并IDENTITY_POOL_ID替换为您在中创建的身
份池的 ID 创建 Amazon 资源 。要检索此身份池 ID，请在 Amazon Cognito 控制台中打开身份池，选
择编辑身份池，然后在侧面菜单中选择示例代码。身份池 ID 将在控制台中以红色文本显示。

首先，创建一个 libs 目录，然后通过创建三个文件 comprehendClient.js、lexClient.js 和
translateClient.js 来创建所需的服务客户端对象。将下面的相应代码粘贴到每个文件中，然
后IDENTITY_POOL_ID在每个文件中替换REGION和。

跨服务：Amazon Lex 示例 202

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/resources/cdk#running-a-cdk-app

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

Note

使用您在使用创建 Amazon 资源 Amazon CloudFormation中创建的 Amazon Cognito 身份池的
ID。

import { CognitoIdentityClient } from "@aws-sdk/client-cognito-identity";
import { fromCognitoIdentityPool } from "@aws-sdk/credential-provider-cognito-
identity";
import { ComprehendClient } from "@aws-sdk/client-comprehend";

const REGION = "REGION";
const IDENTITY_POOL_ID = "IDENTITY_POOL_ID"; // An Amazon Cognito Identity Pool ID.

// Create an Amazon Comprehend service client object.
const comprehendClient = new ComprehendClient({
 region: REGION,
 credentials: fromCognitoIdentityPool({
 client: new CognitoIdentityClient({ region: REGION }),
 identityPoolId: IDENTITY_POOL_ID,
 }),
});

export { comprehendClient };

import { CognitoIdentityClient } from "@aws-sdk/client-cognito-identity";
import { fromCognitoIdentityPool } from "@aws-sdk/credential-provider-cognito-
identity";
import { LexRuntimeServiceClient } from "@aws-sdk/client-lex-runtime-service";

const REGION = "REGION";
const IDENTITY_POOL_ID = "IDENTITY_POOL_ID"; // An Amazon Cognito Identity Pool ID.

// Create an Amazon Lex service client object.
const lexClient = new LexRuntimeServiceClient({
 region: REGION,
 credentials: fromCognitoIdentityPool({
 client: new CognitoIdentityClient({ region: REGION }),
 identityPoolId: IDENTITY_POOL_ID,
 }),
});

跨服务：Amazon Lex 示例 203

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

export { lexClient };

import { CognitoIdentityClient } from "@aws-sdk/client-cognito-identity";
import { fromCognitoIdentityPool } from "@aws-sdk/credential-provider-cognito-
identity";
import { TranslateClient } from "@aws-sdk/client-translate";

const REGION = "REGION";
const IDENTITY_POOL_ID = "IDENTITY_POOL_ID"; // An Amazon Cognito Identity Pool ID.

// Create an Amazon Translate service client object.
const translateClient = new TranslateClient({
 region: REGION,
 credentials: fromCognitoIdentityPool({
 client: new CognitoIdentityClient({ region: REGION }),
 identityPoolId: IDENTITY_POOL_ID,
 }),
});

export { translateClient };

此代码可在此处获得 GitHub。 。

接下来，创建一个 index.js 文件，并将以下代码粘贴到文件中。

将BOT_ALIAS和BOT_NAME分别替换为您的 Amazon Lex 机器人的别名和名称，并USER_ID使用用户
ID。createResponse 异步函数将执行以下操作：

• 将用户输入的文本导入浏览器，然后使用 Amazon Comprehend 来确定其语言代码。

• 获取语言代码并使用 Amazon Translate 将文本翻译成英文。

• 获取翻译后的文本并使用 Amazon Lex 生成响应。

• 将响应发布到浏览器页面。

import { DetectDominantLanguageCommand } from "@aws-sdk/client-comprehend";
import { TranslateTextCommand } from "@aws-sdk/client-translate";
import { PostTextCommand } from "@aws-sdk/client-lex-runtime-service";
import { lexClient } from "./libs/lexClient.js";
import { translateClient } from "./libs/translateClient.js";
import { comprehendClient } from "./libs/comprehendClient.js";

跨服务：Amazon Lex 示例 204

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/lex-bot/src/libs

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

let g_text = "";
// Set the focus to the input box.
document.getElementById("wisdom").focus();

function showRequest() {
 const conversationDiv = document.getElementById("conversation");
 const requestPara = document.createElement("P");
 requestPara.className = "userRequest";
 requestPara.appendChild(document.createTextNode(g_text));
 conversationDiv.appendChild(requestPara);
 conversationDiv.scrollTop = conversationDiv.scrollHeight;
}

function showResponse(lexResponse) {
 const conversationDiv = document.getElementById("conversation");
 const responsePara = document.createElement("P");
 responsePara.className = "lexResponse";

 const lexTextResponse = lexResponse;

 responsePara.appendChild(document.createTextNode(lexTextResponse));
 responsePara.appendChild(document.createElement("br"));
 conversationDiv.appendChild(responsePara);
 conversationDiv.scrollTop = conversationDiv.scrollHeight;
}

function handletext(text) {
 g_text = text;
 const xhr = new XMLHttpRequest();
 xhr.addEventListener("load", loadNewItems, false);
 xhr.open("POST", "../text", true); // A Spring MVC controller
 xhr.setRequestHeader("Content-type", "application/x-www-form-urlencoded"); //
necessary
 xhr.send(`text=${text}`);
}

function loadNewItems() {
 showRequest();

 // Re-enable input.
 const wisdomText = document.getElementById("wisdom");
 wisdomText.value = "";
 wisdomText.locked = false;
}

跨服务：Amazon Lex 示例 205

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

// Respond to user's input.
const createResponse = async () => {
 // Confirm there is text to submit.
 const wisdomText = document.getElementById("wisdom");
 if (wisdomText?.value && wisdomText.value.trim().length > 0) {
 // Disable input to show it is being sent.
 const wisdom = wisdomText.value.trim();
 wisdomText.value = "...";
 wisdomText.locked = true;
 handletext(wisdom);

 const comprehendParams = {
 Text: wisdom,
 };
 try {
 const data = await comprehendClient.send(
 new DetectDominantLanguageCommand(comprehendParams),
);
 console.log(
 "Success. The language code is: ",
 data.Languages[0].LanguageCode,
);
 const translateParams = {
 SourceLanguageCode: data.Languages[0].LanguageCode,
 TargetLanguageCode: "en", // For example, "en" for English.
 Text: wisdom,
 };
 try {
 const data = await translateClient.send(
 new TranslateTextCommand(translateParams),
);
 console.log("Success. Translated text: ", data.TranslatedText);
 const lexParams = {
 botName: "BookTrip",
 botAlias: "mynewalias",
 inputText: data.TranslatedText,
 userId: "chatbot", // For example, 'chatbot-demo'.
 };
 try {
 const data = await lexClient.send(new PostTextCommand(lexParams));
 console.log("Success. Response is: ", data.message);
 const msg = data.message;
 showResponse(msg);

跨服务：Amazon Lex 示例 206

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 } catch (err) {
 console.log("Error responding to message. ", err);
 }
 } catch (err) {
 console.log("Error translating text. ", err);
 }
 } catch (err) {
 console.log("Error identifying language. ", err);
 }
 }
};
// Make the function available to the browser.
window.createResponse = createResponse;

此代码可在此处获得 GitHub。 。

现在使用 webpack 将index.js和 适用于 JavaScript 的 Amazon SDK 模块捆绑到一个文件
中main.js。

1. 如果您尚未安装 Webpack，请按照本示例中的先决条件部分进行安装。

Note

有关 webpack 的信息，请参阅使用 Webpack 捆绑应用程序。

2. 在命令行中运行以下命令，将本示例的捆绑到名 JavaScript 为的文件中main.js：

webpack index.js --mode development --target web --devtool false -o main.js

后续步骤

恭喜您！您创建了一个 Node.js 应用程序，该应用程序使用 Amazon Lex 来创建交互式用户体验。如
本教程开头所述，请务必在学习本教程时终止您创建的所有资源，以确保系统不会向您收费。为此，您
可以删除在本教程创建 Amazon 资源 主题中创建的 Amazon CloudFormation 堆栈，如下所示：

1. 打开 Amazon CloudFormation 控制台。

2. 在堆栈页面上，选择堆栈。

3. 选择删除。

跨服务：Amazon Lex 示例 207

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/lex-bot/src/index.html
https://console.aws.amazon.com/cloudformation/home

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

有关更多 Amazon 跨服务示例，请参阅适用于 JavaScript 的 Amazon SDK 跨服务示例。

跨服务：Amazon Lex 示例 208

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/tutorials.html

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 代码示例的 SDK
本主题中的代码示例向您展示了如何将 适用于 JavaScript 的 Amazon SDK (v3) 与一起使用 Amazon。

基本功能是向您展示如何在服务中执行基本操作的代码示例。

操作是大型程序的代码摘录，必须在上下文中运行。您可以通过操作了解如何调用单个服务函数，还可
以通过函数相关场景的上下文查看操作。

场景是向您展示如何通过在一个服务中调用多个函数或与其他 Amazon Web Services 服务服务结合来
完成特定任务的代码示例。

某些服务包含其他示例类别，这些类别说明如何利用特定于服务的库或函数。

Services

• 使用适用于 JavaScript (v3) 的 SDK 的 API Gateway 示例

• 使用适用于 JavaScript (v3) 的软件开发工具包的 Aurora 示例

• 使用适用于 JavaScript (v3) 的 SDK 的 Auto Scaling 示例

• 使用适用于 JavaScript (v3) 的 SDK 的 Amazon Bedrock 示例

• 使用适用于 JavaScript (v3) 的 SDK 的亚马逊 Bedrock 运行时示例

• 使用适用于 JavaScript (v3) 的 SDK 的 Amazon 基岩代理示例

• 使用适用于 JavaScript (v3) 的 SDK 的 Amazon 基岩代理运行时示例

• CloudWatch 使用适用于 JavaScript (v3) 的 SDK 的示例

• CloudWatch 使用适用于 JavaScript (v3) 的 SDK 的事件示例

• CloudWatch 使用适用于 JavaScript (v3) 的 SDK 记录示例

• CodeBuild 使用适用于 JavaScript (v3) 的 SDK 的示例

• 使用适用于 JavaScript (v3) 的软件开发工具包的亚马逊 Cognito 身份示例

• 使用适用于 JavaScript (v3) 的软件开发工具包的 Amazon Cognito 身份提供商示例

• 使用适用于 (v3) 的软件开发工具包的 Amazon Comprehend 示例 JavaScript

• 使用适用于 JavaScript (v3) 的软件开发工具包的亚马逊 DocumentDB 示例

• 使用适用于 (v3) 的 SDK JavaScript 的 DynamoDB 示例

• 使用适用于 JavaScript (v3) 的软件开发工具包的亚马逊 EC2 示例

• ELB-使用适用于 JavaScript (v3) 的 SDK 的版本 2 示例

• Amazon Entity Resolution 数据匹配服务 使用适用于 JavaScript (v3) 的 SDK 的示例

209

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• EventBridge 使用适用于 JavaScript (v3) 的 SDK 的示例

• 使用适用于 JavaScript (v3) 的软件开发工具包的亚马逊 Glacier 示例

• Amazon Glue 使用适用于 JavaScript (v3) 的 SDK 的示例

• HealthImaging 使用适用于 JavaScript (v3) 的 SDK 的示例

• 使用适用于 JavaScript (v3) 的开发工具包的 IAM 示例

• Amazon IoT SiteWise 使用适用于 JavaScript (v3) 的 SDK 的示例

• 使用适用于 JavaScript (v3) 的 SDK 的 Kinesis 示例

• 使用适用于 JavaScript (v3) 的软件开发工具包的 Lambda 示例

• 使用适用于 JavaScript (v3) 的软件开发工具包的 Amazon Lex 示例

• 使用适用于 JavaScript (v3) 的软件开发工具包的亚马逊位置示例

• 使用适用于 JavaScript (v3) 的软件开发工具包的亚马逊 MSK 示例

• Amazon 使用适用于 JavaScript (v3) 的软件开发工具包对示例进行个性化设置

• Amazon 使用适用于 JavaScript (v3) 的软件开发工具包对事件进行个性化设置示例

• Amazon 使用适用于 JavaScript (v3) 的软件开发工具包对运行时进行个性化示例

• 使用适用于 JavaScript (v3) 的软件开发工具包的亚马逊 Pinpoint 示例

• 使用适用于 JavaScript (v3) 的软件开发工具包的 Amazon Polly 示例

• 使用适用于 JavaScript (v3) 的开发工具包的 Amazon RDS 示例

• 使用适用于 JavaScript (v3) 的软件开发工具包的 Amazon RDS 数据服务示例

• 使用适用于 JavaScript (v3) 的软件开发工具包的亚马逊 Redshift 示例

• 使用适用于 (v3) 的软件开发工具包的亚马逊 Rekognition 示例 JavaScript

• 使用适用于 JavaScript (v3) 的软件开发工具包的 Amazon S3 示例

• SageMaker 使用适用于 JavaScript (v3) 的 SDK 的人工智能示例

• 使用适用于 JavaScript (v3) 的 SDK 的 Secrets Manager 示例

• 使用适用于 JavaScript (v3) 的软件开发工具包的 Amazon SES 示例

• 使用适用于 JavaScript (v3) 的软件开发工具包的亚马逊 SNS 示例

• 使用适用于 JavaScript (v3) 的软件开发工具包的亚马逊 SQS 示例

• 使用 JavaScript (v3) 软件开发工具包的 Step Functions 示例

• Amazon STS 使用适用于 JavaScript (v3) 的 SDK 的示例

• Amazon Web Services 支持 使用适用于 JavaScript (v3) 的 SDK 的示例

• 使用适用于 JavaScript (v3) 的 Systems Manager 示例

210

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 使用适用于 JavaScript (v3) 的软件开发工具包的 Amazon Textract 示例

• 使用适用于 JavaScript (v3) 的软件开发工具包的 Amazon Transcribe 示例

• 使用 JavaScript (v3) 软件开发工具包的 Amazon Translate 示例

使用适用于 JavaScript (v3) 的 SDK 的 API Gateway 示例

以下代码示例向您展示了如何使用带有 API Gateway 的 适用于 JavaScript 的 Amazon SDK (v3) 来执
行操作和实现常见场景。

场景是向您演示如何通过在一个服务中调用多个函数或与其他 Amazon Web Services 服务结合来完成
特定任务的代码示例。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

• 场景

场景

创建无服务器应用程序来管理照片

以下代码示例演示如何创建无服务器应用程序，让用户能够使用标签管理照片。

适用于 JavaScript (v3) 的软件开发工具包

演示如何开发照片资产管理应用程序，该应用程序使用 Amazon Rekognition 检测图像中的标签并
将其存储以供日后检索。

有关如何设置和运行的完整源代码和说明，请参阅上的完整示例 GitHub。

要深入了解这个例子的起源，请参阅 Amazon 社区上的博文。

本示例中使用的服务

• API Gateway

• DynamoDB

• Lambda

API Gateway 211

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/photo-asset-manager
https://community.aws/posts/cloud-journeys/01-serverless-image-recognition-app

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• Amazon Rekognition

• Amazon S3

• Amazon SNS

使用 API Gateway 调用 Lambda 函数

以下代码示例展示了如何创建由 Amazon API Gateway 调用的 Amazon Lambda 函数。

适用于 JavaScript (v3) 的软件开发工具包

演示如何使用 Lambda JavaScript 运行时 API 创建 Amazon Lambda 函数。此示例调用不同
的 Amazon 服务来执行特定的用例。此示例展示了如何创建通过 Amazon API Gateway 调用的
Lambda 函数，该函数扫描 Amazon DynamoDB 表获取工作周年纪念日，并使用 Amazon Simple
Notification Service (Amazon SNS)向员工发送文本消息，祝贺他们的周年纪念日。

有关如何设置和运行的完整源代码和说明，请参阅上的完整示例GitHub。

该示例也可在 适用于 JavaScript 的 Amazon SDK v3 开发人员指南中找到。

本示例中使用的服务

• API Gateway

• DynamoDB

• Lambda

• Amazon SNS

使用适用于 JavaScript (v3) 的软件开发工具包的 Aurora 示例

以下代码示例向您展示了如何使用带有 Aurora 的 适用于 JavaScript 的 Amazon SDK (v3) 来执行操作
和实现常见场景。

场景是向您演示如何通过在一个服务中调用多个函数或与其他 Amazon Web Services 服务结合来完成
特定任务的代码示例。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

Aurora 212

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/lambda-api-gateway
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/api-gateway-invoking-lambda-example.html

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 场景

场景

创建 Aurora Serverless 工作项跟踪器

以下代码示例演示如何创建 Web 应用程序，来跟踪 Amazon Aurora Serverless 数据库中的工作项，
以及使用 Amazon Simple Email Service（Amazon SES）发送报告。

适用于 JavaScript (v3) 的软件开发工具包

演示如何使用 适用于 JavaScript 的 Amazon SDK (v3) 创建一个 Web 应用程序，该应用程序使用
亚马逊简单电子邮件服务 (Amazon SES) Service 跟踪亚马逊 Aurora 数据库中的工作项目并通过电
子邮件发送报告。此示例使用由 React.js 构建的前端与 Express Node.js 后端进行交互。

• 将 React.js 网络应用程序与集成 Amazon Web Services 服务。

• 列出、添加以及更新 Aurora 表中的项目。

• 使用 Amazon SES 以电子邮件形式发送已筛选工作项的报告。

• 使用随附的 Amazon CloudFormation 脚本部署和管理示例资源。

有关如何设置和运行的完整源代码和说明，请参阅上的完整示例GitHub。

本示例中使用的服务

• Aurora

• Amazon RDS

• Amazon RDS 数据服务

• Amazon SES

使用适用于 JavaScript (v3) 的 SDK 的 Auto Scaling 示例

以下代码示例向您展示了如何使用带有 Auto Scaling 的 适用于 JavaScript 的 Amazon SDK (v3) 来执
行操作和实现常见场景。

操作是大型程序的代码摘录，必须在上下文中运行。您可以通过操作了解如何调用单个服务函数，还可
以通过函数相关场景的上下文查看操作。

场景是向您演示如何通过在一个服务中调用多个函数或与其他 Amazon Web Services 服务结合来完成
特定任务的代码示例。

场景 213

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/aurora-serverless-app

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

• 操作

• 场景

操作

AttachLoadBalancerTargetGroups

以下代码示例演示了如何使用 AttachLoadBalancerTargetGroups。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

 const client = new AutoScalingClient({});
 await client.send(
 new AttachLoadBalancerTargetGroupsCommand({
 AutoScalingGroupName: NAMES.autoScalingGroupName,
 TargetGroupARNs: [state.targetGroupArn],
 }),
);

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考AttachLoadBalancerTargetGroups中的。

场景

构建和管理弹性服务

以下代码示例演示了如何创建可返回书籍、电影和歌曲推荐的负载均衡的 Web 服务。该示例演示服务
如何响应故障，以及如何重组服务以提高故障发生时的弹性。

操作 214

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/wkflw-resilient-service#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/auto-scaling/command/AttachLoadBalancerTargetGroupsCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 使用 Amazon A EC2 uto Scaling 组根据启动模板创建亚马逊弹性计算云 (Amazon EC2) 实例，并将
实例数量保持在指定范围内。

• 使用弹性负载均衡处理和分发 HTTP 请求。

• 监控自动扩缩组中实例的运行状况，并仅将请求转发到运行状况良好的实例。

• 在每个 EC2 实例上运行 Python 网络服务器来处理 HTTP 请求。Web 服务器以建议和运行状况检查
作为响应。

• 使用 Amazon DynamoDB 表模拟推荐服务。

• 通过更新 Amazon Systems Manager 参数来控制 Web 服务器对请求和运行状况检查的响应。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

在命令提示符中运行交互式场景。

#!/usr/bin/env node
// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

import {
 Scenario,
 parseScenarioArgs,
} from "@aws-doc-sdk-examples/lib/scenario/index.js";

/**
 * The workflow steps are split into three stages:
 * - deploy
 * - demo
 * - destroy
 *
 * Each of these stages has a corresponding file prefixed with steps-*.
 */
import { deploySteps } from "./steps-deploy.js";
import { demoSteps } from "./steps-demo.js";
import { destroySteps } from "./steps-destroy.js";

场景 215

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/wkflw-resilient-service#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

/**
 * The context is passed to every scenario. Scenario steps
 * will modify the context.
 */
const context = {};

/**
 * Three Scenarios are created for the workflow. A Scenario is an orchestration
 class
 * that simplifies running a series of steps.
 */
export const scenarios = {
 // Deploys all resources necessary for the workflow.
 deploy: new Scenario("Resilient Workflow - Deploy", deploySteps, context),
 // Demonstrates how a fragile web service can be made more resilient.
 demo: new Scenario("Resilient Workflow - Demo", demoSteps, context),
 // Destroys the resources created for the workflow.
 destroy: new Scenario("Resilient Workflow - Destroy", destroySteps, context),
};

// Call function if run directly
import { fileURLToPath } from "node:url";

if (process.argv[1] === fileURLToPath(import.meta.url)) {
 parseScenarioArgs(scenarios, {
 name: "Resilient Workflow",
 synopsis:
 "node index.js --scenario <deploy | demo | destroy> [-h|--help] [-y|--yes] [-
v|--verbose]",
 description: "Deploy and interact with scalable EC2 instances.",
 });
}

创建部署所有资源的步骤。

import { join } from "node:path";
import { readFileSync, writeFileSync } from "node:fs";
import axios from "axios";

import {
 BatchWriteItemCommand,

场景 216

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 CreateTableCommand,
 DynamoDBClient,
 waitUntilTableExists,
} from "@aws-sdk/client-dynamodb";
import {
 EC2Client,
 CreateKeyPairCommand,
 CreateLaunchTemplateCommand,
 DescribeAvailabilityZonesCommand,
 DescribeVpcsCommand,
 DescribeSubnetsCommand,
 DescribeSecurityGroupsCommand,
 AuthorizeSecurityGroupIngressCommand,
} from "@aws-sdk/client-ec2";
import {
 IAMClient,
 CreatePolicyCommand,
 CreateRoleCommand,
 CreateInstanceProfileCommand,
 AddRoleToInstanceProfileCommand,
 AttachRolePolicyCommand,
 waitUntilInstanceProfileExists,
} from "@aws-sdk/client-iam";
import { SSMClient, GetParameterCommand } from "@aws-sdk/client-ssm";
import {
 CreateAutoScalingGroupCommand,
 AutoScalingClient,
 AttachLoadBalancerTargetGroupsCommand,
} from "@aws-sdk/client-auto-scaling";
import {
 CreateListenerCommand,
 CreateLoadBalancerCommand,
 CreateTargetGroupCommand,
 ElasticLoadBalancingV2Client,
 waitUntilLoadBalancerAvailable,
} from "@aws-sdk/client-elastic-load-balancing-v2";

import {
 ScenarioOutput,
 ScenarioInput,
 ScenarioAction,
} from "@aws-doc-sdk-examples/lib/scenario/index.js";
import { saveState } from "@aws-doc-sdk-examples/lib/scenario/steps-common.js";
import { retry } from "@aws-doc-sdk-examples/lib/utils/util-timers.js";

场景 217

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

import { MESSAGES, NAMES, RESOURCES_PATH, ROOT } from "./constants.js";
import { initParamsSteps } from "./steps-reset-params.js";

/**
 * @type {import('@aws-doc-sdk-examples/lib/scenario.js').Step[]}
 */
export const deploySteps = [
 new ScenarioOutput("introduction", MESSAGES.introduction, { header: true }),
 new ScenarioInput("confirmDeployment", MESSAGES.confirmDeployment, {
 type: "confirm",
 }),
 new ScenarioAction(
 "handleConfirmDeployment",
 (c) => c.confirmDeployment === false && process.exit(),
),
 new ScenarioOutput(
 "creatingTable",
 MESSAGES.creatingTable.replace("${TABLE_NAME}", NAMES.tableName),
),
 new ScenarioAction("createTable", async () => {
 const client = new DynamoDBClient({});
 await client.send(
 new CreateTableCommand({
 TableName: NAMES.tableName,
 ProvisionedThroughput: {
 ReadCapacityUnits: 5,
 WriteCapacityUnits: 5,
 },
 AttributeDefinitions: [
 {
 AttributeName: "MediaType",
 AttributeType: "S",
 },
 {
 AttributeName: "ItemId",
 AttributeType: "N",
 },
],
 KeySchema: [
 {
 AttributeName: "MediaType",
 KeyType: "HASH",
 },

场景 218

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 {
 AttributeName: "ItemId",
 KeyType: "RANGE",
 },
],
 }),
);
 await waitUntilTableExists({ client }, { TableName: NAMES.tableName });
 }),
 new ScenarioOutput(
 "createdTable",
 MESSAGES.createdTable.replace("${TABLE_NAME}", NAMES.tableName),
),
 new ScenarioOutput(
 "populatingTable",
 MESSAGES.populatingTable.replace("${TABLE_NAME}", NAMES.tableName),
),
 new ScenarioAction("populateTable", () => {
 const client = new DynamoDBClient({});
 /**
 * @type {{ default: import("@aws-sdk/client-dynamodb").PutRequest['Item'][] }}
 */
 const recommendations = JSON.parse(
 readFileSync(join(RESOURCES_PATH, "recommendations.json")),
);

 return client.send(
 new BatchWriteItemCommand({
 RequestItems: {
 [NAMES.tableName]: recommendations.map((item) => ({
 PutRequest: { Item: item },
 })),
 },
 }),
);
 }),
 new ScenarioOutput(
 "populatedTable",
 MESSAGES.populatedTable.replace("${TABLE_NAME}", NAMES.tableName),
),
 new ScenarioOutput(
 "creatingKeyPair",
 MESSAGES.creatingKeyPair.replace("${KEY_PAIR_NAME}", NAMES.keyPairName),
),

场景 219

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 new ScenarioAction("createKeyPair", async () => {
 const client = new EC2Client({});
 const { KeyMaterial } = await client.send(
 new CreateKeyPairCommand({
 KeyName: NAMES.keyPairName,
 }),
);

 writeFileSync(`${NAMES.keyPairName}.pem`, KeyMaterial, { mode: 0o600 });
 }),
 new ScenarioOutput(
 "createdKeyPair",
 MESSAGES.createdKeyPair.replace("${KEY_PAIR_NAME}", NAMES.keyPairName),
),
 new ScenarioOutput(
 "creatingInstancePolicy",
 MESSAGES.creatingInstancePolicy.replace(
 "${INSTANCE_POLICY_NAME}",
 NAMES.instancePolicyName,
),
),
 new ScenarioAction("createInstancePolicy", async (state) => {
 const client = new IAMClient({});
 const {
 Policy: { Arn },
 } = await client.send(
 new CreatePolicyCommand({
 PolicyName: NAMES.instancePolicyName,
 PolicyDocument: readFileSync(
 join(RESOURCES_PATH, "instance_policy.json"),
),
 }),
);
 state.instancePolicyArn = Arn;
 }),
 new ScenarioOutput("createdInstancePolicy", (state) =>
 MESSAGES.createdInstancePolicy
 .replace("${INSTANCE_POLICY_NAME}", NAMES.instancePolicyName)
 .replace("${INSTANCE_POLICY_ARN}", state.instancePolicyArn),
),
 new ScenarioOutput(
 "creatingInstanceRole",
 MESSAGES.creatingInstanceRole.replace(
 "${INSTANCE_ROLE_NAME}",

场景 220

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 NAMES.instanceRoleName,
),
),
 new ScenarioAction("createInstanceRole", () => {
 const client = new IAMClient({});
 return client.send(
 new CreateRoleCommand({
 RoleName: NAMES.instanceRoleName,
 AssumeRolePolicyDocument: readFileSync(
 join(ROOT, "assume-role-policy.json"),
),
 }),
);
 }),
 new ScenarioOutput(
 "createdInstanceRole",
 MESSAGES.createdInstanceRole.replace(
 "${INSTANCE_ROLE_NAME}",
 NAMES.instanceRoleName,
),
),
 new ScenarioOutput(
 "attachingPolicyToRole",
 MESSAGES.attachingPolicyToRole
 .replace("${INSTANCE_ROLE_NAME}", NAMES.instanceRoleName)
 .replace("${INSTANCE_POLICY_NAME}", NAMES.instancePolicyName),
),
 new ScenarioAction("attachPolicyToRole", async (state) => {
 const client = new IAMClient({});
 await client.send(
 new AttachRolePolicyCommand({
 RoleName: NAMES.instanceRoleName,
 PolicyArn: state.instancePolicyArn,
 }),
);
 }),
 new ScenarioOutput(
 "attachedPolicyToRole",
 MESSAGES.attachedPolicyToRole
 .replace("${INSTANCE_POLICY_NAME}", NAMES.instancePolicyName)
 .replace("${INSTANCE_ROLE_NAME}", NAMES.instanceRoleName),
),
 new ScenarioOutput(
 "creatingInstanceProfile",

场景 221

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 MESSAGES.creatingInstanceProfile.replace(
 "${INSTANCE_PROFILE_NAME}",
 NAMES.instanceProfileName,
),
),
 new ScenarioAction("createInstanceProfile", async (state) => {
 const client = new IAMClient({});
 const {
 InstanceProfile: { Arn },
 } = await client.send(
 new CreateInstanceProfileCommand({
 InstanceProfileName: NAMES.instanceProfileName,
 }),
);
 state.instanceProfileArn = Arn;

 await waitUntilInstanceProfileExists(
 { client },
 { InstanceProfileName: NAMES.instanceProfileName },
);
 }),
 new ScenarioOutput("createdInstanceProfile", (state) =>
 MESSAGES.createdInstanceProfile
 .replace("${INSTANCE_PROFILE_NAME}", NAMES.instanceProfileName)
 .replace("${INSTANCE_PROFILE_ARN}", state.instanceProfileArn),
),
 new ScenarioOutput(
 "addingRoleToInstanceProfile",
 MESSAGES.addingRoleToInstanceProfile
 .replace("${INSTANCE_PROFILE_NAME}", NAMES.instanceProfileName)
 .replace("${INSTANCE_ROLE_NAME}", NAMES.instanceRoleName),
),
 new ScenarioAction("addRoleToInstanceProfile", () => {
 const client = new IAMClient({});
 return client.send(
 new AddRoleToInstanceProfileCommand({
 RoleName: NAMES.instanceRoleName,
 InstanceProfileName: NAMES.instanceProfileName,
 }),
);
 }),
 new ScenarioOutput(
 "addedRoleToInstanceProfile",
 MESSAGES.addedRoleToInstanceProfile

场景 222

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 .replace("${INSTANCE_PROFILE_NAME}", NAMES.instanceProfileName)
 .replace("${INSTANCE_ROLE_NAME}", NAMES.instanceRoleName),
),
 ...initParamsSteps,
 new ScenarioOutput("creatingLaunchTemplate", MESSAGES.creatingLaunchTemplate),
 new ScenarioAction("createLaunchTemplate", async () => {
 const ssmClient = new SSMClient({});
 const { Parameter } = await ssmClient.send(
 new GetParameterCommand({
 Name: "/aws/service/ami-amazon-linux-latest/amzn2-ami-hvm-x86_64-gp2",
 }),
);
 const ec2Client = new EC2Client({});
 await ec2Client.send(
 new CreateLaunchTemplateCommand({
 LaunchTemplateName: NAMES.launchTemplateName,
 LaunchTemplateData: {
 InstanceType: "t3.micro",
 ImageId: Parameter.Value,
 IamInstanceProfile: { Name: NAMES.instanceProfileName },
 UserData: readFileSync(
 join(RESOURCES_PATH, "server_startup_script.sh"),
).toString("base64"),
 KeyName: NAMES.keyPairName,
 },
 }),
);
 }),
 new ScenarioOutput(
 "createdLaunchTemplate",
 MESSAGES.createdLaunchTemplate.replace(
 "${LAUNCH_TEMPLATE_NAME}",
 NAMES.launchTemplateName,
),
),
 new ScenarioOutput(
 "creatingAutoScalingGroup",
 MESSAGES.creatingAutoScalingGroup.replace(
 "${AUTO_SCALING_GROUP_NAME}",
 NAMES.autoScalingGroupName,
),
),
 new ScenarioAction("createAutoScalingGroup", async (state) => {
 const ec2Client = new EC2Client({});

场景 223

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const { AvailabilityZones } = await ec2Client.send(
 new DescribeAvailabilityZonesCommand({}),
);
 state.availabilityZoneNames = AvailabilityZones.map((az) => az.ZoneName);
 const autoScalingClient = new AutoScalingClient({});
 await retry({ intervalInMs: 1000, maxRetries: 30 }, () =>
 autoScalingClient.send(
 new CreateAutoScalingGroupCommand({
 AvailabilityZones: state.availabilityZoneNames,
 AutoScalingGroupName: NAMES.autoScalingGroupName,
 LaunchTemplate: {
 LaunchTemplateName: NAMES.launchTemplateName,
 Version: "$Default",
 },
 MinSize: 3,
 MaxSize: 3,
 }),
),
);
 }),
 new ScenarioOutput(
 "createdAutoScalingGroup",
 /**
 * @param {{ availabilityZoneNames: string[] }} state
 */
 (state) =>
 MESSAGES.createdAutoScalingGroup
 .replace("${AUTO_SCALING_GROUP_NAME}", NAMES.autoScalingGroupName)
 .replace(
 "${AVAILABILITY_ZONE_NAMES}",
 state.availabilityZoneNames.join(", "),
),
),
 new ScenarioInput("confirmContinue", MESSAGES.confirmContinue, {
 type: "confirm",
 }),
 new ScenarioOutput("loadBalancer", MESSAGES.loadBalancer),
 new ScenarioOutput("gettingVpc", MESSAGES.gettingVpc),
 new ScenarioAction("getVpc", async (state) => {
 const client = new EC2Client({});
 const { Vpcs } = await client.send(
 new DescribeVpcsCommand({
 Filters: [{ Name: "is-default", Values: ["true"] }],
 }),

场景 224

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

);
 state.defaultVpc = Vpcs[0].VpcId;
 }),
 new ScenarioOutput("gotVpc", (state) =>
 MESSAGES.gotVpc.replace("${VPC_ID}", state.defaultVpc),
),
 new ScenarioOutput("gettingSubnets", MESSAGES.gettingSubnets),
 new ScenarioAction("getSubnets", async (state) => {
 const client = new EC2Client({});
 const { Subnets } = await client.send(
 new DescribeSubnetsCommand({
 Filters: [
 { Name: "vpc-id", Values: [state.defaultVpc] },
 { Name: "availability-zone", Values: state.availabilityZoneNames },
 { Name: "default-for-az", Values: ["true"] },
],
 }),
);
 state.subnets = Subnets.map((subnet) => subnet.SubnetId);
 }),
 new ScenarioOutput(
 "gotSubnets",
 /**
 * @param {{ subnets: string[] }} state
 */
 (state) =>
 MESSAGES.gotSubnets.replace("${SUBNETS}", state.subnets.join(", ")),
),
 new ScenarioOutput(
 "creatingLoadBalancerTargetGroup",
 MESSAGES.creatingLoadBalancerTargetGroup.replace(
 "${TARGET_GROUP_NAME}",
 NAMES.loadBalancerTargetGroupName,
),
),
 new ScenarioAction("createLoadBalancerTargetGroup", async (state) => {
 const client = new ElasticLoadBalancingV2Client({});
 const { TargetGroups } = await client.send(
 new CreateTargetGroupCommand({
 Name: NAMES.loadBalancerTargetGroupName,
 Protocol: "HTTP",
 Port: 80,
 HealthCheckPath: "/healthcheck",
 HealthCheckIntervalSeconds: 10,

场景 225

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 HealthCheckTimeoutSeconds: 5,
 HealthyThresholdCount: 2,
 UnhealthyThresholdCount: 2,
 VpcId: state.defaultVpc,
 }),
);
 const targetGroup = TargetGroups[0];
 state.targetGroupArn = targetGroup.TargetGroupArn;
 state.targetGroupProtocol = targetGroup.Protocol;
 state.targetGroupPort = targetGroup.Port;
 }),
 new ScenarioOutput(
 "createdLoadBalancerTargetGroup",
 MESSAGES.createdLoadBalancerTargetGroup.replace(
 "${TARGET_GROUP_NAME}",
 NAMES.loadBalancerTargetGroupName,
),
),
 new ScenarioOutput(
 "creatingLoadBalancer",
 MESSAGES.creatingLoadBalancer.replace("${LB_NAME}", NAMES.loadBalancerName),
),
 new ScenarioAction("createLoadBalancer", async (state) => {
 const client = new ElasticLoadBalancingV2Client({});
 const { LoadBalancers } = await client.send(
 new CreateLoadBalancerCommand({
 Name: NAMES.loadBalancerName,
 Subnets: state.subnets,
 }),
);
 state.loadBalancerDns = LoadBalancers[0].DNSName;
 state.loadBalancerArn = LoadBalancers[0].LoadBalancerArn;
 await waitUntilLoadBalancerAvailable(
 { client },
 { Names: [NAMES.loadBalancerName] },
);
 }),
 new ScenarioOutput("createdLoadBalancer", (state) =>
 MESSAGES.createdLoadBalancer
 .replace("${LB_NAME}", NAMES.loadBalancerName)
 .replace("${DNS_NAME}", state.loadBalancerDns),
),
 new ScenarioOutput(
 "creatingListener",

场景 226

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 MESSAGES.creatingLoadBalancerListener
 .replace("${LB_NAME}", NAMES.loadBalancerName)
 .replace("${TARGET_GROUP_NAME}", NAMES.loadBalancerTargetGroupName),
),
 new ScenarioAction("createListener", async (state) => {
 const client = new ElasticLoadBalancingV2Client({});
 const { Listeners } = await client.send(
 new CreateListenerCommand({
 LoadBalancerArn: state.loadBalancerArn,
 Protocol: state.targetGroupProtocol,
 Port: state.targetGroupPort,
 DefaultActions: [
 { Type: "forward", TargetGroupArn: state.targetGroupArn },
],
 }),
);
 const listener = Listeners[0];
 state.loadBalancerListenerArn = listener.ListenerArn;
 }),
 new ScenarioOutput("createdListener", (state) =>
 MESSAGES.createdLoadBalancerListener.replace(
 "${LB_LISTENER_ARN}",
 state.loadBalancerListenerArn,
),
),
 new ScenarioOutput(
 "attachingLoadBalancerTargetGroup",
 MESSAGES.attachingLoadBalancerTargetGroup
 .replace("${TARGET_GROUP_NAME}", NAMES.loadBalancerTargetGroupName)
 .replace("${AUTO_SCALING_GROUP_NAME}", NAMES.autoScalingGroupName),
),
 new ScenarioAction("attachLoadBalancerTargetGroup", async (state) => {
 const client = new AutoScalingClient({});
 await client.send(
 new AttachLoadBalancerTargetGroupsCommand({
 AutoScalingGroupName: NAMES.autoScalingGroupName,
 TargetGroupARNs: [state.targetGroupArn],
 }),
);
 }),
 new ScenarioOutput(
 "attachedLoadBalancerTargetGroup",
 MESSAGES.attachedLoadBalancerTargetGroup,
),

场景 227

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 new ScenarioOutput("verifyingInboundPort", MESSAGES.verifyingInboundPort),
 new ScenarioAction(
 "verifyInboundPort",
 /**
 *
 * @param {{ defaultSecurityGroup: import('@aws-sdk/client-ec2').SecurityGroup}}
 state
 */
 async (state) => {
 const client = new EC2Client({});
 const { SecurityGroups } = await client.send(
 new DescribeSecurityGroupsCommand({
 Filters: [{ Name: "group-name", Values: ["default"] }],
 }),
);
 if (!SecurityGroups) {
 state.verifyInboundPortError = new Error(MESSAGES.noSecurityGroups);
 }
 state.defaultSecurityGroup = SecurityGroups[0];

 /**
 * @type {string}
 */
 const ipResponse = (await axios.get("http://checkip.amazonaws.com")).data;
 state.myIp = ipResponse.trim();
 const myIpRules = state.defaultSecurityGroup.IpPermissions.filter(
 ({ IpRanges }) =>
 IpRanges.some(
 ({ CidrIp }) =>
 CidrIp.startsWith(state.myIp) || CidrIp === "0.0.0.0/0",
),
)
 .filter(({ IpProtocol }) => IpProtocol === "tcp")
 .filter(({ FromPort }) => FromPort === 80);

 state.myIpRules = myIpRules;
 },
),
 new ScenarioOutput(
 "verifiedInboundPort",
 /**
 * @param {{ myIpRules: any[] }} state
 */
 (state) => {

场景 228

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 if (state.myIpRules.length > 0) {
 return MESSAGES.foundIpRules.replace(
 "${IP_RULES}",
 JSON.stringify(state.myIpRules, null, 2),
);
 }
 return MESSAGES.noIpRules;
 },
),
 new ScenarioInput(
 "shouldAddInboundRule",
 /**
 * @param {{ myIpRules: any[] }} state
 */
 (state) => {
 if (state.myIpRules.length > 0) {
 return false;
 }
 return MESSAGES.noIpRules;
 },
 { type: "confirm" },
),
 new ScenarioAction(
 "addInboundRule",
 /**
 * @param {{ defaultSecurityGroup: import('@aws-sdk/client-
ec2').SecurityGroup }} state
 */
 async (state) => {
 if (!state.shouldAddInboundRule) {
 return;
 }

 const client = new EC2Client({});
 await client.send(
 new AuthorizeSecurityGroupIngressCommand({
 GroupId: state.defaultSecurityGroup.GroupId,
 CidrIp: `${state.myIp}/32`,
 FromPort: 80,
 ToPort: 80,
 IpProtocol: "tcp",
 }),
);
 },

场景 229

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

),
 new ScenarioOutput("addedInboundRule", (state) => {
 if (state.shouldAddInboundRule) {
 return MESSAGES.addedInboundRule.replace("${IP_ADDRESS}", state.myIp);
 }
 return false;
 }),
 new ScenarioOutput("verifyingEndpoint", (state) =>
 MESSAGES.verifyingEndpoint.replace("${DNS_NAME}", state.loadBalancerDns),
),
 new ScenarioAction("verifyEndpoint", async (state) => {
 try {
 const response = await retry({ intervalInMs: 2000, maxRetries: 30 }, () =>
 axios.get(`http://${state.loadBalancerDns}`),
);
 state.endpointResponse = JSON.stringify(response.data, null, 2);
 } catch (e) {
 state.verifyEndpointError = e;
 }
 }),
 new ScenarioOutput("verifiedEndpoint", (state) => {
 if (state.verifyEndpointError) {
 console.error(state.verifyEndpointError);
 } else {
 return MESSAGES.verifiedEndpoint.replace(
 "${ENDPOINT_RESPONSE}",
 state.endpointResponse,
);
 }
 }),
 saveState,
];

创建运行演示的步骤。

import { readFileSync } from "node:fs";
import { join } from "node:path";

import axios from "axios";

import {
 DescribeTargetGroupsCommand,

场景 230

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 DescribeTargetHealthCommand,
 ElasticLoadBalancingV2Client,
} from "@aws-sdk/client-elastic-load-balancing-v2";
import {
 DescribeInstanceInformationCommand,
 PutParameterCommand,
 SSMClient,
 SendCommandCommand,
} from "@aws-sdk/client-ssm";
import {
 IAMClient,
 CreatePolicyCommand,
 CreateRoleCommand,
 AttachRolePolicyCommand,
 CreateInstanceProfileCommand,
 AddRoleToInstanceProfileCommand,
 waitUntilInstanceProfileExists,
} from "@aws-sdk/client-iam";
import {
 AutoScalingClient,
 DescribeAutoScalingGroupsCommand,
 TerminateInstanceInAutoScalingGroupCommand,
} from "@aws-sdk/client-auto-scaling";
import {
 DescribeIamInstanceProfileAssociationsCommand,
 EC2Client,
 RebootInstancesCommand,
 ReplaceIamInstanceProfileAssociationCommand,
} from "@aws-sdk/client-ec2";

import {
 ScenarioAction,
 ScenarioInput,
 ScenarioOutput,
} from "@aws-doc-sdk-examples/lib/scenario/scenario.js";
import { retry } from "@aws-doc-sdk-examples/lib/utils/util-timers.js";

import { MESSAGES, NAMES, RESOURCES_PATH } from "./constants.js";
import { findLoadBalancer } from "./shared.js";

const getRecommendation = new ScenarioAction(
 "getRecommendation",
 async (state) => {
 const loadBalancer = await findLoadBalancer(NAMES.loadBalancerName);

场景 231

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 if (loadBalancer) {
 state.loadBalancerDnsName = loadBalancer.DNSName;
 try {
 state.recommendation = (
 await axios.get(`http://${state.loadBalancerDnsName}`)
).data;
 } catch (e) {
 state.recommendation = e instanceof Error ? e.message : e;
 }
 } else {
 throw new Error(MESSAGES.demoFindLoadBalancerError);
 }
 },
);

const getRecommendationResult = new ScenarioOutput(
 "getRecommendationResult",
 (state) =>
 `Recommendation:\n${JSON.stringify(state.recommendation, null, 2)}`,
 { preformatted: true },
);

const getHealthCheck = new ScenarioAction("getHealthCheck", async (state) => {
 const client = new ElasticLoadBalancingV2Client({});
 const { TargetGroups } = await client.send(
 new DescribeTargetGroupsCommand({
 Names: [NAMES.loadBalancerTargetGroupName],
 }),
);

 const { TargetHealthDescriptions } = await client.send(
 new DescribeTargetHealthCommand({
 TargetGroupArn: TargetGroups[0].TargetGroupArn,
 }),
);
 state.targetHealthDescriptions = TargetHealthDescriptions;
});

const getHealthCheckResult = new ScenarioOutput(
 "getHealthCheckResult",
 /**
 * @param {{ targetHealthDescriptions: import('@aws-sdk/client-elastic-load-
balancing-v2').TargetHealthDescription[]}} state
 */

场景 232

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 (state) => {
 const status = state.targetHealthDescriptions
 .map((th) => `${th.Target.Id}: ${th.TargetHealth.State}`)
 .join("\n");
 return `Health check:\n${status}`;
 },
 { preformatted: true },
);

const loadBalancerLoop = new ScenarioAction(
 "loadBalancerLoop",
 getRecommendation.action,
 {
 whileConfig: {
 whileFn: ({ loadBalancerCheck }) => loadBalancerCheck,
 input: new ScenarioInput(
 "loadBalancerCheck",
 MESSAGES.demoLoadBalancerCheck,
 {
 type: "confirm",
 },
),
 output: getRecommendationResult,
 },
 },
);

const healthCheckLoop = new ScenarioAction(
 "healthCheckLoop",
 getHealthCheck.action,
 {
 whileConfig: {
 whileFn: ({ healthCheck }) => healthCheck,
 input: new ScenarioInput("healthCheck", MESSAGES.demoHealthCheck, {
 type: "confirm",
 }),
 output: getHealthCheckResult,
 },
 },
);

const statusSteps = [
 getRecommendation,
 getRecommendationResult,

场景 233

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 getHealthCheck,
 getHealthCheckResult,
];

/**
 * @type {import('@aws-doc-sdk-examples/lib/scenario.js').Step[]}
 */
export const demoSteps = [
 new ScenarioOutput("header", MESSAGES.demoHeader, { header: true }),
 new ScenarioOutput("sanityCheck", MESSAGES.demoSanityCheck),
 ...statusSteps,
 new ScenarioInput(
 "brokenDependencyConfirmation",
 MESSAGES.demoBrokenDependencyConfirmation,
 { type: "confirm" },
),
 new ScenarioAction("brokenDependency", async (state) => {
 if (!state.brokenDependencyConfirmation) {
 process.exit();
 } else {
 const client = new SSMClient({});
 state.badTableName = `fake-table-${Date.now()}`;
 await client.send(
 new PutParameterCommand({
 Name: NAMES.ssmTableNameKey,
 Value: state.badTableName,
 Overwrite: true,
 Type: "String",
 }),
);
 }
 }),
 new ScenarioOutput("testBrokenDependency", (state) =>
 MESSAGES.demoTestBrokenDependency.replace(
 "${TABLE_NAME}",
 state.badTableName,
),
),
 ...statusSteps,
 new ScenarioInput(
 "staticResponseConfirmation",
 MESSAGES.demoStaticResponseConfirmation,
 { type: "confirm" },
),

场景 234

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 new ScenarioAction("staticResponse", async (state) => {
 if (!state.staticResponseConfirmation) {
 process.exit();
 } else {
 const client = new SSMClient({});
 await client.send(
 new PutParameterCommand({
 Name: NAMES.ssmFailureResponseKey,
 Value: "static",
 Overwrite: true,
 Type: "String",
 }),
);
 }
 }),
 new ScenarioOutput("testStaticResponse", MESSAGES.demoTestStaticResponse),
 ...statusSteps,
 new ScenarioInput(
 "badCredentialsConfirmation",
 MESSAGES.demoBadCredentialsConfirmation,
 { type: "confirm" },
),
 new ScenarioAction("badCredentialsExit", (state) => {
 if (!state.badCredentialsConfirmation) {
 process.exit();
 }
 }),
 new ScenarioAction("fixDynamoDBName", async () => {
 const client = new SSMClient({});
 await client.send(
 new PutParameterCommand({
 Name: NAMES.ssmTableNameKey,
 Value: NAMES.tableName,
 Overwrite: true,
 Type: "String",
 }),
);
 }),
 new ScenarioAction(
 "badCredentials",
 /**
 * @param {{ targetInstance: import('@aws-sdk/client-auto-scaling').Instance }}
 state
 */

场景 235

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 async (state) => {
 await createSsmOnlyInstanceProfile();
 const autoScalingClient = new AutoScalingClient({});
 const { AutoScalingGroups } = await autoScalingClient.send(
 new DescribeAutoScalingGroupsCommand({
 AutoScalingGroupNames: [NAMES.autoScalingGroupName],
 }),
);
 state.targetInstance = AutoScalingGroups[0].Instances[0];
 const ec2Client = new EC2Client({});
 const { IamInstanceProfileAssociations } = await ec2Client.send(
 new DescribeIamInstanceProfileAssociationsCommand({
 Filters: [
 { Name: "instance-id", Values: [state.targetInstance.InstanceId] },
],
 }),
);
 state.instanceProfileAssociationId =
 IamInstanceProfileAssociations[0].AssociationId;
 await retry({ intervalInMs: 1000, maxRetries: 30 }, () =>
 ec2Client.send(
 new ReplaceIamInstanceProfileAssociationCommand({
 AssociationId: state.instanceProfileAssociationId,
 IamInstanceProfile: { Name: NAMES.ssmOnlyInstanceProfileName },
 }),
),
);

 await ec2Client.send(
 new RebootInstancesCommand({
 InstanceIds: [state.targetInstance.InstanceId],
 }),
);

 const ssmClient = new SSMClient({});
 await retry({ intervalInMs: 20000, maxRetries: 15 }, async () => {
 const { InstanceInformationList } = await ssmClient.send(
 new DescribeInstanceInformationCommand({}),
);

 const instance = InstanceInformationList.find(
 (info) => info.InstanceId === state.targetInstance.InstanceId,
);

场景 236

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 if (!instance) {
 throw new Error("Instance not found.");
 }
 });

 await ssmClient.send(
 new SendCommandCommand({
 InstanceIds: [state.targetInstance.InstanceId],
 DocumentName: "AWS-RunShellScript",
 Parameters: { commands: ["cd / && sudo python3 server.py 80"] },
 }),
);
 },
),
 new ScenarioOutput(
 "testBadCredentials",
 /**
 * @param {{ targetInstance: import('@aws-sdk/client-ssm').InstanceInformation}}
 state
 */
 (state) =>
 MESSAGES.demoTestBadCredentials.replace(
 "${INSTANCE_ID}",
 state.targetInstance.InstanceId,
),
),
 loadBalancerLoop,
 new ScenarioInput(
 "deepHealthCheckConfirmation",
 MESSAGES.demoDeepHealthCheckConfirmation,
 { type: "confirm" },
),
 new ScenarioAction("deepHealthCheckExit", (state) => {
 if (!state.deepHealthCheckConfirmation) {
 process.exit();
 }
 }),
 new ScenarioAction("deepHealthCheck", async () => {
 const client = new SSMClient({});
 await client.send(
 new PutParameterCommand({
 Name: NAMES.ssmHealthCheckKey,
 Value: "deep",
 Overwrite: true,

场景 237

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 Type: "String",
 }),
);
 }),
 new ScenarioOutput("testDeepHealthCheck", MESSAGES.demoTestDeepHealthCheck),
 healthCheckLoop,
 loadBalancerLoop,
 new ScenarioInput(
 "killInstanceConfirmation",
 /**
 * @param {{ targetInstance: import('@aws-sdk/client-
ssm').InstanceInformation }} state
 */
 (state) =>
 MESSAGES.demoKillInstanceConfirmation.replace(
 "${INSTANCE_ID}",
 state.targetInstance.InstanceId,
),
 { type: "confirm" },
),
 new ScenarioAction("killInstanceExit", (state) => {
 if (!state.killInstanceConfirmation) {
 process.exit();
 }
 }),
 new ScenarioAction(
 "killInstance",
 /**
 * @param {{ targetInstance: import('@aws-sdk/client-
ssm').InstanceInformation }} state
 */
 async (state) => {
 const client = new AutoScalingClient({});
 await client.send(
 new TerminateInstanceInAutoScalingGroupCommand({
 InstanceId: state.targetInstance.InstanceId,
 ShouldDecrementDesiredCapacity: false,
 }),
);
 },
),
 new ScenarioOutput("testKillInstance", MESSAGES.demoTestKillInstance),
 healthCheckLoop,
 loadBalancerLoop,

场景 238

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 new ScenarioInput("failOpenConfirmation", MESSAGES.demoFailOpenConfirmation, {
 type: "confirm",
 }),
 new ScenarioAction("failOpenExit", (state) => {
 if (!state.failOpenConfirmation) {
 process.exit();
 }
 }),
 new ScenarioAction("failOpen", () => {
 const client = new SSMClient({});
 return client.send(
 new PutParameterCommand({
 Name: NAMES.ssmTableNameKey,
 Value: `fake-table-${Date.now()}`,
 Overwrite: true,
 Type: "String",
 }),
);
 }),
 new ScenarioOutput("testFailOpen", MESSAGES.demoFailOpenTest),
 healthCheckLoop,
 loadBalancerLoop,
 new ScenarioInput(
 "resetTableConfirmation",
 MESSAGES.demoResetTableConfirmation,
 { type: "confirm" },
),
 new ScenarioAction("resetTableExit", (state) => {
 if (!state.resetTableConfirmation) {
 process.exit();
 }
 }),
 new ScenarioAction("resetTable", async () => {
 const client = new SSMClient({});
 await client.send(
 new PutParameterCommand({
 Name: NAMES.ssmTableNameKey,
 Value: NAMES.tableName,
 Overwrite: true,
 Type: "String",
 }),
);
 }),
 new ScenarioOutput("testResetTable", MESSAGES.demoTestResetTable),

场景 239

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 healthCheckLoop,
 loadBalancerLoop,
];

async function createSsmOnlyInstanceProfile() {
 const iamClient = new IAMClient({});
 const { Policy } = await iamClient.send(
 new CreatePolicyCommand({
 PolicyName: NAMES.ssmOnlyPolicyName,
 PolicyDocument: readFileSync(
 join(RESOURCES_PATH, "ssm_only_policy.json"),
),
 }),
);
 await iamClient.send(
 new CreateRoleCommand({
 RoleName: NAMES.ssmOnlyRoleName,
 AssumeRolePolicyDocument: JSON.stringify({
 Version: "2012-10-17",
 Statement: [
 {
 Effect: "Allow",
 Principal: { Service: "ec2.amazonaws.com" },
 Action: "sts:AssumeRole",
 },
],
 }),
 }),
);
 await iamClient.send(
 new AttachRolePolicyCommand({
 RoleName: NAMES.ssmOnlyRoleName,
 PolicyArn: Policy.Arn,
 }),
);
 await iamClient.send(
 new AttachRolePolicyCommand({
 RoleName: NAMES.ssmOnlyRoleName,
 PolicyArn: "arn:aws:iam::aws:policy/AmazonSSMManagedInstanceCore",
 }),
);
 const { InstanceProfile } = await iamClient.send(
 new CreateInstanceProfileCommand({
 InstanceProfileName: NAMES.ssmOnlyInstanceProfileName,

场景 240

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }),
);
 await waitUntilInstanceProfileExists(
 { client: iamClient },
 { InstanceProfileName: NAMES.ssmOnlyInstanceProfileName },
);
 await iamClient.send(
 new AddRoleToInstanceProfileCommand({
 InstanceProfileName: NAMES.ssmOnlyInstanceProfileName,
 RoleName: NAMES.ssmOnlyRoleName,
 }),
);

 return InstanceProfile;
}

创建销毁所有资源的步骤。

import { unlinkSync } from "node:fs";

import { DynamoDBClient, DeleteTableCommand } from "@aws-sdk/client-dynamodb";
import {
 EC2Client,
 DeleteKeyPairCommand,
 DeleteLaunchTemplateCommand,
 RevokeSecurityGroupIngressCommand,
} from "@aws-sdk/client-ec2";
import {
 IAMClient,
 DeleteInstanceProfileCommand,
 RemoveRoleFromInstanceProfileCommand,
 DeletePolicyCommand,
 DeleteRoleCommand,
 DetachRolePolicyCommand,
 paginateListPolicies,
} from "@aws-sdk/client-iam";
import {
 AutoScalingClient,
 DeleteAutoScalingGroupCommand,
 TerminateInstanceInAutoScalingGroupCommand,
 UpdateAutoScalingGroupCommand,
 paginateDescribeAutoScalingGroups,

场景 241

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

} from "@aws-sdk/client-auto-scaling";
import {
 DeleteLoadBalancerCommand,
 DeleteTargetGroupCommand,
 DescribeTargetGroupsCommand,
 ElasticLoadBalancingV2Client,
} from "@aws-sdk/client-elastic-load-balancing-v2";

import {
 ScenarioOutput,
 ScenarioInput,
 ScenarioAction,
} from "@aws-doc-sdk-examples/lib/scenario/index.js";
import { loadState } from "@aws-doc-sdk-examples/lib/scenario/steps-common.js";
import { retry } from "@aws-doc-sdk-examples/lib/utils/util-timers.js";

import { MESSAGES, NAMES } from "./constants.js";
import { findLoadBalancer } from "./shared.js";

/**
 * @type {import('@aws-doc-sdk-examples/lib/scenario.js').Step[]}
 */
export const destroySteps = [
 loadState,
 new ScenarioInput("destroy", MESSAGES.destroy, { type: "confirm" }),
 new ScenarioAction(
 "abort",
 (state) => state.destroy === false && process.exit(),
),
 new ScenarioAction("deleteTable", async (c) => {
 try {
 const client = new DynamoDBClient({});
 await client.send(new DeleteTableCommand({ TableName: NAMES.tableName }));
 } catch (e) {
 c.deleteTableError = e;
 }
 }),
 new ScenarioOutput("deleteTableResult", (state) => {
 if (state.deleteTableError) {
 console.error(state.deleteTableError);
 return MESSAGES.deleteTableError.replace(
 "${TABLE_NAME}",
 NAMES.tableName,
);

场景 242

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }
 return MESSAGES.deletedTable.replace("${TABLE_NAME}", NAMES.tableName);
 }),
 new ScenarioAction("deleteKeyPair", async (state) => {
 try {
 const client = new EC2Client({});
 await client.send(
 new DeleteKeyPairCommand({ KeyName: NAMES.keyPairName }),
);
 unlinkSync(`${NAMES.keyPairName}.pem`);
 } catch (e) {
 state.deleteKeyPairError = e;
 }
 }),
 new ScenarioOutput("deleteKeyPairResult", (state) => {
 if (state.deleteKeyPairError) {
 console.error(state.deleteKeyPairError);
 return MESSAGES.deleteKeyPairError.replace(
 "${KEY_PAIR_NAME}",
 NAMES.keyPairName,
);
 }
 return MESSAGES.deletedKeyPair.replace(
 "${KEY_PAIR_NAME}",
 NAMES.keyPairName,
);
 }),
 new ScenarioAction("detachPolicyFromRole", async (state) => {
 try {
 const client = new IAMClient({});
 const policy = await findPolicy(NAMES.instancePolicyName);

 if (!policy) {
 state.detachPolicyFromRoleError = new Error(
 `Policy ${NAMES.instancePolicyName} not found.`,
);
 } else {
 await client.send(
 new DetachRolePolicyCommand({
 RoleName: NAMES.instanceRoleName,
 PolicyArn: policy.Arn,
 }),
);
 }

场景 243

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 } catch (e) {
 state.detachPolicyFromRoleError = e;
 }
 }),
 new ScenarioOutput("detachedPolicyFromRole", (state) => {
 if (state.detachPolicyFromRoleError) {
 console.error(state.detachPolicyFromRoleError);
 return MESSAGES.detachPolicyFromRoleError
 .replace("${INSTANCE_POLICY_NAME}", NAMES.instancePolicyName)
 .replace("${INSTANCE_ROLE_NAME}", NAMES.instanceRoleName);
 }
 return MESSAGES.detachedPolicyFromRole
 .replace("${INSTANCE_POLICY_NAME}", NAMES.instancePolicyName)
 .replace("${INSTANCE_ROLE_NAME}", NAMES.instanceRoleName);
 }),
 new ScenarioAction("deleteInstancePolicy", async (state) => {
 const client = new IAMClient({});
 const policy = await findPolicy(NAMES.instancePolicyName);

 if (!policy) {
 state.deletePolicyError = new Error(
 `Policy ${NAMES.instancePolicyName} not found.`,
);
 } else {
 return client.send(
 new DeletePolicyCommand({
 PolicyArn: policy.Arn,
 }),
);
 }
 }),
 new ScenarioOutput("deletePolicyResult", (state) => {
 if (state.deletePolicyError) {
 console.error(state.deletePolicyError);
 return MESSAGES.deletePolicyError.replace(
 "${INSTANCE_POLICY_NAME}",
 NAMES.instancePolicyName,
);
 }
 return MESSAGES.deletedPolicy.replace(
 "${INSTANCE_POLICY_NAME}",
 NAMES.instancePolicyName,
);
 }),

场景 244

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 new ScenarioAction("removeRoleFromInstanceProfile", async (state) => {
 try {
 const client = new IAMClient({});
 await client.send(
 new RemoveRoleFromInstanceProfileCommand({
 RoleName: NAMES.instanceRoleName,
 InstanceProfileName: NAMES.instanceProfileName,
 }),
);
 } catch (e) {
 state.removeRoleFromInstanceProfileError = e;
 }
 }),
 new ScenarioOutput("removeRoleFromInstanceProfileResult", (state) => {
 if (state.removeRoleFromInstanceProfile) {
 console.error(state.removeRoleFromInstanceProfileError);
 return MESSAGES.removeRoleFromInstanceProfileError
 .replace("${INSTANCE_PROFILE_NAME}", NAMES.instanceProfileName)
 .replace("${INSTANCE_ROLE_NAME}", NAMES.instanceRoleName);
 }
 return MESSAGES.removedRoleFromInstanceProfile
 .replace("${INSTANCE_PROFILE_NAME}", NAMES.instanceProfileName)
 .replace("${INSTANCE_ROLE_NAME}", NAMES.instanceRoleName);
 }),
 new ScenarioAction("deleteInstanceRole", async (state) => {
 try {
 const client = new IAMClient({});
 await client.send(
 new DeleteRoleCommand({
 RoleName: NAMES.instanceRoleName,
 }),
);
 } catch (e) {
 state.deleteInstanceRoleError = e;
 }
 }),
 new ScenarioOutput("deleteInstanceRoleResult", (state) => {
 if (state.deleteInstanceRoleError) {
 console.error(state.deleteInstanceRoleError);
 return MESSAGES.deleteInstanceRoleError.replace(
 "${INSTANCE_ROLE_NAME}",
 NAMES.instanceRoleName,
);
 }

场景 245

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 return MESSAGES.deletedInstanceRole.replace(
 "${INSTANCE_ROLE_NAME}",
 NAMES.instanceRoleName,
);
 }),
 new ScenarioAction("deleteInstanceProfile", async (state) => {
 try {
 const client = new IAMClient({});
 await client.send(
 new DeleteInstanceProfileCommand({
 InstanceProfileName: NAMES.instanceProfileName,
 }),
);
 } catch (e) {
 state.deleteInstanceProfileError = e;
 }
 }),
 new ScenarioOutput("deleteInstanceProfileResult", (state) => {
 if (state.deleteInstanceProfileError) {
 console.error(state.deleteInstanceProfileError);
 return MESSAGES.deleteInstanceProfileError.replace(
 "${INSTANCE_PROFILE_NAME}",
 NAMES.instanceProfileName,
);
 }
 return MESSAGES.deletedInstanceProfile.replace(
 "${INSTANCE_PROFILE_NAME}",
 NAMES.instanceProfileName,
);
 }),
 new ScenarioAction("deleteAutoScalingGroup", async (state) => {
 try {
 await terminateGroupInstances(NAMES.autoScalingGroupName);
 await retry({ intervalInMs: 60000, maxRetries: 60 }, async () => {
 await deleteAutoScalingGroup(NAMES.autoScalingGroupName);
 });
 } catch (e) {
 state.deleteAutoScalingGroupError = e;
 }
 }),
 new ScenarioOutput("deleteAutoScalingGroupResult", (state) => {
 if (state.deleteAutoScalingGroupError) {
 console.error(state.deleteAutoScalingGroupError);
 return MESSAGES.deleteAutoScalingGroupError.replace(

场景 246

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 "${AUTO_SCALING_GROUP_NAME}",
 NAMES.autoScalingGroupName,
);
 }
 return MESSAGES.deletedAutoScalingGroup.replace(
 "${AUTO_SCALING_GROUP_NAME}",
 NAMES.autoScalingGroupName,
);
 }),
 new ScenarioAction("deleteLaunchTemplate", async (state) => {
 const client = new EC2Client({});
 try {
 await client.send(
 new DeleteLaunchTemplateCommand({
 LaunchTemplateName: NAMES.launchTemplateName,
 }),
);
 } catch (e) {
 state.deleteLaunchTemplateError = e;
 }
 }),
 new ScenarioOutput("deleteLaunchTemplateResult", (state) => {
 if (state.deleteLaunchTemplateError) {
 console.error(state.deleteLaunchTemplateError);
 return MESSAGES.deleteLaunchTemplateError.replace(
 "${LAUNCH_TEMPLATE_NAME}",
 NAMES.launchTemplateName,
);
 }
 return MESSAGES.deletedLaunchTemplate.replace(
 "${LAUNCH_TEMPLATE_NAME}",
 NAMES.launchTemplateName,
);
 }),
 new ScenarioAction("deleteLoadBalancer", async (state) => {
 try {
 const client = new ElasticLoadBalancingV2Client({});
 const loadBalancer = await findLoadBalancer(NAMES.loadBalancerName);
 await client.send(
 new DeleteLoadBalancerCommand({
 LoadBalancerArn: loadBalancer.LoadBalancerArn,
 }),
);
 await retry({ intervalInMs: 1000, maxRetries: 60 }, async () => {

场景 247

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const lb = await findLoadBalancer(NAMES.loadBalancerName);
 if (lb) {
 throw new Error("Load balancer still exists.");
 }
 });
 } catch (e) {
 state.deleteLoadBalancerError = e;
 }
 }),
 new ScenarioOutput("deleteLoadBalancerResult", (state) => {
 if (state.deleteLoadBalancerError) {
 console.error(state.deleteLoadBalancerError);
 return MESSAGES.deleteLoadBalancerError.replace(
 "${LB_NAME}",
 NAMES.loadBalancerName,
);
 }
 return MESSAGES.deletedLoadBalancer.replace(
 "${LB_NAME}",
 NAMES.loadBalancerName,
);
 }),
 new ScenarioAction("deleteLoadBalancerTargetGroup", async (state) => {
 const client = new ElasticLoadBalancingV2Client({});
 try {
 const { TargetGroups } = await client.send(
 new DescribeTargetGroupsCommand({
 Names: [NAMES.loadBalancerTargetGroupName],
 }),
);

 await retry({ intervalInMs: 1000, maxRetries: 30 }, () =>
 client.send(
 new DeleteTargetGroupCommand({
 TargetGroupArn: TargetGroups[0].TargetGroupArn,
 }),
),
);
 } catch (e) {
 state.deleteLoadBalancerTargetGroupError = e;
 }
 }),
 new ScenarioOutput("deleteLoadBalancerTargetGroupResult", (state) => {
 if (state.deleteLoadBalancerTargetGroupError) {

场景 248

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 console.error(state.deleteLoadBalancerTargetGroupError);
 return MESSAGES.deleteLoadBalancerTargetGroupError.replace(
 "${TARGET_GROUP_NAME}",
 NAMES.loadBalancerTargetGroupName,
);
 }
 return MESSAGES.deletedLoadBalancerTargetGroup.replace(
 "${TARGET_GROUP_NAME}",
 NAMES.loadBalancerTargetGroupName,
);
 }),
 new ScenarioAction("detachSsmOnlyRoleFromProfile", async (state) => {
 try {
 const client = new IAMClient({});
 await client.send(
 new RemoveRoleFromInstanceProfileCommand({
 InstanceProfileName: NAMES.ssmOnlyInstanceProfileName,
 RoleName: NAMES.ssmOnlyRoleName,
 }),
);
 } catch (e) {
 state.detachSsmOnlyRoleFromProfileError = e;
 }
 }),
 new ScenarioOutput("detachSsmOnlyRoleFromProfileResult", (state) => {
 if (state.detachSsmOnlyRoleFromProfileError) {
 console.error(state.detachSsmOnlyRoleFromProfileError);
 return MESSAGES.detachSsmOnlyRoleFromProfileError
 .replace("${ROLE_NAME}", NAMES.ssmOnlyRoleName)
 .replace("${PROFILE_NAME}", NAMES.ssmOnlyInstanceProfileName);
 }
 return MESSAGES.detachedSsmOnlyRoleFromProfile
 .replace("${ROLE_NAME}", NAMES.ssmOnlyRoleName)
 .replace("${PROFILE_NAME}", NAMES.ssmOnlyInstanceProfileName);
 }),
 new ScenarioAction("detachSsmOnlyCustomRolePolicy", async (state) => {
 try {
 const iamClient = new IAMClient({});
 const ssmOnlyPolicy = await findPolicy(NAMES.ssmOnlyPolicyName);
 await iamClient.send(
 new DetachRolePolicyCommand({
 RoleName: NAMES.ssmOnlyRoleName,
 PolicyArn: ssmOnlyPolicy.Arn,
 }),

场景 249

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

);
 } catch (e) {
 state.detachSsmOnlyCustomRolePolicyError = e;
 }
 }),
 new ScenarioOutput("detachSsmOnlyCustomRolePolicyResult", (state) => {
 if (state.detachSsmOnlyCustomRolePolicyError) {
 console.error(state.detachSsmOnlyCustomRolePolicyError);
 return MESSAGES.detachSsmOnlyCustomRolePolicyError
 .replace("${ROLE_NAME}", NAMES.ssmOnlyRoleName)
 .replace("${POLICY_NAME}", NAMES.ssmOnlyPolicyName);
 }
 return MESSAGES.detachedSsmOnlyCustomRolePolicy
 .replace("${ROLE_NAME}", NAMES.ssmOnlyRoleName)
 .replace("${POLICY_NAME}", NAMES.ssmOnlyPolicyName);
 }),
 new ScenarioAction("detachSsmOnlyAWSRolePolicy", async (state) => {
 try {
 const iamClient = new IAMClient({});
 await iamClient.send(
 new DetachRolePolicyCommand({
 RoleName: NAMES.ssmOnlyRoleName,
 PolicyArn: "arn:aws:iam::aws:policy/AmazonSSMManagedInstanceCore",
 }),
);
 } catch (e) {
 state.detachSsmOnlyAWSRolePolicyError = e;
 }
 }),
 new ScenarioOutput("detachSsmOnlyAWSRolePolicyResult", (state) => {
 if (state.detachSsmOnlyAWSRolePolicyError) {
 console.error(state.detachSsmOnlyAWSRolePolicyError);
 return MESSAGES.detachSsmOnlyAWSRolePolicyError
 .replace("${ROLE_NAME}", NAMES.ssmOnlyRoleName)
 .replace("${POLICY_NAME}", "AmazonSSMManagedInstanceCore");
 }
 return MESSAGES.detachedSsmOnlyAWSRolePolicy
 .replace("${ROLE_NAME}", NAMES.ssmOnlyRoleName)
 .replace("${POLICY_NAME}", "AmazonSSMManagedInstanceCore");
 }),
 new ScenarioAction("deleteSsmOnlyInstanceProfile", async (state) => {
 try {
 const iamClient = new IAMClient({});
 await iamClient.send(

场景 250

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 new DeleteInstanceProfileCommand({
 InstanceProfileName: NAMES.ssmOnlyInstanceProfileName,
 }),
);
 } catch (e) {
 state.deleteSsmOnlyInstanceProfileError = e;
 }
 }),
 new ScenarioOutput("deleteSsmOnlyInstanceProfileResult", (state) => {
 if (state.deleteSsmOnlyInstanceProfileError) {
 console.error(state.deleteSsmOnlyInstanceProfileError);
 return MESSAGES.deleteSsmOnlyInstanceProfileError.replace(
 "${INSTANCE_PROFILE_NAME}",
 NAMES.ssmOnlyInstanceProfileName,
);
 }
 return MESSAGES.deletedSsmOnlyInstanceProfile.replace(
 "${INSTANCE_PROFILE_NAME}",
 NAMES.ssmOnlyInstanceProfileName,
);
 }),
 new ScenarioAction("deleteSsmOnlyPolicy", async (state) => {
 try {
 const iamClient = new IAMClient({});
 const ssmOnlyPolicy = await findPolicy(NAMES.ssmOnlyPolicyName);
 await iamClient.send(
 new DeletePolicyCommand({
 PolicyArn: ssmOnlyPolicy.Arn,
 }),
);
 } catch (e) {
 state.deleteSsmOnlyPolicyError = e;
 }
 }),
 new ScenarioOutput("deleteSsmOnlyPolicyResult", (state) => {
 if (state.deleteSsmOnlyPolicyError) {
 console.error(state.deleteSsmOnlyPolicyError);
 return MESSAGES.deleteSsmOnlyPolicyError.replace(
 "${POLICY_NAME}",
 NAMES.ssmOnlyPolicyName,
);
 }
 return MESSAGES.deletedSsmOnlyPolicy.replace(
 "${POLICY_NAME}",

场景 251

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 NAMES.ssmOnlyPolicyName,
);
 }),
 new ScenarioAction("deleteSsmOnlyRole", async (state) => {
 try {
 const iamClient = new IAMClient({});
 await iamClient.send(
 new DeleteRoleCommand({
 RoleName: NAMES.ssmOnlyRoleName,
 }),
);
 } catch (e) {
 state.deleteSsmOnlyRoleError = e;
 }
 }),
 new ScenarioOutput("deleteSsmOnlyRoleResult", (state) => {
 if (state.deleteSsmOnlyRoleError) {
 console.error(state.deleteSsmOnlyRoleError);
 return MESSAGES.deleteSsmOnlyRoleError.replace(
 "${ROLE_NAME}",
 NAMES.ssmOnlyRoleName,
);
 }
 return MESSAGES.deletedSsmOnlyRole.replace(
 "${ROLE_NAME}",
 NAMES.ssmOnlyRoleName,
);
 }),
 new ScenarioAction(
 "revokeSecurityGroupIngress",
 async (
 /** @type {{ myIp: string, defaultSecurityGroup: { GroupId: string } }} */
 state,
) => {
 const ec2Client = new EC2Client({});

 try {
 await ec2Client.send(
 new RevokeSecurityGroupIngressCommand({
 GroupId: state.defaultSecurityGroup.GroupId,
 CidrIp: `${state.myIp}/32`,
 FromPort: 80,
 ToPort: 80,
 IpProtocol: "tcp",

场景 252

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }),
);
 } catch (e) {
 state.revokeSecurityGroupIngressError = e;
 }
 },
),
 new ScenarioOutput("revokeSecurityGroupIngressResult", (state) => {
 if (state.revokeSecurityGroupIngressError) {
 console.error(state.revokeSecurityGroupIngressError);
 return MESSAGES.revokeSecurityGroupIngressError.replace(
 "${IP}",
 state.myIp,
);
 }
 return MESSAGES.revokedSecurityGroupIngress.replace("${IP}", state.myIp);
 }),
];

/**
 * @param {string} policyName
 */
async function findPolicy(policyName) {
 const client = new IAMClient({});
 const paginatedPolicies = paginateListPolicies({ client }, {});
 for await (const page of paginatedPolicies) {
 const policy = page.Policies.find((p) => p.PolicyName === policyName);
 if (policy) {
 return policy;
 }
 }
}

/**
 * @param {string} groupName
 */
async function deleteAutoScalingGroup(groupName) {
 const client = new AutoScalingClient({});
 try {
 await client.send(
 new DeleteAutoScalingGroupCommand({
 AutoScalingGroupName: groupName,
 }),
);

场景 253

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 } catch (err) {
 if (!(err instanceof Error)) {
 throw err;
 }
 console.log(err.name);
 throw err;
 }
}

/**
 * @param {string} groupName
 */
async function terminateGroupInstances(groupName) {
 const autoScalingClient = new AutoScalingClient({});
 const group = await findAutoScalingGroup(groupName);
 await autoScalingClient.send(
 new UpdateAutoScalingGroupCommand({
 AutoScalingGroupName: group.AutoScalingGroupName,
 MinSize: 0,
 }),
);
 for (const i of group.Instances) {
 await retry({ intervalInMs: 1000, maxRetries: 30 }, () =>
 autoScalingClient.send(
 new TerminateInstanceInAutoScalingGroupCommand({
 InstanceId: i.InstanceId,
 ShouldDecrementDesiredCapacity: true,
 }),
),
);
 }
}

async function findAutoScalingGroup(groupName) {
 const client = new AutoScalingClient({});
 const paginatedGroups = paginateDescribeAutoScalingGroups({ client }, {});
 for await (const page of paginatedGroups) {
 const group = page.AutoScalingGroups.find(
 (g) => g.AutoScalingGroupName === groupName,
);
 if (group) {
 return group;
 }
 }

场景 254

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 throw new Error(`Auto scaling group ${groupName} not found.`);
}

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的以下主
题。

• AttachLoadBalancerTargetGroups

• CreateAutoScalingGroup

• CreateInstanceProfile

• CreateLaunchTemplate

• CreateListener

• CreateLoadBalancer

• CreateTargetGroup

• DeleteAutoScalingGroup

• DeleteInstanceProfile

• DeleteLaunchTemplate

• DeleteLoadBalancer

• DeleteTargetGroup

• DescribeAutoScalingGroups

• DescribeAvailabilityZones

• DescribeIamInstanceProfileAssociations

• DescribeInstances

• DescribeLoadBalancers

• DescribeSubnets

• DescribeTargetGroups

• DescribeTargetHealth

• DescribeVpcs

• RebootInstances

• ReplaceIamInstanceProfileAssociation

• TerminateInstanceInAutoScalingGroup

• UpdateAutoScalingGroup场景 255

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/auto-scaling/command/AttachLoadBalancerTargetGroupsCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/auto-scaling/command/CreateAutoScalingGroupCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/CreateInstanceProfileCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/CreateLaunchTemplateCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/CreateListenerCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/CreateLoadBalancerCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/CreateTargetGroupCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/auto-scaling/command/DeleteAutoScalingGroupCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/DeleteInstanceProfileCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/DeleteLaunchTemplateCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/DeleteLoadBalancerCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/DeleteTargetGroupCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/auto-scaling/command/DescribeAutoScalingGroupsCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/DescribeAvailabilityZonesCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/DescribeIamInstanceProfileAssociationsCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/DescribeInstancesCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/DescribeLoadBalancersCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/DescribeSubnetsCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/DescribeTargetGroupsCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/DescribeTargetHealthCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/DescribeVpcsCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/RebootInstancesCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/ReplaceIamInstanceProfileAssociationCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/auto-scaling/command/TerminateInstanceInAutoScalingGroupCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/auto-scaling/command/UpdateAutoScalingGroupCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

使用适用于 JavaScript (v3) 的 SDK 的 Amazon Bedrock 示例
以下代码示例向您展示了如何使用带有 Amazon Bedrock 的 适用于 JavaScript 的 Amazon SDK (v3)
来执行操作和实现常见场景。

操作是大型程序的代码摘录，必须在上下文中运行。您可以通过操作了解如何调用单个服务函数，还可
以通过函数相关场景的上下文查看操作。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

• 开始使用

• 操作

开始使用

开始使用 Amazon Bedrock

以下代码示例演示了如何开始使用 Amazon Bedrock。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { fileURLToPath } from "node:url";

import {
 BedrockClient,
 ListFoundationModelsCommand,
} from "@aws-sdk/client-bedrock";

const REGION = "us-east-1";
const client = new BedrockClient({ region: REGION });

Amazon Bedrock 256

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/bedrock#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

export const main = async () => {
 const command = new ListFoundationModelsCommand({});

 const response = await client.send(command);
 const models = response.modelSummaries;

 console.log("Listing the available Bedrock foundation models:");

 for (const model of models) {
 console.log("=".repeat(42));
 console.log(` Model: ${model.modelId}`);
 console.log("-".repeat(42));
 console.log(` Name: ${model.modelName}`);
 console.log(` Provider: ${model.providerName}`);
 console.log(` Model ARN: ${model.modelArn}`);
 console.log(` Input modalities: ${model.inputModalities}`);
 console.log(` Output modalities: ${model.outputModalities}`);
 console.log(` Supported customizations: ${model.customizationsSupported}`);
 console.log(` Supported inference types: ${model.inferenceTypesSupported}`);
 console.log(` Lifecycle status: ${model.modelLifecycle.status}`);
 console.log(`${"=".repeat(42)}\n`);
 }

 const active = models.filter(
 (m) => m.modelLifecycle.status === "ACTIVE",
).length;
 const legacy = models.filter(
 (m) => m.modelLifecycle.status === "LEGACY",
).length;

 console.log(
 `There are ${active} active and ${legacy} legacy foundation models in
 ${REGION}.`,
);

 return response;
};

// Invoke main function if this file was run directly.
if (process.argv[1] === fileURLToPath(import.meta.url)) {
 await main();
}

开始使用 257

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考ListFoundationModels中的。

操作

GetFoundationModel

以下代码示例演示了如何使用 GetFoundationModel。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

获取有关基础模型的详细信息。

import { fileURLToPath } from "node:url";

import {
 BedrockClient,
 GetFoundationModelCommand,
} from "@aws-sdk/client-bedrock";

/**
 * Get details about an Amazon Bedrock foundation model.
 *
 * @return {FoundationModelDetails} - The list of available bedrock foundation
 models.
 */
export const getFoundationModel = async () => {
 const client = new BedrockClient();

 const command = new GetFoundationModelCommand({
 modelIdentifier: "amazon.titan-embed-text-v1",
 });

 const response = await client.send(command);

操作 258

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/bedrock/command/ListFoundationModelsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/bedrock#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 return response.modelDetails;
};

// Invoke main function if this file was run directly.
if (process.argv[1] === fileURLToPath(import.meta.url)) {
 const model = await getFoundationModel();
 console.log(model);
}

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考GetFoundationModel中的。

ListFoundationModels

以下代码示例演示了如何使用 ListFoundationModels。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

列出可用的基础模型。

import { fileURLToPath } from "node:url";

import {
 BedrockClient,
 ListFoundationModelsCommand,
} from "@aws-sdk/client-bedrock";

/**
 * List the available Amazon Bedrock foundation models.
 *
 * @return {FoundationModelSummary[]} - The list of available bedrock foundation
 models.
 */
export const listFoundationModels = async () => {

操作 259

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/bedrock/command/GetFoundationModelCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/bedrock#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const client = new BedrockClient();

 const input = {
 // byProvider: 'STRING_VALUE',
 // byCustomizationType: 'FINE_TUNING' || 'CONTINUED_PRE_TRAINING',
 // byOutputModality: 'TEXT' || 'IMAGE' || 'EMBEDDING',
 // byInferenceType: 'ON_DEMAND' || 'PROVISIONED',
 };

 const command = new ListFoundationModelsCommand(input);

 const response = await client.send(command);

 return response.modelSummaries;
};

// Invoke main function if this file was run directly.
if (process.argv[1] === fileURLToPath(import.meta.url)) {
 const models = await listFoundationModels();
 console.log(models);
}

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考ListFoundationModels中的。

使用适用于 JavaScript (v3) 的 SDK 的亚马逊 Bedrock 运行时示例
以下代码示例向您展示了如何使用带有 Amazon Bedrock Runtime 的 适用于 JavaScript 的 Amazon
SDK (v3) 来执行操作和实现常见场景。

场景是向您演示如何通过在一个服务中调用多个函数或与其他 Amazon Web Services 服务结合来完成
特定任务的代码示例。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

• 开始使用

• 场景

• Amazon Nova

Amazon Bedrock 运行时系统 260

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/bedrock/command/ListFoundationModelsCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• Amazon Nova Canvas

• Anthropic Claude

• Cohere Command

• Meta Llama

• Mistral AI

开始使用

开始使用 Amazon Bedrock

以下代码示例演示了如何开始使用 Amazon Bedrock。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

/**
 * @typedef {Object} Content
 * @property {string} text
 *
 * @typedef {Object} Usage
 * @property {number} input_tokens
 * @property {number} output_tokens
 *
 * @typedef {Object} ResponseBody
 * @property {Content[]} content
 * @property {Usage} usage
 */

import { fileURLToPath } from "node:url";
import {
 BedrockRuntimeClient,
 InvokeModelCommand,
} from "@aws-sdk/client-bedrock-runtime";

开始使用 261

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/bedrock-runtime#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const AWS_REGION = "us-east-1";

const MODEL_ID = "anthropic.claude-3-haiku-20240307-v1:0";
const PROMPT = "Hi. In a short paragraph, explain what you can do.";

const hello = async () => {
 console.log("=".repeat(35));
 console.log("Welcome to the Amazon Bedrock demo!");
 console.log("=".repeat(35));

 console.log("Model: Anthropic Claude 3 Haiku");
 console.log(`Prompt: ${PROMPT}\n`);
 console.log("Invoking model...\n");

 // Create a new Bedrock Runtime client instance.
 const client = new BedrockRuntimeClient({ region: AWS_REGION });

 // Prepare the payload for the model.
 const payload = {
 anthropic_version: "bedrock-2023-05-31",
 max_tokens: 1000,
 messages: [{ role: "user", content: [{ type: "text", text: PROMPT }] }],
 };

 // Invoke Claude with the payload and wait for the response.
 const apiResponse = await client.send(
 new InvokeModelCommand({
 contentType: "application/json",
 body: JSON.stringify(payload),
 modelId: MODEL_ID,
 }),
);

 // Decode and return the response(s)
 const decodedResponseBody = new TextDecoder().decode(apiResponse.body);
 /** @type {ResponseBody} */
 const responseBody = JSON.parse(decodedResponseBody);
 const responses = responseBody.content;

 if (responses.length === 1) {
 console.log(`Response: ${responses[0].text}`);
 } else {
 console.log("Haiku returned multiple responses:");
 console.log(responses);

开始使用 262

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }

 console.log(`\nNumber of input tokens: ${responseBody.usage.input_tokens}`);
 console.log(`Number of output tokens: ${responseBody.usage.output_tokens}`);
};

if (process.argv[1] === fileURLToPath(import.meta.url)) {
 await hello();
}

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考InvokeModel中的。

场景

在 Amazon Bedrock 上调用多个基础模型

以下代码示例展示了如何在 Amazon Bedrock 上准备和向各种大型语言模型 (LLMs) 发送提示

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库 中查找完整示例，了解如何进行设
置和运行。

import { fileURLToPath } from "node:url";
import {
 Scenario,
 ScenarioAction,
 ScenarioInput,
 ScenarioOutput,
} from "@aws-doc-sdk-examples/lib/scenario/index.js";
import { FoundationModels } from "../config/foundation_models.js";

/**
 * @typedef {Object} ModelConfig
 * @property {Function} module
 * @property {Function} invoker

场景 263

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/bedrock-runtime/command/InvokeModelCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/bedrock-runtime#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * @property {string} modelId
 * @property {string} modelName
 */

const greeting = new ScenarioOutput(
 "greeting",
 "Welcome to the Amazon Bedrock Runtime client demo!",
 { header: true },
);

const selectModel = new ScenarioInput("model", "First, select a model:", {
 type: "select",
 choices: Object.values(FoundationModels).map((model) => ({
 name: model.modelName,
 value: model,
 })),
});

const enterPrompt = new ScenarioInput("prompt", "Now, enter your prompt:", {
 type: "input",
});

const printDetails = new ScenarioOutput(
 "print details",
 /**
 * @param {{ model: ModelConfig, prompt: string }} c
 */
 (c) => console.log(`Invoking ${c.model.modelName} with '${c.prompt}'...`),
);

const invokeModel = new ScenarioAction(
 "invoke model",
 /**
 * @param {{ model: ModelConfig, prompt: string, response: string }} c
 */
 async (c) => {
 const modelModule = await c.model.module();
 const invoker = c.model.invoker(modelModule);
 c.response = await invoker(c.prompt, c.model.modelId);
 },
);

const printResponse = new ScenarioOutput(
 "print response",

场景 264

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 /**
 * @param {{ response: string }} c
 */
 (c) => c.response,
);

const scenario = new Scenario("Amazon Bedrock Runtime Demo", [
 greeting,
 selectModel,
 enterPrompt,
 printDetails,
 invokeModel,
 printResponse,
]);

if (process.argv[1] === fileURLToPath(import.meta.url)) {
 scenario.run();
}

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的以下主
题。

• InvokeModel

• InvokeModelWithResponseStream

将工具与 Converse API 结合使用

以下代码示例展示了如何在应用程序、生成式 AI 模型和互联工具之间建立典型的交互，或者 APIs 如
何调解 AI 与外界之间的交互。该代码示例以将外部天气 API 连接到人工智能模型模型为例，它可以根
据用户输入提供实时天气信息。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

场景 265

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/bedrock-runtime/command/InvokeModelCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/bedrock-runtime/command/InvokeModelWithResponseStreamCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/bedrock-runtime/scenarios/converse_tool_scenario#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

该场景流程的主要执行。该场景编排了用户、Amazon Bedrock Converse API 和天气工具之间的对
话。

/* Before running this JavaScript code example, set up your development environment,
 including your credentials.
This demo illustrates a tool use scenario using Amazon Bedrock's Converse API and a
 weather tool.
The script interacts with a foundation model on Amazon Bedrock to provide weather
 information based on user
input. It uses the Open-Meteo API (https://open-meteo.com) to retrieve current
 weather data for a given location.*/

import {
 Scenario,
 ScenarioAction,
 ScenarioInput,
 ScenarioOutput,
} from "@aws-doc-sdk-examples/lib/scenario/index.js";
import {
 BedrockRuntimeClient,
 ConverseCommand,
} from "@aws-sdk/client-bedrock-runtime";

import { parseArgs } from "node:util";
import { fileURLToPath } from "node:url";
import data from "./questions.json" with { type: "json" };
import toolConfig from "./tool_config.json" with { type: "json" };

const __filename = fileURLToPath(import.meta.url);

const systemPrompt = [
 {
 text:
 "You are a weather assistant that provides current weather data for user-
specified locations using only\n" +
 "the Weather_Tool, which expects latitude and longitude. Infer the coordinates
 from the location yourself.\n" +
 "If the user provides coordinates, infer the approximate location and refer to
 it in your response.\n" +
 "To use the tool, you strictly apply the provided tool specification.\n" +
 "If the user specifies a state, country, or region, infer the locations of
 cities within that state.\n" +

场景 266

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 "\n" +
 "- Explain your step-by-step process, and give brief updates before each step.
\n" +
 "- Only use the Weather_Tool for data. Never guess or make up information. \n"
 +
 "- Repeat the tool use for subsequent requests if necessary.\n" +
 "- If the tool errors, apologize, explain weather is unavailable, and suggest
 other options.\n" +
 "- Report temperatures in °C (°F) and wind in km/h (mph). Keep weather reports
 concise. Sparingly use\n" +
 " emojis where appropriate.\n" +
 "- Only respond to weather queries. Remind off-topic users of your purpose.
 \n" +
 "- Never claim to search online, access external data, or use tools besides
 Weather_Tool.\n" +
 "- Complete the entire process until you have all required data before sending
 the complete response.",
 },
];
const tools_config = toolConfig;

/// Starts the conversation with the user and handles the interaction with Bedrock.
async function askQuestion(userMessage) {
 // The maximum number of recursive calls allowed in the tool use function.
 // This helps prevent infinite loops and potential performance issues.
 const max_recursions = 5;
 const messages = [
 {
 role: "user",
 content: [{ text: userMessage }],
 },
];
 try {
 const response = await SendConversationtoBedrock(messages);
 await ProcessModelResponseAsync(response, messages, max_recursions);
 } catch (error) {
 console.log("error ", error);
 }
}

// Sends the conversation, the system prompt, and the tool spec to Amazon Bedrock,
 and returns the response.
// param "messages" - The conversation history including the next message to send.
// return - The response from Amazon Bedrock.

场景 267

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

async function SendConversationtoBedrock(messages) {
 const bedRockRuntimeClient = new BedrockRuntimeClient({
 region: "us-east-1",
 });
 try {
 const modelId = "amazon.nova-lite-v1:0";
 const response = await bedRockRuntimeClient.send(
 new ConverseCommand({
 modelId: modelId,
 messages: messages,
 system: systemPrompt,
 toolConfig: tools_config,
 }),
);
 return response;
 } catch (caught) {
 if (caught.name === "ModelNotReady") {
 console.log(
 "`${caught.name}` - Model not ready, please wait and try again.",
);
 throw caught;
 }
 if (caught.name === "BedrockRuntimeException") {
 console.log(
 '`${caught.name}` - "Error occurred while sending Converse request.',
);
 throw caught;
 }
 }
}

// Processes the response received via Amazon Bedrock and performs the necessary
 actions based on the stop reason.
// param "response" - The model's response returned via Amazon Bedrock.
// param "messages" - The conversation history.
// param "max_recursions" - The maximum number of recursive calls allowed.
async function ProcessModelResponseAsync(response, messages, max_recursions) {
 if (max_recursions <= 0) {
 await HandleToolUseAsync(response, messages);
 }
 if (response.stopReason === "tool_use") {
 await HandleToolUseAsync(response, messages, max_recursions - 1);
 }
 if (response.stopReason === "end_turn") {

场景 268

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const messageToPrint = response.output.message.content[0].text;
 console.log(messageToPrint.replace(/<[^>]+>/g, ""));
 }
}
// Handles the tool use case by invoking the specified tool and sending the tool's
 response back to Bedrock.
// The tool response is appended to the conversation, and the conversation is sent
 back to Amazon Bedrock for further processing.
// param "response" - the model's response containing the tool use request.
// param "messages" - the conversation history.
// param "max_recursions" - The maximum number of recursive calls allowed.
async function HandleToolUseAsync(response, messages, max_recursions) {
 const toolResultFinal = [];
 try {
 const output_message = response.output.message;
 messages.push(output_message);
 const toolRequests = output_message.content;
 const toolMessage = toolRequests[0].text;
 console.log(toolMessage.replace(/<[^>]+>/g, ""));
 for (const toolRequest of toolRequests) {
 if (Object.hasOwn(toolRequest, "toolUse")) {
 const toolUse = toolRequest.toolUse;
 const latitude = toolUse.input.latitude;
 const longitude = toolUse.input.longitude;
 const toolUseID = toolUse.toolUseId;
 console.log(
 `Requesting tool ${toolUse.name}, Tool use id ${toolUseID}`,
);
 if (toolUse.name === "Weather_Tool") {
 try {
 const current_weather = await callWeatherTool(
 longitude,
 latitude,
).then((current_weather) => current_weather);
 const currentWeather = current_weather;
 const toolResult = {
 toolResult: {
 toolUseId: toolUseID,
 content: [{ json: currentWeather }],
 },
 };
 toolResultFinal.push(toolResult);
 } catch (err) {
 console.log("An error occurred. ", err);

场景 269

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }
 }
 }
 }

 const toolResultMessage = {
 role: "user",
 content: toolResultFinal,
 };
 messages.push(toolResultMessage);
 // Send the conversation to Amazon Bedrock
 await ProcessModelResponseAsync(
 await SendConversationtoBedrock(messages),
 messages,
);
 } catch (error) {
 console.log("An error occurred. ", error);
 }
}
// Call the Weathertool.
// param = longitude of location
// param = latitude of location
async function callWeatherTool(longitude, latitude) {
 // Open-Meteo API endpoint
 const apiUrl = `https://api.open-meteo.com/v1/forecast?latitude=
${latitude}&longitude=${longitude}¤t_weather=true`;

 // Fetch the weather data.
 return fetch(apiUrl)
 .then((response) => {
 return response.json().then((current_weather) => {
 return current_weather;
 });
 })
 .catch((error) => {
 console.error("Error fetching weather data:", error);
 });
}
/**
 * Used repeatedly to have the user press enter.
 * @type {ScenarioInput}
 */
const pressEnter = new ScenarioInput("continue", "Press Enter to continue", {
 type: "input",

场景 270

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 default: "",
});

const greet = new ScenarioOutput(
 "greet",
 "Welcome to the Amazon Bedrock Tool Use demo! \n" +
 "This assistant provides current weather information for user-specified
 locations. " +
 "You can ask for weather details by providing the location name or coordinates."
 +
 "Weather information will be provided using a custom Tool and open-meteo API." +
 "For the purposes of this example, we'll use in order the questions in ./
questions.json :\n" +
 "What's the weather like in Seattle? " +
 "What's the best kind of cat? " +
 "Where is the warmest city in Washington State right now? " +
 "What's the warmest city in California right now?\n" +
 "To exit the program, simply type 'x' and press Enter.\n" +
 "Have fun and experiment with the app by editing the questions in ./
questions.json! " +
 "P.S.: You're not limited to single locations, or even to using English! ",

 { header: true },
);
const displayAskQuestion1 = new ScenarioOutput(
 "displayAskQuestion1",
 "Press enter to ask question number 1 (default is 'What's the weather like in
 Seattle?')",
);

const askQuestion1 = new ScenarioAction(
 "askQuestion1",
 async (/** @type {State} */ state) => {
 const userMessage1 = data.questions["question-1"];
 await askQuestion(userMessage1);
 },
);

const displayAskQuestion2 = new ScenarioOutput(
 "displayAskQuestion2",
 "Press enter to ask question number 2 (default is 'What's the best kind of
 cat?')",
);

场景 271

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const askQuestion2 = new ScenarioAction(
 "askQuestion2",
 async (/** @type {State} */ state) => {
 const userMessage2 = data.questions["question-2"];
 await askQuestion(userMessage2);
 },
);
const displayAskQuestion3 = new ScenarioOutput(
 "displayAskQuestion3",
 "Press enter to ask question number 3 (default is 'Where is the warmest city in
 Washington State right now?')",
);

const askQuestion3 = new ScenarioAction(
 "askQuestion3",
 async (/** @type {State} */ state) => {
 const userMessage3 = data.questions["question-3"];
 await askQuestion(userMessage3);
 },
);

const displayAskQuestion4 = new ScenarioOutput(
 "displayAskQuestion4",
 "Press enter to ask question number 4 (default is 'What's the warmest city in
 California right now?')",
);

const askQuestion4 = new ScenarioAction(
 "askQuestion4",
 async (/** @type {State} */ state) => {
 const userMessage4 = data.questions["question-4"];
 await askQuestion(userMessage4);
 },
);

const goodbye = new ScenarioOutput(
 "goodbye",
 "Thank you for checking out the Amazon Bedrock Tool Use demo. We hope you\n" +
 "learned something new, or got some inspiration for your own apps today!\n" +
 "For more Bedrock examples in different programming languages, have a look at:
\n" +
 "https://docs.aws.amazon.com/bedrock/latest/userguide/
service_code_examples.html",
);

场景 272

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const myScenario = new Scenario("Converse Tool Scenario", [
 greet,
 pressEnter,
 displayAskQuestion1,
 askQuestion1,
 pressEnter,
 displayAskQuestion2,
 askQuestion2,
 pressEnter,
 displayAskQuestion3,
 askQuestion3,
 pressEnter,
 displayAskQuestion4,
 askQuestion4,
 pressEnter,
 goodbye,
]);

/** @type {{ stepHandlerOptions: StepHandlerOptions }} */
export const main = async (stepHandlerOptions) => {
 await myScenario.run(stepHandlerOptions);
};

// Invoke main function if this file was run directly.
if (process.argv[1] === fileURLToPath(import.meta.url)) {
 const { values } = parseArgs({
 options: {
 yes: {
 type: "boolean",
 short: "y",
 },
 },
 });
 main({ confirmAll: values.yes });
}

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的
Converse。

场景 273

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/bedrock-runtime/command/ConverseCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

Amazon Nova

Converse

以下代码示例演示如何使用 Bedrock 的 Converse API 向 Amazon Nova 发送文本消息。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

使用 Bedrock 的 Converse API 向 Amazon Nova 发送文本消息。

// This example demonstrates how to use the Amazon Nova foundation models to
 generate text.
// It shows how to:
// - Set up the Amazon Bedrock runtime client
// - Create a message
// - Configure and send a request
// - Process the response

import {
 BedrockRuntimeClient,
 ConversationRole,
 ConverseCommand,
} from "@aws-sdk/client-bedrock-runtime";

// Step 1: Create the Amazon Bedrock runtime client
// Credentials will be automatically loaded from the environment.
const client = new BedrockRuntimeClient({ region: "us-east-1" });

// Step 2: Specify which model to use:
// Available Amazon Nova models and their characteristics:
// - Amazon Nova Micro: Text-only model optimized for lowest latency and cost
// - Amazon Nova Lite: Fast, low-cost multimodal model for image, video, and text
// - Amazon Nova Pro: Advanced multimodal model balancing accuracy, speed, and
 cost
//
// For the most current model IDs, see:
// https://docs.aws.amazon.com/bedrock/latest/userguide/models-supported.html

Amazon Nova 274

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/bedrock-runtime#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const modelId = "amazon.nova-lite-v1:0";

// Step 3: Create the message
// The message includes the text prompt and specifies that it comes from the user
const inputText =
 "Describe the purpose of a 'hello world' program in one line.";
const message = {
 content: [{ text: inputText }],
 role: ConversationRole.USER,
};

// Step 4: Configure the request
// Optional parameters to control the model's response:
// - maxTokens: maximum number of tokens to generate
// - temperature: randomness (max: 1.0, default: 0.7)
// OR
// - topP: diversity of word choice (max: 1.0, default: 0.9)
// Note: Use either temperature OR topP, but not both
const request = {
 modelId,
 messages: [message],
 inferenceConfig: {
 maxTokens: 500, // The maximum response length
 temperature: 0.5, // Using temperature for randomness control
 //topP: 0.9, // Alternative: use topP instead of temperature
 },
};

// Step 5: Send and process the request
// - Send the request to the model
// - Extract and return the generated text from the response
try {
 const response = await client.send(new ConverseCommand(request));
 console.log(response.output.message.content[0].text);
} catch (error) {
 console.error(`ERROR: Can't invoke '${modelId}'. Reason: ${error.message}`);
 throw error;
}

使用 Bedrock 的 Converse API 和工具配置向 Amazon Nova 发送消息对话。

Amazon Nova 275

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

// This example demonstrates how to send a conversation of messages to Amazon Nova
 using Bedrock's Converse API with a tool configuration.
// It shows how to:
// - 1. Set up the Amazon Bedrock runtime client
// - 2. Define the parameters required enable Amazon Bedrock to use a tool when
 formulating its response (model ID, user input, system prompt, and the tool spec)
// - 3. Send the request to Amazon Bedrock, and returns the response.
// - 4. Add the tool response to the conversation, and send it back to Amazon
 Bedrock.
// - 5. Publish the response.

import {
 BedrockRuntimeClient,
 ConverseCommand,
} from "@aws-sdk/client-bedrock-runtime";

// Step 1: Create the Amazon Bedrock runtime client

// Credentials will be automatically loaded from the environment
const bedRockRuntimeClient = new BedrockRuntimeClient({
 region: "us-east-1",
});

// Step 2. Define the parameters required enable Amazon Bedrock to use a tool when
 formulating its response.

// The Bedrock Model ID.
const modelId = "amazon.nova-lite-v1:0";

// The system prompt to help Amazon Bedrock craft it's response.
const system_prompt = [
 {
 text:
 "You are a music expert that provides the most popular song played on a radio
 station, using only the\n" +
 "the top_song tool, which he call sign for the radio station for which you
 want the most popular song. " +
 "Example calls signs are WZPZ and WKRP. \n" +
 "- Only use the top_song tool. Never guess or make up information. \n" +
 "- If the tool errors, apologize, explain weather is unavailable, and suggest
 other options.\n" +
 "- Only respond to queries about the most popular song played on a radio
 station\n" +
 "Remind off-topic users of your purpose. \n" +

Amazon Nova 276

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 "- Never claim to search online, access external data, or use tools besides
 the top_song tool.\n",
 },
];
// The user's question.
const message = [
 {
 role: "user",
 content: [{ text: "What is the most popular song on WZPZ?" }],
 },
];
// The tool specification. In this case, it uses an example schema for
// a tool that gets the most popular song played on a radio station.
const tool_config = {
 tools: [
 {
 toolSpec: {
 name: "top_song",
 description: "Get the most popular song played on a radio station.",
 inputSchema: {
 json: {
 type: "object",
 properties: {
 sign: {
 type: "string",
 description:
 "The call sign for the radio station for which you want the most
 popular song. Example calls signs are WZPZ and WKRP.",
 },
 },
 required: ["sign"],
 },
 },
 },
 },
],
};

// Helper function to return the song and artist from top_song tool.
async function get_top_song(call_sign) {
 try {
 if (call_sign === "WZPZ") {
 const song = "Elemental Hotel";
 const artist = "8 Storey Hike";

Amazon Nova 277

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 return { song, artist };
 }
 } catch (error) {
 console.log(`${error.message}`);
 }
}

// 3. Send the request to Amazon Bedrock, and returns the response.
export async function SendConversationtoBedrock(
 modelId,
 message,
 system_prompt,
 tool_config,
) {
 try {
 const response = await bedRockRuntimeClient.send(
 new ConverseCommand({
 modelId: modelId,
 messages: message,
 system: system_prompt,
 toolConfig: tool_config,
 }),
);
 if (response.stopReason === "tool_use") {
 const toolResultFinal = [];
 try {
 const output_message = response.output.message;
 message.push(output_message);
 const toolRequests = output_message.content;
 const toolMessage = toolRequests[0].text;
 console.log(toolMessage.replace(/<[^>]+>/g, ""));
 for (const toolRequest of toolRequests) {
 if (Object.hasOwn(toolRequest, "toolUse")) {
 const toolUse = toolRequest.toolUse;
 const sign = toolUse.input.sign;
 const toolUseID = toolUse.toolUseId;
 console.log(
 `Requesting tool ${toolUse.name}, Tool use id ${toolUseID}`,
);
 if (toolUse.name === "top_song") {
 const toolResult = [];
 try {
 const top_song = await get_top_song(toolUse.input.sign).then(
 (top_song) => top_song,

Amazon Nova 278

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

);
 const toolResult = {
 toolResult: {
 toolUseId: toolUseID,
 content: [
 {
 json: { song: top_song.song, artist: top_song.artist },
 },
],
 },
 };
 toolResultFinal.push(toolResult);
 } catch (err) {
 const toolResult = {
 toolUseId: toolUseID,
 content: [{ json: { text: err.message } }],
 status: "error",
 };
 }
 }
 }
 }
 const toolResultMessage = {
 role: "user",
 content: toolResultFinal,
 };
 // Step 4. Add the tool response to the conversation, and send it back to
 Amazon Bedrock.

 message.push(toolResultMessage);
 await SendConversationtoBedrock(
 modelId,
 message,
 system_prompt,
 tool_config,
);
 } catch (caught) {
 console.error(`${caught.message}`);
 throw caught;
 }
 }

 // 4. Publish the response.
 if (response.stopReason === "end_turn") {

Amazon Nova 279

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const finalMessage = response.output.message.content[0].text;
 const messageToPrint = finalMessage.replace(/<[^>]+>/g);
 console.log(messageToPrint.replace(/<[^>]+>/g));
 return messageToPrint;
 }
 } catch (caught) {
 if (caught.name === "ModelNotReady") {
 console.log(
 `${caught.name} - Model not ready, please wait and try again.`,
);
 throw caught;
 }
 if (caught.name === "BedrockRuntimeException") {
 console.log(
 `${caught.name} - Error occurred while sending Converse request`,
);
 throw caught;
 }
 }
}
await SendConversationtoBedrock(modelId, message, system_prompt, tool_config);

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的
Converse。

ConverseStream

以下代码示例演示如何使用 Bedrock 的 Converse API 向 Amazon Nova 发送文本消息并实时处理响应
流。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

使用 Bedrock 的 Converse API 向 Amazon Nova 发送文本消息并实时处理回复流。

Amazon Nova 280

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/bedrock-runtime/command/ConverseCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/bedrock-runtime#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

// This example demonstrates how to use the Amazon Nova foundation models
// to generate streaming text responses.
// It shows how to:
// - Set up the Amazon Bedrock runtime client
// - Create a message
// - Configure a streaming request
// - Process the streaming response

import {
 BedrockRuntimeClient,
 ConversationRole,
 ConverseStreamCommand,
} from "@aws-sdk/client-bedrock-runtime";

// Step 1: Create the Amazon Bedrock runtime client
// Credentials will be automatically loaded from the environment
const client = new BedrockRuntimeClient({ region: "us-east-1" });

// Step 2: Specify which model to use
// Available Amazon Nova models and their characteristics:
// - Amazon Nova Micro: Text-only model optimized for lowest latency and cost
// - Amazon Nova Lite: Fast, low-cost multimodal model for image, video, and text
// - Amazon Nova Pro: Advanced multimodal model balancing accuracy, speed, and
 cost
//
// For the most current model IDs, see:
// https://docs.aws.amazon.com/bedrock/latest/userguide/models-supported.html
const modelId = "amazon.nova-lite-v1:0";

// Step 3: Create the message
// The message includes the text prompt and specifies that it comes from the user
const inputText =
 "Describe the purpose of a 'hello world' program in one paragraph";
const message = {
 content: [{ text: inputText }],
 role: ConversationRole.USER,
};

// Step 4: Configure the streaming request
// Optional parameters to control the model's response:
// - maxTokens: maximum number of tokens to generate
// - temperature: randomness (max: 1.0, default: 0.7)
// OR

Amazon Nova 281

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

// - topP: diversity of word choice (max: 1.0, default: 0.9)
// Note: Use either temperature OR topP, but not both
const request = {
 modelId,
 messages: [message],
 inferenceConfig: {
 maxTokens: 500, // The maximum response length
 temperature: 0.5, // Using temperature for randomness control
 //topP: 0.9, // Alternative: use topP instead of temperature
 },
};

// Step 5: Send and process the streaming request
// - Send the request to the model
// - Process each chunk of the streaming response
try {
 const response = await client.send(new ConverseStreamCommand(request));

 for await (const chunk of response.stream) {
 if (chunk.contentBlockDelta) {
 // Print each text chunk as it arrives
 process.stdout.write(chunk.contentBlockDelta.delta?.text || "");
 }
 }
} catch (error) {
 console.error(`ERROR: Can't invoke '${modelId}'. Reason: ${error.message}`);
 process.exitCode = 1;
}

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考ConverseStream中
的。

场景：将工具与 Converse API 搭配使用

以下代码示例展示了如何在应用程序、生成式 AI 模型和互联工具之间建立典型的交互，或者 APIs 如
何调解 AI 与外界之间的交互。该代码示例以将外部天气 API 连接到人工智能模型模型为例，它可以根
据用户输入提供实时天气信息。

Amazon Nova 282

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/bedrock-runtime/command/ConverseStreamCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

该场景流程的主要执行。该场景编排了用户、Amazon Bedrock Converse API 和天气工具之间的对
话。

/* Before running this JavaScript code example, set up your development environment,
 including your credentials.
This demo illustrates a tool use scenario using Amazon Bedrock's Converse API and a
 weather tool.
The script interacts with a foundation model on Amazon Bedrock to provide weather
 information based on user
input. It uses the Open-Meteo API (https://open-meteo.com) to retrieve current
 weather data for a given location.*/

import {
 Scenario,
 ScenarioAction,
 ScenarioInput,
 ScenarioOutput,
} from "@aws-doc-sdk-examples/lib/scenario/index.js";
import {
 BedrockRuntimeClient,
 ConverseCommand,
} from "@aws-sdk/client-bedrock-runtime";

import { parseArgs } from "node:util";
import { fileURLToPath } from "node:url";
import data from "./questions.json" with { type: "json" };
import toolConfig from "./tool_config.json" with { type: "json" };

const __filename = fileURLToPath(import.meta.url);

const systemPrompt = [
 {
 text:

Amazon Nova 283

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/bedrock-runtime/scenarios/converse_tool_scenario#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 "You are a weather assistant that provides current weather data for user-
specified locations using only\n" +
 "the Weather_Tool, which expects latitude and longitude. Infer the coordinates
 from the location yourself.\n" +
 "If the user provides coordinates, infer the approximate location and refer to
 it in your response.\n" +
 "To use the tool, you strictly apply the provided tool specification.\n" +
 "If the user specifies a state, country, or region, infer the locations of
 cities within that state.\n" +
 "\n" +
 "- Explain your step-by-step process, and give brief updates before each step.
\n" +
 "- Only use the Weather_Tool for data. Never guess or make up information. \n"
 +
 "- Repeat the tool use for subsequent requests if necessary.\n" +
 "- If the tool errors, apologize, explain weather is unavailable, and suggest
 other options.\n" +
 "- Report temperatures in °C (°F) and wind in km/h (mph). Keep weather reports
 concise. Sparingly use\n" +
 " emojis where appropriate.\n" +
 "- Only respond to weather queries. Remind off-topic users of your purpose.
 \n" +
 "- Never claim to search online, access external data, or use tools besides
 Weather_Tool.\n" +
 "- Complete the entire process until you have all required data before sending
 the complete response.",
 },
];
const tools_config = toolConfig;

/// Starts the conversation with the user and handles the interaction with Bedrock.
async function askQuestion(userMessage) {
 // The maximum number of recursive calls allowed in the tool use function.
 // This helps prevent infinite loops and potential performance issues.
 const max_recursions = 5;
 const messages = [
 {
 role: "user",
 content: [{ text: userMessage }],
 },
];
 try {
 const response = await SendConversationtoBedrock(messages);
 await ProcessModelResponseAsync(response, messages, max_recursions);

Amazon Nova 284

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 } catch (error) {
 console.log("error ", error);
 }
}

// Sends the conversation, the system prompt, and the tool spec to Amazon Bedrock,
 and returns the response.
// param "messages" - The conversation history including the next message to send.
// return - The response from Amazon Bedrock.
async function SendConversationtoBedrock(messages) {
 const bedRockRuntimeClient = new BedrockRuntimeClient({
 region: "us-east-1",
 });
 try {
 const modelId = "amazon.nova-lite-v1:0";
 const response = await bedRockRuntimeClient.send(
 new ConverseCommand({
 modelId: modelId,
 messages: messages,
 system: systemPrompt,
 toolConfig: tools_config,
 }),
);
 return response;
 } catch (caught) {
 if (caught.name === "ModelNotReady") {
 console.log(
 "`${caught.name}` - Model not ready, please wait and try again.",
);
 throw caught;
 }
 if (caught.name === "BedrockRuntimeException") {
 console.log(
 '`${caught.name}` - "Error occurred while sending Converse request.',
);
 throw caught;
 }
 }
}

// Processes the response received via Amazon Bedrock and performs the necessary
 actions based on the stop reason.
// param "response" - The model's response returned via Amazon Bedrock.
// param "messages" - The conversation history.

Amazon Nova 285

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

// param "max_recursions" - The maximum number of recursive calls allowed.
async function ProcessModelResponseAsync(response, messages, max_recursions) {
 if (max_recursions <= 0) {
 await HandleToolUseAsync(response, messages);
 }
 if (response.stopReason === "tool_use") {
 await HandleToolUseAsync(response, messages, max_recursions - 1);
 }
 if (response.stopReason === "end_turn") {
 const messageToPrint = response.output.message.content[0].text;
 console.log(messageToPrint.replace(/<[^>]+>/g, ""));
 }
}
// Handles the tool use case by invoking the specified tool and sending the tool's
 response back to Bedrock.
// The tool response is appended to the conversation, and the conversation is sent
 back to Amazon Bedrock for further processing.
// param "response" - the model's response containing the tool use request.
// param "messages" - the conversation history.
// param "max_recursions" - The maximum number of recursive calls allowed.
async function HandleToolUseAsync(response, messages, max_recursions) {
 const toolResultFinal = [];
 try {
 const output_message = response.output.message;
 messages.push(output_message);
 const toolRequests = output_message.content;
 const toolMessage = toolRequests[0].text;
 console.log(toolMessage.replace(/<[^>]+>/g, ""));
 for (const toolRequest of toolRequests) {
 if (Object.hasOwn(toolRequest, "toolUse")) {
 const toolUse = toolRequest.toolUse;
 const latitude = toolUse.input.latitude;
 const longitude = toolUse.input.longitude;
 const toolUseID = toolUse.toolUseId;
 console.log(
 `Requesting tool ${toolUse.name}, Tool use id ${toolUseID}`,
);
 if (toolUse.name === "Weather_Tool") {
 try {
 const current_weather = await callWeatherTool(
 longitude,
 latitude,
).then((current_weather) => current_weather);
 const currentWeather = current_weather;

Amazon Nova 286

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const toolResult = {
 toolResult: {
 toolUseId: toolUseID,
 content: [{ json: currentWeather }],
 },
 };
 toolResultFinal.push(toolResult);
 } catch (err) {
 console.log("An error occurred. ", err);
 }
 }
 }
 }

 const toolResultMessage = {
 role: "user",
 content: toolResultFinal,
 };
 messages.push(toolResultMessage);
 // Send the conversation to Amazon Bedrock
 await ProcessModelResponseAsync(
 await SendConversationtoBedrock(messages),
 messages,
);
 } catch (error) {
 console.log("An error occurred. ", error);
 }
}
// Call the Weathertool.
// param = longitude of location
// param = latitude of location
async function callWeatherTool(longitude, latitude) {
 // Open-Meteo API endpoint
 const apiUrl = `https://api.open-meteo.com/v1/forecast?latitude=
${latitude}&longitude=${longitude}¤t_weather=true`;

 // Fetch the weather data.
 return fetch(apiUrl)
 .then((response) => {
 return response.json().then((current_weather) => {
 return current_weather;
 });
 })
 .catch((error) => {

Amazon Nova 287

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 console.error("Error fetching weather data:", error);
 });
}
/**
 * Used repeatedly to have the user press enter.
 * @type {ScenarioInput}
 */
const pressEnter = new ScenarioInput("continue", "Press Enter to continue", {
 type: "input",
 default: "",
});

const greet = new ScenarioOutput(
 "greet",
 "Welcome to the Amazon Bedrock Tool Use demo! \n" +
 "This assistant provides current weather information for user-specified
 locations. " +
 "You can ask for weather details by providing the location name or coordinates."
 +
 "Weather information will be provided using a custom Tool and open-meteo API." +
 "For the purposes of this example, we'll use in order the questions in ./
questions.json :\n" +
 "What's the weather like in Seattle? " +
 "What's the best kind of cat? " +
 "Where is the warmest city in Washington State right now? " +
 "What's the warmest city in California right now?\n" +
 "To exit the program, simply type 'x' and press Enter.\n" +
 "Have fun and experiment with the app by editing the questions in ./
questions.json! " +
 "P.S.: You're not limited to single locations, or even to using English! ",

 { header: true },
);
const displayAskQuestion1 = new ScenarioOutput(
 "displayAskQuestion1",
 "Press enter to ask question number 1 (default is 'What's the weather like in
 Seattle?')",
);

const askQuestion1 = new ScenarioAction(
 "askQuestion1",
 async (/** @type {State} */ state) => {
 const userMessage1 = data.questions["question-1"];
 await askQuestion(userMessage1);

Amazon Nova 288

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 },
);

const displayAskQuestion2 = new ScenarioOutput(
 "displayAskQuestion2",
 "Press enter to ask question number 2 (default is 'What's the best kind of
 cat?')",
);

const askQuestion2 = new ScenarioAction(
 "askQuestion2",
 async (/** @type {State} */ state) => {
 const userMessage2 = data.questions["question-2"];
 await askQuestion(userMessage2);
 },
);
const displayAskQuestion3 = new ScenarioOutput(
 "displayAskQuestion3",
 "Press enter to ask question number 3 (default is 'Where is the warmest city in
 Washington State right now?')",
);

const askQuestion3 = new ScenarioAction(
 "askQuestion3",
 async (/** @type {State} */ state) => {
 const userMessage3 = data.questions["question-3"];
 await askQuestion(userMessage3);
 },
);

const displayAskQuestion4 = new ScenarioOutput(
 "displayAskQuestion4",
 "Press enter to ask question number 4 (default is 'What's the warmest city in
 California right now?')",
);

const askQuestion4 = new ScenarioAction(
 "askQuestion4",
 async (/** @type {State} */ state) => {
 const userMessage4 = data.questions["question-4"];
 await askQuestion(userMessage4);
 },
);

Amazon Nova 289

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const goodbye = new ScenarioOutput(
 "goodbye",
 "Thank you for checking out the Amazon Bedrock Tool Use demo. We hope you\n" +
 "learned something new, or got some inspiration for your own apps today!\n" +
 "For more Bedrock examples in different programming languages, have a look at:
\n" +
 "https://docs.aws.amazon.com/bedrock/latest/userguide/
service_code_examples.html",
);

const myScenario = new Scenario("Converse Tool Scenario", [
 greet,
 pressEnter,
 displayAskQuestion1,
 askQuestion1,
 pressEnter,
 displayAskQuestion2,
 askQuestion2,
 pressEnter,
 displayAskQuestion3,
 askQuestion3,
 pressEnter,
 displayAskQuestion4,
 askQuestion4,
 pressEnter,
 goodbye,
]);

/** @type {{ stepHandlerOptions: StepHandlerOptions }} */
export const main = async (stepHandlerOptions) => {
 await myScenario.run(stepHandlerOptions);
};

// Invoke main function if this file was run directly.
if (process.argv[1] === fileURLToPath(import.meta.url)) {
 const { values } = parseArgs({
 options: {
 yes: {
 type: "boolean",
 short: "y",
 },
 },
 });
 main({ confirmAll: values.yes });

Amazon Nova 290

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

}

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的
Converse。

Amazon Nova Canvas

InvokeModel

以下代码示例演示如何在 Amazon Bedrock 上调用 Amazon Nova Canvas 来生成图像。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

使用 Amazon Nova Canvas 创建图像。

import {
 BedrockRuntimeClient,
 InvokeModelCommand,
} from "@aws-sdk/client-bedrock-runtime";
import { saveImage } from "../../utils/image-creation.js";
import { fileURLToPath } from "node:url";

/**
 * This example demonstrates how to use Amazon Nova Canvas to generate images.
 * It shows how to:
 * - Set up the Amazon Bedrock runtime client
 * - Configure the image generation parameters
 * - Send a request to generate an image
 * - Process the response and handle the generated image
 *
 * @returns {Promise<string>} Base64-encoded image data
 */
export const invokeModel = async () => {
 // Step 1: Create the Amazon Bedrock runtime client

Amazon Nova Canvas 291

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/bedrock-runtime/command/ConverseCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/bedrock-runtime#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // Credentials will be automatically loaded from the environment
 const client = new BedrockRuntimeClient({ region: "us-east-1" });

 // Step 2: Specify which model to use
 // For the latest available models, see:
 // https://docs.aws.amazon.com/bedrock/latest/userguide/models-supported.html
 const modelId = "amazon.nova-canvas-v1:0";

 // Step 3: Configure the request payload
 // First, set the main parameters:
 // - prompt: Text description of the image to generate
 // - seed: Random number for reproducible generation (0 to 858,993,459)
 const prompt = "A stylized picture of a cute old steampunk robot";
 const seed = Math.floor(Math.random() * 858993460);

 // Then, create the payload using the following structure:
 // - taskType: TEXT_IMAGE (specifies text-to-image generation)
 // - textToImageParams: Contains the text prompt
 // - imageGenerationConfig: Contains optional generation settings (seed, quality,
 etc.)
 // For a list of available request parameters, see:
 // https://docs.aws.amazon.com/nova/latest/userguide/image-gen-req-resp-
structure.html
 const payload = {
 taskType: "TEXT_IMAGE",
 textToImageParams: {
 text: prompt,
 },
 imageGenerationConfig: {
 seed,
 quality: "standard",
 },
 };

 // Step 4: Send and process the request
 // - Embed the payload in a request object
 // - Send the request to the model
 // - Extract and return the generated image data from the response
 try {
 const request = {
 modelId,
 body: JSON.stringify(payload),
 };
 const response = await client.send(new InvokeModelCommand(request));

Amazon Nova Canvas 292

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const decodedResponseBody = new TextDecoder().decode(response.body);
 // The response includes an array of base64-encoded PNG images
 /** @type {{images: string[]}} */
 const responseBody = JSON.parse(decodedResponseBody);
 return responseBody.images[0]; // Base64-encoded image data
 } catch (error) {
 console.error(`ERROR: Can't invoke '${modelId}'. Reason: ${error.message}`);
 throw error;
 }
};

// If run directly, execute the example and save the generated image
if (process.argv[1] === fileURLToPath(import.meta.url)) {
 console.log("Generating image. This may take a few seconds...");
 invokeModel()
 .then(async (imageData) => {
 const imagePath = await saveImage(imageData, "nova-canvas");
 // Example path: javascriptv3/example_code/bedrock-runtime/output/nova-canvas/
image-01.png
 console.log(`Image saved to: ${imagePath}`);
 })
 .catch((error) => {
 console.error("Execution failed:", error);
 process.exitCode = 1;
 });
}

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考InvokeModel中的。

Anthropic Claude

Converse

以下代码示例演示如何使用 Bedrock 的 Converse API 向 Anthropic Claude 发送文本消息。

Anthropic Claude 293

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/bedrock-runtime/command/InvokeModelCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

使用 Bedrock 的 Converse API 向 Anthropic Claude 发送文本消息。

// Use the Conversation API to send a text message to Anthropic Claude.

import {
 BedrockRuntimeClient,
 ConverseCommand,
} from "@aws-sdk/client-bedrock-runtime";

// Create a Bedrock Runtime client in the AWS Region you want to use.
const client = new BedrockRuntimeClient({ region: "us-east-1" });

// Set the model ID, e.g., Claude 3 Haiku.
const modelId = "anthropic.claude-3-haiku-20240307-v1:0";

// Start a conversation with the user message.
const userMessage =
 "Describe the purpose of a 'hello world' program in one line.";
const conversation = [
 {
 role: "user",
 content: [{ text: userMessage }],
 },
];

// Create a command with the model ID, the message, and a basic configuration.
const command = new ConverseCommand({
 modelId,
 messages: conversation,
 inferenceConfig: { maxTokens: 512, temperature: 0.5, topP: 0.9 },
});

try {
 // Send the command to the model and wait for the response
 const response = await client.send(command);

Anthropic Claude 294

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/bedrock-runtime#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // Extract and print the response text.
 const responseText = response.output.message.content[0].text;
 console.log(responseText);
} catch (err) {
 console.log(`ERROR: Can't invoke '${modelId}'. Reason: ${err}`);
 process.exit(1);
}

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的
Converse。

ConverseStream

以下代码示例演示如何使用 Bedrock 的 Converse API 向 Anthropic Claude 发送文本消息并实时处理
响应流。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

使用 Bedrock 的 Converse API 向 Anthropic Claude 发送文本消息并实时处理响应流。

// Use the Conversation API to send a text message to Anthropic Claude.

import {
 BedrockRuntimeClient,
 ConverseStreamCommand,
} from "@aws-sdk/client-bedrock-runtime";

// Create a Bedrock Runtime client in the AWS Region you want to use.
const client = new BedrockRuntimeClient({ region: "us-east-1" });

// Set the model ID, e.g., Claude 3 Haiku.
const modelId = "anthropic.claude-3-haiku-20240307-v1:0";

Anthropic Claude 295

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/bedrock-runtime/command/ConverseCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/bedrock-runtime#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

// Start a conversation with the user message.
const userMessage =
 "Describe the purpose of a 'hello world' program in one line.";
const conversation = [
 {
 role: "user",
 content: [{ text: userMessage }],
 },
];

// Create a command with the model ID, the message, and a basic configuration.
const command = new ConverseStreamCommand({
 modelId,
 messages: conversation,
 inferenceConfig: { maxTokens: 512, temperature: 0.5, topP: 0.9 },
});

try {
 // Send the command to the model and wait for the response
 const response = await client.send(command);

 // Extract and print the streamed response text in real-time.
 for await (const item of response.stream) {
 if (item.contentBlockDelta) {
 process.stdout.write(item.contentBlockDelta.delta?.text);
 }
 }
} catch (err) {
 console.log(`ERROR: Can't invoke '${modelId}'. Reason: ${err}`);
 process.exit(1);
}

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考ConverseStream中
的。

InvokeModel

以下代码示例演示如何使用调用模型 API 向 Anthropic Claude 发送文本消息。

Anthropic Claude 296

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/bedrock-runtime/command/ConverseStreamCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

使用调用模型 API 发送文本消息。

import { fileURLToPath } from "node:url";

import { FoundationModels } from "../../config/foundation_models.js";
import {
 BedrockRuntimeClient,
 InvokeModelCommand,
 InvokeModelWithResponseStreamCommand,
} from "@aws-sdk/client-bedrock-runtime";

/**
 * @typedef {Object} ResponseContent
 * @property {string} text
 *
 * @typedef {Object} MessagesResponseBody
 * @property {ResponseContent[]} content
 *
 * @typedef {Object} Delta
 * @property {string} text
 *
 * @typedef {Object} Message
 * @property {string} role
 *
 * @typedef {Object} Chunk
 * @property {string} type
 * @property {Delta} delta
 * @property {Message} message
 */

/**
 * Invokes Anthropic Claude 3 using the Messages API.
 *
 * To learn more about the Anthropic Messages API, go to:

Anthropic Claude 297

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/bedrock-runtime#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-anthropic-
claude-messages.html
 *
 * @param {string} prompt - The input text prompt for the model to complete.
 * @param {string} [modelId] - The ID of the model to use. Defaults to
 "anthropic.claude-3-haiku-20240307-v1:0".
 */
export const invokeModel = async (
 prompt,
 modelId = "anthropic.claude-3-haiku-20240307-v1:0",
) => {
 // Create a new Bedrock Runtime client instance.
 const client = new BedrockRuntimeClient({ region: "us-east-1" });

 // Prepare the payload for the model.
 const payload = {
 anthropic_version: "bedrock-2023-05-31",
 max_tokens: 1000,
 messages: [
 {
 role: "user",
 content: [{ type: "text", text: prompt }],
 },
],
 };

 // Invoke Claude with the payload and wait for the response.
 const command = new InvokeModelCommand({
 contentType: "application/json",
 body: JSON.stringify(payload),
 modelId,
 });
 const apiResponse = await client.send(command);

 // Decode and return the response(s)
 const decodedResponseBody = new TextDecoder().decode(apiResponse.body);
 /** @type {MessagesResponseBody} */
 const responseBody = JSON.parse(decodedResponseBody);
 return responseBody.content[0].text;
};

/**
 * Invokes Anthropic Claude 3 and processes the response stream.
 *

Anthropic Claude 298

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * To learn more about the Anthropic Messages API, go to:
 * https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-anthropic-
claude-messages.html
 *
 * @param {string} prompt - The input text prompt for the model to complete.
 * @param {string} [modelId] - The ID of the model to use. Defaults to
 "anthropic.claude-3-haiku-20240307-v1:0".
 */
export const invokeModelWithResponseStream = async (
 prompt,
 modelId = "anthropic.claude-3-haiku-20240307-v1:0",
) => {
 // Create a new Bedrock Runtime client instance.
 const client = new BedrockRuntimeClient({ region: "us-east-1" });

 // Prepare the payload for the model.
 const payload = {
 anthropic_version: "bedrock-2023-05-31",
 max_tokens: 1000,
 messages: [
 {
 role: "user",
 content: [{ type: "text", text: prompt }],
 },
],
 };

 // Invoke Claude with the payload and wait for the API to respond.
 const command = new InvokeModelWithResponseStreamCommand({
 contentType: "application/json",
 body: JSON.stringify(payload),
 modelId,
 });
 const apiResponse = await client.send(command);

 let completeMessage = "";

 // Decode and process the response stream
 for await (const item of apiResponse.body) {
 /** @type Chunk */
 const chunk = JSON.parse(new TextDecoder().decode(item.chunk.bytes));
 const chunk_type = chunk.type;

 if (chunk_type === "content_block_delta") {

Anthropic Claude 299

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const text = chunk.delta.text;
 completeMessage = completeMessage + text;
 process.stdout.write(text);
 }
 }

 // Return the final response
 return completeMessage;
};

// Invoke the function if this file was run directly.
if (process.argv[1] === fileURLToPath(import.meta.url)) {
 const prompt = 'Write a paragraph starting with: "Once upon a time..."';
 const modelId = FoundationModels.CLAUDE_3_HAIKU.modelId;
 console.log(`Prompt: ${prompt}`);
 console.log(`Model ID: ${modelId}`);

 try {
 console.log("-".repeat(53));
 const response = await invokeModel(prompt, modelId);
 console.log(`\n${"-".repeat(53)}`);
 console.log("Final structured response:");
 console.log(response);
 } catch (err) {
 console.log(`\n${err}`);
 }
}

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考InvokeModel中的。

InvokeModelWithResponseStream

以下代码示例演示如何使用调用模型 API 向 Anthropic Claude 模型发送文本消息并打印响应流。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

Anthropic Claude 300

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/bedrock-runtime/command/InvokeModelCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/bedrock-runtime#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

使用调用模型 API 发送文本消息并实时处理响应流。

import { fileURLToPath } from "node:url";

import { FoundationModels } from "../../config/foundation_models.js";
import {
 BedrockRuntimeClient,
 InvokeModelCommand,
 InvokeModelWithResponseStreamCommand,
} from "@aws-sdk/client-bedrock-runtime";

/**
 * @typedef {Object} ResponseContent
 * @property {string} text
 *
 * @typedef {Object} MessagesResponseBody
 * @property {ResponseContent[]} content
 *
 * @typedef {Object} Delta
 * @property {string} text
 *
 * @typedef {Object} Message
 * @property {string} role
 *
 * @typedef {Object} Chunk
 * @property {string} type
 * @property {Delta} delta
 * @property {Message} message
 */

/**
 * Invokes Anthropic Claude 3 using the Messages API.
 *
 * To learn more about the Anthropic Messages API, go to:
 * https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-anthropic-
claude-messages.html
 *
 * @param {string} prompt - The input text prompt for the model to complete.
 * @param {string} [modelId] - The ID of the model to use. Defaults to
 "anthropic.claude-3-haiku-20240307-v1:0".
 */
export const invokeModel = async (
 prompt,

Anthropic Claude 301

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 modelId = "anthropic.claude-3-haiku-20240307-v1:0",
) => {
 // Create a new Bedrock Runtime client instance.
 const client = new BedrockRuntimeClient({ region: "us-east-1" });

 // Prepare the payload for the model.
 const payload = {
 anthropic_version: "bedrock-2023-05-31",
 max_tokens: 1000,
 messages: [
 {
 role: "user",
 content: [{ type: "text", text: prompt }],
 },
],
 };

 // Invoke Claude with the payload and wait for the response.
 const command = new InvokeModelCommand({
 contentType: "application/json",
 body: JSON.stringify(payload),
 modelId,
 });
 const apiResponse = await client.send(command);

 // Decode and return the response(s)
 const decodedResponseBody = new TextDecoder().decode(apiResponse.body);
 /** @type {MessagesResponseBody} */
 const responseBody = JSON.parse(decodedResponseBody);
 return responseBody.content[0].text;
};

/**
 * Invokes Anthropic Claude 3 and processes the response stream.
 *
 * To learn more about the Anthropic Messages API, go to:
 * https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-anthropic-
claude-messages.html
 *
 * @param {string} prompt - The input text prompt for the model to complete.
 * @param {string} [modelId] - The ID of the model to use. Defaults to
 "anthropic.claude-3-haiku-20240307-v1:0".
 */
export const invokeModelWithResponseStream = async (

Anthropic Claude 302

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 prompt,
 modelId = "anthropic.claude-3-haiku-20240307-v1:0",
) => {
 // Create a new Bedrock Runtime client instance.
 const client = new BedrockRuntimeClient({ region: "us-east-1" });

 // Prepare the payload for the model.
 const payload = {
 anthropic_version: "bedrock-2023-05-31",
 max_tokens: 1000,
 messages: [
 {
 role: "user",
 content: [{ type: "text", text: prompt }],
 },
],
 };

 // Invoke Claude with the payload and wait for the API to respond.
 const command = new InvokeModelWithResponseStreamCommand({
 contentType: "application/json",
 body: JSON.stringify(payload),
 modelId,
 });
 const apiResponse = await client.send(command);

 let completeMessage = "";

 // Decode and process the response stream
 for await (const item of apiResponse.body) {
 /** @type Chunk */
 const chunk = JSON.parse(new TextDecoder().decode(item.chunk.bytes));
 const chunk_type = chunk.type;

 if (chunk_type === "content_block_delta") {
 const text = chunk.delta.text;
 completeMessage = completeMessage + text;
 process.stdout.write(text);
 }
 }

 // Return the final response
 return completeMessage;
};

Anthropic Claude 303

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

// Invoke the function if this file was run directly.
if (process.argv[1] === fileURLToPath(import.meta.url)) {
 const prompt = 'Write a paragraph starting with: "Once upon a time..."';
 const modelId = FoundationModels.CLAUDE_3_HAIKU.modelId;
 console.log(`Prompt: ${prompt}`);
 console.log(`Model ID: ${modelId}`);

 try {
 console.log("-".repeat(53));
 const response = await invokeModel(prompt, modelId);
 console.log(`\n${"-".repeat(53)}`);
 console.log("Final structured response:");
 console.log(response);
 } catch (err) {
 console.log(`\n${err}`);
 }
}

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考InvokeModelWithResponseStream中的。

Cohere Command

Converse

以下代码示例演示如何使用 Bedrock 的 Converse API 向 Cohere Command 发送文本消息。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

使用 Bedrock 的 Converse API 向 Cohere Command 发送文本消息。

// Use the Conversation API to send a text message to Cohere Command.

import {

Cohere Command 304

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/bedrock-runtime/command/InvokeModelWithResponseStreamCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/bedrock-runtime#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 BedrockRuntimeClient,
 ConverseCommand,
} from "@aws-sdk/client-bedrock-runtime";

// Create a Bedrock Runtime client in the AWS Region you want to use.
const client = new BedrockRuntimeClient({ region: "us-east-1" });

// Set the model ID, e.g., Command R.
const modelId = "cohere.command-r-v1:0";

// Start a conversation with the user message.
const userMessage =
 "Describe the purpose of a 'hello world' program in one line.";
const conversation = [
 {
 role: "user",
 content: [{ text: userMessage }],
 },
];

// Create a command with the model ID, the message, and a basic configuration.
const command = new ConverseCommand({
 modelId,
 messages: conversation,
 inferenceConfig: { maxTokens: 512, temperature: 0.5, topP: 0.9 },
});

try {
 // Send the command to the model and wait for the response
 const response = await client.send(command);

 // Extract and print the response text.
 const responseText = response.output.message.content[0].text;
 console.log(responseText);
} catch (err) {
 console.log(`ERROR: Can't invoke '${modelId}'. Reason: ${err}`);
 process.exit(1);
}

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的
Converse。

Cohere Command 305

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/bedrock-runtime/command/ConverseCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

ConverseStream

以下代码示例演示如何使用 Bedrock 的 Converse API 向 Cohere Command 发送文本消息并实时处理
响应流。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

使用 Bedrock 的 Converse API 向 Cohere Command 发送文本消息并实时处理响应流。

// Use the Conversation API to send a text message to Cohere Command.

import {
 BedrockRuntimeClient,
 ConverseStreamCommand,
} from "@aws-sdk/client-bedrock-runtime";

// Create a Bedrock Runtime client in the AWS Region you want to use.
const client = new BedrockRuntimeClient({ region: "us-east-1" });

// Set the model ID, e.g., Command R.
const modelId = "cohere.command-r-v1:0";

// Start a conversation with the user message.
const userMessage =
 "Describe the purpose of a 'hello world' program in one line.";
const conversation = [
 {
 role: "user",
 content: [{ text: userMessage }],
 },
];

// Create a command with the model ID, the message, and a basic configuration.
const command = new ConverseStreamCommand({
 modelId,
 messages: conversation,
 inferenceConfig: { maxTokens: 512, temperature: 0.5, topP: 0.9 },

Cohere Command 306

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/bedrock-runtime#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

});

try {
 // Send the command to the model and wait for the response
 const response = await client.send(command);

 // Extract and print the streamed response text in real-time.
 for await (const item of response.stream) {
 if (item.contentBlockDelta) {
 process.stdout.write(item.contentBlockDelta.delta?.text);
 }
 }
} catch (err) {
 console.log(`ERROR: Can't invoke '${modelId}'. Reason: ${err}`);
 process.exit(1);
}

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考ConverseStream中
的。

Meta Llama

Converse

以下代码示例演示如何使用 Bedrock 的 Converse API 向 Meta Llama 发送文本消息。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

使用 Bedrock 的 Converse API 向 Meta Llama 发送文本消息。

// Use the Conversation API to send a text message to Meta Llama.

import {

Meta Llama 307

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/bedrock-runtime/command/ConverseStreamCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/bedrock-runtime#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 BedrockRuntimeClient,
 ConverseCommand,
} from "@aws-sdk/client-bedrock-runtime";

// Create a Bedrock Runtime client in the AWS Region you want to use.
const client = new BedrockRuntimeClient({ region: "us-east-1" });

// Set the model ID, e.g., Llama 3 8b Instruct.
const modelId = "meta.llama3-8b-instruct-v1:0";

// Start a conversation with the user message.
const userMessage =
 "Describe the purpose of a 'hello world' program in one line.";
const conversation = [
 {
 role: "user",
 content: [{ text: userMessage }],
 },
];

// Create a command with the model ID, the message, and a basic configuration.
const command = new ConverseCommand({
 modelId,
 messages: conversation,
 inferenceConfig: { maxTokens: 512, temperature: 0.5, topP: 0.9 },
});

try {
 // Send the command to the model and wait for the response
 const response = await client.send(command);

 // Extract and print the response text.
 const responseText = response.output.message.content[0].text;
 console.log(responseText);
} catch (err) {
 console.log(`ERROR: Can't invoke '${modelId}'. Reason: ${err}`);
 process.exit(1);
}

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的
Converse。

Meta Llama 308

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/bedrock-runtime/command/ConverseCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

ConverseStream

以下代码示例演示如何使用 Bedrock 的 Converse API 向 Meta Llama 发送文本消息并实时处理响应
流。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

使用 Bedrock 的 Converse API 向 Meta Llama 发送文本消息并实时处理响应流。

// Use the Conversation API to send a text message to Meta Llama.

import {
 BedrockRuntimeClient,
 ConverseStreamCommand,
} from "@aws-sdk/client-bedrock-runtime";

// Create a Bedrock Runtime client in the AWS Region you want to use.
const client = new BedrockRuntimeClient({ region: "us-east-1" });

// Set the model ID, e.g., Llama 3 8b Instruct.
const modelId = "meta.llama3-8b-instruct-v1:0";

// Start a conversation with the user message.
const userMessage =
 "Describe the purpose of a 'hello world' program in one line.";
const conversation = [
 {
 role: "user",
 content: [{ text: userMessage }],
 },
];

// Create a command with the model ID, the message, and a basic configuration.
const command = new ConverseStreamCommand({
 modelId,
 messages: conversation,
 inferenceConfig: { maxTokens: 512, temperature: 0.5, topP: 0.9 },

Meta Llama 309

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/bedrock-runtime#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

});

try {
 // Send the command to the model and wait for the response
 const response = await client.send(command);

 // Extract and print the streamed response text in real-time.
 for await (const item of response.stream) {
 if (item.contentBlockDelta) {
 process.stdout.write(item.contentBlockDelta.delta?.text);
 }
 }
} catch (err) {
 console.log(`ERROR: Can't invoke '${modelId}'. Reason: ${err}`);
 process.exit(1);
}

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考ConverseStream中
的。

InvokeModel

以下代码示例演示如何使用调用模型 API 向 Meta Llama 发送文本消息。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

使用调用模型 API 发送文本消息。

// Send a prompt to Meta Llama 3 and print the response.

import {
 BedrockRuntimeClient,
 InvokeModelCommand,
} from "@aws-sdk/client-bedrock-runtime";

Meta Llama 310

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/bedrock-runtime/command/ConverseStreamCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/bedrock-runtime#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

// Create a Bedrock Runtime client in the AWS Region of your choice.
const client = new BedrockRuntimeClient({ region: "us-west-2" });

// Set the model ID, e.g., Llama 3 70B Instruct.
const modelId = "meta.llama3-70b-instruct-v1:0";

// Define the user message to send.
const userMessage =
 "Describe the purpose of a 'hello world' program in one sentence.";

// Embed the message in Llama 3's prompt format.
const prompt = `
<|begin_of_text|><|start_header_id|>user<|end_header_id|>
${userMessage}
<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>
`;

// Format the request payload using the model's native structure.
const request = {
 prompt,
 // Optional inference parameters:
 max_gen_len: 512,
 temperature: 0.5,
 top_p: 0.9,
};

// Encode and send the request.
const response = await client.send(
 new InvokeModelCommand({
 contentType: "application/json",
 body: JSON.stringify(request),
 modelId,
 }),
);

// Decode the native response body.
/** @type {{ generation: string }} */
const nativeResponse = JSON.parse(new TextDecoder().decode(response.body));

// Extract and print the generated text.
const responseText = nativeResponse.generation;
console.log(responseText);

Meta Llama 311

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

// Learn more about the Llama 3 prompt format at:
// https://llama.meta.com/docs/model-cards-and-prompt-formats/meta-llama-3/#special-
tokens-used-with-meta-llama-3

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考InvokeModel中的。

InvokeModelWithResponseStream

以下代码示例演示如何使用调用模型 API 向 Meta Llama 发送文本消息并打印响应流。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

使用调用模型 API 发送文本消息并实时处理响应流。

// Send a prompt to Meta Llama 3 and print the response stream in real-time.

import {
 BedrockRuntimeClient,
 InvokeModelWithResponseStreamCommand,
} from "@aws-sdk/client-bedrock-runtime";

// Create a Bedrock Runtime client in the AWS Region of your choice.
const client = new BedrockRuntimeClient({ region: "us-west-2" });

// Set the model ID, e.g., Llama 3 70B Instruct.
const modelId = "meta.llama3-70b-instruct-v1:0";

// Define the user message to send.
const userMessage =
 "Describe the purpose of a 'hello world' program in one sentence.";

// Embed the message in Llama 3's prompt format.
const prompt = `

Meta Llama 312

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/bedrock-runtime/command/InvokeModelCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/bedrock-runtime#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

<|begin_of_text|><|start_header_id|>user<|end_header_id|>
${userMessage}
<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>
`;

// Format the request payload using the model's native structure.
const request = {
 prompt,
 // Optional inference parameters:
 max_gen_len: 512,
 temperature: 0.5,
 top_p: 0.9,
};

// Encode and send the request.
const responseStream = await client.send(
 new InvokeModelWithResponseStreamCommand({
 contentType: "application/json",
 body: JSON.stringify(request),
 modelId,
 }),
);

// Extract and print the response stream in real-time.
for await (const event of responseStream.body) {
 /** @type {{ generation: string }} */
 const chunk = JSON.parse(new TextDecoder().decode(event.chunk.bytes));
 if (chunk.generation) {
 process.stdout.write(chunk.generation);
 }
}

// Learn more about the Llama 3 prompt format at:
// https://llama.meta.com/docs/model-cards-and-prompt-formats/meta-llama-3/#special-
tokens-used-with-meta-llama-3

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考InvokeModelWithResponseStream中的。

Meta Llama 313

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/bedrock-runtime/command/InvokeModelWithResponseStreamCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

Mistral AI

Converse

以下代码示例演示如何使用 Bedrock 的 Converse API 向 Mistral 发送文本消息。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

使用 Bedrock 的 Converse API 向 Mistral 发送文本消息。

// Use the Conversation API to send a text message to Mistral.

import {
 BedrockRuntimeClient,
 ConverseCommand,
} from "@aws-sdk/client-bedrock-runtime";

// Create a Bedrock Runtime client in the AWS Region you want to use.
const client = new BedrockRuntimeClient({ region: "us-east-1" });

// Set the model ID, e.g., Mistral Large.
const modelId = "mistral.mistral-large-2402-v1:0";

// Start a conversation with the user message.
const userMessage =
 "Describe the purpose of a 'hello world' program in one line.";
const conversation = [
 {
 role: "user",
 content: [{ text: userMessage }],
 },
];

// Create a command with the model ID, the message, and a basic configuration.
const command = new ConverseCommand({
 modelId,

Mistral AI 314

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/bedrock-runtime#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 messages: conversation,
 inferenceConfig: { maxTokens: 512, temperature: 0.5, topP: 0.9 },
});

try {
 // Send the command to the model and wait for the response
 const response = await client.send(command);

 // Extract and print the response text.
 const responseText = response.output.message.content[0].text;
 console.log(responseText);
} catch (err) {
 console.log(`ERROR: Can't invoke '${modelId}'. Reason: ${err}`);
 process.exit(1);
}

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的
Converse。

ConverseStream

以下代码示例演示如何使用 Bedrock 的 Converse API 向 Mistral 发送文本消息并实时处理响应流。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

使用 Bedrock 的 Converse API 向 Mistral 发送文本消息并实时处理响应流。

// Use the Conversation API to send a text message to Mistral.

import {
 BedrockRuntimeClient,
 ConverseStreamCommand,
} from "@aws-sdk/client-bedrock-runtime";

Mistral AI 315

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/bedrock-runtime/command/ConverseCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/bedrock-runtime#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

// Create a Bedrock Runtime client in the AWS Region you want to use.
const client = new BedrockRuntimeClient({ region: "us-east-1" });

// Set the model ID, e.g., Mistral Large.
const modelId = "mistral.mistral-large-2402-v1:0";

// Start a conversation with the user message.
const userMessage =
 "Describe the purpose of a 'hello world' program in one line.";
const conversation = [
 {
 role: "user",
 content: [{ text: userMessage }],
 },
];

// Create a command with the model ID, the message, and a basic configuration.
const command = new ConverseStreamCommand({
 modelId,
 messages: conversation,
 inferenceConfig: { maxTokens: 512, temperature: 0.5, topP: 0.9 },
});

try {
 // Send the command to the model and wait for the response
 const response = await client.send(command);

 // Extract and print the streamed response text in real-time.
 for await (const item of response.stream) {
 if (item.contentBlockDelta) {
 process.stdout.write(item.contentBlockDelta.delta?.text);
 }
 }
} catch (err) {
 console.log(`ERROR: Can't invoke '${modelId}'. Reason: ${err}`);
 process.exit(1);
}

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考ConverseStream中
的。

Mistral AI 316

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/bedrock-runtime/command/ConverseStreamCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

InvokeModel

以下代码示例演示如何使用调用模型 API 向 Mistral 模型发送文本消息。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

使用调用模型 API 发送文本消息。

import { fileURLToPath } from "node:url";

import { FoundationModels } from "../../config/foundation_models.js";
import {
 BedrockRuntimeClient,
 InvokeModelCommand,
} from "@aws-sdk/client-bedrock-runtime";

/**
 * @typedef {Object} Output
 * @property {string} text
 *
 * @typedef {Object} ResponseBody
 * @property {Output[]} outputs
 */

/**
 * Invokes a Mistral 7B Instruct model.
 *
 * @param {string} prompt - The input text prompt for the model to complete.
 * @param {string} [modelId] - The ID of the model to use. Defaults to
 "mistral.mistral-7b-instruct-v0:2".
 */
export const invokeModel = async (
 prompt,
 modelId = "mistral.mistral-7b-instruct-v0:2",
) => {
 // Create a new Bedrock Runtime client instance.

Mistral AI 317

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/bedrock-runtime#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const client = new BedrockRuntimeClient({ region: "us-east-1" });

 // Mistral instruct models provide optimal results when embedding
 // the prompt into the following template:
 const instruction = `<s>[INST] ${prompt} [/INST]`;

 // Prepare the payload.
 const payload = {
 prompt: instruction,
 max_tokens: 500,
 temperature: 0.5,
 };

 // Invoke the model with the payload and wait for the response.
 const command = new InvokeModelCommand({
 contentType: "application/json",
 body: JSON.stringify(payload),
 modelId,
 });
 const apiResponse = await client.send(command);

 // Decode and return the response.
 const decodedResponseBody = new TextDecoder().decode(apiResponse.body);
 /** @type {ResponseBody} */
 const responseBody = JSON.parse(decodedResponseBody);
 return responseBody.outputs[0].text;
};

// Invoke the function if this file was run directly.
if (process.argv[1] === fileURLToPath(import.meta.url)) {
 const prompt =
 'Complete the following in one sentence: "Once upon a time..."';
 const modelId = FoundationModels.MISTRAL_7B.modelId;
 console.log(`Prompt: ${prompt}`);
 console.log(`Model ID: ${modelId}`);

 try {
 console.log("-".repeat(53));
 const response = await invokeModel(prompt, modelId);
 console.log(response);
 } catch (err) {
 console.log(err);
 }
}

Mistral AI 318

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考InvokeModel中的。

使用适用于 JavaScript (v3) 的 SDK 的 Amazon 基岩代理示例
以下代码示例向您展示了如何使用带有 Amazon Bedrock Agents 的 适用于 JavaScript 的 Amazon
SDK (v3) 来执行操作和实现常见场景。

操作是大型程序的代码摘录，必须在上下文中运行。您可以通过操作了解如何调用单个服务函数，还可
以通过函数相关场景的上下文查看操作。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

• 开始使用

• 操作

开始使用

开始使用 Amazon Bedrock 代理

以下代码示例演示了如何开始使用 Amazon Bedrock 代理。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库 中查找完整示例，了解如何进行设
置和运行。

import { fileURLToPath } from "node:url";

import {
 BedrockAgentClient,
 GetAgentCommand,

Amazon 基岩代理商 319

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/bedrock-runtime/command/InvokeModelCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/bedrock-agent#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 paginateListAgents,
} from "@aws-sdk/client-bedrock-agent";

/**
 * @typedef {Object} AgentSummary
 */

/**
 * A simple scenario to demonstrate basic setup and interaction with the Bedrock
 Agents Client.
 *
 * This function first initializes the Amazon Bedrock Agents client for a specific
 region.
 * It then retrieves a list of existing agents using the streamlined paginator
 approach.
 * For each agent found, it retrieves detailed information using a command object.
 *
 * Demonstrates:
 * - Use of the Bedrock Agents client to initialize and communicate with the AWS
 service.
 * - Listing resources in a paginated response pattern.
 * - Accessing an individual resource using a command object.
 *
 * @returns {Promise<void>} A promise that resolves when the function has completed
 execution.
 */
export const main = async () => {
 const region = "us-east-1";

 console.log("=".repeat(68));

 console.log(`Initializing Amazon Bedrock Agents client for ${region}...`);
 const client = new BedrockAgentClient({ region });

 console.log("Retrieving the list of existing agents...");
 const paginatorConfig = { client };
 const pages = paginateListAgents(paginatorConfig, {});

 /** @type {AgentSummary[]} */
 const agentSummaries = [];
 for await (const page of pages) {
 agentSummaries.push(...page.agentSummaries);
 }

开始使用 320

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 console.log(`Found ${agentSummaries.length} agents in ${region}.`);

 if (agentSummaries.length > 0) {
 for (const agentSummary of agentSummaries) {
 const agentId = agentSummary.agentId;
 console.log("=".repeat(68));
 console.log(`Retrieving agent with ID: ${agentId}:`);
 console.log("-".repeat(68));

 const command = new GetAgentCommand({ agentId });
 const response = await client.send(command);
 const agent = response.agent;

 console.log(` Name: ${agent.agentName}`);
 console.log(` Status: ${agent.agentStatus}`);
 console.log(` ARN: ${agent.agentArn}`);
 console.log(` Foundation model: ${agent.foundationModel}`);
 }
 }
 console.log("=".repeat(68));
};

// Invoke main function if this file was run directly.
if (process.argv[1] === fileURLToPath(import.meta.url)) {
 await main();
}

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的以下主
题。

• GetAgent

• ListAgents

操作

CreateAgent

以下代码示例演示了如何使用 CreateAgent。

操作 321

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/bedrock-agent/command/GetAgentCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/bedrock-agent/command/ListAgentsCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

创建 代理

import { fileURLToPath } from "node:url";
import { checkForPlaceholders } from "../lib/utils.js";

import {
 BedrockAgentClient,
 CreateAgentCommand,
} from "@aws-sdk/client-bedrock-agent";

/**
 * Creates an Amazon Bedrock Agent.
 *
 * @param {string} agentName - A name for the agent that you create.
 * @param {string} foundationModel - The foundation model to be used by the agent
 you create.
 * @param {string} agentResourceRoleArn - The ARN of the IAM role with permissions
 required by the agent.
 * @param {string} [region='us-east-1'] - The AWS region in use.
 * @returns {Promise<import("@aws-sdk/client-bedrock-agent").Agent>} An object
 containing details of the created agent.
 */
export const createAgent = async (
 agentName,
 foundationModel,
 agentResourceRoleArn,
 region = "us-east-1",
) => {
 const client = new BedrockAgentClient({ region });

 const command = new CreateAgentCommand({
 agentName,
 foundationModel,
 agentResourceRoleArn,

操作 322

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/bedrock-agent#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 });
 const response = await client.send(command);

 return response.agent;
};

// Invoke main function if this file was run directly.
if (process.argv[1] === fileURLToPath(import.meta.url)) {
 // Replace the placeholders for agentName and accountId, and roleName with a
 unique name for the new agent,
 // the id of your AWS account, and the name of an existing execution role that the
 agent can use inside your account.
 // For foundationModel, specify the desired model. Ensure to remove the brackets
 '[]' before adding your data.

 // A string (max 100 chars) that can include letters, numbers, dashes '-', and
 underscores '_'.
 const agentName = "[your-bedrock-agent-name]";

 // Your AWS account id.
 const accountId = "[123456789012]";

 // The name of the agent's execution role. It must be prefixed by
 `AmazonBedrockExecutionRoleForAgents_`.
 const roleName = "[AmazonBedrockExecutionRoleForAgents_your-role-name]";

 // The ARN for the agent's execution role.
 // Follow the ARN format: 'arn:aws:iam::account-id:role/role-name'
 const roleArn = `arn:aws:iam::${accountId}:role/${roleName}`;

 // Specify the model for the agent. Change if a different model is preferred.
 const foundationModel = "anthropic.claude-v2";

 // Check for unresolved placeholders in agentName and roleArn.
 checkForPlaceholders([agentName, roleArn]);

 console.log("Creating a new agent...");

 const agent = await createAgent(agentName, foundationModel, roleArn);
 console.log(agent);
}

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考CreateAgent中的。

操作 323

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/bedrock-agent/command/CreateAgentCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

DeleteAgent

以下代码示例演示了如何使用 DeleteAgent。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

删除代理。

import { fileURLToPath } from "node:url";
import { checkForPlaceholders } from "../lib/utils.js";

import {
 BedrockAgentClient,
 DeleteAgentCommand,
} from "@aws-sdk/client-bedrock-agent";

/**
 * Deletes an Amazon Bedrock Agent.
 *
 * @param {string} agentId - The unique identifier of the agent to delete.
 * @param {string} [region='us-east-1'] - The AWS region in use.
 * @returns {Promise<import("@aws-sdk/client-bedrock-
agent").DeleteAgentCommandOutput>} An object containing the agent id, the status,
 and some additional metadata.
 */
export const deleteAgent = (agentId, region = "us-east-1") => {
 const client = new BedrockAgentClient({ region });
 const command = new DeleteAgentCommand({ agentId });
 return client.send(command);
};

// Invoke main function if this file was run directly.
if (process.argv[1] === fileURLToPath(import.meta.url)) {
 // Replace the placeholders for agentId with an existing agent's id.
 // Ensure to remove the brackets (`[]`) before adding your data.

操作 324

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/bedrock-agent#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // The agentId must be an alphanumeric string with exactly 10 characters.
 const agentId = "[ABC123DE45]";

 // Check for unresolved placeholders in agentId.
 checkForPlaceholders([agentId]);

 console.log(`Deleting agent with ID ${agentId}...`);

 const response = await deleteAgent(agentId);
 console.log(response);
}

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DeleteAgent中的。

GetAgent

以下代码示例演示了如何使用 GetAgent。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

获取代理。

import { fileURLToPath } from "node:url";
import { checkForPlaceholders } from "../lib/utils.js";

import {
 BedrockAgentClient,
 GetAgentCommand,
} from "@aws-sdk/client-bedrock-agent";

/**
 * Retrieves the details of an Amazon Bedrock Agent.
 *
 * @param {string} agentId - The unique identifier of the agent.

操作 325

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/bedrock-agent/command/DeleteAgentCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/bedrock-agent#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * @param {string} [region='us-east-1'] - The AWS region in use.
 * @returns {Promise<import("@aws-sdk/client-bedrock-agent").Agent>} An object
 containing the agent details.
 */
export const getAgent = async (agentId, region = "us-east-1") => {
 const client = new BedrockAgentClient({ region });

 const command = new GetAgentCommand({ agentId });
 const response = await client.send(command);
 return response.agent;
};

// Invoke main function if this file was run directly.
if (process.argv[1] === fileURLToPath(import.meta.url)) {
 // Replace the placeholders for agentId with an existing agent's id.
 // Ensure to remove the brackets '[]' before adding your data.

 // The agentId must be an alphanumeric string with exactly 10 characters.
 const agentId = "[ABC123DE45]";

 // Check for unresolved placeholders in agentId.
 checkForPlaceholders([agentId]);

 console.log(`Retrieving agent with ID ${agentId}...`);

 const agent = await getAgent(agentId);
 console.log(agent);
}

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考GetAgent中的。

ListAgentActionGroups

以下代码示例演示了如何使用 ListAgentActionGroups。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

操作 326

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/bedrock-agent/command/GetAgentCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/bedrock-agent#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

列出代理的操作组。

import { fileURLToPath } from "node:url";
import { checkForPlaceholders } from "../lib/utils.js";

import {
 BedrockAgentClient,
 ListAgentActionGroupsCommand,
 paginateListAgentActionGroups,
} from "@aws-sdk/client-bedrock-agent";

/**
 * Retrieves a list of Action Groups of an agent utilizing the paginator function.
 *
 * This function leverages a paginator, which abstracts the complexity of
 pagination, providing
 * a straightforward way to handle paginated results inside a `for await...of` loop.
 *
 * @param {string} agentId - The unique identifier of the agent.
 * @param {string} agentVersion - The version of the agent.
 * @param {string} [region='us-east-1'] - The AWS region in use.
 * @returns {Promise<ActionGroupSummary[]>} An array of action group summaries.
 */
export const listAgentActionGroupsWithPaginator = async (
 agentId,
 agentVersion,
 region = "us-east-1",
) => {
 const client = new BedrockAgentClient({ region });

 // Create a paginator configuration
 const paginatorConfig = {
 client,
 pageSize: 10, // optional, added for demonstration purposes
 };

 const params = { agentId, agentVersion };

 const pages = paginateListAgentActionGroups(paginatorConfig, params);

 // Paginate until there are no more results
 const actionGroupSummaries = [];
 for await (const page of pages) {

操作 327

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 actionGroupSummaries.push(...page.actionGroupSummaries);
 }

 return actionGroupSummaries;
};

/**
 * Retrieves a list of Action Groups of an agent utilizing the
 ListAgentActionGroupsCommand.
 *
 * This function demonstrates the manual approach, sending a command to the client
 and processing the response.
 * Pagination must manually be managed. For a simplified approach that abstracts
 away pagination logic, see
 * the `listAgentActionGroupsWithPaginator()` example below.
 *
 * @param {string} agentId - The unique identifier of the agent.
 * @param {string} agentVersion - The version of the agent.
 * @param {string} [region='us-east-1'] - The AWS region in use.
 * @returns {Promise<ActionGroupSummary[]>} An array of action group summaries.
 */
export const listAgentActionGroupsWithCommandObject = async (
 agentId,
 agentVersion,
 region = "us-east-1",
) => {
 const client = new BedrockAgentClient({ region });

 let nextToken;
 const actionGroupSummaries = [];
 do {
 const command = new ListAgentActionGroupsCommand({
 agentId,
 agentVersion,
 nextToken,
 maxResults: 10, // optional, added for demonstration purposes
 });

 /** @type {{actionGroupSummaries: ActionGroupSummary[], nextToken?: string}} */
 const response = await client.send(command);

 for (const actionGroup of response.actionGroupSummaries || []) {
 actionGroupSummaries.push(actionGroup);
 }

操作 328

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 nextToken = response.nextToken;
 } while (nextToken);

 return actionGroupSummaries;
};

// Invoke main function if this file was run directly.
if (process.argv[1] === fileURLToPath(import.meta.url)) {
 // Replace the placeholders for agentId and agentVersion with an existing agent's
 id and version.
 // Ensure to remove the brackets '[]' before adding your data.

 // The agentId must be an alphanumeric string with exactly 10 characters.
 const agentId = "[ABC123DE45]";

 // A string either containing `DRAFT` or a number with 1-5 digits (e.g., '123' or
 'DRAFT').
 const agentVersion = "[DRAFT]";

 // Check for unresolved placeholders in agentId and agentVersion.
 checkForPlaceholders([agentId, agentVersion]);

 console.log("=".repeat(68));
 console.log(
 "Listing agent action groups using ListAgentActionGroupsCommand:",
);

 for (const actionGroup of await listAgentActionGroupsWithCommandObject(
 agentId,
 agentVersion,
)) {
 console.log(actionGroup);
 }

 console.log("=".repeat(68));
 console.log(
 "Listing agent action groups using the paginateListAgents function:",
);
 for (const actionGroup of await listAgentActionGroupsWithPaginator(
 agentId,
 agentVersion,
)) {
 console.log(actionGroup);

操作 329

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }
}

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考ListAgentActionGroups中的。

ListAgents

以下代码示例演示了如何使用 ListAgents。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

列出属于某个账户的代理。

import { fileURLToPath } from "node:url";

import {
 BedrockAgentClient,
 ListAgentsCommand,
 paginateListAgents,
} from "@aws-sdk/client-bedrock-agent";

/**
 * Retrieves a list of available Amazon Bedrock agents utilizing the paginator
 function.
 *
 * This function leverages a paginator, which abstracts the complexity of
 pagination, providing
 * a straightforward way to handle paginated results inside a `for await...of` loop.
 *
 * @param {string} [region='us-east-1'] - The AWS region in use.
 * @returns {Promise<AgentSummary[]>} An array of agent summaries.
 */
export const listAgentsWithPaginator = async (region = "us-east-1") => {

操作 330

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/bedrock-agent/command/ListAgentActionGroupsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/bedrock-agent#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const client = new BedrockAgentClient({ region });

 const paginatorConfig = {
 client,
 pageSize: 10, // optional, added for demonstration purposes
 };

 const pages = paginateListAgents(paginatorConfig, {});

 // Paginate until there are no more results
 const agentSummaries = [];
 for await (const page of pages) {
 agentSummaries.push(...page.agentSummaries);
 }

 return agentSummaries;
};

/**
 * Retrieves a list of available Amazon Bedrock agents utilizing the
 ListAgentsCommand.
 *
 * This function demonstrates the manual approach, sending a command to the client
 and processing the response.
 * Pagination must manually be managed. For a simplified approach that abstracts
 away pagination logic, see
 * the `listAgentsWithPaginator()` example below.
 *
 * @param {string} [region='us-east-1'] - The AWS region in use.
 * @returns {Promise<AgentSummary[]>} An array of agent summaries.
 */
export const listAgentsWithCommandObject = async (region = "us-east-1") => {
 const client = new BedrockAgentClient({ region });

 let nextToken;
 const agentSummaries = [];
 do {
 const command = new ListAgentsCommand({
 nextToken,
 maxResults: 10, // optional, added for demonstration purposes
 });

 /** @type {{agentSummaries: AgentSummary[], nextToken?: string}} */
 const paginatedResponse = await client.send(command);

操作 331

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 agentSummaries.push(...(paginatedResponse.agentSummaries || []));

 nextToken = paginatedResponse.nextToken;
 } while (nextToken);

 return agentSummaries;
};

// Invoke main function if this file was run directly.
if (process.argv[1] === fileURLToPath(import.meta.url)) {
 console.log("=".repeat(68));
 console.log("Listing agents using ListAgentsCommand:");
 for (const agent of await listAgentsWithCommandObject()) {
 console.log(agent);
 }

 console.log("=".repeat(68));
 console.log("Listing agents using the paginateListAgents function:");
 for (const agent of await listAgentsWithPaginator()) {
 console.log(agent);
 }
}

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考ListAgents中的。

使用适用于 JavaScript (v3) 的 SDK 的 Amazon 基岩代理运行时示
例

以下代码示例向您展示了如何使用带有 Amazon Bedrock Agents 运行时的 适用于 JavaScript 的
Amazon SDK (v3) 来执行操作和实现常见场景。

操作是大型程序的代码摘录，必须在上下文中运行。您可以通过操作了解如何调用单个服务函数，还可
以通过函数相关场景的上下文查看操作。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

• 操作

Amazon Bedrock 代理运行时 332

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/bedrock-agent/command/ListAgentsCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

操作

InvokeAgent

以下代码示例演示了如何使用 InvokeAgent。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import {
 BedrockAgentRuntimeClient,
 InvokeAgentCommand,
} from "@aws-sdk/client-bedrock-agent-runtime";

/**
 * @typedef {Object} ResponseBody
 * @property {string} completion
 */

/**
 * Invokes a Bedrock agent to run an inference using the input
 * provided in the request body.
 *
 * @param {string} prompt - The prompt that you want the Agent to complete.
 * @param {string} sessionId - An arbitrary identifier for the session.
 */
export const invokeBedrockAgent = async (prompt, sessionId) => {
 const client = new BedrockAgentRuntimeClient({ region: "us-east-1" });
 // const client = new BedrockAgentRuntimeClient({
 // region: "us-east-1",
 // credentials: {
 // accessKeyId: "accessKeyId", // permission to invoke agent
 // secretAccessKey: "accessKeySecret",
 // },
 // });

操作 333

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/bedrock-agent-runtime#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const agentId = "AJBHXXILZN";
 const agentAliasId = "AVKP1ITZAA";

 const command = new InvokeAgentCommand({
 agentId,
 agentAliasId,
 sessionId,
 inputText: prompt,
 });

 try {
 let completion = "";
 const response = await client.send(command);

 if (response.completion === undefined) {
 throw new Error("Completion is undefined");
 }

 for await (const chunkEvent of response.completion) {
 const chunk = chunkEvent.chunk;
 console.log(chunk);
 const decodedResponse = new TextDecoder("utf-8").decode(chunk.bytes);
 completion += decodedResponse;
 }

 return { sessionId: sessionId, completion };
 } catch (err) {
 console.error(err);
 }
};

// Call function if run directly
import { fileURLToPath } from "node:url";
if (process.argv[1] === fileURLToPath(import.meta.url)) {
 const result = await invokeBedrockAgent("I need help.", "123");
 console.log(result);
}

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考InvokeAgent中的。

操作 334

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/bedrock-agent-runtime/command/InvokeAgentCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

InvokeFlow

以下代码示例演示了如何使用 InvokeFlow。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { fileURLToPath } from "node:url";

import {
 BedrockAgentRuntimeClient,
 InvokeFlowCommand,
} from "@aws-sdk/client-bedrock-agent-runtime";

/**
 * Invokes an alias of a flow to run the inputs that you specify and return
 * the output of each node as a stream.
 *
 * @param {{
 * flowIdentifier: string,
 * flowAliasIdentifier: string,
 * prompt?: string,
 * region?: string
 * }} options
 * @returns {Promise<import("@aws-sdk/client-bedrock-agent").FlowNodeOutput>} An
 object containing information about the output from flow invocation.
 */
export const invokeBedrockFlow = async ({
 flowIdentifier,
 flowAliasIdentifier,
 prompt = "Hi, how are you?",
 region = "us-east-1",
}) => {
 const client = new BedrockAgentRuntimeClient({ region });

 const command = new InvokeFlowCommand({
 flowIdentifier,

操作 335

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/bedrock-agent-runtime#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 flowAliasIdentifier,
 inputs: [
 {
 content: {
 document: prompt,
 },
 nodeName: "FlowInputNode",
 nodeOutputName: "document",
 },
],
 });

 let flowResponse = {};
 const response = await client.send(command);

 for await (const chunkEvent of response.responseStream) {
 const { flowOutputEvent, flowCompletionEvent } = chunkEvent;

 if (flowOutputEvent) {
 flowResponse = { ...flowResponse, ...flowOutputEvent };
 console.log("Flow output event:", flowOutputEvent);
 } else if (flowCompletionEvent) {
 flowResponse = { ...flowResponse, ...flowCompletionEvent };
 console.log("Flow completion event:", flowCompletionEvent);
 }
 }

 return flowResponse;
};

// Call function if run directly
import { parseArgs } from "node:util";
import {
 isMain,
 validateArgs,
} from "@aws-doc-sdk-examples/lib/utils/util-node.js";

const loadArgs = () => {
 const options = {
 flowIdentifier: {
 type: "string",
 required: true,
 },
 flowAliasIdentifier: {

操作 336

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 type: "string",
 required: true,
 },
 prompt: {
 type: "string",
 },
 region: {
 type: "string",
 },
 };
 const results = parseArgs({ options });
 const { errors } = validateArgs({ options }, results);
 return { errors, results };
};

if (isMain(import.meta.url)) {
 const { errors, results } = loadArgs();
 if (!errors) {
 invokeBedrockFlow(results.values);
 } else {
 console.error(errors.join("\n"));
 }
}

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考InvokeFlow中的。

CloudWatch 使用适用于 JavaScript (v3) 的 SDK 的示例

以下代码示例向您展示了如何通过使用 适用于 JavaScript 的 Amazon SDK (v3) 来执行操作和实现常
见场景 CloudWatch。

操作是大型程序的代码摘录，必须在上下文中运行。您可以通过操作了解如何调用单个服务函数，还可
以通过函数相关场景的上下文查看操作。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

• 操作

CloudWatch 337

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/bedrock-agent-runtime/command/InvokeFlowCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

操作

DeleteAlarms

以下代码示例演示了如何使用 DeleteAlarms。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

导入 SDK 和客户端模块，然后调用 API。

import { DeleteAlarmsCommand } from "@aws-sdk/client-cloudwatch";
import { client } from "../libs/client.js";

const run = async () => {
 const command = new DeleteAlarmsCommand({
 AlarmNames: [process.env.CLOUDWATCH_ALARM_NAME], // Set the value of
 CLOUDWATCH_ALARM_NAME to the name of an existing alarm.
 });

 try {
 return await client.send(command);
 } catch (err) {
 console.error(err);
 }
};

export default run();

在单独的模块中创建客户端并将其导出。

import { CloudWatchClient } from "@aws-sdk/client-cloudwatch";

export const client = new CloudWatchClient({});

操作 338

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cloudwatch#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/cloudwatch-examples-creating-
alarms.html#cloudwatch-examples-creating-alarms-deleting。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DeleteAlarms中的。

DescribeAlarmsForMetric

以下代码示例演示了如何使用 DescribeAlarmsForMetric。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

导入 SDK 和客户端模块，然后调用 API。

import { DescribeAlarmsCommand } from "@aws-sdk/client-cloudwatch";
import { client } from "../libs/client.js";

const run = async () => {
 const command = new DescribeAlarmsCommand({
 AlarmNames: [process.env.CLOUDWATCH_ALARM_NAME], // Set the value of
 CLOUDWATCH_ALARM_NAME to the name of an existing alarm.
 });

 try {
 return await client.send(command);
 } catch (err) {
 console.error(err);
 }
};

export default run();

在单独的模块中创建客户端并将其导出。

import { CloudWatchClient } from "@aws-sdk/client-cloudwatch";

操作 339

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/cloudwatch-examples-creating-alarms.html#cloudwatch-examples-creating-alarms-deleting
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/cloudwatch-examples-creating-alarms.html#cloudwatch-examples-creating-alarms-deleting
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/cloudwatch-examples-creating-alarms.html#cloudwatch-examples-creating-alarms-deleting
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cloudwatch/command/DeleteAlarmsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cloudwatch#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

export const client = new CloudWatchClient({});

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v2/developer-guide/cloudwatch-examples-creating-
alarms.html#cloudwatch-examples-creating-alarms-describing。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考DescribeAlarmsForMetric中的。

DisableAlarmActions

以下代码示例演示了如何使用 DisableAlarmActions。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

导入 SDK 和客户端模块，然后调用 API。

import { DisableAlarmActionsCommand } from "@aws-sdk/client-cloudwatch";
import { client } from "../libs/client.js";

const run = async () => {
 const command = new DisableAlarmActionsCommand({
 AlarmNames: process.env.CLOUDWATCH_ALARM_NAME, // Set the value of
 CLOUDWATCH_ALARM_NAME to the name of an existing alarm.
 });

 try {
 return await client.send(command);
 } catch (err) {
 console.error(err);
 }
};

操作 340

https://docs.amazonaws.cn/sdk-for-javascript/v2/developer-guide/cloudwatch-examples-creating-alarms.html#cloudwatch-examples-creating-alarms-describing
https://docs.amazonaws.cn/sdk-for-javascript/v2/developer-guide/cloudwatch-examples-creating-alarms.html#cloudwatch-examples-creating-alarms-describing
https://docs.amazonaws.cn/sdk-for-javascript/v2/developer-guide/cloudwatch-examples-creating-alarms.html#cloudwatch-examples-creating-alarms-describing
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cloudwatch/command/DescribeAlarmsForMetricCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cloudwatch#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

export default run();

在单独的模块中创建客户端并将其导出。

import { CloudWatchClient } from "@aws-sdk/client-cloudwatch";

export const client = new CloudWatchClient({});

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/cloudwatch-examples-using-alarm-
actions.html#cloudwatch-examples-using-alarm-actions-disabling。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考DisableAlarmActions中的。

EnableAlarmActions

以下代码示例演示了如何使用 EnableAlarmActions。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

导入 SDK 和客户端模块，然后调用 API。

import { EnableAlarmActionsCommand } from "@aws-sdk/client-cloudwatch";
import { client } from "../libs/client.js";

const run = async () => {
 const command = new EnableAlarmActionsCommand({
 AlarmNames: [process.env.CLOUDWATCH_ALARM_NAME], // Set the value of
 CLOUDWATCH_ALARM_NAME to the name of an existing alarm.
 });

 try {

操作 341

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/cloudwatch-examples-using-alarm-actions.html#cloudwatch-examples-using-alarm-actions-disabling
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/cloudwatch-examples-using-alarm-actions.html#cloudwatch-examples-using-alarm-actions-disabling
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/cloudwatch-examples-using-alarm-actions.html#cloudwatch-examples-using-alarm-actions-disabling
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cloudwatch/command/DisableAlarmActionsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cloudwatch#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 return await client.send(command);
 } catch (err) {
 console.error(err);
 }
};

export default run();

在单独的模块中创建客户端并将其导出。

import { CloudWatchClient } from "@aws-sdk/client-cloudwatch";

export const client = new CloudWatchClient({});

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/cloudwatch-examples-using-alarm-
actions.html#cloudwatch-examples-using-alarm-actions-enabling。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考EnableAlarmActions中的。

ListMetrics

以下代码示例演示了如何使用 ListMetrics。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

导入 SDK 和客户端模块，然后调用 API。

import {
 CloudWatchServiceException,
 ListMetricsCommand,
} from "@aws-sdk/client-cloudwatch";

操作 342

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/cloudwatch-examples-using-alarm-actions.html#cloudwatch-examples-using-alarm-actions-enabling
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/cloudwatch-examples-using-alarm-actions.html#cloudwatch-examples-using-alarm-actions-enabling
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/cloudwatch-examples-using-alarm-actions.html#cloudwatch-examples-using-alarm-actions-enabling
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cloudwatch/command/EnableAlarmActionsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cloudwatch#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

import { client } from "../libs/client.js";

export const main = async () => {
 // Use the AWS console to see available namespaces and metric names. Custom
 metrics can also be created.
 // https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
viewing_metrics_with_cloudwatch.html
 const command = new ListMetricsCommand({
 Dimensions: [
 {
 Name: "LogGroupName",
 },
],
 MetricName: "IncomingLogEvents",
 Namespace: "AWS/Logs",
 });

 try {
 const response = await client.send(command);
 console.log(`Metrics count: ${response.Metrics?.length}`);
 return response;
 } catch (caught) {
 if (caught instanceof CloudWatchServiceException) {
 console.error(`Error from CloudWatch. ${caught.name}: ${caught.message}`);
 } else {
 throw caught;
 }
 }
};

在单独的模块中创建客户端并将其导出。

import { CloudWatchClient } from "@aws-sdk/client-cloudwatch";

export const client = new CloudWatchClient({});

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/cloudwatch-examples-getting-
metrics.html#cloudwatch-examples-getting-metrics-listing。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考ListMetrics中的。

操作 343

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/cloudwatch-examples-getting-metrics.html#cloudwatch-examples-getting-metrics-listing
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/cloudwatch-examples-getting-metrics.html#cloudwatch-examples-getting-metrics-listing
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/cloudwatch-examples-getting-metrics.html#cloudwatch-examples-getting-metrics-listing
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cloudwatch/command/ListMetricsCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

PutMetricAlarm

以下代码示例演示了如何使用 PutMetricAlarm。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

导入 SDK 和客户端模块，然后调用 API。

import { PutMetricAlarmCommand } from "@aws-sdk/client-cloudwatch";
import { client } from "../libs/client.js";

const run = async () => {
 // This alarm triggers when CPUUtilization exceeds 70% for one minute.
 const command = new PutMetricAlarmCommand({
 AlarmName: process.env.CLOUDWATCH_ALARM_NAME, // Set the value of
 CLOUDWATCH_ALARM_NAME to the name of an existing alarm.
 ComparisonOperator: "GreaterThanThreshold",
 EvaluationPeriods: 1,
 MetricName: "CPUUtilization",
 Namespace: "AWS/EC2",
 Period: 60,
 Statistic: "Average",
 Threshold: 70.0,
 ActionsEnabled: false,
 AlarmDescription: "Alarm when server CPU exceeds 70%",
 Dimensions: [
 {
 Name: "InstanceId",
 Value: process.env.EC2_INSTANCE_ID, // Set the value of EC_INSTANCE_ID to
 the Id of an existing Amazon EC2 instance.
 },
],
 Unit: "Percent",
 });

 try {
 return await client.send(command);

操作 344

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cloudwatch#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 } catch (err) {
 console.error(err);
 }
};

export default run();

在单独的模块中创建客户端并将其导出。

import { CloudWatchClient } from "@aws-sdk/client-cloudwatch";

export const client = new CloudWatchClient({});

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v2/developer-guide/cloudwatch-examples-creating-
alarms.html#cloudwatch-examples-creating-alarms-putmetricalarm。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考PutMetricAlarm中
的。

PutMetricData

以下代码示例演示了如何使用 PutMetricData。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

导入 SDK 和客户端模块，然后调用 API。

import { PutMetricDataCommand } from "@aws-sdk/client-cloudwatch";
import { client } from "../libs/client.js";

const run = async () => {

操作 345

https://docs.amazonaws.cn/sdk-for-javascript/v2/developer-guide/cloudwatch-examples-creating-alarms.html#cloudwatch-examples-creating-alarms-putmetricalarm
https://docs.amazonaws.cn/sdk-for-javascript/v2/developer-guide/cloudwatch-examples-creating-alarms.html#cloudwatch-examples-creating-alarms-putmetricalarm
https://docs.amazonaws.cn/sdk-for-javascript/v2/developer-guide/cloudwatch-examples-creating-alarms.html#cloudwatch-examples-creating-alarms-putmetricalarm
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cloudwatch/command/PutMetricAlarmCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cloudwatch#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // See https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/
API_PutMetricData.html#API_PutMetricData_RequestParameters
 // and https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
publishingMetrics.html
 // for more information about the parameters in this command.
 const command = new PutMetricDataCommand({
 MetricData: [
 {
 MetricName: "PAGES_VISITED",
 Dimensions: [
 {
 Name: "UNIQUE_PAGES",
 Value: "URLS",
 },
],
 Unit: "None",
 Value: 1.0,
 },
],
 Namespace: "SITE/TRAFFIC",
 });

 try {
 return await client.send(command);
 } catch (err) {
 console.error(err);
 }
};

export default run();

在单独的模块中创建客户端并将其导出。

import { CloudWatchClient } from "@aws-sdk/client-cloudwatch";

export const client = new CloudWatchClient({});

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/cloudwatch-examples-getting-
metrics.html#cloudwatch-examples-getting-metrics-publishing-custom。

操作 346

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/cloudwatch-examples-getting-metrics.html#cloudwatch-examples-getting-metrics-publishing-custom
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/cloudwatch-examples-getting-metrics.html#cloudwatch-examples-getting-metrics-publishing-custom
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/cloudwatch-examples-getting-metrics.html#cloudwatch-examples-getting-metrics-publishing-custom

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考PutMetricData中的。

CloudWatch 使用适用于 JavaScript (v3) 的 SDK 的事件示例

以下代码示例向您展示了如何使用 适用于 JavaScript 的 Amazon SDK (v3) with Events 来执行操作和
实现常见场景。 CloudWatch

操作是大型程序的代码摘录，必须在上下文中运行。您可以通过操作了解如何调用单个服务函数，还可
以通过函数相关场景的上下文查看操作。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

• 操作

操作

PutEvents

以下代码示例演示了如何使用 PutEvents。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

导入 SDK 和客户端模块，然后调用 API。

import { PutEventsCommand } from "@aws-sdk/client-cloudwatch-events";
import { client } from "../libs/client.js";

const run = async () => {
 const command = new PutEventsCommand({
 // The list of events to send to Amazon CloudWatch Events.

CloudWatch 活动 347

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cloudwatch/command/PutMetricDataCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cloudwatch-events#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 Entries: [
 {
 // The name of the application or service that is sending the event.
 Source: "my.app",

 // The name of the event that is being sent.
 DetailType: "My Custom Event",

 // The data that is sent with the event.
 Detail: JSON.stringify({ timeOfEvent: new Date().toISOString() }),
 },
],
 });

 try {
 return await client.send(command);
 } catch (err) {
 console.error(err);
 }
};

export default run();

在单独的模块中创建客户端并将其导出。

import { CloudWatchEventsClient } from "@aws-sdk/client-cloudwatch-events";

export const client = new CloudWatchEventsClient({});

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/cloudwatch-examples-sending-
events.html#cloudwatch-examples-sending-events-putevents。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考PutEvents中的。

PutRule

以下代码示例演示了如何使用 PutRule。

操作 348

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/cloudwatch-examples-sending-events.html#cloudwatch-examples-sending-events-putevents
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/cloudwatch-examples-sending-events.html#cloudwatch-examples-sending-events-putevents
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/cloudwatch-examples-sending-events.html#cloudwatch-examples-sending-events-putevents
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cloudwatch-events/command/PutEventsCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

导入 SDK 和客户端模块，然后调用 API。

import { PutRuleCommand } from "@aws-sdk/client-cloudwatch-events";
import { client } from "../libs/client.js";

const run = async () => {
 // Request parameters for PutRule.
 // https://docs.aws.amazon.com/eventbridge/latest/APIReference/
API_PutRule.html#API_PutRule_RequestParameters
 const command = new PutRuleCommand({
 Name: process.env.CLOUDWATCH_EVENTS_RULE,

 // The event pattern for the rule.
 // Example: {"source": ["my.app"]}
 EventPattern: process.env.CLOUDWATCH_EVENTS_RULE_PATTERN,

 // The state of the rule. Valid values: ENABLED, DISABLED
 State: "ENABLED",
 });

 try {
 return await client.send(command);
 } catch (err) {
 console.error(err);
 }
};

export default run();

在单独的模块中创建客户端并将其导出。

import { CloudWatchEventsClient } from "@aws-sdk/client-cloudwatch-events";

操作 349

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cloudwatch-events#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

export const client = new CloudWatchEventsClient({});

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/cloudwatch-examples-sending-
events.html#cloudwatch-examples-sending-events-rules。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考PutRule中的。

PutTargets

以下代码示例演示了如何使用 PutTargets。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

导入 SDK 和客户端模块，然后调用 API。

import { PutTargetsCommand } from "@aws-sdk/client-cloudwatch-events";
import { client } from "../libs/client.js";

const run = async () => {
 const command = new PutTargetsCommand({
 // The name of the Amazon CloudWatch Events rule.
 Rule: process.env.CLOUDWATCH_EVENTS_RULE,

 // The targets to add to the rule.
 Targets: [
 {
 Arn: process.env.CLOUDWATCH_EVENTS_TARGET_ARN,
 // The ID of the target. Choose a unique ID for each target.
 Id: process.env.CLOUDWATCH_EVENTS_TARGET_ID,
 },
],
 });

 try {

操作 350

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/cloudwatch-examples-sending-events.html#cloudwatch-examples-sending-events-rules
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/cloudwatch-examples-sending-events.html#cloudwatch-examples-sending-events-rules
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/cloudwatch-examples-sending-events.html#cloudwatch-examples-sending-events-rules
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cloudwatch-events/command/PutRuleCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cloudwatch-events#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 return await client.send(command);
 } catch (err) {
 console.error(err);
 }
};

export default run();

在单独的模块中创建客户端并将其导出。

import { CloudWatchEventsClient } from "@aws-sdk/client-cloudwatch-events";

export const client = new CloudWatchEventsClient({});

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/cloudwatch-examples-sending-
events.html#cloudwatch-examples-sending-events-targets。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考PutTargets中的。

CloudWatch 使用适用于 JavaScript (v3) 的 SDK 记录示例

以下代码示例向您展示了如何使用带 CloudWatch 日志的 适用于 JavaScript 的 Amazon SDK (v3) 来
执行操作和实现常见场景。

操作是大型程序的代码摘录，必须在上下文中运行。您可以通过操作了解如何调用单个服务函数，还可
以通过函数相关场景的上下文查看操作。

场景是向您演示如何通过在一个服务中调用多个函数或与其他 Amazon Web Services 服务结合来完成
特定任务的代码示例。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

• 操作

• 场景

CloudWatch 日志 351

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/cloudwatch-examples-sending-events.html#cloudwatch-examples-sending-events-targets
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/cloudwatch-examples-sending-events.html#cloudwatch-examples-sending-events-targets
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/cloudwatch-examples-sending-events.html#cloudwatch-examples-sending-events-targets
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cloudwatch-events/command/PutTargetsCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

操作

CreateLogGroup

以下代码示例演示了如何使用 CreateLogGroup。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { CreateLogGroupCommand } from "@aws-sdk/client-cloudwatch-logs";
import { client } from "../libs/client.js";

const run = async () => {
 const command = new CreateLogGroupCommand({
 // The name of the log group.
 logGroupName: process.env.CLOUDWATCH_LOGS_LOG_GROUP,
 });

 try {
 return await client.send(command);
 } catch (err) {
 console.error(err);
 }
};

export default run();

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考CreateLogGroup中
的。

DeleteLogGroup

以下代码示例演示了如何使用 DeleteLogGroup。

操作 352

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cloudwatch-logs#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cloudwatch-logs/command/CreateLogGroupCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { DeleteLogGroupCommand } from "@aws-sdk/client-cloudwatch-logs";
import { client } from "../libs/client.js";

const run = async () => {
 const command = new DeleteLogGroupCommand({
 // The name of the log group.
 logGroupName: process.env.CLOUDWATCH_LOGS_LOG_GROUP,
 });

 try {
 return await client.send(command);
 } catch (err) {
 console.error(err);
 }
};

export default run();

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DeleteLogGroup中
的。

DeleteSubscriptionFilter

以下代码示例演示了如何使用 DeleteSubscriptionFilter。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

操作 353

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cloudwatch-logs#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cloudwatch-logs/command/DeleteLogGroupCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cloudwatch-logs#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

import { DeleteSubscriptionFilterCommand } from "@aws-sdk/client-cloudwatch-logs";
import { client } from "../libs/client.js";

const run = async () => {
 const command = new DeleteSubscriptionFilterCommand({
 // The name of the filter.
 filterName: process.env.CLOUDWATCH_LOGS_FILTER_NAME,
 // The name of the log group.
 logGroupName: process.env.CLOUDWATCH_LOGS_LOG_GROUP,
 });

 try {
 return await client.send(command);
 } catch (err) {
 console.error(err);
 }
};

export default run();

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考DeleteSubscriptionFilter中的。

DescribeLogGroups

以下代码示例演示了如何使用 DescribeLogGroups。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import {
 paginateDescribeLogGroups,
 CloudWatchLogsClient,
} from "@aws-sdk/client-cloudwatch-logs";

操作 354

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cloudwatch-logs/command/DeleteSubscriptionFilterCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cloudwatch-logs#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const client = new CloudWatchLogsClient({});

export const main = async () => {
 const paginatedLogGroups = paginateDescribeLogGroups({ client }, {});
 const logGroups = [];

 for await (const page of paginatedLogGroups) {
 if (page.logGroups?.every((lg) => !!lg)) {
 logGroups.push(...page.logGroups);
 }
 }

 console.log(logGroups);
 return logGroups;
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考DescribeLogGroups中的。

DescribeSubscriptionFilters

以下代码示例演示了如何使用 DescribeSubscriptionFilters。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { DescribeSubscriptionFiltersCommand } from "@aws-sdk/client-cloudwatch-
logs";
import { client } from "../libs/client.js";

const run = async () => {
 // This will return a list of all subscription filters in your account
 // matching the log group name.
 const command = new DescribeSubscriptionFiltersCommand({
 logGroupName: process.env.CLOUDWATCH_LOGS_LOG_GROUP,

操作 355

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cloudwatch-logs/command/DescribeLogGroupsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cloudwatch-logs#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 limit: 1,
 });

 try {
 return await client.send(command);
 } catch (err) {
 console.error(err);
 }
};

export default run();

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考DescribeSubscriptionFilters中的。

GetQueryResults

以下代码示例演示了如何使用 GetQueryResults。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

 /**
 * Simple wrapper for the GetQueryResultsCommand.
 * @param {string} queryId
 */
 _getQueryResults(queryId) {
 return this.client.send(new GetQueryResultsCommand({ queryId }));
 }

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考GetQueryResults中
的。

操作 356

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cloudwatch-logs/command/DescribeSubscriptionFiltersCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cloudwatch-logs#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cloudwatch-logs/command/GetQueryResultsCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

PutSubscriptionFilter

以下代码示例演示了如何使用 PutSubscriptionFilter。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { PutSubscriptionFilterCommand } from "@aws-sdk/client-cloudwatch-logs";
import { client } from "../libs/client.js";

const run = async () => {
 const command = new PutSubscriptionFilterCommand({
 // An ARN of a same-account Kinesis stream, Kinesis Firehose
 // delivery stream, or Lambda function.
 // https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/
SubscriptionFilters.html
 destinationArn: process.env.CLOUDWATCH_LOGS_DESTINATION_ARN,

 // A name for the filter.
 filterName: process.env.CLOUDWATCH_LOGS_FILTER_NAME,

 // A filter pattern for subscribing to a filtered stream of log events.
 // https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/
FilterAndPatternSyntax.html
 filterPattern: process.env.CLOUDWATCH_LOGS_FILTER_PATTERN,

 // The name of the log group. Messages in this group matching the filter pattern
 // will be sent to the destination ARN.
 logGroupName: process.env.CLOUDWATCH_LOGS_LOG_GROUP,
 });

 try {
 return await client.send(command);
 } catch (err) {
 console.error(err);
 }
};

操作 357

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cloudwatch-logs#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

export default run();

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考PutSubscriptionFilter中的。

StartLiveTail

以下代码示例演示了如何使用 StartLiveTail。

适用于 JavaScript (v3) 的软件开发工具包

包含所需的文件。

import { CloudWatchLogsClient, StartLiveTailCommand } from "@aws-sdk/client-
cloudwatch-logs";

处理 Live Tail 会话中的事件。

async function handleResponseAsync(response) {
 try {
 for await (const event of response.responseStream) {
 if (event.sessionStart !== undefined) {
 console.log(event.sessionStart);
 } else if (event.sessionUpdate !== undefined) {
 for (const logEvent of event.sessionUpdate.sessionResults) {
 const timestamp = logEvent.timestamp;
 const date = new Date(timestamp);
 console.log("[" + date + "] " + logEvent.message);
 }
 } else {
 console.error("Unknown event type");
 }
 }
 } catch (err) {
 // On-stream exceptions are captured here
 console.error(err)
 }
}

操作 358

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cloudwatch-logs/command/PutSubscriptionFilterCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

启动 Live Tail 会话。

 const client = new CloudWatchLogsClient();

 const command = new StartLiveTailCommand({
 logGroupIdentifiers: logGroupIdentifiers,
 logStreamNames: logStreamNames,
 logEventFilterPattern: filterPattern
 });
 try{
 const response = await client.send(command);
 handleResponseAsync(response);
 } catch (err){
 // Pre-stream exceptions are captured here
 console.log(err);
 }

经过一段时间后停止 Live Tail 会话。

 /* Set a timeout to close the client. This will stop the Live Tail session. */
 setTimeout(function() {
 console.log("Client timeout");
 client.destroy();
 }, 10000);

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考StartLiveTail中的。

StartQuery

以下代码示例演示了如何使用 StartQuery。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

操作 359

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cloudwatch-logs/command/StartLiveTailCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cloudwatch-logs#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 /**
 * Wrapper for the StartQueryCommand. Uses a static query string
 * for consistency.
 * @param {[Date, Date]} dateRange
 * @param {number} maxLogs
 * @returns {Promise<{ queryId: string }>}
 */
 async _startQuery([startDate, endDate], maxLogs = 10000) {
 try {
 return await this.client.send(
 new StartQueryCommand({
 logGroupNames: this.logGroupNames,
 queryString: "fields @timestamp, @message | sort @timestamp asc",
 startTime: startDate.valueOf(),
 endTime: endDate.valueOf(),
 limit: maxLogs,
 }),
);
 } catch (err) {
 /** @type {string} */
 const message = err.message;
 if (message.startsWith("Query's end date and time")) {
 // This error indicates that the query's start or end date occur
 // before the log group was created.
 throw new DateOutOfBoundsError(message);
 }

 throw err;
 }
 }

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考StartQuery中的。

场景

运行大型查询

以下代码示例展示了如何使用 CloudWatch 日志查询超过 10,000 条记录。

场景 360

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cloudwatch-logs/command/StartQueryCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

这是入口点。

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import { CloudWatchLogsClient } from "@aws-sdk/client-cloudwatch-logs";
import { CloudWatchQuery } from "./cloud-watch-query.js";

console.log("Starting a recursive query...");

if (!process.env.QUERY_START_DATE || !process.env.QUERY_END_DATE) {
 throw new Error(
 "QUERY_START_DATE and QUERY_END_DATE environment variables are required.",
);
}

const cloudWatchQuery = new CloudWatchQuery(new CloudWatchLogsClient({}), {
 logGroupNames: ["/workflows/cloudwatch-logs/large-query"],
 dateRange: [
 new Date(Number.parseInt(process.env.QUERY_START_DATE)),
 new Date(Number.parseInt(process.env.QUERY_END_DATE)),
],
});

await cloudWatchQuery.run();

console.log(
 `Queries finished in ${cloudWatchQuery.secondsElapsed} seconds.\nTotal logs found:
 ${cloudWatchQuery.results.length}`,
);

该类可在必要时将查询拆分为多个步骤。

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.

场景 361

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cloudwatch-logs/scenarios/large-query#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

// SPDX-License-Identifier: Apache-2.0
import {
 StartQueryCommand,
 GetQueryResultsCommand,
} from "@aws-sdk/client-cloudwatch-logs";
import { splitDateRange } from "@aws-doc-sdk-examples/lib/utils/util-date.js";
import { retry } from "@aws-doc-sdk-examples/lib/utils/util-timers.js";

class DateOutOfBoundsError extends Error {}

export class CloudWatchQuery {
 /**
 * Run a query for all CloudWatch Logs within a certain date range.
 * CloudWatch logs return a max of 10,000 results. This class
 * performs a binary search across all of the logs in the provided
 * date range if a query returns the maximum number of results.
 *
 * @param {import('@aws-sdk/client-cloudwatch-logs').CloudWatchLogsClient} client
 * @param {{ logGroupNames: string[], dateRange: [Date, Date], queryConfig:
 { limit: number } }} config
 */
 constructor(client, { logGroupNames, dateRange, queryConfig }) {
 this.client = client;
 /**
 * All log groups are queried.
 */
 this.logGroupNames = logGroupNames;

 /**
 * The inclusive date range that is queried.
 */
 this.dateRange = dateRange;

 /**
 * CloudWatch Logs never returns more than 10,000 logs.
 */
 this.limit = queryConfig?.limit ?? 10000;

 /**
 * @type {import("@aws-sdk/client-cloudwatch-logs").ResultField[][]}
 */
 this.results = [];
 }

场景 362

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 /**
 * Run the query.
 */
 async run() {
 this.secondsElapsed = 0;
 const start = new Date();
 this.results = await this._largeQuery(this.dateRange);
 const end = new Date();
 this.secondsElapsed = (end - start) / 1000;
 return this.results;
 }

 /**
 * Recursively query for logs.
 * @param {[Date, Date]} dateRange
 * @returns {Promise<import("@aws-sdk/client-cloudwatch-logs").ResultField[][]>}
 */
 async _largeQuery(dateRange) {
 const logs = await this._query(dateRange, this.limit);

 console.log(
 `Query date range: ${dateRange
 .map((d) => d.toISOString())
 .join(" to ")}. Found ${logs.length} logs.`,
);

 if (logs.length < this.limit) {
 return logs;
 }

 const lastLogDate = this._getLastLogDate(logs);
 const offsetLastLogDate = new Date(lastLogDate);
 offsetLastLogDate.setMilliseconds(lastLogDate.getMilliseconds() + 1);
 const subDateRange = [offsetLastLogDate, dateRange[1]];
 const [r1, r2] = splitDateRange(subDateRange);
 const results = await Promise.all([
 this._largeQuery(r1),
 this._largeQuery(r2),
]);
 return [logs, ...results].flat();
 }

 /**
 * Find the most recent log in a list of logs.

场景 363

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * @param {import("@aws-sdk/client-cloudwatch-logs").ResultField[][]} logs
 */
 _getLastLogDate(logs) {
 const timestamps = logs
 .map(
 (log) =>
 log.find((fieldMeta) => fieldMeta.field === "@timestamp")?.value,
)
 .filter((t) => !!t)
 .map((t) => `${t}Z`)
 .sort();

 if (!timestamps.length) {
 throw new Error("No timestamp found in logs.");
 }

 return new Date(timestamps[timestamps.length - 1]);
 }

 /**
 * Simple wrapper for the GetQueryResultsCommand.
 * @param {string} queryId
 */
 _getQueryResults(queryId) {
 return this.client.send(new GetQueryResultsCommand({ queryId }));
 }

 /**
 * Starts a query and waits for it to complete.
 * @param {[Date, Date]} dateRange
 * @param {number} maxLogs
 */
 async _query(dateRange, maxLogs) {
 try {
 const { queryId } = await this._startQuery(dateRange, maxLogs);
 const { results } = await this._waitUntilQueryDone(queryId);
 return results ?? [];
 } catch (err) {
 /**
 * This error is thrown when StartQuery returns an error indicating
 * that the query's start or end date occur before the log group was
 * created.
 */
 if (err instanceof DateOutOfBoundsError) {

场景 364

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 return [];
 }
 throw err;
 }
 }

 /**
 * Wrapper for the StartQueryCommand. Uses a static query string
 * for consistency.
 * @param {[Date, Date]} dateRange
 * @param {number} maxLogs
 * @returns {Promise<{ queryId: string }>}
 */
 async _startQuery([startDate, endDate], maxLogs = 10000) {
 try {
 return await this.client.send(
 new StartQueryCommand({
 logGroupNames: this.logGroupNames,
 queryString: "fields @timestamp, @message | sort @timestamp asc",
 startTime: startDate.valueOf(),
 endTime: endDate.valueOf(),
 limit: maxLogs,
 }),
);
 } catch (err) {
 /** @type {string} */
 const message = err.message;
 if (message.startsWith("Query's end date and time")) {
 // This error indicates that the query's start or end date occur
 // before the log group was created.
 throw new DateOutOfBoundsError(message);
 }

 throw err;
 }
 }

 /**
 * Call GetQueryResultsCommand until the query is done.
 * @param {string} queryId
 */
 _waitUntilQueryDone(queryId) {
 const getResults = async () => {
 const results = await this._getQueryResults(queryId);

场景 365

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const queryDone = [
 "Complete",
 "Failed",
 "Cancelled",
 "Timeout",
 "Unknown",
].includes(results.status);

 return { queryDone, results };
 };

 return retry(
 { intervalInMs: 1000, maxRetries: 60, quiet: true },
 async () => {
 const { queryDone, results } = await getResults();
 if (!queryDone) {
 throw new Error("Query not done.");
 }

 return results;
 },
);
 }
}

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的以下主
题。

• GetQueryResults

• StartQuery

使用计划的事件调用 Lambda 函数

以下代码示例显示如何创建由 Amazon EventBridge 计划事件调用的 Amazon Lambda 函数。

适用于 JavaScript (v3) 的软件开发工具包

演示如何创建调用函数的 Amazon EventBridge 计划事件。 Amazon Lambda 配置 EventBridge 为
使用 cron 表达式来调度 Lambda 函数的调用时间。在此示例中，您将使用 Lambda 运行时 API 创
建一个 Lambda 函数。 JavaScript 此示例调用不同的 Amazon 服务来执行特定的用例。此示例展
示了如何创建一个应用程序，在其一周年纪念日时向员工发送移动短信表示祝贺。

场景 366

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cloudwatch-logs/command/GetQueryResultsCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cloudwatch-logs/command/StartQueryCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

有关如何设置和运行的完整源代码和说明，请参阅上的完整示例GitHub。

该示例也可在 适用于 JavaScript 的 Amazon SDK v3 开发人员指南中找到。

本示例中使用的服务

• CloudWatch 日志

• DynamoDB

• EventBridge

• Lambda

• Amazon SNS

CodeBuild 使用适用于 JavaScript (v3) 的 SDK 的示例

以下代码示例向您展示了如何通过使用 适用于 JavaScript 的 Amazon SDK (v3) 来执行操作和实现常
见场景 CodeBuild。

操作是大型程序的代码摘录，必须在上下文中运行。您可以通过操作了解如何调用单个服务函数，还可
以通过函数相关场景的上下文查看操作。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

• 操作

操作

CreateProject

以下代码示例演示了如何使用 CreateProject。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

CodeBuild 367

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/lambda-scheduled-events
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/scheduled-events-invoking-lambda-example.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/codebuild#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

创建项目。

import {
 ArtifactsType,
 CodeBuildClient,
 ComputeType,
 CreateProjectCommand,
 EnvironmentType,
 SourceType,
} from "@aws-sdk/client-codebuild";

// Create the AWS CodeBuild project.
export const createProject = async (
 projectName = "MyCodeBuilder",
 roleArn = "arn:aws:iam::xxxxxxxxxxxx:role/CodeBuildAdmin",
 buildOutputBucket = "xxxx",
 githubUrl = "https://...",
) => {
 const codeBuildClient = new CodeBuildClient({});

 const response = await codeBuildClient.send(
 new CreateProjectCommand({
 artifacts: {
 // The destination of the build artifacts.
 type: ArtifactsType.S3,
 location: buildOutputBucket,
 },
 // Information about the build environment. The combination of "computeType"
 and "type" determines the
 // requirements for the environment such as CPU, memory, and disk space.
 environment: {
 // Build environment compute types.
 // https://docs.aws.amazon.com/codebuild/latest/userguide/build-env-ref-
compute-types.html
 computeType: ComputeType.BUILD_GENERAL1_SMALL,
 // Docker image identifier.
 // See https://docs.aws.amazon.com/codebuild/latest/userguide/build-env-ref-
available.html
 image: "aws/codebuild/standard:7.0",
 // Build environment type.
 type: EnvironmentType.LINUX_CONTAINER,
 },
 name: projectName,

操作 368

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // A role ARN with permission to create a CodeBuild project, write to the
 artifact location, and write CloudWatch logs.
 serviceRole: roleArn,
 source: {
 // The type of repository that contains the source code to be built.
 type: SourceType.GITHUB,
 // The location of the repository that contains the source code to be built.
 location: githubUrl,
 },
 }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: 'b428b244-777b-49a6-a48d-5dffedced8e7',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // project: {
 // arn: 'arn:aws:codebuild:us-east-1:xxxxxxxxxxxx:project/MyCodeBuilder',
 // artifacts: {
 // encryptionDisabled: false,
 // location: 'xxxxxx-xxxxxxx-xxxxxx',
 // name: 'MyCodeBuilder',
 // namespaceType: 'NONE',
 // packaging: 'NONE',
 // type: 'S3'
 // },
 // badge: { badgeEnabled: false },
 // cache: { type: 'NO_CACHE' },
 // created: 2023-08-18T14:46:48.979Z,
 // encryptionKey: 'arn:aws:kms:us-east-1:xxxxxxxxxxxx:alias/aws/s3',
 // environment: {
 // computeType: 'BUILD_GENERAL1_SMALL',
 // environmentVariables: [],
 // image: 'aws/codebuild/standard:7.0',
 // imagePullCredentialsType: 'CODEBUILD',
 // privilegedMode: false,
 // type: 'LINUX_CONTAINER'
 // },
 // lastModified: 2023-08-18T14:46:48.979Z,

操作 369

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // name: 'MyCodeBuilder',
 // projectVisibility: 'PRIVATE',
 // queuedTimeoutInMinutes: 480,
 // serviceRole: 'arn:aws:iam::xxxxxxxxxxxx:role/CodeBuildAdmin',
 // source: {
 // insecureSsl: false,
 // location: 'https://...',
 // reportBuildStatus: false,
 // type: 'GITHUB'
 // },
 // timeoutInMinutes: 60
 // }
 // }
 return response;
};

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/codebuild/。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考CreateProject中的。

使用适用于 JavaScript (v3) 的软件开发工具包的亚马逊 Cognito 身
份示例

以下代码示例向您展示了如何使用带有 Amazon Cognito Identity 的 适用于 JavaScript 的 Amazon
SDK (v3) 来执行操作和实现常见场景。

场景是向您演示如何通过在一个服务中调用多个函数或与其他 Amazon Web Services 服务结合来完成
特定任务的代码示例。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

• 场景

Amazon Cognito Identity 370

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/codebuild/
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/codebuild/
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/codebuild/command/CreateProjectCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

场景

创建 Amazon Textract 浏览器应用程序

以下代码示例演示如何通过交互式应用程序探索 Amazon Textract 输出。

适用于 JavaScript (v3) 的软件开发工具包

演示如何使用 适用于 JavaScript 的 Amazon SDK 来构建 React 应用程序，该应用程序使用
Amazon Textract 从文档图像中提取数据并将其显示在交互式网页中。此示例在 Web 浏览器
中运行，需要经过身份验证的 Amazon Cognito 身份才能获得凭证。它使用 Amazon Simple
Storage Service（Amazon S3）进行存储；对于通知，它将轮询订阅 Amazon Simple Notification
Service（Amazon SNS）主题的 Amazon Simple Queue Service（Amazon SQS）队列。

有关如何设置和运行的完整源代码和说明，请参阅上的完整示例GitHub。

本示例中使用的服务

• Amazon Cognito Identity

• Amazon S3

• Amazon SNS

• Amazon SQS

• Amazon Textract

使用适用于 JavaScript (v3) 的软件开发工具包的 Amazon Cognito
身份提供商示例

以下代码示例向您展示如何使用带有 Amazon Cognito 身份提供商的 适用于 JavaScript 的 Amazon
SDK (v3) 来执行操作和实现常见场景。

操作是大型程序的代码摘录，必须在上下文中运行。您可以通过操作了解如何调用单个服务函数，还可
以通过函数相关场景的上下文查看操作。

场景是向您演示如何通过在一个服务中调用多个函数或与其他 Amazon Web Services 服务结合来完成
特定任务的代码示例。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

场景 371

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/textract-react

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

主题

• 开始使用

• 操作

• 场景

开始使用

开始使用 Amazon Cognito

以下代码示例显示如何开始使用 Amazon Cognito。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import {
 paginateListUserPools,
 CognitoIdentityProviderClient,
} from "@aws-sdk/client-cognito-identity-provider";

const client = new CognitoIdentityProviderClient({});

export const helloCognito = async () => {
 const paginator = paginateListUserPools({ client }, {});

 const userPoolNames = [];

 for await (const page of paginator) {
 const names = page.UserPools.map((pool) => pool.Name);
 userPoolNames.push(...names);
 }

 console.log("User pool names: ");
 console.log(userPoolNames.join("\n"));
 return userPoolNames;

开始使用 372

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cognito-identity-provider#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考ListUserPools中的。

操作

AdminGetUser

以下代码示例演示了如何使用 AdminGetUser。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

const adminGetUser = ({ userPoolId, username }) => {
 const client = new CognitoIdentityProviderClient({});

 const command = new AdminGetUserCommand({
 UserPoolId: userPoolId,
 Username: username,
 });

 return client.send(command);
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考AdminGetUser中
的。

AdminInitiateAuth

以下代码示例演示了如何使用 AdminInitiateAuth。

操作 373

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/ListUserPoolsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cognito-identity-provider/#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/AdminGetUserCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

const adminInitiateAuth = ({ clientId, userPoolId, username, password }) => {
 const client = new CognitoIdentityProviderClient({});

 const command = new AdminInitiateAuthCommand({
 ClientId: clientId,
 UserPoolId: userPoolId,
 AuthFlow: AuthFlowType.ADMIN_USER_PASSWORD_AUTH,
 AuthParameters: { USERNAME: username, PASSWORD: password },
 });

 return client.send(command);
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考AdminInitiateAuth中
的。

AdminRespondToAuthChallenge

以下代码示例演示了如何使用 AdminRespondToAuthChallenge。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

const adminRespondToAuthChallenge = ({
 userPoolId,
 clientId,

操作 374

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cognito-identity-provider/#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/AdminInitiateAuthCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cognito-identity-provider#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 username,
 totp,
 session,
}) => {
 const client = new CognitoIdentityProviderClient({});
 const command = new AdminRespondToAuthChallengeCommand({
 ChallengeName: ChallengeNameType.SOFTWARE_TOKEN_MFA,
 ChallengeResponses: {
 SOFTWARE_TOKEN_MFA_CODE: totp,
 USERNAME: username,
 },
 ClientId: clientId,
 UserPoolId: userPoolId,
 Session: session,
 });

 return client.send(command);
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考AdminRespondToAuthChallenge中的。

AssociateSoftwareToken

以下代码示例演示了如何使用 AssociateSoftwareToken。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

const associateSoftwareToken = (session) => {
 const client = new CognitoIdentityProviderClient({});
 const command = new AssociateSoftwareTokenCommand({
 Session: session,
 });

操作 375

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/AdminRespondToAuthChallengeCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cognito-identity-provider#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 return client.send(command);
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考AssociateSoftwareToken中的。

ConfirmDevice

以下代码示例演示了如何使用 ConfirmDevice。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

const confirmDevice = ({ deviceKey, accessToken, passwordVerifier, salt }) => {
 const client = new CognitoIdentityProviderClient({});

 const command = new ConfirmDeviceCommand({
 DeviceKey: deviceKey,
 AccessToken: accessToken,
 DeviceSecretVerifierConfig: {
 PasswordVerifier: passwordVerifier,
 Salt: salt,
 },
 });

 return client.send(command);
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考ConfirmDevice中
的。

操作 376

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/AssociateSoftwareTokenCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cognito-identity-provider#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/ConfirmDeviceCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

ConfirmSignUp

以下代码示例演示了如何使用 ConfirmSignUp。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

const confirmSignUp = ({ clientId, username, code }) => {
 const client = new CognitoIdentityProviderClient({});

 const command = new ConfirmSignUpCommand({
 ClientId: clientId,
 Username: username,
 ConfirmationCode: code,
 });

 return client.send(command);
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考ConfirmSignUp中
的。

DeleteUser

以下代码示例演示了如何使用 DeleteUser。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

操作 377

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cognito-identity-provider#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/ConfirmSignUpCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/wkflw-pools-triggers#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

/**
 * Delete the signed-in user. Useful for allowing a user to delete their
 * own profile.
 * @param {{ region: string, accessToken: string }} config
 * @returns {Promise<[import("@aws-sdk/client-cognito-identity-
provider").DeleteUserCommandOutput | null, unknown]>}
 */
export const deleteUser = async ({ region, accessToken }) => {
 try {
 const client = new CognitoIdentityProviderClient({ region });
 const response = await client.send(
 new DeleteUserCommand({ AccessToken: accessToken }),
);
 return [response, null];
 } catch (err) {
 return [null, err];
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DeleteUser中的。

InitiateAuth

以下代码示例演示了如何使用 InitiateAuth。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

const initiateAuth = ({ username, password, clientId }) => {
 const client = new CognitoIdentityProviderClient({});

 const command = new InitiateAuthCommand({
 AuthFlow: AuthFlowType.USER_PASSWORD_AUTH,
 AuthParameters: {
 USERNAME: username,

操作 378

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/DeleteUserCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cognito-identity-provider#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 PASSWORD: password,
 },
 ClientId: clientId,
 });

 return client.send(command);
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考InitiateAuth中的。

ListUsers

以下代码示例演示了如何使用 ListUsers。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

const listUsers = ({ userPoolId }) => {
 const client = new CognitoIdentityProviderClient({});

 const command = new ListUsersCommand({
 UserPoolId: userPoolId,
 });

 return client.send(command);
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考ListUsers中的。

ResendConfirmationCode

以下代码示例演示了如何使用 ResendConfirmationCode。

操作 379

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/InitiateAuthCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cognito-identity-provider#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/ListUsersCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

const resendConfirmationCode = ({ clientId, username }) => {
 const client = new CognitoIdentityProviderClient({});

 const command = new ResendConfirmationCodeCommand({
 ClientId: clientId,
 Username: username,
 });

 return client.send(command);
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考ResendConfirmationCode中的。

RespondToAuthChallenge

以下代码示例演示了如何使用 RespondToAuthChallenge。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

const respondToAuthChallenge = ({
 clientId,
 username,
 session,
 userPoolId,

操作 380

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cognito-identity-provider#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/ResendConfirmationCodeCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cognito-identity-provider#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 code,
}) => {
 const client = new CognitoIdentityProviderClient({});

 const command = new RespondToAuthChallengeCommand({
 ChallengeName: ChallengeNameType.SOFTWARE_TOKEN_MFA,
 ChallengeResponses: {
 SOFTWARE_TOKEN_MFA_CODE: code,
 USERNAME: username,
 },
 ClientId: clientId,
 UserPoolId: userPoolId,
 Session: session,
 });

 return client.send(command);
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考RespondToAuthChallenge中的。

SignUp

以下代码示例演示了如何使用 SignUp。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

const signUp = ({ clientId, username, password, email }) => {
 const client = new CognitoIdentityProviderClient({});

 const command = new SignUpCommand({
 ClientId: clientId,
 Username: username,
 Password: password,

操作 381

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/RespondToAuthChallengeCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cognito-identity-provider#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 UserAttributes: [{ Name: "email", Value: email }],
 });

 return client.send(command);
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考SignUp中的。

UpdateUserPool

以下代码示例演示了如何使用 UpdateUserPool。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

/**
 * Connect a Lambda function to the PreSignUp trigger for a Cognito user pool
 * @param {{ region: string, userPoolId: string, handlerArn: string }} config
 * @returns {Promise<[import("@aws-sdk/client-cognito-identity-
provider").UpdateUserPoolCommandOutput | null, unknown]>}
 */
export const addPreSignUpHandler = async ({
 region,
 userPoolId,
 handlerArn,
}) => {
 try {
 const cognitoClient = new CognitoIdentityProviderClient({
 region,
 });

 const command = new UpdateUserPoolCommand({
 UserPoolId: userPoolId,
 LambdaConfig: {
 PreSignUp: handlerArn,
 },

操作 382

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/SignUpCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/wkflw-pools-triggers#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 });

 const response = await cognitoClient.send(command);
 return [response, null];
 } catch (err) {
 return [null, err];
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考UpdateUserPool中
的。

VerifySoftwareToken

以下代码示例演示了如何使用 VerifySoftwareToken。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

const verifySoftwareToken = (totp) => {
 const client = new CognitoIdentityProviderClient({});

 // The 'Session' is provided in the response to 'AssociateSoftwareToken'.
 const session = process.env.SESSION;

 if (!session) {
 throw new Error(
 "Missing a valid Session. Did you run 'admin-initiate-auth'?",
);
 }

 const command = new VerifySoftwareTokenCommand({
 Session: session,
 UserCode: totp,
 });

操作 383

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/UpdateUserPoolCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cognito-identity-provider#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 return client.send(command);
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考VerifySoftwareToken中的。

场景

使用 Lambda 函数自动确认已知用户

以下代码示例显示了如何使用 Lambda 函数自动确认已知的 Amazon Cognito 用户。

• 配置用户池以调用 PreSignUp 触发器的 Lambda 函数。

• 将用户注册到 Amazon Cognito

• Lambda 函数会扫描 DynamoDB 表并自动确认已知用户。

• 以新用户身份登录，然后清理资源。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

配置交互式“场景”运行。 JavaScript (v3) 示例共享一个场景运行器，以简化复杂的示例。完整的源
代码已打开 GitHub。

import { AutoConfirm } from "./scenario-auto-confirm.js";

/**
 * The context is passed to every scenario. Scenario steps
 * will modify the context.
 */
const context = {
 errors: [],
 users: [

场景 384

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/VerifySoftwareTokenCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/wkflw-pools-triggers#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 {
 UserName: "test_user_1",
 UserEmail: "test_email_1@example.com",
 },
 {
 UserName: "test_user_2",
 UserEmail: "test_email_2@example.com",
 },
 {
 UserName: "test_user_3",
 UserEmail: "test_email_3@example.com",
 },
],
};

/**
 * Three Scenarios are created for the workflow. A Scenario is an orchestration
 class
 * that simplifies running a series of steps.
 */
export const scenarios = {
 // Demonstrate automatically confirming known users in a database.
 "auto-confirm": AutoConfirm(context),
};

// Call function if run directly
import { fileURLToPath } from "node:url";
import { parseScenarioArgs } from "@aws-doc-sdk-examples/lib/scenario/index.js";

if (process.argv[1] === fileURLToPath(import.meta.url)) {
 parseScenarioArgs(scenarios, {
 name: "Cognito user pools and triggers",
 description:
 "Demonstrate how to use the AWS SDKs to customize Amazon Cognito
 authentication behavior.",
 });
}

此场景演示了如何自动确认已知用户。其编排了示例步骤。

import { wait } from "@aws-doc-sdk-examples/lib/utils/util-timers.js";
import {

场景 385

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 Scenario,
 ScenarioAction,
 ScenarioInput,
 ScenarioOutput,
} from "@aws-doc-sdk-examples/lib/scenario/scenario.js";

import {
 getStackOutputs,
 logCleanUpReminder,
 promptForStackName,
 promptForStackRegion,
 skipWhenErrors,
} from "./steps-common.js";
import { populateTable } from "./actions/dynamodb-actions.js";
import {
 addPreSignUpHandler,
 deleteUser,
 getUser,
 signIn,
 signUpUser,
} from "./actions/cognito-actions.js";
import {
 getLatestLogStreamForLambda,
 getLogEvents,
} from "./actions/cloudwatch-logs-actions.js";

/**
 * @typedef {{
 * errors: Error[],
 * password: string,
 * users: { UserName: string, UserEmail: string }[],
 * selectedUser?: string,
 * stackName?: string,
 * stackRegion?: string,
 * token?: string,
 * confirmDeleteSignedInUser?: boolean,
 * TableName?: string,
 * UserPoolClientId?: string,
 * UserPoolId?: string,
 * UserPoolArn?: string,
 * AutoConfirmHandlerArn?: string,
 * AutoConfirmHandlerName?: string
 * }} State
 */

场景 386

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const greeting = new ScenarioOutput(
 "greeting",
 (/** @type {State} */ state) => `This demo will populate some users into the \
database created as part of the "${state.stackName}" stack. \
Then the AutoConfirmHandler will be linked to the PreSignUp \
trigger from Cognito. Finally, you will choose a user to sign up.`,
 { skipWhen: skipWhenErrors },
);

const logPopulatingUsers = new ScenarioOutput(
 "logPopulatingUsers",
 "Populating the DynamoDB table with some users.",
 { skipWhenErrors: skipWhenErrors },
);

const logPopulatingUsersComplete = new ScenarioOutput(
 "logPopulatingUsersComplete",
 "Done populating users.",
 { skipWhen: skipWhenErrors },
);

const populateUsers = new ScenarioAction(
 "populateUsers",
 async (/** @type {State} */ state) => {
 const [_, err] = await populateTable({
 region: state.stackRegion,
 tableName: state.TableName,
 items: state.users,
 });
 if (err) {
 state.errors.push(err);
 }
 },
 {
 skipWhen: skipWhenErrors,
 },
);

const logSetupSignUpTrigger = new ScenarioOutput(
 "logSetupSignUpTrigger",
 "Setting up the PreSignUp trigger for the Cognito User Pool.",
 { skipWhen: skipWhenErrors },
);

场景 387

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const setupSignUpTrigger = new ScenarioAction(
 "setupSignUpTrigger",
 async (/** @type {State} */ state) => {
 const [_, err] = await addPreSignUpHandler({
 region: state.stackRegion,
 userPoolId: state.UserPoolId,
 handlerArn: state.AutoConfirmHandlerArn,
 });
 if (err) {
 state.errors.push(err);
 }
 },
 {
 skipWhen: skipWhenErrors,
 },
);

const logSetupSignUpTriggerComplete = new ScenarioOutput(
 "logSetupSignUpTriggerComplete",
 (
 /** @type {State} */ state,
) => `The lambda function "${state.AutoConfirmHandlerName}" \
has been configured as the PreSignUp trigger handler for the user pool
 "${state.UserPoolId}".`,
 { skipWhen: skipWhenErrors },
);

const selectUser = new ScenarioInput(
 "selectedUser",
 "Select a user to sign up.",
 {
 type: "select",
 choices: (/** @type {State} */ state) => state.users.map((u) => u.UserName),
 skipWhen: skipWhenErrors,
 default: (/** @type {State} */ state) => state.users[0].UserName,
 },
);

const checkIfUserAlreadyExists = new ScenarioAction(
 "checkIfUserAlreadyExists",
 async (/** @type {State} */ state) => {
 const [user, err] = await getUser({
 region: state.stackRegion,

场景 388

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 userPoolId: state.UserPoolId,
 username: state.selectedUser,
 });

 if (err?.name === "UserNotFoundException") {
 // Do nothing. We're not expecting the user to exist before
 // sign up is complete.
 return;
 }

 if (err) {
 state.errors.push(err);
 return;
 }

 if (user) {
 state.errors.push(
 new Error(
 `The user "${state.selectedUser}" already exists in the user pool
 "${state.UserPoolId}".`,
),
);
 }
 },
 {
 skipWhen: skipWhenErrors,
 },
);

const createPassword = new ScenarioInput(
 "password",
 "Enter a password that has at least eight characters, uppercase, lowercase,
 numbers and symbols.",
 { type: "password", skipWhen: skipWhenErrors, default: "Abcd1234!" },
);

const logSignUpExistingUser = new ScenarioOutput(
 "logSignUpExistingUser",
 (/** @type {State} */ state) => `Signing up user "${state.selectedUser}".`,
 { skipWhen: skipWhenErrors },
);

const signUpExistingUser = new ScenarioAction(
 "signUpExistingUser",

场景 389

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 async (/** @type {State} */ state) => {
 const signUp = (password) =>
 signUpUser({
 region: state.stackRegion,
 userPoolClientId: state.UserPoolClientId,
 username: state.selectedUser,
 email: state.users.find((u) => u.UserName === state.selectedUser)
 .UserEmail,
 password,
 });

 let [_, err] = await signUp(state.password);

 while (err?.name === "InvalidPasswordException") {
 console.warn("The password you entered was invalid.");
 await createPassword.handle(state);
 [_, err] = await signUp(state.password);
 }

 if (err) {
 state.errors.push(err);
 }
 },
 { skipWhen: skipWhenErrors },
);

const logSignUpExistingUserComplete = new ScenarioOutput(
 "logSignUpExistingUserComplete",
 (/** @type {State} */ state) =>
 `"${state.selectedUser} was signed up successfully.`,
 { skipWhen: skipWhenErrors },
);

const logLambdaLogs = new ScenarioAction(
 "logLambdaLogs",
 async (/** @type {State} */ state) => {
 console.log(
 "Waiting a few seconds to let Lambda write to CloudWatch Logs...\n",
);
 await wait(10);

 const [logStream, logStreamErr] = await getLatestLogStreamForLambda({
 functionName: state.AutoConfirmHandlerName,
 region: state.stackRegion,

场景 390

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 });
 if (logStreamErr) {
 state.errors.push(logStreamErr);
 return;
 }

 console.log(
 `Getting some recent events from log stream "${logStream.logStreamName}"`,
);
 const [logEvents, logEventsErr] = await getLogEvents({
 functionName: state.AutoConfirmHandlerName,
 region: state.stackRegion,
 eventCount: 10,
 logStreamName: logStream.logStreamName,
 });
 if (logEventsErr) {
 state.errors.push(logEventsErr);
 return;
 }

 console.log(logEvents.map((ev) => `\t${ev.message}`).join(""));
 },
 { skipWhen: skipWhenErrors },
);

const logSignInUser = new ScenarioOutput(
 "logSignInUser",
 (/** @type {State} */ state) => `Let's sign in as ${state.selectedUser}`,
 { skipWhen: skipWhenErrors },
);

const signInUser = new ScenarioAction(
 "signInUser",
 async (/** @type {State} */ state) => {
 const [response, err] = await signIn({
 region: state.stackRegion,
 clientId: state.UserPoolClientId,
 username: state.selectedUser,
 password: state.password,
 });

 if (err?.name === "PasswordResetRequiredException") {
 state.errors.push(new Error("Please reset your password."));
 return;

场景 391

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }

 if (err) {
 state.errors.push(err);
 return;
 }

 state.token = response?.AuthenticationResult?.AccessToken;
 },
 { skipWhen: skipWhenErrors },
);

const logSignInUserComplete = new ScenarioOutput(
 "logSignInUserComplete",
 (/** @type {State} */ state) =>
 `Successfully signed in. Your access token starts with: ${state.token.slice(0,
 11)}`,
 { skipWhen: skipWhenErrors },
);

const confirmDeleteSignedInUser = new ScenarioInput(
 "confirmDeleteSignedInUser",
 "Do you want to delete the currently signed in user?",
 { type: "confirm", skipWhen: skipWhenErrors },
);

const deleteSignedInUser = new ScenarioAction(
 "deleteSignedInUser",
 async (/** @type {State} */ state) => {
 const [_, err] = await deleteUser({
 region: state.stackRegion,
 accessToken: state.token,
 });

 if (err) {
 state.errors.push(err);
 }
 },
 {
 skipWhen: (/** @type {State} */ state) =>
 skipWhenErrors(state) || !state.confirmDeleteSignedInUser,
 },
);

场景 392

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const logErrors = new ScenarioOutput(
 "logErrors",
 (/** @type {State}*/ state) => {
 const errorList = state.errors
 .map((err) => ` - ${err.name}: ${err.message}`)
 .join("\n");
 return `Scenario errors found:\n${errorList}`;
 },
 {
 // Don't log errors when there aren't any!
 skipWhen: (/** @type {State} */ state) => state.errors.length === 0,
 },
);

export const AutoConfirm = (context) =>
 new Scenario(
 "AutoConfirm",
 [
 promptForStackName,
 promptForStackRegion,
 getStackOutputs,
 greeting,
 logPopulatingUsers,
 populateUsers,
 logPopulatingUsersComplete,
 logSetupSignUpTrigger,
 setupSignUpTrigger,
 logSetupSignUpTriggerComplete,
 selectUser,
 checkIfUserAlreadyExists,
 createPassword,
 logSignUpExistingUser,
 signUpExistingUser,
 logSignUpExistingUserComplete,
 logLambdaLogs,
 logSignInUser,
 signInUser,
 logSignInUserComplete,
 confirmDeleteSignedInUser,
 deleteSignedInUser,
 logCleanUpReminder,
 logErrors,
],
 context,

场景 393

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

);

这些步骤与其他场景共享。

import {
 ScenarioAction,
 ScenarioInput,
 ScenarioOutput,
} from "@aws-doc-sdk-examples/lib/scenario/scenario.js";
import { getCfnOutputs } from "@aws-doc-sdk-examples/lib/sdk/cfn-outputs.js";

export const skipWhenErrors = (state) => state.errors.length > 0;

export const getStackOutputs = new ScenarioAction(
 "getStackOutputs",
 async (state) => {
 if (!state.stackName || !state.stackRegion) {
 state.errors.push(
 new Error(
 "No stack name or region provided. The stack name and \
region are required to fetch CFN outputs relevant to this example.",
),
);
 return;
 }

 const outputs = await getCfnOutputs(state.stackName, state.stackRegion);
 Object.assign(state, outputs);
 },
);

export const promptForStackName = new ScenarioInput(
 "stackName",
 "Enter the name of the stack you deployed earlier.",
 { type: "input", default: "PoolsAndTriggersStack" },
);

export const promptForStackRegion = new ScenarioInput(
 "stackRegion",
 "Enter the region of the stack you deployed earlier.",
 { type: "input", default: "us-east-1" },
);

场景 394

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

export const logCleanUpReminder = new ScenarioOutput(
 "logCleanUpReminder",
 "All done. Remember to run 'cdk destroy' to teardown the stack.",
 { skipWhen: skipWhenErrors },
);

具有 Lambda 函数的 PreSignUp 触发器的处理程序。

import type { PreSignUpTriggerEvent, Handler } from "aws-lambda";
import type { UserRepository } from "./user-repository";
import { DynamoDBUserRepository } from "./user-repository";

export class PreSignUpHandler {
 private userRepository: UserRepository;

 constructor(userRepository: UserRepository) {
 this.userRepository = userRepository;
 }

 private isPreSignUpTriggerSource(event: PreSignUpTriggerEvent): boolean {
 return event.triggerSource === "PreSignUp_SignUp";
 }

 private getEventUserEmail(event: PreSignUpTriggerEvent): string {
 return event.request.userAttributes.email;
 }

 async handlePreSignUpTriggerEvent(
 event: PreSignUpTriggerEvent,
): Promise<PreSignUpTriggerEvent> {
 console.log(
 `Received presignup from ${event.triggerSource} for user '${event.userName}'`,
);

 if (!this.isPreSignUpTriggerSource(event)) {
 return event;
 }

 const eventEmail = this.getEventUserEmail(event);
 console.log(`Looking up email ${eventEmail}.`);
 const storedUserInfo =

场景 395

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 await this.userRepository.getUserInfoByEmail(eventEmail);

 if (!storedUserInfo) {
 console.log(
 `Email ${eventEmail} not found. Email verification is required.`,
);
 return event;
 }

 if (storedUserInfo.UserName !== event.userName) {
 console.log(
 `UserEmail ${eventEmail} found, but stored UserName
 '${storedUserInfo.UserName}' does not match supplied UserName '${event.userName}'.
 Verification is required.`,
);
 } else {
 console.log(
 `UserEmail ${eventEmail} found with matching UserName
 ${storedUserInfo.UserName}. User is confirmed.`,
);
 event.response.autoConfirmUser = true;
 event.response.autoVerifyEmail = true;
 }
 return event;
 }
}

const createPreSignUpHandler = (): PreSignUpHandler => {
 const tableName = process.env.TABLE_NAME;
 if (!tableName) {
 throw new Error("TABLE_NAME environment variable is not set");
 }

 const userRepository = new DynamoDBUserRepository(tableName);
 return new PreSignUpHandler(userRepository);
};

export const handler: Handler = async (event: PreSignUpTriggerEvent) => {
 const preSignUpHandler = createPreSignUpHandler();
 return preSignUpHandler.handlePreSignUpTriggerEvent(event);
};

场景 396

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

CloudWatch 日志操作模块。

import {
 CloudWatchLogsClient,
 GetLogEventsCommand,
 OrderBy,
 paginateDescribeLogStreams,
} from "@aws-sdk/client-cloudwatch-logs";

/**
 * Get the latest log stream for a Lambda function.
 * @param {{ functionName: string, region: string }} config
 * @returns {Promise<[import("@aws-sdk/client-cloudwatch-logs").LogStream | null,
 unknown]>}
 */
export const getLatestLogStreamForLambda = async ({ functionName, region }) => {
 try {
 const logGroupName = `/aws/lambda/${functionName}`;
 const cwlClient = new CloudWatchLogsClient({ region });
 const paginator = paginateDescribeLogStreams(
 { client: cwlClient },
 {
 descending: true,
 limit: 1,
 orderBy: OrderBy.LastEventTime,
 logGroupName,
 },
);

 for await (const page of paginator) {
 return [page.logStreams[0], null];
 }
 } catch (err) {
 return [null, err];
 }
};

/**
 * Get the log events for a Lambda function's log stream.
 * @param {{
 * functionName: string,
 * logStreamName: string,
 * eventCount: number,

场景 397

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * region: string
 * }} config
 * @returns {Promise<[import("@aws-sdk/client-cloudwatch-logs").OutputLogEvent[] |
 null, unknown]>}
 */
export const getLogEvents = async ({
 functionName,
 logStreamName,
 eventCount,
 region,
}) => {
 try {
 const cwlClient = new CloudWatchLogsClient({ region });
 const logGroupName = `/aws/lambda/${functionName}`;
 const response = await cwlClient.send(
 new GetLogEventsCommand({
 logStreamName: logStreamName,
 limit: eventCount,
 logGroupName: logGroupName,
 }),
);

 return [response.events, null];
 } catch (err) {
 return [null, err];
 }
};

Amazon Cognito 操作的模块。

import {
 AdminGetUserCommand,
 CognitoIdentityProviderClient,
 DeleteUserCommand,
 InitiateAuthCommand,
 SignUpCommand,
 UpdateUserPoolCommand,
} from "@aws-sdk/client-cognito-identity-provider";

/**
 * Connect a Lambda function to the PreSignUp trigger for a Cognito user pool

场景 398

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * @param {{ region: string, userPoolId: string, handlerArn: string }} config
 * @returns {Promise<[import("@aws-sdk/client-cognito-identity-
provider").UpdateUserPoolCommandOutput | null, unknown]>}
 */
export const addPreSignUpHandler = async ({
 region,
 userPoolId,
 handlerArn,
}) => {
 try {
 const cognitoClient = new CognitoIdentityProviderClient({
 region,
 });

 const command = new UpdateUserPoolCommand({
 UserPoolId: userPoolId,
 LambdaConfig: {
 PreSignUp: handlerArn,
 },
 });

 const response = await cognitoClient.send(command);
 return [response, null];
 } catch (err) {
 return [null, err];
 }
};

/**
 * Attempt to register a user to a user pool with a given username and password.
 * @param {{
 * region: string,
 * userPoolClientId: string,
 * username: string,
 * email: string,
 * password: string
 * }} config
 * @returns {Promise<[import("@aws-sdk/client-cognito-identity-
provider").SignUpCommandOutput | null, unknown]>}
 */
export const signUpUser = async ({
 region,
 userPoolClientId,
 username,

场景 399

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 email,
 password,
}) => {
 try {
 const cognitoClient = new CognitoIdentityProviderClient({
 region,
 });

 const response = await cognitoClient.send(
 new SignUpCommand({
 ClientId: userPoolClientId,
 Username: username,
 Password: password,
 UserAttributes: [{ Name: "email", Value: email }],
 }),
);
 return [response, null];
 } catch (err) {
 return [null, err];
 }
};

/**
 * Sign in a user to Amazon Cognito using a username and password authentication
 flow.
 * @param {{ region: string, clientId: string, username: string, password: string }}
 config
 * @returns {Promise<[import("@aws-sdk/client-cognito-identity-
provider").InitiateAuthCommandOutput | null, unknown]>}
 */
export const signIn = async ({ region, clientId, username, password }) => {
 try {
 const cognitoClient = new CognitoIdentityProviderClient({ region });
 const response = await cognitoClient.send(
 new InitiateAuthCommand({
 AuthFlow: "USER_PASSWORD_AUTH",
 ClientId: clientId,
 AuthParameters: { USERNAME: username, PASSWORD: password },
 }),
);
 return [response, null];
 } catch (err) {
 return [null, err];
 }

场景 400

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

};

/**
 * Retrieve an existing user from a user pool.
 * @param {{ region: string, userPoolId: string, username: string }} config
 * @returns {Promise<[import("@aws-sdk/client-cognito-identity-
provider").AdminGetUserCommandOutput | null, unknown]>}
 */
export const getUser = async ({ region, userPoolId, username }) => {
 try {
 const cognitoClient = new CognitoIdentityProviderClient({ region });
 const response = await cognitoClient.send(
 new AdminGetUserCommand({
 UserPoolId: userPoolId,
 Username: username,
 }),
);
 return [response, null];
 } catch (err) {
 return [null, err];
 }
};

/**
 * Delete the signed-in user. Useful for allowing a user to delete their
 * own profile.
 * @param {{ region: string, accessToken: string }} config
 * @returns {Promise<[import("@aws-sdk/client-cognito-identity-
provider").DeleteUserCommandOutput | null, unknown]>}
 */
export const deleteUser = async ({ region, accessToken }) => {
 try {
 const client = new CognitoIdentityProviderClient({ region });
 const response = await client.send(
 new DeleteUserCommand({ AccessToken: accessToken }),
);
 return [response, null];
 } catch (err) {
 return [null, err];
 }
};

场景 401

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

DynamoDB 操作的模块。

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";
import {
 BatchWriteCommand,
 DynamoDBDocumentClient,
} from "@aws-sdk/lib-dynamodb";

/**
 * Populate a DynamoDB table with provide items.
 * @param {{ region: string, tableName: string, items: Record<string, unknown>[] }}
 config
 * @returns {Promise<[import("@aws-sdk/lib-dynamodb").BatchWriteCommandOutput |
 null, unknown]>}
 */
export const populateTable = async ({ region, tableName, items }) => {
 try {
 const ddbClient = new DynamoDBClient({ region });
 const docClient = DynamoDBDocumentClient.from(ddbClient);
 const response = await docClient.send(
 new BatchWriteCommand({
 RequestItems: {
 [tableName]: items.map((item) => ({
 PutRequest: {
 Item: item,
 },
 })),
 },
 }),
);
 return [response, null];
 } catch (err) {
 return [null, err];
 }
};

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的以下主
题。

• DeleteUser

• InitiateAuth

场景 402

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/DeleteUserCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/InitiateAuthCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• SignUp

• UpdateUserPool

向需要 MFA 的用户池注册用户

以下代码示例展示了如何：

• 使用用户名、密码和电子邮件地址注册和确认用户。

• 通过将 MFA 应用程序与用户关联来设置多重身份验证。

• 使用密码和 MFA 代码登录。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

为了获得最佳体验，请克隆 GitHub 存储库并运行此示例。以下代码代表完整示例应用程序的示
例。

import { logger } from "@aws-doc-sdk-examples/lib/utils/util-log.js";
import { signUp } from "../../../actions/sign-up.js";
import { FILE_USER_POOLS } from "./constants.js";
import { getSecondValuesFromEntries } from "@aws-doc-sdk-examples/lib/utils/util-
csv.js";

const validateClient = (clientId) => {
 if (!clientId) {
 throw new Error(
 `App client id is missing. Did you run 'create-user-pool'?`,
);
 }
};

const validateUser = (username, password, email) => {
 if (!(username && password && email)) {
 throw new Error(

场景 403

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/SignUpCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/UpdateUserPoolCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cognito-identity-provider/scenarios/basic#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 `Username, password, and email must be provided as arguments to the 'sign-up'
 command.`,
);
 }
};

const signUpHandler = async (commands) => {
 const [_, username, password, email] = commands;

 try {
 validateUser(username, password, email);
 /**
 * @type {string[]}
 */
 const values = getSecondValuesFromEntries(FILE_USER_POOLS);
 const clientId = values[0];
 validateClient(clientId);
 logger.log("Signing up.");
 await signUp({ clientId, username, password, email });
 logger.log(`Signed up. A confirmation email has been sent to: ${email}.`);
 logger.log(
 `Run 'confirm-sign-up ${username} <code>' to confirm your account.`,
);
 } catch (err) {
 logger.error(err);
 }
};

export { signUpHandler };

const signUp = ({ clientId, username, password, email }) => {
 const client = new CognitoIdentityProviderClient({});

 const command = new SignUpCommand({
 ClientId: clientId,
 Username: username,
 Password: password,
 UserAttributes: [{ Name: "email", Value: email }],
 });

 return client.send(command);
};

import { logger } from "@aws-doc-sdk-examples/lib/utils/util-log.js";

场景 404

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

import { confirmSignUp } from "../../../actions/confirm-sign-up.js";
import { FILE_USER_POOLS } from "./constants.js";
import { getSecondValuesFromEntries } from "@aws-doc-sdk-examples/lib/utils/util-
csv.js";

const validateClient = (clientId) => {
 if (!clientId) {
 throw new Error(
 `App client id is missing. Did you run 'create-user-pool'?`,
);
 }
};

const validateUser = (username) => {
 if (!username) {
 throw new Error(
 `Username name is missing. It must be provided as an argument to the 'confirm-
sign-up' command.`,
);
 }
};

const validateCode = (code) => {
 if (!code) {
 throw new Error(
 `Verification code is missing. It must be provided as an argument to the
 'confirm-sign-up' command.`,
);
 }
};

const confirmSignUpHandler = async (commands) => {
 const [_, username, code] = commands;

 try {
 validateUser(username);
 validateCode(code);
 /**
 * @type {string[]}
 */
 const values = getSecondValuesFromEntries(FILE_USER_POOLS);
 const clientId = values[0];
 validateClient(clientId);
 logger.log("Confirming user.");

场景 405

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 await confirmSignUp({ clientId, username, code });
 logger.log(
 `User confirmed. Run 'admin-initiate-auth ${username} <password>' to sign
 in.`,
);
 } catch (err) {
 logger.error(err);
 }
};

export { confirmSignUpHandler };

const confirmSignUp = ({ clientId, username, code }) => {
 const client = new CognitoIdentityProviderClient({});

 const command = new ConfirmSignUpCommand({
 ClientId: clientId,
 Username: username,
 ConfirmationCode: code,
 });

 return client.send(command);
};

import qrcode from "qrcode-terminal";
import { logger } from "@aws-doc-sdk-examples/lib/utils/util-log.js";
import { adminInitiateAuth } from "../../../actions/admin-initiate-auth.js";
import { associateSoftwareToken } from "../../../actions/associate-software-
token.js";
import { FILE_USER_POOLS } from "./constants.js";
import { getFirstEntry } from "@aws-doc-sdk-examples/lib/utils/util-csv.js";

const handleMfaSetup = async (session, username) => {
 const { SecretCode, Session } = await associateSoftwareToken(session);

 // Store the Session for use with 'VerifySoftwareToken'.
 process.env.SESSION = Session;

 console.log(
 "Scan this code in your preferred authenticator app, then run 'verify-software-
token' to finish the setup.",
);
 qrcode.generate(
 `otpauth://totp/${username}?secret=${SecretCode}`,

场景 406

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 { small: true },
 console.log,
);
};

const handleSoftwareTokenMfa = (session) => {
 // Store the Session for use with 'AdminRespondToAuthChallenge'.
 process.env.SESSION = session;
};

const validateClient = (id) => {
 if (!id) {
 throw new Error(
 `User pool client id is missing. Did you run 'create-user-pool'?`,
);
 }
};

const validateId = (id) => {
 if (!id) {
 throw new Error(`User pool id is missing. Did you run 'create-user-pool'?`);
 }
};

const validateUser = (username, password) => {
 if (!(username && password)) {
 throw new Error(
 `Username and password must be provided as arguments to the 'admin-initiate-
auth' command.`,
);
 }
};

const adminInitiateAuthHandler = async (commands) => {
 const [_, username, password] = commands;

 try {
 validateUser(username, password);

 const [userPoolId, clientId] = getFirstEntry(FILE_USER_POOLS);
 validateId(userPoolId);
 validateClient(clientId);

 logger.log("Signing in.");

场景 407

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const { ChallengeName, Session } = await adminInitiateAuth({
 clientId,
 userPoolId,
 username,
 password,
 });

 if (ChallengeName === "MFA_SETUP") {
 logger.log("MFA setup is required.");
 return handleMfaSetup(Session, username);
 }

 if (ChallengeName === "SOFTWARE_TOKEN_MFA") {
 handleSoftwareTokenMfa(Session);
 logger.log(`Run 'admin-respond-to-auth-challenge ${username} <totp>'`);
 }
 } catch (err) {
 logger.error(err);
 }
};

export { adminInitiateAuthHandler };

const adminInitiateAuth = ({ clientId, userPoolId, username, password }) => {
 const client = new CognitoIdentityProviderClient({});

 const command = new AdminInitiateAuthCommand({
 ClientId: clientId,
 UserPoolId: userPoolId,
 AuthFlow: AuthFlowType.ADMIN_USER_PASSWORD_AUTH,
 AuthParameters: { USERNAME: username, PASSWORD: password },
 });

 return client.send(command);
};

import { logger } from "@aws-doc-sdk-examples/lib/utils/util-log.js";
import { adminRespondToAuthChallenge } from "../../../actions/admin-respond-to-auth-
challenge.js";
import { getFirstEntry } from "@aws-doc-sdk-examples/lib/utils/util-csv.js";
import { FILE_USER_POOLS } from "./constants.js";

const verifyUsername = (username) => {
 if (!username) {

场景 408

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 throw new Error(
 `Username is missing. It must be provided as an argument to the 'admin-
respond-to-auth-challenge' command.`,
);
 }
};

const verifyTotp = (totp) => {
 if (!totp) {
 throw new Error(
 `Time-based one-time password (TOTP) is missing. It must be provided as an
 argument to the 'admin-respond-to-auth-challenge' command.`,
);
 }
};

const storeAccessToken = (token) => {
 process.env.AccessToken = token;
};

const adminRespondToAuthChallengeHandler = async (commands) => {
 const [_, username, totp] = commands;

 try {
 verifyUsername(username);
 verifyTotp(totp);

 const [userPoolId, clientId] = getFirstEntry(FILE_USER_POOLS);
 const session = process.env.SESSION;

 const { AuthenticationResult } = await adminRespondToAuthChallenge({
 clientId,
 userPoolId,
 username,
 totp,
 session,
 });

 storeAccessToken(AuthenticationResult.AccessToken);

 logger.log("Successfully authenticated.");
 } catch (err) {
 logger.error(err);
 }

场景 409

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

};

export { adminRespondToAuthChallengeHandler };

const respondToAuthChallenge = ({
 clientId,
 username,
 session,
 userPoolId,
 code,
}) => {
 const client = new CognitoIdentityProviderClient({});

 const command = new RespondToAuthChallengeCommand({
 ChallengeName: ChallengeNameType.SOFTWARE_TOKEN_MFA,
 ChallengeResponses: {
 SOFTWARE_TOKEN_MFA_CODE: code,
 USERNAME: username,
 },
 ClientId: clientId,
 UserPoolId: userPoolId,
 Session: session,
 });

 return client.send(command);
};

import { logger } from "@aws-doc-sdk-examples/lib/utils/util-log.js";
import { verifySoftwareToken } from "../../../actions/verify-software-token.js";

const validateTotp = (totp) => {
 if (!totp) {
 throw new Error(
 `Time-based one-time password (TOTP) must be provided to the 'validate-
software-token' command.`,
);
 }
};
const verifySoftwareTokenHandler = async (commands) => {
 const [_, totp] = commands;

 try {
 validateTotp(totp);

场景 410

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 logger.log("Verifying TOTP.");
 await verifySoftwareToken(totp);
 logger.log("TOTP Verified. Run 'admin-initiate-auth' again to sign-in.");
 } catch (err) {
 logger.error(err);
 }
};

export { verifySoftwareTokenHandler };

const verifySoftwareToken = (totp) => {
 const client = new CognitoIdentityProviderClient({});

 // The 'Session' is provided in the response to 'AssociateSoftwareToken'.
 const session = process.env.SESSION;

 if (!session) {
 throw new Error(
 "Missing a valid Session. Did you run 'admin-initiate-auth'?",
);
 }

 const command = new VerifySoftwareTokenCommand({
 Session: session,
 UserCode: totp,
 });

 return client.send(command);
};

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的以下主
题。

• AdminGetUser

• AdminInitiateAuth

• AdminRespondToAuthChallenge

• AssociateSoftwareToken

• ConfirmDevice

• ConfirmSignUp

• InitiateAuth

场景 411

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/AdminGetUserCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/AdminInitiateAuthCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/AdminRespondToAuthChallengeCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/AssociateSoftwareTokenCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/ConfirmDeviceCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/ConfirmSignUpCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/InitiateAuthCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• ListUsers

• ResendConfirmationCode

• RespondToAuthChallenge

• SignUp

• VerifySoftwareToken

使用适用于 (v3) 的软件开发工具包的 Amazon Comprehend 示例
JavaScript

以下代码示例向您展示了如何使用带有 Amazon Comprehend 的 适用于 JavaScript 的 Amazon SDK
(v3) 来执行操作和实现常见场景。

场景是向您演示如何通过在一个服务中调用多个函数或与其他 Amazon Web Services 服务结合来完成
特定任务的代码示例。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

• 场景

场景

构建 Amazon Transcribe 流式传输应用程序

以下代码示例展示如何构建可实时录制、转录与翻译实时音频，并通过电子邮件发送结果的应用程序。

适用于 JavaScript (v3) 的软件开发工具包

演示了如何使用 Amazon Transcribe 构建可实时录制、转录与翻译实时音频，并通过 Amazon
Simple Email Service (Amazon SES) 以电子邮件发送结果的应用程序。

有关如何设置和运行的完整源代码和说明，请参阅上的完整示例GitHub。

本示例中使用的服务

• Amazon Comprehend

Amazon Comprehend 412

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/ListUsersCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/ResendConfirmationCodeCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/RespondToAuthChallengeCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/SignUpCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/VerifySoftwareTokenCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/transcribe-streaming-app

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• Amazon SES

• Amazon Transcribe

• Amazon Translate

构建 Amazon Lex 聊天机器人

以下代码示例演示如何创建用于吸引网站访客的聊天机器人。

适用于 JavaScript (v3) 的软件开发工具包

展示如何使用 Amazon Lex API 在 Web 应用程序中创建聊天机器人，以吸引网站访客。

有关如何设置和运行的完整源代码和说明，请参阅 适用于 JavaScript 的 Amazon SDK 开发者指南
中的构建 Amazon Lex 聊天机器人的完整示例。

本示例中使用的服务

• Amazon Comprehend

• Amazon Lex

• Amazon Translate

创建用于分析客户反馈的应用程序

以下代码示例说明如何创建应用程序来分析客户意见卡、翻译其母语、确定其情绪并根据译后的文本生
成音频文件。

适用于 JavaScript (v3) 的软件开发工具包

此示例应用程序可分析并存储客户反馈卡。具体来说，它满足了纽约市一家虚构酒店的需求。酒
店以实体意见卡的形式收集来自不同语种的客人的反馈。该反馈通过 Web 客户端上传到应用程序
中。意见卡图片上传后，将执行以下步骤：

• 使用 Amazon Textract 从图片中提取文本。

• Amazon Comprehend 确定所提取文本的情绪及其语言。

• 使用 Amazon Translate 将所提取文本翻译为英语。

• Amazon Polly 根据所提取文本合成音频文件。

完整的应用程序可使用 Amazon CDK 进行部署。有关源代码和部署说明，请参阅中的项目
GitHub。以下摘录显示了在 Lambda 函数中 适用于 JavaScript 的 Amazon SDK 是如何使用的。

场景 413

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/lex-bot-example.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/feedback-sentiment-analyzer
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/feedback-sentiment-analyzer

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

import {
 ComprehendClient,
 DetectDominantLanguageCommand,
 DetectSentimentCommand,
} from "@aws-sdk/client-comprehend";

/**
 * Determine the language and sentiment of the extracted text.
 *
 * @param {{ source_text: string}} extractTextOutput
 */
export const handler = async (extractTextOutput) => {
 const comprehendClient = new ComprehendClient({});

 const detectDominantLanguageCommand = new DetectDominantLanguageCommand({
 Text: extractTextOutput.source_text,
 });

 // The source language is required for sentiment analysis and
 // translation in the next step.
 const { Languages } = await comprehendClient.send(
 detectDominantLanguageCommand,
);

 const languageCode = Languages[0].LanguageCode;

 const detectSentimentCommand = new DetectSentimentCommand({
 Text: extractTextOutput.source_text,
 LanguageCode: languageCode,
 });

 const { Sentiment } = await comprehendClient.send(detectSentimentCommand);

 return {
 sentiment: Sentiment,
 language_code: languageCode,
 };
};

import {
 DetectDocumentTextCommand,
 TextractClient,
} from "@aws-sdk/client-textract";

场景 414

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

/**
 * Fetch the S3 object from the event and analyze it using Amazon Textract.
 *
 * @param {import("@types/aws-lambda").EventBridgeEvent<"Object Created">}
 eventBridgeS3Event
 */
export const handler = async (eventBridgeS3Event) => {
 const textractClient = new TextractClient();

 const detectDocumentTextCommand = new DetectDocumentTextCommand({
 Document: {
 S3Object: {
 Bucket: eventBridgeS3Event.bucket,
 Name: eventBridgeS3Event.object,
 },
 },
 });

 // Textract returns a list of blocks. A block can be a line, a page, word, etc.
 // Each block also contains geometry of the detected text.
 // For more information on the Block type, see https://docs.aws.amazon.com/
textract/latest/dg/API_Block.html.
 const { Blocks } = await textractClient.send(detectDocumentTextCommand);

 // For the purpose of this example, we are only interested in words.
 const extractedWords = Blocks.filter((b) => b.BlockType === "WORD").map(
 (b) => b.Text,
);

 return extractedWords.join(" ");
};

import { PollyClient, SynthesizeSpeechCommand } from "@aws-sdk/client-polly";
import { S3Client } from "@aws-sdk/client-s3";
import { Upload } from "@aws-sdk/lib-storage";

/**
 * Synthesize an audio file from text.
 *
 * @param {{ bucket: string, translated_text: string, object: string}}
 sourceDestinationConfig
 */

场景 415

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

export const handler = async (sourceDestinationConfig) => {
 const pollyClient = new PollyClient({});

 const synthesizeSpeechCommand = new SynthesizeSpeechCommand({
 Engine: "neural",
 Text: sourceDestinationConfig.translated_text,
 VoiceId: "Ruth",
 OutputFormat: "mp3",
 });

 const { AudioStream } = await pollyClient.send(synthesizeSpeechCommand);

 const audioKey = `${sourceDestinationConfig.object}.mp3`;

 // Store the audio file in S3.
 const s3Client = new S3Client();
 const upload = new Upload({
 client: s3Client,
 params: {
 Bucket: sourceDestinationConfig.bucket,
 Key: audioKey,
 Body: AudioStream,
 ContentType: "audio/mp3",
 },
 });

 await upload.done();
 return audioKey;
};

import {
 TranslateClient,
 TranslateTextCommand,
} from "@aws-sdk/client-translate";

/**
 * Translate the extracted text to English.
 *
 * @param {{ extracted_text: string, source_language_code: string}}
 textAndSourceLanguage
 */
export const handler = async (textAndSourceLanguage) => {
 const translateClient = new TranslateClient({});

场景 416

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const translateCommand = new TranslateTextCommand({
 SourceLanguageCode: textAndSourceLanguage.source_language_code,
 TargetLanguageCode: "en",
 Text: textAndSourceLanguage.extracted_text,
 });

 const { TranslatedText } = await translateClient.send(translateCommand);

 return { translated_text: TranslatedText };
};

本示例中使用的服务

• Amazon Comprehend

• Lambda

• Amazon Polly

• Amazon Textract

• Amazon Translate

使用适用于 JavaScript (v3) 的软件开发工具包的亚马逊
DocumentDB 示例

以下代码示例向您展示了如何使用带有 Amazon DocumentDB 的 适用于 JavaScript 的 Amazon SDK
(v3) 来执行操作和实现常见场景。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

• 无服务器示例

无服务器示例

通过 Amazon DocumentDB 触发器调用 Lambda 函数

以下代码示例演示如何实现一个 Lambda 函数，该函数接收通过接收来自 DocumentDB 更改流的记录
而触发的事件。该函数检索 DocumentDB 有效负载，并记录下记录内容。

Amazon DocumentDB 417

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在无服务器示例存储库中查找完整示例，并了解如何进行设置
和运行。

使用 Lambda 使用亚马逊文档数据库事件。 JavaScript

console.log('Loading function');
exports.handler = async (event, context) => {
 event.events.forEach(record => {
 logDocumentDBEvent(record);
 });
 return 'OK';
};

const logDocumentDBEvent = (record) => {
 console.log('Operation type: ' + record.event.operationType);
 console.log('db: ' + record.event.ns.db);
 console.log('collection: ' + record.event.ns.coll);
 console.log('Full document:', JSON.stringify(record.event.fullDocument, null,
 2));
};

使用 Lambda 使用亚马逊文档数据库事件 TypeScript

import { DocumentDBEventRecord, DocumentDBEventSubscriptionContext } from 'aws-
lambda';

console.log('Loading function');

export const handler = async (
 event: DocumentDBEventSubscriptionContext,
 context: any
): Promise<string> => {
 event.events.forEach((record: DocumentDBEventRecord) => {
 logDocumentDBEvent(record);
 });

无服务器示例 418

https://github.com/aws-samples/serverless-snippets/tree/main/integration-docdb-to-lambda

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 return 'OK';
};

const logDocumentDBEvent = (record: DocumentDBEventRecord): void => {
 console.log('Operation type: ' + record.event.operationType);
 console.log('db: ' + record.event.ns.db);
 console.log('collection: ' + record.event.ns.coll);
 console.log('Full document:', JSON.stringify(record.event.fullDocument, null, 2));
};

使用适用于 (v3) 的 SDK JavaScript 的 DynamoDB 示例
以下代码示例向您展示了如何使用带有 DynamoDB 的 适用于 JavaScript 的 Amazon SDK (v3) 来执行
操作和实现常见场景。

基本功能是向您展示如何在服务中执行基本操作的代码示例。

操作是大型程序的代码摘录，必须在上下文中运行。您可以通过操作了解如何调用单个服务函数，还可
以通过函数相关场景的上下文查看操作。

场景是向您演示如何通过在一个服务中调用多个函数或与其他 Amazon Web Services 服务结合来完成
特定任务的代码示例。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

• 开始使用

• 基本功能

• 操作

• 场景

• 无服务器示例

开始使用

开始使用 DynamoDB

以下代码示例显示如何开始使用 DynamoDB。

DynamoDB 419

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

有关在中使用 DynamoDB 的更多详细信息，请参阅使用编程 DynamoDB 适用于 JavaScript 的
Amazon SDK。 JavaScript

import { ListTablesCommand, DynamoDBClient } from "@aws-sdk/client-dynamodb";

const client = new DynamoDBClient({});

export const main = async () => {
 const command = new ListTablesCommand({});

 const response = await client.send(command);
 console.log(response.TableNames.join("\n"));
 return response;
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考ListTables中的。

基本功能

了解基本功能

以下代码示例展示了如何：

• 创建可保存电影数据的表。

• 在表中加入单一电影，获取并更新此电影。

• 向 JSON 示例文件的表中写入电影数据。

• 查询在给定年份发行的电影。

• 扫描在年份范围内发行的电影。

• 删除表中的电影后再删除表。

基本功能 420

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/dynamodb#code-examples
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/programming-with-javascript.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/ListTablesCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库 中查找完整示例，了解如何进行设
置和运行。

import { readFileSync } from "node:fs";
import {
 BillingMode,
 CreateTableCommand,
 DeleteTableCommand,
 DynamoDBClient,
 waitUntilTableExists,
} from "@aws-sdk/client-dynamodb";

/**
 * This module is a convenience library. It abstracts Amazon DynamoDB's data type
 * descriptors (such as S, N, B, and BOOL) by marshalling JavaScript objects into
 * AttributeValue shapes.
 */
import {
 BatchWriteCommand,
 DeleteCommand,
 DynamoDBDocumentClient,
 GetCommand,
 PutCommand,
 UpdateCommand,
 paginateQuery,
 paginateScan,
} from "@aws-sdk/lib-dynamodb";

// These modules are local to our GitHub repository. We recommend cloning
// the project from GitHub if you want to run this example.
// For more information, see https://github.com/awsdocs/aws-doc-sdk-examples.
import { getUniqueName } from "@aws-doc-sdk-examples/lib/utils/util-string.js";
import { dirnameFromMetaUrl } from "@aws-doc-sdk-examples/lib/utils/util-fs.js";
import { chunkArray } from "@aws-doc-sdk-examples/lib/utils/util-array.js";

const dirname = dirnameFromMetaUrl(import.meta.url);
const tableName = getUniqueName("Movies");

基本功能 421

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/dynamodb#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const client = new DynamoDBClient({});
const docClient = DynamoDBDocumentClient.from(client);

const log = (msg) => console.log(`[SCENARIO] ${msg}`);

export const main = async () => {
 /**
 * Create a table.
 */

 const createTableCommand = new CreateTableCommand({
 TableName: tableName,
 // This example performs a large write to the database.
 // Set the billing mode to PAY_PER_REQUEST to
 // avoid throttling the large write.
 BillingMode: BillingMode.PAY_PER_REQUEST,
 // Define the attributes that are necessary for the key schema.
 AttributeDefinitions: [
 {
 AttributeName: "year",
 // 'N' is a data type descriptor that represents a number type.
 // For a list of all data type descriptors, see the following link.
 // https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
Programming.LowLevelAPI.html#Programming.LowLevelAPI.DataTypeDescriptors
 AttributeType: "N",
 },
 { AttributeName: "title", AttributeType: "S" },
],
 // The KeySchema defines the primary key. The primary key can be
 // a partition key, or a combination of a partition key and a sort key.
 // Key schema design is important. For more info, see
 // https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/best-
practices.html
 KeySchema: [
 // The way your data is accessed determines how you structure your keys.
 // The movies table will be queried for movies by year. It makes sense
 // to make year our partition (HASH) key.
 { AttributeName: "year", KeyType: "HASH" },
 { AttributeName: "title", KeyType: "RANGE" },
],
 });

 log("Creating a table.");
 const createTableResponse = await client.send(createTableCommand);

基本功能 422

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 log(`Table created: ${JSON.stringify(createTableResponse.TableDescription)}`);

 // This polls with DescribeTableCommand until the requested table is 'ACTIVE'.
 // You can't write to a table before it's active.
 log("Waiting for the table to be active.");
 await waitUntilTableExists({ client }, { TableName: tableName });
 log("Table active.");

 /**
 * Add a movie to the table.
 */

 log("Adding a single movie to the table.");
 // PutCommand is the first example usage of 'lib-dynamodb'.
 const putCommand = new PutCommand({
 TableName: tableName,
 Item: {
 // In 'client-dynamodb', the AttributeValue would be required (`year: { N:
 1981 }`)
 // 'lib-dynamodb' simplifies the usage (`year: 1981`)
 year: 1981,
 // The preceding KeySchema defines 'title' as our sort (RANGE) key, so 'title'
 // is required.
 title: "The Evil Dead",
 // Every other attribute is optional.
 info: {
 genres: ["Horror"],
 },
 },
 });
 await docClient.send(putCommand);
 log("The movie was added.");

 /**
 * Get a movie from the table.
 */

 log("Getting a single movie from the table.");
 const getCommand = new GetCommand({
 TableName: tableName,
 // Requires the complete primary key. For the movies table, the primary key
 // is only the id (partition key).
 Key: {
 year: 1981,

基本功能 423

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 title: "The Evil Dead",
 },
 // Set this to make sure that recent writes are reflected.
 // For more information, see https://docs.aws.amazon.com/amazondynamodb/latest/
developerguide/HowItWorks.ReadConsistency.html.
 ConsistentRead: true,
 });
 const getResponse = await docClient.send(getCommand);
 log(`Got the movie: ${JSON.stringify(getResponse.Item)}`);

 /**
 * Update a movie in the table.
 */

 log("Updating a single movie in the table.");
 const updateCommand = new UpdateCommand({
 TableName: tableName,
 Key: { year: 1981, title: "The Evil Dead" },
 // This update expression appends "Comedy" to the list of genres.
 // For more information on update expressions, see
 // https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
Expressions.UpdateExpressions.html
 UpdateExpression: "set #i.#g = list_append(#i.#g, :vals)",
 ExpressionAttributeNames: { "#i": "info", "#g": "genres" },
 ExpressionAttributeValues: {
 ":vals": ["Comedy"],
 },
 ReturnValues: "ALL_NEW",
 });
 const updateResponse = await docClient.send(updateCommand);
 log(`Movie updated: ${JSON.stringify(updateResponse.Attributes)}`);

 /**
 * Delete a movie from the table.
 */

 log("Deleting a single movie from the table.");
 const deleteCommand = new DeleteCommand({
 TableName: tableName,
 Key: { year: 1981, title: "The Evil Dead" },
 });
 await client.send(deleteCommand);
 log("Movie deleted.");

基本功能 424

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 /**
 * Upload a batch of movies.
 */

 log("Adding movies from local JSON file.");
 const file = readFileSync(
 `${dirname}../../../../resources/sample_files/movies.json`,
);
 const movies = JSON.parse(file.toString());
 // chunkArray is a local convenience function. It takes an array and returns
 // a generator function. The generator function yields every N items.
 const movieChunks = chunkArray(movies, 25);
 // For every chunk of 25 movies, make one BatchWrite request.
 for (const chunk of movieChunks) {
 const putRequests = chunk.map((movie) => ({
 PutRequest: {
 Item: movie,
 },
 }));

 const command = new BatchWriteCommand({
 RequestItems: {
 [tableName]: putRequests,
 },
 });

 await docClient.send(command);
 }
 log("Movies added.");

 /**
 * Query for movies by year.
 */

 log("Querying for all movies from 1981.");
 const paginatedQuery = paginateQuery(
 { client: docClient },
 {
 TableName: tableName,
 //For more information about query expressions, see
 // https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
Query.html#Query.KeyConditionExpressions
 KeyConditionExpression: "#y = :y",
 // 'year' is a reserved word in DynamoDB. Indicate that it's an attribute

基本功能 425

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // name by using an expression attribute name.
 ExpressionAttributeNames: { "#y": "year" },
 ExpressionAttributeValues: { ":y": 1981 },
 ConsistentRead: true,
 },
);
 /**
 * @type { Record<string, any>[] };
 */
 const movies1981 = [];
 for await (const page of paginatedQuery) {
 movies1981.push(...page.Items);
 }
 log(`Movies: ${movies1981.map((m) => m.title).join(", ")}`);

 /**
 * Scan the table for movies between 1980 and 1990.
 */

 log("Scan for movies released between 1980 and 1990");
 // A 'Scan' operation always reads every item in the table. If your design
 requires
 // the use of 'Scan', consider indexing your table or changing your design.
 // https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/bp-query-
scan.html
 const paginatedScan = paginateScan(
 { client: docClient },
 {
 TableName: tableName,
 // Scan uses a filter expression instead of a key condition expression. Scan
 will
 // read the entire table and then apply the filter.
 FilterExpression: "#y between :y1 and :y2",
 ExpressionAttributeNames: { "#y": "year" },
 ExpressionAttributeValues: { ":y1": 1980, ":y2": 1990 },
 ConsistentRead: true,
 },
);
 /**
 * @type { Record<string, any>[] };
 */
 const movies1980to1990 = [];
 for await (const page of paginatedScan) {
 movies1980to1990.push(...page.Items);

基本功能 426

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }
 log(
 `Movies: ${movies1980to1990
 .map((m) => `${m.title} (${m.year})`)
 .join(", ")}`,
);

 /**
 * Delete the table.
 */

 const deleteTableCommand = new DeleteTableCommand({ TableName: tableName });
 log(`Deleting table ${tableName}.`);
 await client.send(deleteTableCommand);
 log("Table deleted.");
};

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的以下主
题。

• BatchWriteItem

• CreateTable

• DeleteItem

• DeleteTable

• DescribeTable

• GetItem

• PutItem

• Query

• Scan

• UpdateItem

操作

BatchExecuteStatement

以下代码示例演示了如何使用 BatchExecuteStatement。

操作 427

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/BatchWriteItemCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/CreateTableCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/DeleteItemCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/DeleteTableCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/DescribeTableCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/GetItemCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/PutItemCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/QueryCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/ScanCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/UpdateItemCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

使用 PartiQL 创建一批项目。

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";

import {
 DynamoDBDocumentClient,
 BatchExecuteStatementCommand,
} from "@aws-sdk/lib-dynamodb";

const client = new DynamoDBClient({});
const docClient = DynamoDBDocumentClient.from(client);

export const main = async () => {
 const breakfastFoods = ["Eggs", "Bacon", "Sausage"];
 const command = new BatchExecuteStatementCommand({
 Statements: breakfastFoods.map((food) => ({
 Statement: `INSERT INTO BreakfastFoods value {'Name':?}`,
 Parameters: [food],
 })),
 });

 const response = await docClient.send(command);
 console.log(response);
 return response;
};

使用 PartiQL 获取一批项目。

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";

import {
 DynamoDBDocumentClient,
 BatchExecuteStatementCommand,

操作 428

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/dynamodb#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

} from "@aws-sdk/lib-dynamodb";

const client = new DynamoDBClient({});
const docClient = DynamoDBDocumentClient.from(client);

export const main = async () => {
 const command = new BatchExecuteStatementCommand({
 Statements: [
 {
 Statement: "SELECT * FROM PepperMeasurements WHERE Unit=?",
 Parameters: ["Teaspoons"],
 ConsistentRead: true,
 },
 {
 Statement: "SELECT * FROM PepperMeasurements WHERE Unit=?",
 Parameters: ["Grams"],
 ConsistentRead: true,
 },
],
 });

 const response = await docClient.send(command);
 console.log(response);
 return response;
};

使用 PartiQL 更新一批项目。

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";

import {
 DynamoDBDocumentClient,
 BatchExecuteStatementCommand,
} from "@aws-sdk/lib-dynamodb";

const client = new DynamoDBClient({});
const docClient = DynamoDBDocumentClient.from(client);

export const main = async () => {
 const eggUpdates = [
 ["duck", "fried"],
 ["chicken", "omelette"],

操作 429

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

];
 const command = new BatchExecuteStatementCommand({
 Statements: eggUpdates.map((change) => ({
 Statement: "UPDATE Eggs SET Style=? where Variety=?",
 Parameters: [change[1], change[0]],
 })),
 });

 const response = await docClient.send(command);
 console.log(response);
 return response;
};

使用 PartiQL 删除一批项目。

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";

import {
 DynamoDBDocumentClient,
 BatchExecuteStatementCommand,
} from "@aws-sdk/lib-dynamodb";

const client = new DynamoDBClient({});
const docClient = DynamoDBDocumentClient.from(client);

export const main = async () => {
 const command = new BatchExecuteStatementCommand({
 Statements: [
 {
 Statement: "DELETE FROM Flavors where Name=?",
 Parameters: ["Grape"],
 },
 {
 Statement: "DELETE FROM Flavors where Name=?",
 Parameters: ["Strawberry"],
 },
],
 });

 const response = await docClient.send(command);
 console.log(response);
 return response;

操作 430

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考BatchExecuteStatement中的。

BatchGetItem

以下代码示例演示了如何使用 BatchGetItem。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

此示例使用文档客户端来简化在 DynamoDB 中处理项目的过程。有关 API 的详细信息，请参
阅BatchGet。

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";
import { BatchGetCommand, DynamoDBDocumentClient } from "@aws-sdk/lib-dynamodb";

const client = new DynamoDBClient({});
const docClient = DynamoDBDocumentClient.from(client);

export const main = async () => {
 const command = new BatchGetCommand({
 // Each key in this object is the name of a table. This example refers
 // to a Books table.
 RequestItems: {
 Books: {
 // Each entry in Keys is an object that specifies a primary key.
 Keys: [
 {
 Title: "How to AWS",
 },
 {
 Title: "DynamoDB for DBAs",
 },
],

操作 431

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/BatchExecuteStatementCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/dynamodb#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-lib-dynamodb/Class/BatchGetCommand/

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // Only return the "Title" and "PageCount" attributes.
 ProjectionExpression: "Title, PageCount",
 },
 },
 });

 const response = await docClient.send(command);
 console.log(response.Responses.Books);
 return response;
};

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/dynamodb-example-table-read-write-
batch.html#dynamodb-example-table-read-write-batch-reading。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考BatchGetItem中的。

BatchWriteItem

以下代码示例演示了如何使用 BatchWriteItem。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

此示例使用文档客户端来简化在 DynamoDB 中处理项目的过程。有关 API 的详细信息，请参
阅BatchWrite。

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";
import {
 BatchWriteCommand,
 DynamoDBDocumentClient,
} from "@aws-sdk/lib-dynamodb";
import { readFileSync } from "node:fs";

// These modules are local to our GitHub repository. We recommend cloning
// the project from GitHub if you want to run this example.

操作 432

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/dynamodb-example-table-read-write-batch.html#dynamodb-example-table-read-write-batch-reading
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/dynamodb-example-table-read-write-batch.html#dynamodb-example-table-read-write-batch-reading
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/dynamodb-example-table-read-write-batch.html#dynamodb-example-table-read-write-batch-reading
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/BatchGetItemCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/dynamodb#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-lib-dynamodb/Class/BatchWriteCommand/

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

// For more information, see https://github.com/awsdocs/aws-doc-sdk-examples.
import { dirnameFromMetaUrl } from "@aws-doc-sdk-examples/lib/utils/util-fs.js";
import { chunkArray } from "@aws-doc-sdk-examples/lib/utils/util-array.js";

const dirname = dirnameFromMetaUrl(import.meta.url);

const client = new DynamoDBClient({});
const docClient = DynamoDBDocumentClient.from(client);

export const main = async () => {
 const file = readFileSync(
 `${dirname}../../../../../resources/sample_files/movies.json`,
);

 const movies = JSON.parse(file.toString());

 // chunkArray is a local convenience function. It takes an array and returns
 // a generator function. The generator function yields every N items.
 const movieChunks = chunkArray(movies, 25);

 // For every chunk of 25 movies, make one BatchWrite request.
 for (const chunk of movieChunks) {
 const putRequests = chunk.map((movie) => ({
 PutRequest: {
 Item: movie,
 },
 }));

 const command = new BatchWriteCommand({
 RequestItems: {
 // An existing table is required. A composite key of 'title' and 'year' is
 recommended
 // to account for duplicate titles.
 BatchWriteMoviesTable: putRequests,
 },
 });

 await docClient.send(command);
 }
};

操作 433

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考BatchWriteItem中
的。

CreateTable

以下代码示例演示了如何使用 CreateTable。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { CreateTableCommand, DynamoDBClient } from "@aws-sdk/client-dynamodb";

const client = new DynamoDBClient({});

export const main = async () => {
 const command = new CreateTableCommand({
 TableName: "EspressoDrinks",
 // For more information about data types,
 // see https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
HowItWorks.NamingRulesDataTypes.html#HowItWorks.DataTypes and
 // https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
Programming.LowLevelAPI.html#Programming.LowLevelAPI.DataTypeDescriptors
 AttributeDefinitions: [
 {
 AttributeName: "DrinkName",
 AttributeType: "S",
 },
],
 KeySchema: [
 {
 AttributeName: "DrinkName",
 KeyType: "HASH",
 },
],
 BillingMode: "PAY_PER_REQUEST",
 });

操作 434

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/BatchWriteItemCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/dynamodb#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const response = await client.send(command);
 console.log(response);
 return response;
};

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/dynamodb-examples-using-
tables.html#dynamodb-examples-using-tables-creating-a-table。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考CreateTable中的。

DeleteItem

以下代码示例演示了如何使用 DeleteItem。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

此示例使用文档客户端来简化在 DynamoDB 中处理项目的过程。有关 API 的详细信息，请参
阅DeleteCommand。

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";
import { DynamoDBDocumentClient, DeleteCommand } from "@aws-sdk/lib-dynamodb";

const client = new DynamoDBClient({});
const docClient = DynamoDBDocumentClient.from(client);

export const main = async () => {
 const command = new DeleteCommand({
 TableName: "Sodas",
 Key: {
 Flavor: "Cola",
 },
 });

操作 435

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/dynamodb-examples-using-tables.html#dynamodb-examples-using-tables-creating-a-table
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/dynamodb-examples-using-tables.html#dynamodb-examples-using-tables-creating-a-table
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/dynamodb-examples-using-tables.html#dynamodb-examples-using-tables-creating-a-table
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/CreateTableCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/dynamodb#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-lib-dynamodb/Class/DeleteCommand/

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const response = await docClient.send(command);
 console.log(response);
 return response;
};

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/dynamodb-example-table-read-
write.html#dynamodb-example-table-read-write-deleting-an-item。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DeleteItem中的。

DeleteTable

以下代码示例演示了如何使用 DeleteTable。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { DeleteTableCommand, DynamoDBClient } from "@aws-sdk/client-dynamodb";

const client = new DynamoDBClient({});

export const main = async () => {
 const command = new DeleteTableCommand({
 TableName: "DecafCoffees",
 });

 const response = await client.send(command);
 console.log(response);
 return response;
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DeleteTable中的。

操作 436

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/dynamodb-example-table-read-write.html#dynamodb-example-table-read-write-deleting-an-item
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/dynamodb-example-table-read-write.html#dynamodb-example-table-read-write-deleting-an-item
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/dynamodb-example-table-read-write.html#dynamodb-example-table-read-write-deleting-an-item
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/DeleteItemCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/dynamodb#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/DeleteTableCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

DescribeTable

以下代码示例演示了如何使用 DescribeTable。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { DescribeTableCommand, DynamoDBClient } from "@aws-sdk/client-dynamodb";

const client = new DynamoDBClient({});

export const main = async () => {
 const command = new DescribeTableCommand({
 TableName: "Pastries",
 });

 const response = await client.send(command);
 console.log(`TABLE NAME: ${response.Table.TableName}`);
 console.log(`TABLE ITEM COUNT: ${response.Table.ItemCount}`);
 return response;
};

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/dynamodb-examples-using-
tables.html#dynamodb-examples-using-tables-describing-a-table。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DescribeTable中
的。

DescribeTimeToLive

以下代码示例演示了如何使用 DescribeTimeToLive。

适用于 JavaScript (v3) 的软件开发工具包

使用 适用于 JavaScript 的 Amazon SDK描述现有 DynamoDB 表上的 TTL 配置。

操作 437

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/dynamodb#code-examples
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/dynamodb-examples-using-tables.html#dynamodb-examples-using-tables-describing-a-table
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/dynamodb-examples-using-tables.html#dynamodb-examples-using-tables-describing-a-table
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/dynamodb-examples-using-tables.html#dynamodb-examples-using-tables-describing-a-table
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/DescribeTableCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

import { DynamoDBClient, DescribeTimeToLiveCommand } from "@aws-sdk/client-
dynamodb";

export const describeTTL = async (tableName, region) => {
 const client = new DynamoDBClient({
 region: region,
 endpoint: `https://dynamodb.${region}.amazonaws.com`
 });

 try {
 const ttlDescription = await client.send(new
 DescribeTimeToLiveCommand({ TableName: tableName }));

 if (ttlDescription.TimeToLiveDescription.TimeToLiveStatus === 'ENABLED') {
 console.log("TTL is enabled for table %s.", tableName);
 } else {
 console.log("TTL is not enabled for table %s.", tableName);
 }

 return ttlDescription;
 } catch (e) {
 console.error(`Error describing table: ${e}`);
 throw e;
 }
}

// Example usage (commented out for testing)
// describeTTL('your-table-name', 'us-east-1');

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考DescribeTimeToLive中的。

ExecuteStatement

以下代码示例演示了如何使用 ExecuteStatement。

操作 438

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/DescribeTimeToLiveCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

使用 PartiQL 创建项目。

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";

import {
 ExecuteStatementCommand,
 DynamoDBDocumentClient,
} from "@aws-sdk/lib-dynamodb";

const client = new DynamoDBClient({});
const docClient = DynamoDBDocumentClient.from(client);

export const main = async () => {
 const command = new ExecuteStatementCommand({
 Statement: `INSERT INTO Flowers value {'Name':?}`,
 Parameters: ["Rose"],
 });

 const response = await docClient.send(command);
 console.log(response);
 return response;
};

使用 PartiQL 获取项目。

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";

import {
 ExecuteStatementCommand,
 DynamoDBDocumentClient,
} from "@aws-sdk/lib-dynamodb";

const client = new DynamoDBClient({});

操作 439

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/dynamodb#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const docClient = DynamoDBDocumentClient.from(client);

export const main = async () => {
 const command = new ExecuteStatementCommand({
 Statement: "SELECT * FROM CloudTypes WHERE IsStorm=?",
 Parameters: [false],
 ConsistentRead: true,
 });

 const response = await docClient.send(command);
 console.log(response);
 return response;
};

使用 PartiQL 更新项目。

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";

import {
 ExecuteStatementCommand,
 DynamoDBDocumentClient,
} from "@aws-sdk/lib-dynamodb";

const client = new DynamoDBClient({});
const docClient = DynamoDBDocumentClient.from(client);

export const main = async () => {
 const command = new ExecuteStatementCommand({
 Statement: "UPDATE EyeColors SET IsRecessive=? where Color=?",
 Parameters: [true, "blue"],
 });

 const response = await docClient.send(command);
 console.log(response);
 return response;
};

使用 PartiQL 删除项目。

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";

操作 440

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

import {
 ExecuteStatementCommand,
 DynamoDBDocumentClient,
} from "@aws-sdk/lib-dynamodb";

const client = new DynamoDBClient({});
const docClient = DynamoDBDocumentClient.from(client);

export const main = async () => {
 const command = new ExecuteStatementCommand({
 Statement: "DELETE FROM PaintColors where Name=?",
 Parameters: ["Purple"],
 });

 const response = await docClient.send(command);
 console.log(response);
 return response;
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考ExecuteStatement中
的。

GetItem

以下代码示例演示了如何使用 GetItem。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

此示例使用文档客户端来简化在 DynamoDB 中处理项目的过程。有关 API 的详细信息，请参
阅GetCommand。

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";
import { DynamoDBDocumentClient, GetCommand } from "@aws-sdk/lib-dynamodb";

操作 441

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/ExecuteStatementCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/dynamodb#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-lib-dynamodb/Class/GetCommand/

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const client = new DynamoDBClient({});
const docClient = DynamoDBDocumentClient.from(client);

export const main = async () => {
 const command = new GetCommand({
 TableName: "AngryAnimals",
 Key: {
 CommonName: "Shoebill",
 },
 });

 const response = await docClient.send(command);
 console.log(response);
 return response;
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考GetItem中的。

ListTables

以下代码示例演示了如何使用 ListTables。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { ListTablesCommand, DynamoDBClient } from "@aws-sdk/client-dynamodb";

const client = new DynamoDBClient({});

export const main = async () => {
 const command = new ListTablesCommand({});

 const response = await client.send(command);
 console.log(response);
 return response;
};

操作 442

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/GetItemCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/dynamodb#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/dynamodb-examples-using-
tables.html#dynamodb-examples-using-tables-listing-tables。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考ListTables中的。

PutItem

以下代码示例演示了如何使用 PutItem。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

此示例使用文档客户端来简化在 DynamoDB 中处理项目的过程。有关 API 的详细信息，请参
阅PutCommand。

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";
import { PutCommand, DynamoDBDocumentClient } from "@aws-sdk/lib-dynamodb";

const client = new DynamoDBClient({});
const docClient = DynamoDBDocumentClient.from(client);

export const main = async () => {
 const command = new PutCommand({
 TableName: "HappyAnimals",
 Item: {
 CommonName: "Shiba Inu",
 },
 });

 const response = await docClient.send(command);
 console.log(response);
 return response;
};

操作 443

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/dynamodb-examples-using-tables.html#dynamodb-examples-using-tables-listing-tables
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/dynamodb-examples-using-tables.html#dynamodb-examples-using-tables-listing-tables
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/dynamodb-examples-using-tables.html#dynamodb-examples-using-tables-listing-tables
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/ListTablesCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/dynamodb#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-lib-dynamodb/Class/PutCommand/

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考PutItem中的。

Query

以下代码示例演示了如何使用 Query。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

此示例使用文档客户端来简化在 DynamoDB 中处理项目的过程。有关 API 的详细信息，请参
阅QueryCommand。

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";
import { QueryCommand, DynamoDBDocumentClient } from "@aws-sdk/lib-dynamodb";

const client = new DynamoDBClient({});
const docClient = DynamoDBDocumentClient.from(client);

export const main = async () => {
 const command = new QueryCommand({
 TableName: "CoffeeCrop",
 KeyConditionExpression:
 "OriginCountry = :originCountry AND RoastDate > :roastDate",
 ExpressionAttributeValues: {
 ":originCountry": "Ethiopia",
 ":roastDate": "2023-05-01",
 },
 ConsistentRead: true,
 });

 const response = await docClient.send(command);
 console.log(response);
 return response;
};

操作 444

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/PutItemCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/dynamodb#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-lib-dynamodb/Class/QueryCommand/

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/dynamodb-example-query-
scan.html#dynamodb-example-table-query-scan-querying。

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的 Query。

Scan

以下代码示例演示了如何使用 Scan。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

此示例使用文档客户端来简化在 DynamoDB 中处理项目的过程。有关 API 的详细信息，请参
阅ScanCommand。

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";
import { DynamoDBDocumentClient, ScanCommand } from "@aws-sdk/lib-dynamodb";

const client = new DynamoDBClient({});
const docClient = DynamoDBDocumentClient.from(client);

export const main = async () => {
 const command = new ScanCommand({
 ProjectionExpression: "#Name, Color, AvgLifeSpan",
 ExpressionAttributeNames: { "#Name": "Name" },
 TableName: "Birds",
 });

 const response = await docClient.send(command);
 for (const bird of response.Items) {
 console.log(`${bird.Name} - (${bird.Color}, ${bird.AvgLifeSpan})`);
 }
 return response;
};

操作 445

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/dynamodb-example-query-scan.html#dynamodb-example-table-query-scan-querying
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/dynamodb-example-query-scan.html#dynamodb-example-table-query-scan-querying
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/dynamodb-example-query-scan.html#dynamodb-example-table-query-scan-querying
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/QueryCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/dynamodb#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-lib-dynamodb/Class/ScanCommand/

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的 Scan。

UpdateItem

以下代码示例演示了如何使用 UpdateItem。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

此示例使用文档客户端来简化在 DynamoDB 中处理项目的过程。有关 API 的详细信息，请参
阅UpdateCommand。

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";
import { DynamoDBDocumentClient, UpdateCommand } from "@aws-sdk/lib-dynamodb";

const client = new DynamoDBClient({});
const docClient = DynamoDBDocumentClient.from(client);

export const main = async () => {
 const command = new UpdateCommand({
 TableName: "Dogs",
 Key: {
 Breed: "Labrador",
 },
 UpdateExpression: "set Color = :color",
 ExpressionAttributeValues: {
 ":color": "black",
 },
 ReturnValues: "ALL_NEW",
 });

 const response = await docClient.send(command);
 console.log(response);
 return response;

操作 446

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/ScanCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/dynamodb#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-lib-dynamodb/Class/UpdateCommand/

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考UpdateItem中的。

UpdateTimeToLive

以下代码示例演示了如何使用 UpdateTimeToLive。

适用于 JavaScript (v3) 的软件开发工具包

在现有 DynamoDB 表上启用 TTL。

import { DynamoDBClient, UpdateTimeToLiveCommand } from "@aws-sdk/client-dynamodb";

export const enableTTL = async (tableName, ttlAttribute, region = 'us-east-1') => {

 const client = new DynamoDBClient({
 region: region,
 endpoint: `https://dynamodb.${region}.amazonaws.com`
 });

 const params = {
 TableName: tableName,
 TimeToLiveSpecification: {
 Enabled: true,
 AttributeName: ttlAttribute
 }
 };

 try {
 const response = await client.send(new UpdateTimeToLiveCommand(params));
 if (response.$metadata.httpStatusCode === 200) {
 console.log(`TTL enabled successfully for table ${tableName}, using
 attribute name ${ttlAttribute}.`);
 } else {
 console.log(`Failed to enable TTL for table ${tableName}, response
 object: ${response}`);
 }
 return response;
 } catch (e) {
 console.error(`Error enabling TTL: ${e}`);
 throw e;

操作 447

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/UpdateItemCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }
};

// Example usage (commented out for testing)
// enableTTL('ExampleTable', 'exampleTtlAttribute');

在现有 DynamoDB 表上禁用 TTL。

import { DynamoDBClient, UpdateTimeToLiveCommand } from "@aws-sdk/client-dynamodb";

export const disableTTL = async (tableName, ttlAttribute, region = 'us-east-1') => {

 const client = new DynamoDBClient({
 region: region,
 endpoint: `https://dynamodb.${region}.amazonaws.com`
 });

 const params = {
 TableName: tableName,
 TimeToLiveSpecification: {
 Enabled: false,
 AttributeName: ttlAttribute
 }
 };

 try {
 const response = await client.send(new UpdateTimeToLiveCommand(params));
 if (response.$metadata.httpStatusCode === 200) {
 console.log(`TTL disabled successfully for table ${tableName}, using
 attribute name ${ttlAttribute}.`);
 } else {
 console.log(`Failed to disable TTL for table ${tableName}, response
 object: ${response}`);
 }
 return response;
 } catch (e) {
 console.error(`Error disabling TTL: ${e}`);
 throw e;
 }
};

// Example usage (commented out for testing)
// disableTTL('ExampleTable', 'exampleTtlAttribute');

操作 448

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考UpdateTimeToLive中的。

场景

构建应用程序以将数据提交到 DynamoDB 表

以下代码示例演示如何构建将数据提交到 Amazon DynamoDB 表并在用户更新该表时通知您的应用程
序。

适用于 JavaScript (v3) 的软件开发工具包

此示例展示了如何构建一个应用程序，使用户能够向 Amazon DynamoDB 表提交数据，并使用
Amazon Simple Notification Service (Amazon SNS) 向管理员发送文本消息。

有关如何设置和运行的完整源代码和说明，请参阅上的完整示例GitHub。

该示例也可在 适用于 JavaScript 的 Amazon SDK v3 开发人员指南中找到。

本示例中使用的服务

• DynamoDB

• Amazon SNS

将多个值与单个属性进行比较

以下代码示例演示如何在 DynamoDB 中将多个值与单个属性进行比较。

• 使用 IN 运算符将多个值与单个属性进行比较。

• 将 IN 运算符与多个 OR 条件进行比较。

• 了解使用 IN 对性能和表达式复杂性的好处。

适用于 JavaScript (v3) 的软件开发工具包

使用将多个值与单个属性进行比较 适用于 JavaScript 的 Amazon SDK。

const { DynamoDBClient } = require("@aws-sdk/client-dynamodb");
const {
 DynamoDBDocumentClient,
 ScanCommand,
 QueryCommand

场景 449

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/UpdateTimeToLiveCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/submit-data-app
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/cross-service-example-submitting-data.html

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

} = require("@aws-sdk/lib-dynamodb");

/**
 * Query or scan a DynamoDB table to find items where an attribute matches any value
 from a list.
 *
 * This function demonstrates the use of the IN operator to compare a single
 attribute
 * against multiple possible values, which is more efficient than using multiple OR
 conditions.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {string} attributeName - The name of the attribute to compare against the
 values list
 * @param {Array} valuesList - List of values to compare the attribute against
 * @param {string} [partitionKeyName] - Optional name of the partition key attribute
 for query operations
 * @param {string} [partitionKeyValue] - Optional value of the partition key to
 query
 * @returns {Promise<Object>} - The response from DynamoDB containing the matching
 items
 */
async function compareMultipleValues(
 config,
 tableName,
 attributeName,
 valuesList,
 partitionKeyName,
 partitionKeyValue
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Create the filter expression using the IN operator
 const filterExpression = `${attributeName} IN (${valuesList.map((_, index) =>
 `:val${index}`).join(', ')})`;

 // Create expression attribute values for the values list
 const expressionAttributeValues = valuesList.reduce((acc, val, index) => {
 acc[`:val${index}`] = val;
 return acc;
 }, {});

场景 450

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // If partition key is provided, perform a query operation
 if (partitionKeyName && partitionKeyValue) {
 const keyCondition = `${partitionKeyName} = :partitionKey`;
 expressionAttributeValues[':partitionKey'] = partitionKeyValue;

 // Initialize array to collect all items
 let allItems = [];
 let lastEvaluatedKey;

 // Use pagination to get all results
 do {
 const params = {
 TableName: tableName,
 KeyConditionExpression: keyCondition,
 FilterExpression: filterExpression,
 ExpressionAttributeValues: expressionAttributeValues
 };

 // Add ExclusiveStartKey if we have a lastEvaluatedKey from a previous query
 if (lastEvaluatedKey) {
 params.ExclusiveStartKey = lastEvaluatedKey;
 }

 const response = await docClient.send(new QueryCommand(params));

 // Add the items from this page to our collection
 if (response.Items && response.Items.length > 0) {
 allItems = [...allItems, ...response.Items];
 }

 // Get the key for the next page of results
 lastEvaluatedKey = response.LastEvaluatedKey;
 } while (lastEvaluatedKey);

 // Return the complete result
 return {
 Items: allItems,
 Count: allItems.length
 };
 } else {
 // Otherwise, perform a scan operation
 // Initialize array to collect all items
 let allItems = [];

场景 451

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 let lastEvaluatedKey;

 // Use pagination to get all results
 do {
 const params = {
 TableName: tableName,
 FilterExpression: filterExpression,
 ExpressionAttributeValues: expressionAttributeValues
 };

 // Add ExclusiveStartKey if we have a lastEvaluatedKey from a previous scan
 if (lastEvaluatedKey) {
 params.ExclusiveStartKey = lastEvaluatedKey;
 }

 const response = await docClient.send(new ScanCommand(params));

 // Add the items from this page to our collection
 if (response.Items && response.Items.length > 0) {
 allItems = [...allItems, ...response.Items];
 }

 // Get the key for the next page of results
 lastEvaluatedKey = response.LastEvaluatedKey;
 } while (lastEvaluatedKey);

 // Return the complete result
 return {
 Items: allItems,
 Count: allItems.length
 };
 }
}

/**
 * Alternative implementation using multiple OR conditions instead of the IN
 operator.
 *
 * This function is provided for comparison to show why using the IN operator is
 preferable.
 * With many values, this approach becomes verbose and less efficient.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table

场景 452

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * @param {string} attributeName - The name of the attribute to compare against the
 values list
 * @param {Array} valuesList - List of values to compare the attribute against
 * @param {string} [partitionKeyName] - Optional name of the partition key attribute
 for query operations
 * @param {string} [partitionKeyValue] - Optional value of the partition key to
 query
 * @returns {Promise<Object>} - The response from DynamoDB containing the matching
 items
 */
async function compareWithOrConditions(
 config,
 tableName,
 attributeName,
 valuesList,
 partitionKeyName,
 partitionKeyValue
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // If no values provided, return empty result
 if (!valuesList || valuesList.length === 0) {
 return {
 Items: [],
 Count: 0
 };
 }

 // Create the filter expression using multiple OR conditions
 const filterConditions = valuesList.map((_, index) => `${attributeName} = :val
${index}`);
 const filterExpression = filterConditions.join(' OR ');

 // Create expression attribute values for the values list
 const expressionAttributeValues = valuesList.reduce((acc, val, index) => {
 acc[`:val${index}`] = val;
 return acc;
 }, {});

 // If partition key is provided, perform a query operation
 if (partitionKeyName && partitionKeyValue) {
 const keyCondition = `${partitionKeyName} = :partitionKey`;

场景 453

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 expressionAttributeValues[':partitionKey'] = partitionKeyValue;

 // Initialize array to collect all items
 let allItems = [];
 let lastEvaluatedKey;

 // Use pagination to get all results
 do {
 const params = {
 TableName: tableName,
 KeyConditionExpression: keyCondition,
 FilterExpression: filterExpression,
 ExpressionAttributeValues: expressionAttributeValues
 };

 // Add ExclusiveStartKey if we have a lastEvaluatedKey from a previous query
 if (lastEvaluatedKey) {
 params.ExclusiveStartKey = lastEvaluatedKey;
 }

 const response = await docClient.send(new QueryCommand(params));

 // Add the items from this page to our collection
 if (response.Items && response.Items.length > 0) {
 allItems = [...allItems, ...response.Items];
 }

 // Get the key for the next page of results
 lastEvaluatedKey = response.LastEvaluatedKey;
 } while (lastEvaluatedKey);

 // Return the complete result
 return {
 Items: allItems,
 Count: allItems.length
 };
 } else {
 // Otherwise, perform a scan operation
 // Initialize array to collect all items
 let allItems = [];
 let lastEvaluatedKey;

 // Use pagination to get all results
 do {

场景 454

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const params = {
 TableName: tableName,
 FilterExpression: filterExpression,
 ExpressionAttributeValues: expressionAttributeValues
 };

 // Add ExclusiveStartKey if we have a lastEvaluatedKey from a previous scan
 if (lastEvaluatedKey) {
 params.ExclusiveStartKey = lastEvaluatedKey;
 }

 const response = await docClient.send(new ScanCommand(params));

 // Add the items from this page to our collection
 if (response.Items && response.Items.length > 0) {
 allItems = [...allItems, ...response.Items];
 }

 // Get the key for the next page of results
 lastEvaluatedKey = response.LastEvaluatedKey;
 } while (lastEvaluatedKey);

 // Return the complete result
 return {
 Items: allItems,
 Count: allItems.length
 };
 }
}

将多个值与进行比较的用法示例 适用于 JavaScript 的 Amazon SDK。

/**
 * Example of how to use the compareMultipleValues function.
 */
async function exampleUsage() {
 // Example parameters
 const config = { region: "us-west-2" };
 const tableName = "Products";
 const attributeName = "Category";
 const valuesList = ["Electronics", "Computers", "Accessories"];

场景 455

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 console.log(`Searching for products in any of these categories:
 ${valuesList.join(', ')}`);

 try {
 // Using the IN operator (recommended approach)
 console.log("\nApproach 1: Using the IN operator");
 const response = await compareMultipleValues(
 config,
 tableName,
 attributeName,
 valuesList
);

 console.log(`Found ${response.Count} products in the specified categories`);

 // Using multiple OR conditions (alternative approach)
 console.log("\nApproach 2: Using multiple OR conditions");
 const response2 = await compareWithOrConditions(
 config,
 tableName,
 attributeName,
 valuesList
);

 console.log(`Found ${response2.Count} products in the specified categories`);

 // Example with a query operation
 console.log("\nQuerying a specific manufacturer's products in multiple
 categories");
 const partitionKeyName = "Manufacturer";
 const partitionKeyValue = "Acme";

 const response3 = await compareMultipleValues(
 config,
 tableName,
 attributeName,
 valuesList,
 partitionKeyName,
 partitionKeyValue
);

 console.log(`Found ${response3.Count} Acme products in the specified
 categories`);

场景 456

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // Explain the benefits of using the IN operator
 console.log("\nBenefits of using the IN operator:");
 console.log("1. More concise expression compared to multiple OR conditions");
 console.log("2. Better readability and maintainability");
 console.log("3. Potentially better performance with large value lists");
 console.log("4. Simpler code that's less prone to errors");
 console.log("5. Easier to modify when adding or removing values");

 } catch (error) {
 console.error("Error:", error);
 }
}

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的以下主
题。

• Query

• Scan

有条件地更新项目的 TTL

以下代码示例演示如何有条件地更新项目的 TTL。

适用于 JavaScript (v3) 的软件开发工具包

使用条件更新表中现有 DynamoDB 项目的 TTL。

import { DynamoDBClient, UpdateItemCommand } from "@aws-sdk/client-dynamodb";
import { marshall, unmarshall } from "@aws-sdk/util-dynamodb";

export const updateItemConditional = async (tableName, partitionKey, sortKey, region
 = 'us-east-1', newAttribute = 'default-value') => {
 const client = new DynamoDBClient({
 region: region,
 endpoint: `https://dynamodb.${region}.amazonaws.com`
 });

 const currentTime = Math.floor(Date.now() / 1000);

 const params = {
 TableName: tableName,
 Key: marshall({

场景 457

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/QueryCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/ScanCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 artist: partitionKey,
 album: sortKey
 }),
 UpdateExpression: "SET newAttribute = :newAttribute",
 ConditionExpression: "expireAt > :expiration",
 ExpressionAttributeValues: marshall({
 ':newAttribute': newAttribute,
 ':expiration': currentTime
 }),
 ReturnValues: "ALL_NEW"
 };

 try {
 const response = await client.send(new UpdateItemCommand(params));
 const responseData = unmarshall(response.Attributes);
 console.log("Item updated successfully: ", responseData);
 return responseData;
 } catch (error) {
 if (error.name === "ConditionalCheckFailedException") {
 console.log("Condition check failed: Item's 'expireAt' is expired.");
 } else {
 console.error("Error updating item: ", error);
 }
 throw error;
 }
};

// Example usage (commented out for testing)
// updateItemConditional('your-table-name', 'your-partition-key-value', 'your-sort-
key-value');

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考UpdateItem中的。

对表达式运算符进行计数

以下代码示例演示如何在 DynamoDB 中对表达式运算符进行计数。

• 了解 DynamoDB 的 300 个运算符限制。

• 对复杂表达式中的运算符进行计数。

• 优化表达式以保持在限制范围内。

场景 458

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/UpdateItemCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

演示使用 适用于 JavaScript 的 Amazon SDK对表达式运算符进行计数。

const { DynamoDBClient } = require("@aws-sdk/client-dynamodb");
const {
 DynamoDBDocumentClient,
 UpdateCommand,
 QueryCommand
} = require("@aws-sdk/lib-dynamodb");

/**
 * Create a complex filter expression with a specified number of conditions.
 *
 * This function demonstrates how to generate a complex expression with
 * a specific number of operators to test the 300 operator limit.
 *
 * @param {number} conditionsCount - Number of conditions to include
 * @param {boolean} useAnd - Whether to use AND (true) or OR (false) between
 conditions
 * @returns {Object} - Object containing the filter expression and attribute values
 */
function createComplexFilterExpression(conditionsCount, useAnd = true) {
 // Initialize the expression parts and attribute values
 const conditions = [];
 const expressionAttributeValues = {};

 // Generate the specified number of conditions
 for (let i = 0; i < conditionsCount; i++) {
 // Alternate between different comparison operators for variety
 let condition;
 const valueKey = `:val${i}`;

 switch (i % 5) {
 case 0:
 condition = `attribute${i} = ${valueKey}`;
 expressionAttributeValues[valueKey] = `value${i}`;
 break;
 case 1:
 condition = `attribute${i} > ${valueKey}`;
 expressionAttributeValues[valueKey] = i;
 break;
 case 2:
 condition = `attribute${i} < ${valueKey}`;

场景 459

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 expressionAttributeValues[valueKey] = i * 10;
 break;
 case 3:
 condition = `contains(attribute${i}, ${valueKey})`;
 expressionAttributeValues[valueKey] = `substring${i}`;
 break;
 case 4:
 condition = `attribute_exists(attribute${i})`;
 break;
 }

 conditions.push(condition);
 }

 // Join the conditions with AND or OR
 const operator = useAnd ? " AND " : " OR ";
 const filterExpression = conditions.join(operator);

 // Calculate the operator count
 // Each condition has 1 operator (=, >, <, contains, attribute_exists)
 // Each AND or OR between conditions is 1 operator
 const operatorCount = conditionsCount + (conditionsCount > 0 ? conditionsCount -
 1 : 0);

 return {
 filterExpression,
 expressionAttributeValues,
 operatorCount
 };
}

/**
 * Create a complex update expression with a specified number of operations.
 *
 * This function demonstrates how to generate a complex update expression with
 * a specific number of operators to test the 300 operator limit.
 *
 * @param {number} operationsCount - Number of operations to include
 * @returns {Object} - Object containing the update expression and attribute values
 */
function createComplexUpdateExpression(operationsCount) {
 // Initialize the expression parts and attribute values
 const setOperations = [];
 const expressionAttributeValues = {};

场景 460

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // Generate the specified number of SET operations
 for (let i = 0; i < operationsCount; i++) {
 // Alternate between different types of SET operations
 let operation;
 const valueKey = `:val${i}`;

 switch (i % 3) {
 case 0:
 // Simple assignment (1 operator: =)
 operation = `attribute${i} = ${valueKey}`;
 expressionAttributeValues[valueKey] = `value${i}`;
 break;
 case 1:
 // Addition (2 operators: = and +)
 operation = `attribute${i} = attribute${i} + ${valueKey}`;
 expressionAttributeValues[valueKey] = i;
 break;
 case 2:
 // Conditional assignment with if_not_exists (2 operators: = and
 if_not_exists)
 operation = `attribute${i} = if_not_exists(attribute${i}, ${valueKey})`;
 expressionAttributeValues[valueKey] = i * 10;
 break;
 }

 setOperations.push(operation);
 }

 // Create the update expression
 const updateExpression = `SET ${setOperations.join(", ")}`;

 // Calculate the operator count
 // Each operation has 1-2 operators as noted above
 let operatorCount = 0;
 for (let i = 0; i < operationsCount; i++) {
 operatorCount += (i % 3 === 0) ? 1 : 2;
 }

 return {
 updateExpression,
 expressionAttributeValues,
 operatorCount
 };

场景 461

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

}

/**
 * Test the operator limit by attempting an operation with a complex expression.
 *
 * This function demonstrates what happens when an expression approaches or
 * exceeds the 300 operator limit.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {number} operatorCount - Target number of operators to include
 * @returns {Promise<Object>} - Result of the operation attempt
 */
async function testOperatorLimit(
 config,
 tableName,
 key,
 operatorCount
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Create a complex update expression with the specified operator count
 const { updateExpression, expressionAttributeValues, operatorCount: actualCount }
 =
 createComplexUpdateExpression(Math.ceil(operatorCount / 1.5)); // Adjust to get
 close to target count

 console.log(`Generated update expression with approximately ${actualCount}
 operators`);

 // Define the update parameters
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: updateExpression,
 ExpressionAttributeValues: expressionAttributeValues,
 ReturnValues: "UPDATED_NEW"
 };

 try {
 // Attempt the update operation

场景 462

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const response = await docClient.send(new UpdateCommand(params));
 return {
 success: true,
 message: `Operation succeeded with ${actualCount} operators`,
 data: response
 };
 } catch (error) {
 // Check if the error is due to exceeding the operator limit
 if (error.name === "ValidationException" &&
 error.message.includes("too many operators")) {
 return {
 success: false,
 message: `Operation failed: ${error.message}`,
 operatorCount: actualCount
 };
 }

 // Return other errors
 return {
 success: false,
 message: `Operation failed: ${error.message}`,
 error
 };
 }
}

/**
 * Break down a complex expression into multiple simpler operations.
 *
 * This function demonstrates how to handle expressions that would exceed
 * the 300 operator limit by breaking them into multiple operations.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {number} totalOperations - Total number of operations to perform
 * @returns {Promise<Object>} - Result of the operations
 */
async function breakDownComplexExpression(
 config,
 tableName,
 key,
 totalOperations
) {

场景 463

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Calculate how many operations we can safely include in each batch
 // Using 150 as a conservative limit (well below 300)
 const operationsPerBatch = 100;
 const batchCount = Math.ceil(totalOperations / operationsPerBatch);

 console.log(`Breaking down ${totalOperations} operations into ${batchCount}
 batches`);

 const results = [];

 // Process each batch
 for (let batch = 0; batch < batchCount; batch++) {
 // Calculate the operations for this batch
 const batchStart = batch * operationsPerBatch;
 const batchEnd = Math.min(batchStart + operationsPerBatch, totalOperations);
 const batchSize = batchEnd - batchStart;

 console.log(`Processing batch ${batch + 1}/${batchCount} with ${batchSize}
 operations`);

 // Create an update expression for this batch
 const { updateExpression, expressionAttributeValues, operatorCount } =
 createComplexUpdateExpression(batchSize);

 // Define the update parameters
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: updateExpression,
 ExpressionAttributeValues: expressionAttributeValues,
 ReturnValues: "UPDATED_NEW"
 };

 try {
 // Perform the update operation for this batch
 const response = await docClient.send(new UpdateCommand(params));

 results.push({
 batch: batch + 1,
 success: true,

场景 464

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 operatorCount,
 attributes: response.Attributes
 });
 } catch (error) {
 results.push({
 batch: batch + 1,
 success: false,
 operatorCount,
 error: error.message
 });

 // Stop processing if an error occurs
 break;
 }
 }

 return {
 totalBatches: batchCount,
 results
 };
}

/**
 * Count operators in a DynamoDB expression based on the rules in the documentation.
 *
 * This function demonstrates how operators are counted according to the
 * DynamoDB documentation.
 *
 * @param {string} expression - The DynamoDB expression to analyze
 * @returns {Object} - Breakdown of operator counts
 */
function countOperatorsInExpression(expression) {
 // Initialize counters for different operator types
 const counts = {
 comparisonOperators: 0,
 logicalOperators: 0,
 functions: 0,
 arithmeticOperators: 0,
 specialOperators: 0,
 total: 0
 };

 // Count comparison operators (=, <>, <, <=, >, >=)
 const comparisonRegex = /[^<>]=[^=]|<>|<=|>=|[^<]>[^=]|[^>]<[^=]/g;

场景 465

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const comparisonMatches = expression.match(comparisonRegex) || [];
 counts.comparisonOperators = comparisonMatches.length;

 // Count logical operators (AND, OR, NOT)
 const andMatches = expression.match(/\bAND\b/g) || [];
 const orMatches = expression.match(/\bOR\b/g) || [];
 const notMatches = expression.match(/\bNOT\b/g) || [];
 counts.logicalOperators = andMatches.length + orMatches.length +
 notMatches.length;

 // Count functions (attribute_exists, attribute_not_exists, attribute_type,
 begins_with, contains, size)
 const functionRegex = /\b(attribute_exists|attribute_not_exists|attribute_type|
begins_with|contains|size|if_not_exists)\(/g;
 const functionMatches = expression.match(functionRegex) || [];
 counts.functions = functionMatches.length;

 // Count arithmetic operators (+ and -)
 const arithmeticMatches = expression.match(/[a-zA-Z0-9_)\]]\s*[\+\-]\s*[a-zA-
Z0-9_(:]/g) || [];
 counts.arithmeticOperators = arithmeticMatches.length;

 // Count special operators (BETWEEN, IN)
 const betweenMatches = expression.match(/\bBETWEEN\b/g) || [];
 const inMatches = expression.match(/\bIN\b/g) || [];
 counts.specialOperators = betweenMatches.length + inMatches.length;

 // Add extra operators for BETWEEN (each BETWEEN includes an AND)
 counts.logicalOperators += betweenMatches.length;

 // Calculate total
 counts.total = counts.comparisonOperators +
 counts.logicalOperators +
 counts.functions +
 counts.arithmeticOperators +
 counts.specialOperators;

 return counts;
}

表达式运算符计数的用法示例 适用于 JavaScript 的 Amazon SDK。

场景 466

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

/**
 * Example of how to work with expression operator counting.
 */
async function exampleUsage() {
 // Example parameters
 const config = { region: "us-west-2" };
 const tableName = "Products";
 const key = { ProductId: "P12345" };

 console.log("Demonstrating DynamoDB expression operator counting and the 300
 operator limit");

 try {
 // Example 1: Analyze a simple expression
 console.log("\nExample 1: Analyzing a simple expression");
 const simpleExpression = "Price = :price AND Rating > :rating AND Category IN
 (:cat1, :cat2, :cat3)";
 const simpleCount = countOperatorsInExpression(simpleExpression);

 console.log(`Expression: ${simpleExpression}`);
 console.log("Operator count breakdown:");
 console.log(`- Comparison operators: ${simpleCount.comparisonOperators}`);
 console.log(`- Logical operators: ${simpleCount.logicalOperators}`);
 console.log(`- Functions: ${simpleCount.functions}`);
 console.log(`- Arithmetic operators: ${simpleCount.arithmeticOperators}`);
 console.log(`- Special operators: ${simpleCount.specialOperators}`);
 console.log(`- Total operators: ${simpleCount.total}`);

 // Example 2: Analyze a complex expression
 console.log("\nExample 2: Analyzing a complex expression");
 const complexExpression =
 "(attribute_exists(Category) AND Size BETWEEN :min AND :max) OR " +
 "(Price > :price AND contains(Description, :keyword) AND " +
 "(Rating >= :minRating OR Reviews > :minReviews))";
 const complexCount = countOperatorsInExpression(complexExpression);

 console.log(`Expression: ${complexExpression}`);
 console.log("Operator count breakdown:");
 console.log(`- Comparison operators: ${complexCount.comparisonOperators}`);
 console.log(`- Logical operators: ${complexCount.logicalOperators}`);
 console.log(`- Functions: ${complexCount.functions}`);
 console.log(`- Arithmetic operators: ${complexCount.arithmeticOperators}`);
 console.log(`- Special operators: ${complexCount.specialOperators}`);

场景 467

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 console.log(`- Total operators: ${complexCount.total}`);

 // Example 3: Test approaching the operator limit
 console.log("\nExample 3: Testing an expression approaching the operator
 limit");
 const approachingLimit = await testOperatorLimit(config, tableName, key, 290);
 console.log(approachingLimit.message);

 // Example 4: Test exceeding the operator limit
 console.log("\nExample 4: Testing an expression exceeding the operator limit");
 const exceedingLimit = await testOperatorLimit(config, tableName, key, 310);
 console.log(exceedingLimit.message);

 // Example 5: Breaking down a complex expression
 console.log("\nExample 5: Breaking down a complex expression into multiple
 operations");
 const breakdownResult = await breakDownComplexExpression(config, tableName, key,
 500);
 console.log(`Processed ${breakdownResult.results.length} of
 ${breakdownResult.totalBatches} batches`);

 // Explain the operator counting rules
 console.log("\nKey points about DynamoDB expression operator counting:");
 console.log("1. The maximum number of operators in any expression is 300");
 console.log("2. Each comparison operator (=, <>, <, <=, >, >=) counts as 1
 operator");
 console.log("3. Each logical operator (AND, OR, NOT) counts as 1 operator");
 console.log("4. Each function call (attribute_exists, contains, etc.) counts as
 1 operator");
 console.log("5. Each arithmetic operator (+ or -) counts as 1 operator");
 console.log("6. BETWEEN counts as 2 operators (BETWEEN itself and the AND within
 it)");
 console.log("7. IN counts as 1 operator regardless of the number of values");
 console.log("8. Parentheses for grouping and attribute paths don't count as
 operators");
 console.log("9. When you exceed the limit, the error always reports '301
 operators'");
 console.log("10. For complex operations, break them into multiple smaller
 operations");

 } catch (error) {
 console.error("Error:", error);
 }
}

场景 468

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考UpdateItem中的。

创建无服务器应用程序来管理照片

以下代码示例演示如何创建无服务器应用程序，让用户能够使用标签管理照片。

适用于 JavaScript (v3) 的软件开发工具包

演示如何开发照片资产管理应用程序，该应用程序使用 Amazon Rekognition 检测图像中的标签并
将其存储以供日后检索。

有关如何设置和运行的完整源代码和说明，请参阅上的完整示例 GitHub。

要深入了解这个例子的起源，请参阅 Amazon 社区上的博文。

本示例中使用的服务

• API Gateway

• DynamoDB

• Lambda

• Amazon Rekognition

• Amazon S3

• Amazon SNS

创建启用了热吞吐量的表

以下代码示例演示如何创建一个启用了热吞吐量的表。

适用于 JavaScript (v3) 的软件开发工具包

使用 适用于 JavaScript 的 Amazon SDK通过热吞吐量设置创建 DynamoDB 表。

import { DynamoDBClient, CreateTableCommand } from "@aws-sdk/client-dynamodb";

export async function createDynamoDBTableWithWarmThroughput(
 tableName,
 partitionKey,
 sortKey,
 miscKeyAttr,

场景 469

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/UpdateItemCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/photo-asset-manager
https://community.aws/posts/cloud-journeys/01-serverless-image-recognition-app

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 nonKeyAttr,
 tableProvisionedReadUnits,
 tableProvisionedWriteUnits,
 tableWarmReads,
 tableWarmWrites,
 indexName,
 indexProvisionedReadUnits,
 indexProvisionedWriteUnits,
 indexWarmReads,
 indexWarmWrites,
 region = "us-east-1"
) {
 try {
 const ddbClient = new DynamoDBClient({ region: region });
 const command = new CreateTableCommand({
 TableName: tableName,
 AttributeDefinitions: [
 { AttributeName: partitionKey, AttributeType: "S" },
 { AttributeName: sortKey, AttributeType: "S" },
 { AttributeName: miscKeyAttr, AttributeType: "N" },
],
 KeySchema: [
 { AttributeName: partitionKey, KeyType: "HASH" },
 { AttributeName: sortKey, KeyType: "RANGE" },
],
 ProvisionedThroughput: {
 ReadCapacityUnits: tableProvisionedReadUnits,
 WriteCapacityUnits: tableProvisionedWriteUnits,
 },
 WarmThroughput: {
 ReadUnitsPerSecond: tableWarmReads,
 WriteUnitsPerSecond: tableWarmWrites,
 },
 GlobalSecondaryIndexes: [
 {
 IndexName: indexName,
 KeySchema: [
 { AttributeName: sortKey, KeyType: "HASH" },
 { AttributeName: miscKeyAttr, KeyType: "RANGE" },
],
 Projection: {
 ProjectionType: "INCLUDE",
 NonKeyAttributes: [nonKeyAttr],
 },

场景 470

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 ProvisionedThroughput: {
 ReadCapacityUnits: indexProvisionedReadUnits,
 WriteCapacityUnits: indexProvisionedWriteUnits,
 },
 WarmThroughput: {
 ReadUnitsPerSecond: indexWarmReads,
 WriteUnitsPerSecond: indexWarmWrites,
 },
 },
],
 });
 const response = await ddbClient.send(command);
 console.log(response);
 return response;
 } catch (error) {
 console.error(`Error creating table: ${error}`);
 throw error;
 }
}

// Example usage (commented out for testing)
/*
createDynamoDBTableWithWarmThroughput(
 'example-table',
 'pk',
 'sk',
 'gsiKey',
 'data',
 10, 10, 5, 5,
 'example-index',
 5, 5, 2, 2
);
*/

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考CreateTable中的。

创建设置了 TTL 的项目

以下代码示例演示如何创建具有 TTL 的项目。

场景 471

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/CreateTableCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

import { DynamoDBClient, PutItemCommand } from "@aws-sdk/client-dynamodb";

export function createDynamoDBItem(table_name, region, partition_key, sort_key) {
 const client = new DynamoDBClient({
 region: region,
 endpoint: `https://dynamodb.${region}.amazonaws.com`
 });

 // Get the current time in epoch second format
 const current_time = Math.floor(new Date().getTime() / 1000);

 // Calculate the expireAt time (90 days from now) in epoch second format
 const expire_at = Math.floor((new Date().getTime() + 90 * 24 * 60 * 60 * 1000) /
 1000);

 // Create DynamoDB item
 const item = {
 'partitionKey': {'S': partition_key},
 'sortKey': {'S': sort_key},
 'createdAt': {'N': current_time.toString()},
 'expireAt': {'N': expire_at.toString()}
 };

 const putItemCommand = new PutItemCommand({
 TableName: table_name,
 Item: item,
 ProvisionedThroughput: {
 ReadCapacityUnits: 1,
 WriteCapacityUnits: 1,
 },
 });

 client.send(putItemCommand, function(err, data) {
 if (err) {
 console.log("Exception encountered when creating item %s, here's what
 happened: ", data, err);
 throw err;
 } else {
 console.log("Item created successfully: %s.", data);
 return data;
 }
 });

场景 472

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

}

// Example usage (commented out for testing)
// createDynamoDBItem('your-table-name', 'us-east-1', 'your-partition-key-value',
 'your-sort-key-value');

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考PutItem中的。

使用 PartiQL DELETE 删除数据

以下代码示例演示如何使用 PartiQL DELETE 语句删除数据。

适用于 JavaScript (v3) 的软件开发工具包

使用 partiQL DELETE 语句从 DynamoDB 表中删除项目。 适用于 JavaScript 的 Amazon SDK

/**
 * This example demonstrates how to delete items from a DynamoDB table using
 PartiQL.
 * It shows different ways to delete documents with various index types.
 */
import { DynamoDBClient } from "@aws-sdk/client-dynamodb";
import {
 DynamoDBDocumentClient,
 ExecuteStatementCommand,
 BatchExecuteStatementCommand,
} from "@aws-sdk/lib-dynamodb";

/**
 * Delete a single item by its partition key using PartiQL.
 *
 * @param tableName - The name of the DynamoDB table
 * @param partitionKeyName - The name of the partition key attribute
 * @param partitionKeyValue - The value of the partition key
 * @returns The response from the ExecuteStatementCommand
 */
export const deleteItemByPartitionKey = async (
 tableName: string,
 partitionKeyName: string,
 partitionKeyValue: string | number
) => {
 const client = new DynamoDBClient({});

场景 473

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/PutItemCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const docClient = DynamoDBDocumentClient.from(client);

 const params = {
 Statement: `DELETE FROM "${tableName}" WHERE ${partitionKeyName} = ?`,
 Parameters: [partitionKeyValue],
 };

 try {
 const data = await docClient.send(new ExecuteStatementCommand(params));
 console.log("Item deleted successfully");
 return data;
 } catch (err) {
 console.error("Error deleting item:", err);
 throw err;
 }
};

/**
 * Delete an item by its composite key (partition key + sort key) using PartiQL.
 *
 * @param tableName - The name of the DynamoDB table
 * @param partitionKeyName - The name of the partition key attribute
 * @param partitionKeyValue - The value of the partition key
 * @param sortKeyName - The name of the sort key attribute
 * @param sortKeyValue - The value of the sort key
 * @returns The response from the ExecuteStatementCommand
 */
export const deleteItemByCompositeKey = async (
 tableName: string,
 partitionKeyName: string,
 partitionKeyValue: string | number,
 sortKeyName: string,
 sortKeyValue: string | number
) => {
 const client = new DynamoDBClient({});
 const docClient = DynamoDBDocumentClient.from(client);

 const params = {
 Statement: `DELETE FROM "${tableName}" WHERE ${partitionKeyName} = ? AND
 ${sortKeyName} = ?`,
 Parameters: [partitionKeyValue, sortKeyValue],
 };

 try {

场景 474

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const data = await docClient.send(new ExecuteStatementCommand(params));
 console.log("Item deleted successfully");
 return data;
 } catch (err) {
 console.error("Error deleting item:", err);
 throw err;
 }
};

/**
 * Delete an item with a condition to ensure the delete only happens if a condition
 is met.
 *
 * @param tableName - The name of the DynamoDB table
 * @param partitionKeyName - The name of the partition key attribute
 * @param partitionKeyValue - The value of the partition key
 * @param conditionAttribute - The attribute to check in the condition
 * @param conditionValue - The value to compare against in the condition
 * @returns The response from the ExecuteStatementCommand
 */
export const deleteItemWithCondition = async (
 tableName: string,
 partitionKeyName: string,
 partitionKeyValue: string | number,
 conditionAttribute: string,
 conditionValue: any
) => {
 const client = new DynamoDBClient({});
 const docClient = DynamoDBDocumentClient.from(client);

 const params = {
 Statement: `DELETE FROM "${tableName}" WHERE ${partitionKeyName} = ? AND
 ${conditionAttribute} = ?`,
 Parameters: [partitionKeyValue, conditionValue],
 };

 try {
 const data = await docClient.send(new ExecuteStatementCommand(params));
 console.log("Item deleted with condition successfully");
 return data;
 } catch (err) {
 console.error("Error deleting item with condition:", err);
 throw err;
 }

场景 475

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

};

/**
 * Batch delete multiple items using PartiQL.
 *
 * @param tableName - The name of the DynamoDB table
 * @param keys - Array of objects containing key information
 * @returns The response from the BatchExecuteStatementCommand
 */
export const batchDeleteItems = async (
 tableName: string,
 keys: Array<{
 partitionKeyName: string;
 partitionKeyValue: string | number;
 sortKeyName?: string;
 sortKeyValue?: string | number;
 }>
) => {
 const client = new DynamoDBClient({});
 const docClient = DynamoDBDocumentClient.from(client);

 // Create statements for each delete
 const statements = keys.map((key) => {
 if (key.sortKeyName && key.sortKeyValue !== undefined) {
 return {
 Statement: `DELETE FROM "${tableName}" WHERE ${key.partitionKeyName} = ? AND
 ${key.sortKeyName} = ?`,
 Parameters: [key.partitionKeyValue, key.sortKeyValue],
 };
 } else {
 return {
 Statement: `DELETE FROM "${tableName}" WHERE ${key.partitionKeyName} = ?`,
 Parameters: [key.partitionKeyValue],
 };
 }
 });

 const params = {
 Statements: statements,
 };

 try {
 const data = await docClient.send(new BatchExecuteStatementCommand(params));
 console.log("Items batch deleted successfully");

场景 476

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 return data;
 } catch (err) {
 console.error("Error batch deleting items:", err);
 throw err;
 }
};

/**
 * Delete multiple items that match a filter condition.
 * Note: This performs a scan operation which can be expensive on large tables.
 *
 * @param tableName - The name of the DynamoDB table
 * @param filterAttribute - The attribute to filter on
 * @param filterValue - The value to filter by
 * @returns The response from the ExecuteStatementCommand
 */
export const deleteItemsByFilter = async (
 tableName: string,
 filterAttribute: string,
 filterValue: any
) => {
 const client = new DynamoDBClient({});
 const docClient = DynamoDBDocumentClient.from(client);

 const params = {
 Statement: `DELETE FROM "${tableName}" WHERE ${filterAttribute} = ?`,
 Parameters: [filterValue],
 };

 try {
 const data = await docClient.send(new ExecuteStatementCommand(params));
 console.log("Items deleted by filter successfully");
 return data;
 } catch (err) {
 console.error("Error deleting items by filter:", err);
 throw err;
 }
};

/**
 * Example usage showing how to delete items with different index types
 */
export const deleteExamples = async () => {
 // Delete an item by partition key (simple primary key)

场景 477

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 await deleteItemByPartitionKey("UsersTable", "userId", "user123");

 // Delete an item by composite key (partition key + sort key)
 await deleteItemByCompositeKey(
 "OrdersTable",
 "orderId",
 "order456",
 "productId",
 "prod789"
);

 // Delete with a condition
 await deleteItemWithCondition(
 "UsersTable",
 "userId",
 "user789",
 "userStatus",
 "inactive"
);

 // Batch delete multiple items
 await batchDeleteItems("UsersTable", [
 { partitionKeyName: "userId", partitionKeyValue: "user234" },
 { partitionKeyName: "userId", partitionKeyValue: "user345" },
]);

 // Batch delete items with composite keys
 await batchDeleteItems("OrdersTable", [
 {
 partitionKeyName: "orderId",
 partitionKeyValue: "order567",
 sortKeyName: "productId",
 sortKeyValue: "prod123",
 },
 {
 partitionKeyName: "orderId",
 partitionKeyValue: "order678",
 sortKeyName: "productId",
 sortKeyValue: "prod456",
 },
]);

 // Delete items by filter (use with caution)
 await deleteItemsByFilter("UsersTable", "userStatus", "deleted");

场景 478

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

};

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的以下主
题。

• BatchExecuteStatement

• ExecuteStatement

使用 PartiQL INSERT 插入数据

以下代码示例演示如何使用 PartiQL INSERT 语句插入数据。

适用于 JavaScript (v3) 的软件开发工具包

使用 PartiQL INSERT 语句将项目插入到 DynamoDB 表中。 适用于 JavaScript 的 Amazon SDK

/**
 * This example demonstrates how to insert items into a DynamoDB table using
 PartiQL.
 * It shows different ways to insert documents with various index types.
 */
import { DynamoDBClient } from "@aws-sdk/client-dynamodb";
import {
 DynamoDBDocumentClient,
 ExecuteStatementCommand,
 BatchExecuteStatementCommand,
} from "@aws-sdk/lib-dynamodb";

/**
 * Insert a single item into a DynamoDB table using PartiQL.
 *
 * @param tableName - The name of the DynamoDB table
 * @param item - The item to insert
 * @returns The response from the ExecuteStatementCommand
 */
export const insertItem = async (tableName: string, item: Record<string, any>) => {
 const client = new DynamoDBClient({});
 const docClient = DynamoDBDocumentClient.from(client);

 // Convert the item to a string representation for PartiQL
 const itemString = JSON.stringify(item).replace(/"([^"]+)":/g, '$1:');

场景 479

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/BatchExecuteStatementCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/ExecuteStatementCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const params = {
 Statement: `INSERT INTO "${tableName}" VALUE ${itemString}`,
 };

 try {
 const data = await docClient.send(new ExecuteStatementCommand(params));
 console.log("Item inserted successfully");
 return data;
 } catch (err) {
 console.error("Error inserting item:", err);
 throw err;
 }
};

/**
 * Insert multiple items into a DynamoDB table using PartiQL batch operation.
 * This is more efficient than inserting items one by one.
 *
 * @param tableName - The name of the DynamoDB table
 * @param items - Array of items to insert
 * @returns The response from the BatchExecuteStatementCommand
 */
export const batchInsertItems = async (tableName: string, items: Record<string,
 any>[]) => {
 const client = new DynamoDBClient({});
 const docClient = DynamoDBDocumentClient.from(client);

 // Create statements for each item
 const statements = items.map((item) => {
 const itemString = JSON.stringify(item).replace(/"([^"]+)":/g, '$1:');
 return {
 Statement: `INSERT INTO "${tableName}" VALUE ${itemString}`,
 };
 });

 const params = {
 Statements: statements,
 };

 try {
 const data = await docClient.send(new BatchExecuteStatementCommand(params));
 console.log("Items inserted successfully");
 return data;

场景 480

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 } catch (err) {
 console.error("Error batch inserting items:", err);
 throw err;
 }
};

/**
 * Insert an item with a condition to prevent overwriting existing items.
 * This is useful for ensuring you don't accidentally overwrite data.
 *
 * @param tableName - The name of the DynamoDB table
 * @param item - The item to insert
 * @param partitionKeyName - The name of the partition key attribute
 * @returns The response from the ExecuteStatementCommand
 */
export const insertItemWithCondition = async (
 tableName: string,
 item: Record<string, any>,
 partitionKeyName: string
) => {
 const client = new DynamoDBClient({});
 const docClient = DynamoDBDocumentClient.from(client);

 const itemString = JSON.stringify(item).replace(/"([^"]+)":/g, '$1:');
 const partitionKeyValue = JSON.stringify(item[partitionKeyName]);

 const params = {
 Statement: `INSERT INTO "${tableName}" VALUE ${itemString} WHERE
 attribute_not_exists(${partitionKeyName})`,
 Parameters: [{ S: partitionKeyValue }],
 };

 try {
 const data = await docClient.send(new ExecuteStatementCommand(params));
 console.log("Item inserted with condition successfully");
 return data;
 } catch (err) {
 console.error("Error inserting item with condition:", err);
 throw err;
 }
};

/**
 * Example usage showing how to insert items with different index types

场景 481

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 */
export const insertExamples = async () => {
 // Example table with a simple primary key (just partition key)
 const simpleKeyItem = {
 userId: "user123",
 name: "John Doe",
 email: "john@example.com",
 };
 await insertItem("UsersTable", simpleKeyItem);

 // Example table with composite key (partition key + sort key)
 const compositeKeyItem = {
 orderId: "order456",
 productId: "prod789",
 quantity: 2,
 price: 29.99,
 };
 await insertItem("OrdersTable", compositeKeyItem);

 // Example with Global Secondary Index (GSI)
 // The GSI might be on the email attribute
 const gsiItem = {
 userId: "user789",
 email: "jane@example.com",
 name: "Jane Smith",
 userType: "premium", // This could be part of a GSI
 };
 await insertItem("UsersTable", gsiItem);

 // Example with Local Secondary Index (LSI)
 // LSI uses the same partition key but different sort key
 const lsiItem = {
 orderId: "order567", // Partition key
 productId: "prod123", // Sort key for the table
 orderDate: "2023-11-15", // Potential sort key for an LSI
 quantity: 1,
 price: 19.99,
 };
 await insertItem("OrdersTable", lsiItem);

 // Batch insert example with multiple items
 const batchItems = [
 {
 userId: "user234",

场景 482

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 name: "Alice Johnson",
 email: "alice@example.com",
 },
 {
 userId: "user345",
 name: "Bob Williams",
 email: "bob@example.com",
 },
];
 await batchInsertItems("UsersTable", batchItems);
};

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的以下主
题。

• BatchExecuteStatement

• ExecuteStatement

从浏览器调用 Lambda 函数

以下代码示例显示了如何从浏览器调用 Amazon Lambda 函数。

适用于 JavaScript (v3) 的软件开发工具包

您可以创建一个基于浏览器的应用程序，该应用程序使用 Amazon Lambda 函数更新包含用户选择
的 Amazon DynamoDB 表。此应用程序使用 适用于 JavaScript 的 Amazon SDK v3。

有关如何设置和运行的完整源代码和说明，请参阅上的完整示例GitHub。

本示例中使用的服务

• DynamoDB

• Lambda

执行高级查询操作

以下代码示例演示如何在 DynamoDB 中执行高级查询操作。

• 使用各种筛选和条件技术查询表。

• 对大型结果集实现分页。

• 使用全局二级索引实现备选访问模式。

场景 483

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/BatchExecuteStatementCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/ExecuteStatementCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/lambda-for-browser

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 根据应用程序要求应用一致性控制。

适用于 JavaScript (v3) 的软件开发工具包

使用强一致性读取进行查询 适用于 JavaScript 的 Amazon SDK。

const { DynamoDBClient, QueryCommand } = require("@aws-sdk/client-dynamodb");

/**
 * Queries a DynamoDB table with configurable read consistency
 *
 * @param {Object} config - AWS SDK configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {string} partitionKeyName - The name of the partition key
 * @param {string} partitionKeyValue - The value of the partition key
 * @param {boolean} useConsistentRead - Whether to use strongly consistent reads
 * @returns {Promise<Object>} - The query response
 */
async function queryWithConsistentRead(
 config,
 tableName,
 partitionKeyName,
 partitionKeyValue,
 useConsistentRead = false
) {
 try {
 // Create DynamoDB client
 const client = new DynamoDBClient(config);

 // Construct the query input
 const input = {
 TableName: tableName,
 KeyConditionExpression: "#pk = :pkValue",
 ExpressionAttributeNames: {
 "#pk": partitionKeyName
 },
 ExpressionAttributeValues: {
 ":pkValue": { S: partitionKeyValue }
 },
 ConsistentRead: useConsistentRead
 };

 // Execute the query

场景 484

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const command = new QueryCommand(input);
 return await client.send(command);
 } catch (error) {
 console.error(`Error querying with consistent read: ${error}`);
 throw error;
 }
}

使用带的全局二级索引进行查询 适用于 JavaScript 的 Amazon SDK。

const { DynamoDBClient, QueryCommand } = require("@aws-sdk/client-dynamodb");

/**
 * Queries a DynamoDB table using the primary key
 *
 * @param {Object} config - AWS SDK configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {string} userId - The user ID to query by (partition key)
 * @returns {Promise<Object>} - The query response
 */
async function queryTable(
 config,
 tableName,
 userId
) {
 try {
 // Create DynamoDB client
 const client = new DynamoDBClient(config);

 // Construct the query input for the base table
 const input = {
 TableName: tableName,
 KeyConditionExpression: "user_id = :userId",
 ExpressionAttributeValues: {
 ":userId": { S: userId }
 }
 };

 // Execute the query
 const command = new QueryCommand(input);
 return await client.send(command);
 } catch (error) {

场景 485

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 console.error(`Error querying table: ${error}`);
 throw error;
 }
}

/**
 * Queries a DynamoDB Global Secondary Index (GSI)
 *
 * @param {Object} config - AWS SDK configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {string} indexName - The name of the GSI to query
 * @param {string} gameId - The game ID to query by (GSI partition key)
 * @returns {Promise<Object>} - The query response
 */
async function queryGSI(
 config,
 tableName,
 indexName,
 gameId
) {
 try {
 // Create DynamoDB client
 const client = new DynamoDBClient(config);

 // Construct the query input for the GSI
 const input = {
 TableName: tableName,
 IndexName: indexName,
 KeyConditionExpression: "game_id = :gameId",
 ExpressionAttributeValues: {
 ":gameId": { S: gameId }
 }
 };

 // Execute the query
 const command = new QueryCommand(input);
 return await client.send(command);
 } catch (error) {
 console.error(`Error querying GSI: ${error}`);
 throw error;
 }
}

场景 486

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

使用 适用于 JavaScript 的 Amazon SDK分页查询。

/**
 * Example demonstrating how to handle large query result sets in DynamoDB using
 pagination
 *
 * This example shows:
 * - How to use pagination to handle large result sets
 * - How to use LastEvaluatedKey to retrieve the next page of results
 * - How to construct subsequent query requests using ExclusiveStartKey
 */
const { DynamoDBClient, QueryCommand } = require("@aws-sdk/client-dynamodb");

/**
 * Queries a DynamoDB table with pagination to handle large result sets
 *
 * @param {Object} config - AWS SDK configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {string} partitionKeyName - The name of the partition key
 * @param {string} partitionKeyValue - The value of the partition key
 * @param {number} pageSize - Number of items per page
 * @returns {Promise<Array>} - All items from the query
 */
async function queryWithPagination(
 config,
 tableName,
 partitionKeyName,
 partitionKeyValue,
 pageSize = 25
) {
 try {
 // Create DynamoDB client
 const client = new DynamoDBClient(config);

 // Initialize variables for pagination
 let lastEvaluatedKey = undefined;
 const allItems = [];
 let pageCount = 0;

 // Loop until all pages are retrieved
 do {
 // Construct the query input
 const input = {

场景 487

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 TableName: tableName,
 KeyConditionExpression: "#pk = :pkValue",
 Limit: pageSize,
 ExpressionAttributeNames: {
 "#pk": partitionKeyName
 },
 ExpressionAttributeValues: {
 ":pkValue": { S: partitionKeyValue }
 }
 };

 // Add ExclusiveStartKey if we have a LastEvaluatedKey from a previous query
 if (lastEvaluatedKey) {
 input.ExclusiveStartKey = lastEvaluatedKey;
 }

 // Execute the query
 const command = new QueryCommand(input);
 const response = await client.send(command);

 // Process the current page of results
 pageCount++;
 console.log(`Processing page ${pageCount} with ${response.Items.length}
 items`);

 // Add the items from this page to our collection
 if (response.Items && response.Items.length > 0) {
 allItems.push(...response.Items);
 }

 // Get the LastEvaluatedKey for the next page
 lastEvaluatedKey = response.LastEvaluatedKey;

 } while (lastEvaluatedKey); // Continue until there are no more pages

 console.log(`Query complete. Retrieved ${allItems.length} items in ${pageCount}
 pages.`);
 return allItems;
 } catch (error) {
 console.error(`Error querying with pagination: ${error}`);
 throw error;
 }
}

场景 488

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

/**
 * Example usage:
 *
 * // Query all items in the "AWS DynamoDB" forum with pagination
 * const allItems = await queryWithPagination(
 * { region: "us-west-2" },
 * "ForumThreads",
 * "ForumName",
 * "AWS DynamoDB",
 * 25 // 25 items per page
 *);
 *
 * console.log(`Total items retrieved: ${allItems.length}`);
 *
 * // Notes on pagination:
 * // - LastEvaluatedKey contains the primary key of the last evaluated item
 * // - When LastEvaluatedKey is undefined/null, there are no more items to retrieve
 * // - ExclusiveStartKey tells DynamoDB where to start the next page
 * // - Pagination helps manage memory usage for large result sets
 * // - Each page requires a separate network request to DynamoDB
 */

module.exports = { queryWithPagination };

使用复杂的过滤器进行查询 适用于 JavaScript 的 Amazon SDK。

const { DynamoDBClient, QueryCommand } = require("@aws-sdk/client-dynamodb");

/**
 * Queries a DynamoDB table with a complex filter expression
 *
 * @param {Object} config - AWS SDK configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {string} partitionKeyName - The name of the partition key
 * @param {string} partitionKeyValue - The value of the partition key
 * @param {number|string} minViews - Minimum number of views for filtering
 * @param {number|string} minReplies - Minimum number of replies for filtering
 * @param {string} requiredTag - Tag that must be present in the item's tags set
 * @returns {Promise<Object>} - The query response
 */
async function queryWithComplexFilter(
 config,

场景 489

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 tableName,
 partitionKeyName,
 partitionKeyValue,
 minViews,
 minReplies,
 requiredTag
) {
 try {
 // Create DynamoDB client
 const client = new DynamoDBClient(config);

 // Construct the query input
 const input = {
 TableName: tableName,
 KeyConditionExpression: "#pk = :pkValue",
 FilterExpression: "views >= :minViews AND replies >= :minReplies AND
 contains(tags, :tag)",
 ExpressionAttributeNames: {
 "#pk": partitionKeyName
 },
 ExpressionAttributeValues: {
 ":pkValue": { S: partitionKeyValue },
 ":minViews": { N: minViews.toString() },
 ":minReplies": { N: minReplies.toString() },
 ":tag": { S: requiredTag }
 }
 };

 // Execute the query
 const command = new QueryCommand(input);
 return await client.send(command);
 } catch (error) {
 console.error(`Error querying with complex filter: ${error}`);
 throw error;
 }
}

使用动态构造的过滤器表达式进行查询 适用于 JavaScript 的 Amazon SDK。

const { DynamoDBClient, QueryCommand } = require("@aws-sdk/client-dynamodb");

async function queryWithDynamicFilter(

场景 490

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 config,
 tableName,
 partitionKeyName,
 partitionKeyValue,
 sortKeyName,
 sortKeyValue,
 filterParams = {}
) {
 try {
 // Create DynamoDB client
 const client = new DynamoDBClient(config);

 // Initialize filter expression components
 let filterExpressions = [];
 const expressionAttributeValues = {
 ":pkValue": { S: partitionKeyValue },
 ":skValue": { S: sortKeyValue }
 };
 const expressionAttributeNames = {
 "#pk": partitionKeyName,
 "#sk": sortKeyName
 };

 // Add status filter if provided
 if (filterParams.status) {
 filterExpressions.push("status = :status");
 expressionAttributeValues[":status"] = { S: filterParams.status };
 }

 // Add minimum views filter if provided
 if (filterParams.minViews !== undefined) {
 filterExpressions.push("views >= :minViews");
 expressionAttributeValues[":minViews"] = { N:
 filterParams.minViews.toString() };
 }

 // Add author filter if provided
 if (filterParams.author) {
 filterExpressions.push("author = :author");
 expressionAttributeValues[":author"] = { S: filterParams.author };
 }

 // Construct the query input
 const input = {

场景 491

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 TableName: tableName,
 KeyConditionExpression: "#pk = :pkValue AND #sk = :skValue"
 };

 // Add filter expression if any filters were provided
 if (filterExpressions.length > 0) {
 input.FilterExpression = filterExpressions.join(" AND ");
 }

 // Add expression attribute names and values
 input.ExpressionAttributeNames = expressionAttributeNames;
 input.ExpressionAttributeValues = expressionAttributeValues;

 // Execute the query
 const command = new QueryCommand(input);
 return await client.send(command);
 } catch (error) {
 console.error(`Error querying with dynamic filter: ${error}`);
 throw error;
 }
}

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的 Query。

执行列表操作

以下代码示例演示如何在 DynamoDB 中执行列表操作。

• 向列表属性添加元素。

• 从列表属性中移除元素。

• 按索引更新列表中的特定元素。

• 使用列表追加和列表索引函数。

适用于 JavaScript (v3) 的软件开发工具包

使用演示列表操作 适用于 JavaScript 的 Amazon SDK。

const { DynamoDBClient } = require("@aws-sdk/client-dynamodb");
const {
 DynamoDBDocumentClient,

场景 492

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/QueryCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 UpdateCommand,
 GetCommand,
 PutCommand
} = require("@aws-sdk/lib-dynamodb");

/**
 * Append elements to a list attribute.
 *
 * This function demonstrates how to use the list_append function to add elements
 * to the end of a list.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {string} listName - The name of the list attribute
 * @param {Array} values - The values to append to the list
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function appendToList(
 config,
 tableName,
 key,
 listName,
 values
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Define the update parameters using list_append
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: `SET ${listName} =
 list_append(if_not_exists(${listName}, :empty_list), :values)`,
 ExpressionAttributeValues: {
 ":empty_list": [],
 ":values": values
 },
 ReturnValues: "UPDATED_NEW"
 };

 // Perform the update operation
 const response = await docClient.send(new UpdateCommand(params));

场景 493

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 return response;
}

/**
 * Prepend elements to a list attribute.
 *
 * This function demonstrates how to use the list_append function to add elements
 * to the beginning of a list.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {string} listName - The name of the list attribute
 * @param {Array} values - The values to prepend to the list
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function prependToList(
 config,
 tableName,
 key,
 listName,
 values
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Define the update parameters using list_append
 // Note: To prepend, we put the new values first in the list_append function
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: `SET ${listName} = list_append(:values,
 if_not_exists(${listName}, :empty_list))`,
 ExpressionAttributeValues: {
 ":empty_list": [],
 ":values": values
 },
 ReturnValues: "UPDATED_NEW"
 };

 // Perform the update operation
 const response = await docClient.send(new UpdateCommand(params));

场景 494

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 return response;
}

/**
 * Update a specific element in a list by index.
 *
 * This function demonstrates how to update a specific element in a list
 * using the index notation.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {string} listName - The name of the list attribute
 * @param {number} index - The index of the element to update
 * @param {any} value - The new value for the element
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function updateListElement(
 config,
 tableName,
 key,
 listName,
 index,
 value
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Define the update parameters using index notation
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: `SET ${listName}[${index}] = :value`,
 ExpressionAttributeValues: {
 ":value": value
 },
 ReturnValues: "UPDATED_NEW"
 };

 // Perform the update operation
 const response = await docClient.send(new UpdateCommand(params));

场景 495

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 return response;
}

/**
 * Remove an element from a list by index.
 *
 * This function demonstrates how to remove a specific element from a list
 * using the REMOVE action with index notation.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {string} listName - The name of the list attribute
 * @param {number} index - The index of the element to remove
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function removeListElement(
 config,
 tableName,
 key,
 listName,
 index
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Define the update parameters using REMOVE with index notation
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: `REMOVE ${listName}[${index}]`,
 ReturnValues: "UPDATED_NEW"
 };

 // Perform the update operation
 const response = await docClient.send(new UpdateCommand(params));

 return response;
}

/**
 * Concatenate two lists.
 *

场景 496

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * This function demonstrates how to concatenate two lists using the list_append
 function.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {string} listName1 - The name of the first list attribute
 * @param {string} listName2 - The name of the second list attribute
 * @param {string} resultListName - The name of the attribute to store the
 concatenated list
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function concatenateLists(
 config,
 tableName,
 key,
 listName1,
 listName2,
 resultListName
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Define the update parameters using list_append
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: `SET ${resultListName} =
 list_append(if_not_exists(${listName1}, :empty_list),
 if_not_exists(${listName2}, :empty_list))`,
 ExpressionAttributeValues: {
 ":empty_list": []
 },
 ReturnValues: "UPDATED_NEW"
 };

 // Perform the update operation
 const response = await docClient.send(new UpdateCommand(params));

 return response;
}

/**

场景 497

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * Create a nested list structure.
 *
 * This function demonstrates how to create and work with nested lists.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {string} listName - The name of the list attribute
 * @param {Array} nestedLists - An array of arrays to create a nested list structure
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function createNestedList(
 config,
 tableName,
 key,
 listName,
 nestedLists
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Define the update parameters to create a nested list
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: `SET ${listName} = :nested_lists`,
 ExpressionAttributeValues: {
 ":nested_lists": nestedLists
 },
 ReturnValues: "UPDATED_NEW"
 };

 // Perform the update operation
 const response = await docClient.send(new UpdateCommand(params));

 return response;
}

/**
 * Update an element in a nested list.
 *
 * This function demonstrates how to update an element in a nested list
 * using multiple index notations.

场景 498

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {string} listName - The name of the list attribute
 * @param {number} outerIndex - The index in the outer list
 * @param {number} innerIndex - The index in the inner list
 * @param {any} value - The new value for the element
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function updateNestedListElement(
 config,
 tableName,
 key,
 listName,
 outerIndex,
 innerIndex,
 value
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Define the update parameters using multiple index notations
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: `SET ${listName}[${outerIndex}][${innerIndex}] = :value`,
 ExpressionAttributeValues: {
 ":value": value
 },
 ReturnValues: "UPDATED_NEW"
 };

 // Perform the update operation
 const response = await docClient.send(new UpdateCommand(params));

 return response;
}

/**
 * Get the current value of an item.
 *
 * Helper function to retrieve the current value of an item.

场景 499

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to get
 * @returns {Promise<Object|null>} - The item or null if not found
 */
async function getItem(
 config,
 tableName,
 key
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Define the get parameters
 const params = {
 TableName: tableName,
 Key: key
 };

 // Perform the get operation
 const response = await docClient.send(new GetCommand(params));

 // Return the item if it exists, otherwise null
 return response.Item || null;
}

列表操作的用法示例 适用于 JavaScript 的 Amazon SDK。

/**
 * Example of how to work with lists in DynamoDB.
 */
async function exampleUsage() {
 // Example parameters
 const config = { region: "us-west-2" };
 const tableName = "UserProfiles";
 const key = { UserId: "U12345" };

 console.log("Demonstrating list operations in DynamoDB");

 try {

场景 500

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // Example 1: Append elements to a list
 console.log("\nExample 1: Appending elements to a list");
 const response1 = await appendToList(
 config,
 tableName,
 key,
 "RecentSearches",
 ["laptop", "headphones", "monitor"]
);

 console.log("Appended to list:", response1.Attributes);

 // Example 2: Prepend elements to a list
 console.log("\nExample 2: Prepending elements to a list");
 const response2 = await prependToList(
 config,
 tableName,
 key,
 "RecentSearches",
 ["keyboard", "mouse"]
);

 console.log("Prepended to list:", response2.Attributes);

 // Get the current state of the item
 let currentItem = await getItem(config, tableName, key);
 console.log("\nCurrent state of RecentSearches:", currentItem?.RecentSearches);

 // Example 3: Update a specific element in a list
 console.log("\nExample 3: Updating a specific element in a list");
 const response3 = await updateListElement(
 config,
 tableName,
 key,
 "RecentSearches",
 0, // Update the first element
 "mechanical keyboard" // New value
);

 console.log("Updated list element:", response3.Attributes);

 // Example 4: Remove an element from a list
 console.log("\nExample 4: Removing an element from a list");
 const response4 = await removeListElement(

场景 501

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 config,
 tableName,
 key,
 "RecentSearches",
 2 // Remove the third element
);

 console.log("List after removing element:", response4.Attributes);

 // Example 5: Create and concatenate lists
 console.log("\nExample 5: Creating and concatenating lists");

 // First, create two separate lists
 await updateWithMultipleActions(
 config,
 tableName,
 key,
 "SET WishList = :wishlist, SavedItems = :saveditems",
 null,
 {
 ":wishlist": ["gaming laptop", "wireless earbuds"],
 ":saveditems": ["smartphone", "tablet"]
 }
);

 // Then, concatenate them
 const response5 = await concatenateLists(
 config,
 tableName,
 key,
 "WishList",
 "SavedItems",
 "AllItems"
);

 console.log("Concatenated lists:", response5.Attributes);

 // Example 6: Create a nested list structure
 console.log("\nExample 6: Creating a nested list structure");
 const response6 = await createNestedList(
 config,
 tableName,
 key,
 "Categories",

场景 502

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 [
 ["Electronics", "Computers", "Accessories"],
 ["Books", "Magazines", "E-books"],
 ["Clothing", "Shoes", "Watches"]
]
);

 console.log("Created nested list:", response6.Attributes);

 // Example 7: Update an element in a nested list
 console.log("\nExample 7: Updating an element in a nested list");
 const response7 = await updateNestedListElement(
 config,
 tableName,
 key,
 "Categories",
 0, // First inner list
 1, // Second element in that list
 "Laptops" // New value
);

 console.log("Updated nested list element:", response7.Attributes);

 // Get the final state of the item
 currentItem = await getItem(config, tableName, key);
 console.log("\nFinal state of the item:", JSON.stringify(currentItem, null, 2));

 // Explain list operations
 console.log("\nKey points about list operations in DynamoDB:");
 console.log("1. Use list_append to add elements to a list");
 console.log("2. To append elements, use list_append(existingList,
 newElements)");
 console.log("3. To prepend elements, use list_append(newElements,
 existingList)");
 console.log("4. Use if_not_exists to handle cases where the list might not exist
 yet");
 console.log("5. Use index notation (list[0]) to access or update specific
 elements");
 console.log("6. Use REMOVE with index notation to remove elements from a list");
 console.log("7. Lists can contain elements of different types");
 console.log("8. Lists can be nested (lists of lists)");
 console.log("9. Use multiple index notations (list[0][1]) to access nested list
 elements");

场景 503

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 } catch (error) {
 console.error("Error:", error);
 }
}

/**
 * Helper function for the examples.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {string} updateExpression - The update expression
 * @param {Object} expressionAttributeNames - Expression attribute name placeholders
 * @param {Object} expressionAttributeValues - Expression attribute value
 placeholders
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function updateWithMultipleActions(
 config,
 tableName,
 key,
 updateExpression,
 expressionAttributeNames,
 expressionAttributeValues
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Prepare the update parameters
 const updateParams = {
 TableName: tableName,
 Key: key,
 UpdateExpression: updateExpression,
 ReturnValues: "UPDATED_NEW"
 };

 // Add expression attribute names if provided
 if (expressionAttributeNames) {
 updateParams.ExpressionAttributeNames = expressionAttributeNames;
 }

 // Add expression attribute values if provided
 if (expressionAttributeValues) {

场景 504

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 updateParams.ExpressionAttributeValues = expressionAttributeValues;
 }

 // Execute the update
 const response = await docClient.send(new UpdateCommand(updateParams));

 return response;
}

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考UpdateItem中的。

执行映射操作

以下代码示例演示如何在 DynamoDB 中执行映射操作。

• 在映射结构中添加和更新嵌套属性。

• 从映射中移除特定字段。

• 使用深度嵌套的映射属性。

适用于 JavaScript (v3) 的软件开发工具包

使用演示地图操作 适用于 JavaScript 的 Amazon SDK。

/**
 * Example of updating map attributes in DynamoDB.
 *
 * This module demonstrates how to update map attributes that may not exist,
 * how to update nested attributes, and how to handle various map update scenarios.
 */

const { DynamoDBClient } = require("@aws-sdk/client-dynamodb");
const {
 DynamoDBDocumentClient,
 UpdateCommand,
 GetCommand
} = require("@aws-sdk/lib-dynamodb");

/**
 * Update a map attribute safely, handling the case where the map might not exist.

场景 505

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/UpdateItemCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 *
 * This function demonstrates using the if_not_exists function to safely update
 * a map attribute that might not exist yet.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {string} mapName - The name of the map attribute
 * @param {string} mapKey - The key within the map to update
 * @param {any} value - The value to set
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function updateMapAttributeSafe(
 config,
 tableName,
 key,
 mapName,
 mapKey,
 value
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Define the update parameters using SET with if_not_exists
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: `SET ${mapName}.${mapKey} = :value`,
 ExpressionAttributeValues: {
 ":value": value
 },
 ReturnValues: "UPDATED_NEW"
 };

 try {
 // Perform the update operation
 const response = await docClient.send(new UpdateCommand(params));
 return response;
 } catch (error) {
 // If the error is because the map doesn't exist, create it
 if (error.name === "ValidationException" &&
 error.message.includes("The document path provided in the update expression
 is invalid")) {

场景 506

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // Create the map with the specified key-value pair
 const createParams = {
 TableName: tableName,
 Key: key,
 UpdateExpression: `SET ${mapName} = :map`,
 ExpressionAttributeValues: {
 ":map": { [mapKey]: value }
 },
 ReturnValues: "UPDATED_NEW"
 };

 return await docClient.send(new UpdateCommand(createParams));
 }

 // Re-throw other errors
 throw error;
 }
}

/**
 * Update a map attribute using the if_not_exists function.
 *
 * This function demonstrates a more elegant approach using if_not_exists
 * to handle the case where the map doesn't exist yet.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {string} mapName - The name of the map attribute
 * @param {string} mapKey - The key within the map to update
 * @param {any} value - The value to set
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function updateMapAttributeWithIfNotExists(
 config,
 tableName,
 key,
 mapName,
 mapKey,
 value
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);

场景 507

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const docClient = DynamoDBDocumentClient.from(client);

 // Define the update parameters using SET with if_not_exists
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: `SET ${mapName} = if_not_exists(${mapName}, :emptyMap),
 ${mapName}.${mapKey} = :value`,
 ExpressionAttributeValues: {
 ":emptyMap": {},
 ":value": value
 },
 ReturnValues: "UPDATED_NEW"
 };

 // Perform the update operation
 const response = await docClient.send(new UpdateCommand(params));

 return response;
}

/**
 * Add a value to a deeply nested map, creating parent maps if they don't exist.
 *
 * This function demonstrates how to update a deeply nested attribute,
 * creating any parent maps that don't exist along the way.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {string[]} path - The path to the nested attribute as an array of keys
 * @param {any} value - The value to set
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function addToNestedMap(
 config,
 tableName,
 key,
 path,
 value
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

场景 508

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // Build the update expression and expression attribute values
 let updateExpression = "SET";
 const expressionAttributeValues = {};

 // For each level in the path, create a map if it doesn't exist
 for (let i = 0; i < path.length; i++) {
 const currentPath = path.slice(0, i + 1).join(".");
 const parentPath = i > 0 ? path.slice(0, i).join(".") : null;

 if (parentPath) {
 updateExpression += ` ${parentPath} = if_not_exists(${parentPath}, :emptyMap
${i}),`;
 expressionAttributeValues[`:emptyMap${i}`] = {};
 }
 }

 // Set the final value
 const fullPath = path.join(".");
 updateExpression += ` ${fullPath} = :value`;
 expressionAttributeValues[":value"] = value;

 // Define the update parameters
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: updateExpression,
 ExpressionAttributeValues: expressionAttributeValues,
 ReturnValues: "UPDATED_NEW"
 };

 // Perform the update operation
 const response = await docClient.send(new UpdateCommand(params));

 return response;
}

/**
 * Update multiple fields in a map attribute in a single operation.
 *
 * This function demonstrates how to update multiple fields in a map
 * in a single DynamoDB operation.
 *
 * @param {Object} config - AWS configuration object

场景 509

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {string} mapName - The name of the map attribute
 * @param {Object} updates - Object containing key-value pairs to update
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function updateMultipleMapFields(
 config,
 tableName,
 key,
 mapName,
 updates
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Build the update expression and expression attribute values
 let updateExpression = `SET ${mapName} = if_not_exists(${mapName}, :emptyMap)`;
 const expressionAttributeValues = {
 ":emptyMap": {}
 };

 // Add each update to the expression
 Object.entries(updates).forEach(([field, value], index) => {
 updateExpression += `, ${mapName}.${field} = :val${index}`;
 expressionAttributeValues[`:val${index}`] = value;
 });

 // Define the update parameters
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: updateExpression,
 ExpressionAttributeValues: expressionAttributeValues,
 ReturnValues: "UPDATED_NEW"
 };

 // Perform the update operation
 const response = await docClient.send(new UpdateCommand(params));

 return response;
}

场景 510

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

/**
 * Get the current value of an item.
 *
 * Helper function to retrieve the current value of an item.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to get
 * @returns {Promise<Object|null>} - The item or null if not found
 */
async function getItem(
 config,
 tableName,
 key
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Define the get parameters
 const params = {
 TableName: tableName,
 Key: key
 };

 // Perform the get operation
 const response = await docClient.send(new GetCommand(params));

 // Return the item if it exists, otherwise null
 return response.Item || null;
}

/**
 * Example of how to use the map attribute update functions.
 */
async function exampleUsage() {
 // Example parameters
 const config = { region: "us-west-2" };
 const tableName = "Users";
 const key = { UserId: "U12345" };

 console.log("Demonstrating different approaches to update map attributes in
 DynamoDB");

场景 511

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 try {
 // Example 1: Update a map attribute that might not exist (two-step approach)
 console.log("\nExample 1: Updating a map attribute that might not exist (two-
step approach)");
 const response1 = await updateMapAttributeSafe(
 config,
 tableName,
 key,
 "Preferences",
 "Theme",
 "Dark"
);

 console.log("Updated preferences:", response1.Attributes);

 // Example 2: Update a map attribute using if_not_exists (elegant approach)
 console.log("\nExample 2: Updating a map attribute using if_not_exists (elegant
 approach)");
 const response2 = await updateMapAttributeWithIfNotExists(
 config,
 tableName,
 key,
 "Settings",
 "NotificationsEnabled",
 true
);

 console.log("Updated settings:", response2.Attributes);

 // Example 3: Update a deeply nested attribute
 console.log("\nExample 3: Updating a deeply nested attribute");
 const response3 = await addToNestedMap(
 config,
 tableName,
 key,
 ["Profile", "Address", "City"],
 "Seattle"
);

 console.log("Updated nested attribute:", response3.Attributes);

 // Example 4: Update multiple fields in a map
 console.log("\nExample 4: Updating multiple fields in a map");
 const response4 = await updateMultipleMapFields(

场景 512

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 config,
 tableName,
 key,
 "ContactInfo",
 {
 Email: "user@example.com",
 Phone: "555-123-4567",
 PreferredContact: "Email"
 }
);

 console.log("Updated multiple fields:", response4.Attributes);

 // Get the final state of the item
 console.log("\nFinal state of the item:");
 const item = await getItem(config, tableName, key);
 console.log(JSON.stringify(item, null, 2));

 // Explain the benefits of different approaches
 console.log("\nKey points about updating map attributes:");
 console.log("1. Use if_not_exists to handle maps that might not exist");
 console.log("2. Multiple updates can be combined in a single operation");
 console.log("3. Deeply nested attributes require creating parent maps");
 console.log("4. DynamoDB expressions are atomic - the entire update succeeds or
 fails");
 console.log("5. Using a single operation is more efficient than multiple
 separate updates");

 } catch (error) {
 console.error("Error:", error);
 }
}

// Export the functions
module.exports = {
 updateMapAttributeSafe,
 updateMapAttributeWithIfNotExists,
 addToNestedMap,
 updateMultipleMapFields,
 getItem,
 exampleUsage
};

// Run the example if this file is executed directly

场景 513

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

if (require.main === module) {
 exampleUsage();
}

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考UpdateItem中的。

执行设置操作

以下代码示例演示如何在 DynamoDB 中执行设置操作。

• 向设置属性添加元素。

• 从设置属性中移除元素。

• 将 ADD 和 DELETE 操作用于设置。

适用于 JavaScript (v3) 的软件开发工具包

使用演示集合操作 适用于 JavaScript 的 Amazon SDK。

const { DynamoDBClient } = require("@aws-sdk/client-dynamodb");
const {
 DynamoDBDocumentClient,
 UpdateCommand,
 GetCommand
} = require("@aws-sdk/lib-dynamodb");

/**
 * Add elements to a set attribute.
 *
 * This function demonstrates using the ADD operation to add elements to a set.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {string} setName - The name of the set attribute
 * @param {Array} values - The values to add to the set
 * @param {string} setType - The type of set ('string', 'number', or 'binary')
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function addToSet(
 config,

场景 514

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/UpdateItemCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 tableName,
 key,
 setName,
 values,
 setType = 'string'
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Create the appropriate set type
 let setValues;
 if (setType === 'string') {
 setValues = new Set(values.map(String));
 } else if (setType === 'number') {
 setValues = new Set(values.map(Number));
 } else if (setType === 'binary') {
 setValues = new Set(values);
 } else {
 throw new Error(`Unsupported set type: ${setType}`);
 }

 // Define the update parameters using ADD
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: `ADD ${setName} :values`,
 ExpressionAttributeValues: {
 ":values": setValues
 },
 ReturnValues: "UPDATED_NEW"
 };

 // Perform the update operation
 const response = await docClient.send(new UpdateCommand(params));

 return response;
}

/**
 * Remove elements from a set attribute.
 *
 * This function demonstrates using the DELETE operation to remove elements from a
 set.

场景 515

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {string} setName - The name of the set attribute
 * @param {Array} values - The values to remove from the set
 * @param {string} setType - The type of set ('string', 'number', or 'binary')
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function removeFromSet(
 config,
 tableName,
 key,
 setName,
 values,
 setType = 'string'
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Create the appropriate set type
 let setValues;
 if (setType === 'string') {
 setValues = new Set(values.map(String));
 } else if (setType === 'number') {
 setValues = new Set(values.map(Number));
 } else if (setType === 'binary') {
 setValues = new Set(values);
 } else {
 throw new Error(`Unsupported set type: ${setType}`);
 }

 // Define the update parameters using DELETE
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: `DELETE ${setName} :values`,
 ExpressionAttributeValues: {
 ":values": setValues
 },
 ReturnValues: "UPDATED_NEW"
 };

场景 516

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // Perform the update operation
 const response = await docClient.send(new UpdateCommand(params));

 return response;
}

/**
 * Create a new set attribute with initial values.
 *
 * This function demonstrates using the SET operation to create a new set attribute.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {string} setName - The name of the set attribute
 * @param {Array} values - The initial values for the set
 * @param {string} setType - The type of set ('string', 'number', or 'binary')
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function createSet(
 config,
 tableName,
 key,
 setName,
 values,
 setType = 'string'
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Create the appropriate set type
 let setValues;
 if (setType === 'string') {
 setValues = new Set(values.map(String));
 } else if (setType === 'number') {
 setValues = new Set(values.map(Number));
 } else if (setType === 'binary') {
 setValues = new Set(values);
 } else {
 throw new Error(`Unsupported set type: ${setType}`);
 }

 // Define the update parameters using SET

场景 517

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: `SET ${setName} = :values`,
 ExpressionAttributeValues: {
 ":values": setValues
 },
 ReturnValues: "UPDATED_NEW"
 };

 // Perform the update operation
 const response = await docClient.send(new UpdateCommand(params));

 return response;
}

/**
 * Replace an entire set attribute with a new set of values.
 *
 * This function demonstrates using the SET operation to replace an entire set.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {string} setName - The name of the set attribute
 * @param {Array} values - The new values for the set
 * @param {string} setType - The type of set ('string', 'number', or 'binary')
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function replaceSet(
 config,
 tableName,
 key,
 setName,
 values,
 setType = 'string'
) {
 // This is the same as createSet, but included for clarity of intent
 return await createSet(config, tableName, key, setName, values, setType);
}

/**
 * Remove the last element from a set and handle the empty set case.
 *

场景 518

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * This function demonstrates what happens when you delete the last element of a
 set.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {string} setName - The name of the set attribute
 * @returns {Promise<Object>} - The result of the operation
 */
async function removeLastElementFromSet(
 config,
 tableName,
 key,
 setName
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // First, get the current item to check the set
 const currentItem = await getItem(config, tableName, key);

 // Check if the set exists and has elements
 if (!currentItem || !currentItem[setName] || currentItem[setName].size === 0) {
 return {
 success: false,
 message: "Set doesn't exist or is already empty",
 item: currentItem
 };
 }

 // Get the set values
 const setValues = Array.from(currentItem[setName]);

 // If there's only one element left, remove the attribute entirely
 if (setValues.length === 1) {
 // Define the update parameters to remove the attribute
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: `REMOVE ${setName}`,
 ReturnValues: "UPDATED_NEW"
 };

场景 519

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // Perform the update operation
 await docClient.send(new UpdateCommand(params));

 return {
 success: true,
 message: "Last element removed, attribute has been deleted",
 removedValue: setValues[0]
 };
 } else {
 // Otherwise, remove just the last element
 // Create a set with just the last element
 const lastElement = setValues[setValues.length - 1];
 const setType = typeof lastElement === 'number' ? 'number' : 'string';

 // Remove the last element
 const response = await removeFromSet(
 config,
 tableName,
 key,
 setName,
 [lastElement],
 setType
);

 return {
 success: true,
 message: "Last element removed, set still contains elements",
 removedValue: lastElement,
 remainingSet: response.Attributes[setName]
 };
 }
}

/**
 * Get the current value of an item.
 *
 * Helper function to retrieve the current value of an item.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to get
 * @returns {Promise<Object|null>} - The item or null if not found
 */
async function getItem(

场景 520

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 config,
 tableName,
 key
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Define the get parameters
 const params = {
 TableName: tableName,
 Key: key
 };

 // Perform the get operation
 const response = await docClient.send(new GetCommand(params));

 // Return the item if it exists, otherwise null
 return response.Item || null;
}

使用集合操作的用法示例 适用于 JavaScript 的 Amazon SDK。

/**
 * Example of how to work with sets in DynamoDB.
 */
async function exampleUsage() {
 // Example parameters
 const config = { region: "us-west-2" };
 const tableName = "Users";
 const key = { UserId: "U12345" };

 console.log("Demonstrating set operations in DynamoDB");

 try {
 // Example 1: Create a string set
 console.log("\nExample 1: Creating a string set");
 const response1 = await createSet(
 config,
 tableName,
 key,
 "Interests",

场景 521

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 ["Reading", "Hiking", "Cooking"],
 "string"
);

 console.log("Created set:", response1.Attributes);

 // Example 2: Add elements to a set
 console.log("\nExample 2: Adding elements to a set");
 const response2 = await addToSet(
 config,
 tableName,
 key,
 "Interests",
 ["Photography", "Travel"],
 "string"
);

 console.log("Updated set after adding elements:", response2.Attributes);

 // Example 3: Remove elements from a set
 console.log("\nExample 3: Removing elements from a set");
 const response3 = await removeFromSet(
 config,
 tableName,
 key,
 "Interests",
 ["Cooking"],
 "string"
);

 console.log("Updated set after removing elements:", response3.Attributes);

 // Example 4: Create a number set
 console.log("\nExample 4: Creating a number set");
 const response4 = await createSet(
 config,
 tableName,
 key,
 "FavoriteNumbers",
 [7, 42, 99],
 "number"
);

 console.log("Created number set:", response4.Attributes);

场景 522

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // Example 5: Replace an entire set
 console.log("\nExample 5: Replacing an entire set");
 const response5 = await replaceSet(
 config,
 tableName,
 key,
 "Interests",
 ["Gaming", "Movies", "Music"],
 "string"
);

 console.log("Replaced set:", response5.Attributes);

 // Example 6: Remove the last element from a set
 console.log("\nExample 6: Removing the last element from a set");

 // First, create a set with just one element
 await createSet(
 config,
 tableName,
 { UserId: "U67890" },
 "Tags",
 ["LastTag"],
 "string"
);

 // Then, remove the last element
 const response6 = await removeLastElementFromSet(
 config,
 tableName,
 { UserId: "U67890" },
 "Tags"
);

 console.log(response6.message);
 console.log("Removed value:", response6.removedValue);

 // Get the final state of the items
 console.log("\nFinal state of the items:");
 const item1 = await getItem(config, tableName, key);
 console.log("User U12345:", JSON.stringify(item1, null, 2));

 const item2 = await getItem(config, tableName, { UserId: "U67890" });

场景 523

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 console.log("User U67890:", JSON.stringify(item2, null, 2));

 // Explain set operations
 console.log("\nKey points about set operations in DynamoDB:");
 console.log("1. Use ADD to add elements to a set (duplicates are automatically
 removed)");
 console.log("2. Use DELETE to remove elements from a set");
 console.log("3. Use SET to create a new set or replace an existing one");
 console.log("4. DynamoDB supports three types of sets: string sets, number sets,
 and binary sets");
 console.log("5. When you delete the last element from a set, the attribute
 remains as an empty set");
 console.log("6. To remove an empty set, use the REMOVE operation");
 console.log("7. Sets automatically maintain unique values (no duplicates)");
 console.log("8. You cannot mix data types within a set");

 } catch (error) {
 console.error("Error:", error);
 }
}

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考UpdateItem中的。

使用批量 PartiQL 语句查询表

以下代码示例展示了如何：

• 通过运行多个 SELECT 语句来获取一批项目。

• 通过运行多个 INSERT 语句来添加一批项目。

• 通过运行多个 UPDATE 语句来更新一批项目。

• 通过运行多个 DELETE 语句来删除一批项目。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

场景 524

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/UpdateItemCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/dynamodb#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

执行批处理 PartiQL 语句。

import {
 BillingMode,
 CreateTableCommand,
 DeleteTableCommand,
 DescribeTableCommand,
 DynamoDBClient,
 waitUntilTableExists,
} from "@aws-sdk/client-dynamodb";
import {
 DynamoDBDocumentClient,
 BatchExecuteStatementCommand,
} from "@aws-sdk/lib-dynamodb";
import { ScenarioInput } from "@aws-doc-sdk-examples/lib/scenario";

const client = new DynamoDBClient({});
const docClient = DynamoDBDocumentClient.from(client);

const log = (msg) => console.log(`[SCENARIO] ${msg}`);
const tableName = "Cities";

export const main = async (confirmAll = false) => {
 /**
 * Delete table if it exists.
 */
 try {
 await client.send(new DescribeTableCommand({ TableName: tableName }));
 // If no error was thrown, the table exists.
 const input = new ScenarioInput(
 "deleteTable",
 `A table named ${tableName} already exists. If you choose not to delete
this table, the scenario cannot continue. Delete it?`,
 { type: "confirm", confirmAll },
);
 const deleteTable = await input.handle({}, { confirmAll });
 if (deleteTable) {
 await client.send(new DeleteTableCommand({ tableName }));
 } else {
 console.warn(
 "Scenario could not run. Either delete ${tableName} or provide a unique
 table name.",
);
 return;

场景 525

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }
 } catch (caught) {
 if (
 caught instanceof Error &&
 caught.name === "ResourceNotFoundException"
) {
 // Do nothing. This means the table is not there.
 } else {
 throw caught;
 }
 }

 /**
 * Create a table.
 */

 log("Creating a table.");
 const createTableCommand = new CreateTableCommand({
 TableName: tableName,
 // This example performs a large write to the database.
 // Set the billing mode to PAY_PER_REQUEST to
 // avoid throttling the large write.
 BillingMode: BillingMode.PAY_PER_REQUEST,
 // Define the attributes that are necessary for the key schema.
 AttributeDefinitions: [
 {
 AttributeName: "name",
 // 'S' is a data type descriptor that represents a number type.
 // For a list of all data type descriptors, see the following link.
 // https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
Programming.LowLevelAPI.html#Programming.LowLevelAPI.DataTypeDescriptors
 AttributeType: "S",
 },
],
 // The KeySchema defines the primary key. The primary key can be
 // a partition key, or a combination of a partition key and a sort key.
 // Key schema design is important. For more info, see
 // https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/best-
practices.html
 KeySchema: [{ AttributeName: "name", KeyType: "HASH" }],
 });
 await client.send(createTableCommand);
 log(`Table created: ${tableName}.`);

场景 526

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 /**
 * Wait until the table is active.
 */

 // This polls with DescribeTableCommand until the requested table is 'ACTIVE'.
 // You can't write to a table before it's active.
 log("Waiting for the table to be active.");
 await waitUntilTableExists({ client }, { TableName: tableName });
 log("Table active.");

 /**
 * Insert items.
 */

 log("Inserting cities into the table.");
 const addItemsStatementCommand = new BatchExecuteStatementCommand({
 // https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ql-
reference.insert.html
 Statements: [
 {
 Statement: `INSERT INTO ${tableName} value {'name':?, 'population':?}`,
 Parameters: ["Alachua", 10712],
 },
 {
 Statement: `INSERT INTO ${tableName} value {'name':?, 'population':?}`,
 Parameters: ["High Springs", 6415],
 },
],
 });
 await docClient.send(addItemsStatementCommand);
 log("Cities inserted.");

 /**
 * Select items.
 */

 log("Selecting cities from the table.");
 const selectItemsStatementCommand = new BatchExecuteStatementCommand({
 // https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ql-
reference.select.html
 Statements: [
 {
 Statement: `SELECT * FROM ${tableName} WHERE name=?`,
 Parameters: ["Alachua"],

场景 527

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 },
 {
 Statement: `SELECT * FROM ${tableName} WHERE name=?`,
 Parameters: ["High Springs"],
 },
],
 });
 const selectItemResponse = await docClient.send(selectItemsStatementCommand);
 log(
 `Got cities: ${selectItemResponse.Responses.map(
 (r) => `${r.Item.name} (${r.Item.population})`,
).join(", ")}`,
);

 /**
 * Update items.
 */

 log("Modifying the populations.");
 const updateItemStatementCommand = new BatchExecuteStatementCommand({
 // https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ql-
reference.update.html
 Statements: [
 {
 Statement: `UPDATE ${tableName} SET population=? WHERE name=?`,
 Parameters: [10, "Alachua"],
 },
 {
 Statement: `UPDATE ${tableName} SET population=? WHERE name=?`,
 Parameters: [5, "High Springs"],
 },
],
 });
 await docClient.send(updateItemStatementCommand);
 log("Updated cities.");

 /**
 * Delete the items.
 */

 log("Deleting the cities.");
 const deleteItemStatementCommand = new BatchExecuteStatementCommand({
 // https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ql-
reference.delete.html

场景 528

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 Statements: [
 {
 Statement: `DELETE FROM ${tableName} WHERE name=?`,
 Parameters: ["Alachua"],
 },
 {
 Statement: `DELETE FROM ${tableName} WHERE name=?`,
 Parameters: ["High Springs"],
 },
],
 });
 await docClient.send(deleteItemStatementCommand);
 log("Cities deleted.");

 /**
 * Delete the table.
 */

 log("Deleting the table.");
 const deleteTableCommand = new DeleteTableCommand({ TableName: tableName });
 await client.send(deleteTableCommand);
 log("Table deleted.");
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考BatchExecuteStatement中的。

使用 PartiQL 来查询表

以下代码示例展示了如何：

• 通过运行 SELECT 语句来获取项目。

• 通过运行 INSERT 语句来添加项目。

• 通过运行 UPDATE 语句来更新项目。

• 通过运行 DELETE 语句来删除项目。

场景 529

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/BatchExecuteStatementCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

执行单个 PartiQL 语句。

import {
 BillingMode,
 CreateTableCommand,
 DeleteTableCommand,
 DescribeTableCommand,
 DynamoDBClient,
 waitUntilTableExists,
} from "@aws-sdk/client-dynamodb";
import {
 DynamoDBDocumentClient,
 ExecuteStatementCommand,
} from "@aws-sdk/lib-dynamodb";
import { ScenarioInput } from "@aws-doc-sdk-examples/lib/scenario";

const client = new DynamoDBClient({});
const docClient = DynamoDBDocumentClient.from(client);

const log = (msg) => console.log(`[SCENARIO] ${msg}`);
const tableName = "SingleOriginCoffees";

export const main = async (confirmAll = false) => {
 /**
 * Delete table if it exists.
 */
 try {
 await client.send(new DescribeTableCommand({ TableName: tableName }));
 // If no error was thrown, the table exists.
 const input = new ScenarioInput(
 "deleteTable",
 `A table named ${tableName} already exists. If you choose not to delete
this table, the scenario cannot continue. Delete it?`,
 { type: "confirm", confirmAll },
);

场景 530

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/dynamodb#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const deleteTable = await input.handle({});
 if (deleteTable) {
 await client.send(new DeleteTableCommand({ tableName }));
 } else {
 console.warn(
 "Scenario could not run. Either delete ${tableName} or provide a unique
 table name.",
);
 return;
 }
 } catch (caught) {
 if (
 caught instanceof Error &&
 caught.name === "ResourceNotFoundException"
) {
 // Do nothing. This means the table is not there.
 } else {
 throw caught;
 }
 }

 /**
 * Create a table.
 */

 log("Creating a table.");
 const createTableCommand = new CreateTableCommand({
 TableName: tableName,
 // This example performs a large write to the database.
 // Set the billing mode to PAY_PER_REQUEST to
 // avoid throttling the large write.
 BillingMode: BillingMode.PAY_PER_REQUEST,
 // Define the attributes that are necessary for the key schema.
 AttributeDefinitions: [
 {
 AttributeName: "varietal",
 // 'S' is a data type descriptor that represents a number type.
 // For a list of all data type descriptors, see the following link.
 // https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
Programming.LowLevelAPI.html#Programming.LowLevelAPI.DataTypeDescriptors
 AttributeType: "S",
 },
],
 // The KeySchema defines the primary key. The primary key can be

场景 531

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // a partition key, or a combination of a partition key and a sort key.
 // Key schema design is important. For more info, see
 // https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/best-
practices.html
 KeySchema: [{ AttributeName: "varietal", KeyType: "HASH" }],
 });
 await client.send(createTableCommand);
 log(`Table created: ${tableName}.`);

 /**
 * Wait until the table is active.
 */

 // This polls with DescribeTableCommand until the requested table is 'ACTIVE'.
 // You can't write to a table before it's active.
 log("Waiting for the table to be active.");
 await waitUntilTableExists({ client }, { TableName: tableName });
 log("Table active.");

 /**
 * Insert an item.
 */

 log("Inserting a coffee into the table.");
 const addItemStatementCommand = new ExecuteStatementCommand({
 // https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ql-
reference.insert.html
 Statement: `INSERT INTO ${tableName} value {'varietal':?, 'profile':?}`,
 Parameters: ["arabica", ["chocolate", "floral"]],
 });
 await client.send(addItemStatementCommand);
 log("Coffee inserted.");

 /**
 * Select an item.
 */

 log("Selecting the coffee from the table.");
 const selectItemStatementCommand = new ExecuteStatementCommand({
 // https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ql-
reference.select.html
 Statement: `SELECT * FROM ${tableName} WHERE varietal=?`,
 Parameters: ["arabica"],
 });

场景 532

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const selectItemResponse = await docClient.send(selectItemStatementCommand);
 log(`Got coffee: ${JSON.stringify(selectItemResponse.Items[0])}`);

 /**
 * Update the item.
 */

 log("Add a flavor profile to the coffee.");
 const updateItemStatementCommand = new ExecuteStatementCommand({
 // https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ql-
reference.update.html
 Statement: `UPDATE ${tableName} SET profile=list_append(profile, ?) WHERE
 varietal=?`,
 Parameters: [["fruity"], "arabica"],
 });
 await client.send(updateItemStatementCommand);
 log("Updated coffee");

 /**
 * Delete the item.
 */

 log("Deleting the coffee.");
 const deleteItemStatementCommand = new ExecuteStatementCommand({
 // https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ql-
reference.delete.html
 Statement: `DELETE FROM ${tableName} WHERE varietal=?`,
 Parameters: ["arabica"],
 });
 await docClient.send(deleteItemStatementCommand);
 log("Coffee deleted.");

 /**
 * Delete the table.
 */

 log("Deleting the table.");
 const deleteTableCommand = new DeleteTableCommand({ TableName: tableName });
 await client.send(deleteTableCommand);
 log("Table deleted.");
};

场景 533

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考ExecuteStatement中
的。

使用全局二级索引查询表

以下代码示例演示如何使用全局二级索引来查询表。

• 使用 DynamoDB 表的主键查询该表。

• 查询全局二级索引（GSI）以获取其它访问模式。

• 比较表查询和 GSI 查询。

适用于 JavaScript (v3) 的软件开发工具包

使用主键查询 DynamoDB 表。 适用于 JavaScript 的 Amazon SDK

const { DynamoDBClient, QueryCommand } = require("@aws-sdk/client-dynamodb");

/**
 * Queries a DynamoDB table using the primary key
 *
 * @param {Object} config - AWS SDK configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {string} userId - The user ID to query by (partition key)
 * @returns {Promise<Object>} - The query response
 */
async function queryTable(
 config,
 tableName,
 userId
) {
 try {
 // Create DynamoDB client
 const client = new DynamoDBClient(config);

 // Construct the query input for the base table
 const input = {
 TableName: tableName,
 KeyConditionExpression: "user_id = :userId",
 ExpressionAttributeValues: {
 ":userId": { S: userId }
 }

场景 534

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/ExecuteStatementCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 };

 // Execute the query
 const command = new QueryCommand(input);
 return await client.send(command);
 } catch (error) {
 console.error(`Error querying table: ${error}`);
 throw error;
 }
}

使用查询 DynamoDB 全球二级索引 (GSI)。 适用于 JavaScript 的 Amazon SDK

/**
 * Queries a DynamoDB Global Secondary Index (GSI)
 *
 * @param {Object} config - AWS SDK configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {string} indexName - The name of the GSI to query
 * @param {string} gameId - The game ID to query by (GSI partition key)
 * @returns {Promise<Object>} - The query response
 */
async function queryGSI(
 config,
 tableName,
 indexName,
 gameId
) {
 try {
 // Create DynamoDB client
 const client = new DynamoDBClient(config);

 // Construct the query input for the GSI
 const input = {
 TableName: tableName,
 IndexName: indexName,
 KeyConditionExpression: "game_id = :gameId",
 ExpressionAttributeValues: {
 ":gameId": { S: gameId }
 }
 };

场景 535

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // Execute the query
 const command = new QueryCommand(input);
 return await client.send(command);
 } catch (error) {
 console.error(`Error querying GSI: ${error}`);
 throw error;
 }
}

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的 Query。

使用 begins_with 条件查询表

以下代码示例演示如何使用 begins_with 条件来查询表。

• 在键条件表达式中使用 begins_with 函数。

• 根据排序键中的前缀模式筛选项目。

适用于 JavaScript (v3) 的软件开发工具包

使用 适用于 JavaScript 的 Amazon SDK通过排序键上的 begins_with 条件查询 DynamoDB 表。

const { DynamoDBClient, QueryCommand } = require("@aws-sdk/client-dynamodb");

/**
 * Queries a DynamoDB table for items where the sort key begins with a specific
 prefix
 *
 * @param {Object} config - AWS SDK configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {string} partitionKeyName - The name of the partition key
 * @param {string} partitionKeyValue - The value of the partition key
 * @param {string} sortKeyName - The name of the sort key
 * @param {string} prefix - The prefix to match at the beginning of the sort key
 * @returns {Promise<Object>} - The query response
 */
async function queryWithBeginsWith(
 config,
 tableName,
 partitionKeyName,

场景 536

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/QueryCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 partitionKeyValue,
 sortKeyName,
 prefix
) {
 try {
 // Create DynamoDB client
 const client = new DynamoDBClient(config);

 // Construct the query input
 const input = {
 TableName: tableName,
 KeyConditionExpression: "#pk = :pkValue AND begins_with(#sk, :prefix)",
 ExpressionAttributeNames: {
 "#pk": partitionKeyName,
 "#sk": sortKeyName
 },
 ExpressionAttributeValues: {
 ":pkValue": { S: partitionKeyValue },
 ":prefix": { S: prefix }
 }
 };

 // Execute the query
 const command = new QueryCommand(input);
 return await client.send(command);
 } catch (error) {
 console.error(`Error querying with begins_with: ${error}`);
 throw error;
 }
}

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的 Query。

使用日期范围查询表

以下代码示例演示如何使用排序键中的日期范围来查询表。

• 查询特定日期范围内的项目。

• 对日期格式的排序键使用比较运算符。

场景 537

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/QueryCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

在 DynamoDB 表中查询 DynamoDB 表中是否有某个日期范围内的项目。 适用于 JavaScript 的
Amazon SDK

const { DynamoDBClient, QueryCommand } = require("@aws-sdk/client-dynamodb");

/**
 * Queries a DynamoDB table for items within a specific date range on the sort key
 *
 * @param {Object} config - AWS SDK configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {string} partitionKeyName - The name of the partition key
 * @param {string} partitionKeyValue - The value of the partition key
 * @param {string} sortKeyName - The name of the sort key (must be a date/time
 attribute)
 * @param {Date} startDate - The start date for the range query
 * @param {Date} endDate - The end date for the range query
 * @returns {Promise<Object>} - The query response
 */
async function queryByDateRangeOnSortKey(
 config,
 tableName,
 partitionKeyName,
 partitionKeyValue,
 sortKeyName,
 startDate,
 endDate
) {
 try {
 // Create DynamoDB client
 const client = new DynamoDBClient(config);

 // Format dates as ISO strings for DynamoDB
 const formattedStartDate = startDate.toISOString();
 const formattedEndDate = endDate.toISOString();

 // Construct the query input
 const input = {
 TableName: tableName,
 KeyConditionExpression: '#pk = :pkValue AND #sk BETWEEN :startDate
 AND :endDate',
 ExpressionAttributeNames: {
 "#pk": partitionKeyName,

场景 538

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 "#sk": sortKeyName
 },
 ExpressionAttributeValues: {
 ":pkValue": { S: partitionKeyValue },
 ":startDate": { S: formattedStartDate },
 ":endDate": { S: formattedEndDate }
 }
 };

 // Execute the query
 const command = new QueryCommand(input);
 return await client.send(command);
 } catch (error) {
 console.error(`Error querying by date range on sort key: ${error}`);
 throw error;
 }
}

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的 Query。

使用复杂的筛选表达式查询表

以下代码示例演示如何使用复杂的筛选表达式来查询表。

• 将复杂的筛选表达式应用于查询结果。

• 使用逻辑运算符组合条件。

• 根据非键属性筛选项目。

适用于 JavaScript (v3) 的软件开发工具包

使用复杂筛选表达式查询 DynamoDB 表。 适用于 JavaScript 的 Amazon SDK

const { DynamoDBClient, QueryCommand } = require("@aws-sdk/client-dynamodb");

/**
 * Queries a DynamoDB table with a complex filter expression
 *
 * @param {Object} config - AWS SDK configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {string} partitionKeyName - The name of the partition key

场景 539

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/QueryCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * @param {string} partitionKeyValue - The value of the partition key
 * @param {number|string} minViews - Minimum number of views for filtering
 * @param {number|string} minReplies - Minimum number of replies for filtering
 * @param {string} requiredTag - Tag that must be present in the item's tags set
 * @returns {Promise<Object>} - The query response
 */
async function queryWithComplexFilter(
 config,
 tableName,
 partitionKeyName,
 partitionKeyValue,
 minViews,
 minReplies,
 requiredTag
) {
 try {
 // Create DynamoDB client
 const client = new DynamoDBClient(config);

 // Construct the query input
 const input = {
 TableName: tableName,
 KeyConditionExpression: "#pk = :pkValue",
 FilterExpression: "views >= :minViews AND replies >= :minReplies AND
 contains(tags, :tag)",
 ExpressionAttributeNames: {
 "#pk": partitionKeyName
 },
 ExpressionAttributeValues: {
 ":pkValue": { S: partitionKeyValue },
 ":minViews": { N: minViews.toString() },
 ":minReplies": { N: minReplies.toString() },
 ":tag": { S: requiredTag }
 }
 };

 // Execute the query
 const command = new QueryCommand(input);
 return await client.send(command);
 } catch (error) {
 console.error(`Error querying with complex filter: ${error}`);
 throw error;
 }
}

场景 540

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的 Query。

使用动态筛选表达式查询表

以下代码示例演示如何使用动态筛选表达式来查询表。

• 在运行时动态构建筛选表达式。

• 根据用户输入或应用程序状态构造筛选条件。

• 有条件地添加或移除筛选条件。

适用于 JavaScript (v3) 的软件开发工具包

使用动态构造的筛选表达式查询 DynamoDB 表。 适用于 JavaScript 的 Amazon SDK

const { DynamoDBClient, QueryCommand } = require("@aws-sdk/client-dynamodb");

async function queryWithDynamicFilter(
 config,
 tableName,
 partitionKeyName,
 partitionKeyValue,
 sortKeyName,
 sortKeyValue,
 filterParams = {}
) {
 try {
 // Create DynamoDB client
 const client = new DynamoDBClient(config);

 // Initialize filter expression components
 let filterExpressions = [];
 const expressionAttributeValues = {
 ":pkValue": { S: partitionKeyValue },
 ":skValue": { S: sortKeyValue }
 };
 const expressionAttributeNames = {
 "#pk": partitionKeyName,
 "#sk": sortKeyName
 };

场景 541

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/QueryCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // Add status filter if provided
 if (filterParams.status) {
 filterExpressions.push("status = :status");
 expressionAttributeValues[":status"] = { S: filterParams.status };
 }

 // Add minimum views filter if provided
 if (filterParams.minViews !== undefined) {
 filterExpressions.push("views >= :minViews");
 expressionAttributeValues[":minViews"] = { N:
 filterParams.minViews.toString() };
 }

 // Add author filter if provided
 if (filterParams.author) {
 filterExpressions.push("author = :author");
 expressionAttributeValues[":author"] = { S: filterParams.author };
 }

 // Construct the query input
 const input = {
 TableName: tableName,
 KeyConditionExpression: "#pk = :pkValue AND #sk = :skValue"
 };

 // Add filter expression if any filters were provided
 if (filterExpressions.length > 0) {
 input.FilterExpression = filterExpressions.join(" AND ");
 }

 // Add expression attribute names and values
 input.ExpressionAttributeNames = expressionAttributeNames;
 input.ExpressionAttributeValues = expressionAttributeValues;

 // Execute the query
 const command = new QueryCommand(input);
 return await client.send(command);
 } catch (error) {
 console.error(`Error querying with dynamic filter: ${error}`);
 throw error;
 }
}

场景 542

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的 Query。

使用嵌套属性查询表

以下代码示例演示如何使用嵌套属性来查询表。

• 按 DynamoDB 项目中的嵌套属性进行访问和筛选。

• 使用文档路径表达式来引用嵌套元素。

适用于 JavaScript (v3) 的软件开发工具包

使用查询带有嵌套属性的 DynamoDB 表。 适用于 JavaScript 的 Amazon SDK

const { DynamoDBClient, QueryCommand } = require("@aws-sdk/client-dynamodb");

/**
 * Queries a DynamoDB table filtering on a nested attribute
 *
 * @param {Object} config - AWS SDK configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {string} productId - The product ID to query by (partition key)
 * @param {string} category - The category to filter by (nested attribute)
 * @returns {Promise<Object>} - The query response
 */
async function queryWithNestedAttribute(
 config,
 tableName,
 productId,
 category
) {
 try {
 // Create DynamoDB client
 const client = new DynamoDBClient(config);

 // Construct the query input
 const input = {
 TableName: tableName,
 KeyConditionExpression: "product_id = :productId",
 FilterExpression: "details.category = :category",
 ExpressionAttributeValues: {

场景 543

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/QueryCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 ":productId": { S: productId },
 ":category": { S: category }
 }
 };

 // Execute the query
 const command = new QueryCommand(input);
 return await client.send(command);
 } catch (error) {
 console.error(`Error querying with nested attribute: ${error}`);
 throw error;
 }
}

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的 Query。

通过分区查询表

以下代码示例演示如何使用分区来查询表。

• 为 DynamoDB 查询结果实现分页。

• 使用检 LastEvaluatedKey 索后续页面。

• 使用 Limit 参数控制每页项目数。

适用于 JavaScript (v3) 的软件开发工具包

使用分页查询 DynamoDB 表。 适用于 JavaScript 的 Amazon SDK

/**
 * Example demonstrating how to handle large query result sets in DynamoDB using
 pagination
 *
 * This example shows:
 * - How to use pagination to handle large result sets
 * - How to use LastEvaluatedKey to retrieve the next page of results
 * - How to construct subsequent query requests using ExclusiveStartKey
 */
const { DynamoDBClient, QueryCommand } = require("@aws-sdk/client-dynamodb");

场景 544

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/QueryCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

/**
 * Queries a DynamoDB table with pagination to handle large result sets
 *
 * @param {Object} config - AWS SDK configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {string} partitionKeyName - The name of the partition key
 * @param {string} partitionKeyValue - The value of the partition key
 * @param {number} pageSize - Number of items per page
 * @returns {Promise<Array>} - All items from the query
 */
async function queryWithPagination(
 config,
 tableName,
 partitionKeyName,
 partitionKeyValue,
 pageSize = 25
) {
 try {
 // Create DynamoDB client
 const client = new DynamoDBClient(config);

 // Initialize variables for pagination
 let lastEvaluatedKey = undefined;
 const allItems = [];
 let pageCount = 0;

 // Loop until all pages are retrieved
 do {
 // Construct the query input
 const input = {
 TableName: tableName,
 KeyConditionExpression: "#pk = :pkValue",
 Limit: pageSize,
 ExpressionAttributeNames: {
 "#pk": partitionKeyName
 },
 ExpressionAttributeValues: {
 ":pkValue": { S: partitionKeyValue }
 }
 };

 // Add ExclusiveStartKey if we have a LastEvaluatedKey from a previous query
 if (lastEvaluatedKey) {
 input.ExclusiveStartKey = lastEvaluatedKey;

场景 545

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }

 // Execute the query
 const command = new QueryCommand(input);
 const response = await client.send(command);

 // Process the current page of results
 pageCount++;
 console.log(`Processing page ${pageCount} with ${response.Items.length}
 items`);

 // Add the items from this page to our collection
 if (response.Items && response.Items.length > 0) {
 allItems.push(...response.Items);
 }

 // Get the LastEvaluatedKey for the next page
 lastEvaluatedKey = response.LastEvaluatedKey;

 } while (lastEvaluatedKey); // Continue until there are no more pages

 console.log(`Query complete. Retrieved ${allItems.length} items in ${pageCount}
 pages.`);
 return allItems;
 } catch (error) {
 console.error(`Error querying with pagination: ${error}`);
 throw error;
 }
}

/**
 * Example usage:
 *
 * // Query all items in the "AWS DynamoDB" forum with pagination
 * const allItems = await queryWithPagination(
 * { region: "us-west-2" },
 * "ForumThreads",
 * "ForumName",
 * "AWS DynamoDB",
 * 25 // 25 items per page
 *);
 *
 * console.log(`Total items retrieved: ${allItems.length}`);
 *

场景 546

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * // Notes on pagination:
 * // - LastEvaluatedKey contains the primary key of the last evaluated item
 * // - When LastEvaluatedKey is undefined/null, there are no more items to retrieve
 * // - ExclusiveStartKey tells DynamoDB where to start the next page
 * // - Pagination helps manage memory usage for large result sets
 * // - Each page requires a separate network request to DynamoDB
 */

module.exports = { queryWithPagination };

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的 Query。

通过强一致性读取查询表

以下代码示例演示如何使用强一致性读取来查询表。

• 为 DynamoDB 查询配置一致性级别。

• 使用强一致性读取来获取最多的 up-to-date数据。

• 了解最终一致性和强一致性之间的权衡。

适用于 JavaScript (v3) 的软件开发工具包

使用查询具有可配置读取一致性的 DynamoDB 表。 适用于 JavaScript 的 Amazon SDK

const { DynamoDBClient, QueryCommand } = require("@aws-sdk/client-dynamodb");

/**
 * Queries a DynamoDB table with configurable read consistency
 *
 * @param {Object} config - AWS SDK configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {string} partitionKeyName - The name of the partition key
 * @param {string} partitionKeyValue - The value of the partition key
 * @param {boolean} useConsistentRead - Whether to use strongly consistent reads
 * @returns {Promise<Object>} - The query response
 */
async function queryWithConsistentRead(
 config,
 tableName,
 partitionKeyName,

场景 547

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/QueryCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 partitionKeyValue,
 useConsistentRead = false
) {
 try {
 // Create DynamoDB client
 const client = new DynamoDBClient(config);

 // Construct the query input
 const input = {
 TableName: tableName,
 KeyConditionExpression: "#pk = :pkValue",
 ExpressionAttributeNames: {
 "#pk": partitionKeyName
 },
 ExpressionAttributeValues: {
 ":pkValue": { S: partitionKeyValue }
 },
 ConsistentRead: useConsistentRead
 };

 // Execute the query
 const command = new QueryCommand(input);
 return await client.send(command);
 } catch (error) {
 console.error(`Error querying with consistent read: ${error}`);
 throw error;
 }
}

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的 Query。

使用 PartiQL SELECT 查询数据

以下代码示例演示如何使用 PartiQL SELECT 语句查询数据。

适用于 JavaScript (v3) 的软件开发工具包

使用带有的 PartiQL SELECT 语句查询 DynamoDB 表中的项目。 适用于 JavaScript 的 Amazon
SDK

/**

场景 548

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/QueryCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * This example demonstrates how to query items from a DynamoDB table using PartiQL.
 * It shows different ways to select data with various index types.
 */
import { DynamoDBClient } from "@aws-sdk/client-dynamodb";
import {
 DynamoDBDocumentClient,
 ExecuteStatementCommand,
 BatchExecuteStatementCommand,
} from "@aws-sdk/lib-dynamodb";

/**
 * Select all items from a DynamoDB table using PartiQL.
 * Note: This should be used with caution on large tables.
 *
 * @param tableName - The name of the DynamoDB table
 * @returns The response from the ExecuteStatementCommand
 */
export const selectAllItems = async (tableName: string) => {
 const client = new DynamoDBClient({});
 const docClient = DynamoDBDocumentClient.from(client);

 const params = {
 Statement: `SELECT * FROM "${tableName}"`,
 };

 try {
 const data = await docClient.send(new ExecuteStatementCommand(params));
 console.log("Items retrieved successfully");
 return data;
 } catch (err) {
 console.error("Error retrieving items:", err);
 throw err;
 }
};

/**
 * Select an item by its primary key using PartiQL.
 *
 * @param tableName - The name of the DynamoDB table
 * @param partitionKeyName - The name of the partition key attribute
 * @param partitionKeyValue - The value of the partition key
 * @returns The response from the ExecuteStatementCommand
 */
export const selectItemByPartitionKey = async (

场景 549

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 tableName: string,
 partitionKeyName: string,
 partitionKeyValue: string | number
) => {
 const client = new DynamoDBClient({});
 const docClient = DynamoDBDocumentClient.from(client);

 const params = {
 Statement: `SELECT * FROM "${tableName}" WHERE ${partitionKeyName} = ?`,
 Parameters: [partitionKeyValue],
 };

 try {
 const data = await docClient.send(new ExecuteStatementCommand(params));
 console.log("Item retrieved successfully");
 return data;
 } catch (err) {
 console.error("Error retrieving item:", err);
 throw err;
 }
};

/**
 * Select an item by its composite key (partition key + sort key) using PartiQL.
 *
 * @param tableName - The name of the DynamoDB table
 * @param partitionKeyName - The name of the partition key attribute
 * @param partitionKeyValue - The value of the partition key
 * @param sortKeyName - The name of the sort key attribute
 * @param sortKeyValue - The value of the sort key
 * @returns The response from the ExecuteStatementCommand
 */
export const selectItemByCompositeKey = async (
 tableName: string,
 partitionKeyName: string,
 partitionKeyValue: string | number,
 sortKeyName: string,
 sortKeyValue: string | number
) => {
 const client = new DynamoDBClient({});
 const docClient = DynamoDBDocumentClient.from(client);

 const params = {

场景 550

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 Statement: `SELECT * FROM "${tableName}" WHERE ${partitionKeyName} = ? AND
 ${sortKeyName} = ?`,
 Parameters: [partitionKeyValue, sortKeyValue],
 };

 try {
 const data = await docClient.send(new ExecuteStatementCommand(params));
 console.log("Item retrieved successfully");
 return data;
 } catch (err) {
 console.error("Error retrieving item:", err);
 throw err;
 }
};

/**
 * Select items using a filter condition with PartiQL.
 *
 * @param tableName - The name of the DynamoDB table
 * @param filterAttribute - The attribute to filter on
 * @param filterValue - The value to filter by
 * @returns The response from the ExecuteStatementCommand
 */
export const selectItemsWithFilter = async (
 tableName: string,
 filterAttribute: string,
 filterValue: string | number
) => {
 const client = new DynamoDBClient({});
 const docClient = DynamoDBDocumentClient.from(client);

 const params = {
 Statement: `SELECT * FROM "${tableName}" WHERE ${filterAttribute} = ?`,
 Parameters: [filterValue],
 };

 try {
 const data = await docClient.send(new ExecuteStatementCommand(params));
 console.log("Items retrieved successfully");
 return data;
 } catch (err) {
 console.error("Error retrieving items:", err);
 throw err;
 }

场景 551

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

};

/**
 * Select items using a begins_with function for prefix matching.
 * This is useful for querying hierarchical data.
 *
 * @param tableName - The name of the DynamoDB table
 * @param attributeName - The attribute to check for prefix
 * @param prefix - The prefix to match
 * @returns The response from the ExecuteStatementCommand
 */
export const selectItemsByPrefix = async (
 tableName: string,
 attributeName: string,
 prefix: string
) => {
 const client = new DynamoDBClient({});
 const docClient = DynamoDBDocumentClient.from(client);

 const params = {
 Statement: `SELECT * FROM "${tableName}" WHERE
 begins_with(${attributeName}, ?)`,
 Parameters: [prefix],
 };

 try {
 const data = await docClient.send(new ExecuteStatementCommand(params));
 console.log("Items retrieved successfully");
 return data;
 } catch (err) {
 console.error("Error retrieving items:", err);
 throw err;
 }
};

/**
 * Select items using a between condition for range queries.
 *
 * @param tableName - The name of the DynamoDB table
 * @param attributeName - The attribute to check for range
 * @param startValue - The start value of the range
 * @param endValue - The end value of the range
 * @returns The response from the ExecuteStatementCommand
 */

场景 552

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

export const selectItemsByRange = async (
 tableName: string,
 attributeName: string,
 startValue: number | string,
 endValue: number | string
) => {
 const client = new DynamoDBClient({});
 const docClient = DynamoDBDocumentClient.from(client);

 const params = {
 Statement: `SELECT * FROM "${tableName}" WHERE ${attributeName} BETWEEN ? AND ?
`,
 Parameters: [startValue, endValue],
 };

 try {
 const data = await docClient.send(new ExecuteStatementCommand(params));
 console.log("Items retrieved successfully");
 return data;
 } catch (err) {
 console.error("Error retrieving items:", err);
 throw err;
 }
};

/**
 * Example usage showing how to select items with different index types
 */
export const selectExamples = async () => {
 // Select all items from a table (use with caution on large tables)
 await selectAllItems("UsersTable");

 // Select by partition key (simple primary key)
 await selectItemByPartitionKey("UsersTable", "userId", "user123");

 // Select by composite key (partition key + sort key)
 await selectItemByCompositeKey("OrdersTable", "orderId", "order456", "productId",
 "prod789");

 // Select with a filter condition (can use any attribute)
 await selectItemsWithFilter("UsersTable", "userType", "premium");

 // Select items with a prefix (useful for hierarchical data)
 await selectItemsByPrefix("ProductsTable", "category", "electronics");

场景 553

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // Select items within a range (useful for numeric or date ranges)
 await selectItemsByRange("OrdersTable", "orderDate", "2023-01-01", "2023-12-31");
};

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的以下主
题。

• BatchExecuteStatement

• ExecuteStatement

查询 TTL 项目

以下代码示例演示如何查询 TTL 项目。

适用于 JavaScript (v3) 的软件开发工具包

使用查询筛选表达式以收集 DynamoDB 表中的 TTL 项目。 适用于 JavaScript 的 Amazon SDK

import { DynamoDBClient, QueryCommand } from "@aws-sdk/client-dynamodb";
import { marshall, unmarshall } from "@aws-sdk/util-dynamodb";

export const queryFiltered = async (tableName, primaryKey, region = 'us-east-1') =>
 {
 const client = new DynamoDBClient({
 region: region,
 endpoint: `https://dynamodb.${region}.amazonaws.com`
 });

 const currentTime = Math.floor(Date.now() / 1000);

 const params = {
 TableName: tableName,
 KeyConditionExpression: "#pk = :pk",
 FilterExpression: "#ea > :ea",
 ExpressionAttributeNames: {
 "#pk": "primaryKey",
 "#ea": "expireAt"
 },
 ExpressionAttributeValues: marshall({
 ":pk": primaryKey,
 ":ea": currentTime

场景 554

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/BatchExecuteStatementCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/ExecuteStatementCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 })
 };

 try {
 const { Items } = await client.send(new QueryCommand(params));
 Items.forEach(item => {
 console.log(unmarshall(item))
 });
 return Items;
 } catch (err) {
 console.error(`Error querying items: ${err}`);
 throw err;
 }
}

// Example usage (commented out for testing)
// queryFiltered('your-table-name', 'your-partition-key-value');

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的 Query。

使用日期和时间模式查询表

以下代码示例演示如何使用日期和时间模式来查询表。

• 在 DynamoDB 中存储和查询 date/time 值。

• 使用排序键实现日期范围查询。

• 对日期字符串格式化以进行有效查询。

适用于 JavaScript (v3) 的软件开发工具包

使用排序键中的日期范围进行查询 适用于 JavaScript 的 Amazon SDK。

const { DynamoDBClient, QueryCommand } = require("@aws-sdk/client-dynamodb");

/**
 * Queries a DynamoDB table for items within a specific date range on the sort key
 *
 * @param {Object} config - AWS SDK configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {string} partitionKeyName - The name of the partition key

场景 555

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/QueryCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * @param {string} partitionKeyValue - The value of the partition key
 * @param {string} sortKeyName - The name of the sort key (must be a date/time
 attribute)
 * @param {Date} startDate - The start date for the range query
 * @param {Date} endDate - The end date for the range query
 * @returns {Promise<Object>} - The query response
 */
async function queryByDateRangeOnSortKey(
 config,
 tableName,
 partitionKeyName,
 partitionKeyValue,
 sortKeyName,
 startDate,
 endDate
) {
 try {
 // Create DynamoDB client
 const client = new DynamoDBClient(config);

 // Format dates as ISO strings for DynamoDB
 const formattedStartDate = startDate.toISOString();
 const formattedEndDate = endDate.toISOString();

 // Construct the query input
 const input = {
 TableName: tableName,
 KeyConditionExpression: '#pk = :pkValue AND #sk BETWEEN :startDate
 AND :endDate',
 ExpressionAttributeNames: {
 "#pk": partitionKeyName,
 "#sk": sortKeyName
 },
 ExpressionAttributeValues: {
 ":pkValue": { S: partitionKeyValue },
 ":startDate": { S: formattedStartDate },
 ":endDate": { S: formattedEndDate }
 }
 };

 // Execute the query
 const command = new QueryCommand(input);
 return await client.send(command);
 } catch (error) {

场景 556

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 console.error(`Error querying by date range on sort key: ${error}`);
 throw error;
 }
}

使用日期时间变量进行查询。 适用于 JavaScript 的 Amazon SDK

const { DynamoDBClient, QueryCommand } = require("@aws-sdk/client-dynamodb");

/**
 * Queries a DynamoDB table for items within a specific date range
 *
 * @param {Object} config - AWS SDK configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {string} partitionKeyName - The name of the partition key
 * @param {string} partitionKeyValue - The value of the partition key
 * @param {string} dateKeyName - The name of the date attribute to filter on
 * @param {Date} startDate - The start date for the range query
 * @param {Date} endDate - The end date for the range query
 * @returns {Promise<Object>} - The query response
 */
async function queryByDateRange(
 config,
 tableName,
 partitionKeyName,
 partitionKeyValue,
 dateKeyName,
 startDate,
 endDate
) {
 try {
 // Create DynamoDB client
 const client = new DynamoDBClient(config);

 // Format dates as ISO strings for DynamoDB
 const formattedStartDate = startDate.toISOString();
 const formattedEndDate = endDate.toISOString();

 // Construct the query input
 const input = {
 TableName: tableName,

场景 557

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 KeyConditionExpression: `#pk = :pkValue AND #dateAttr BETWEEN :startDate
 AND :endDate`,
 ExpressionAttributeNames: {
 "#pk": partitionKeyName,
 "#dateAttr": dateKeyName
 },
 ExpressionAttributeValues: {
 ":pkValue": { S: partitionKeyValue },
 ":startDate": { S: formattedStartDate },
 ":endDate": { S: formattedEndDate }
 }
 };

 // Execute the query
 const command = new QueryCommand(input);
 return await client.send(command);
 } catch (error) {
 console.error(`Error querying by date range: ${error}`);
 throw error;
 }
}

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的 Query。

了解更新表达式顺序

以下代码示例演示如何了解更新表达式顺序。

• 了解 DynamoDB 如何处理更新表达式。

• 了解更新表达式中的操作顺序。

• 通过了解表达式求值来避免意外结果。

适用于 JavaScript (v3) 的软件开发工具包

使用演示更新表达式顺序 适用于 JavaScript 的 Amazon SDK。

const { DynamoDBClient } = require("@aws-sdk/client-dynamodb");
const {
 DynamoDBDocumentClient,
 UpdateCommand,

场景 558

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/QueryCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 GetCommand,
 PutCommand
} = require("@aws-sdk/lib-dynamodb");

/**
 * Update an item with multiple actions in a single update expression.
 *
 * This function demonstrates how to use multiple actions in a single update
 expression
 * and how DynamoDB processes these actions.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The primary key of the item to update
 * @param {string} updateExpression - The update expression with multiple actions
 * @param {Object} [expressionAttributeNames] - Expression attribute name
 placeholders
 * @param {Object} [expressionAttributeValues] - Expression attribute value
 placeholders
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function updateWithMultipleActions(
 config,
 tableName,
 key,
 updateExpression,
 expressionAttributeNames,
 expressionAttributeValues
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Prepare the update parameters
 const updateParams = {
 TableName: tableName,
 Key: key,
 UpdateExpression: updateExpression,
 ReturnValues: "UPDATED_NEW"
 };

 // Add expression attribute names if provided
 if (expressionAttributeNames) {
 updateParams.ExpressionAttributeNames = expressionAttributeNames;

场景 559

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }

 // Add expression attribute values if provided
 if (expressionAttributeValues) {
 updateParams.ExpressionAttributeValues = expressionAttributeValues;
 }

 // Execute the update
 const response = await docClient.send(new UpdateCommand(updateParams));

 return response;
}

/**
 * Demonstrate that variables hold copies of existing values before modifications.
 *
 * This function creates an item with initial values, then updates it with an
 expression
 * that uses the values of attributes before they are modified in the same
 expression.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The primary key of the item to create and update
 * @returns {Promise<Object>} - A dictionary containing the results of the
 demonstration
 */
async function demonstrateValueCopying(
 config,
 tableName,
 key
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Step 1: Create an item with initial values
 const initialItem = { ...key, a: 1, b: 2, c: 3 };

 await docClient.send(new PutCommand({
 TableName: tableName,
 Item: initialItem
 }));

场景 560

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // Step 2: Get the item to verify initial state
 const responseBefore = await docClient.send(new GetCommand({
 TableName: tableName,
 Key: key
 }));

 const itemBefore = responseBefore.Item || {};

 // Step 3: Update the item with an expression that uses values before they are
 modified
 // This expression removes 'a', then sets 'b' to the value of 'a', and 'c' to the
 value of 'b'
 const updateResponse = await docClient.send(new UpdateCommand({
 TableName: tableName,
 Key: key,
 UpdateExpression: "REMOVE a SET b = a, c = b",
 ReturnValues: "UPDATED_NEW"
 }));

 // Step 4: Get the item to verify final state
 const responseAfter = await docClient.send(new GetCommand({
 TableName: tableName,
 Key: key
 }));

 const itemAfter = responseAfter.Item || {};

 // Return the results
 return {
 initialState: itemBefore,
 updateResponse: updateResponse,
 finalState: itemAfter
 };
}

/**
 * Demonstrate the order in which different action types are processed.
 *
 * This function creates an item with initial values, then updates it with an
 expression
 * that includes multiple action types (SET, REMOVE, ADD, DELETE) to show the order
 * in which they are processed.
 *
 * @param {Object} config - AWS configuration object

场景 561

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The primary key of the item to create and update
 * @returns {Promise<Object>} - A dictionary containing the results of the
 demonstration
 */
async function demonstrateActionOrder(
 config,
 tableName,
 key
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Step 1: Create an item with initial values
 const initialItem = {
 ...key,
 counter: 10,
 set_attr: new Set(["A", "B", "C"]),
 to_remove: "This will be removed",
 to_modify: "Original value"
 };

 await docClient.send(new PutCommand({
 TableName: tableName,
 Item: initialItem
 }));

 // Step 2: Get the item to verify initial state
 const responseBefore = await docClient.send(new GetCommand({
 TableName: tableName,
 Key: key
 }));

 const itemBefore = responseBefore.Item || {};

 // Step 3: Update the item with multiple action types
 // The actions will be processed in this order: REMOVE, SET, ADD, DELETE
 const updateResponse = await docClient.send(new UpdateCommand({
 TableName: tableName,
 Key: key,
 UpdateExpression: "REMOVE to_remove SET to_modify = :new_value ADD
 counter :increment DELETE set_attr :elements",
 ExpressionAttributeValues: {

场景 562

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 ":new_value": "Updated value",
 ":increment": 5,
 ":elements": new Set(["B"])
 },
 ReturnValues: "UPDATED_NEW"
 }));

 // Step 4: Get the item to verify final state
 const responseAfter = await docClient.send(new GetCommand({
 TableName: tableName,
 Key: key
 }));

 const itemAfter = responseAfter.Item || {};

 // Return the results
 return {
 initialState: itemBefore,
 updateResponse: updateResponse,
 finalState: itemAfter
 };
}

/**
 * Update multiple attributes with a single SET action.
 *
 * This function demonstrates how to update multiple attributes in a single SET
 action,
 * which is more efficient than using multiple separate update operations.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The primary key of the item to update
 * @param {Object} attributes - The attributes to update and their new values
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function updateWithMultipleSetActions(
 config,
 tableName,
 key,
 attributes
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);

场景 563

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const docClient = DynamoDBDocumentClient.from(client);

 // Build the update expression and expression attribute values
 let updateExpression = "SET ";
 const expressionAttributeValues = {};

 // Add each attribute to the update expression
 Object.entries(attributes).forEach(([attrName, attrValue], index) => {
 const valuePlaceholder = `:val${index}`;

 if (index > 0) {
 updateExpression += ", ";
 }
 updateExpression += `${attrName} = ${valuePlaceholder}`;

 expressionAttributeValues[valuePlaceholder] = attrValue;
 });

 // Execute the update
 const response = await docClient.send(new UpdateCommand({
 TableName: tableName,
 Key: key,
 UpdateExpression: updateExpression,
 ExpressionAttributeValues: expressionAttributeValues,
 ReturnValues: "UPDATED_NEW"
 }));

 return response;
}

/**
 * Update an attribute with a value from another attribute or a default value.
 *
 * This function demonstrates how to use if_not_exists to conditionally copy a value
 * from one attribute to another, or use a default value if the source doesn't
 exist.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The primary key of the item to update
 * @param {string} sourceAttribute - The attribute to copy the value from
 * @param {string} targetAttribute - The attribute to update
 * @param {any} defaultValue - The default value to use if the source attribute
 doesn't exist

场景 564

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function updateWithConditionalValueCopying(
 config,
 tableName,
 key,
 sourceAttribute,
 targetAttribute,
 defaultValue
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Use if_not_exists to conditionally copy the value
 const response = await docClient.send(new UpdateCommand({
 TableName: tableName,
 Key: key,
 UpdateExpression: `SET ${targetAttribute} =
 if_not_exists(${sourceAttribute}, :default)`,
 ExpressionAttributeValues: {
 ":default": defaultValue
 },
 ReturnValues: "UPDATED_NEW"
 }));

 return response;
}

/**
 * Demonstrate complex update expressions with multiple operations on the same
 attribute.
 *
 * This function shows how DynamoDB processes multiple operations on the same
 attribute
 * in a single update expression.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The primary key of the item to create and update
 * @returns {Promise<Object>} - A dictionary containing the results of the
 demonstration
 */
async function demonstrateMultipleOperationsOnSameAttribute(

场景 565

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 config,
 tableName,
 key
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Step 1: Create an item with initial values
 const initialItem = {
 ...key,
 counter: 10,
 list_attr: [1, 2, 3],
 map_attr: {
 nested1: "value1",
 nested2: "value2"
 }
 };

 await docClient.send(new PutCommand({
 TableName: tableName,
 Item: initialItem
 }));

 // Step 2: Get the item to verify initial state
 const responseBefore = await docClient.send(new GetCommand({
 TableName: tableName,
 Key: key
 }));

 const itemBefore = responseBefore.Item || {};

 // Step 3: Update the item with multiple operations on the same attributes
 const updateResponse = await docClient.send(new UpdateCommand({
 TableName: tableName,
 Key: key,
 UpdateExpression: `
 SET counter = counter + :inc1,
 counter = counter + :inc2,
 map_attr.nested1 = :new_val1,
 map_attr.nested3 = :new_val3,
 list_attr[0] = list_attr[1],
 list_attr[1] = list_attr[2]
 `,

场景 566

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 ExpressionAttributeValues: {
 ":inc1": 5,
 ":inc2": 3,
 ":new_val1": "updated_value1",
 ":new_val3": "new_value3"
 },
 ReturnValues: "UPDATED_NEW"
 }));

 // Step 4: Get the item to verify final state
 const responseAfter = await docClient.send(new GetCommand({
 TableName: tableName,
 Key: key
 }));

 const itemAfter = responseAfter.Item || {};

 // Return the results
 return {
 initialState: itemBefore,
 updateResponse: updateResponse,
 finalState: itemAfter
 };
}

使用更新表达式顺序的用法示例 适用于 JavaScript 的 Amazon SDK。

/**
 * Example of how to use update expression order of operations in DynamoDB.
 */
async function exampleUsage() {
 // Example parameters
 const config = { region: "us-west-2" };
 const tableName = "OrderProcessing";

 console.log("Demonstrating update expression order of operations in DynamoDB");

 try {
 // Example 1: Demonstrating value copying in update expressions
 console.log("\nExample 1: Demonstrating value copying in update expressions");
 const results1 = await demonstrateValueCopying(
 config,

场景 567

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 tableName,
 { OrderId: "order123" }
);

 console.log("Initial state:", JSON.stringify(results1.initialState, null, 2));
 console.log("Update response:", JSON.stringify(results1.updateResponse, null,
 2));
 console.log("Final state:", JSON.stringify(results1.finalState, null, 2));

 console.log("\nExplanation:");
 console.log("1. The initial state had a=1, b=2, c=3");
 console.log("2. The update expression 'REMOVE a SET b = a, c = b' did the
 following:");
 console.log(" - Copied the value of 'a' (which was 1) to be used for 'b'");
 console.log(" - Copied the value of 'b' (which was 2) to be used for 'c'");
 console.log(" - Removed the attribute 'a'");
 console.log("3. The final state has b=1, c=2, and 'a' is removed");
 console.log("4. This demonstrates that DynamoDB uses the values of attributes as
 they were BEFORE any modifications");

 // Example 2: Demonstrating the order of different action types
 console.log("\nExample 2: Demonstrating the order of different action types");
 const results2 = await demonstrateActionOrder(
 config,
 tableName,
 { OrderId: "order456" }
);

 console.log("Initial state:", JSON.stringify(results2.initialState, null, 2));
 console.log("Update response:", JSON.stringify(results2.updateResponse, null,
 2));
 console.log("Final state:", JSON.stringify(results2.finalState, null, 2));

 console.log("\nExplanation:");
 console.log("1. The update expression contained multiple action types: REMOVE,
 SET, ADD, DELETE");
 console.log("2. DynamoDB processes these actions in this order: REMOVE, SET,
 ADD, DELETE");
 console.log("3. First, 'to_remove' was removed");
 console.log("4. Then, 'to_modify' was set to a new value");
 console.log("5. Next, 'counter' was incremented by 5");
 console.log("6. Finally, 'B' was removed from the set attribute");

 // Example 3: Updating multiple attributes in a single SET action

场景 568

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 console.log("\nExample 3: Updating multiple attributes in a single SET action");
 const response3 = await updateWithMultipleSetActions(
 config,
 tableName,
 { OrderId: "order789" },
 {
 Status: "Shipped",
 ShippingDate: "2025-05-28",
 TrackingNumber: "1Z999AA10123456784"
 }
);

 console.log("Multiple attributes updated successfully:",
 JSON.stringify(response3.Attributes, null, 2));

 // Example 4: Conditional value copying with if_not_exists
 console.log("\nExample 4: Conditional value copying with if_not_exists");
 const response4 = await updateWithConditionalValueCopying(
 config,
 tableName,
 { OrderId: "order101" },
 "PreferredShippingMethod",
 "ShippingMethod",
 "Standard"
);

 console.log("Conditional value copying result:",
 JSON.stringify(response4.Attributes, null, 2));

 // Example 5: Multiple operations on the same attribute
 console.log("\nExample 5: Multiple operations on the same attribute");
 const results5 = await demonstrateMultipleOperationsOnSameAttribute(
 config,
 tableName,
 { OrderId: "order202" }
);

 console.log("Initial state:", JSON.stringify(results5.initialState, null, 2));
 console.log("Update response:", JSON.stringify(results5.updateResponse, null,
 2));
 console.log("Final state:", JSON.stringify(results5.finalState, null, 2));

 console.log("\nExplanation:");

场景 569

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 console.log("1. The counter was incremented twice (first by 5, then by 3) for a
 total of +8");
 console.log("2. The map attribute had one value updated and a new nested
 attribute added");
 console.log("3. The list attribute had values shifted (value at index 1 moved to
 index 0, value at index 2 moved to index 1)");
 console.log("4. All operations within the SET action are processed from left to
 right");

 // Key points about update expression order of operations
 console.log("\nKey Points About Update Expression Order of Operations:");
 console.log("1. Variables in expressions hold copies of attribute values as they
 existed BEFORE any modifications");
 console.log("2. Multiple actions in an update expression are processed in this
 order: REMOVE, SET, ADD, DELETE");
 console.log("3. Within each action type, operations are processed from left to
 right");
 console.log("4. You can reference the same attribute multiple times in an
 expression");
 console.log("5. You can use if_not_exists() to conditionally set values based on
 attribute existence");
 console.log("6. Using a single update expression with multiple actions is more
 efficient than multiple separate updates");
 console.log("7. The update expression is atomic - either all actions succeed or
 none do");

 } catch (error) {
 console.error("Error:", error);
 }
}

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考UpdateItem中的。

更新表的热吞吐量设置

以下代码示例演示如何更新表的热吞吐量设置。

适用于 JavaScript (v3) 的软件开发工具包

使用 适用于 JavaScript 的 Amazon SDK更新现有 DynamoDB 表上的热吞吐量设置。

import { DynamoDBClient, UpdateTableCommand } from "@aws-sdk/client-dynamodb";

场景 570

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/UpdateItemCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

export async function updateDynamoDBTableWarmThroughput(
 tableName,
 tableReadUnits,
 tableWriteUnits,
 gsiName,
 gsiReadUnits,
 gsiWriteUnits,
 region = "us-east-1"
) {
 try {
 const ddbClient = new DynamoDBClient({ region: region });

 // Construct the update table request
 const updateTableRequest = {
 TableName: tableName,
 GlobalSecondaryIndexUpdates: [
 {
 Update: {
 IndexName: gsiName,
 WarmThroughput: {
 ReadUnitsPerSecond: gsiReadUnits,
 WriteUnitsPerSecond: gsiWriteUnits,
 },
 },
 },
],
 WarmThroughput: {
 ReadUnitsPerSecond: tableReadUnits,
 WriteUnitsPerSecond: tableWriteUnits,
 },
 };

 const command = new UpdateTableCommand(updateTableRequest);
 const response = await ddbClient.send(command);
 console.log(`Table updated successfully! Response:
 ${JSON.stringify(response)}`);
 return response;
 } catch (error) {
 console.error(`Error updating table: ${error}`);
 throw error;
 }
}

场景 571

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

// Example usage (commented out for testing)
/*
updateDynamoDBTableWarmThroughput(
 'example-table',
 5, 5,
 'example-index',
 2, 2
);
*/

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考UpdateTable中的。

更新项目的 TTL

以下代码示例演示如何更新项目的 TTL。

适用于 JavaScript (v3) 的软件开发工具包

import { DynamoDBClient, UpdateItemCommand } from "@aws-sdk/client-dynamodb";
import { marshall, unmarshall } from "@aws-sdk/util-dynamodb";

export const updateItem = async (tableName, partitionKey, sortKey, region = 'us-
east-1') => {
 const client = new DynamoDBClient({
 region: region,
 endpoint: `https://dynamodb.${region}.amazonaws.com`
 });

 const currentTime = Math.floor(Date.now() / 1000);
 const expireAt = Math.floor((Date.now() + 90 * 24 * 60 * 60 * 1000) / 1000);

 const params = {
 TableName: tableName,
 Key: marshall({
 partitionKey: partitionKey,
 sortKey: sortKey
 }),
 UpdateExpression: "SET updatedAt = :c, expireAt = :e",
 ExpressionAttributeValues: marshall({
 ":c": currentTime,
 ":e": expireAt

场景 572

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/UpdateTableCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }),
 };

 try {
 const data = await client.send(new UpdateItemCommand(params));
 const responseData = unmarshall(data.Attributes);
 console.log("Item updated successfully: %s", responseData);
 return responseData;
 } catch (err) {
 console.error("Error updating item:", err);
 throw err;
 }
}

// Example usage (commented out for testing)
// updateItem('your-table-name', 'your-partition-key-value', 'your-sort-key-value');

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考UpdateItem中的。

使用 PartiQL UPDATE 更新数据

以下代码示例演示如何使用 PartiQL UPDATE 语句更新数据。

适用于 JavaScript (v3) 的软件开发工具包

使用带有的 PartiQL UPDATE 语句更新 DynamoDB 表中的项目。 适用于 JavaScript 的 Amazon
SDK

/**
 * This example demonstrates how to update items in a DynamoDB table using PartiQL.
 * It shows different ways to update documents with various index types.
 */
import { DynamoDBClient } from "@aws-sdk/client-dynamodb";
import {
 DynamoDBDocumentClient,
 ExecuteStatementCommand,
 BatchExecuteStatementCommand,
} from "@aws-sdk/lib-dynamodb";

/**

场景 573

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/UpdateItemCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * Update a single attribute of an item using PartiQL.
 *
 * @param tableName - The name of the DynamoDB table
 * @param partitionKeyName - The name of the partition key attribute
 * @param partitionKeyValue - The value of the partition key
 * @param attributeName - The name of the attribute to update
 * @param attributeValue - The new value for the attribute
 * @returns The response from the ExecuteStatementCommand
 */
export const updateSingleAttribute = async (
 tableName: string,
 partitionKeyName: string,
 partitionKeyValue: string | number,
 attributeName: string,
 attributeValue: any
) => {
 const client = new DynamoDBClient({});
 const docClient = DynamoDBDocumentClient.from(client);

 const params = {
 Statement: `UPDATE "${tableName}" SET ${attributeName} = ? WHERE
 ${partitionKeyName} = ?`,
 Parameters: [attributeValue, partitionKeyValue],
 };

 try {
 const data = await docClient.send(new ExecuteStatementCommand(params));
 console.log("Item updated successfully");
 return data;
 } catch (err) {
 console.error("Error updating item:", err);
 throw err;
 }
};

/**
 * Update multiple attributes of an item using PartiQL.
 *
 * @param tableName - The name of the DynamoDB table
 * @param partitionKeyName - The name of the partition key attribute
 * @param partitionKeyValue - The value of the partition key
 * @param attributeUpdates - Object containing attribute names and their new values
 * @returns The response from the ExecuteStatementCommand
 */

场景 574

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

export const updateMultipleAttributes = async (
 tableName: string,
 partitionKeyName: string,
 partitionKeyValue: string | number,
 attributeUpdates: Record<string, any>
) => {
 const client = new DynamoDBClient({});
 const docClient = DynamoDBDocumentClient.from(client);

 // Create SET clause for each attribute
 const setClause = Object.keys(attributeUpdates)
 .map((attr, index) => `${attr} = ?`)
 .join(", ");

 // Create parameters array with attribute values followed by the partition key
 value
 const parameters = [...Object.values(attributeUpdates), partitionKeyValue];

 const params = {
 Statement: `UPDATE "${tableName}" SET ${setClause} WHERE ${partitionKeyName} = ?
`,
 Parameters: parameters,
 };

 try {
 const data = await docClient.send(new ExecuteStatementCommand(params));
 console.log("Item updated successfully");
 return data;
 } catch (err) {
 console.error("Error updating item:", err);
 throw err;
 }
};

/**
 * Update an item identified by a composite key (partition key + sort key) using
 PartiQL.
 *
 * @param tableName - The name of the DynamoDB table
 * @param partitionKeyName - The name of the partition key attribute
 * @param partitionKeyValue - The value of the partition key
 * @param sortKeyName - The name of the sort key attribute
 * @param sortKeyValue - The value of the sort key
 * @param attributeName - The name of the attribute to update

场景 575

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * @param attributeValue - The new value for the attribute
 * @returns The response from the ExecuteStatementCommand
 */
export const updateItemWithCompositeKey = async (
 tableName: string,
 partitionKeyName: string,
 partitionKeyValue: string | number,
 sortKeyName: string,
 sortKeyValue: string | number,
 attributeName: string,
 attributeValue: any
) => {
 const client = new DynamoDBClient({});
 const docClient = DynamoDBDocumentClient.from(client);

 const params = {
 Statement: `UPDATE "${tableName}" SET ${attributeName} = ? WHERE
 ${partitionKeyName} = ? AND ${sortKeyName} = ?`,
 Parameters: [attributeValue, partitionKeyValue, sortKeyValue],
 };

 try {
 const data = await docClient.send(new ExecuteStatementCommand(params));
 console.log("Item updated successfully");
 return data;
 } catch (err) {
 console.error("Error updating item:", err);
 throw err;
 }
};

/**
 * Update an item with a condition to ensure the update only happens if a condition
 is met.
 *
 * @param tableName - The name of the DynamoDB table
 * @param partitionKeyName - The name of the partition key attribute
 * @param partitionKeyValue - The value of the partition key
 * @param attributeName - The name of the attribute to update
 * @param attributeValue - The new value for the attribute
 * @param conditionAttribute - The attribute to check in the condition
 * @param conditionValue - The value to compare against in the condition
 * @returns The response from the ExecuteStatementCommand
 */

场景 576

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

export const updateItemWithCondition = async (
 tableName: string,
 partitionKeyName: string,
 partitionKeyValue: string | number,
 attributeName: string,
 attributeValue: any,
 conditionAttribute: string,
 conditionValue: any
) => {
 const client = new DynamoDBClient({});
 const docClient = DynamoDBDocumentClient.from(client);

 const params = {
 Statement: `UPDATE "${tableName}" SET ${attributeName} = ? WHERE
 ${partitionKeyName} = ? AND ${conditionAttribute} = ?`,
 Parameters: [attributeValue, partitionKeyValue, conditionValue],
 };

 try {
 const data = await docClient.send(new ExecuteStatementCommand(params));
 console.log("Item updated with condition successfully");
 return data;
 } catch (err) {
 console.error("Error updating item with condition:", err);
 throw err;
 }
};

/**
 * Batch update multiple items using PartiQL.
 *
 * @param tableName - The name of the DynamoDB table
 * @param updates - Array of objects containing key and update information
 * @returns The response from the BatchExecuteStatementCommand
 */
export const batchUpdateItems = async (
 tableName: string,
 updates: Array<{
 partitionKeyName: string;
 partitionKeyValue: string | number;
 attributeName: string;
 attributeValue: any;
 }>
) => {

场景 577

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const client = new DynamoDBClient({});
 const docClient = DynamoDBDocumentClient.from(client);

 // Create statements for each update
 const statements = updates.map((update) => {
 return {
 Statement: `UPDATE "${tableName}" SET ${update.attributeName} = ? WHERE
 ${update.partitionKeyName} = ?`,
 Parameters: [update.attributeValue, update.partitionKeyValue],
 };
 });

 const params = {
 Statements: statements,
 };

 try {
 const data = await docClient.send(new BatchExecuteStatementCommand(params));
 console.log("Items batch updated successfully");
 return data;
 } catch (err) {
 console.error("Error batch updating items:", err);
 throw err;
 }
};

/**
 * Example usage showing how to update items with different index types
 */
export const updateExamples = async () => {
 // Update a single attribute using a simple primary key
 await updateSingleAttribute("UsersTable", "userId", "user123", "email",
 "newemail@example.com");

 // Update multiple attributes at once
 await updateMultipleAttributes("UsersTable", "userId", "user123", {
 email: "newemail@example.com",
 name: "John Smith",
 lastLogin: new Date().toISOString(),
 });

 // Update an item with a composite key (partition key + sort key)
 await updateItemWithCompositeKey(
 "OrdersTable",

场景 578

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 "orderId",
 "order456",
 "productId",
 "prod789",
 "quantity",
 5
);

 // Update with a condition
 await updateItemWithCondition(
 "UsersTable",
 "userId",
 "user123",
 "userStatus",
 "active",
 "userType",
 "premium"
);

 // Batch update multiple items
 await batchUpdateItems("UsersTable", [
 {
 partitionKeyName: "userId",
 partitionKeyValue: "user123",
 attributeName: "lastLogin",
 attributeValue: new Date().toISOString(),
 },
 {
 partitionKeyName: "userId",
 partitionKeyValue: "user456",
 attributeName: "lastLogin",
 attributeValue: new Date().toISOString(),
 },
]);
};

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的以下主
题。

• BatchExecuteStatement

• ExecuteStatement

场景 579

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/BatchExecuteStatementCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/ExecuteStatementCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

使用 API Gateway 调用 Lambda 函数

以下代码示例展示了如何创建由 Amazon API Gateway 调用的 Amazon Lambda 函数。

适用于 JavaScript (v3) 的软件开发工具包

演示如何使用 Lambda JavaScript 运行时 API 创建 Amazon Lambda 函数。此示例调用不同
的 Amazon 服务来执行特定的用例。此示例展示了如何创建通过 Amazon API Gateway 调用的
Lambda 函数，该函数扫描 Amazon DynamoDB 表获取工作周年纪念日，并使用 Amazon Simple
Notification Service (Amazon SNS)向员工发送文本消息，祝贺他们的周年纪念日。

有关如何设置和运行的完整源代码和说明，请参阅上的完整示例GitHub。

该示例也可在 适用于 JavaScript 的 Amazon SDK v3 开发人员指南中找到。

本示例中使用的服务

• API Gateway

• DynamoDB

• Lambda

• Amazon SNS

使用原子计数器操作

以下代码示例演示如何在 DynamoDB 中使用原子计数器操作。

• 使用 ADD 和 SET 操作以原子方式递增计数器。

• 安全地递增可能不存在的计数器。

• 为计数器操作实施乐观锁。

适用于 JavaScript (v3) 的软件开发工具包

使用演示原子计数器操作 适用于 JavaScript 的 Amazon SDK。

const { DynamoDBClient } = require("@aws-sdk/client-dynamodb");
const {
 DynamoDBDocumentClient,
 UpdateCommand,
 GetCommand
} = require("@aws-sdk/lib-dynamodb");

场景 580

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/lambda-api-gateway
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/api-gateway-invoking-lambda-example.html

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

/**
 * Increment a counter using the ADD operation.
 *
 * This function demonstrates using the ADD operation for atomic increments.
 * The ADD operation is atomic and is the recommended way to increment counters.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {string} counterName - The name of the counter attribute
 * @param {number} incrementValue - The value to increment by
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function incrementCounterWithAdd(
 config,
 tableName,
 key,
 counterName,
 incrementValue
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Define the update parameters using ADD
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: `ADD ${counterName} :increment`,
 ExpressionAttributeValues: {
 ":increment": incrementValue
 },
 ReturnValues: "UPDATED_NEW"
 };

 // Perform the update operation
 const response = await docClient.send(new UpdateCommand(params));

 return response;
}

/**
 * Increment a counter using the SET operation with an expression.
 *

场景 581

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * This function demonstrates using the SET operation with an expression for
 increments.
 * While this approach works, it's less idiomatic for simple increments than using
 ADD.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {string} counterName - The name of the counter attribute
 * @param {number} incrementValue - The value to increment by
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function incrementCounterWithSet(
 config,
 tableName,
 key,
 counterName,
 incrementValue
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Define the update parameters using SET with an expression
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: `SET ${counterName} = ${counterName} + :increment`,
 ExpressionAttributeValues: {
 ":increment": incrementValue
 },
 ReturnValues: "UPDATED_NEW"
 };

 // Perform the update operation
 const response = await docClient.send(new UpdateCommand(params));

 return response;
}

/**
 * Increment a counter safely, handling the case where the counter might not exist.
 *
 * This function demonstrates using the if_not_exists function with SET to safely

场景 582

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * increment a counter that might not exist yet.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {string} counterName - The name of the counter attribute
 * @param {number} incrementValue - The value to increment by
 * @param {number} defaultValue - The default value if the counter doesn't exist
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function incrementCounterSafely(
 config,
 tableName,
 key,
 counterName,
 incrementValue,
 defaultValue = 0
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Define the update parameters using SET with if_not_exists
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: `SET ${counterName} = if_not_exists(${counterName}, :default)
 + :increment`,
 ExpressionAttributeValues: {
 ":increment": incrementValue,
 ":default": defaultValue
 },
 ReturnValues: "UPDATED_NEW"
 };

 // Perform the update operation
 const response = await docClient.send(new UpdateCommand(params));

 return response;
}

/**
 * Increment a counter with optimistic locking to prevent race conditions.
 *

场景 583

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * This function demonstrates using a condition expression to implement optimistic
 * locking, which prevents race conditions when multiple processes try to update
 * the same counter.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {string} counterName - The name of the counter attribute
 * @param {number} incrementValue - The value to increment by
 * @param {number} expectedValue - The expected current value of the counter
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function incrementCounterWithLocking(
 config,
 tableName,
 key,
 counterName,
 incrementValue,
 expectedValue
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Define the update parameters with a condition expression
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: `SET ${counterName} = ${counterName} + :increment`,
 ConditionExpression: `${counterName} = :expected`,
 ExpressionAttributeValues: {
 ":increment": incrementValue,
 ":expected": expectedValue
 },
 ReturnValues: "UPDATED_NEW"
 };

 try {
 // Perform the update operation
 const response = await docClient.send(new UpdateCommand(params));
 return {
 success: true,
 data: response
 };

场景 584

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 } catch (error) {
 // Check if the error is due to the condition check failing
 if (error.name === "ConditionalCheckFailedException") {
 return {
 success: false,
 error: "Optimistic locking failed: the counter value has changed"
 };
 }
 // Re-throw other errors
 throw error;
 }
}

/**
 * Get the current value of a counter.
 *
 * Helper function to retrieve the current value of a counter attribute.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to get
 * @param {string} counterName - The name of the counter attribute
 * @returns {Promise<number|null>} - The current counter value or null if not found
 */
async function getCounterValue(
 config,
 tableName,
 key,
 counterName
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Define the get parameters
 const params = {
 TableName: tableName,
 Key: key
 };

 // Perform the get operation
 const response = await docClient.send(new GetCommand(params));

 // Return the counter value if it exists, otherwise null

场景 585

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 return response.Item && counterName in response.Item
 ? response.Item[counterName]
 : null;
}

使用原子计数器操作的示例 适用于 JavaScript 的 Amazon SDK。

/**
 * Example of how to use the atomic counter operations.
 */
async function exampleUsage() {
 // Example parameters
 const config = { region: "us-west-2" };
 const tableName = "Products";
 const key = { ProductId: "P12345" };
 const counterName = "ViewCount";
 const incrementValue = 1;

 console.log("Demonstrating different approaches to increment counters in
 DynamoDB");

 try {
 // Example 1: Using ADD operation (recommended for simple increments)
 console.log("\nExample 1: Incrementing counter with ADD operation");
 const response1 = await incrementCounterWithAdd(
 config,
 tableName,
 key,
 counterName,
 incrementValue
);

 console.log(`Counter incremented to: ${response1.Attributes[counterName]}`);

 // Example 2: Using SET operation with an expression
 console.log("\nExample 2: Incrementing counter with SET operation");
 const response2 = await incrementCounterWithSet(
 config,
 tableName,
 key,
 counterName,
 incrementValue

场景 586

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

);

 console.log(`Counter incremented to: ${response2.Attributes[counterName]}`);

 // Example 3: Safely incrementing a counter that might not exist
 console.log("\nExample 3: Safely incrementing counter that might not exist");
 const newKey = { ProductId: "P67890" };
 const response3 = await incrementCounterSafely(
 config,
 tableName,
 newKey,
 counterName,
 incrementValue,
 0
);

 console.log(`Counter initialized and incremented to:
 ${response3.Attributes[counterName]}`);

 // Example 4: Incrementing with optimistic locking
 console.log("\nExample 4: Incrementing with optimistic locking");

 // First, get the current counter value
 const currentValue = await getCounterValue(config, tableName, key, counterName);
 console.log(`Current counter value: ${currentValue}`);

 // Then, try to increment with optimistic locking
 const response4 = await incrementCounterWithLocking(
 config,
 tableName,
 key,
 counterName,
 incrementValue,
 currentValue
);

 if (response4.success) {
 console.log(`Counter successfully incremented to:
 ${response4.data.Attributes[counterName]}`);
 } else {
 console.log(response4.error);
 }

 // Explain the differences between ADD and SET

场景 587

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 console.log("\nKey differences between ADD and SET for counter operations:");
 console.log("1. ADD is more concise and idiomatic for simple increments");
 console.log("2. SET with expressions is more flexible for complex operations");
 console.log("3. Both operations are atomic and safe for concurrent updates");
 console.log("4. SET with if_not_exists is required when the attribute might not
 exist");
 console.log("5. Optimistic locking can be added to either approach for
 additional safety");

 } catch (error) {
 console.error("Error:", error);
 }
}

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考UpdateItem中的。

使用条件运算

以下代码示例演示如何在 DynamoDB 中使用条件运算。

• 实现条件写入以防止覆盖数据。

• 使用条件表达式以强制实施业务规则。

• 从容处理条件检查失败。

适用于 JavaScript (v3) 的软件开发工具包

使用演示条件运算 适用于 JavaScript 的 Amazon SDK。

const { DynamoDBClient } = require("@aws-sdk/client-dynamodb");
const {
 DynamoDBDocumentClient,
 UpdateCommand,
 DeleteCommand,
 GetCommand,
 PutCommand
} = require("@aws-sdk/lib-dynamodb");

/**
 * Perform a conditional update operation.
 *

场景 588

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/UpdateItemCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * This function demonstrates how to update an item only if a condition is met.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {string} conditionAttribute - The attribute to check in the condition
 * @param {any} conditionValue - The value to compare against
 * @param {string} updateAttribute - The attribute to update
 * @param {any} updateValue - The new value to set
 * @returns {Promise<Object>} - Result of the operation
 */
async function conditionalUpdate(
 config,
 tableName,
 key,
 conditionAttribute,
 conditionValue,
 updateAttribute,
 updateValue
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Define the update parameters with a condition expression
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: `SET ${updateAttribute} = :value`,
 ConditionExpression: `${conditionAttribute} = :condition`,
 ExpressionAttributeValues: {
 ":value": updateValue,
 ":condition": conditionValue
 },
 ReturnValues: "UPDATED_NEW"
 };

 try {
 // Perform the update operation
 const response = await docClient.send(new UpdateCommand(params));

 return {
 success: true,
 message: "Condition was met and update was performed",

场景 589

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 updatedAttributes: response.Attributes
 };
 } catch (error) {
 // Check if the error is due to the condition check failing
 if (error.name === "ConditionalCheckFailedException") {
 return {
 success: false,
 message: "Condition was not met, update was not performed",
 error: "ConditionalCheckFailedException"
 };
 }

 // Re-throw other errors
 throw error;
 }
}

/**
 * Perform a conditional delete operation.
 *
 * This function demonstrates how to delete an item only if a condition is met.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to delete
 * @param {string} conditionAttribute - The attribute to check in the condition
 * @param {any} conditionValue - The value to compare against
 * @returns {Promise<Object>} - Result of the operation
 */
async function conditionalDelete(
 config,
 tableName,
 key,
 conditionAttribute,
 conditionValue
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Define the delete parameters with a condition expression
 const params = {
 TableName: tableName,
 Key: key,

场景 590

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 ConditionExpression: `${conditionAttribute} = :condition`,
 ExpressionAttributeValues: {
 ":condition": conditionValue
 },
 ReturnValues: "ALL_OLD"
 };

 try {
 // Perform the delete operation
 const response = await docClient.send(new DeleteCommand(params));

 return {
 success: true,
 message: "Condition was met and item was deleted",
 deletedItem: response.Attributes
 };
 } catch (error) {
 // Check if the error is due to the condition check failing
 if (error.name === "ConditionalCheckFailedException") {
 return {
 success: false,
 message: "Condition was not met, item was not deleted",
 error: "ConditionalCheckFailedException"
 };
 }

 // Re-throw other errors
 throw error;
 }
}

/**
 * Implement optimistic locking with a version number.
 *
 * This function demonstrates how to use a version number for optimistic locking
 * to prevent race conditions when multiple processes update the same item.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {Object} updates - The attributes to update
 * @param {number} expectedVersion - The expected current version number
 * @returns {Promise<Object>} - Result of the operation
 */

场景 591

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

async function updateWithOptimisticLocking(
 config,
 tableName,
 key,
 updates,
 expectedVersion
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Build the update expression
 const updateExpressions = [];
 const expressionAttributeValues = {
 ":expectedVersion": expectedVersion,
 ":newVersion": expectedVersion + 1
 };

 // Add each update to the expression
 Object.entries(updates).forEach(([attribute, value], index) => {
 updateExpressions.push(`${attribute} = :val${index}`);
 expressionAttributeValues[`:val${index}`] = value;
 });

 // Add the version update
 updateExpressions.push("version = :newVersion");

 // Define the update parameters with a condition expression
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: `SET ${updateExpressions.join(", ")}`,
 ConditionExpression: "version = :expectedVersion",
 ExpressionAttributeValues: expressionAttributeValues,
 ReturnValues: "UPDATED_NEW"
 };

 try {
 // Perform the update operation
 const response = await docClient.send(new UpdateCommand(params));

 return {
 success: true,
 message: "Update succeeded with optimistic locking",

场景 592

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 newVersion: expectedVersion + 1,
 updatedAttributes: response.Attributes
 };
 } catch (error) {
 // Check if the error is due to the condition check failing
 if (error.name === "ConditionalCheckFailedException") {
 return {
 success: false,
 message: "Optimistic locking failed: the item was modified by another
 process",
 error: "ConditionalCheckFailedException"
 };
 }

 // Re-throw other errors
 throw error;
 }
}

/**
 * Implement a conditional write that creates an item only if it doesn't exist.
 *
 * This function demonstrates how to use attribute_not_exists to create an item
 * only if it doesn't already exist (similar to an "INSERT IF NOT EXISTS"
 operation).
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} item - The item to create
 * @returns {Promise<Object>} - Result of the operation
 */
async function createIfNotExists(
 config,
 tableName,
 item
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Extract the primary key attributes
 const keyAttributes = Object.keys(item).filter(attr =>
 attr === "id" || attr === "ID" || attr === "Id" ||
 attr.endsWith("Id") || attr.endsWith("ID") ||

场景 593

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 attr.endsWith("Key")
);

 if (keyAttributes.length === 0) {
 throw new Error("Could not determine primary key attributes");
 }

 // Create a condition expression that checks if the item doesn't exist
 const conditionExpression = `attribute_not_exists(${keyAttributes[0]})`;

 // Define the put parameters with a condition expression
 const params = {
 TableName: tableName,
 Item: item,
 ConditionExpression: conditionExpression
 };

 try {
 // Perform the put operation
 await docClient.send(new PutCommand(params));

 return {
 success: true,
 message: "Item was created because it didn't exist",
 item
 };
 } catch (error) {
 // Check if the error is due to the condition check failing
 if (error.name === "ConditionalCheckFailedException") {
 return {
 success: false,
 message: "Item already exists, creation was skipped",
 error: "ConditionalCheckFailedException"
 };
 }

 // Re-throw other errors
 throw error;
 }
}

/**
 * Get the current value of an item.
 *

场景 594

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * Helper function to retrieve the current value of an item.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to get
 * @returns {Promise<Object|null>} - The item or null if not found
 */
async function getItem(
 config,
 tableName,
 key
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Define the get parameters
 const params = {
 TableName: tableName,
 Key: key
 };

 // Perform the get operation
 const response = await docClient.send(new GetCommand(params));

 // Return the item if it exists, otherwise null
 return response.Item || null;
}

条件运算的用法示例 适用于 JavaScript 的 Amazon SDK。

/**
 * Example of how to use conditional operations.
 */
async function exampleUsage() {
 // Example parameters
 const config = { region: "us-west-2" };
 const tableName = "Products";
 const key = { ProductId: "P12345" };

 console.log("Demonstrating conditional operations in DynamoDB");

场景 595

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 try {
 // Example 1: Conditional update based on attribute value
 console.log("\nExample 1: Conditional update based on attribute value");
 const updateResult = await conditionalUpdate(
 config,
 tableName,
 key,
 "Category",
 "Electronics",
 "Price",
 299.99
);

 console.log(`Result: ${updateResult.message}`);
 if (updateResult.success) {
 console.log("Updated attributes:", updateResult.updatedAttributes);
 }

 // Example 2: Conditional delete based on attribute value
 console.log("\nExample 2: Conditional delete based on attribute value");
 const deleteResult = await conditionalDelete(
 config,
 tableName,
 key,
 "InStock",
 false
);

 console.log(`Result: ${deleteResult.message}`);
 if (deleteResult.success) {
 console.log("Deleted item:", deleteResult.deletedItem);
 }

 // Example 3: Optimistic locking with version number
 console.log("\nExample 3: Optimistic locking with version number");

 // First, get the current item to check its version
 const currentItem = await getItem(config, tableName, { ProductId: "P67890" });
 const currentVersion = currentItem ? (currentItem.version || 0) : 0;

 console.log(`Current version: ${currentVersion}`);

 // Then, update with optimistic locking
 const lockingResult = await updateWithOptimisticLocking(

场景 596

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 config,
 tableName,
 { ProductId: "P67890" },
 {
 Name: "Updated Product Name",
 Description: "This is an updated description"
 },
 currentVersion
);

 console.log(`Result: ${lockingResult.message}`);
 if (lockingResult.success) {
 console.log(`New version: ${lockingResult.newVersion}`);
 console.log("Updated attributes:", lockingResult.updatedAttributes);
 }

 // Example 4: Create item only if it doesn't exist
 console.log("\nExample 4: Create item only if it doesn't exist");
 const createResult = await createIfNotExists(
 config,
 tableName,
 {
 ProductId: "P99999",
 Name: "New Product",
 Category: "Accessories",
 Price: 19.99,
 InStock: true
 }
);

 console.log(`Result: ${createResult.message}`);
 if (createResult.success) {
 console.log("Created item:", createResult.item);
 }

 // Explain conditional operations
 console.log("\nKey points about conditional operations:");
 console.log("1. Conditional operations only succeed if the condition is met");
 console.log("2. ConditionalCheckFailedException indicates the condition wasn't
 met");
 console.log("3. Optimistic locking prevents race conditions in concurrent
 updates");
 console.log("4. attribute_exists and attribute_not_exists are useful for
 checking if attributes are present");

场景 597

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 console.log("5. Conditional operations are atomic - they either succeed
 completely or fail completely");
 console.log("6. You can use any valid comparison operators and functions in
 condition expressions");
 console.log("7. Conditional operations don't consume write capacity if the
 condition fails");

 } catch (error) {
 console.error("Error:", error);
 }
}

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的以下主
题。

• DeleteItem

• PutItem

• UpdateItem

使用表达式属性名称

以下代码示例演示如何在 DynamoDB 中使用表达式属性名称。

• 在 DynamoDB 表达式中使用保留字。

• 使用表达式属性名称占位符。

• 处理属性名称中的特殊字符。

适用于 JavaScript (v3) 的软件开发工具包

使用演示表达式属性名称 适用于 JavaScript 的 Amazon SDK。

const { DynamoDBClient } = require("@aws-sdk/client-dynamodb");
const {
 DynamoDBDocumentClient,
 UpdateCommand,
 GetCommand,
 QueryCommand,
 ScanCommand
} = require("@aws-sdk/lib-dynamodb");

场景 598

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/DeleteItemCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/PutItemCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/UpdateItemCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

/**
 * Update an attribute that is a reserved word in DynamoDB.
 *
 * This function demonstrates how to use expression attribute names to update
 * attributes that are reserved words in DynamoDB.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {string} reservedWordAttribute - The reserved word attribute to update
 * @param {any} value - The value to set
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function updateReservedWordAttribute(
 config,
 tableName,
 key,
 reservedWordAttribute,
 value
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Define the update parameters using expression attribute names
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: "SET #attr = :value",
 ExpressionAttributeNames: {
 "#attr": reservedWordAttribute
 },
 ExpressionAttributeValues: {
 ":value": value
 },
 ReturnValues: "UPDATED_NEW"
 };

 // Perform the update operation
 const response = await docClient.send(new UpdateCommand(params));

 return response;
}

场景 599

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

/**
 * Update an attribute that contains special characters.
 *
 * This function demonstrates how to use expression attribute names to update
 * attributes that contain special characters.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {string} specialCharAttribute - The attribute with special characters to
 update
 * @param {any} value - The value to set
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function updateSpecialCharacterAttribute(
 config,
 tableName,
 key,
 specialCharAttribute,
 value
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Define the update parameters using expression attribute names
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: "SET #attr = :value",
 ExpressionAttributeNames: {
 "#attr": specialCharAttribute
 },
 ExpressionAttributeValues: {
 ":value": value
 },
 ReturnValues: "UPDATED_NEW"
 };

 // Perform the update operation
 const response = await docClient.send(new UpdateCommand(params));

 return response;
}

场景 600

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

/**
 * Query items using an attribute that is a reserved word.
 *
 * This function demonstrates how to use expression attribute names in a query
 * when the attribute is a reserved word.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {string} partitionKeyName - The name of the partition key attribute
 * @param {any} partitionKeyValue - The value of the partition key
 * @param {string} reservedWordAttribute - The reserved word attribute to filter on
 * @param {any} value - The value to compare against
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function queryWithReservedWordAttribute(
 config,
 tableName,
 partitionKeyName,
 partitionKeyValue,
 reservedWordAttribute,
 value
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Define the query parameters using expression attribute names
 const params = {
 TableName: tableName,
 KeyConditionExpression: "#pkName = :pkValue",
 FilterExpression: "#attr = :value",
 ExpressionAttributeNames: {
 "#pkName": partitionKeyName,
 "#attr": reservedWordAttribute
 },
 ExpressionAttributeValues: {
 ":pkValue": partitionKeyValue,
 ":value": value
 }
 };

 // Perform the query operation
 const response = await docClient.send(new QueryCommand(params));

场景 601

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 return response;
}

/**
 * Update a nested attribute with a path that contains reserved words.
 *
 * This function demonstrates how to use expression attribute names to update
 * nested attributes where the path contains reserved words.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {string[]} attributePath - The path to the nested attribute as an array
 * @param {any} value - The value to set
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function updateNestedReservedWordAttribute(
 config,
 tableName,
 key,
 attributePath,
 value
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Create expression attribute names for each part of the path
 const expressionAttributeNames = {};
 for (let i = 0; i < attributePath.length; i++) {
 expressionAttributeNames[`#attr${i}`] = attributePath[i];
 }

 // Build the attribute path using the expression attribute names
 const attributePathExpression = attributePath
 .map((_, i) => `#attr${i}`)
 .join(".");

 // Define the update parameters
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: `SET ${attributePathExpression} = :value`,

场景 602

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 ExpressionAttributeNames: expressionAttributeNames,
 ExpressionAttributeValues: {
 ":value": value
 },
 ReturnValues: "UPDATED_NEW"
 };

 // Perform the update operation
 const response = await docClient.send(new UpdateCommand(params));

 return response;
}

/**
 * Scan a table with multiple attribute name placeholders.
 *
 * This function demonstrates how to use multiple expression attribute names
 * in a complex filter expression.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} filters - Object mapping attribute names to filter values
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function scanWithMultipleAttributeNames(
 config,
 tableName,
 filters
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Create expression attribute names and values
 const expressionAttributeNames = {};
 const expressionAttributeValues = {};
 const filterConditions = [];

 // Build the filter expression
 Object.entries(filters).forEach(([attrName, value], index) => {
 const nameKey = `#attr${index}`;
 const valueKey = `:val${index}`;

 expressionAttributeNames[nameKey] = attrName;

场景 603

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 expressionAttributeValues[valueKey] = value;
 filterConditions.push(`${nameKey} = ${valueKey}`);
 });

 // Join the filter conditions with AND
 const filterExpression = filterConditions.join(" AND ");

 // Define the scan parameters
 const params = {
 TableName: tableName,
 FilterExpression: filterExpression,
 ExpressionAttributeNames: expressionAttributeNames,
 ExpressionAttributeValues: expressionAttributeValues
 };

 // Perform the scan operation
 const response = await docClient.send(new ScanCommand(params));

 return response;
}

/**
 * Get the current value of an item.
 *
 * Helper function to retrieve the current value of an item.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to get
 * @returns {Promise<Object|null>} - The item or null if not found
 */
async function getItem(
 config,
 tableName,
 key
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Define the get parameters
 const params = {
 TableName: tableName,
 Key: key

场景 604

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 };

 // Perform the get operation
 const response = await docClient.send(new GetCommand(params));

 // Return the item if it exists, otherwise null
 return response.Item || null;
}

表达式属性名称的用法示例 适用于 JavaScript 的 Amazon SDK。

/**
 * Example of how to use expression attribute names.
 */
async function exampleUsage() {
 // Example parameters
 const config = { region: "us-west-2" };
 const tableName = "Products";
 const key = { ProductId: "P12345" };

 console.log("Demonstrating expression attribute names in DynamoDB");

 try {
 // Example 1: Update an attribute that is a reserved word
 console.log("\nExample 1: Updating an attribute that is a reserved word");
 const response1 = await updateReservedWordAttribute(
 config,
 tableName,
 key,
 "Size", // "SIZE" is a reserved word in DynamoDB
 "Large"
);

 console.log("Updated attribute:", response1.Attributes);

 // Example 2: Update an attribute with special characters
 console.log("\nExample 2: Updating an attribute with special characters");
 const response2 = await updateSpecialCharacterAttribute(
 config,
 tableName,
 key,
 "Product-Type", // Contains a hyphen, which is a special character

场景 605

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 "Electronics"
);

 console.log("Updated attribute:", response2.Attributes);

 // Example 3: Query with a reserved word attribute
 console.log("\nExample 3: Querying with a reserved word attribute");
 const response3 = await queryWithReservedWordAttribute(
 config,
 tableName,
 "Category",
 "Electronics",
 "Count", // "COUNT" is a reserved word in DynamoDB
 10
);

 console.log(`Found ${response3.Items.length} items`);

 // Example 4: Update a nested attribute with reserved words in the path
 console.log("\nExample 4: Updating a nested attribute with reserved words in the
 path");
 const response4 = await updateNestedReservedWordAttribute(
 config,
 tableName,
 key,
 ["Dimensions", "Size", "Height"], // "SIZE" is a reserved word
 30
);

 console.log("Updated nested attribute:", response4.Attributes);

 // Example 5: Scan with multiple attribute name placeholders
 console.log("\nExample 5: Scanning with multiple attribute name placeholders");
 const response5 = await scanWithMultipleAttributeNames(
 config,
 tableName,
 {
 "Size": "Large",
 "Count": 10,
 "Product-Type": "Electronics"
 }
);

 console.log(`Found ${response5.Items.length} items`);

场景 606

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // Get the final state of the item
 console.log("\nFinal state of the item:");
 const item = await getItem(config, tableName, key);
 console.log(JSON.stringify(item, null, 2));

 // Show some common reserved words
 console.log("\nSome common DynamoDB reserved words:");
 const commonReservedWords = [
 "ABORT", "ABSOLUTE", "ACTION", "ADD", "ALL", "ALTER", "AND", "ANY", "AS",
 "ASC", "BETWEEN", "BY", "CASE", "CAST", "COLUMN", "CONNECT", "COUNT",
 "CREATE", "CURRENT", "DATE", "DELETE", "DESC", "DROP", "ELSE", "EXISTS",
 "FOR", "FROM", "GRANT", "GROUP", "HAVING", "IN", "INDEX", "INSERT", "INTO",
 "IS", "JOIN", "KEY", "LEVEL", "LIKE", "LIMIT", "LOCAL", "MAX", "MIN", "NAME",
 "NOT", "NULL", "OF", "ON", "OR", "ORDER", "OUTER", "REPLACE", "RETURN",
 "SELECT", "SET", "SIZE", "TABLE", "THEN", "TO", "UPDATE", "USER", "VALUES",
 "VIEW", "WHERE"
];
 console.log(commonReservedWords.join(", "));

 // Explain expression attribute names
 console.log("\nKey points about expression attribute names:");
 console.log("1. Use expression attribute names (#name) for reserved words");
 console.log("2. Use expression attribute names for attributes with special
 characters");
 console.log("3. Special characters include: spaces, hyphens, dots, and other
 non-alphanumeric characters");
 console.log("4. Expression attribute names are required for nested attributes
 with reserved words");
 console.log("5. You can use multiple expression attribute names in a single
 expression");
 console.log("6. Expression attribute names are case-sensitive");
 console.log("7. Expression attribute names are only used in expressions, not in
 the actual data");

 } catch (error) {
 console.error("Error:", error);
 }
}

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的以下主
题。

场景 607

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• Query

• UpdateItem

使用计划的事件调用 Lambda 函数

以下代码示例显示如何创建由 Amazon EventBridge 计划事件调用的 Amazon Lambda 函数。

适用于 JavaScript (v3) 的软件开发工具包

演示如何创建调用函数的 Amazon EventBridge 计划事件。 Amazon Lambda 配置 EventBridge 为
使用 cron 表达式来调度 Lambda 函数的调用时间。在此示例中，您将使用 Lambda 运行时 API 创
建一个 Lambda 函数。 JavaScript 此示例调用不同的 Amazon 服务来执行特定的用例。此示例展
示了如何创建一个应用程序，在其一周年纪念日时向员工发送移动短信表示祝贺。

有关如何设置和运行的完整源代码和说明，请参阅上的完整示例GitHub。

该示例也可在 适用于 JavaScript 的 Amazon SDK v3 开发人员指南中找到。

本示例中使用的服务

• CloudWatch 日志

• DynamoDB

• EventBridge

• Lambda

• Amazon SNS

无服务器示例

通过 DynamoDB 触发器调用 Lambda 函数

以下代码示例演示如何实现一个 Lambda 函数，该函数接收通过接收来自 DynamoDB 流的记录而触发
的事件。该函数检索 DynamoDB 有效负载，并记录下记录内容。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在无服务器示例存储库中查找完整示例，并了解如何进行设置
和运行。

无服务器示例 608

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/QueryCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/UpdateItemCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/lambda-scheduled-events
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/scheduled-events-invoking-lambda-example.html
https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

使用 Lambda 使用一个 DynamoDB 事件。 JavaScript

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
exports.handler = async (event, context) => {
 console.log(JSON.stringify(event, null, 2));
 event.Records.forEach(record => {
 logDynamoDBRecord(record);
 });
};

const logDynamoDBRecord = (record) => {
 console.log(record.eventID);
 console.log(record.eventName);
 console.log(`DynamoDB Record: ${JSON.stringify(record.dynamodb)}`);
};

使用 Lambda 使用一个 DynamoDB 事件。 TypeScript

export const handler = async (event, context) => {
 console.log(JSON.stringify(event, null, 2));
 event.Records.forEach(record => {
 logDynamoDBRecord(record);
 });
}
const logDynamoDBRecord = (record) => {
 console.log(record.eventID);
 console.log(record.eventName);
 console.log(`DynamoDB Record: ${JSON.stringify(record.dynamodb)}`);
};

通过 DynamoDB 触发器报告 Lambda 函数批处理项目失败

以下代码示例演示如何为接收来自 DynamoDB 流的事件的 Lambda 函数实现部分批处理响应。该函数
在响应中报告批处理项目失败，并指示 Lambda 稍后重试这些消息。

无服务器示例 609

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在无服务器示例存储库中查找完整示例，并了解如何进行设置
和运行。

使用 Lambda 报告 DynamoDB 批处理项目失败。 JavaScript

export const handler = async (event) => {
 const records = event.Records;
 let curRecordSequenceNumber = "";

 for (const record of records) {
 try {
 // Process your record
 curRecordSequenceNumber = record.dynamodb.SequenceNumber;
 } catch (e) {
 // Return failed record's sequence number
 return { batchItemFailures: [{ itemIdentifier: curRecordSequenceNumber }] };
 }
 }

 return { batchItemFailures: [] };
};

使用 Lambda 报告 DynamoDB 批处理项目失败。 TypeScript

import {
 DynamoDBBatchResponse,
 DynamoDBBatchItemFailure,
 DynamoDBStreamEvent,
} from "aws-lambda";

export const handler = async (
 event: DynamoDBStreamEvent
): Promise<DynamoDBBatchResponse> => {
 const batchItemFailures: DynamoDBBatchItemFailure[] = [];
 let curRecordSequenceNumber;

无服务器示例 610

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda-with-batch-item-handling

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 for (const record of event.Records) {
 curRecordSequenceNumber = record.dynamodb?.SequenceNumber;

 if (curRecordSequenceNumber) {
 batchItemFailures.push({
 itemIdentifier: curRecordSequenceNumber,
 });
 }
 }

 return { batchItemFailures: batchItemFailures };
};

使用适用于 JavaScript (v3) 的软件开发工具包的亚马逊 EC2 示例

以下代码示例向您展示了如何通过在 Amazon 上使用 适用于 JavaScript 的 Amazon SDK (v3) 来执行
操作和实现常见场景 EC2。

基本功能是向您展示如何在服务中执行基本操作的代码示例。

操作是大型程序的代码摘录，必须在上下文中运行。您可以通过操作了解如何调用单个服务函数，还可
以通过函数相关场景的上下文查看操作。

场景是向您演示如何通过在一个服务中调用多个函数或与其他 Amazon Web Services 服务结合来完成
特定任务的代码示例。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

• 开始使用

• 基本功能

• 操作

• 场景

Amazon EC2 611

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

开始使用

你好 Amazon EC2

以下代码示例显示了如何开始使用 Amazon EC2。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { DescribeSecurityGroupsCommand, EC2Client } from "@aws-sdk/client-ec2";

// Call DescribeSecurityGroups and display the result.
export const main = async () => {
 const client = new EC2Client();
 try {
 const { SecurityGroups } = await client.send(
 new DescribeSecurityGroupsCommand({}),
);

 const securityGroupList = SecurityGroups.slice(0, 9)
 .map((sg) => ` • ${sg.GroupId}: ${sg.GroupName}`)
 .join("\n");

 console.log(
 "Hello, Amazon EC2! Let's list up to 10 of your security groups:",
);
 console.log(securityGroupList);
 } catch (err) {
 console.error(err);
 }
};

// Call function if run directly.
import { fileURLToPath } from "node:url";
if (process.argv[1] === fileURLToPath(import.meta.url)) {
 main();

开始使用 612

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ec2#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

}

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考DescribeSecurityGroups中的。

基本功能

了解基本功能

以下代码示例展示了如何：

• 创建密钥对和安全组。

• 选择 Amazon 机器映像 (AMI) 和兼容的实例类型，然后创建实例。

• 停止实例，然后再重启。

• 将弹性 IP 地址与您的实例相关联。

• 使用 SSH 连接到您的实例，然后清理资源。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

此文件包含与使用的常用操作的列表 EC2。这些步骤通过场景框架构建，该框架可简化交互式示例
的运行。有关完整上下文，请访问 GitHub 存储库。

import { tmpdir } from "node:os";
import { writeFile, mkdtemp, rm } from "node:fs/promises";
import { join } from "node:path";
import { get } from "node:http";

import {
 AllocateAddressCommand,
 AssociateAddressCommand,
 AuthorizeSecurityGroupIngressCommand,
 CreateKeyPairCommand,

基本功能 613

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/DescribeSecurityGroupsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ec2#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 CreateSecurityGroupCommand,
 DeleteKeyPairCommand,
 DeleteSecurityGroupCommand,
 DisassociateAddressCommand,
 paginateDescribeImages,
 paginateDescribeInstances,
 paginateDescribeInstanceTypes,
 ReleaseAddressCommand,
 RunInstancesCommand,
 StartInstancesCommand,
 StopInstancesCommand,
 TerminateInstancesCommand,
 waitUntilInstanceStatusOk,
 waitUntilInstanceStopped,
 waitUntilInstanceTerminated,
} from "@aws-sdk/client-ec2";

import {
 ScenarioAction,
 ScenarioInput,
 ScenarioOutput,
} from "@aws-doc-sdk-examples/lib/scenario/index.js";

import { paginateGetParametersByPath, SSMClient } from "@aws-sdk/client-ssm";

/**
 * @typedef {{
 * ec2Client: import('@aws-sdk/client-ec2').EC2Client,
 * errors: Error[],
 * keyPairId?: string,
 * tmpDirectory?: string,
 * securityGroupId?: string,
 * ipAddress?: string,
 * images?: import('@aws-sdk/client-ec2').Image[],
 * image?: import('@aws-sdk/client-ec2').Image,
 * instanceTypes?: import('@aws-sdk/client-ec2').InstanceTypeInfo[],
 * instanceId?: string,
 * instanceIpAddress?: string,
 * allocationId?: string,
 * allocatedIpAddress?: string,
 * associationId?: string,
 * }} State
 */

基本功能 614

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

/**
 * A skip function provided to the `skipWhen` of a Step when you want
 * to ignore that step if any errors have occurred.
 * @param {State} state
 */
const skipWhenErrors = (state) => state.errors.length > 0;

const MAX_WAITER_TIME_IN_SECONDS = 60 * 8;

export const confirm = new ScenarioInput("confirmContinue", "Continue?", {
 type: "confirm",
 skipWhen: skipWhenErrors,
});

export const exitOnNoConfirm = new ScenarioAction(
 "exitOnConfirmContinueFalse",
 (/** @type { { earlyExit: boolean } & Record<string, any>} */ state) => {
 if (!state[confirm.name]) {
 state.earlyExit = true;
 }
 },
 {
 skipWhen: skipWhenErrors,
 },
);

export const greeting = new ScenarioOutput(
 "greeting",
 `

Welcome to the Amazon EC2 basic usage scenario.

Before you launch an instances, you'll need to provide a few things:
 - A key pair - This is for SSH access to your EC2 instance. You only need to
 provide the name.
 - A security group - This is used for configuring access to your instance. Again,
 only the name is needed.
 - An IP address - Your public IP address will be fetched.
 - An Amazon Machine Image (AMI)
 - A compatible instance type`,
 { header: true, preformatted: true, skipWhen: skipWhenErrors },
);

export const provideKeyPairName = new ScenarioInput(

基本功能 615

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 "keyPairName",
 "Provide a name for a new key pair.",
 { type: "input", default: "ec2-example-key-pair", skipWhen: skipWhenErrors },
);

export const createKeyPair = new ScenarioAction(
 "createKeyPair",
 async (/** @type {State} */ state) => {
 try {
 // Create a key pair in Amazon EC2.
 const { KeyMaterial, KeyPairId } = await state.ec2Client.send(
 // A unique name for the key pair. Up to 255 ASCII characters.
 new CreateKeyPairCommand({ KeyName: state[provideKeyPairName.name] }),
);

 state.keyPairId = KeyPairId;

 // Save the private key in a temporary location.
 state.tmpDirectory = await mkdtemp(join(tmpdir(), "ec2-scenario-tmp"));
 await writeFile(
 `${state.tmpDirectory}/${state[provideKeyPairName.name]}.pem`,
 KeyMaterial,
 {
 mode: 0o400,
 },
);
 } catch (caught) {
 if (
 caught instanceof Error &&
 caught.name === "InvalidKeyPair.Duplicate"
) {
 caught.message = `${caught.message}. Try another key name.`;
 }

 state.errors.push(caught);
 }
 },
 { skipWhen: skipWhenErrors },
);

export const logKeyPair = new ScenarioOutput(
 "logKeyPair",
 (/** @type {State} */ state) =>
 `Created the key pair ${state[provideKeyPairName.name]}.`,

基本功能 616

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 { skipWhen: skipWhenErrors },
);

export const confirmDeleteKeyPair = new ScenarioInput(
 "confirmDeleteKeyPair",
 "Do you want to delete the key pair?",
 {
 type: "confirm",
 // Don't do anything when a key pair was never created.
 skipWhen: (/** @type {State} */ state) => !state.keyPairId,
 },
);

export const maybeDeleteKeyPair = new ScenarioAction(
 "deleteKeyPair",
 async (/** @type {State} */ state) => {
 try {
 // Delete a key pair by name from EC2
 await state.ec2Client.send(
 new DeleteKeyPairCommand({ KeyName: state[provideKeyPairName.name] }),
);
 } catch (caught) {
 if (
 caught instanceof Error &&
 // Occurs when a required parameter (e.g. KeyName) is undefined.
 caught.name === "MissingParameter"
) {
 caught.message = `${caught.message}. Did you provide the required value?`;
 }
 state.errors.push(caught);
 }
 },
 {
 // Don't do anything when there's no key pair to delete or the user chooses
 // to keep it.
 skipWhen: (/** @type {State} */ state) =>
 !state.keyPairId || !state[confirmDeleteKeyPair.name],
 },
);

export const provideSecurityGroupName = new ScenarioInput(
 "securityGroupName",
 "Provide a name for a new security group.",
 { type: "input", default: "ec2-scenario-sg", skipWhen: skipWhenErrors },

基本功能 617

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

);

export const createSecurityGroup = new ScenarioAction(
 "createSecurityGroup",
 async (/** @type {State} */ state) => {
 try {
 // Create a new security group that will be used to configure ingress/egress
 for
 // an EC2 instance.
 const { GroupId } = await state.ec2Client.send(
 new CreateSecurityGroupCommand({
 GroupName: state[provideSecurityGroupName.name],
 Description: "A security group for the Amazon EC2 example.",
 }),
);
 state.securityGroupId = GroupId;
 } catch (caught) {
 if (caught instanceof Error && caught.name === "InvalidGroup.Duplicate") {
 caught.message = `${caught.message}. Please provide a different name for
 your security group.`;
 }

 state.errors.push(caught);
 }
 },
 { skipWhen: skipWhenErrors },
);

export const logSecurityGroup = new ScenarioOutput(
 "logSecurityGroup",
 (/** @type {State} */ state) =>
 `Created the security group ${state.securityGroupId}.`,
 { skipWhen: skipWhenErrors },
);

export const confirmDeleteSecurityGroup = new ScenarioInput(
 "confirmDeleteSecurityGroup",
 "Do you want to delete the security group?",
 {
 type: "confirm",
 // Don't do anything when a security group was never created.
 skipWhen: (/** @type {State} */ state) => !state.securityGroupId,
 },
);

基本功能 618

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

export const maybeDeleteSecurityGroup = new ScenarioAction(
 "deleteSecurityGroup",
 async (/** @type {State} */ state) => {
 try {
 // Delete the security group if the 'skipWhen' condition below is not met.
 await state.ec2Client.send(
 new DeleteSecurityGroupCommand({
 GroupId: state.securityGroupId,
 }),
);
 } catch (caught) {
 if (
 caught instanceof Error &&
 caught.name === "InvalidGroupId.Malformed"
) {
 caught.message = `${caught.message}. Please provide a valid GroupId.`;
 }
 state.errors.push(caught);
 }
 },
 {
 // Don't do anything when there's no security group to delete
 // or the user chooses to keep it.
 skipWhen: (/** @type {State} */ state) =>
 !state.securityGroupId || !state[confirmDeleteSecurityGroup.name],
 },
);

export const authorizeSecurityGroupIngress = new ScenarioAction(
 "authorizeSecurity",
 async (/** @type {State} */ state) => {
 try {
 // Get the public IP address of the machine running this example.
 const ipAddress = await new Promise((res, rej) => {
 get("http://checkip.amazonaws.com", (response) => {
 let data = "";
 response.on("data", (chunk) => {
 data += chunk;
 });
 response.on("end", () => res(data.trim()));
 }).on("error", (err) => {
 rej(err);
 });

基本功能 619

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 });
 state.ipAddress = ipAddress;
 // Allow ingress from the IP address above to the security group.
 // This will allow you to SSH into the EC2 instance.
 const command = new AuthorizeSecurityGroupIngressCommand({
 GroupId: state.securityGroupId,
 IpPermissions: [
 {
 IpProtocol: "tcp",
 FromPort: 22,
 ToPort: 22,
 IpRanges: [{ CidrIp: `${ipAddress}/32` }],
 },
],
 });

 await state.ec2Client.send(command);
 } catch (caught) {
 if (
 caught instanceof Error &&
 caught.name === "InvalidGroupId.Malformed"
) {
 caught.message = `${caught.message}. Please provide a valid GroupId.`;
 }

 state.errors.push(caught);
 }
 },
 { skipWhen: skipWhenErrors },
);

export const logSecurityGroupIngress = new ScenarioOutput(
 "logSecurityGroupIngress",
 (/** @type {State} */ state) =>
 `Allowed SSH access from your public IP: ${state.ipAddress}.`,
 { skipWhen: skipWhenErrors },
);

export const getImages = new ScenarioAction(
 "images",
 async (/** @type {State} */ state) => {
 const AMIs = [];
 // Some AWS services publish information about common artifacts as AWS Systems
 Manager (SSM)

基本功能 620

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // public parameters. For example, the Amazon Elastic Compute Cloud (Amazon EC2)
 // service publishes information about Amazon Machine Images (AMIs) as public
 parameters.

 // Create the paginator for getting images. Actions that return multiple pages
 of
 // results have paginators to simplify those calls.
 const getParametersByPathPaginator = paginateGetParametersByPath(
 {
 // Not storing this client in state since it's only used once.
 client: new SSMClient({}),
 },
 {
 // The path to the public list of the latest amazon-linux instances.
 Path: "/aws/service/ami-amazon-linux-latest",
 },
);

 try {
 for await (const page of getParametersByPathPaginator) {
 for (const param of page.Parameters) {
 // Filter by Amazon Linux 2
 if (param.Name.includes("amzn2")) {
 AMIs.push(param.Value);
 }
 }
 }
 } catch (caught) {
 if (caught instanceof Error && caught.name === "InvalidFilterValue") {
 caught.message = `${caught.message} Please provide a valid filter value for
 paginateGetParametersByPath.`;
 }
 state.errors.push(caught);
 return;
 }

 const imageDetails = [];
 const describeImagesPaginator = paginateDescribeImages(
 { client: state.ec2Client },
 // The images found from the call to SSM.
 { ImageIds: AMIs },
);

 try {

基本功能 621

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // Get more details for the images found above.
 for await (const page of describeImagesPaginator) {
 imageDetails.push(...(page.Images || []));
 }

 // Store the image details for later use.
 state.images = imageDetails;
 } catch (caught) {
 if (caught instanceof Error && caught.name === "InvalidAMIID.NotFound") {
 caught.message = `${caught.message}. Please provide a valid image id.`;
 }

 state.errors.push(caught);
 }
 },
 { skipWhen: skipWhenErrors },
);

export const provideImage = new ScenarioInput(
 "image",
 "Select one of the following images.",
 {
 type: "select",
 choices: (/** @type { State } */ state) =>
 state.images.map((image) => ({
 name: `${image.Description}`,
 value: image,
 })),
 default: (/** @type { State } */ state) => state.images[0],
 skipWhen: skipWhenErrors,
 },
);

export const getCompatibleInstanceTypes = new ScenarioAction(
 "getCompatibleInstanceTypes",
 async (/** @type {State} */ state) => {
 // Get more details about instance types that match the architecture of
 // the provided image.
 const paginator = paginateDescribeInstanceTypes(
 { client: state.ec2Client, pageSize: 25 },
 {
 Filters: [
 {
 Name: "processor-info.supported-architecture",

基本功能 622

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // The value selected from provideImage()
 Values: [state.image.Architecture],
 },
 // Filter for smaller, less expensive, types.
 { Name: "instance-type", Values: ["*.micro", "*.small"] },
],
 },
);

 const instanceTypes = [];

 try {
 for await (const page of paginator) {
 if (page.InstanceTypes.length) {
 instanceTypes.push(...(page.InstanceTypes || []));
 }
 }

 if (!instanceTypes.length) {
 state.errors.push(
 "No instance types matched the instance type filters.",
);
 }
 } catch (caught) {
 if (caught instanceof Error && caught.name === "InvalidParameterValue") {
 caught.message = `${caught.message}. Please check the provided values and
 try again.`;
 }

 state.errors.push(caught);
 }

 state.instanceTypes = instanceTypes;
 },
 { skipWhen: skipWhenErrors },
);

export const provideInstanceType = new ScenarioInput(
 "instanceType",
 "Select an instance type.",
 {
 choices: (/** @type {State} */ state) =>
 state.instanceTypes.map((instanceType) => ({

基本功能 623

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 name: `${instanceType.InstanceType} - Memory:
${instanceType.MemoryInfo.SizeInMiB}`,
 value: instanceType.InstanceType,
 })),
 type: "select",
 default: (/** @type {State} */ state) =>
 state.instanceTypes[0].InstanceType,
 skipWhen: skipWhenErrors,
 },
);

export const runInstance = new ScenarioAction(
 "runInstance",
 async (/** @type { State } */ state) => {
 const { Instances } = await state.ec2Client.send(
 new RunInstancesCommand({
 KeyName: state[provideKeyPairName.name],
 SecurityGroupIds: [state.securityGroupId],
 ImageId: state.image.ImageId,
 InstanceType: state[provideInstanceType.name],
 // Availability Zones have capacity limitations that may impact your ability
 to launch instances.
 // The `RunInstances` operation will only succeed if it can allocate at
 least the `MinCount` of instances.
 // However, EC2 will attempt to launch up to the `MaxCount` of instances,
 even if the full request cannot be satisfied.
 // If you need a specific number of instances, use `MinCount` and `MaxCount`
 set to the same value.
 // If you want to launch up to a certain number of instances, use `MaxCount`
 and let EC2 provision as many as possible.
 // If you require a minimum number of instances, but do not want to exceed a
 maximum, use both `MinCount` and `MaxCount`.
 MinCount: 1,
 MaxCount: 1,
 }),
);

 state.instanceId = Instances[0].InstanceId;

 try {
 // Poll `DescribeInstanceStatus` until status is "ok".
 await waitUntilInstanceStatusOk(
 {
 client: state.ec2Client,

基本功能 624

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 maxWaitTime: MAX_WAITER_TIME_IN_SECONDS,
 },
 { InstanceIds: [Instances[0].InstanceId] },
);
 } catch (caught) {
 if (caught instanceof Error && caught.name === "TimeoutError") {
 caught.message = `${caught.message}. Try increasing the maxWaitTime in the
 waiter.`;
 }

 state.errors.push(caught);
 }
 },
 { skipWhen: skipWhenErrors },
);

export const logRunInstance = new ScenarioOutput(
 "logRunInstance",
 "The next step is to run your EC2 instance for the first time. This can take a few
 minutes.",
 { header: true, skipWhen: skipWhenErrors },
);

export const describeInstance = new ScenarioAction(
 "describeInstance",
 async (/** @type { State } */ state) => {
 /** @type { import("@aws-sdk/client-ec2").Instance[] } */
 const instances = [];

 try {
 const paginator = paginateDescribeInstances(
 {
 client: state.ec2Client,
 },
 {
 // Only get our created instance.
 InstanceIds: [state.instanceId],
 },
);

 for await (const page of paginator) {
 for (const reservation of page.Reservations) {
 instances.push(...reservation.Instances);
 }

基本功能 625

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }
 if (instances.length !== 1) {
 throw new Error(`Instance ${state.instanceId} not found.`);
 }

 // The only info we need is the IP address for SSH purposes.
 state.instanceIpAddress = instances[0].PublicIpAddress;
 } catch (caught) {
 if (caught instanceof Error && caught.name === "InvalidParameterValue") {
 caught.message = `${caught.message}. Please check provided values and try
 again.`;
 }

 state.errors.push(caught);
 }
 },
 { skipWhen: skipWhenErrors },
);

export const logSSHConnectionInfo = new ScenarioOutput(
 "logSSHConnectionInfo",
 (/** @type { State } */ state) =>
 `You can now SSH into your instance using the following command:
ssh -i ${state.tmpDirectory}/${state[provideKeyPairName.name]}.pem ec2-user@
${state.instanceIpAddress}`,
 { preformatted: true, skipWhen: skipWhenErrors },
);

export const logStopInstance = new ScenarioOutput(
 "logStopInstance",
 "Stopping your EC2 instance.",
 { skipWhen: skipWhenErrors },
);

export const stopInstance = new ScenarioAction(
 "stopInstance",
 async (/** @type { State } */ state) => {
 try {
 await state.ec2Client.send(
 new StopInstancesCommand({
 InstanceIds: [state.instanceId],
 }),
);

基本功能 626

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 await waitUntilInstanceStopped(
 {
 client: state.ec2Client,
 maxWaitTime: MAX_WAITER_TIME_IN_SECONDS,
 },
 { InstanceIds: [state.instanceId] },
);
 } catch (caught) {
 if (caught instanceof Error && caught.name === "TimeoutError") {
 caught.message = `${caught.message}. Try increasing the maxWaitTime in the
 waiter.`;
 }

 state.errors.push(caught);
 }
 },
 // Don't try to stop an instance that doesn't exist.
 { skipWhen: (/** @type { State } */ state) => !state.instanceId },
);

export const logIpAddressBehavior = new ScenarioOutput(
 "logIpAddressBehavior",
 [
 "When you run an instance, by default it's assigned an IP address.",
 "That IP address is not static. It will change every time the instance is
 restarted.",
 "The next step is to stop and restart your instance to demonstrate this
 behavior.",
].join(" "),
 { header: true, skipWhen: skipWhenErrors },
);

export const logStartInstance = new ScenarioOutput(
 "logStartInstance",
 (/** @type { State } */ state) => `Starting instance ${state.instanceId}`,
 { skipWhen: skipWhenErrors },
);

export const startInstance = new ScenarioAction(
 "startInstance",
 async (/** @type { State } */ state) => {
 try {
 await state.ec2Client.send(
 new StartInstancesCommand({

基本功能 627

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 InstanceIds: [state.instanceId],
 }),
);

 await waitUntilInstanceStatusOk(
 {
 client: state.ec2Client,
 maxWaitTime: MAX_WAITER_TIME_IN_SECONDS,
 },
 { InstanceIds: [state.instanceId] },
);
 } catch (caught) {
 if (caught instanceof Error && caught.name === "TimeoutError") {
 caught.message = `${caught.message}. Try increasing the maxWaitTime in the
 waiter.`;
 }

 state.errors.push(caught);
 }
 },
 { skipWhen: skipWhenErrors },
);

export const logIpAllocation = new ScenarioOutput(
 "logIpAllocation",
 [
 "It is possible to have a static IP address.",
 "To demonstrate this, an IP will be allocated and associated to your EC2
 instance.",
].join(" "),
 { header: true, skipWhen: skipWhenErrors },
);

export const allocateIp = new ScenarioAction(
 "allocateIp",
 async (/** @type { State } */ state) => {
 try {
 // An Elastic IP address is allocated to your AWS account, and is yours until
 you release it.
 const { AllocationId, PublicIp } = await state.ec2Client.send(
 new AllocateAddressCommand({}),
);
 state.allocationId = AllocationId;
 state.allocatedIpAddress = PublicIp;

基本功能 628

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 } catch (caught) {
 if (caught instanceof Error && caught.name === "MissingParameter") {
 caught.message = `${caught.message}. Did you provide these values?`;
 }
 state.errors.push(caught);
 }
 },
 { skipWhen: skipWhenErrors },
);

export const associateIp = new ScenarioAction(
 "associateIp",
 async (/** @type { State } */ state) => {
 try {
 // Associate an allocated IP address to an EC2 instance. An IP address can be
 allocated
 // with the AllocateAddress action.
 const { AssociationId } = await state.ec2Client.send(
 new AssociateAddressCommand({
 AllocationId: state.allocationId,
 InstanceId: state.instanceId,
 }),
);
 state.associationId = AssociationId;
 // Update the IP address that is being tracked to match
 // the one just associated.
 state.instanceIpAddress = state.allocatedIpAddress;
 } catch (caught) {
 if (
 caught instanceof Error &&
 caught.name === "InvalidAllocationID.NotFound"
) {
 caught.message = `${caught.message}. Did you provide the ID of a valid
 Elastic IP address AllocationId?`;
 }
 state.errors.push(caught);
 }
 },
 { skipWhen: skipWhenErrors },
);

export const logStaticIpProof = new ScenarioOutput(
 "logStaticIpProof",

基本功能 629

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 "The IP address should remain the same even after stopping and starting the
 instance.",
 { header: true, skipWhen: skipWhenErrors },
);

export const logCleanUp = new ScenarioOutput(
 "logCleanUp",
 "That's it! You can choose to clean up the resources now, or clean them up on your
 own later.",
 { header: true, skipWhen: skipWhenErrors },
);

export const confirmDisassociateAddress = new ScenarioInput(
 "confirmDisassociateAddress",
 "Do you want to disassociate and release the static IP address created earlier?",
 {
 type: "confirm",
 skipWhen: (/** @type { State } */ state) => !state.associationId,
 },
);

export const maybeDisassociateAddress = new ScenarioAction(
 "maybeDisassociateAddress",
 async (/** @type { State } */ state) => {
 try {
 await state.ec2Client.send(
 new DisassociateAddressCommand({
 AssociationId: state.associationId,
 }),
);
 } catch (caught) {
 if (
 caught instanceof Error &&
 caught.name === "InvalidAssociationID.NotFound"
) {
 caught.message = `${caught.message}. Please provide a valid association
 ID.`;
 }
 state.errors.push(caught);
 }
 },
 {
 skipWhen: (/** @type { State } */ state) =>
 !state[confirmDisassociateAddress.name] || !state.associationId,

基本功能 630

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 },
);

export const maybeReleaseAddress = new ScenarioAction(
 "maybeReleaseAddress",
 async (/** @type { State } */ state) => {
 try {
 await state.ec2Client.send(
 new ReleaseAddressCommand({
 AllocationId: state.allocationId,
 }),
);
 } catch (caught) {
 if (
 caught instanceof Error &&
 caught.name === "InvalidAllocationID.NotFound"
) {
 caught.message = `${caught.message}. Please provide a valid AllocationID.`;
 }
 state.errors.push(caught);
 }
 },
 {
 skipWhen: (/** @type { State } */ state) =>
 !state[confirmDisassociateAddress.name] || !state.allocationId,
 },
);

export const confirmTerminateInstance = new ScenarioInput(
 "confirmTerminateInstance",
 "Do you want to terminate the instance?",
 // Don't do anything when an instance was never run.
 {
 skipWhen: (/** @type { State } */ state) => !state.instanceId,
 type: "confirm",
 },
);

export const maybeTerminateInstance = new ScenarioAction(
 "terminateInstance",
 async (/** @type { State } */ state) => {
 try {
 await state.ec2Client.send(
 new TerminateInstancesCommand({

基本功能 631

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 InstanceIds: [state.instanceId],
 }),
);
 await waitUntilInstanceTerminated(
 { client: state.ec2Client },
 { InstanceIds: [state.instanceId] },
);
 } catch (caught) {
 if (caught instanceof Error && caught.name === "TimeoutError") {
 caught.message = `${caught.message}. Try increasing the maxWaitTime in the
 waiter.`;
 }

 state.errors.push(caught);
 }
 },
 {
 // Don't do anything when there's no instance to terminate or the
 // use chooses not to terminate.
 skipWhen: (/** @type { State } */ state) =>
 !state.instanceId || !state[confirmTerminateInstance.name],
 },
);

export const deleteTemporaryDirectory = new ScenarioAction(
 "deleteTemporaryDirectory",
 async (/** @type { State } */ state) => {
 try {
 await rm(state.tmpDirectory, { recursive: true });
 } catch (caught) {
 state.errors.push(caught);
 }
 },
);

export const logErrors = new ScenarioOutput(
 "logErrors",
 (/** @type {State}*/ state) => {
 const errorList = state.errors
 .map((err) => ` - ${err.name}: ${err.message}`)
 .join("\n");
 return `Scenario errors found:\n${errorList}`;
 },
 {

基本功能 632

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 preformatted: true,
 header: true,
 // Don't log errors when there aren't any!
 skipWhen: (/** @type {State} */ state) => state.errors.length === 0,
 },
);

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的以下主
题。

• AllocateAddress

• AssociateAddress

• AuthorizeSecurityGroupIngress

• CreateKeyPair

• CreateSecurityGroup

• DeleteKeyPair

• DeleteSecurityGroup

• DescribeImages

• DescribeInstanceTypes

• DescribeInstances

• DescribeKeyPairs

• DescribeSecurityGroups

• DisassociateAddress

• ReleaseAddress

• RunInstances

• StartInstances

• StopInstances

• TerminateInstances

• UnmonitorInstances

基本功能 633

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/AllocateAddressCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/AssociateAddressCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/AuthorizeSecurityGroupIngressCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/CreateKeyPairCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/CreateSecurityGroupCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/DeleteKeyPairCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/DeleteSecurityGroupCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/DescribeImagesCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/DescribeInstanceTypesCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/DescribeInstancesCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/DescribeKeyPairsCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/DescribeSecurityGroupsCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/DisassociateAddressCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/ReleaseAddressCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/RunInstancesCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/StartInstancesCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/StopInstancesCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/TerminateInstancesCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/UnmonitorInstancesCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

操作

AllocateAddress

以下代码示例演示了如何使用 AllocateAddress。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { AllocateAddressCommand, EC2Client } from "@aws-sdk/client-ec2";

/**
 * Allocates an Elastic IP address to your AWS account.
 */
export const main = async () => {
 const client = new EC2Client({});
 const command = new AllocateAddressCommand({});

 try {
 const { AllocationId, PublicIp } = await client.send(command);
 console.log("A new IP address has been allocated to your account:");
 console.log(`ID: ${AllocationId} Public IP: ${PublicIp}`);
 console.log(
 "You can view your IP addresses in the AWS Management Console for Amazon EC2.
 Look under Network & Security > Elastic IPs",
);
 } catch (caught) {
 if (caught instanceof Error && caught.name === "MissingParameter") {
 console.warn(`${caught.message}. Did you provide these values?`);
 } else {
 throw caught;
 }
 }
};
import { fileURLToPath } from "node:url";
// Call function if run directly.

操作 634

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ec2#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

if (process.argv[1] === fileURLToPath(import.meta.url)) {
 main();
}

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考AllocateAddress中
的。

AssociateAddress

以下代码示例演示了如何使用 AssociateAddress。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { AssociateAddressCommand, EC2Client } from "@aws-sdk/client-ec2";

/**
 * Associates an Elastic IP address, or carrier IP address (for instances that are
 in subnets in Wavelength Zones)
 * with an instance or a network interface.
 * @param {{ instanceId: string, allocationId: string }} options
 */
export const main = async ({ instanceId, allocationId }) => {
 const client = new EC2Client({});
 const command = new AssociateAddressCommand({
 // You need to allocate an Elastic IP address before associating it with an
 instance.
 // You can do that with the AllocateAddressCommand.
 AllocationId: allocationId,
 // You need to create an EC2 instance before an IP address can be associated
 with it.
 // You can do that with the RunInstancesCommand.
 InstanceId: instanceId,
 });

操作 635

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/AllocateAddressCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ec2#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 try {
 const { AssociationId } = await client.send(command);
 console.log(
 `Address with allocation ID ${allocationId} is now associated with instance
 ${instanceId}.`,
 `The association ID is ${AssociationId}.`,
);
 } catch (caught) {
 if (
 caught instanceof Error &&
 caught.name === "InvalidAllocationID.NotFound"
) {
 console.warn(
 `${caught.message}. Did you provide the ID of a valid Elastic IP address
 AllocationId?`,
);
 } else {
 throw caught;
 }
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考AssociateAddress中
的。

AuthorizeSecurityGroupIngress

以下代码示例演示了如何使用 AuthorizeSecurityGroupIngress。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import {
 AuthorizeSecurityGroupIngressCommand,
 EC2Client,

操作 636

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/AssociateAddressCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ec2#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

} from "@aws-sdk/client-ec2";

/**
 * Adds the specified inbound (ingress) rules to a security group.
 * @param {{ groupId: string, ipAddress: string }} options
 */
export const main = async ({ groupId, ipAddress }) => {
 const client = new EC2Client({});
 const command = new AuthorizeSecurityGroupIngressCommand({
 // Use a group ID from the AWS console or
 // the DescribeSecurityGroupsCommand.
 GroupId: groupId,
 IpPermissions: [
 {
 IpProtocol: "tcp",
 FromPort: 22,
 ToPort: 22,
 // The IP address to authorize.
 // For more information on this notation, see
 // https://en.wikipedia.org/wiki/Classless_Inter-
Domain_Routing#CIDR_notation
 IpRanges: [{ CidrIp: `${ipAddress}/32` }],
 },
],
 });

 try {
 const { SecurityGroupRules } = await client.send(command);
 console.log(JSON.stringify(SecurityGroupRules, null, 2));
 } catch (caught) {
 if (caught instanceof Error && caught.name === "InvalidGroupId.Malformed") {
 console.warn(`${caught.message}. Please provide a valid GroupId.`);
 } else {
 throw caught;
 }
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考AuthorizeSecurityGroupIngress中的。

操作 637

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/AuthorizeSecurityGroupIngressCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

CreateKeyPair

以下代码示例演示了如何使用 CreateKeyPair。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { CreateKeyPairCommand, EC2Client } from "@aws-sdk/client-ec2";

/**
 * Creates an ED25519 or 2048-bit RSA key pair with the specified name and in the
 specified PEM or PPK format.
 * Amazon EC2 stores the public key and displays the private key for you to save to
 a file.
 * @param {{ keyName: string }} options
 */
export const main = async ({ keyName }) => {
 const client = new EC2Client({});
 const command = new CreateKeyPairCommand({
 KeyName: keyName,
 });

 try {
 const { KeyMaterial, KeyName } = await client.send(command);
 console.log(KeyName);
 console.log(KeyMaterial);
 } catch (caught) {
 if (caught instanceof Error && caught.name === "InvalidKeyPair.Duplicate") {
 console.warn(`${caught.message}. Try another key name.`);
 } else {
 throw caught;
 }
 }
};

操作 638

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ec2#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考CreateKeyPair中
的。

CreateLaunchTemplate

以下代码示例演示了如何使用 CreateLaunchTemplate。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

 const ssmClient = new SSMClient({});
 const { Parameter } = await ssmClient.send(
 new GetParameterCommand({
 Name: "/aws/service/ami-amazon-linux-latest/amzn2-ami-hvm-x86_64-gp2",
 }),
);
 const ec2Client = new EC2Client({});
 await ec2Client.send(
 new CreateLaunchTemplateCommand({
 LaunchTemplateName: NAMES.launchTemplateName,
 LaunchTemplateData: {
 InstanceType: "t3.micro",
 ImageId: Parameter.Value,
 IamInstanceProfile: { Name: NAMES.instanceProfileName },
 UserData: readFileSync(
 join(RESOURCES_PATH, "server_startup_script.sh"),
).toString("base64"),
 KeyName: NAMES.keyPairName,
 },
 }),

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考CreateLaunchTemplate中的。

操作 639

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/CreateKeyPairCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/wkflw-resilient-service#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/CreateLaunchTemplateCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

CreateSecurityGroup

以下代码示例演示了如何使用 CreateSecurityGroup。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { CreateSecurityGroupCommand, EC2Client } from "@aws-sdk/client-ec2";

/**
 * Creates a security group.
 * @param {{ groupName: string, description: string }} options
 */
export const main = async ({ groupName, description }) => {
 const client = new EC2Client({});
 const command = new CreateSecurityGroupCommand({
 // Up to 255 characters in length. Cannot start with sg-.
 GroupName: groupName,
 // Up to 255 characters in length.
 Description: description,
 });

 try {
 const { GroupId } = await client.send(command);
 console.log(GroupId);
 } catch (caught) {
 if (caught instanceof Error && caught.name === "InvalidParameterValue") {
 console.warn(`${caught.message}.`);
 } else {
 throw caught;
 }
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考CreateSecurityGroup中的。

操作 640

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ec2#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/CreateSecurityGroupCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

DeleteKeyPair

以下代码示例演示了如何使用 DeleteKeyPair。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { DeleteKeyPairCommand, EC2Client } from "@aws-sdk/client-ec2";

/**
 * Deletes the specified key pair, by removing the public key from Amazon EC2.
 * @param {{ keyName: string }} options
 */
export const main = async ({ keyName }) => {
 const client = new EC2Client({});
 const command = new DeleteKeyPairCommand({
 KeyName: keyName,
 });

 try {
 await client.send(command);
 console.log("Successfully deleted key pair.");
 } catch (caught) {
 if (caught instanceof Error && caught.name === "MissingParameter") {
 console.warn(`${caught.message}. Did you provide the required value?`);
 } else {
 throw caught;
 }
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DeleteKeyPair中的。

DeleteLaunchTemplate

以下代码示例演示了如何使用 DeleteLaunchTemplate。

操作 641

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ec2#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/DeleteKeyPairCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

 await client.send(
 new DeleteLaunchTemplateCommand({
 LaunchTemplateName: NAMES.launchTemplateName,
 }),
);

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考DeleteLaunchTemplate中的。

DeleteSecurityGroup

以下代码示例演示了如何使用 DeleteSecurityGroup。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { DeleteSecurityGroupCommand, EC2Client } from "@aws-sdk/client-ec2";

/**
 * Deletes a security group.
 * @param {{ groupId: string }} options
 */
export const main = async ({ groupId }) => {
 const client = new EC2Client({});
 const command = new DeleteSecurityGroupCommand({
 GroupId: groupId,

操作 642

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/wkflw-resilient-service#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/DeleteLaunchTemplateCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ec2#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 });

 try {
 await client.send(command);
 console.log("Security group deleted successfully.");
 } catch (caught) {
 if (caught instanceof Error && caught.name === "InvalidGroupId.Malformed") {
 console.warn(`${caught.message}. Please provide a valid GroupId.`);
 } else {
 throw caught;
 }
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考DeleteSecurityGroup中的。

DescribeAddresses

以下代码示例演示了如何使用 DescribeAddresses。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { DescribeAddressesCommand, EC2Client } from "@aws-sdk/client-ec2";

/**
 * Describes the specified Elastic IP addresses or all of your Elastic IP addresses.
 * @param {{ allocationId: string }} options
 */
export const main = async ({ allocationId }) => {
 const client = new EC2Client({});
 const command = new DescribeAddressesCommand({
 // You can omit this property to show all addresses.
 AllocationIds: [allocationId],

操作 643

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/DeleteSecurityGroupCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ec2#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 });

 try {
 const { Addresses } = await client.send(command);
 const addressList = Addresses.map((address) => ` • ${address.PublicIp}`);
 console.log("Elastic IP addresses:");
 console.log(addressList.join("\n"));
 } catch (caught) {
 if (
 caught instanceof Error &&
 caught.name === "InvalidAllocationID.NotFound"
) {
 console.warn(`${caught.message}. Please provide a valid AllocationId.`);
 } else {
 throw caught;
 }
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考DescribeAddresses中的。

DescribeIamInstanceProfileAssociations

以下代码示例演示了如何使用 DescribeIamInstanceProfileAssociations。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

 const ec2Client = new EC2Client({});
 const { IamInstanceProfileAssociations } = await ec2Client.send(
 new DescribeIamInstanceProfileAssociationsCommand({
 Filters: [
 { Name: "instance-id", Values: [state.targetInstance.InstanceId] },
],

操作 644

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/DescribeAddressesCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/wkflw-resilient-service#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }),
);

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考DescribeIamInstanceProfileAssociations中的。

DescribeImages

以下代码示例演示了如何使用 DescribeImages。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { EC2Client, paginateDescribeImages } from "@aws-sdk/client-ec2";

/**
 * Describes the specified images (AMIs, AKIs, and ARIs) available to you or all of
 the images available to you.
 * @param {{ architecture: string, pageSize: number }} options
 */
export const main = async ({ architecture, pageSize }) => {
 pageSize = Number.parseInt(pageSize);
 const client = new EC2Client({});

 // The paginate function is a wrapper around the base command.
 const paginator = paginateDescribeImages(
 // Without limiting the page size, this call can take a long time. pageSize is
 just sugar for
 // the MaxResults property in the base command.
 { client, pageSize },
 {
 // There are almost 70,000 images available. Be specific with your filtering
 // to increase efficiency.
 // See https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/clients/client-
ec2/interfaces/describeimagescommandinput.html#filters

操作 645

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/DescribeIamInstanceProfileAssociationsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ec2#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 Filters: [{ Name: "architecture", Values: [architecture] }],
 },
);

 /**
 * @type {import('@aws-sdk/client-ec2').Image[]}
 */
 const images = [];
 let recordsScanned = 0;

 try {
 for await (const page of paginator) {
 recordsScanned += pageSize;
 if (page.Images.length) {
 images.push(...page.Images);
 break;
 }
 console.log(
 `No matching image found yet. Searched ${recordsScanned} records.`,
);
 }

 if (images.length) {
 console.log(
 `Found ${images.length} images:\n\n${images.map((image) =>
 image.Name).join("\n")}\n`,
);
 } else {
 console.log(
 `No matching images found. Searched ${recordsScanned} records.\n`,
);
 }

 return images;
 } catch (caught) {
 if (caught instanceof Error && caught.name === "InvalidParameterValue") {
 console.warn(`${caught.message}`);
 return [];
 }
 throw caught;
 }
};

操作 646

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DescribeImages中
的。

DescribeInstanceTypes

以下代码示例演示了如何使用 DescribeInstanceTypes。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { EC2Client, paginateDescribeInstanceTypes } from "@aws-sdk/client-ec2";

/**
 * Describes the specified instance types. By default, all instance types for the
 * current Region are described. Alternatively, you can filter the results.
 * @param {{ pageSize: string, supportedArch: string[], freeTier: boolean }} options
 */
export const main = async ({ pageSize, supportedArch, freeTier }) => {
 pageSize = Number.parseInt(pageSize);
 const client = new EC2Client({});

 // The paginate function is a wrapper around the underlying command.
 const paginator = paginateDescribeInstanceTypes(
 // Without limiting the page size, this call can take a long time. pageSize is
 just sugar for
 // the MaxResults property in the underlying command.
 { client, pageSize },
 {
 Filters: [
 {
 Name: "processor-info.supported-architecture",
 Values: supportedArch,
 },
 { Name: "free-tier-eligible", Values: [freeTier ? "true" : "false"] },
],
 },
);

操作 647

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/DescribeImagesCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ec2#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 try {
 /**
 * @type {import('@aws-sdk/client-ec2').InstanceTypeInfo[]}
 */
 const instanceTypes = [];

 for await (const page of paginator) {
 if (page.InstanceTypes.length) {
 instanceTypes.push(...page.InstanceTypes);

 // When we have at least 1 result, we can stop.
 if (instanceTypes.length >= 1) {
 break;
 }
 }
 }
 console.log(
 `Memory size in MiB for matching instance types:\n\n${instanceTypes.map((it)
 => `${it.InstanceType}: ${it.MemoryInfo.SizeInMiB} MiB`).join("\n")}`,
);
 } catch (caught) {
 if (caught instanceof Error && caught.name === "InvalidParameterValue") {
 console.warn(`${caught.message}`);
 return [];
 }
 throw caught;
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考DescribeInstanceTypes中的。

DescribeInstances

以下代码示例演示了如何使用 DescribeInstances。

操作 648

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/DescribeInstanceTypesCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { EC2Client, paginateDescribeInstances } from "@aws-sdk/client-ec2";

/**
 * List all of your EC2 instances running with the provided architecture that
 * were launched in the past month.
 * @param {{ pageSize: string, architectures: string[] }} options
 */
export const main = async ({ pageSize, architectures }) => {
 pageSize = Number.parseInt(pageSize);
 const client = new EC2Client({});
 const d = new Date();
 const year = d.getFullYear();
 const month = `0${d.getMonth() + 1}`.slice(-2);
 const launchTimePattern = `${year}-${month}-*`;

 const paginator = paginateDescribeInstances(
 {
 client,
 pageSize,
 },
 {
 Filters: [
 { Name: "architecture", Values: architectures },
 { Name: "instance-state-name", Values: ["running"] },
 {
 Name: "launch-time",
 Values: [launchTimePattern],
 },
],
 },
);

 try {
 /**

操作 649

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ec2#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * @type {import('@aws-sdk/client-ec2').Instance[]}
 */
 const instanceList = [];
 for await (const page of paginator) {
 const { Reservations } = page;
 for (const reservation of Reservations) {
 instanceList.push(...reservation.Instances);
 }
 }
 console.log(
 `Running instances launched this month:\n\n${instanceList.map((instance) =>
 instance.InstanceId).join("\n")}`,
);
 } catch (caught) {
 if (caught instanceof Error && caught.name === "InvalidParameterValue") {
 console.warn(`${caught.message}.`);
 } else {
 throw caught;
 }
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DescribeInstances中
的。

DescribeKeyPairs

以下代码示例演示了如何使用 DescribeKeyPairs。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { DescribeKeyPairsCommand, EC2Client } from "@aws-sdk/client-ec2";

/**

操作 650

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/DescribeInstancesCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ec2#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * List all key pairs in the current AWS account.
 * @param {{ dryRun: boolean }}
 */
export const main = async ({ dryRun }) => {
 const client = new EC2Client({});
 const command = new DescribeKeyPairsCommand({ DryRun: dryRun });

 try {
 const { KeyPairs } = await client.send(command);
 const keyPairList = KeyPairs.map(
 (kp) => ` • ${kp.KeyPairId}: ${kp.KeyName}`,
).join("\n");
 console.log("The following key pairs were found in your account:");
 console.log(keyPairList);
 } catch (caught) {
 if (caught instanceof Error && caught.name === "DryRunOperation") {
 console.log(`${caught.message}`);
 } else {
 throw caught;
 }
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DescribeKeyPairs中
的。

DescribeRegions

以下代码示例演示了如何使用 DescribeRegions。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { DescribeRegionsCommand, EC2Client } from "@aws-sdk/client-ec2";

操作 651

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/DescribeKeyPairsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ec2#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

/**
 * List all available AWS regions.
 * @param {{ regionNames: string[], includeOptInRegions: boolean }} options
 */
export const main = async ({ regionNames, includeOptInRegions }) => {
 const client = new EC2Client({});
 const command = new DescribeRegionsCommand({
 // By default this command will not show regions that require you to opt-in.
 // When AllRegions is true, even the regions that require opt-in will be
 returned.
 AllRegions: includeOptInRegions,
 // You can omit the Filters property if you want to get all regions.
 Filters: regionNames?.length
 ? [
 {
 Name: "region-name",
 // You can specify multiple values for a filter.
 // You can also use '*' as a wildcard. This will return all
 // of the regions that start with `us-east-`.
 Values: regionNames,
 },
]
 : undefined,
 });

 try {
 const { Regions } = await client.send(command);
 const regionsList = Regions.map((reg) => ` • ${reg.RegionName}`);
 console.log("Found regions:");
 console.log(regionsList.join("\n"));
 } catch (caught) {
 if (caught instanceof Error && caught.name === "DryRunOperation") {
 console.log(`${caught.message}`);
 } else {
 throw caught;
 }
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DescribeRegions中
的。

操作 652

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/DescribeRegionsCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

DescribeSecurityGroups

以下代码示例演示了如何使用 DescribeSecurityGroups。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { DescribeSecurityGroupsCommand, EC2Client } from "@aws-sdk/client-ec2";

/**
 * Describes the specified security groups or all of your security groups.
 * @param {{ groupIds: string[] }} options
 */
export const main = async ({ groupIds = [] }) => {
 const client = new EC2Client({});
 const command = new DescribeSecurityGroupsCommand({
 GroupIds: groupIds,
 });

 try {
 const { SecurityGroups } = await client.send(command);
 const sgList = SecurityGroups.map(
 (sg) => `• ${sg.GroupName} (${sg.GroupId}): ${sg.Description}`,
).join("\n");
 if (sgList.length) {
 console.log(`Security groups:\n${sgList}`);
 } else {
 console.log("No security groups found.");
 }
 } catch (caught) {
 if (caught instanceof Error && caught.name === "InvalidGroupId.Malformed") {
 console.warn(`${caught.message}. Please provide a valid GroupId.`);
 } else if (
 caught instanceof Error &&
 caught.name === "InvalidGroup.NotFound"
) {
 console.warn(caught.message);
 } else {

操作 653

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ec2#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 throw caught;
 }
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考DescribeSecurityGroups中的。

DescribeSubnets

以下代码示例演示了如何使用 DescribeSubnets。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

 const client = new EC2Client({});
 const { Subnets } = await client.send(
 new DescribeSubnetsCommand({
 Filters: [
 { Name: "vpc-id", Values: [state.defaultVpc] },
 { Name: "availability-zone", Values: state.availabilityZoneNames },
 { Name: "default-for-az", Values: ["true"] },
],
 }),
);

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DescribeSubnets中
的。

DescribeVpcs

以下代码示例演示了如何使用 DescribeVpcs。

操作 654

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/DescribeSecurityGroupsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/wkflw-resilient-service#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/DescribeSubnetsCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

 const client = new EC2Client({});
 const { Vpcs } = await client.send(
 new DescribeVpcsCommand({
 Filters: [{ Name: "is-default", Values: ["true"] }],
 }),
);

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DescribeVpcs中的。

DisassociateAddress

以下代码示例演示了如何使用 DisassociateAddress。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { DisassociateAddressCommand, EC2Client } from "@aws-sdk/client-ec2";

/**
 * Disassociate an Elastic IP address from an instance.
 * @param {{ associationId: string }} options
 */
export const main = async ({ associationId }) => {
 const client = new EC2Client({});
 const command = new DisassociateAddressCommand({

操作 655

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/wkflw-resilient-service#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/DescribeVpcsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ec2#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // You can also use PublicIp, but that is for EC2 classic which is being
 retired.
 AssociationId: associationId,
 });

 try {
 await client.send(command);
 console.log("Successfully disassociated address");
 } catch (caught) {
 if (
 caught instanceof Error &&
 caught.name === "InvalidAssociationID.NotFound"
) {
 console.warn(`${caught.message}.`);
 } else {
 throw caught;
 }
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考DisassociateAddress中的。

MonitorInstances

以下代码示例演示了如何使用 MonitorInstances。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { EC2Client, MonitorInstancesCommand } from "@aws-sdk/client-ec2";

/**
 * Turn on detailed monitoring for the selected instance.
 * By default, metrics are sent to Amazon CloudWatch every 5 minutes.

操作 656

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/DisassociateAddressCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ec2#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * For a cost you can enable detailed monitoring which sends metrics every minute.
 * @param {{ instanceIds: string[] }} options
 */
export const main = async ({ instanceIds }) => {
 const client = new EC2Client({});
 const command = new MonitorInstancesCommand({
 InstanceIds: instanceIds,
 });

 try {
 const { InstanceMonitorings } = await client.send(command);
 const instancesBeingMonitored = InstanceMonitorings.map(
 (im) =>
 ` • Detailed monitoring state for ${im.InstanceId} is
 ${im.Monitoring.State}.`,
);
 console.log("Monitoring status:");
 console.log(instancesBeingMonitored.join("\n"));
 } catch (caught) {
 if (caught instanceof Error && caught.name === "InvalidParameterValue") {
 console.warn(`${caught.message}`);
 } else {
 throw caught;
 }
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考MonitorInstances中
的。

RebootInstances

以下代码示例演示了如何使用 RebootInstances。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

操作 657

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/MonitorInstancesCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ec2#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

import { EC2Client, RebootInstancesCommand } from "@aws-sdk/client-ec2";

/**
 * Requests a reboot of the specified instances. This operation is asynchronous;
 * it only queues a request to reboot the specified instances.
 * @param {{ instanceIds: string[] }} options
 */
export const main = async ({ instanceIds }) => {
 const client = new EC2Client({});
 const command = new RebootInstancesCommand({
 InstanceIds: instanceIds,
 });

 try {
 await client.send(command);
 console.log("Instance rebooted successfully.");
 } catch (caught) {
 if (
 caught instanceof Error &&
 caught.name === "InvalidInstanceID.NotFound"
) {
 console.warn(
 `${caught.message}. Please provide the InstanceId of a valid instance to
 reboot.`,
);
 } else {
 throw caught;
 }
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考RebootInstances中
的。

ReleaseAddress

以下代码示例演示了如何使用 ReleaseAddress。

操作 658

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/RebootInstancesCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { ReleaseAddressCommand, EC2Client } from "@aws-sdk/client-ec2";

/**
 * Release an Elastic IP address.
 * @param {{ allocationId: string }} options
 */
export const main = async ({ allocationId }) => {
 const client = new EC2Client({});
 const command = new ReleaseAddressCommand({
 // You can also use PublicIp, but that is for EC2 classic which is being
 retired.
 AllocationId: allocationId,
 });

 try {
 await client.send(command);
 console.log("Successfully released address.");
 } catch (caught) {
 if (
 caught instanceof Error &&
 caught.name === "InvalidAllocationID.NotFound"
) {
 console.warn(`${caught.message}. Please provide a valid AllocationID.`);
 } else {
 throw caught;
 }
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考ReleaseAddress中
的。

操作 659

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ec2#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/ReleaseAddressCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

ReplaceIamInstanceProfileAssociation

以下代码示例演示了如何使用 ReplaceIamInstanceProfileAssociation。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

 await retry({ intervalInMs: 1000, maxRetries: 30 }, () =>
 ec2Client.send(
 new ReplaceIamInstanceProfileAssociationCommand({
 AssociationId: state.instanceProfileAssociationId,
 IamInstanceProfile: { Name: NAMES.ssmOnlyInstanceProfileName },
 }),
),
);

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考ReplaceIamInstanceProfileAssociation中的。

RunInstances

以下代码示例演示了如何使用 RunInstances。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { EC2Client, RunInstancesCommand } from "@aws-sdk/client-ec2";

/**

操作 660

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/wkflw-resilient-service#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/ReplaceIamInstanceProfileAssociationCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ec2#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * Create new EC2 instances.
 * @param {{
 * keyName: string,
 * securityGroupIds: string[],
 * imageId: string,
 * instanceType: import('@aws-sdk/client-ec2')._InstanceType,
 * minCount?: number,
 * maxCount?: number }} options
 */
export const main = async ({
 keyName,
 securityGroupIds,
 imageId,
 instanceType,
 minCount = "1",
 maxCount = "1",
}) => {
 const client = new EC2Client({});
 minCount = Number.parseInt(minCount);
 maxCount = Number.parseInt(maxCount);
 const command = new RunInstancesCommand({
 // Your key pair name.
 KeyName: keyName,
 // Your security group.
 SecurityGroupIds: securityGroupIds,
 // An Amazon Machine Image (AMI). There are multiple ways to search for AMIs.
 For more information, see:
 // https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/finding-an-ami.html
 ImageId: imageId,
 // An instance type describing the resources provided to your instance. There
 are multiple
 // ways to search for instance types. For more information see:
 // https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-discovery.html
 InstanceType: instanceType,
 // Availability Zones have capacity limitations that may impact your ability to
 launch instances.
 // The `RunInstances` operation will only succeed if it can allocate at least
 the `MinCount` of instances.
 // However, EC2 will attempt to launch up to the `MaxCount` of instances, even
 if the full request cannot be satisfied.
 // If you need a specific number of instances, use `MinCount` and `MaxCount` set
 to the same value.
 // If you want to launch up to a certain number of instances, use `MaxCount` and
 let EC2 provision as many as possible.

操作 661

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // If you require a minimum number of instances, but do not want to exceed a
 maximum, use both `MinCount` and `MaxCount`.
 MinCount: minCount,
 MaxCount: maxCount,
 });

 try {
 const { Instances } = await client.send(command);
 const instanceList = Instances.map(
 (instance) => `• ${instance.InstanceId}`,
).join("\n");
 console.log(`Launched instances:\n${instanceList}`);
 } catch (caught) {
 if (caught instanceof Error && caught.name === "ResourceCountExceeded") {
 console.warn(`${caught.message}`);
 } else {
 throw caught;
 }
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考RunInstances中的。

StartInstances

以下代码示例演示了如何使用 StartInstances。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { EC2Client, StartInstancesCommand } from "@aws-sdk/client-ec2";
import { fileURLToPath } from "node:url";
import { parseArgs } from "node:util";

/**

操作 662

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/RunInstancesCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ec2#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * Starts an Amazon EBS-backed instance that you've previously stopped.
 * @param {{ instanceIds }} options
 */
export const main = async ({ instanceIds }) => {
 const client = new EC2Client({});
 const command = new StartInstancesCommand({
 InstanceIds: instanceIds,
 });

 try {
 const { StartingInstances } = await client.send(command);
 const instanceIdList = StartingInstances.map(
 (instance) => ` • ${instance.InstanceId}`,
);
 console.log("Starting instances:");
 console.log(instanceIdList.join("\n"));
 } catch (caught) {
 if (
 caught instanceof Error &&
 caught.name === "InvalidInstanceID.NotFound"
) {
 console.warn(`${caught.message}`);
 } else {
 throw caught;
 }
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考StartInstances中的。

StopInstances

以下代码示例演示了如何使用 StopInstances。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

操作 663

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/StartInstancesCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ec2#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

import { EC2Client, StopInstancesCommand } from "@aws-sdk/client-ec2";
import { fileURLToPath } from "node:url";
import { parseArgs } from "node:util";

/**
 * Stop one or more EC2 instances.
 * @param {{ instanceIds: string[] }} options
 */
export const main = async ({ instanceIds }) => {
 const client = new EC2Client({});
 const command = new StopInstancesCommand({
 InstanceIds: instanceIds,
 });

 try {
 const { StoppingInstances } = await client.send(command);
 const instanceIdList = StoppingInstances.map(
 (instance) => ` • ${instance.InstanceId}`,
);
 console.log("Stopping instances:");
 console.log(instanceIdList.join("\n"));
 } catch (caught) {
 if (
 caught instanceof Error &&
 caught.name === "InvalidInstanceID.NotFound"
) {
 console.warn(`${caught.message}`);
 } else {
 throw caught;
 }
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考StopInstances中的。

TerminateInstances

以下代码示例演示了如何使用 TerminateInstances。

操作 664

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/StopInstancesCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { EC2Client, TerminateInstancesCommand } from "@aws-sdk/client-ec2";
import { fileURLToPath } from "node:url";
import { parseArgs } from "node:util";

/**
 * Terminate one or more EC2 instances.
 * @param {{ instanceIds: string[] }} options
 */
export const main = async ({ instanceIds }) => {
 const client = new EC2Client({});
 const command = new TerminateInstancesCommand({
 InstanceIds: instanceIds,
 });

 try {
 const { TerminatingInstances } = await client.send(command);
 const instanceList = TerminatingInstances.map(
 (instance) => ` • ${instance.InstanceId}`,
);
 console.log("Terminating instances:");
 console.log(instanceList.join("\n"));
 } catch (caught) {
 if (
 caught instanceof Error &&
 caught.name === "InvalidInstanceID.NotFound"
) {
 console.warn(`${caught.message}`);
 } else {
 throw caught;
 }
 }
};

操作 665

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ec2#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考TerminateInstances中的。

UnmonitorInstances

以下代码示例演示了如何使用 UnmonitorInstances。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { EC2Client, UnmonitorInstancesCommand } from "@aws-sdk/client-ec2";
import { fileURLToPath } from "node:url";
import { parseArgs } from "node:util";

/**
 * Turn off detailed monitoring for the selected instance.
 * @param {{ instanceIds: string[] }} options
 */
export const main = async ({ instanceIds }) => {
 const client = new EC2Client({});
 const command = new UnmonitorInstancesCommand({
 InstanceIds: instanceIds,
 });

 try {
 const { InstanceMonitorings } = await client.send(command);
 const instanceMonitoringsList = InstanceMonitorings.map(
 (im) =>
 ` • Detailed monitoring state for ${im.InstanceId} is
 ${im.Monitoring.State}.`,
);
 console.log("Monitoring status:");
 console.log(instanceMonitoringsList.join("\n"));
 } catch (caught) {
 if (
 caught instanceof Error &&
 caught.name === "InvalidInstanceID.NotFound"

操作 666

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/TerminateInstancesCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ec2#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

) {
 console.warn(`${caught.message}`);
 } else {
 throw caught;
 }
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考UnmonitorInstances中的。

场景

构建和管理弹性服务

以下代码示例演示了如何创建可返回书籍、电影和歌曲推荐的负载均衡的 Web 服务。该示例演示服务
如何响应故障，以及如何重组服务以提高故障发生时的弹性。

• 使用 Amazon A EC2 uto Scaling 组根据启动模板创建亚马逊弹性计算云 (Amazon EC2) 实例，并将
实例数量保持在指定范围内。

• 使用弹性负载均衡处理和分发 HTTP 请求。

• 监控自动扩缩组中实例的运行状况，并仅将请求转发到运行状况良好的实例。

• 在每个 EC2 实例上运行 Python 网络服务器来处理 HTTP 请求。Web 服务器以建议和运行状况检查
作为响应。

• 使用 Amazon DynamoDB 表模拟推荐服务。

• 通过更新 Amazon Systems Manager 参数来控制 Web 服务器对请求和运行状况检查的响应。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

在命令提示符中运行交互式场景。

场景 667

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/UnmonitorInstancesCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/wkflw-resilient-service#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

#!/usr/bin/env node
// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

import {
 Scenario,
 parseScenarioArgs,
} from "@aws-doc-sdk-examples/lib/scenario/index.js";

/**
 * The workflow steps are split into three stages:
 * - deploy
 * - demo
 * - destroy
 *
 * Each of these stages has a corresponding file prefixed with steps-*.
 */
import { deploySteps } from "./steps-deploy.js";
import { demoSteps } from "./steps-demo.js";
import { destroySteps } from "./steps-destroy.js";

/**
 * The context is passed to every scenario. Scenario steps
 * will modify the context.
 */
const context = {};

/**
 * Three Scenarios are created for the workflow. A Scenario is an orchestration
 class
 * that simplifies running a series of steps.
 */
export const scenarios = {
 // Deploys all resources necessary for the workflow.
 deploy: new Scenario("Resilient Workflow - Deploy", deploySteps, context),
 // Demonstrates how a fragile web service can be made more resilient.
 demo: new Scenario("Resilient Workflow - Demo", demoSteps, context),
 // Destroys the resources created for the workflow.
 destroy: new Scenario("Resilient Workflow - Destroy", destroySteps, context),
};

// Call function if run directly
import { fileURLToPath } from "node:url";

场景 668

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

if (process.argv[1] === fileURLToPath(import.meta.url)) {
 parseScenarioArgs(scenarios, {
 name: "Resilient Workflow",
 synopsis:
 "node index.js --scenario <deploy | demo | destroy> [-h|--help] [-y|--yes] [-
v|--verbose]",
 description: "Deploy and interact with scalable EC2 instances.",
 });
}

创建部署所有资源的步骤。

import { join } from "node:path";
import { readFileSync, writeFileSync } from "node:fs";
import axios from "axios";

import {
 BatchWriteItemCommand,
 CreateTableCommand,
 DynamoDBClient,
 waitUntilTableExists,
} from "@aws-sdk/client-dynamodb";
import {
 EC2Client,
 CreateKeyPairCommand,
 CreateLaunchTemplateCommand,
 DescribeAvailabilityZonesCommand,
 DescribeVpcsCommand,
 DescribeSubnetsCommand,
 DescribeSecurityGroupsCommand,
 AuthorizeSecurityGroupIngressCommand,
} from "@aws-sdk/client-ec2";
import {
 IAMClient,
 CreatePolicyCommand,
 CreateRoleCommand,
 CreateInstanceProfileCommand,
 AddRoleToInstanceProfileCommand,
 AttachRolePolicyCommand,
 waitUntilInstanceProfileExists,
} from "@aws-sdk/client-iam";

场景 669

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

import { SSMClient, GetParameterCommand } from "@aws-sdk/client-ssm";
import {
 CreateAutoScalingGroupCommand,
 AutoScalingClient,
 AttachLoadBalancerTargetGroupsCommand,
} from "@aws-sdk/client-auto-scaling";
import {
 CreateListenerCommand,
 CreateLoadBalancerCommand,
 CreateTargetGroupCommand,
 ElasticLoadBalancingV2Client,
 waitUntilLoadBalancerAvailable,
} from "@aws-sdk/client-elastic-load-balancing-v2";

import {
 ScenarioOutput,
 ScenarioInput,
 ScenarioAction,
} from "@aws-doc-sdk-examples/lib/scenario/index.js";
import { saveState } from "@aws-doc-sdk-examples/lib/scenario/steps-common.js";
import { retry } from "@aws-doc-sdk-examples/lib/utils/util-timers.js";

import { MESSAGES, NAMES, RESOURCES_PATH, ROOT } from "./constants.js";
import { initParamsSteps } from "./steps-reset-params.js";

/**
 * @type {import('@aws-doc-sdk-examples/lib/scenario.js').Step[]}
 */
export const deploySteps = [
 new ScenarioOutput("introduction", MESSAGES.introduction, { header: true }),
 new ScenarioInput("confirmDeployment", MESSAGES.confirmDeployment, {
 type: "confirm",
 }),
 new ScenarioAction(
 "handleConfirmDeployment",
 (c) => c.confirmDeployment === false && process.exit(),
),
 new ScenarioOutput(
 "creatingTable",
 MESSAGES.creatingTable.replace("${TABLE_NAME}", NAMES.tableName),
),
 new ScenarioAction("createTable", async () => {
 const client = new DynamoDBClient({});
 await client.send(

场景 670

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 new CreateTableCommand({
 TableName: NAMES.tableName,
 ProvisionedThroughput: {
 ReadCapacityUnits: 5,
 WriteCapacityUnits: 5,
 },
 AttributeDefinitions: [
 {
 AttributeName: "MediaType",
 AttributeType: "S",
 },
 {
 AttributeName: "ItemId",
 AttributeType: "N",
 },
],
 KeySchema: [
 {
 AttributeName: "MediaType",
 KeyType: "HASH",
 },
 {
 AttributeName: "ItemId",
 KeyType: "RANGE",
 },
],
 }),
);
 await waitUntilTableExists({ client }, { TableName: NAMES.tableName });
 }),
 new ScenarioOutput(
 "createdTable",
 MESSAGES.createdTable.replace("${TABLE_NAME}", NAMES.tableName),
),
 new ScenarioOutput(
 "populatingTable",
 MESSAGES.populatingTable.replace("${TABLE_NAME}", NAMES.tableName),
),
 new ScenarioAction("populateTable", () => {
 const client = new DynamoDBClient({});
 /**
 * @type {{ default: import("@aws-sdk/client-dynamodb").PutRequest['Item'][] }}
 */
 const recommendations = JSON.parse(

场景 671

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 readFileSync(join(RESOURCES_PATH, "recommendations.json")),
);

 return client.send(
 new BatchWriteItemCommand({
 RequestItems: {
 [NAMES.tableName]: recommendations.map((item) => ({
 PutRequest: { Item: item },
 })),
 },
 }),
);
 }),
 new ScenarioOutput(
 "populatedTable",
 MESSAGES.populatedTable.replace("${TABLE_NAME}", NAMES.tableName),
),
 new ScenarioOutput(
 "creatingKeyPair",
 MESSAGES.creatingKeyPair.replace("${KEY_PAIR_NAME}", NAMES.keyPairName),
),
 new ScenarioAction("createKeyPair", async () => {
 const client = new EC2Client({});
 const { KeyMaterial } = await client.send(
 new CreateKeyPairCommand({
 KeyName: NAMES.keyPairName,
 }),
);

 writeFileSync(`${NAMES.keyPairName}.pem`, KeyMaterial, { mode: 0o600 });
 }),
 new ScenarioOutput(
 "createdKeyPair",
 MESSAGES.createdKeyPair.replace("${KEY_PAIR_NAME}", NAMES.keyPairName),
),
 new ScenarioOutput(
 "creatingInstancePolicy",
 MESSAGES.creatingInstancePolicy.replace(
 "${INSTANCE_POLICY_NAME}",
 NAMES.instancePolicyName,
),
),
 new ScenarioAction("createInstancePolicy", async (state) => {
 const client = new IAMClient({});

场景 672

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const {
 Policy: { Arn },
 } = await client.send(
 new CreatePolicyCommand({
 PolicyName: NAMES.instancePolicyName,
 PolicyDocument: readFileSync(
 join(RESOURCES_PATH, "instance_policy.json"),
),
 }),
);
 state.instancePolicyArn = Arn;
 }),
 new ScenarioOutput("createdInstancePolicy", (state) =>
 MESSAGES.createdInstancePolicy
 .replace("${INSTANCE_POLICY_NAME}", NAMES.instancePolicyName)
 .replace("${INSTANCE_POLICY_ARN}", state.instancePolicyArn),
),
 new ScenarioOutput(
 "creatingInstanceRole",
 MESSAGES.creatingInstanceRole.replace(
 "${INSTANCE_ROLE_NAME}",
 NAMES.instanceRoleName,
),
),
 new ScenarioAction("createInstanceRole", () => {
 const client = new IAMClient({});
 return client.send(
 new CreateRoleCommand({
 RoleName: NAMES.instanceRoleName,
 AssumeRolePolicyDocument: readFileSync(
 join(ROOT, "assume-role-policy.json"),
),
 }),
);
 }),
 new ScenarioOutput(
 "createdInstanceRole",
 MESSAGES.createdInstanceRole.replace(
 "${INSTANCE_ROLE_NAME}",
 NAMES.instanceRoleName,
),
),
 new ScenarioOutput(
 "attachingPolicyToRole",

场景 673

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 MESSAGES.attachingPolicyToRole
 .replace("${INSTANCE_ROLE_NAME}", NAMES.instanceRoleName)
 .replace("${INSTANCE_POLICY_NAME}", NAMES.instancePolicyName),
),
 new ScenarioAction("attachPolicyToRole", async (state) => {
 const client = new IAMClient({});
 await client.send(
 new AttachRolePolicyCommand({
 RoleName: NAMES.instanceRoleName,
 PolicyArn: state.instancePolicyArn,
 }),
);
 }),
 new ScenarioOutput(
 "attachedPolicyToRole",
 MESSAGES.attachedPolicyToRole
 .replace("${INSTANCE_POLICY_NAME}", NAMES.instancePolicyName)
 .replace("${INSTANCE_ROLE_NAME}", NAMES.instanceRoleName),
),
 new ScenarioOutput(
 "creatingInstanceProfile",
 MESSAGES.creatingInstanceProfile.replace(
 "${INSTANCE_PROFILE_NAME}",
 NAMES.instanceProfileName,
),
),
 new ScenarioAction("createInstanceProfile", async (state) => {
 const client = new IAMClient({});
 const {
 InstanceProfile: { Arn },
 } = await client.send(
 new CreateInstanceProfileCommand({
 InstanceProfileName: NAMES.instanceProfileName,
 }),
);
 state.instanceProfileArn = Arn;

 await waitUntilInstanceProfileExists(
 { client },
 { InstanceProfileName: NAMES.instanceProfileName },
);
 }),
 new ScenarioOutput("createdInstanceProfile", (state) =>
 MESSAGES.createdInstanceProfile

场景 674

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 .replace("${INSTANCE_PROFILE_NAME}", NAMES.instanceProfileName)
 .replace("${INSTANCE_PROFILE_ARN}", state.instanceProfileArn),
),
 new ScenarioOutput(
 "addingRoleToInstanceProfile",
 MESSAGES.addingRoleToInstanceProfile
 .replace("${INSTANCE_PROFILE_NAME}", NAMES.instanceProfileName)
 .replace("${INSTANCE_ROLE_NAME}", NAMES.instanceRoleName),
),
 new ScenarioAction("addRoleToInstanceProfile", () => {
 const client = new IAMClient({});
 return client.send(
 new AddRoleToInstanceProfileCommand({
 RoleName: NAMES.instanceRoleName,
 InstanceProfileName: NAMES.instanceProfileName,
 }),
);
 }),
 new ScenarioOutput(
 "addedRoleToInstanceProfile",
 MESSAGES.addedRoleToInstanceProfile
 .replace("${INSTANCE_PROFILE_NAME}", NAMES.instanceProfileName)
 .replace("${INSTANCE_ROLE_NAME}", NAMES.instanceRoleName),
),
 ...initParamsSteps,
 new ScenarioOutput("creatingLaunchTemplate", MESSAGES.creatingLaunchTemplate),
 new ScenarioAction("createLaunchTemplate", async () => {
 const ssmClient = new SSMClient({});
 const { Parameter } = await ssmClient.send(
 new GetParameterCommand({
 Name: "/aws/service/ami-amazon-linux-latest/amzn2-ami-hvm-x86_64-gp2",
 }),
);
 const ec2Client = new EC2Client({});
 await ec2Client.send(
 new CreateLaunchTemplateCommand({
 LaunchTemplateName: NAMES.launchTemplateName,
 LaunchTemplateData: {
 InstanceType: "t3.micro",
 ImageId: Parameter.Value,
 IamInstanceProfile: { Name: NAMES.instanceProfileName },
 UserData: readFileSync(
 join(RESOURCES_PATH, "server_startup_script.sh"),
).toString("base64"),

场景 675

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 KeyName: NAMES.keyPairName,
 },
 }),
);
 }),
 new ScenarioOutput(
 "createdLaunchTemplate",
 MESSAGES.createdLaunchTemplate.replace(
 "${LAUNCH_TEMPLATE_NAME}",
 NAMES.launchTemplateName,
),
),
 new ScenarioOutput(
 "creatingAutoScalingGroup",
 MESSAGES.creatingAutoScalingGroup.replace(
 "${AUTO_SCALING_GROUP_NAME}",
 NAMES.autoScalingGroupName,
),
),
 new ScenarioAction("createAutoScalingGroup", async (state) => {
 const ec2Client = new EC2Client({});
 const { AvailabilityZones } = await ec2Client.send(
 new DescribeAvailabilityZonesCommand({}),
);
 state.availabilityZoneNames = AvailabilityZones.map((az) => az.ZoneName);
 const autoScalingClient = new AutoScalingClient({});
 await retry({ intervalInMs: 1000, maxRetries: 30 }, () =>
 autoScalingClient.send(
 new CreateAutoScalingGroupCommand({
 AvailabilityZones: state.availabilityZoneNames,
 AutoScalingGroupName: NAMES.autoScalingGroupName,
 LaunchTemplate: {
 LaunchTemplateName: NAMES.launchTemplateName,
 Version: "$Default",
 },
 MinSize: 3,
 MaxSize: 3,
 }),
),
);
 }),
 new ScenarioOutput(
 "createdAutoScalingGroup",
 /**

场景 676

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * @param {{ availabilityZoneNames: string[] }} state
 */
 (state) =>
 MESSAGES.createdAutoScalingGroup
 .replace("${AUTO_SCALING_GROUP_NAME}", NAMES.autoScalingGroupName)
 .replace(
 "${AVAILABILITY_ZONE_NAMES}",
 state.availabilityZoneNames.join(", "),
),
),
 new ScenarioInput("confirmContinue", MESSAGES.confirmContinue, {
 type: "confirm",
 }),
 new ScenarioOutput("loadBalancer", MESSAGES.loadBalancer),
 new ScenarioOutput("gettingVpc", MESSAGES.gettingVpc),
 new ScenarioAction("getVpc", async (state) => {
 const client = new EC2Client({});
 const { Vpcs } = await client.send(
 new DescribeVpcsCommand({
 Filters: [{ Name: "is-default", Values: ["true"] }],
 }),
);
 state.defaultVpc = Vpcs[0].VpcId;
 }),
 new ScenarioOutput("gotVpc", (state) =>
 MESSAGES.gotVpc.replace("${VPC_ID}", state.defaultVpc),
),
 new ScenarioOutput("gettingSubnets", MESSAGES.gettingSubnets),
 new ScenarioAction("getSubnets", async (state) => {
 const client = new EC2Client({});
 const { Subnets } = await client.send(
 new DescribeSubnetsCommand({
 Filters: [
 { Name: "vpc-id", Values: [state.defaultVpc] },
 { Name: "availability-zone", Values: state.availabilityZoneNames },
 { Name: "default-for-az", Values: ["true"] },
],
 }),
);
 state.subnets = Subnets.map((subnet) => subnet.SubnetId);
 }),
 new ScenarioOutput(
 "gotSubnets",
 /**

场景 677

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * @param {{ subnets: string[] }} state
 */
 (state) =>
 MESSAGES.gotSubnets.replace("${SUBNETS}", state.subnets.join(", ")),
),
 new ScenarioOutput(
 "creatingLoadBalancerTargetGroup",
 MESSAGES.creatingLoadBalancerTargetGroup.replace(
 "${TARGET_GROUP_NAME}",
 NAMES.loadBalancerTargetGroupName,
),
),
 new ScenarioAction("createLoadBalancerTargetGroup", async (state) => {
 const client = new ElasticLoadBalancingV2Client({});
 const { TargetGroups } = await client.send(
 new CreateTargetGroupCommand({
 Name: NAMES.loadBalancerTargetGroupName,
 Protocol: "HTTP",
 Port: 80,
 HealthCheckPath: "/healthcheck",
 HealthCheckIntervalSeconds: 10,
 HealthCheckTimeoutSeconds: 5,
 HealthyThresholdCount: 2,
 UnhealthyThresholdCount: 2,
 VpcId: state.defaultVpc,
 }),
);
 const targetGroup = TargetGroups[0];
 state.targetGroupArn = targetGroup.TargetGroupArn;
 state.targetGroupProtocol = targetGroup.Protocol;
 state.targetGroupPort = targetGroup.Port;
 }),
 new ScenarioOutput(
 "createdLoadBalancerTargetGroup",
 MESSAGES.createdLoadBalancerTargetGroup.replace(
 "${TARGET_GROUP_NAME}",
 NAMES.loadBalancerTargetGroupName,
),
),
 new ScenarioOutput(
 "creatingLoadBalancer",
 MESSAGES.creatingLoadBalancer.replace("${LB_NAME}", NAMES.loadBalancerName),
),
 new ScenarioAction("createLoadBalancer", async (state) => {

场景 678

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const client = new ElasticLoadBalancingV2Client({});
 const { LoadBalancers } = await client.send(
 new CreateLoadBalancerCommand({
 Name: NAMES.loadBalancerName,
 Subnets: state.subnets,
 }),
);
 state.loadBalancerDns = LoadBalancers[0].DNSName;
 state.loadBalancerArn = LoadBalancers[0].LoadBalancerArn;
 await waitUntilLoadBalancerAvailable(
 { client },
 { Names: [NAMES.loadBalancerName] },
);
 }),
 new ScenarioOutput("createdLoadBalancer", (state) =>
 MESSAGES.createdLoadBalancer
 .replace("${LB_NAME}", NAMES.loadBalancerName)
 .replace("${DNS_NAME}", state.loadBalancerDns),
),
 new ScenarioOutput(
 "creatingListener",
 MESSAGES.creatingLoadBalancerListener
 .replace("${LB_NAME}", NAMES.loadBalancerName)
 .replace("${TARGET_GROUP_NAME}", NAMES.loadBalancerTargetGroupName),
),
 new ScenarioAction("createListener", async (state) => {
 const client = new ElasticLoadBalancingV2Client({});
 const { Listeners } = await client.send(
 new CreateListenerCommand({
 LoadBalancerArn: state.loadBalancerArn,
 Protocol: state.targetGroupProtocol,
 Port: state.targetGroupPort,
 DefaultActions: [
 { Type: "forward", TargetGroupArn: state.targetGroupArn },
],
 }),
);
 const listener = Listeners[0];
 state.loadBalancerListenerArn = listener.ListenerArn;
 }),
 new ScenarioOutput("createdListener", (state) =>
 MESSAGES.createdLoadBalancerListener.replace(
 "${LB_LISTENER_ARN}",
 state.loadBalancerListenerArn,

场景 679

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

),
),
 new ScenarioOutput(
 "attachingLoadBalancerTargetGroup",
 MESSAGES.attachingLoadBalancerTargetGroup
 .replace("${TARGET_GROUP_NAME}", NAMES.loadBalancerTargetGroupName)
 .replace("${AUTO_SCALING_GROUP_NAME}", NAMES.autoScalingGroupName),
),
 new ScenarioAction("attachLoadBalancerTargetGroup", async (state) => {
 const client = new AutoScalingClient({});
 await client.send(
 new AttachLoadBalancerTargetGroupsCommand({
 AutoScalingGroupName: NAMES.autoScalingGroupName,
 TargetGroupARNs: [state.targetGroupArn],
 }),
);
 }),
 new ScenarioOutput(
 "attachedLoadBalancerTargetGroup",
 MESSAGES.attachedLoadBalancerTargetGroup,
),
 new ScenarioOutput("verifyingInboundPort", MESSAGES.verifyingInboundPort),
 new ScenarioAction(
 "verifyInboundPort",
 /**
 *
 * @param {{ defaultSecurityGroup: import('@aws-sdk/client-ec2').SecurityGroup}}
 state
 */
 async (state) => {
 const client = new EC2Client({});
 const { SecurityGroups } = await client.send(
 new DescribeSecurityGroupsCommand({
 Filters: [{ Name: "group-name", Values: ["default"] }],
 }),
);
 if (!SecurityGroups) {
 state.verifyInboundPortError = new Error(MESSAGES.noSecurityGroups);
 }
 state.defaultSecurityGroup = SecurityGroups[0];

 /**
 * @type {string}
 */

场景 680

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const ipResponse = (await axios.get("http://checkip.amazonaws.com")).data;
 state.myIp = ipResponse.trim();
 const myIpRules = state.defaultSecurityGroup.IpPermissions.filter(
 ({ IpRanges }) =>
 IpRanges.some(
 ({ CidrIp }) =>
 CidrIp.startsWith(state.myIp) || CidrIp === "0.0.0.0/0",
),
)
 .filter(({ IpProtocol }) => IpProtocol === "tcp")
 .filter(({ FromPort }) => FromPort === 80);

 state.myIpRules = myIpRules;
 },
),
 new ScenarioOutput(
 "verifiedInboundPort",
 /**
 * @param {{ myIpRules: any[] }} state
 */
 (state) => {
 if (state.myIpRules.length > 0) {
 return MESSAGES.foundIpRules.replace(
 "${IP_RULES}",
 JSON.stringify(state.myIpRules, null, 2),
);
 }
 return MESSAGES.noIpRules;
 },
),
 new ScenarioInput(
 "shouldAddInboundRule",
 /**
 * @param {{ myIpRules: any[] }} state
 */
 (state) => {
 if (state.myIpRules.length > 0) {
 return false;
 }
 return MESSAGES.noIpRules;
 },
 { type: "confirm" },
),
 new ScenarioAction(

场景 681

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 "addInboundRule",
 /**
 * @param {{ defaultSecurityGroup: import('@aws-sdk/client-
ec2').SecurityGroup }} state
 */
 async (state) => {
 if (!state.shouldAddInboundRule) {
 return;
 }

 const client = new EC2Client({});
 await client.send(
 new AuthorizeSecurityGroupIngressCommand({
 GroupId: state.defaultSecurityGroup.GroupId,
 CidrIp: `${state.myIp}/32`,
 FromPort: 80,
 ToPort: 80,
 IpProtocol: "tcp",
 }),
);
 },
),
 new ScenarioOutput("addedInboundRule", (state) => {
 if (state.shouldAddInboundRule) {
 return MESSAGES.addedInboundRule.replace("${IP_ADDRESS}", state.myIp);
 }
 return false;
 }),
 new ScenarioOutput("verifyingEndpoint", (state) =>
 MESSAGES.verifyingEndpoint.replace("${DNS_NAME}", state.loadBalancerDns),
),
 new ScenarioAction("verifyEndpoint", async (state) => {
 try {
 const response = await retry({ intervalInMs: 2000, maxRetries: 30 }, () =>
 axios.get(`http://${state.loadBalancerDns}`),
);
 state.endpointResponse = JSON.stringify(response.data, null, 2);
 } catch (e) {
 state.verifyEndpointError = e;
 }
 }),
 new ScenarioOutput("verifiedEndpoint", (state) => {
 if (state.verifyEndpointError) {
 console.error(state.verifyEndpointError);

场景 682

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 } else {
 return MESSAGES.verifiedEndpoint.replace(
 "${ENDPOINT_RESPONSE}",
 state.endpointResponse,
);
 }
 }),
 saveState,
];

创建运行演示的步骤。

import { readFileSync } from "node:fs";
import { join } from "node:path";

import axios from "axios";

import {
 DescribeTargetGroupsCommand,
 DescribeTargetHealthCommand,
 ElasticLoadBalancingV2Client,
} from "@aws-sdk/client-elastic-load-balancing-v2";
import {
 DescribeInstanceInformationCommand,
 PutParameterCommand,
 SSMClient,
 SendCommandCommand,
} from "@aws-sdk/client-ssm";
import {
 IAMClient,
 CreatePolicyCommand,
 CreateRoleCommand,
 AttachRolePolicyCommand,
 CreateInstanceProfileCommand,
 AddRoleToInstanceProfileCommand,
 waitUntilInstanceProfileExists,
} from "@aws-sdk/client-iam";
import {
 AutoScalingClient,
 DescribeAutoScalingGroupsCommand,
 TerminateInstanceInAutoScalingGroupCommand,
} from "@aws-sdk/client-auto-scaling";

场景 683

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

import {
 DescribeIamInstanceProfileAssociationsCommand,
 EC2Client,
 RebootInstancesCommand,
 ReplaceIamInstanceProfileAssociationCommand,
} from "@aws-sdk/client-ec2";

import {
 ScenarioAction,
 ScenarioInput,
 ScenarioOutput,
} from "@aws-doc-sdk-examples/lib/scenario/scenario.js";
import { retry } from "@aws-doc-sdk-examples/lib/utils/util-timers.js";

import { MESSAGES, NAMES, RESOURCES_PATH } from "./constants.js";
import { findLoadBalancer } from "./shared.js";

const getRecommendation = new ScenarioAction(
 "getRecommendation",
 async (state) => {
 const loadBalancer = await findLoadBalancer(NAMES.loadBalancerName);
 if (loadBalancer) {
 state.loadBalancerDnsName = loadBalancer.DNSName;
 try {
 state.recommendation = (
 await axios.get(`http://${state.loadBalancerDnsName}`)
).data;
 } catch (e) {
 state.recommendation = e instanceof Error ? e.message : e;
 }
 } else {
 throw new Error(MESSAGES.demoFindLoadBalancerError);
 }
 },
);

const getRecommendationResult = new ScenarioOutput(
 "getRecommendationResult",
 (state) =>
 `Recommendation:\n${JSON.stringify(state.recommendation, null, 2)}`,
 { preformatted: true },
);

const getHealthCheck = new ScenarioAction("getHealthCheck", async (state) => {

场景 684

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const client = new ElasticLoadBalancingV2Client({});
 const { TargetGroups } = await client.send(
 new DescribeTargetGroupsCommand({
 Names: [NAMES.loadBalancerTargetGroupName],
 }),
);

 const { TargetHealthDescriptions } = await client.send(
 new DescribeTargetHealthCommand({
 TargetGroupArn: TargetGroups[0].TargetGroupArn,
 }),
);
 state.targetHealthDescriptions = TargetHealthDescriptions;
});

const getHealthCheckResult = new ScenarioOutput(
 "getHealthCheckResult",
 /**
 * @param {{ targetHealthDescriptions: import('@aws-sdk/client-elastic-load-
balancing-v2').TargetHealthDescription[]}} state
 */
 (state) => {
 const status = state.targetHealthDescriptions
 .map((th) => `${th.Target.Id}: ${th.TargetHealth.State}`)
 .join("\n");
 return `Health check:\n${status}`;
 },
 { preformatted: true },
);

const loadBalancerLoop = new ScenarioAction(
 "loadBalancerLoop",
 getRecommendation.action,
 {
 whileConfig: {
 whileFn: ({ loadBalancerCheck }) => loadBalancerCheck,
 input: new ScenarioInput(
 "loadBalancerCheck",
 MESSAGES.demoLoadBalancerCheck,
 {
 type: "confirm",
 },
),
 output: getRecommendationResult,

场景 685

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 },
 },
);

const healthCheckLoop = new ScenarioAction(
 "healthCheckLoop",
 getHealthCheck.action,
 {
 whileConfig: {
 whileFn: ({ healthCheck }) => healthCheck,
 input: new ScenarioInput("healthCheck", MESSAGES.demoHealthCheck, {
 type: "confirm",
 }),
 output: getHealthCheckResult,
 },
 },
);

const statusSteps = [
 getRecommendation,
 getRecommendationResult,
 getHealthCheck,
 getHealthCheckResult,
];

/**
 * @type {import('@aws-doc-sdk-examples/lib/scenario.js').Step[]}
 */
export const demoSteps = [
 new ScenarioOutput("header", MESSAGES.demoHeader, { header: true }),
 new ScenarioOutput("sanityCheck", MESSAGES.demoSanityCheck),
 ...statusSteps,
 new ScenarioInput(
 "brokenDependencyConfirmation",
 MESSAGES.demoBrokenDependencyConfirmation,
 { type: "confirm" },
),
 new ScenarioAction("brokenDependency", async (state) => {
 if (!state.brokenDependencyConfirmation) {
 process.exit();
 } else {
 const client = new SSMClient({});
 state.badTableName = `fake-table-${Date.now()}`;
 await client.send(

场景 686

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 new PutParameterCommand({
 Name: NAMES.ssmTableNameKey,
 Value: state.badTableName,
 Overwrite: true,
 Type: "String",
 }),
);
 }
 }),
 new ScenarioOutput("testBrokenDependency", (state) =>
 MESSAGES.demoTestBrokenDependency.replace(
 "${TABLE_NAME}",
 state.badTableName,
),
),
 ...statusSteps,
 new ScenarioInput(
 "staticResponseConfirmation",
 MESSAGES.demoStaticResponseConfirmation,
 { type: "confirm" },
),
 new ScenarioAction("staticResponse", async (state) => {
 if (!state.staticResponseConfirmation) {
 process.exit();
 } else {
 const client = new SSMClient({});
 await client.send(
 new PutParameterCommand({
 Name: NAMES.ssmFailureResponseKey,
 Value: "static",
 Overwrite: true,
 Type: "String",
 }),
);
 }
 }),
 new ScenarioOutput("testStaticResponse", MESSAGES.demoTestStaticResponse),
 ...statusSteps,
 new ScenarioInput(
 "badCredentialsConfirmation",
 MESSAGES.demoBadCredentialsConfirmation,
 { type: "confirm" },
),
 new ScenarioAction("badCredentialsExit", (state) => {

场景 687

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 if (!state.badCredentialsConfirmation) {
 process.exit();
 }
 }),
 new ScenarioAction("fixDynamoDBName", async () => {
 const client = new SSMClient({});
 await client.send(
 new PutParameterCommand({
 Name: NAMES.ssmTableNameKey,
 Value: NAMES.tableName,
 Overwrite: true,
 Type: "String",
 }),
);
 }),
 new ScenarioAction(
 "badCredentials",
 /**
 * @param {{ targetInstance: import('@aws-sdk/client-auto-scaling').Instance }}
 state
 */
 async (state) => {
 await createSsmOnlyInstanceProfile();
 const autoScalingClient = new AutoScalingClient({});
 const { AutoScalingGroups } = await autoScalingClient.send(
 new DescribeAutoScalingGroupsCommand({
 AutoScalingGroupNames: [NAMES.autoScalingGroupName],
 }),
);
 state.targetInstance = AutoScalingGroups[0].Instances[0];
 const ec2Client = new EC2Client({});
 const { IamInstanceProfileAssociations } = await ec2Client.send(
 new DescribeIamInstanceProfileAssociationsCommand({
 Filters: [
 { Name: "instance-id", Values: [state.targetInstance.InstanceId] },
],
 }),
);
 state.instanceProfileAssociationId =
 IamInstanceProfileAssociations[0].AssociationId;
 await retry({ intervalInMs: 1000, maxRetries: 30 }, () =>
 ec2Client.send(
 new ReplaceIamInstanceProfileAssociationCommand({
 AssociationId: state.instanceProfileAssociationId,

场景 688

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 IamInstanceProfile: { Name: NAMES.ssmOnlyInstanceProfileName },
 }),
),
);

 await ec2Client.send(
 new RebootInstancesCommand({
 InstanceIds: [state.targetInstance.InstanceId],
 }),
);

 const ssmClient = new SSMClient({});
 await retry({ intervalInMs: 20000, maxRetries: 15 }, async () => {
 const { InstanceInformationList } = await ssmClient.send(
 new DescribeInstanceInformationCommand({}),
);

 const instance = InstanceInformationList.find(
 (info) => info.InstanceId === state.targetInstance.InstanceId,
);

 if (!instance) {
 throw new Error("Instance not found.");
 }
 });

 await ssmClient.send(
 new SendCommandCommand({
 InstanceIds: [state.targetInstance.InstanceId],
 DocumentName: "AWS-RunShellScript",
 Parameters: { commands: ["cd / && sudo python3 server.py 80"] },
 }),
);
 },
),
 new ScenarioOutput(
 "testBadCredentials",
 /**
 * @param {{ targetInstance: import('@aws-sdk/client-ssm').InstanceInformation}}
 state
 */
 (state) =>
 MESSAGES.demoTestBadCredentials.replace(
 "${INSTANCE_ID}",

场景 689

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 state.targetInstance.InstanceId,
),
),
 loadBalancerLoop,
 new ScenarioInput(
 "deepHealthCheckConfirmation",
 MESSAGES.demoDeepHealthCheckConfirmation,
 { type: "confirm" },
),
 new ScenarioAction("deepHealthCheckExit", (state) => {
 if (!state.deepHealthCheckConfirmation) {
 process.exit();
 }
 }),
 new ScenarioAction("deepHealthCheck", async () => {
 const client = new SSMClient({});
 await client.send(
 new PutParameterCommand({
 Name: NAMES.ssmHealthCheckKey,
 Value: "deep",
 Overwrite: true,
 Type: "String",
 }),
);
 }),
 new ScenarioOutput("testDeepHealthCheck", MESSAGES.demoTestDeepHealthCheck),
 healthCheckLoop,
 loadBalancerLoop,
 new ScenarioInput(
 "killInstanceConfirmation",
 /**
 * @param {{ targetInstance: import('@aws-sdk/client-
ssm').InstanceInformation }} state
 */
 (state) =>
 MESSAGES.demoKillInstanceConfirmation.replace(
 "${INSTANCE_ID}",
 state.targetInstance.InstanceId,
),
 { type: "confirm" },
),
 new ScenarioAction("killInstanceExit", (state) => {
 if (!state.killInstanceConfirmation) {
 process.exit();

场景 690

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }
 }),
 new ScenarioAction(
 "killInstance",
 /**
 * @param {{ targetInstance: import('@aws-sdk/client-
ssm').InstanceInformation }} state
 */
 async (state) => {
 const client = new AutoScalingClient({});
 await client.send(
 new TerminateInstanceInAutoScalingGroupCommand({
 InstanceId: state.targetInstance.InstanceId,
 ShouldDecrementDesiredCapacity: false,
 }),
);
 },
),
 new ScenarioOutput("testKillInstance", MESSAGES.demoTestKillInstance),
 healthCheckLoop,
 loadBalancerLoop,
 new ScenarioInput("failOpenConfirmation", MESSAGES.demoFailOpenConfirmation, {
 type: "confirm",
 }),
 new ScenarioAction("failOpenExit", (state) => {
 if (!state.failOpenConfirmation) {
 process.exit();
 }
 }),
 new ScenarioAction("failOpen", () => {
 const client = new SSMClient({});
 return client.send(
 new PutParameterCommand({
 Name: NAMES.ssmTableNameKey,
 Value: `fake-table-${Date.now()}`,
 Overwrite: true,
 Type: "String",
 }),
);
 }),
 new ScenarioOutput("testFailOpen", MESSAGES.demoFailOpenTest),
 healthCheckLoop,
 loadBalancerLoop,
 new ScenarioInput(

场景 691

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 "resetTableConfirmation",
 MESSAGES.demoResetTableConfirmation,
 { type: "confirm" },
),
 new ScenarioAction("resetTableExit", (state) => {
 if (!state.resetTableConfirmation) {
 process.exit();
 }
 }),
 new ScenarioAction("resetTable", async () => {
 const client = new SSMClient({});
 await client.send(
 new PutParameterCommand({
 Name: NAMES.ssmTableNameKey,
 Value: NAMES.tableName,
 Overwrite: true,
 Type: "String",
 }),
);
 }),
 new ScenarioOutput("testResetTable", MESSAGES.demoTestResetTable),
 healthCheckLoop,
 loadBalancerLoop,
];

async function createSsmOnlyInstanceProfile() {
 const iamClient = new IAMClient({});
 const { Policy } = await iamClient.send(
 new CreatePolicyCommand({
 PolicyName: NAMES.ssmOnlyPolicyName,
 PolicyDocument: readFileSync(
 join(RESOURCES_PATH, "ssm_only_policy.json"),
),
 }),
);
 await iamClient.send(
 new CreateRoleCommand({
 RoleName: NAMES.ssmOnlyRoleName,
 AssumeRolePolicyDocument: JSON.stringify({
 Version: "2012-10-17",
 Statement: [
 {
 Effect: "Allow",
 Principal: { Service: "ec2.amazonaws.com" },

场景 692

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 Action: "sts:AssumeRole",
 },
],
 }),
 }),
);
 await iamClient.send(
 new AttachRolePolicyCommand({
 RoleName: NAMES.ssmOnlyRoleName,
 PolicyArn: Policy.Arn,
 }),
);
 await iamClient.send(
 new AttachRolePolicyCommand({
 RoleName: NAMES.ssmOnlyRoleName,
 PolicyArn: "arn:aws:iam::aws:policy/AmazonSSMManagedInstanceCore",
 }),
);
 const { InstanceProfile } = await iamClient.send(
 new CreateInstanceProfileCommand({
 InstanceProfileName: NAMES.ssmOnlyInstanceProfileName,
 }),
);
 await waitUntilInstanceProfileExists(
 { client: iamClient },
 { InstanceProfileName: NAMES.ssmOnlyInstanceProfileName },
);
 await iamClient.send(
 new AddRoleToInstanceProfileCommand({
 InstanceProfileName: NAMES.ssmOnlyInstanceProfileName,
 RoleName: NAMES.ssmOnlyRoleName,
 }),
);

 return InstanceProfile;
}

创建销毁所有资源的步骤。

import { unlinkSync } from "node:fs";

import { DynamoDBClient, DeleteTableCommand } from "@aws-sdk/client-dynamodb";

场景 693

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

import {
 EC2Client,
 DeleteKeyPairCommand,
 DeleteLaunchTemplateCommand,
 RevokeSecurityGroupIngressCommand,
} from "@aws-sdk/client-ec2";
import {
 IAMClient,
 DeleteInstanceProfileCommand,
 RemoveRoleFromInstanceProfileCommand,
 DeletePolicyCommand,
 DeleteRoleCommand,
 DetachRolePolicyCommand,
 paginateListPolicies,
} from "@aws-sdk/client-iam";
import {
 AutoScalingClient,
 DeleteAutoScalingGroupCommand,
 TerminateInstanceInAutoScalingGroupCommand,
 UpdateAutoScalingGroupCommand,
 paginateDescribeAutoScalingGroups,
} from "@aws-sdk/client-auto-scaling";
import {
 DeleteLoadBalancerCommand,
 DeleteTargetGroupCommand,
 DescribeTargetGroupsCommand,
 ElasticLoadBalancingV2Client,
} from "@aws-sdk/client-elastic-load-balancing-v2";

import {
 ScenarioOutput,
 ScenarioInput,
 ScenarioAction,
} from "@aws-doc-sdk-examples/lib/scenario/index.js";
import { loadState } from "@aws-doc-sdk-examples/lib/scenario/steps-common.js";
import { retry } from "@aws-doc-sdk-examples/lib/utils/util-timers.js";

import { MESSAGES, NAMES } from "./constants.js";
import { findLoadBalancer } from "./shared.js";

/**
 * @type {import('@aws-doc-sdk-examples/lib/scenario.js').Step[]}
 */
export const destroySteps = [

场景 694

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 loadState,
 new ScenarioInput("destroy", MESSAGES.destroy, { type: "confirm" }),
 new ScenarioAction(
 "abort",
 (state) => state.destroy === false && process.exit(),
),
 new ScenarioAction("deleteTable", async (c) => {
 try {
 const client = new DynamoDBClient({});
 await client.send(new DeleteTableCommand({ TableName: NAMES.tableName }));
 } catch (e) {
 c.deleteTableError = e;
 }
 }),
 new ScenarioOutput("deleteTableResult", (state) => {
 if (state.deleteTableError) {
 console.error(state.deleteTableError);
 return MESSAGES.deleteTableError.replace(
 "${TABLE_NAME}",
 NAMES.tableName,
);
 }
 return MESSAGES.deletedTable.replace("${TABLE_NAME}", NAMES.tableName);
 }),
 new ScenarioAction("deleteKeyPair", async (state) => {
 try {
 const client = new EC2Client({});
 await client.send(
 new DeleteKeyPairCommand({ KeyName: NAMES.keyPairName }),
);
 unlinkSync(`${NAMES.keyPairName}.pem`);
 } catch (e) {
 state.deleteKeyPairError = e;
 }
 }),
 new ScenarioOutput("deleteKeyPairResult", (state) => {
 if (state.deleteKeyPairError) {
 console.error(state.deleteKeyPairError);
 return MESSAGES.deleteKeyPairError.replace(
 "${KEY_PAIR_NAME}",
 NAMES.keyPairName,
);
 }
 return MESSAGES.deletedKeyPair.replace(

场景 695

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 "${KEY_PAIR_NAME}",
 NAMES.keyPairName,
);
 }),
 new ScenarioAction("detachPolicyFromRole", async (state) => {
 try {
 const client = new IAMClient({});
 const policy = await findPolicy(NAMES.instancePolicyName);

 if (!policy) {
 state.detachPolicyFromRoleError = new Error(
 `Policy ${NAMES.instancePolicyName} not found.`,
);
 } else {
 await client.send(
 new DetachRolePolicyCommand({
 RoleName: NAMES.instanceRoleName,
 PolicyArn: policy.Arn,
 }),
);
 }
 } catch (e) {
 state.detachPolicyFromRoleError = e;
 }
 }),
 new ScenarioOutput("detachedPolicyFromRole", (state) => {
 if (state.detachPolicyFromRoleError) {
 console.error(state.detachPolicyFromRoleError);
 return MESSAGES.detachPolicyFromRoleError
 .replace("${INSTANCE_POLICY_NAME}", NAMES.instancePolicyName)
 .replace("${INSTANCE_ROLE_NAME}", NAMES.instanceRoleName);
 }
 return MESSAGES.detachedPolicyFromRole
 .replace("${INSTANCE_POLICY_NAME}", NAMES.instancePolicyName)
 .replace("${INSTANCE_ROLE_NAME}", NAMES.instanceRoleName);
 }),
 new ScenarioAction("deleteInstancePolicy", async (state) => {
 const client = new IAMClient({});
 const policy = await findPolicy(NAMES.instancePolicyName);

 if (!policy) {
 state.deletePolicyError = new Error(
 `Policy ${NAMES.instancePolicyName} not found.`,
);

场景 696

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 } else {
 return client.send(
 new DeletePolicyCommand({
 PolicyArn: policy.Arn,
 }),
);
 }
 }),
 new ScenarioOutput("deletePolicyResult", (state) => {
 if (state.deletePolicyError) {
 console.error(state.deletePolicyError);
 return MESSAGES.deletePolicyError.replace(
 "${INSTANCE_POLICY_NAME}",
 NAMES.instancePolicyName,
);
 }
 return MESSAGES.deletedPolicy.replace(
 "${INSTANCE_POLICY_NAME}",
 NAMES.instancePolicyName,
);
 }),
 new ScenarioAction("removeRoleFromInstanceProfile", async (state) => {
 try {
 const client = new IAMClient({});
 await client.send(
 new RemoveRoleFromInstanceProfileCommand({
 RoleName: NAMES.instanceRoleName,
 InstanceProfileName: NAMES.instanceProfileName,
 }),
);
 } catch (e) {
 state.removeRoleFromInstanceProfileError = e;
 }
 }),
 new ScenarioOutput("removeRoleFromInstanceProfileResult", (state) => {
 if (state.removeRoleFromInstanceProfile) {
 console.error(state.removeRoleFromInstanceProfileError);
 return MESSAGES.removeRoleFromInstanceProfileError
 .replace("${INSTANCE_PROFILE_NAME}", NAMES.instanceProfileName)
 .replace("${INSTANCE_ROLE_NAME}", NAMES.instanceRoleName);
 }
 return MESSAGES.removedRoleFromInstanceProfile
 .replace("${INSTANCE_PROFILE_NAME}", NAMES.instanceProfileName)
 .replace("${INSTANCE_ROLE_NAME}", NAMES.instanceRoleName);

场景 697

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }),
 new ScenarioAction("deleteInstanceRole", async (state) => {
 try {
 const client = new IAMClient({});
 await client.send(
 new DeleteRoleCommand({
 RoleName: NAMES.instanceRoleName,
 }),
);
 } catch (e) {
 state.deleteInstanceRoleError = e;
 }
 }),
 new ScenarioOutput("deleteInstanceRoleResult", (state) => {
 if (state.deleteInstanceRoleError) {
 console.error(state.deleteInstanceRoleError);
 return MESSAGES.deleteInstanceRoleError.replace(
 "${INSTANCE_ROLE_NAME}",
 NAMES.instanceRoleName,
);
 }
 return MESSAGES.deletedInstanceRole.replace(
 "${INSTANCE_ROLE_NAME}",
 NAMES.instanceRoleName,
);
 }),
 new ScenarioAction("deleteInstanceProfile", async (state) => {
 try {
 const client = new IAMClient({});
 await client.send(
 new DeleteInstanceProfileCommand({
 InstanceProfileName: NAMES.instanceProfileName,
 }),
);
 } catch (e) {
 state.deleteInstanceProfileError = e;
 }
 }),
 new ScenarioOutput("deleteInstanceProfileResult", (state) => {
 if (state.deleteInstanceProfileError) {
 console.error(state.deleteInstanceProfileError);
 return MESSAGES.deleteInstanceProfileError.replace(
 "${INSTANCE_PROFILE_NAME}",
 NAMES.instanceProfileName,

场景 698

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

);
 }
 return MESSAGES.deletedInstanceProfile.replace(
 "${INSTANCE_PROFILE_NAME}",
 NAMES.instanceProfileName,
);
 }),
 new ScenarioAction("deleteAutoScalingGroup", async (state) => {
 try {
 await terminateGroupInstances(NAMES.autoScalingGroupName);
 await retry({ intervalInMs: 60000, maxRetries: 60 }, async () => {
 await deleteAutoScalingGroup(NAMES.autoScalingGroupName);
 });
 } catch (e) {
 state.deleteAutoScalingGroupError = e;
 }
 }),
 new ScenarioOutput("deleteAutoScalingGroupResult", (state) => {
 if (state.deleteAutoScalingGroupError) {
 console.error(state.deleteAutoScalingGroupError);
 return MESSAGES.deleteAutoScalingGroupError.replace(
 "${AUTO_SCALING_GROUP_NAME}",
 NAMES.autoScalingGroupName,
);
 }
 return MESSAGES.deletedAutoScalingGroup.replace(
 "${AUTO_SCALING_GROUP_NAME}",
 NAMES.autoScalingGroupName,
);
 }),
 new ScenarioAction("deleteLaunchTemplate", async (state) => {
 const client = new EC2Client({});
 try {
 await client.send(
 new DeleteLaunchTemplateCommand({
 LaunchTemplateName: NAMES.launchTemplateName,
 }),
);
 } catch (e) {
 state.deleteLaunchTemplateError = e;
 }
 }),
 new ScenarioOutput("deleteLaunchTemplateResult", (state) => {
 if (state.deleteLaunchTemplateError) {

场景 699

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 console.error(state.deleteLaunchTemplateError);
 return MESSAGES.deleteLaunchTemplateError.replace(
 "${LAUNCH_TEMPLATE_NAME}",
 NAMES.launchTemplateName,
);
 }
 return MESSAGES.deletedLaunchTemplate.replace(
 "${LAUNCH_TEMPLATE_NAME}",
 NAMES.launchTemplateName,
);
 }),
 new ScenarioAction("deleteLoadBalancer", async (state) => {
 try {
 const client = new ElasticLoadBalancingV2Client({});
 const loadBalancer = await findLoadBalancer(NAMES.loadBalancerName);
 await client.send(
 new DeleteLoadBalancerCommand({
 LoadBalancerArn: loadBalancer.LoadBalancerArn,
 }),
);
 await retry({ intervalInMs: 1000, maxRetries: 60 }, async () => {
 const lb = await findLoadBalancer(NAMES.loadBalancerName);
 if (lb) {
 throw new Error("Load balancer still exists.");
 }
 });
 } catch (e) {
 state.deleteLoadBalancerError = e;
 }
 }),
 new ScenarioOutput("deleteLoadBalancerResult", (state) => {
 if (state.deleteLoadBalancerError) {
 console.error(state.deleteLoadBalancerError);
 return MESSAGES.deleteLoadBalancerError.replace(
 "${LB_NAME}",
 NAMES.loadBalancerName,
);
 }
 return MESSAGES.deletedLoadBalancer.replace(
 "${LB_NAME}",
 NAMES.loadBalancerName,
);
 }),
 new ScenarioAction("deleteLoadBalancerTargetGroup", async (state) => {

场景 700

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const client = new ElasticLoadBalancingV2Client({});
 try {
 const { TargetGroups } = await client.send(
 new DescribeTargetGroupsCommand({
 Names: [NAMES.loadBalancerTargetGroupName],
 }),
);

 await retry({ intervalInMs: 1000, maxRetries: 30 }, () =>
 client.send(
 new DeleteTargetGroupCommand({
 TargetGroupArn: TargetGroups[0].TargetGroupArn,
 }),
),
);
 } catch (e) {
 state.deleteLoadBalancerTargetGroupError = e;
 }
 }),
 new ScenarioOutput("deleteLoadBalancerTargetGroupResult", (state) => {
 if (state.deleteLoadBalancerTargetGroupError) {
 console.error(state.deleteLoadBalancerTargetGroupError);
 return MESSAGES.deleteLoadBalancerTargetGroupError.replace(
 "${TARGET_GROUP_NAME}",
 NAMES.loadBalancerTargetGroupName,
);
 }
 return MESSAGES.deletedLoadBalancerTargetGroup.replace(
 "${TARGET_GROUP_NAME}",
 NAMES.loadBalancerTargetGroupName,
);
 }),
 new ScenarioAction("detachSsmOnlyRoleFromProfile", async (state) => {
 try {
 const client = new IAMClient({});
 await client.send(
 new RemoveRoleFromInstanceProfileCommand({
 InstanceProfileName: NAMES.ssmOnlyInstanceProfileName,
 RoleName: NAMES.ssmOnlyRoleName,
 }),
);
 } catch (e) {
 state.detachSsmOnlyRoleFromProfileError = e;
 }

场景 701

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }),
 new ScenarioOutput("detachSsmOnlyRoleFromProfileResult", (state) => {
 if (state.detachSsmOnlyRoleFromProfileError) {
 console.error(state.detachSsmOnlyRoleFromProfileError);
 return MESSAGES.detachSsmOnlyRoleFromProfileError
 .replace("${ROLE_NAME}", NAMES.ssmOnlyRoleName)
 .replace("${PROFILE_NAME}", NAMES.ssmOnlyInstanceProfileName);
 }
 return MESSAGES.detachedSsmOnlyRoleFromProfile
 .replace("${ROLE_NAME}", NAMES.ssmOnlyRoleName)
 .replace("${PROFILE_NAME}", NAMES.ssmOnlyInstanceProfileName);
 }),
 new ScenarioAction("detachSsmOnlyCustomRolePolicy", async (state) => {
 try {
 const iamClient = new IAMClient({});
 const ssmOnlyPolicy = await findPolicy(NAMES.ssmOnlyPolicyName);
 await iamClient.send(
 new DetachRolePolicyCommand({
 RoleName: NAMES.ssmOnlyRoleName,
 PolicyArn: ssmOnlyPolicy.Arn,
 }),
);
 } catch (e) {
 state.detachSsmOnlyCustomRolePolicyError = e;
 }
 }),
 new ScenarioOutput("detachSsmOnlyCustomRolePolicyResult", (state) => {
 if (state.detachSsmOnlyCustomRolePolicyError) {
 console.error(state.detachSsmOnlyCustomRolePolicyError);
 return MESSAGES.detachSsmOnlyCustomRolePolicyError
 .replace("${ROLE_NAME}", NAMES.ssmOnlyRoleName)
 .replace("${POLICY_NAME}", NAMES.ssmOnlyPolicyName);
 }
 return MESSAGES.detachedSsmOnlyCustomRolePolicy
 .replace("${ROLE_NAME}", NAMES.ssmOnlyRoleName)
 .replace("${POLICY_NAME}", NAMES.ssmOnlyPolicyName);
 }),
 new ScenarioAction("detachSsmOnlyAWSRolePolicy", async (state) => {
 try {
 const iamClient = new IAMClient({});
 await iamClient.send(
 new DetachRolePolicyCommand({
 RoleName: NAMES.ssmOnlyRoleName,
 PolicyArn: "arn:aws:iam::aws:policy/AmazonSSMManagedInstanceCore",

场景 702

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }),
);
 } catch (e) {
 state.detachSsmOnlyAWSRolePolicyError = e;
 }
 }),
 new ScenarioOutput("detachSsmOnlyAWSRolePolicyResult", (state) => {
 if (state.detachSsmOnlyAWSRolePolicyError) {
 console.error(state.detachSsmOnlyAWSRolePolicyError);
 return MESSAGES.detachSsmOnlyAWSRolePolicyError
 .replace("${ROLE_NAME}", NAMES.ssmOnlyRoleName)
 .replace("${POLICY_NAME}", "AmazonSSMManagedInstanceCore");
 }
 return MESSAGES.detachedSsmOnlyAWSRolePolicy
 .replace("${ROLE_NAME}", NAMES.ssmOnlyRoleName)
 .replace("${POLICY_NAME}", "AmazonSSMManagedInstanceCore");
 }),
 new ScenarioAction("deleteSsmOnlyInstanceProfile", async (state) => {
 try {
 const iamClient = new IAMClient({});
 await iamClient.send(
 new DeleteInstanceProfileCommand({
 InstanceProfileName: NAMES.ssmOnlyInstanceProfileName,
 }),
);
 } catch (e) {
 state.deleteSsmOnlyInstanceProfileError = e;
 }
 }),
 new ScenarioOutput("deleteSsmOnlyInstanceProfileResult", (state) => {
 if (state.deleteSsmOnlyInstanceProfileError) {
 console.error(state.deleteSsmOnlyInstanceProfileError);
 return MESSAGES.deleteSsmOnlyInstanceProfileError.replace(
 "${INSTANCE_PROFILE_NAME}",
 NAMES.ssmOnlyInstanceProfileName,
);
 }
 return MESSAGES.deletedSsmOnlyInstanceProfile.replace(
 "${INSTANCE_PROFILE_NAME}",
 NAMES.ssmOnlyInstanceProfileName,
);
 }),
 new ScenarioAction("deleteSsmOnlyPolicy", async (state) => {
 try {

场景 703

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const iamClient = new IAMClient({});
 const ssmOnlyPolicy = await findPolicy(NAMES.ssmOnlyPolicyName);
 await iamClient.send(
 new DeletePolicyCommand({
 PolicyArn: ssmOnlyPolicy.Arn,
 }),
);
 } catch (e) {
 state.deleteSsmOnlyPolicyError = e;
 }
 }),
 new ScenarioOutput("deleteSsmOnlyPolicyResult", (state) => {
 if (state.deleteSsmOnlyPolicyError) {
 console.error(state.deleteSsmOnlyPolicyError);
 return MESSAGES.deleteSsmOnlyPolicyError.replace(
 "${POLICY_NAME}",
 NAMES.ssmOnlyPolicyName,
);
 }
 return MESSAGES.deletedSsmOnlyPolicy.replace(
 "${POLICY_NAME}",
 NAMES.ssmOnlyPolicyName,
);
 }),
 new ScenarioAction("deleteSsmOnlyRole", async (state) => {
 try {
 const iamClient = new IAMClient({});
 await iamClient.send(
 new DeleteRoleCommand({
 RoleName: NAMES.ssmOnlyRoleName,
 }),
);
 } catch (e) {
 state.deleteSsmOnlyRoleError = e;
 }
 }),
 new ScenarioOutput("deleteSsmOnlyRoleResult", (state) => {
 if (state.deleteSsmOnlyRoleError) {
 console.error(state.deleteSsmOnlyRoleError);
 return MESSAGES.deleteSsmOnlyRoleError.replace(
 "${ROLE_NAME}",
 NAMES.ssmOnlyRoleName,
);
 }

场景 704

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 return MESSAGES.deletedSsmOnlyRole.replace(
 "${ROLE_NAME}",
 NAMES.ssmOnlyRoleName,
);
 }),
 new ScenarioAction(
 "revokeSecurityGroupIngress",
 async (
 /** @type {{ myIp: string, defaultSecurityGroup: { GroupId: string } }} */
 state,
) => {
 const ec2Client = new EC2Client({});

 try {
 await ec2Client.send(
 new RevokeSecurityGroupIngressCommand({
 GroupId: state.defaultSecurityGroup.GroupId,
 CidrIp: `${state.myIp}/32`,
 FromPort: 80,
 ToPort: 80,
 IpProtocol: "tcp",
 }),
);
 } catch (e) {
 state.revokeSecurityGroupIngressError = e;
 }
 },
),
 new ScenarioOutput("revokeSecurityGroupIngressResult", (state) => {
 if (state.revokeSecurityGroupIngressError) {
 console.error(state.revokeSecurityGroupIngressError);
 return MESSAGES.revokeSecurityGroupIngressError.replace(
 "${IP}",
 state.myIp,
);
 }
 return MESSAGES.revokedSecurityGroupIngress.replace("${IP}", state.myIp);
 }),
];

/**
 * @param {string} policyName
 */
async function findPolicy(policyName) {

场景 705

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const client = new IAMClient({});
 const paginatedPolicies = paginateListPolicies({ client }, {});
 for await (const page of paginatedPolicies) {
 const policy = page.Policies.find((p) => p.PolicyName === policyName);
 if (policy) {
 return policy;
 }
 }
}

/**
 * @param {string} groupName
 */
async function deleteAutoScalingGroup(groupName) {
 const client = new AutoScalingClient({});
 try {
 await client.send(
 new DeleteAutoScalingGroupCommand({
 AutoScalingGroupName: groupName,
 }),
);
 } catch (err) {
 if (!(err instanceof Error)) {
 throw err;
 }
 console.log(err.name);
 throw err;
 }
}

/**
 * @param {string} groupName
 */
async function terminateGroupInstances(groupName) {
 const autoScalingClient = new AutoScalingClient({});
 const group = await findAutoScalingGroup(groupName);
 await autoScalingClient.send(
 new UpdateAutoScalingGroupCommand({
 AutoScalingGroupName: group.AutoScalingGroupName,
 MinSize: 0,
 }),
);
 for (const i of group.Instances) {
 await retry({ intervalInMs: 1000, maxRetries: 30 }, () =>

场景 706

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 autoScalingClient.send(
 new TerminateInstanceInAutoScalingGroupCommand({
 InstanceId: i.InstanceId,
 ShouldDecrementDesiredCapacity: true,
 }),
),
);
 }
}

async function findAutoScalingGroup(groupName) {
 const client = new AutoScalingClient({});
 const paginatedGroups = paginateDescribeAutoScalingGroups({ client }, {});
 for await (const page of paginatedGroups) {
 const group = page.AutoScalingGroups.find(
 (g) => g.AutoScalingGroupName === groupName,
);
 if (group) {
 return group;
 }
 }
 throw new Error(`Auto scaling group ${groupName} not found.`);
}

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的以下主
题。

• AttachLoadBalancerTargetGroups

• CreateAutoScalingGroup

• CreateInstanceProfile

• CreateLaunchTemplate

• CreateListener

• CreateLoadBalancer

• CreateTargetGroup

• DeleteAutoScalingGroup

• DeleteInstanceProfile

• DeleteLaunchTemplate

• DeleteLoadBalancer
场景 707

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/auto-scaling/command/AttachLoadBalancerTargetGroupsCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/auto-scaling/command/CreateAutoScalingGroupCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/CreateInstanceProfileCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/CreateLaunchTemplateCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/CreateListenerCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/CreateLoadBalancerCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/CreateTargetGroupCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/auto-scaling/command/DeleteAutoScalingGroupCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/DeleteInstanceProfileCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/DeleteLaunchTemplateCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/DeleteLoadBalancerCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• DeleteTargetGroup

• DescribeAutoScalingGroups

• DescribeAvailabilityZones

• DescribeIamInstanceProfileAssociations

• DescribeInstances

• DescribeLoadBalancers

• DescribeSubnets

• DescribeTargetGroups

• DescribeTargetHealth

• DescribeVpcs

• RebootInstances

• ReplaceIamInstanceProfileAssociation

• TerminateInstanceInAutoScalingGroup

• UpdateAutoScalingGroup

ELB-使用适用于 JavaScript (v3) 的 SDK 的版本 2 示例

以下代码示例向您展示如何使用带有 ELB 的 适用于 JavaScript 的 Amazon SDK (v3)-版本 2 来执行操
作和实现常见场景。

操作是大型程序的代码摘录，必须在上下文中运行。您可以通过操作了解如何调用单个服务函数，还可
以通过函数相关场景的上下文查看操作。

场景是向您演示如何通过在一个服务中调用多个函数或与其他 Amazon Web Services 服务结合来完成
特定任务的代码示例。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

• 开始使用

• 操作

• 场景
ELB – 版本 2 708

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/DeleteTargetGroupCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/auto-scaling/command/DescribeAutoScalingGroupsCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/DescribeAvailabilityZonesCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/DescribeIamInstanceProfileAssociationsCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/DescribeInstancesCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/DescribeLoadBalancersCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/DescribeSubnetsCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/DescribeTargetGroupsCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/DescribeTargetHealthCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/DescribeVpcsCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/RebootInstancesCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/ReplaceIamInstanceProfileAssociationCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/auto-scaling/command/TerminateInstanceInAutoScalingGroupCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/auto-scaling/command/UpdateAutoScalingGroupCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

开始使用

你好 ELB

以下代码示例显示了如何开始使用 ELB。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import {
 ElasticLoadBalancingV2Client,
 DescribeLoadBalancersCommand,
} from "@aws-sdk/client-elastic-load-balancing-v2";

export async function main() {
 const client = new ElasticLoadBalancingV2Client({});
 const { LoadBalancers } = await client.send(
 new DescribeLoadBalancersCommand({}),
);
 const loadBalancersList = LoadBalancers.map(
 (lb) => `• ${lb.LoadBalancerName}: ${lb.DNSName}`,
).join("\n");
 console.log(
 "Hello, Elastic Load Balancing! Let's list some of your load balancers:\n",
 loadBalancersList,
);
}

// Call function if run directly
import { fileURLToPath } from "node:url";
if (process.argv[1] === fileURLToPath(import.meta.url)) {
 main();
}

开始使用 709

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/elastic-load-balancing-v2#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考DescribeLoadBalancers中的。

操作

CreateListener

以下代码示例演示了如何使用 CreateListener。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

 const client = new ElasticLoadBalancingV2Client({});
 const { Listeners } = await client.send(
 new CreateListenerCommand({
 LoadBalancerArn: state.loadBalancerArn,
 Protocol: state.targetGroupProtocol,
 Port: state.targetGroupPort,
 DefaultActions: [
 { Type: "forward", TargetGroupArn: state.targetGroupArn },
],
 }),
);

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考CreateListener中
的。

CreateLoadBalancer

以下代码示例演示了如何使用 CreateLoadBalancer。

操作 710

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/DescribeLoadBalancersCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/wkflw-resilient-service#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/CreateListenerCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

 const client = new ElasticLoadBalancingV2Client({});
 const { LoadBalancers } = await client.send(
 new CreateLoadBalancerCommand({
 Name: NAMES.loadBalancerName,
 Subnets: state.subnets,
 }),
);
 state.loadBalancerDns = LoadBalancers[0].DNSName;
 state.loadBalancerArn = LoadBalancers[0].LoadBalancerArn;
 await waitUntilLoadBalancerAvailable(
 { client },
 { Names: [NAMES.loadBalancerName] },
);

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考CreateLoadBalancer中的。

CreateTargetGroup

以下代码示例演示了如何使用 CreateTargetGroup。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

 const client = new ElasticLoadBalancingV2Client({});
 const { TargetGroups } = await client.send(

操作 711

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/wkflw-resilient-service#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/CreateLoadBalancerCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/wkflw-resilient-service#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 new CreateTargetGroupCommand({
 Name: NAMES.loadBalancerTargetGroupName,
 Protocol: "HTTP",
 Port: 80,
 HealthCheckPath: "/healthcheck",
 HealthCheckIntervalSeconds: 10,
 HealthCheckTimeoutSeconds: 5,
 HealthyThresholdCount: 2,
 UnhealthyThresholdCount: 2,
 VpcId: state.defaultVpc,
 }),
);

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考CreateTargetGroup中的。

DeleteLoadBalancer

以下代码示例演示了如何使用 DeleteLoadBalancer。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

 const client = new ElasticLoadBalancingV2Client({});
 const loadBalancer = await findLoadBalancer(NAMES.loadBalancerName);
 await client.send(
 new DeleteLoadBalancerCommand({
 LoadBalancerArn: loadBalancer.LoadBalancerArn,
 }),
);
 await retry({ intervalInMs: 1000, maxRetries: 60 }, async () => {
 const lb = await findLoadBalancer(NAMES.loadBalancerName);
 if (lb) {
 throw new Error("Load balancer still exists.");
 }

操作 712

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/CreateTargetGroupCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/wkflw-resilient-service#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 });

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考DeleteLoadBalancer中的。

DeleteTargetGroup

以下代码示例演示了如何使用 DeleteTargetGroup。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

 const client = new ElasticLoadBalancingV2Client({});
 try {
 const { TargetGroups } = await client.send(
 new DescribeTargetGroupsCommand({
 Names: [NAMES.loadBalancerTargetGroupName],
 }),
);

 await retry({ intervalInMs: 1000, maxRetries: 30 }, () =>
 client.send(
 new DeleteTargetGroupCommand({
 TargetGroupArn: TargetGroups[0].TargetGroupArn,
 }),
),
);
 } catch (e) {
 state.deleteLoadBalancerTargetGroupError = e;
 }

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考DeleteTargetGroup中的。

操作 713

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/DeleteLoadBalancerCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/wkflw-resilient-service#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/DeleteTargetGroupCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

DescribeLoadBalancers

以下代码示例演示了如何使用 DescribeLoadBalancers。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import {
 ElasticLoadBalancingV2Client,
 DescribeLoadBalancersCommand,
} from "@aws-sdk/client-elastic-load-balancing-v2";

export async function main() {
 const client = new ElasticLoadBalancingV2Client({});
 const { LoadBalancers } = await client.send(
 new DescribeLoadBalancersCommand({}),
);
 const loadBalancersList = LoadBalancers.map(
 (lb) => `• ${lb.LoadBalancerName}: ${lb.DNSName}`,
).join("\n");
 console.log(
 "Hello, Elastic Load Balancing! Let's list some of your load balancers:\n",
 loadBalancersList,
);
}

// Call function if run directly
import { fileURLToPath } from "node:url";
if (process.argv[1] === fileURLToPath(import.meta.url)) {
 main();
}

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考DescribeLoadBalancers中的。

操作 714

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/elastic-load-balancing-v2#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/DescribeLoadBalancersCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

DescribeTargetGroups

以下代码示例演示了如何使用 DescribeTargetGroups。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

 const client = new ElasticLoadBalancingV2Client({});
 const { TargetGroups } = await client.send(
 new DescribeTargetGroupsCommand({
 Names: [NAMES.loadBalancerTargetGroupName],
 }),
);

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考DescribeTargetGroups中的。

DescribeTargetHealth

以下代码示例演示了如何使用 DescribeTargetHealth。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

 const { TargetHealthDescriptions } = await client.send(
 new DescribeTargetHealthCommand({
 TargetGroupArn: TargetGroups[0].TargetGroupArn,
 }),
);

操作 715

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/elastic-load-balancing-v2#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/DescribeTargetGroupsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/wkflw-resilient-service#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考DescribeTargetHealth中的。

场景

构建和管理弹性服务

以下代码示例演示了如何创建可返回书籍、电影和歌曲推荐的负载均衡的 Web 服务。该示例演示服务
如何响应故障，以及如何重组服务以提高故障发生时的弹性。

• 使用 Amazon A EC2 uto Scaling 组根据启动模板创建亚马逊弹性计算云 (Amazon EC2) 实例，并将
实例数量保持在指定范围内。

• 使用弹性负载均衡处理和分发 HTTP 请求。

• 监控自动扩缩组中实例的运行状况，并仅将请求转发到运行状况良好的实例。

• 在每个 EC2 实例上运行 Python 网络服务器来处理 HTTP 请求。Web 服务器以建议和运行状况检查
作为响应。

• 使用 Amazon DynamoDB 表模拟推荐服务。

• 通过更新 Amazon Systems Manager 参数来控制 Web 服务器对请求和运行状况检查的响应。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

在命令提示符中运行交互式场景。

#!/usr/bin/env node
// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

import {
 Scenario,
 parseScenarioArgs,

场景 716

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/DescribeTargetHealthCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/wkflw-resilient-service#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

} from "@aws-doc-sdk-examples/lib/scenario/index.js";

/**
 * The workflow steps are split into three stages:
 * - deploy
 * - demo
 * - destroy
 *
 * Each of these stages has a corresponding file prefixed with steps-*.
 */
import { deploySteps } from "./steps-deploy.js";
import { demoSteps } from "./steps-demo.js";
import { destroySteps } from "./steps-destroy.js";

/**
 * The context is passed to every scenario. Scenario steps
 * will modify the context.
 */
const context = {};

/**
 * Three Scenarios are created for the workflow. A Scenario is an orchestration
 class
 * that simplifies running a series of steps.
 */
export const scenarios = {
 // Deploys all resources necessary for the workflow.
 deploy: new Scenario("Resilient Workflow - Deploy", deploySteps, context),
 // Demonstrates how a fragile web service can be made more resilient.
 demo: new Scenario("Resilient Workflow - Demo", demoSteps, context),
 // Destroys the resources created for the workflow.
 destroy: new Scenario("Resilient Workflow - Destroy", destroySteps, context),
};

// Call function if run directly
import { fileURLToPath } from "node:url";

if (process.argv[1] === fileURLToPath(import.meta.url)) {
 parseScenarioArgs(scenarios, {
 name: "Resilient Workflow",
 synopsis:
 "node index.js --scenario <deploy | demo | destroy> [-h|--help] [-y|--yes] [-
v|--verbose]",
 description: "Deploy and interact with scalable EC2 instances.",

场景 717

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 });
}

创建部署所有资源的步骤。

import { join } from "node:path";
import { readFileSync, writeFileSync } from "node:fs";
import axios from "axios";

import {
 BatchWriteItemCommand,
 CreateTableCommand,
 DynamoDBClient,
 waitUntilTableExists,
} from "@aws-sdk/client-dynamodb";
import {
 EC2Client,
 CreateKeyPairCommand,
 CreateLaunchTemplateCommand,
 DescribeAvailabilityZonesCommand,
 DescribeVpcsCommand,
 DescribeSubnetsCommand,
 DescribeSecurityGroupsCommand,
 AuthorizeSecurityGroupIngressCommand,
} from "@aws-sdk/client-ec2";
import {
 IAMClient,
 CreatePolicyCommand,
 CreateRoleCommand,
 CreateInstanceProfileCommand,
 AddRoleToInstanceProfileCommand,
 AttachRolePolicyCommand,
 waitUntilInstanceProfileExists,
} from "@aws-sdk/client-iam";
import { SSMClient, GetParameterCommand } from "@aws-sdk/client-ssm";
import {
 CreateAutoScalingGroupCommand,
 AutoScalingClient,
 AttachLoadBalancerTargetGroupsCommand,
} from "@aws-sdk/client-auto-scaling";
import {
 CreateListenerCommand,

场景 718

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 CreateLoadBalancerCommand,
 CreateTargetGroupCommand,
 ElasticLoadBalancingV2Client,
 waitUntilLoadBalancerAvailable,
} from "@aws-sdk/client-elastic-load-balancing-v2";

import {
 ScenarioOutput,
 ScenarioInput,
 ScenarioAction,
} from "@aws-doc-sdk-examples/lib/scenario/index.js";
import { saveState } from "@aws-doc-sdk-examples/lib/scenario/steps-common.js";
import { retry } from "@aws-doc-sdk-examples/lib/utils/util-timers.js";

import { MESSAGES, NAMES, RESOURCES_PATH, ROOT } from "./constants.js";
import { initParamsSteps } from "./steps-reset-params.js";

/**
 * @type {import('@aws-doc-sdk-examples/lib/scenario.js').Step[]}
 */
export const deploySteps = [
 new ScenarioOutput("introduction", MESSAGES.introduction, { header: true }),
 new ScenarioInput("confirmDeployment", MESSAGES.confirmDeployment, {
 type: "confirm",
 }),
 new ScenarioAction(
 "handleConfirmDeployment",
 (c) => c.confirmDeployment === false && process.exit(),
),
 new ScenarioOutput(
 "creatingTable",
 MESSAGES.creatingTable.replace("${TABLE_NAME}", NAMES.tableName),
),
 new ScenarioAction("createTable", async () => {
 const client = new DynamoDBClient({});
 await client.send(
 new CreateTableCommand({
 TableName: NAMES.tableName,
 ProvisionedThroughput: {
 ReadCapacityUnits: 5,
 WriteCapacityUnits: 5,
 },
 AttributeDefinitions: [
 {

场景 719

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 AttributeName: "MediaType",
 AttributeType: "S",
 },
 {
 AttributeName: "ItemId",
 AttributeType: "N",
 },
],
 KeySchema: [
 {
 AttributeName: "MediaType",
 KeyType: "HASH",
 },
 {
 AttributeName: "ItemId",
 KeyType: "RANGE",
 },
],
 }),
);
 await waitUntilTableExists({ client }, { TableName: NAMES.tableName });
 }),
 new ScenarioOutput(
 "createdTable",
 MESSAGES.createdTable.replace("${TABLE_NAME}", NAMES.tableName),
),
 new ScenarioOutput(
 "populatingTable",
 MESSAGES.populatingTable.replace("${TABLE_NAME}", NAMES.tableName),
),
 new ScenarioAction("populateTable", () => {
 const client = new DynamoDBClient({});
 /**
 * @type {{ default: import("@aws-sdk/client-dynamodb").PutRequest['Item'][] }}
 */
 const recommendations = JSON.parse(
 readFileSync(join(RESOURCES_PATH, "recommendations.json")),
);

 return client.send(
 new BatchWriteItemCommand({
 RequestItems: {
 [NAMES.tableName]: recommendations.map((item) => ({
 PutRequest: { Item: item },

场景 720

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 })),
 },
 }),
);
 }),
 new ScenarioOutput(
 "populatedTable",
 MESSAGES.populatedTable.replace("${TABLE_NAME}", NAMES.tableName),
),
 new ScenarioOutput(
 "creatingKeyPair",
 MESSAGES.creatingKeyPair.replace("${KEY_PAIR_NAME}", NAMES.keyPairName),
),
 new ScenarioAction("createKeyPair", async () => {
 const client = new EC2Client({});
 const { KeyMaterial } = await client.send(
 new CreateKeyPairCommand({
 KeyName: NAMES.keyPairName,
 }),
);

 writeFileSync(`${NAMES.keyPairName}.pem`, KeyMaterial, { mode: 0o600 });
 }),
 new ScenarioOutput(
 "createdKeyPair",
 MESSAGES.createdKeyPair.replace("${KEY_PAIR_NAME}", NAMES.keyPairName),
),
 new ScenarioOutput(
 "creatingInstancePolicy",
 MESSAGES.creatingInstancePolicy.replace(
 "${INSTANCE_POLICY_NAME}",
 NAMES.instancePolicyName,
),
),
 new ScenarioAction("createInstancePolicy", async (state) => {
 const client = new IAMClient({});
 const {
 Policy: { Arn },
 } = await client.send(
 new CreatePolicyCommand({
 PolicyName: NAMES.instancePolicyName,
 PolicyDocument: readFileSync(
 join(RESOURCES_PATH, "instance_policy.json"),
),

场景 721

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }),
);
 state.instancePolicyArn = Arn;
 }),
 new ScenarioOutput("createdInstancePolicy", (state) =>
 MESSAGES.createdInstancePolicy
 .replace("${INSTANCE_POLICY_NAME}", NAMES.instancePolicyName)
 .replace("${INSTANCE_POLICY_ARN}", state.instancePolicyArn),
),
 new ScenarioOutput(
 "creatingInstanceRole",
 MESSAGES.creatingInstanceRole.replace(
 "${INSTANCE_ROLE_NAME}",
 NAMES.instanceRoleName,
),
),
 new ScenarioAction("createInstanceRole", () => {
 const client = new IAMClient({});
 return client.send(
 new CreateRoleCommand({
 RoleName: NAMES.instanceRoleName,
 AssumeRolePolicyDocument: readFileSync(
 join(ROOT, "assume-role-policy.json"),
),
 }),
);
 }),
 new ScenarioOutput(
 "createdInstanceRole",
 MESSAGES.createdInstanceRole.replace(
 "${INSTANCE_ROLE_NAME}",
 NAMES.instanceRoleName,
),
),
 new ScenarioOutput(
 "attachingPolicyToRole",
 MESSAGES.attachingPolicyToRole
 .replace("${INSTANCE_ROLE_NAME}", NAMES.instanceRoleName)
 .replace("${INSTANCE_POLICY_NAME}", NAMES.instancePolicyName),
),
 new ScenarioAction("attachPolicyToRole", async (state) => {
 const client = new IAMClient({});
 await client.send(
 new AttachRolePolicyCommand({

场景 722

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 RoleName: NAMES.instanceRoleName,
 PolicyArn: state.instancePolicyArn,
 }),
);
 }),
 new ScenarioOutput(
 "attachedPolicyToRole",
 MESSAGES.attachedPolicyToRole
 .replace("${INSTANCE_POLICY_NAME}", NAMES.instancePolicyName)
 .replace("${INSTANCE_ROLE_NAME}", NAMES.instanceRoleName),
),
 new ScenarioOutput(
 "creatingInstanceProfile",
 MESSAGES.creatingInstanceProfile.replace(
 "${INSTANCE_PROFILE_NAME}",
 NAMES.instanceProfileName,
),
),
 new ScenarioAction("createInstanceProfile", async (state) => {
 const client = new IAMClient({});
 const {
 InstanceProfile: { Arn },
 } = await client.send(
 new CreateInstanceProfileCommand({
 InstanceProfileName: NAMES.instanceProfileName,
 }),
);
 state.instanceProfileArn = Arn;

 await waitUntilInstanceProfileExists(
 { client },
 { InstanceProfileName: NAMES.instanceProfileName },
);
 }),
 new ScenarioOutput("createdInstanceProfile", (state) =>
 MESSAGES.createdInstanceProfile
 .replace("${INSTANCE_PROFILE_NAME}", NAMES.instanceProfileName)
 .replace("${INSTANCE_PROFILE_ARN}", state.instanceProfileArn),
),
 new ScenarioOutput(
 "addingRoleToInstanceProfile",
 MESSAGES.addingRoleToInstanceProfile
 .replace("${INSTANCE_PROFILE_NAME}", NAMES.instanceProfileName)
 .replace("${INSTANCE_ROLE_NAME}", NAMES.instanceRoleName),

场景 723

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

),
 new ScenarioAction("addRoleToInstanceProfile", () => {
 const client = new IAMClient({});
 return client.send(
 new AddRoleToInstanceProfileCommand({
 RoleName: NAMES.instanceRoleName,
 InstanceProfileName: NAMES.instanceProfileName,
 }),
);
 }),
 new ScenarioOutput(
 "addedRoleToInstanceProfile",
 MESSAGES.addedRoleToInstanceProfile
 .replace("${INSTANCE_PROFILE_NAME}", NAMES.instanceProfileName)
 .replace("${INSTANCE_ROLE_NAME}", NAMES.instanceRoleName),
),
 ...initParamsSteps,
 new ScenarioOutput("creatingLaunchTemplate", MESSAGES.creatingLaunchTemplate),
 new ScenarioAction("createLaunchTemplate", async () => {
 const ssmClient = new SSMClient({});
 const { Parameter } = await ssmClient.send(
 new GetParameterCommand({
 Name: "/aws/service/ami-amazon-linux-latest/amzn2-ami-hvm-x86_64-gp2",
 }),
);
 const ec2Client = new EC2Client({});
 await ec2Client.send(
 new CreateLaunchTemplateCommand({
 LaunchTemplateName: NAMES.launchTemplateName,
 LaunchTemplateData: {
 InstanceType: "t3.micro",
 ImageId: Parameter.Value,
 IamInstanceProfile: { Name: NAMES.instanceProfileName },
 UserData: readFileSync(
 join(RESOURCES_PATH, "server_startup_script.sh"),
).toString("base64"),
 KeyName: NAMES.keyPairName,
 },
 }),
);
 }),
 new ScenarioOutput(
 "createdLaunchTemplate",
 MESSAGES.createdLaunchTemplate.replace(

场景 724

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 "${LAUNCH_TEMPLATE_NAME}",
 NAMES.launchTemplateName,
),
),
 new ScenarioOutput(
 "creatingAutoScalingGroup",
 MESSAGES.creatingAutoScalingGroup.replace(
 "${AUTO_SCALING_GROUP_NAME}",
 NAMES.autoScalingGroupName,
),
),
 new ScenarioAction("createAutoScalingGroup", async (state) => {
 const ec2Client = new EC2Client({});
 const { AvailabilityZones } = await ec2Client.send(
 new DescribeAvailabilityZonesCommand({}),
);
 state.availabilityZoneNames = AvailabilityZones.map((az) => az.ZoneName);
 const autoScalingClient = new AutoScalingClient({});
 await retry({ intervalInMs: 1000, maxRetries: 30 }, () =>
 autoScalingClient.send(
 new CreateAutoScalingGroupCommand({
 AvailabilityZones: state.availabilityZoneNames,
 AutoScalingGroupName: NAMES.autoScalingGroupName,
 LaunchTemplate: {
 LaunchTemplateName: NAMES.launchTemplateName,
 Version: "$Default",
 },
 MinSize: 3,
 MaxSize: 3,
 }),
),
);
 }),
 new ScenarioOutput(
 "createdAutoScalingGroup",
 /**
 * @param {{ availabilityZoneNames: string[] }} state
 */
 (state) =>
 MESSAGES.createdAutoScalingGroup
 .replace("${AUTO_SCALING_GROUP_NAME}", NAMES.autoScalingGroupName)
 .replace(
 "${AVAILABILITY_ZONE_NAMES}",
 state.availabilityZoneNames.join(", "),

场景 725

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

),
),
 new ScenarioInput("confirmContinue", MESSAGES.confirmContinue, {
 type: "confirm",
 }),
 new ScenarioOutput("loadBalancer", MESSAGES.loadBalancer),
 new ScenarioOutput("gettingVpc", MESSAGES.gettingVpc),
 new ScenarioAction("getVpc", async (state) => {
 const client = new EC2Client({});
 const { Vpcs } = await client.send(
 new DescribeVpcsCommand({
 Filters: [{ Name: "is-default", Values: ["true"] }],
 }),
);
 state.defaultVpc = Vpcs[0].VpcId;
 }),
 new ScenarioOutput("gotVpc", (state) =>
 MESSAGES.gotVpc.replace("${VPC_ID}", state.defaultVpc),
),
 new ScenarioOutput("gettingSubnets", MESSAGES.gettingSubnets),
 new ScenarioAction("getSubnets", async (state) => {
 const client = new EC2Client({});
 const { Subnets } = await client.send(
 new DescribeSubnetsCommand({
 Filters: [
 { Name: "vpc-id", Values: [state.defaultVpc] },
 { Name: "availability-zone", Values: state.availabilityZoneNames },
 { Name: "default-for-az", Values: ["true"] },
],
 }),
);
 state.subnets = Subnets.map((subnet) => subnet.SubnetId);
 }),
 new ScenarioOutput(
 "gotSubnets",
 /**
 * @param {{ subnets: string[] }} state
 */
 (state) =>
 MESSAGES.gotSubnets.replace("${SUBNETS}", state.subnets.join(", ")),
),
 new ScenarioOutput(
 "creatingLoadBalancerTargetGroup",
 MESSAGES.creatingLoadBalancerTargetGroup.replace(

场景 726

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 "${TARGET_GROUP_NAME}",
 NAMES.loadBalancerTargetGroupName,
),
),
 new ScenarioAction("createLoadBalancerTargetGroup", async (state) => {
 const client = new ElasticLoadBalancingV2Client({});
 const { TargetGroups } = await client.send(
 new CreateTargetGroupCommand({
 Name: NAMES.loadBalancerTargetGroupName,
 Protocol: "HTTP",
 Port: 80,
 HealthCheckPath: "/healthcheck",
 HealthCheckIntervalSeconds: 10,
 HealthCheckTimeoutSeconds: 5,
 HealthyThresholdCount: 2,
 UnhealthyThresholdCount: 2,
 VpcId: state.defaultVpc,
 }),
);
 const targetGroup = TargetGroups[0];
 state.targetGroupArn = targetGroup.TargetGroupArn;
 state.targetGroupProtocol = targetGroup.Protocol;
 state.targetGroupPort = targetGroup.Port;
 }),
 new ScenarioOutput(
 "createdLoadBalancerTargetGroup",
 MESSAGES.createdLoadBalancerTargetGroup.replace(
 "${TARGET_GROUP_NAME}",
 NAMES.loadBalancerTargetGroupName,
),
),
 new ScenarioOutput(
 "creatingLoadBalancer",
 MESSAGES.creatingLoadBalancer.replace("${LB_NAME}", NAMES.loadBalancerName),
),
 new ScenarioAction("createLoadBalancer", async (state) => {
 const client = new ElasticLoadBalancingV2Client({});
 const { LoadBalancers } = await client.send(
 new CreateLoadBalancerCommand({
 Name: NAMES.loadBalancerName,
 Subnets: state.subnets,
 }),
);
 state.loadBalancerDns = LoadBalancers[0].DNSName;

场景 727

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 state.loadBalancerArn = LoadBalancers[0].LoadBalancerArn;
 await waitUntilLoadBalancerAvailable(
 { client },
 { Names: [NAMES.loadBalancerName] },
);
 }),
 new ScenarioOutput("createdLoadBalancer", (state) =>
 MESSAGES.createdLoadBalancer
 .replace("${LB_NAME}", NAMES.loadBalancerName)
 .replace("${DNS_NAME}", state.loadBalancerDns),
),
 new ScenarioOutput(
 "creatingListener",
 MESSAGES.creatingLoadBalancerListener
 .replace("${LB_NAME}", NAMES.loadBalancerName)
 .replace("${TARGET_GROUP_NAME}", NAMES.loadBalancerTargetGroupName),
),
 new ScenarioAction("createListener", async (state) => {
 const client = new ElasticLoadBalancingV2Client({});
 const { Listeners } = await client.send(
 new CreateListenerCommand({
 LoadBalancerArn: state.loadBalancerArn,
 Protocol: state.targetGroupProtocol,
 Port: state.targetGroupPort,
 DefaultActions: [
 { Type: "forward", TargetGroupArn: state.targetGroupArn },
],
 }),
);
 const listener = Listeners[0];
 state.loadBalancerListenerArn = listener.ListenerArn;
 }),
 new ScenarioOutput("createdListener", (state) =>
 MESSAGES.createdLoadBalancerListener.replace(
 "${LB_LISTENER_ARN}",
 state.loadBalancerListenerArn,
),
),
 new ScenarioOutput(
 "attachingLoadBalancerTargetGroup",
 MESSAGES.attachingLoadBalancerTargetGroup
 .replace("${TARGET_GROUP_NAME}", NAMES.loadBalancerTargetGroupName)
 .replace("${AUTO_SCALING_GROUP_NAME}", NAMES.autoScalingGroupName),
),

场景 728

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 new ScenarioAction("attachLoadBalancerTargetGroup", async (state) => {
 const client = new AutoScalingClient({});
 await client.send(
 new AttachLoadBalancerTargetGroupsCommand({
 AutoScalingGroupName: NAMES.autoScalingGroupName,
 TargetGroupARNs: [state.targetGroupArn],
 }),
);
 }),
 new ScenarioOutput(
 "attachedLoadBalancerTargetGroup",
 MESSAGES.attachedLoadBalancerTargetGroup,
),
 new ScenarioOutput("verifyingInboundPort", MESSAGES.verifyingInboundPort),
 new ScenarioAction(
 "verifyInboundPort",
 /**
 *
 * @param {{ defaultSecurityGroup: import('@aws-sdk/client-ec2').SecurityGroup}}
 state
 */
 async (state) => {
 const client = new EC2Client({});
 const { SecurityGroups } = await client.send(
 new DescribeSecurityGroupsCommand({
 Filters: [{ Name: "group-name", Values: ["default"] }],
 }),
);
 if (!SecurityGroups) {
 state.verifyInboundPortError = new Error(MESSAGES.noSecurityGroups);
 }
 state.defaultSecurityGroup = SecurityGroups[0];

 /**
 * @type {string}
 */
 const ipResponse = (await axios.get("http://checkip.amazonaws.com")).data;
 state.myIp = ipResponse.trim();
 const myIpRules = state.defaultSecurityGroup.IpPermissions.filter(
 ({ IpRanges }) =>
 IpRanges.some(
 ({ CidrIp }) =>
 CidrIp.startsWith(state.myIp) || CidrIp === "0.0.0.0/0",
),

场景 729

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

)
 .filter(({ IpProtocol }) => IpProtocol === "tcp")
 .filter(({ FromPort }) => FromPort === 80);

 state.myIpRules = myIpRules;
 },
),
 new ScenarioOutput(
 "verifiedInboundPort",
 /**
 * @param {{ myIpRules: any[] }} state
 */
 (state) => {
 if (state.myIpRules.length > 0) {
 return MESSAGES.foundIpRules.replace(
 "${IP_RULES}",
 JSON.stringify(state.myIpRules, null, 2),
);
 }
 return MESSAGES.noIpRules;
 },
),
 new ScenarioInput(
 "shouldAddInboundRule",
 /**
 * @param {{ myIpRules: any[] }} state
 */
 (state) => {
 if (state.myIpRules.length > 0) {
 return false;
 }
 return MESSAGES.noIpRules;
 },
 { type: "confirm" },
),
 new ScenarioAction(
 "addInboundRule",
 /**
 * @param {{ defaultSecurityGroup: import('@aws-sdk/client-
ec2').SecurityGroup }} state
 */
 async (state) => {
 if (!state.shouldAddInboundRule) {
 return;

场景 730

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }

 const client = new EC2Client({});
 await client.send(
 new AuthorizeSecurityGroupIngressCommand({
 GroupId: state.defaultSecurityGroup.GroupId,
 CidrIp: `${state.myIp}/32`,
 FromPort: 80,
 ToPort: 80,
 IpProtocol: "tcp",
 }),
);
 },
),
 new ScenarioOutput("addedInboundRule", (state) => {
 if (state.shouldAddInboundRule) {
 return MESSAGES.addedInboundRule.replace("${IP_ADDRESS}", state.myIp);
 }
 return false;
 }),
 new ScenarioOutput("verifyingEndpoint", (state) =>
 MESSAGES.verifyingEndpoint.replace("${DNS_NAME}", state.loadBalancerDns),
),
 new ScenarioAction("verifyEndpoint", async (state) => {
 try {
 const response = await retry({ intervalInMs: 2000, maxRetries: 30 }, () =>
 axios.get(`http://${state.loadBalancerDns}`),
);
 state.endpointResponse = JSON.stringify(response.data, null, 2);
 } catch (e) {
 state.verifyEndpointError = e;
 }
 }),
 new ScenarioOutput("verifiedEndpoint", (state) => {
 if (state.verifyEndpointError) {
 console.error(state.verifyEndpointError);
 } else {
 return MESSAGES.verifiedEndpoint.replace(
 "${ENDPOINT_RESPONSE}",
 state.endpointResponse,
);
 }
 }),
 saveState,

场景 731

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

];

创建运行演示的步骤。

import { readFileSync } from "node:fs";
import { join } from "node:path";

import axios from "axios";

import {
 DescribeTargetGroupsCommand,
 DescribeTargetHealthCommand,
 ElasticLoadBalancingV2Client,
} from "@aws-sdk/client-elastic-load-balancing-v2";
import {
 DescribeInstanceInformationCommand,
 PutParameterCommand,
 SSMClient,
 SendCommandCommand,
} from "@aws-sdk/client-ssm";
import {
 IAMClient,
 CreatePolicyCommand,
 CreateRoleCommand,
 AttachRolePolicyCommand,
 CreateInstanceProfileCommand,
 AddRoleToInstanceProfileCommand,
 waitUntilInstanceProfileExists,
} from "@aws-sdk/client-iam";
import {
 AutoScalingClient,
 DescribeAutoScalingGroupsCommand,
 TerminateInstanceInAutoScalingGroupCommand,
} from "@aws-sdk/client-auto-scaling";
import {
 DescribeIamInstanceProfileAssociationsCommand,
 EC2Client,
 RebootInstancesCommand,
 ReplaceIamInstanceProfileAssociationCommand,
} from "@aws-sdk/client-ec2";

import {

场景 732

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 ScenarioAction,
 ScenarioInput,
 ScenarioOutput,
} from "@aws-doc-sdk-examples/lib/scenario/scenario.js";
import { retry } from "@aws-doc-sdk-examples/lib/utils/util-timers.js";

import { MESSAGES, NAMES, RESOURCES_PATH } from "./constants.js";
import { findLoadBalancer } from "./shared.js";

const getRecommendation = new ScenarioAction(
 "getRecommendation",
 async (state) => {
 const loadBalancer = await findLoadBalancer(NAMES.loadBalancerName);
 if (loadBalancer) {
 state.loadBalancerDnsName = loadBalancer.DNSName;
 try {
 state.recommendation = (
 await axios.get(`http://${state.loadBalancerDnsName}`)
).data;
 } catch (e) {
 state.recommendation = e instanceof Error ? e.message : e;
 }
 } else {
 throw new Error(MESSAGES.demoFindLoadBalancerError);
 }
 },
);

const getRecommendationResult = new ScenarioOutput(
 "getRecommendationResult",
 (state) =>
 `Recommendation:\n${JSON.stringify(state.recommendation, null, 2)}`,
 { preformatted: true },
);

const getHealthCheck = new ScenarioAction("getHealthCheck", async (state) => {
 const client = new ElasticLoadBalancingV2Client({});
 const { TargetGroups } = await client.send(
 new DescribeTargetGroupsCommand({
 Names: [NAMES.loadBalancerTargetGroupName],
 }),
);

 const { TargetHealthDescriptions } = await client.send(

场景 733

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 new DescribeTargetHealthCommand({
 TargetGroupArn: TargetGroups[0].TargetGroupArn,
 }),
);
 state.targetHealthDescriptions = TargetHealthDescriptions;
});

const getHealthCheckResult = new ScenarioOutput(
 "getHealthCheckResult",
 /**
 * @param {{ targetHealthDescriptions: import('@aws-sdk/client-elastic-load-
balancing-v2').TargetHealthDescription[]}} state
 */
 (state) => {
 const status = state.targetHealthDescriptions
 .map((th) => `${th.Target.Id}: ${th.TargetHealth.State}`)
 .join("\n");
 return `Health check:\n${status}`;
 },
 { preformatted: true },
);

const loadBalancerLoop = new ScenarioAction(
 "loadBalancerLoop",
 getRecommendation.action,
 {
 whileConfig: {
 whileFn: ({ loadBalancerCheck }) => loadBalancerCheck,
 input: new ScenarioInput(
 "loadBalancerCheck",
 MESSAGES.demoLoadBalancerCheck,
 {
 type: "confirm",
 },
),
 output: getRecommendationResult,
 },
 },
);

const healthCheckLoop = new ScenarioAction(
 "healthCheckLoop",
 getHealthCheck.action,
 {

场景 734

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 whileConfig: {
 whileFn: ({ healthCheck }) => healthCheck,
 input: new ScenarioInput("healthCheck", MESSAGES.demoHealthCheck, {
 type: "confirm",
 }),
 output: getHealthCheckResult,
 },
 },
);

const statusSteps = [
 getRecommendation,
 getRecommendationResult,
 getHealthCheck,
 getHealthCheckResult,
];

/**
 * @type {import('@aws-doc-sdk-examples/lib/scenario.js').Step[]}
 */
export const demoSteps = [
 new ScenarioOutput("header", MESSAGES.demoHeader, { header: true }),
 new ScenarioOutput("sanityCheck", MESSAGES.demoSanityCheck),
 ...statusSteps,
 new ScenarioInput(
 "brokenDependencyConfirmation",
 MESSAGES.demoBrokenDependencyConfirmation,
 { type: "confirm" },
),
 new ScenarioAction("brokenDependency", async (state) => {
 if (!state.brokenDependencyConfirmation) {
 process.exit();
 } else {
 const client = new SSMClient({});
 state.badTableName = `fake-table-${Date.now()}`;
 await client.send(
 new PutParameterCommand({
 Name: NAMES.ssmTableNameKey,
 Value: state.badTableName,
 Overwrite: true,
 Type: "String",
 }),
);
 }

场景 735

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }),
 new ScenarioOutput("testBrokenDependency", (state) =>
 MESSAGES.demoTestBrokenDependency.replace(
 "${TABLE_NAME}",
 state.badTableName,
),
),
 ...statusSteps,
 new ScenarioInput(
 "staticResponseConfirmation",
 MESSAGES.demoStaticResponseConfirmation,
 { type: "confirm" },
),
 new ScenarioAction("staticResponse", async (state) => {
 if (!state.staticResponseConfirmation) {
 process.exit();
 } else {
 const client = new SSMClient({});
 await client.send(
 new PutParameterCommand({
 Name: NAMES.ssmFailureResponseKey,
 Value: "static",
 Overwrite: true,
 Type: "String",
 }),
);
 }
 }),
 new ScenarioOutput("testStaticResponse", MESSAGES.demoTestStaticResponse),
 ...statusSteps,
 new ScenarioInput(
 "badCredentialsConfirmation",
 MESSAGES.demoBadCredentialsConfirmation,
 { type: "confirm" },
),
 new ScenarioAction("badCredentialsExit", (state) => {
 if (!state.badCredentialsConfirmation) {
 process.exit();
 }
 }),
 new ScenarioAction("fixDynamoDBName", async () => {
 const client = new SSMClient({});
 await client.send(
 new PutParameterCommand({

场景 736

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 Name: NAMES.ssmTableNameKey,
 Value: NAMES.tableName,
 Overwrite: true,
 Type: "String",
 }),
);
 }),
 new ScenarioAction(
 "badCredentials",
 /**
 * @param {{ targetInstance: import('@aws-sdk/client-auto-scaling').Instance }}
 state
 */
 async (state) => {
 await createSsmOnlyInstanceProfile();
 const autoScalingClient = new AutoScalingClient({});
 const { AutoScalingGroups } = await autoScalingClient.send(
 new DescribeAutoScalingGroupsCommand({
 AutoScalingGroupNames: [NAMES.autoScalingGroupName],
 }),
);
 state.targetInstance = AutoScalingGroups[0].Instances[0];
 const ec2Client = new EC2Client({});
 const { IamInstanceProfileAssociations } = await ec2Client.send(
 new DescribeIamInstanceProfileAssociationsCommand({
 Filters: [
 { Name: "instance-id", Values: [state.targetInstance.InstanceId] },
],
 }),
);
 state.instanceProfileAssociationId =
 IamInstanceProfileAssociations[0].AssociationId;
 await retry({ intervalInMs: 1000, maxRetries: 30 }, () =>
 ec2Client.send(
 new ReplaceIamInstanceProfileAssociationCommand({
 AssociationId: state.instanceProfileAssociationId,
 IamInstanceProfile: { Name: NAMES.ssmOnlyInstanceProfileName },
 }),
),
);

 await ec2Client.send(
 new RebootInstancesCommand({
 InstanceIds: [state.targetInstance.InstanceId],

场景 737

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }),
);

 const ssmClient = new SSMClient({});
 await retry({ intervalInMs: 20000, maxRetries: 15 }, async () => {
 const { InstanceInformationList } = await ssmClient.send(
 new DescribeInstanceInformationCommand({}),
);

 const instance = InstanceInformationList.find(
 (info) => info.InstanceId === state.targetInstance.InstanceId,
);

 if (!instance) {
 throw new Error("Instance not found.");
 }
 });

 await ssmClient.send(
 new SendCommandCommand({
 InstanceIds: [state.targetInstance.InstanceId],
 DocumentName: "AWS-RunShellScript",
 Parameters: { commands: ["cd / && sudo python3 server.py 80"] },
 }),
);
 },
),
 new ScenarioOutput(
 "testBadCredentials",
 /**
 * @param {{ targetInstance: import('@aws-sdk/client-ssm').InstanceInformation}}
 state
 */
 (state) =>
 MESSAGES.demoTestBadCredentials.replace(
 "${INSTANCE_ID}",
 state.targetInstance.InstanceId,
),
),
 loadBalancerLoop,
 new ScenarioInput(
 "deepHealthCheckConfirmation",
 MESSAGES.demoDeepHealthCheckConfirmation,
 { type: "confirm" },

场景 738

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

),
 new ScenarioAction("deepHealthCheckExit", (state) => {
 if (!state.deepHealthCheckConfirmation) {
 process.exit();
 }
 }),
 new ScenarioAction("deepHealthCheck", async () => {
 const client = new SSMClient({});
 await client.send(
 new PutParameterCommand({
 Name: NAMES.ssmHealthCheckKey,
 Value: "deep",
 Overwrite: true,
 Type: "String",
 }),
);
 }),
 new ScenarioOutput("testDeepHealthCheck", MESSAGES.demoTestDeepHealthCheck),
 healthCheckLoop,
 loadBalancerLoop,
 new ScenarioInput(
 "killInstanceConfirmation",
 /**
 * @param {{ targetInstance: import('@aws-sdk/client-
ssm').InstanceInformation }} state
 */
 (state) =>
 MESSAGES.demoKillInstanceConfirmation.replace(
 "${INSTANCE_ID}",
 state.targetInstance.InstanceId,
),
 { type: "confirm" },
),
 new ScenarioAction("killInstanceExit", (state) => {
 if (!state.killInstanceConfirmation) {
 process.exit();
 }
 }),
 new ScenarioAction(
 "killInstance",
 /**
 * @param {{ targetInstance: import('@aws-sdk/client-
ssm').InstanceInformation }} state
 */

场景 739

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 async (state) => {
 const client = new AutoScalingClient({});
 await client.send(
 new TerminateInstanceInAutoScalingGroupCommand({
 InstanceId: state.targetInstance.InstanceId,
 ShouldDecrementDesiredCapacity: false,
 }),
);
 },
),
 new ScenarioOutput("testKillInstance", MESSAGES.demoTestKillInstance),
 healthCheckLoop,
 loadBalancerLoop,
 new ScenarioInput("failOpenConfirmation", MESSAGES.demoFailOpenConfirmation, {
 type: "confirm",
 }),
 new ScenarioAction("failOpenExit", (state) => {
 if (!state.failOpenConfirmation) {
 process.exit();
 }
 }),
 new ScenarioAction("failOpen", () => {
 const client = new SSMClient({});
 return client.send(
 new PutParameterCommand({
 Name: NAMES.ssmTableNameKey,
 Value: `fake-table-${Date.now()}`,
 Overwrite: true,
 Type: "String",
 }),
);
 }),
 new ScenarioOutput("testFailOpen", MESSAGES.demoFailOpenTest),
 healthCheckLoop,
 loadBalancerLoop,
 new ScenarioInput(
 "resetTableConfirmation",
 MESSAGES.demoResetTableConfirmation,
 { type: "confirm" },
),
 new ScenarioAction("resetTableExit", (state) => {
 if (!state.resetTableConfirmation) {
 process.exit();
 }

场景 740

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }),
 new ScenarioAction("resetTable", async () => {
 const client = new SSMClient({});
 await client.send(
 new PutParameterCommand({
 Name: NAMES.ssmTableNameKey,
 Value: NAMES.tableName,
 Overwrite: true,
 Type: "String",
 }),
);
 }),
 new ScenarioOutput("testResetTable", MESSAGES.demoTestResetTable),
 healthCheckLoop,
 loadBalancerLoop,
];

async function createSsmOnlyInstanceProfile() {
 const iamClient = new IAMClient({});
 const { Policy } = await iamClient.send(
 new CreatePolicyCommand({
 PolicyName: NAMES.ssmOnlyPolicyName,
 PolicyDocument: readFileSync(
 join(RESOURCES_PATH, "ssm_only_policy.json"),
),
 }),
);
 await iamClient.send(
 new CreateRoleCommand({
 RoleName: NAMES.ssmOnlyRoleName,
 AssumeRolePolicyDocument: JSON.stringify({
 Version: "2012-10-17",
 Statement: [
 {
 Effect: "Allow",
 Principal: { Service: "ec2.amazonaws.com" },
 Action: "sts:AssumeRole",
 },
],
 }),
 }),
);
 await iamClient.send(
 new AttachRolePolicyCommand({

场景 741

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 RoleName: NAMES.ssmOnlyRoleName,
 PolicyArn: Policy.Arn,
 }),
);
 await iamClient.send(
 new AttachRolePolicyCommand({
 RoleName: NAMES.ssmOnlyRoleName,
 PolicyArn: "arn:aws:iam::aws:policy/AmazonSSMManagedInstanceCore",
 }),
);
 const { InstanceProfile } = await iamClient.send(
 new CreateInstanceProfileCommand({
 InstanceProfileName: NAMES.ssmOnlyInstanceProfileName,
 }),
);
 await waitUntilInstanceProfileExists(
 { client: iamClient },
 { InstanceProfileName: NAMES.ssmOnlyInstanceProfileName },
);
 await iamClient.send(
 new AddRoleToInstanceProfileCommand({
 InstanceProfileName: NAMES.ssmOnlyInstanceProfileName,
 RoleName: NAMES.ssmOnlyRoleName,
 }),
);

 return InstanceProfile;
}

创建销毁所有资源的步骤。

import { unlinkSync } from "node:fs";

import { DynamoDBClient, DeleteTableCommand } from "@aws-sdk/client-dynamodb";
import {
 EC2Client,
 DeleteKeyPairCommand,
 DeleteLaunchTemplateCommand,
 RevokeSecurityGroupIngressCommand,
} from "@aws-sdk/client-ec2";
import {
 IAMClient,

场景 742

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 DeleteInstanceProfileCommand,
 RemoveRoleFromInstanceProfileCommand,
 DeletePolicyCommand,
 DeleteRoleCommand,
 DetachRolePolicyCommand,
 paginateListPolicies,
} from "@aws-sdk/client-iam";
import {
 AutoScalingClient,
 DeleteAutoScalingGroupCommand,
 TerminateInstanceInAutoScalingGroupCommand,
 UpdateAutoScalingGroupCommand,
 paginateDescribeAutoScalingGroups,
} from "@aws-sdk/client-auto-scaling";
import {
 DeleteLoadBalancerCommand,
 DeleteTargetGroupCommand,
 DescribeTargetGroupsCommand,
 ElasticLoadBalancingV2Client,
} from "@aws-sdk/client-elastic-load-balancing-v2";

import {
 ScenarioOutput,
 ScenarioInput,
 ScenarioAction,
} from "@aws-doc-sdk-examples/lib/scenario/index.js";
import { loadState } from "@aws-doc-sdk-examples/lib/scenario/steps-common.js";
import { retry } from "@aws-doc-sdk-examples/lib/utils/util-timers.js";

import { MESSAGES, NAMES } from "./constants.js";
import { findLoadBalancer } from "./shared.js";

/**
 * @type {import('@aws-doc-sdk-examples/lib/scenario.js').Step[]}
 */
export const destroySteps = [
 loadState,
 new ScenarioInput("destroy", MESSAGES.destroy, { type: "confirm" }),
 new ScenarioAction(
 "abort",
 (state) => state.destroy === false && process.exit(),
),
 new ScenarioAction("deleteTable", async (c) => {
 try {

场景 743

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const client = new DynamoDBClient({});
 await client.send(new DeleteTableCommand({ TableName: NAMES.tableName }));
 } catch (e) {
 c.deleteTableError = e;
 }
 }),
 new ScenarioOutput("deleteTableResult", (state) => {
 if (state.deleteTableError) {
 console.error(state.deleteTableError);
 return MESSAGES.deleteTableError.replace(
 "${TABLE_NAME}",
 NAMES.tableName,
);
 }
 return MESSAGES.deletedTable.replace("${TABLE_NAME}", NAMES.tableName);
 }),
 new ScenarioAction("deleteKeyPair", async (state) => {
 try {
 const client = new EC2Client({});
 await client.send(
 new DeleteKeyPairCommand({ KeyName: NAMES.keyPairName }),
);
 unlinkSync(`${NAMES.keyPairName}.pem`);
 } catch (e) {
 state.deleteKeyPairError = e;
 }
 }),
 new ScenarioOutput("deleteKeyPairResult", (state) => {
 if (state.deleteKeyPairError) {
 console.error(state.deleteKeyPairError);
 return MESSAGES.deleteKeyPairError.replace(
 "${KEY_PAIR_NAME}",
 NAMES.keyPairName,
);
 }
 return MESSAGES.deletedKeyPair.replace(
 "${KEY_PAIR_NAME}",
 NAMES.keyPairName,
);
 }),
 new ScenarioAction("detachPolicyFromRole", async (state) => {
 try {
 const client = new IAMClient({});
 const policy = await findPolicy(NAMES.instancePolicyName);

场景 744

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 if (!policy) {
 state.detachPolicyFromRoleError = new Error(
 `Policy ${NAMES.instancePolicyName} not found.`,
);
 } else {
 await client.send(
 new DetachRolePolicyCommand({
 RoleName: NAMES.instanceRoleName,
 PolicyArn: policy.Arn,
 }),
);
 }
 } catch (e) {
 state.detachPolicyFromRoleError = e;
 }
 }),
 new ScenarioOutput("detachedPolicyFromRole", (state) => {
 if (state.detachPolicyFromRoleError) {
 console.error(state.detachPolicyFromRoleError);
 return MESSAGES.detachPolicyFromRoleError
 .replace("${INSTANCE_POLICY_NAME}", NAMES.instancePolicyName)
 .replace("${INSTANCE_ROLE_NAME}", NAMES.instanceRoleName);
 }
 return MESSAGES.detachedPolicyFromRole
 .replace("${INSTANCE_POLICY_NAME}", NAMES.instancePolicyName)
 .replace("${INSTANCE_ROLE_NAME}", NAMES.instanceRoleName);
 }),
 new ScenarioAction("deleteInstancePolicy", async (state) => {
 const client = new IAMClient({});
 const policy = await findPolicy(NAMES.instancePolicyName);

 if (!policy) {
 state.deletePolicyError = new Error(
 `Policy ${NAMES.instancePolicyName} not found.`,
);
 } else {
 return client.send(
 new DeletePolicyCommand({
 PolicyArn: policy.Arn,
 }),
);
 }
 }),

场景 745

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 new ScenarioOutput("deletePolicyResult", (state) => {
 if (state.deletePolicyError) {
 console.error(state.deletePolicyError);
 return MESSAGES.deletePolicyError.replace(
 "${INSTANCE_POLICY_NAME}",
 NAMES.instancePolicyName,
);
 }
 return MESSAGES.deletedPolicy.replace(
 "${INSTANCE_POLICY_NAME}",
 NAMES.instancePolicyName,
);
 }),
 new ScenarioAction("removeRoleFromInstanceProfile", async (state) => {
 try {
 const client = new IAMClient({});
 await client.send(
 new RemoveRoleFromInstanceProfileCommand({
 RoleName: NAMES.instanceRoleName,
 InstanceProfileName: NAMES.instanceProfileName,
 }),
);
 } catch (e) {
 state.removeRoleFromInstanceProfileError = e;
 }
 }),
 new ScenarioOutput("removeRoleFromInstanceProfileResult", (state) => {
 if (state.removeRoleFromInstanceProfile) {
 console.error(state.removeRoleFromInstanceProfileError);
 return MESSAGES.removeRoleFromInstanceProfileError
 .replace("${INSTANCE_PROFILE_NAME}", NAMES.instanceProfileName)
 .replace("${INSTANCE_ROLE_NAME}", NAMES.instanceRoleName);
 }
 return MESSAGES.removedRoleFromInstanceProfile
 .replace("${INSTANCE_PROFILE_NAME}", NAMES.instanceProfileName)
 .replace("${INSTANCE_ROLE_NAME}", NAMES.instanceRoleName);
 }),
 new ScenarioAction("deleteInstanceRole", async (state) => {
 try {
 const client = new IAMClient({});
 await client.send(
 new DeleteRoleCommand({
 RoleName: NAMES.instanceRoleName,
 }),

场景 746

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

);
 } catch (e) {
 state.deleteInstanceRoleError = e;
 }
 }),
 new ScenarioOutput("deleteInstanceRoleResult", (state) => {
 if (state.deleteInstanceRoleError) {
 console.error(state.deleteInstanceRoleError);
 return MESSAGES.deleteInstanceRoleError.replace(
 "${INSTANCE_ROLE_NAME}",
 NAMES.instanceRoleName,
);
 }
 return MESSAGES.deletedInstanceRole.replace(
 "${INSTANCE_ROLE_NAME}",
 NAMES.instanceRoleName,
);
 }),
 new ScenarioAction("deleteInstanceProfile", async (state) => {
 try {
 const client = new IAMClient({});
 await client.send(
 new DeleteInstanceProfileCommand({
 InstanceProfileName: NAMES.instanceProfileName,
 }),
);
 } catch (e) {
 state.deleteInstanceProfileError = e;
 }
 }),
 new ScenarioOutput("deleteInstanceProfileResult", (state) => {
 if (state.deleteInstanceProfileError) {
 console.error(state.deleteInstanceProfileError);
 return MESSAGES.deleteInstanceProfileError.replace(
 "${INSTANCE_PROFILE_NAME}",
 NAMES.instanceProfileName,
);
 }
 return MESSAGES.deletedInstanceProfile.replace(
 "${INSTANCE_PROFILE_NAME}",
 NAMES.instanceProfileName,
);
 }),
 new ScenarioAction("deleteAutoScalingGroup", async (state) => {

场景 747

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 try {
 await terminateGroupInstances(NAMES.autoScalingGroupName);
 await retry({ intervalInMs: 60000, maxRetries: 60 }, async () => {
 await deleteAutoScalingGroup(NAMES.autoScalingGroupName);
 });
 } catch (e) {
 state.deleteAutoScalingGroupError = e;
 }
 }),
 new ScenarioOutput("deleteAutoScalingGroupResult", (state) => {
 if (state.deleteAutoScalingGroupError) {
 console.error(state.deleteAutoScalingGroupError);
 return MESSAGES.deleteAutoScalingGroupError.replace(
 "${AUTO_SCALING_GROUP_NAME}",
 NAMES.autoScalingGroupName,
);
 }
 return MESSAGES.deletedAutoScalingGroup.replace(
 "${AUTO_SCALING_GROUP_NAME}",
 NAMES.autoScalingGroupName,
);
 }),
 new ScenarioAction("deleteLaunchTemplate", async (state) => {
 const client = new EC2Client({});
 try {
 await client.send(
 new DeleteLaunchTemplateCommand({
 LaunchTemplateName: NAMES.launchTemplateName,
 }),
);
 } catch (e) {
 state.deleteLaunchTemplateError = e;
 }
 }),
 new ScenarioOutput("deleteLaunchTemplateResult", (state) => {
 if (state.deleteLaunchTemplateError) {
 console.error(state.deleteLaunchTemplateError);
 return MESSAGES.deleteLaunchTemplateError.replace(
 "${LAUNCH_TEMPLATE_NAME}",
 NAMES.launchTemplateName,
);
 }
 return MESSAGES.deletedLaunchTemplate.replace(
 "${LAUNCH_TEMPLATE_NAME}",

场景 748

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 NAMES.launchTemplateName,
);
 }),
 new ScenarioAction("deleteLoadBalancer", async (state) => {
 try {
 const client = new ElasticLoadBalancingV2Client({});
 const loadBalancer = await findLoadBalancer(NAMES.loadBalancerName);
 await client.send(
 new DeleteLoadBalancerCommand({
 LoadBalancerArn: loadBalancer.LoadBalancerArn,
 }),
);
 await retry({ intervalInMs: 1000, maxRetries: 60 }, async () => {
 const lb = await findLoadBalancer(NAMES.loadBalancerName);
 if (lb) {
 throw new Error("Load balancer still exists.");
 }
 });
 } catch (e) {
 state.deleteLoadBalancerError = e;
 }
 }),
 new ScenarioOutput("deleteLoadBalancerResult", (state) => {
 if (state.deleteLoadBalancerError) {
 console.error(state.deleteLoadBalancerError);
 return MESSAGES.deleteLoadBalancerError.replace(
 "${LB_NAME}",
 NAMES.loadBalancerName,
);
 }
 return MESSAGES.deletedLoadBalancer.replace(
 "${LB_NAME}",
 NAMES.loadBalancerName,
);
 }),
 new ScenarioAction("deleteLoadBalancerTargetGroup", async (state) => {
 const client = new ElasticLoadBalancingV2Client({});
 try {
 const { TargetGroups } = await client.send(
 new DescribeTargetGroupsCommand({
 Names: [NAMES.loadBalancerTargetGroupName],
 }),
);

场景 749

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 await retry({ intervalInMs: 1000, maxRetries: 30 }, () =>
 client.send(
 new DeleteTargetGroupCommand({
 TargetGroupArn: TargetGroups[0].TargetGroupArn,
 }),
),
);
 } catch (e) {
 state.deleteLoadBalancerTargetGroupError = e;
 }
 }),
 new ScenarioOutput("deleteLoadBalancerTargetGroupResult", (state) => {
 if (state.deleteLoadBalancerTargetGroupError) {
 console.error(state.deleteLoadBalancerTargetGroupError);
 return MESSAGES.deleteLoadBalancerTargetGroupError.replace(
 "${TARGET_GROUP_NAME}",
 NAMES.loadBalancerTargetGroupName,
);
 }
 return MESSAGES.deletedLoadBalancerTargetGroup.replace(
 "${TARGET_GROUP_NAME}",
 NAMES.loadBalancerTargetGroupName,
);
 }),
 new ScenarioAction("detachSsmOnlyRoleFromProfile", async (state) => {
 try {
 const client = new IAMClient({});
 await client.send(
 new RemoveRoleFromInstanceProfileCommand({
 InstanceProfileName: NAMES.ssmOnlyInstanceProfileName,
 RoleName: NAMES.ssmOnlyRoleName,
 }),
);
 } catch (e) {
 state.detachSsmOnlyRoleFromProfileError = e;
 }
 }),
 new ScenarioOutput("detachSsmOnlyRoleFromProfileResult", (state) => {
 if (state.detachSsmOnlyRoleFromProfileError) {
 console.error(state.detachSsmOnlyRoleFromProfileError);
 return MESSAGES.detachSsmOnlyRoleFromProfileError
 .replace("${ROLE_NAME}", NAMES.ssmOnlyRoleName)
 .replace("${PROFILE_NAME}", NAMES.ssmOnlyInstanceProfileName);
 }

场景 750

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 return MESSAGES.detachedSsmOnlyRoleFromProfile
 .replace("${ROLE_NAME}", NAMES.ssmOnlyRoleName)
 .replace("${PROFILE_NAME}", NAMES.ssmOnlyInstanceProfileName);
 }),
 new ScenarioAction("detachSsmOnlyCustomRolePolicy", async (state) => {
 try {
 const iamClient = new IAMClient({});
 const ssmOnlyPolicy = await findPolicy(NAMES.ssmOnlyPolicyName);
 await iamClient.send(
 new DetachRolePolicyCommand({
 RoleName: NAMES.ssmOnlyRoleName,
 PolicyArn: ssmOnlyPolicy.Arn,
 }),
);
 } catch (e) {
 state.detachSsmOnlyCustomRolePolicyError = e;
 }
 }),
 new ScenarioOutput("detachSsmOnlyCustomRolePolicyResult", (state) => {
 if (state.detachSsmOnlyCustomRolePolicyError) {
 console.error(state.detachSsmOnlyCustomRolePolicyError);
 return MESSAGES.detachSsmOnlyCustomRolePolicyError
 .replace("${ROLE_NAME}", NAMES.ssmOnlyRoleName)
 .replace("${POLICY_NAME}", NAMES.ssmOnlyPolicyName);
 }
 return MESSAGES.detachedSsmOnlyCustomRolePolicy
 .replace("${ROLE_NAME}", NAMES.ssmOnlyRoleName)
 .replace("${POLICY_NAME}", NAMES.ssmOnlyPolicyName);
 }),
 new ScenarioAction("detachSsmOnlyAWSRolePolicy", async (state) => {
 try {
 const iamClient = new IAMClient({});
 await iamClient.send(
 new DetachRolePolicyCommand({
 RoleName: NAMES.ssmOnlyRoleName,
 PolicyArn: "arn:aws:iam::aws:policy/AmazonSSMManagedInstanceCore",
 }),
);
 } catch (e) {
 state.detachSsmOnlyAWSRolePolicyError = e;
 }
 }),
 new ScenarioOutput("detachSsmOnlyAWSRolePolicyResult", (state) => {
 if (state.detachSsmOnlyAWSRolePolicyError) {

场景 751

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 console.error(state.detachSsmOnlyAWSRolePolicyError);
 return MESSAGES.detachSsmOnlyAWSRolePolicyError
 .replace("${ROLE_NAME}", NAMES.ssmOnlyRoleName)
 .replace("${POLICY_NAME}", "AmazonSSMManagedInstanceCore");
 }
 return MESSAGES.detachedSsmOnlyAWSRolePolicy
 .replace("${ROLE_NAME}", NAMES.ssmOnlyRoleName)
 .replace("${POLICY_NAME}", "AmazonSSMManagedInstanceCore");
 }),
 new ScenarioAction("deleteSsmOnlyInstanceProfile", async (state) => {
 try {
 const iamClient = new IAMClient({});
 await iamClient.send(
 new DeleteInstanceProfileCommand({
 InstanceProfileName: NAMES.ssmOnlyInstanceProfileName,
 }),
);
 } catch (e) {
 state.deleteSsmOnlyInstanceProfileError = e;
 }
 }),
 new ScenarioOutput("deleteSsmOnlyInstanceProfileResult", (state) => {
 if (state.deleteSsmOnlyInstanceProfileError) {
 console.error(state.deleteSsmOnlyInstanceProfileError);
 return MESSAGES.deleteSsmOnlyInstanceProfileError.replace(
 "${INSTANCE_PROFILE_NAME}",
 NAMES.ssmOnlyInstanceProfileName,
);
 }
 return MESSAGES.deletedSsmOnlyInstanceProfile.replace(
 "${INSTANCE_PROFILE_NAME}",
 NAMES.ssmOnlyInstanceProfileName,
);
 }),
 new ScenarioAction("deleteSsmOnlyPolicy", async (state) => {
 try {
 const iamClient = new IAMClient({});
 const ssmOnlyPolicy = await findPolicy(NAMES.ssmOnlyPolicyName);
 await iamClient.send(
 new DeletePolicyCommand({
 PolicyArn: ssmOnlyPolicy.Arn,
 }),
);
 } catch (e) {

场景 752

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 state.deleteSsmOnlyPolicyError = e;
 }
 }),
 new ScenarioOutput("deleteSsmOnlyPolicyResult", (state) => {
 if (state.deleteSsmOnlyPolicyError) {
 console.error(state.deleteSsmOnlyPolicyError);
 return MESSAGES.deleteSsmOnlyPolicyError.replace(
 "${POLICY_NAME}",
 NAMES.ssmOnlyPolicyName,
);
 }
 return MESSAGES.deletedSsmOnlyPolicy.replace(
 "${POLICY_NAME}",
 NAMES.ssmOnlyPolicyName,
);
 }),
 new ScenarioAction("deleteSsmOnlyRole", async (state) => {
 try {
 const iamClient = new IAMClient({});
 await iamClient.send(
 new DeleteRoleCommand({
 RoleName: NAMES.ssmOnlyRoleName,
 }),
);
 } catch (e) {
 state.deleteSsmOnlyRoleError = e;
 }
 }),
 new ScenarioOutput("deleteSsmOnlyRoleResult", (state) => {
 if (state.deleteSsmOnlyRoleError) {
 console.error(state.deleteSsmOnlyRoleError);
 return MESSAGES.deleteSsmOnlyRoleError.replace(
 "${ROLE_NAME}",
 NAMES.ssmOnlyRoleName,
);
 }
 return MESSAGES.deletedSsmOnlyRole.replace(
 "${ROLE_NAME}",
 NAMES.ssmOnlyRoleName,
);
 }),
 new ScenarioAction(
 "revokeSecurityGroupIngress",
 async (

场景 753

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 /** @type {{ myIp: string, defaultSecurityGroup: { GroupId: string } }} */
 state,
) => {
 const ec2Client = new EC2Client({});

 try {
 await ec2Client.send(
 new RevokeSecurityGroupIngressCommand({
 GroupId: state.defaultSecurityGroup.GroupId,
 CidrIp: `${state.myIp}/32`,
 FromPort: 80,
 ToPort: 80,
 IpProtocol: "tcp",
 }),
);
 } catch (e) {
 state.revokeSecurityGroupIngressError = e;
 }
 },
),
 new ScenarioOutput("revokeSecurityGroupIngressResult", (state) => {
 if (state.revokeSecurityGroupIngressError) {
 console.error(state.revokeSecurityGroupIngressError);
 return MESSAGES.revokeSecurityGroupIngressError.replace(
 "${IP}",
 state.myIp,
);
 }
 return MESSAGES.revokedSecurityGroupIngress.replace("${IP}", state.myIp);
 }),
];

/**
 * @param {string} policyName
 */
async function findPolicy(policyName) {
 const client = new IAMClient({});
 const paginatedPolicies = paginateListPolicies({ client }, {});
 for await (const page of paginatedPolicies) {
 const policy = page.Policies.find((p) => p.PolicyName === policyName);
 if (policy) {
 return policy;
 }
 }

场景 754

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

}

/**
 * @param {string} groupName
 */
async function deleteAutoScalingGroup(groupName) {
 const client = new AutoScalingClient({});
 try {
 await client.send(
 new DeleteAutoScalingGroupCommand({
 AutoScalingGroupName: groupName,
 }),
);
 } catch (err) {
 if (!(err instanceof Error)) {
 throw err;
 }
 console.log(err.name);
 throw err;
 }
}

/**
 * @param {string} groupName
 */
async function terminateGroupInstances(groupName) {
 const autoScalingClient = new AutoScalingClient({});
 const group = await findAutoScalingGroup(groupName);
 await autoScalingClient.send(
 new UpdateAutoScalingGroupCommand({
 AutoScalingGroupName: group.AutoScalingGroupName,
 MinSize: 0,
 }),
);
 for (const i of group.Instances) {
 await retry({ intervalInMs: 1000, maxRetries: 30 }, () =>
 autoScalingClient.send(
 new TerminateInstanceInAutoScalingGroupCommand({
 InstanceId: i.InstanceId,
 ShouldDecrementDesiredCapacity: true,
 }),
),
);
 }

场景 755

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

}

async function findAutoScalingGroup(groupName) {
 const client = new AutoScalingClient({});
 const paginatedGroups = paginateDescribeAutoScalingGroups({ client }, {});
 for await (const page of paginatedGroups) {
 const group = page.AutoScalingGroups.find(
 (g) => g.AutoScalingGroupName === groupName,
);
 if (group) {
 return group;
 }
 }
 throw new Error(`Auto scaling group ${groupName} not found.`);
}

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的以下主
题。

• AttachLoadBalancerTargetGroups

• CreateAutoScalingGroup

• CreateInstanceProfile

• CreateLaunchTemplate

• CreateListener

• CreateLoadBalancer

• CreateTargetGroup

• DeleteAutoScalingGroup

• DeleteInstanceProfile

• DeleteLaunchTemplate

• DeleteLoadBalancer

• DeleteTargetGroup

• DescribeAutoScalingGroups

• DescribeAvailabilityZones

• DescribeIamInstanceProfileAssociations

• DescribeInstances

• DescribeLoadBalancers场景 756

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/auto-scaling/command/AttachLoadBalancerTargetGroupsCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/auto-scaling/command/CreateAutoScalingGroupCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/CreateInstanceProfileCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/CreateLaunchTemplateCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/CreateListenerCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/CreateLoadBalancerCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/CreateTargetGroupCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/auto-scaling/command/DeleteAutoScalingGroupCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/DeleteInstanceProfileCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/DeleteLaunchTemplateCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/DeleteLoadBalancerCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/DeleteTargetGroupCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/auto-scaling/command/DescribeAutoScalingGroupsCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/DescribeAvailabilityZonesCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/DescribeIamInstanceProfileAssociationsCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/DescribeInstancesCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/DescribeLoadBalancersCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• DescribeSubnets

• DescribeTargetGroups

• DescribeTargetHealth

• DescribeVpcs

• RebootInstances

• ReplaceIamInstanceProfileAssociation

• TerminateInstanceInAutoScalingGroup

• UpdateAutoScalingGroup

Amazon Entity Resolution 数据匹配服务 使用适用于 JavaScript (v3)
的 SDK 的示例

以下代码示例向您展示了如何通过使用 适用于 JavaScript 的 Amazon SDK (v3) 来执行操作和实现常
见场景 Amazon Entity Resolution 数据匹配服务。

操作是大型程序的代码摘录，必须在上下文中运行。您可以通过操作了解如何调用单个服务函数，还可
以通过函数相关场景的上下文查看操作。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

• 开始使用

• 操作

开始使用

你好 Amazon Entity Resolution 数据匹配服务

以下代码示例展示了如何开始使用 Amazon Entity Resolution 数据匹配服务。

Amazon Entity Resolution 数据匹配服务 757

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/DescribeSubnetsCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/DescribeTargetGroupsCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/DescribeTargetHealthCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/DescribeVpcsCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/RebootInstancesCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/ReplaceIamInstanceProfileAssociationCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/auto-scaling/command/TerminateInstanceInAutoScalingGroupCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/auto-scaling/command/UpdateAutoScalingGroupCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { fileURLToPath } from "node:url";
import {
 EntityResolutionClient,
 ListMatchingWorkflowsCommand,
} from "@aws-sdk/client-entityresolution";

export const main = async () => {
 const region = "eu-west-1";
 const erClient = new EntityResolutionClient({ region: region });
 try {
 const command = new ListMatchingWorkflowsCommand({});
 const response = await erClient.send(command);
 const workflowSummaries = response.workflowSummaries;
 for (const workflowSummary of workflowSummaries) {
 console.log(`Attribute name: ${workflowSummaries[0].workflowName} `);
 }
 if (workflowSummaries.length === 0) {
 console.log("No matching workflows found.");
 }
 } catch (error) {
 console.error(
 `An error occurred in listing the workflow summaries: ${error.message} \n
 Exiting program.`,
);
 return;
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考ListMatchingWorkflows中的。

开始使用 758

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/entityresolution#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/entityresolution/command/ListMatchingWorkflowsCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

操作

CreateMatchingWorkflow

以下代码示例演示了如何使用 CreateMatchingWorkflow。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

//The default inputs for this demo are read from the ../inputs.json.

import { fileURLToPath } from "node:url";

import {
 CreateMatchingWorkflowCommand,
 EntityResolutionClient,
} from "@aws-sdk/client-entityresolution";
import data from "../inputs.json" with { type: "json" };

const region = "eu-west-1";
const erClient = new EntityResolutionClient({ region: region });

export const main = async () => {
 const createMatchingWorkflowParams = {
 roleArn: `${data.inputs.roleArn}`,
 workflowName: `${data.inputs.workflowName}`,
 description: "Created by using the AWS SDK for JavaScript (v3).",
 inputSourceConfig: [
 {
 inputSourceARN: `${data.inputs.JSONinputSourceARN}`,
 schemaName: `${data.inputs.schemaNameJson}`,
 applyNormalization: false,
 },
 {
 inputSourceARN: `${data.inputs.CSVinputSourceARN}`,
 schemaName: `${data.inputs.schemaNameCSV}`,

操作 759

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/entityresolution#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 applyNormalization: false,
 },
],
 outputSourceConfig: [
 {
 outputS3Path: `s3://${data.inputs.myBucketName}/eroutput`,
 output: [
 {
 name: "id",
 },
 {
 name: "name",
 },
 {
 name: "email",
 },
 {
 name: "phone",
 },
],
 applyNormalization: false,
 },
],
 resolutionTechniques: { resolutionType: "ML_MATCHING" },
 };
 try {
 const command = new CreateMatchingWorkflowCommand(
 createMatchingWorkflowParams,
);
 const response = await erClient.send(command);

 console.log(
 `Workflow created successfully.\n The workflow ARN is:
 ${response.workflowArn}`,
);
 } catch (caught) {
 console.error(caught.message);
 throw caught;
 }
};

操作 760

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考CreateMatchingWorkflow中的。

CreateSchemaMapping

以下代码示例演示了如何使用 CreateSchemaMapping。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

//The default inputs for this demo are read from the ../inputs.json.

import { fileURLToPath } from "node:url";

import {
 CreateSchemaMappingCommand,
 EntityResolutionClient,
} from "@aws-sdk/client-entityresolution";
import data from "../inputs.json" with { type: "json" };

const region = "eu-west-1";
const erClient = new EntityResolutionClient({ region: region });

export const main = async () => {
 const createSchemaMappingParamsJson = {
 schemaName: `${data.inputs.schemaNameJson}`,
 mappedInputFields: [
 {
 fieldName: "id",
 type: "UNIQUE_ID",
 },
 {
 fieldName: "name",
 type: "NAME",
 },
 {

操作 761

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/entityresolution/command/CreateMatchingWorkflowCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/entityresolution#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 fieldName: "email",
 type: "EMAIL_ADDRESS",
 },
],
 };
 const createSchemaMappingParamsCSV = {
 schemaName: `${data.inputs.schemaNameCSV}`,
 mappedInputFields: [
 {
 fieldName: "id",
 type: "UNIQUE_ID",
 },
 {
 fieldName: "name",
 type: "NAME",
 },
 {
 fieldName: "email",
 type: "EMAIL_ADDRESS",
 },
 {
 fieldName: "phone",
 type: "PROVIDER_ID",
 subType: "STRING",
 },
],
 };
 try {
 const command = new CreateSchemaMappingCommand(
 createSchemaMappingParamsJson,
);
 const response = await erClient.send(command);
 console.log("The JSON schema mapping name is ", response.schemaName);
 } catch (error) {
 console.log("error ", error.message);
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考CreateSchemaMapping中的。

操作 762

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/entityresolution/command/CreateSchemaMappingCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

DeleteMatchingWorkflow

以下代码示例演示了如何使用 DeleteMatchingWorkflow。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

//The default inputs for this demo are read from the ../inputs.json.

import { fileURLToPath } from "node:url";

import {
 DeleteMatchingWorkflowCommand,
 EntityResolutionClient,
} from "@aws-sdk/client-entityresolution";
import data from "../inputs.json" with { type: "json" };

const region = "eu-west-1";
const erClient = new EntityResolutionClient({ region: region });

export const main = async () => {
 try {
 const deleteWorkflowParams = {
 workflowName: `${data.inputs.workflowName}`,
 };
 const command = new DeleteMatchingWorkflowCommand(deleteWorkflowParams);
 const response = await erClient.send(command);
 console.log("Workflow deleted successfully!", response);
 } catch (error) {
 console.log("error ", error);
 }
};

操作 763

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/entityresolution#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考DeleteMatchingWorkflow中的。

DeleteSchemaMapping

以下代码示例演示了如何使用 DeleteSchemaMapping。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

//The default inputs for this demo are read from the ../inputs.json.

import { fileURLToPath } from "node:url";

import {
 DeleteSchemaMappingCommand,
 EntityResolutionClient,
} from "@aws-sdk/client-entityresolution";
import data from "../inputs.json" with { type: "json" };

const region = "eu-west-1";
const erClient = new EntityResolutionClient({ region: region });

export const main = async () => {
 const deleteSchemaMapping = {
 schemaName: `${data.inputs.schemaNameJson}`,
 };
 try {
 const command = new DeleteSchemaMappingCommand(deleteSchemaMapping);
 const response = await erClient.send(command);
 console.log("Schema mapping deleted successfully. ", response);
 } catch (error) {
 console.log("error ", error);
 }
};

操作 764

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/entityresolution/command/DeleteMatchingWorkflowCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/entityresolution#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考DeleteSchemaMapping中的。

GetMatchingJob

以下代码示例演示了如何使用 GetMatchingJob。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

//The default inputs for this demo are read from the ../inputs.json.

import { fileURLToPath } from "node:url";

import {
 GetMatchingJobCommand,
 EntityResolutionClient,
} from "@aws-sdk/client-entityresolution";
import data from "../inputs.json" with { type: "json" };

const region = "eu-west-1";
const erClient = new EntityResolutionClient({ region: region });

export const main = async () => {
 async function getInfo() {
 const getJobInfoParams = {
 workflowName: `${data.inputs.workflowName}`,
 jobId: `${data.inputs.jobId}`,
 };
 try {
 const command = new GetMatchingJobCommand(getJobInfoParams);
 const response = await erClient.send(command);
 console.log(`Job status: ${response.status}`);

操作 765

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/entityresolution/command/DeleteSchemaMappingCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/entityresolution#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 } catch (error) {
 console.log("error ", error.message);
 }
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考GetMatchingJob中
的。

GetSchemaMapping

以下代码示例演示了如何使用 GetSchemaMapping。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

//The default inputs for this demo are read from the ../inputs.json.

import { fileURLToPath } from "node:url";

import {
 GetSchemaMappingCommand,
 EntityResolutionClient,
} from "@aws-sdk/client-entityresolution";
import data from "../inputs.json" with { type: "json" };

const region = "eu-west-1";
const erClient = new EntityResolutionClient({ region: region });

export const main = async () => {
 const getSchemaMappingJsonParams = {
 schemaName: `${data.inputs.schemaNameJson}`,
 };

操作 766

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/entityresolution/command/GetMatchingJobCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/entityresolution#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 try {
 const command = new GetSchemaMappingCommand(getSchemaMappingJsonParams);
 const response = await erClient.send(command);
 console.log(response);
 console.log(
 `Schema mapping for the JSON data:\n ${response.mappedInputFields[0]}`,
);
 console.log("Schema mapping ARN is: ", response.schemaArn);
 } catch (caught) {
 console.error(caught.message);
 throw caught;
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考GetSchemaMapping中的。

ListSchemaMappings

以下代码示例演示了如何使用 ListSchemaMappings。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

//The default inputs for this demo are read from the ../inputs.json.

import { fileURLToPath } from "node:url";

import {
 ListSchemaMappingsCommand,
 EntityResolutionClient,
} from "@aws-sdk/client-entityresolution";
import data from "../inputs.json" with { type: "json" };

操作 767

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/entityresolution/command/GetSchemaMappingCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/entityresolution#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const region = "eu-west-1";
const erClient = new EntityResolutionClient({ region: region });

export const main = async () => {
 async function getInfo() {
 const listSchemaMappingsParams = {
 workflowName: `${data.inputs.workflowName}`,
 jobId: `${data.inputs.jobId}`,
 };
 try {
 const command = new ListSchemaMappingsCommand(listSchemaMappingsParams);
 const response = await erClient.send(command);
 const noOfSchemas = response.schemaList.length;
 for (let i = 0; i < noOfSchemas; i++) {
 console.log(
 `Schema Mapping Name: ${response.schemaList[i].schemaName} `,
);
 }
 } catch (caught) {
 console.error(caught.message);
 throw caught;
 }
 }

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考ListSchemaMappings中的。

StartMatchingJob

以下代码示例演示了如何使用 StartMatchingJob。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

操作 768

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/entityresolution/command/ListSchemaMappingsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/entityresolution#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

//The default inputs for this demo are read from the ../inputs.json.

import { fileURLToPath } from "node:url";
import {
 StartMatchingJobCommand,
 EntityResolutionClient,
} from "@aws-sdk/client-entityresolution";
import data from "../inputs.json" with { type: "json" };

const region = "eu-west-1";
const erClient = new EntityResolutionClient({ region: region });

export const main = async () => {
 const matchingJobOfWorkflowParams = {
 workflowName: `${data.inputs.workflowName}`,
 };
 try {
 const command = new StartMatchingJobCommand(matchingJobOfWorkflowParams);
 const response = await erClient.send(command);
 console.log(`Job ID: ${response.jobID} \n
The matching job was successfully started.`);
 } catch (caught) {
 console.error(caught.message);
 throw caught;
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考StartMatchingJob中
的。

TagResource

以下代码示例演示了如何使用 TagResource。

操作 769

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/entityresolution/command/StartMatchingJobCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

//The default inputs for this demo are read from the ../inputs.json.

import { fileURLToPath } from "node:url";

import {
 TagResourceCommand,
 EntityResolutionClient,
} from "@aws-sdk/client-entityresolution";
import data from "../inputs.json" with { type: "json" };

const region = "eu-west-1";
const erClient = new EntityResolutionClient({ region: region });

export const main = async () => {
 const tagResourceCommandParams = {
 resourceArn: `${data.inputs.schemaArn}`,
 tags: {
 tag1: "tag1Value",
 tag2: "tag2Value",
 },
 };
 try {
 const command = new TagResourceCommand(tagResourceCommandParams);
 const response = await erClient.send(command);
 console.log("Successfully tagged the resource.");
 } catch (caught) {
 console.error(caught.message);
 throw caught;
 }
};

操作 770

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/entityresolution#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考TagResource中的。

EventBridge 使用适用于 JavaScript (v3) 的 SDK 的示例

以下代码示例向您展示了如何通过使用 适用于 JavaScript 的 Amazon SDK (v3) 来执行操作和实现常
见场景 EventBridge。

操作是大型程序的代码摘录，必须在上下文中运行。您可以通过操作了解如何调用单个服务函数，还可
以通过函数相关场景的上下文查看操作。

场景是向您演示如何通过在一个服务中调用多个函数或与其他 Amazon Web Services 服务结合来完成
特定任务的代码示例。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

• 操作

• 场景

操作

PutEvents

以下代码示例演示了如何使用 PutEvents。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

导入 SDK 和客户端模块，然后调用 API。

import {
 EventBridgeClient,

EventBridge 771

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/entityresolution/command/TagResourceCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/eventbridge#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 PutEventsCommand,
} from "@aws-sdk/client-eventbridge";

export const putEvents = async (
 source = "eventbridge.integration.test",
 detailType = "greeting",
 resources = [],
) => {
 const client = new EventBridgeClient({});

 const response = await client.send(
 new PutEventsCommand({
 Entries: [
 {
 Detail: JSON.stringify({ greeting: "Hello there." }),
 DetailType: detailType,
 Resources: resources,
 Source: source,
 },
],
 }),
);

 console.log("PutEvents response:");
 console.log(response);
 // PutEvents response:
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '3d0df73d-dcea-4a23-ae0d-f5556a3ac109',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // Entries: [{ EventId: '51620841-5af4-6402-d9bc-b77734991eb5' }],
 // FailedEntryCount: 0
 // }

 return response;
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考PutEvents中的。

操作 772

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/eventbridge/command/PutEventsCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

PutRule

以下代码示例演示了如何使用 PutRule。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

导入 SDK 和客户端模块，然后调用 API。

import { EventBridgeClient, PutRuleCommand } from "@aws-sdk/client-eventbridge";

export const putRule = async (
 ruleName = "some-rule",
 source = "some-source",
) => {
 const client = new EventBridgeClient({});

 const response = await client.send(
 new PutRuleCommand({
 Name: ruleName,
 EventPattern: JSON.stringify({ source: [source] }),
 State: "ENABLED",
 EventBusName: "default",
 }),
);

 console.log("PutRule response:");
 console.log(response);
 // PutRule response:
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: 'd7292ced-1544-421b-842f-596326bc7072',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },

操作 773

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/eventbridge#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // RuleArn: 'arn:aws:events:us-east-1:xxxxxxxxxxxx:rule/
EventBridgeTestRule-1696280037720'
 // }
 return response;
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考PutRule中的。

PutTargets

以下代码示例演示了如何使用 PutTargets。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

导入 SDK 和客户端模块，然后调用 API。

import {
 EventBridgeClient,
 PutTargetsCommand,
} from "@aws-sdk/client-eventbridge";

export const putTarget = async (
 existingRuleName = "some-rule",
 targetArn = "arn:aws:lambda:us-east-1:000000000000:function:test-func",
 uniqueId = Date.now().toString(),
) => {
 const client = new EventBridgeClient({});
 const response = await client.send(
 new PutTargetsCommand({
 Rule: existingRuleName,
 Targets: [
 {
 Arn: targetArn,
 Id: uniqueId,
 },

操作 774

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/eventbridge/command/PutRuleCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/eventbridge#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

],
 }),
);

 console.log("PutTargets response:");
 console.log(response);
 // PutTargets response:
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: 'f5b23b9a-2c17-45c1-ad5c-f926c3692e3d',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // FailedEntries: [],
 // FailedEntryCount: 0
 // }

 return response;
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考PutTargets中的。

场景

使用计划的事件调用 Lambda 函数

以下代码示例显示如何创建由 Amazon EventBridge 计划事件调用的 Amazon Lambda 函数。

适用于 JavaScript (v3) 的软件开发工具包

演示如何创建调用函数的 Amazon EventBridge 计划事件。 Amazon Lambda 配置 EventBridge 为
使用 cron 表达式来调度 Lambda 函数的调用时间。在此示例中，您将使用 Lambda 运行时 API 创
建一个 Lambda 函数。 JavaScript 此示例调用不同的 Amazon 服务来执行特定的用例。此示例展
示了如何创建一个应用程序，在其一周年纪念日时向员工发送移动短信表示祝贺。

有关如何设置和运行的完整源代码和说明，请参阅上的完整示例GitHub。

该示例也可在 适用于 JavaScript 的 Amazon SDK v3 开发人员指南中找到。

场景 775

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/eventbridge/command/PutTargetsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/lambda-scheduled-events
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/scheduled-events-invoking-lambda-example.html

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

本示例中使用的服务

• CloudWatch 日志

• DynamoDB

• EventBridge

• Lambda

• Amazon SNS

使用适用于 JavaScript (v3) 的软件开发工具包的亚马逊 Glacier 示例

以下代码示例向您展示了如何使用带有 Amazon Glacier 的 适用于 JavaScript 的 Amazon SDK (v3) 来
执行操作和实现常见场景。

操作是大型程序的代码摘录，必须在上下文中运行。您可以通过操作了解如何调用单个服务函数，还可
以通过函数相关场景的上下文查看操作。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

• 操作

操作

CreateVault

以下代码示例演示了如何使用 CreateVault。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

创建客户端。

Amazon Glacier 776

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/glacier#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const { GlacierClient } = require("@aws-sdk/client-glacier");
// Set the AWS Region.
const REGION = "REGION";
//Set the Redshift Service Object
const glacierClient = new GlacierClient({ region: REGION });
export { glacierClient };

创建文件库。

// Load the SDK for JavaScript
import { CreateVaultCommand } from "@aws-sdk/client-glacier";
import { glacierClient } from "./libs/glacierClient.js";

// Set the parameters
const vaultname = "VAULT_NAME"; // VAULT_NAME
const params = { vaultName: vaultname };

const run = async () => {
 try {
 const data = await glacierClient.send(new CreateVaultCommand(params));
 console.log("Success, vault created!");
 return data; // For unit tests.
 } catch (err) {
 console.log("Error");
 }
};
run();

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/glacier-example-creating-a-
vault.html。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考CreateVault中的。

UploadArchive

以下代码示例演示了如何使用 UploadArchive。

操作 777

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/glacier-example-creating-a-vault.html
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/glacier-example-creating-a-vault.html
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/glacier-example-creating-a-vault.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/glacier/command/CreateVaultCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

创建客户端。

const { GlacierClient } = require("@aws-sdk/client-glacier");
// Set the AWS Region.
const REGION = "REGION";
//Set the Redshift Service Object
const glacierClient = new GlacierClient({ region: REGION });
export { glacierClient };

上传档案。

// Load the SDK for JavaScript
import { UploadArchiveCommand } from "@aws-sdk/client-glacier";
import { glacierClient } from "./libs/glacierClient.js";

// Set the parameters
const vaultname = "VAULT_NAME"; // VAULT_NAME

// Create a new service object and buffer
const buffer = new Buffer.alloc(2.5 * 1024 * 1024); // 2.5MB buffer
const params = { vaultName: vaultname, body: buffer };

const run = async () => {
 try {
 const data = await glacierClient.send(new UploadArchiveCommand(params));
 console.log("Archive ID", data.archiveId);
 return data; // For unit tests.
 } catch (err) {
 console.log("Error uploading archive!", err);
 }
};
run();

操作 778

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/glacier#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/glacier-example-
uploadarchive.html。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考UploadArchive中
的。

Amazon Glue 使用适用于 JavaScript (v3) 的 SDK 的示例

以下代码示例向您展示了如何通过使用 适用于 JavaScript 的 Amazon SDK (v3) 来执行操作和实现常
见场景 Amazon Glue。

基本功能是向您展示如何在服务中执行基本操作的代码示例。

操作是大型程序的代码摘录，必须在上下文中运行。您可以通过操作了解如何调用单个服务函数，还可
以通过函数相关场景的上下文查看操作。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

• 开始使用

• 基本功能

• 操作

开始使用

你好 Amazon Glue

以下代码示例展示了如何开始使用 Amazon Glue。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

Amazon Glue 779

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/glacier-example-uploadarchive.html
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/glacier-example-uploadarchive.html
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/glacier-example-uploadarchive.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/glacier/command/UploadArchiveCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/glue#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

import { ListJobsCommand, GlueClient } from "@aws-sdk/client-glue";

const client = new GlueClient({});

export const main = async () => {
 const command = new ListJobsCommand({});

 const { JobNames } = await client.send(command);
 const formattedJobNames = JobNames.join("\n");
 console.log("Job names: ");
 console.log(formattedJobNames);
 return JobNames;
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考ListJobs中的。

基本功能

了解基本功能

以下代码示例展示了如何：

• 创建爬网程序，爬取公有 Amazon S3 存储桶并生成包含 CSV 格式的元数据的数据库。

• 列出有关中数据库和表的信息 Amazon Glue Data Catalog。

• 创建任务，从 S3 存储桶提取 CSV 数据，转换数据，然后将 JSON 格式的输出加载到另一个 S3 存
储桶中。

• 列出有关作业运行的信息，查看转换后的数据，并清除资源。

有关更多信息，请参阅教程： Amazon Glue Studio 入门。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

基本功能 780

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/glue/command/ListJobsCommand
https://docs.amazonaws.cn/glue/latest/ug/tutorial-create-job.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/glue#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

创建并运行爬网程序，爬取公共 Amazon Simple Storage Service（Amazon S3）存储桶并生成一
个描述其找到的 CSV 格式数据的元数据数据库。

const createCrawler = (name, role, dbName, tablePrefix, s3TargetPath) => {
 const client = new GlueClient({});

 const command = new CreateCrawlerCommand({
 Name: name,
 Role: role,
 DatabaseName: dbName,
 TablePrefix: tablePrefix,
 Targets: {
 S3Targets: [{ Path: s3TargetPath }],
 },
 });

 return client.send(command);
};

const getCrawler = (name) => {
 const client = new GlueClient({});

 const command = new GetCrawlerCommand({
 Name: name,
 });

 return client.send(command);
};

const startCrawler = (name) => {
 const client = new GlueClient({});

 const command = new StartCrawlerCommand({
 Name: name,
 });

 return client.send(command);
};

const crawlerExists = async ({ getCrawler }, crawlerName) => {
 try {
 await getCrawler(crawlerName);
 return true;

基本功能 781

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 } catch {
 return false;
 }
};

/**
 * @param {{ createCrawler: import('../../../actions/create-
crawler.js').createCrawler}} actions
 */
const makeCreateCrawlerStep = (actions) => async (context) => {
 if (await crawlerExists(actions, process.env.CRAWLER_NAME)) {
 log("Crawler already exists. Skipping creation.");
 } else {
 await actions.createCrawler(
 process.env.CRAWLER_NAME,
 process.env.ROLE_NAME,
 process.env.DATABASE_NAME,
 process.env.TABLE_PREFIX,
 process.env.S3_TARGET_PATH,
);

 log("Crawler created successfully.", { type: "success" });
 }

 return { ...context };
};

/**
 * @param {(name: string) => Promise<import('@aws-sdk/client-
glue').GetCrawlerCommandOutput>} getCrawler
 * @param {string} crawlerName
 */
const waitForCrawler = async (getCrawler, crawlerName) => {
 const waitTimeInSeconds = 30;
 const { Crawler } = await getCrawler(crawlerName);

 if (!Crawler) {
 throw new Error(`Crawler with name ${crawlerName} not found.`);
 }

 if (Crawler.State === "READY") {
 return;
 }

基本功能 782

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 log(`Crawler is ${Crawler.State}. Waiting ${waitTimeInSeconds} seconds...`);
 await wait(waitTimeInSeconds);
 return waitForCrawler(getCrawler, crawlerName);
};

const makeStartCrawlerStep =
 ({ startCrawler, getCrawler }) =>
 async (context) => {
 log("Starting crawler.");
 await startCrawler(process.env.CRAWLER_NAME);
 log("Crawler started.", { type: "success" });

 log("Waiting for crawler to finish running. This can take a while.");
 await waitForCrawler(getCrawler, process.env.CRAWLER_NAME);
 log("Crawler ready.", { type: "success" });

 return { ...context };
 };

列出有关中数据库和表的信息 Amazon Glue Data Catalog。

const getDatabase = (name) => {
 const client = new GlueClient({});

 const command = new GetDatabaseCommand({
 Name: name,
 });

 return client.send(command);
};

const getTables = (databaseName) => {
 const client = new GlueClient({});

 const command = new GetTablesCommand({
 DatabaseName: databaseName,
 });

 return client.send(command);
};

const makeGetDatabaseStep =

基本功能 783

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 ({ getDatabase }) =>
 async (context) => {
 const {
 Database: { Name },
 } = await getDatabase(process.env.DATABASE_NAME);
 log(`Database: ${Name}`);
 return { ...context };
 };

/**
 * @param {{ getTables: () => Promise<import('@aws-sdk/client-
glue').GetTablesCommandOutput}} config
 */
const makeGetTablesStep =
 ({ getTables }) =>
 async (context) => {
 const { TableList } = await getTables(process.env.DATABASE_NAME);
 log("Tables:");
 log(TableList.map((table) => ` • ${table.Name}\n`));
 return { ...context };
 };

创建并运行任务，从源 Amazon S3 存储桶提取 CSV 数据，通过删除和重命名字段对其进行转换，
然后将 JSON 格式的输出加载到另一个 Amazon S3 存储桶中。

const createJob = (name, role, scriptBucketName, scriptKey) => {
 const client = new GlueClient({});

 const command = new CreateJobCommand({
 Name: name,
 Role: role,
 Command: {
 Name: "glueetl",
 PythonVersion: "3",
 ScriptLocation: `s3://${scriptBucketName}/${scriptKey}`,
 },
 GlueVersion: "3.0",
 });

 return client.send(command);
};

基本功能 784

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const startJobRun = (jobName, dbName, tableName, bucketName) => {
 const client = new GlueClient({});

 const command = new StartJobRunCommand({
 JobName: jobName,
 Arguments: {
 "--input_database": dbName,
 "--input_table": tableName,
 "--output_bucket_url": `s3://${bucketName}/`,
 },
 });

 return client.send(command);
};

const makeCreateJobStep =
 ({ createJob }) =>
 async (context) => {
 log("Creating Job.");
 await createJob(
 process.env.JOB_NAME,
 process.env.ROLE_NAME,
 process.env.BUCKET_NAME,
 process.env.PYTHON_SCRIPT_KEY,
);
 log("Job created.", { type: "success" });

 return { ...context };
 };

/**
 * @param {(name: string, runId: string) => Promise<import('@aws-sdk/client-
glue').GetJobRunCommandOutput> } getJobRun
 * @param {string} jobName
 * @param {string} jobRunId
 */
const waitForJobRun = async (getJobRun, jobName, jobRunId) => {
 const waitTimeInSeconds = 30;
 const { JobRun } = await getJobRun(jobName, jobRunId);

 if (!JobRun) {
 throw new Error(`Job run with id ${jobRunId} not found.`);
 }

基本功能 785

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 switch (JobRun.JobRunState) {
 case "FAILED":
 case "TIMEOUT":
 case "STOPPED":
 case "ERROR":
 throw new Error(
 `Job ${JobRun.JobRunState}. Error: ${JobRun.ErrorMessage}`,
);
 case "SUCCEEDED":
 return;
 default:
 break;
 }

 log(
 `Job ${JobRun.JobRunState}. Waiting ${waitTimeInSeconds} more seconds...`,
);
 await wait(waitTimeInSeconds);
 return waitForJobRun(getJobRun, jobName, jobRunId);
};

/**
 * @param {{ prompter: { prompt: () => Promise<{ shouldOpen: boolean }>} }} context
 */
const promptToOpen = async (context) => {
 const { shouldOpen } = await context.prompter.prompt({
 name: "shouldOpen",
 type: "confirm",
 message: "Open the output bucket in your browser?",
 });

 if (shouldOpen) {
 return open(
 `https://s3.console.aws.amazon.com/s3/buckets/${process.env.BUCKET_NAME} to
 view the output.`,
);
 }
};

const makeStartJobRunStep =
 ({ startJobRun, getJobRun }) =>
 async (context) => {
 log("Starting job.");
 const { JobRunId } = await startJobRun(

基本功能 786

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 process.env.JOB_NAME,
 process.env.DATABASE_NAME,
 process.env.TABLE_NAME,
 process.env.BUCKET_NAME,
);
 log("Job started.", { type: "success" });

 log("Waiting for job to finish running. This can take a while.");
 await waitForJobRun(getJobRun, process.env.JOB_NAME, JobRunId);
 log("Job run succeeded.", { type: "success" });

 await promptToOpen(context);

 return { ...context };
 };

列出有关任务运行的信息，并查看一些转换后的数据。

const getJobRuns = (jobName) => {
 const client = new GlueClient({});
 const command = new GetJobRunsCommand({
 JobName: jobName,
 });

 return client.send(command);
};

const getJobRun = (jobName, jobRunId) => {
 const client = new GlueClient({});
 const command = new GetJobRunCommand({
 JobName: jobName,
 RunId: jobRunId,
 });

 return client.send(command);
};

/**
 * @typedef {{ prompter: { prompt: () => Promise<{jobName: string}> } }} Context
 */

/**

基本功能 787

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * @typedef {() => Promise<import('@aws-sdk/client-glue').GetJobRunCommandOutput>}
 getJobRun
 */

/**
 * @typedef {() => Promise<import('@aws-sdk/client-glue').GetJobRunsCommandOutput}
 getJobRuns
 */

/**
 *
 * @param {getJobRun} getJobRun
 * @param {string} jobName
 * @param {string} jobRunId
 */
const logJobRunDetails = async (getJobRun, jobName, jobRunId) => {
 const { JobRun } = await getJobRun(jobName, jobRunId);
 log(JobRun, { type: "object" });
};

/**
 *
 * @param {{getJobRuns: getJobRuns, getJobRun: getJobRun }} funcs
 */
const makePickJobRunStep =
 ({ getJobRuns, getJobRun }) =>
 async (/** @type { Context } */ context) => {
 if (context.selectedJobName) {
 const { JobRuns } = await getJobRuns(context.selectedJobName);

 const { jobRunId } = await context.prompter.prompt({
 name: "jobRunId",
 type: "list",
 message: "Select a job run to see details.",
 choices: JobRuns.map((run) => run.Id),
 });

 logJobRunDetails(getJobRun, context.selectedJobName, jobRunId);
 }

 return { ...context };
 };

基本功能 788

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

删除演示创建的所有资源。

const deleteJob = (jobName) => {
 const client = new GlueClient({});

 const command = new DeleteJobCommand({
 JobName: jobName,
 });

 return client.send(command);
};

const deleteTable = (databaseName, tableName) => {
 const client = new GlueClient({});

 const command = new DeleteTableCommand({
 DatabaseName: databaseName,
 Name: tableName,
 });

 return client.send(command);
};

const deleteDatabase = (databaseName) => {
 const client = new GlueClient({});

 const command = new DeleteDatabaseCommand({
 Name: databaseName,
 });

 return client.send(command);
};

const deleteCrawler = (crawlerName) => {
 const client = new GlueClient({});

 const command = new DeleteCrawlerCommand({
 Name: crawlerName,
 });

 return client.send(command);
};

/**

基本功能 789

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 *
 * @param {import('../../../actions/delete-job.js').deleteJob} deleteJobFn
 * @param {string[]} jobNames
 * @param {{ prompter: { prompt: () => Promise<any> }}} context
 */
const handleDeleteJobs = async (deleteJobFn, jobNames, context) => {
 /**
 * @type {{ selectedJobNames: string[] }}
 */
 const { selectedJobNames } = await context.prompter.prompt({
 name: "selectedJobNames",
 type: "checkbox",
 message: "Let's clean up jobs. Select jobs to delete.",
 choices: jobNames,
 });

 if (selectedJobNames.length === 0) {
 log("No jobs selected.");
 } else {
 log("Deleting jobs.");
 await Promise.all(
 selectedJobNames.map((n) => deleteJobFn(n).catch(console.error)),
);
 log("Jobs deleted.", { type: "success" });
 }
};

/**
 * @param {{
 * listJobs: import('../../../actions/list-jobs.js').listJobs,
 * deleteJob: import('../../../actions/delete-job.js').deleteJob
 * }} config
 */
const makeCleanUpJobsStep =
 ({ listJobs, deleteJob }) =>
 async (context) => {
 const { JobNames } = await listJobs();
 if (JobNames.length > 0) {
 await handleDeleteJobs(deleteJob, JobNames, context);
 }

 return { ...context };
 };

基本功能 790

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

/**
 * @param {import('../../../actions/delete-table.js').deleteTable} deleteTable
 * @param {string} databaseName
 * @param {string[]} tableNames
 */
const deleteTables = (deleteTable, databaseName, tableNames) =>
 Promise.all(
 tableNames.map((tableName) =>
 deleteTable(databaseName, tableName).catch(console.error),
),
);

/**
 * @param {{
 * getTables: import('../../../actions/get-tables.js').getTables,
 * deleteTable: import('../../../actions/delete-table.js').deleteTable
 * }} config
 */
const makeCleanUpTablesStep =
 ({ getTables, deleteTable }) =>
 /**
 * @param {{ prompter: { prompt: () => Promise<any>}}} context
 */
 async (context) => {
 const { TableList } = await getTables(process.env.DATABASE_NAME).catch(
 () => ({ TableList: null }),
);

 if (TableList && TableList.length > 0) {
 /**
 * @type {{ tableNames: string[] }}
 */
 const { tableNames } = await context.prompter.prompt({
 name: "tableNames",
 type: "checkbox",
 message: "Let's clean up tables. Select tables to delete.",
 choices: TableList.map((t) => t.Name),
 });

 if (tableNames.length === 0) {
 log("No tables selected.");
 } else {
 log("Deleting tables.");
 await deleteTables(deleteTable, process.env.DATABASE_NAME, tableNames);

基本功能 791

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 log("Tables deleted.", { type: "success" });
 }
 }

 return { ...context };
 };

/**
 * @param {import('../../../actions/delete-database.js').deleteDatabase}
 deleteDatabase
 * @param {string[]} databaseNames
 */
const deleteDatabases = (deleteDatabase, databaseNames) =>
 Promise.all(
 databaseNames.map((dbName) => deleteDatabase(dbName).catch(console.error)),
);

/**
 * @param {{
 * getDatabases: import('../../../actions/get-databases.js').getDatabases
 * deleteDatabase: import('../../../actions/delete-database.js').deleteDatabase
 * }} config
 */
const makeCleanUpDatabasesStep =
 ({ getDatabases, deleteDatabase }) =>
 /**
 * @param {{ prompter: { prompt: () => Promise<any>}} context
 */
 async (context) => {
 const { DatabaseList } = await getDatabases();

 if (DatabaseList.length > 0) {
 /** @type {{ dbNames: string[] }} */
 const { dbNames } = await context.prompter.prompt({
 name: "dbNames",
 type: "checkbox",
 message: "Let's clean up databases. Select databases to delete.",
 choices: DatabaseList.map((db) => db.Name),
 });

 if (dbNames.length === 0) {
 log("No databases selected.");
 } else {
 log("Deleting databases.");

基本功能 792

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 await deleteDatabases(deleteDatabase, dbNames);
 log("Databases deleted.", { type: "success" });
 }
 }

 return { ...context };
 };

const cleanUpCrawlerStep = async (context) => {
 log("Deleting crawler.");

 try {
 await deleteCrawler(process.env.CRAWLER_NAME);
 log("Crawler deleted.", { type: "success" });
 } catch (err) {
 if (err.name === "EntityNotFoundException") {
 log("Crawler is already deleted.");
 } else {
 throw err;
 }
 }

 return { ...context };
};

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的以下主
题。

• CreateCrawler

• CreateJob

• DeleteCrawler

• DeleteDatabase

• DeleteJob

• DeleteTable

• GetCrawler

• GetDatabase

• GetDatabases

• GetJob

• GetJobRun

基本功能 793

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/glue/command/CreateCrawlerCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/glue/command/CreateJobCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/glue/command/DeleteCrawlerCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/glue/command/DeleteDatabaseCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/glue/command/DeleteJobCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/glue/command/DeleteTableCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/glue/command/GetCrawlerCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/glue/command/GetDatabaseCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/glue/command/GetDatabasesCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/glue/command/GetJobCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/glue/command/GetJobRunCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• GetJobRuns

• GetTables

• ListJobs

• StartCrawler

• StartJobRun

操作

CreateCrawler

以下代码示例演示了如何使用 CreateCrawler。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

const createCrawler = (name, role, dbName, tablePrefix, s3TargetPath) => {
 const client = new GlueClient({});

 const command = new CreateCrawlerCommand({
 Name: name,
 Role: role,
 DatabaseName: dbName,
 TablePrefix: tablePrefix,
 Targets: {
 S3Targets: [{ Path: s3TargetPath }],
 },
 });

 return client.send(command);
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考CreateCrawler中
的。

操作 794

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/glue/command/GetJobRunsCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/glue/command/GetTablesCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/glue/command/ListJobsCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/glue/command/StartCrawlerCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/glue/command/StartJobRunCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/glue#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/glue/command/CreateCrawlerCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

CreateJob

以下代码示例演示了如何使用 CreateJob。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

const createJob = (name, role, scriptBucketName, scriptKey) => {
 const client = new GlueClient({});

 const command = new CreateJobCommand({
 Name: name,
 Role: role,
 Command: {
 Name: "glueetl",
 PythonVersion: "3",
 ScriptLocation: `s3://${scriptBucketName}/${scriptKey}`,
 },
 GlueVersion: "3.0",
 });

 return client.send(command);
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考CreateJob中的。

DeleteCrawler

以下代码示例演示了如何使用 DeleteCrawler。

操作 795

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/glue#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/glue/command/CreateJobCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

const deleteCrawler = (crawlerName) => {
 const client = new GlueClient({});

 const command = new DeleteCrawlerCommand({
 Name: crawlerName,
 });

 return client.send(command);
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DeleteCrawler中的。

DeleteDatabase

以下代码示例演示了如何使用 DeleteDatabase。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

const deleteDatabase = (databaseName) => {
 const client = new GlueClient({});

 const command = new DeleteDatabaseCommand({
 Name: databaseName,
 });

操作 796

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/glue#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/glue/command/DeleteCrawlerCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/glue#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 return client.send(command);
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DeleteDatabase中
的。

DeleteJob

以下代码示例演示了如何使用 DeleteJob。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

const deleteJob = (jobName) => {
 const client = new GlueClient({});

 const command = new DeleteJobCommand({
 JobName: jobName,
 });

 return client.send(command);
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DeleteJob中的。

DeleteTable

以下代码示例演示了如何使用 DeleteTable。

操作 797

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/glue/command/DeleteDatabaseCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/glue#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/glue/command/DeleteJobCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

const deleteTable = (databaseName, tableName) => {
 const client = new GlueClient({});

 const command = new DeleteTableCommand({
 DatabaseName: databaseName,
 Name: tableName,
 });

 return client.send(command);
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DeleteTable中的。

GetCrawler

以下代码示例演示了如何使用 GetCrawler。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

const getCrawler = (name) => {
 const client = new GlueClient({});

 const command = new GetCrawlerCommand({
 Name: name,

操作 798

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/glue#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/glue/command/DeleteTableCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/glue#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 });

 return client.send(command);
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考GetCrawler中的。

GetDatabase

以下代码示例演示了如何使用 GetDatabase。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

const getDatabase = (name) => {
 const client = new GlueClient({});

 const command = new GetDatabaseCommand({
 Name: name,
 });

 return client.send(command);
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考GetDatabase中的。

GetDatabases

以下代码示例演示了如何使用 GetDatabases。

操作 799

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/glue/command/GetCrawlerCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/glue#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/glue/command/GetDatabaseCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

const getDatabases = () => {
 const client = new GlueClient({});

 const command = new GetDatabasesCommand({});

 return client.send(command);
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考GetDatabases中的。

GetJob

以下代码示例演示了如何使用 GetJob。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

const getJob = (jobName) => {
 const client = new GlueClient({});

 const command = new GetJobCommand({
 JobName: jobName,
 });

 return client.send(command);
};

操作 800

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/glue#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/glue/command/GetDatabasesCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/glue#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考GetJob中的。

GetJobRun

以下代码示例演示了如何使用 GetJobRun。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

const getJobRun = (jobName, jobRunId) => {
 const client = new GlueClient({});
 const command = new GetJobRunCommand({
 JobName: jobName,
 RunId: jobRunId,
 });

 return client.send(command);
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考GetJobRun中的。

GetJobRuns

以下代码示例演示了如何使用 GetJobRuns。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

操作 801

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/glue/command/GetJobCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/glue#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/glue/command/GetJobRunCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/glue#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const getJobRuns = (jobName) => {
 const client = new GlueClient({});
 const command = new GetJobRunsCommand({
 JobName: jobName,
 });

 return client.send(command);
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考GetJobRuns中的。

GetTables

以下代码示例演示了如何使用 GetTables。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

const getTables = (databaseName) => {
 const client = new GlueClient({});

 const command = new GetTablesCommand({
 DatabaseName: databaseName,
 });

 return client.send(command);
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考GetTables中的。

ListJobs

以下代码示例演示了如何使用 ListJobs。

操作 802

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/glue/command/GetJobRunsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/glue#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/glue/command/GetTablesCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

const listJobs = () => {
 const client = new GlueClient({});

 const command = new ListJobsCommand({});

 return client.send(command);
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考ListJobs中的。

StartCrawler

以下代码示例演示了如何使用 StartCrawler。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

const startCrawler = (name) => {
 const client = new GlueClient({});

 const command = new StartCrawlerCommand({
 Name: name,
 });

 return client.send(command);

操作 803

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/glue#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/glue/command/ListJobsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/glue#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考StartCrawler中的。

StartJobRun

以下代码示例演示了如何使用 StartJobRun。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

const startJobRun = (jobName, dbName, tableName, bucketName) => {
 const client = new GlueClient({});

 const command = new StartJobRunCommand({
 JobName: jobName,
 Arguments: {
 "--input_database": dbName,
 "--input_table": tableName,
 "--output_bucket_url": `s3://${bucketName}/`,
 },
 });

 return client.send(command);
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考StartJobRun中的。

HealthImaging 使用适用于 JavaScript (v3) 的 SDK 的示例

以下代码示例向您展示了如何通过使用 适用于 JavaScript 的 Amazon SDK (v3) 来执行操作和实现常
见场景 HealthImaging。

HealthImaging 804

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/glue/command/StartCrawlerCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/glue#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/glue/command/StartJobRunCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

操作是大型程序的代码摘录，必须在上下文中运行。您可以通过操作了解如何调用单个服务函数，还可
以通过函数相关场景的上下文查看操作。

场景是向您演示如何通过在一个服务中调用多个函数或与其他 Amazon Web Services 服务结合来完成
特定任务的代码示例。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

• 开始使用

• 操作

• 场景

开始使用

你好 HealthImaging

以下代码示例展示了如何开始使用 HealthImaging。

适用于 JavaScript (v3) 的软件开发工具包

import {
 ListDatastoresCommand,
 MedicalImagingClient,
} from "@aws-sdk/client-medical-imaging";

// When no region or credentials are provided, the SDK will use the
// region and credentials from the local AWS config.
const client = new MedicalImagingClient({});

export const helloMedicalImaging = async () => {
 const command = new ListDatastoresCommand({});

 const { datastoreSummaries } = await client.send(command);
 console.log("Datastores: ");
 console.log(datastoreSummaries.map((item) => item.datastoreName).join("\n"));
 return datastoreSummaries;
};

开始使用 805

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考ListDatastores中的。

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

操作

CopyImageSet

以下代码示例演示了如何使用 CopyImageSet。

适用于 JavaScript (v3) 的软件开发工具包

用于复制映像集的实用程序函数。

import { CopyImageSetCommand } from "@aws-sdk/client-medical-imaging";
import { medicalImagingClient } from "../libs/medicalImagingClient.js";

/**
 * @param {string} datastoreId - The ID of the data store.
 * @param {string} imageSetId - The source image set ID.
 * @param {string} sourceVersionId - The source version ID.
 * @param {string} destinationImageSetId - The optional ID of the destination image
 set.
 * @param {string} destinationVersionId - The optional version ID of the destination
 image set.
 * @param {boolean} force - Force the copy action.
 * @param {[string]} copySubsets - A subset of instance IDs to copy.
 */
export const copyImageSet = async (
 datastoreId = "xxxxxxxxxxx",
 imageSetId = "xxxxxxxxxxxx",
 sourceVersionId = "1",
 destinationImageSetId = "",
 destinationVersionId = "",
 force = false,
 copySubsets = [],
) => {
 try {
 const params = {

操作 806

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/medical-imaging/command/ListDatastoresCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/medical-imaging#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 datastoreId: datastoreId,
 sourceImageSetId: imageSetId,
 copyImageSetInformation: {
 sourceImageSet: { latestVersionId: sourceVersionId },
 },
 force: force,
 };
 if (destinationImageSetId !== "" && destinationVersionId !== "") {
 params.copyImageSetInformation.destinationImageSet = {
 imageSetId: destinationImageSetId,
 latestVersionId: destinationVersionId,
 };
 }

 if (copySubsets.length > 0) {
 let copySubsetsJson;
 copySubsetsJson = {
 SchemaVersion: 1.1,
 Study: {
 Series: {
 imageSetId: {
 Instances: {},
 },
 },
 },
 };

 for (let i = 0; i < copySubsets.length; i++) {
 copySubsetsJson.Study.Series.imageSetId.Instances[copySubsets[i]] = {};
 }

 params.copyImageSetInformation.dicomCopies = copySubsetsJson;
 }

 const response = await medicalImagingClient.send(
 new CopyImageSetCommand(params),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: 'd9b219ce-cc48-4a44-a5b2-c5c3068f1ee8',
 // extendedRequestId: undefined,
 // cfId: undefined,

操作 807

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // datastoreId: 'xxxxxxxxxxxxxx',
 // destinationImageSetProperties: {
 // createdAt: 2023-09-27T19:46:21.824Z,
 // imageSetArn: 'arn:aws:medical-imaging:us-
east-1:xxxxxxxxxxx:datastore/xxxxxxxxxxxxx/imageset/xxxxxxxxxxxxxxxxxxx',
 // imageSetId: 'xxxxxxxxxxxxxxx',
 // imageSetState: 'LOCKED',
 // imageSetWorkflowStatus: 'COPYING',
 // latestVersionId: '1',
 // updatedAt: 2023-09-27T19:46:21.824Z
 // },
 // sourceImageSetProperties: {
 // createdAt: 2023-09-22T14:49:26.427Z,
 // imageSetArn: 'arn:aws:medical-imaging:us-
east-1:xxxxxxxxxxx:datastore/xxxxxxxxxxxxx/imageset/xxxxxxxxxxxxxxxx',
 // imageSetId: 'xxxxxxxxxxxxxxxx',
 // imageSetState: 'LOCKED',
 // imageSetWorkflowStatus: 'COPYING_WITH_READ_ONLY_ACCESS',
 // latestVersionId: '4',
 // updatedAt: 2023-09-27T19:46:21.824Z
 // }
 // }
 return response;
 } catch (err) {
 console.error(err);
 }
};

复制没有目标的映像集。

 await copyImageSet(
 "12345678901234567890123456789012",
 "12345678901234567890123456789012",
 "1",
);

复制带有目标的映像集。

操作 808

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 await copyImageSet(
 "12345678901234567890123456789012",
 "12345678901234567890123456789012",
 "1",
 "12345678901234567890123456789012",
 "1",
 false,
);

使用目标复制映像集的子集并强制复制。

 await copyImageSet(
 "12345678901234567890123456789012",
 "12345678901234567890123456789012",
 "1",
 "12345678901234567890123456789012",
 "1",
 true,
 ["12345678901234567890123456789012", "11223344556677889900112233445566"],
);

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考CopyImageSet中
的。

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

CreateDatastore

以下代码示例演示了如何使用 CreateDatastore。

操作 809

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/medical-imaging/command/CopyImageSetCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/medical-imaging#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

import { CreateDatastoreCommand } from "@aws-sdk/client-medical-imaging";
import { medicalImagingClient } from "../libs/medicalImagingClient.js";

/**
 * @param {string} datastoreName - The name of the data store to create.
 */
export const createDatastore = async (datastoreName = "DATASTORE_NAME") => {
 const response = await medicalImagingClient.send(
 new CreateDatastoreCommand({ datastoreName: datastoreName }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: 'a71cd65f-2382-49bf-b682-f9209d8d399b',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // datastoreId: 'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx',
 // datastoreStatus: 'CREATING'
 // }
 return response;
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考CreateDatastore中
的。

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

DeleteDatastore

以下代码示例演示了如何使用 DeleteDatastore。

操作 810

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/medical-imaging/command/CreateDatastoreCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/medical-imaging#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

import { DeleteDatastoreCommand } from "@aws-sdk/client-medical-imaging";
import { medicalImagingClient } from "../libs/medicalImagingClient.js";

/**
 * @param {string} datastoreId - The ID of the data store to delete.
 */
export const deleteDatastore = async (datastoreId = "DATASTORE_ID") => {
 const response = await medicalImagingClient.send(
 new DeleteDatastoreCommand({ datastoreId }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: 'f5beb409-678d-48c9-9173-9a001ee1ebb1',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // datastoreId: 'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx',
 // datastoreStatus: 'DELETING'
 // }

 return response;
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DeleteDatastore中
的。

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

DeleteImageSet

以下代码示例演示了如何使用 DeleteImageSet。

操作 811

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/medical-imaging/command/DeleteDatastoreCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/medical-imaging#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

import { DeleteImageSetCommand } from "@aws-sdk/client-medical-imaging";
import { medicalImagingClient } from "../libs/medicalImagingClient.js";

/**
 * @param {string} datastoreId - The data store ID.
 * @param {string} imageSetId - The image set ID.
 */
export const deleteImageSet = async (
 datastoreId = "xxxxxxxxxxxxxxxx",
 imageSetId = "xxxxxxxxxxxxxxxx",
) => {
 const response = await medicalImagingClient.send(
 new DeleteImageSetCommand({
 datastoreId: datastoreId,
 imageSetId: imageSetId,
 }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '6267bbd2-eaa5-4a50-8ee8-8fddf535cf73',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // datastoreId: 'xxxxxxxxxxxxxxxx',
 // imageSetId: 'xxxxxxxxxxxxxxx',
 // imageSetState: 'LOCKED',
 // imageSetWorkflowStatus: 'DELETING'
 // }
 return response;
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DeleteImageSet中
的。

操作 812

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/medical-imaging/command/DeleteImageSetCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

GetDICOMImportJob

以下代码示例演示了如何使用 GetDICOMImportJob。

适用于 JavaScript (v3) 的软件开发工具包

import { GetDICOMImportJobCommand } from "@aws-sdk/client-medical-imaging";
import { medicalImagingClient } from "../libs/medicalImagingClient.js";

/**
 * @param {string} datastoreId - The ID of the data store.
 * @param {string} jobId - The ID of the import job.
 */
export const getDICOMImportJob = async (
 datastoreId = "xxxxxxxxxxxxxxxxxxxx",
 jobId = "xxxxxxxxxxxxxxxxxxxx",
) => {
 const response = await medicalImagingClient.send(
 new GetDICOMImportJobCommand({ datastoreId: datastoreId, jobId: jobId }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: 'a2637936-78ea-44e7-98b8-7a87d95dfaee',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // jobProperties: {
 // dataAccessRoleArn: 'arn:aws:iam::xxxxxxxxxxxx:role/dicom_import',
 // datastoreId: 'xxxxxxxxxxxxxxxxxxxxxxxxx',
 // endedAt: 2023-09-19T17:29:21.753Z,
 // inputS3Uri: 's3://healthimaging-source/CTStudy/',
 // jobId: ''xxxxxxxxxxxxxxxxxxxxxxxxx'',
 // jobName: 'job_1',

操作 813

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/medical-imaging#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // jobStatus: 'COMPLETED',
 // outputS3Uri: 's3://health-imaging-dest/
ouput_ct/'xxxxxxxxxxxxxxxxxxxxxxxxx'-DicomImport-'xxxxxxxxxxxxxxxxxxxxxxxxx'/',
 // submittedAt: 2023-09-19T17:27:25.143Z
 // }
 // }

 return response;
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考中的 Get
DICOMImport J ob。

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

GetDatastore

以下代码示例演示了如何使用 GetDatastore。

适用于 JavaScript (v3) 的软件开发工具包

import { GetDatastoreCommand } from "@aws-sdk/client-medical-imaging";
import { medicalImagingClient } from "../libs/medicalImagingClient.js";

/**
 * @param {string} datastoreID - The ID of the data store.
 */
export const getDatastore = async (datastoreID = "DATASTORE_ID") => {
 const response = await medicalImagingClient.send(
 new GetDatastoreCommand({ datastoreId: datastoreID }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '55ea7d2e-222c-4a6a-871e-4f591f40cadb',
 // extendedRequestId: undefined,

操作 814

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/medical-imaging/command/GetDICOMImportJobCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/medical-imaging/command/GetDICOMImportJobCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/medical-imaging#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // datastoreProperties: {
 // createdAt: 2023-08-04T18:50:36.239Z,
 // datastoreArn: 'arn:aws:medical-imaging:us-east-1:xxxxxxxxx:datastore/
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx',
 // datastoreId: 'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx',
 // datastoreName: 'my_datastore',
 // datastoreStatus: 'ACTIVE',
 // updatedAt: 2023-08-04T18:50:36.239Z
 // }
 // }
 return response.datastoreProperties;
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考GetDatastore中的。

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

GetImageFrame

以下代码示例演示了如何使用 GetImageFrame。

适用于 JavaScript (v3) 的软件开发工具包

import { GetImageFrameCommand } from "@aws-sdk/client-medical-imaging";
import { medicalImagingClient } from "../libs/medicalImagingClient.js";

/**
 * @param {string} imageFrameFileName - The name of the file for the HTJ2K-encoded
 image frame.
 * @param {string} datastoreID - The data store's ID.
 * @param {string} imageSetID - The image set's ID.
 * @param {string} imageFrameID - The image frame's ID.
 */

操作 815

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/medical-imaging/command/GetDatastoreCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/medical-imaging#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

export const getImageFrame = async (
 imageFrameFileName = "image.jph",
 datastoreID = "DATASTORE_ID",
 imageSetID = "IMAGE_SET_ID",
 imageFrameID = "IMAGE_FRAME_ID",
) => {
 const response = await medicalImagingClient.send(
 new GetImageFrameCommand({
 datastoreId: datastoreID,
 imageSetId: imageSetID,
 imageFrameInformation: { imageFrameId: imageFrameID },
 }),
);
 const buffer = await response.imageFrameBlob.transformToByteArray();
 writeFileSync(imageFrameFileName, buffer);

 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: 'e4ab42a5-25a3-4377-873f-374ecf4380e1',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // contentType: 'application/octet-stream',
 // imageFrameBlob: <ref *1> IncomingMessage {}
 // }
 return response;
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考GetImageFrame中
的。

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

操作 816

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/medical-imaging/command/GetImageFrameCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/medical-imaging#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

GetImageSet

以下代码示例演示了如何使用 GetImageSet。

适用于 JavaScript (v3) 的软件开发工具包

import { GetImageSetCommand } from "@aws-sdk/client-medical-imaging";
import { medicalImagingClient } from "../libs/medicalImagingClient.js";

/**
 * @param {string} datastoreId - The ID of the data store.
 * @param {string} imageSetId - The ID of the image set.
 * @param {string} imageSetVersion - The optional version of the image set.
 *
 */
export const getImageSet = async (
 datastoreId = "xxxxxxxxxxxxxxx",
 imageSetId = "xxxxxxxxxxxxxxx",
 imageSetVersion = "",
) => {
 const params = { datastoreId: datastoreId, imageSetId: imageSetId };
 if (imageSetVersion !== "") {
 params.imageSetVersion = imageSetVersion;
 }
 const response = await medicalImagingClient.send(
 new GetImageSetCommand(params),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '0615c161-410d-4d06-9d8c-6e1241bb0a5a',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // createdAt: 2023-09-22T14:49:26.427Z,
 // datastoreId: 'xxxxxxxxxxxxxxx',
 // imageSetArn: 'arn:aws:medical-imaging:us-east-1:xxxxxxxxxx:datastore/
xxxxxxxxxxxxxxxxxxxx/imageset/xxxxxxxxxxxxxxxxxxxx',
 // imageSetId: 'xxxxxxxxxxxxxxx',
 // imageSetState: 'ACTIVE',
 // imageSetWorkflowStatus: 'CREATED',

操作 817

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // updatedAt: 2023-09-22T14:49:26.427Z,
 // versionId: '1'
 // }

 return response;
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考GetImageSet中的。

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

GetImageSetMetadata

以下代码示例演示了如何使用 GetImageSetMetadata。

适用于 JavaScript (v3) 的软件开发工具包

用于获取映像集元数据的实用程序函数。

import { GetImageSetMetadataCommand } from "@aws-sdk/client-medical-imaging";
import { medicalImagingClient } from "../libs/medicalImagingClient.js";
import { writeFileSync } from "node:fs";

/**
 * @param {string} metadataFileName - The name of the file for the gzipped metadata.
 * @param {string} datastoreId - The ID of the data store.
 * @param {string} imagesetId - The ID of the image set.
 * @param {string} versionID - The optional version ID of the image set.
 */
export const getImageSetMetadata = async (
 metadataFileName = "metadata.json.gzip",
 datastoreId = "xxxxxxxxxxxxxx",
 imagesetId = "xxxxxxxxxxxxxx",
 versionID = "",
) => {
 const params = { datastoreId: datastoreId, imageSetId: imagesetId };

操作 818

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/medical-imaging/command/GetImageSetCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/medical-imaging#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 if (versionID) {
 params.versionID = versionID;
 }

 const response = await medicalImagingClient.send(
 new GetImageSetMetadataCommand(params),
);
 const buffer = await response.imageSetMetadataBlob.transformToByteArray();
 writeFileSync(metadataFileName, buffer);

 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '5219b274-30ff-4986-8cab-48753de3a599',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // contentType: 'application/json',
 // contentEncoding: 'gzip',
 // imageSetMetadataBlob: <ref *1> IncomingMessage {}
 // }

 return response;
};

获取没有版本的映像集元数据。

 try {
 await getImageSetMetadata(
 "metadata.json.gzip",
 "12345678901234567890123456789012",
 "12345678901234567890123456789012",
);
 } catch (err) {
 console.log("Error", err);
 }

操作 819

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

获取带有版本的映像集元数据。

 try {
 await getImageSetMetadata(
 "metadata2.json.gzip",
 "12345678901234567890123456789012",
 "12345678901234567890123456789012",
 "1",
);
 } catch (err) {
 console.log("Error", err);
 }

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考GetImageSetMetadata中的。

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

ListDICOMImportJobs

以下代码示例演示了如何使用 ListDICOMImportJobs。

适用于 JavaScript (v3) 的软件开发工具包

import { paginateListDICOMImportJobs } from "@aws-sdk/client-medical-imaging";
import { medicalImagingClient } from "../libs/medicalImagingClient.js";

/**
 * @param {string} datastoreId - The ID of the data store.
 */
export const listDICOMImportJobs = async (
 datastoreId = "xxxxxxxxxxxxxxxxxx",
) => {
 const paginatorConfig = {
 client: medicalImagingClient,
 pageSize: 50,
 };

操作 820

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/medical-imaging/command/GetImageSetMetadataCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/medical-imaging#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const commandParams = { datastoreId: datastoreId };
 const paginator = paginateListDICOMImportJobs(paginatorConfig, commandParams);

 const jobSummaries = [];
 for await (const page of paginator) {
 // Each page contains a list of `jobSummaries`. The list is truncated if is
 larger than `pageSize`.
 jobSummaries.push(...page.jobSummaries);
 console.log(page);
 }
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '3c20c66e-0797-446a-a1d8-91b742fd15a0',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // jobSummaries: [
 // {
 // dataAccessRoleArn: 'arn:aws:iam::xxxxxxxxxxxx:role/dicom_import',
 // datastoreId: 'xxxxxxxxxxxxxxxxxxxxxxxxx',
 // endedAt: 2023-09-22T14:49:51.351Z,
 // jobId: 'xxxxxxxxxxxxxxxxxxxxxxxxx',
 // jobName: 'test-1',
 // jobStatus: 'COMPLETED',
 // submittedAt: 2023-09-22T14:48:45.767Z
 // }
 //]}

 return jobSummaries;
};

• 有关 API 的详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API 参考》中的 “列出
DICOMImport作业”。

操作 821

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/medical-imaging/command/ListDICOMImportJobsCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/medical-imaging/command/ListDICOMImportJobsCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

ListDatastores

以下代码示例演示了如何使用 ListDatastores。

适用于 JavaScript (v3) 的软件开发工具包

import { paginateListDatastores } from "@aws-sdk/client-medical-imaging";
import { medicalImagingClient } from "../libs/medicalImagingClient.js";

export const listDatastores = async () => {
 const paginatorConfig = {
 client: medicalImagingClient,
 pageSize: 50,
 };

 const commandParams = {};
 const paginator = paginateListDatastores(paginatorConfig, commandParams);

 /**
 * @type {import("@aws-sdk/client-medical-imaging").DatastoreSummary[]}
 */
 const datastoreSummaries = [];
 for await (const page of paginator) {
 // Each page contains a list of `jobSummaries`. The list is truncated if is
 larger than `pageSize`.
 datastoreSummaries.push(...page.datastoreSummaries);
 console.log(page);
 }
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '6aa99231-d9c2-4716-a46e-edb830116fa3',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },

操作 822

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/medical-imaging#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // datastoreSummaries: [
 // {
 // createdAt: 2023-08-04T18:49:54.429Z,
 // datastoreArn: 'arn:aws:medical-imaging:us-east-1:xxxxxxxxx:datastore/
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx',
 // datastoreId: 'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx',
 // datastoreName: 'my_datastore',
 // datastoreStatus: 'ACTIVE',
 // updatedAt: 2023-08-04T18:49:54.429Z
 // }
 // ...
 //]
 // }

 return datastoreSummaries;
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考ListDatastores中的。

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

ListImageSetVersions

以下代码示例演示了如何使用 ListImageSetVersions。

适用于 JavaScript (v3) 的软件开发工具包

import { paginateListImageSetVersions } from "@aws-sdk/client-medical-imaging";
import { medicalImagingClient } from "../libs/medicalImagingClient.js";

/**
 * @param {string} datastoreId - The ID of the data store.
 * @param {string} imageSetId - The ID of the image set.
 */
export const listImageSetVersions = async (
 datastoreId = "xxxxxxxxxxxx",
 imageSetId = "xxxxxxxxxxxx",

操作 823

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/medical-imaging/command/ListDatastoresCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/medical-imaging#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

) => {
 const paginatorConfig = {
 client: medicalImagingClient,
 pageSize: 50,
 };

 const commandParams = { datastoreId, imageSetId };
 const paginator = paginateListImageSetVersions(
 paginatorConfig,
 commandParams,
);

 const imageSetPropertiesList = [];
 for await (const page of paginator) {
 // Each page contains a list of `jobSummaries`. The list is truncated if is
 larger than `pageSize`.
 imageSetPropertiesList.push(...page.imageSetPropertiesList);
 console.log(page);
 }
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '74590b37-a002-4827-83f2-3c590279c742',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // imageSetPropertiesList: [
 // {
 // ImageSetWorkflowStatus: 'CREATED',
 // createdAt: 2023-09-22T14:49:26.427Z,
 // imageSetId: 'xxxxxxxxxxxxxxxxxxxxxxx',
 // imageSetState: 'ACTIVE',
 // versionId: '1'
 // }]
 // }
 return imageSetPropertiesList;
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考ListImageSetVersions中的。

操作 824

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/medical-imaging/command/ListImageSetVersionsCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

ListTagsForResource

以下代码示例演示了如何使用 ListTagsForResource。

适用于 JavaScript (v3) 的软件开发工具包

import { ListTagsForResourceCommand } from "@aws-sdk/client-medical-imaging";
import { medicalImagingClient } from "../libs/medicalImagingClient.js";

/**
 * @param {string} resourceArn - The Amazon Resource Name (ARN) for the data store
 or image set.
 */
export const listTagsForResource = async (
 resourceArn = "arn:aws:medical-imaging:us-east-1:abc:datastore/def/imageset/ghi",
) => {
 const response = await medicalImagingClient.send(
 new ListTagsForResourceCommand({ resourceArn: resourceArn }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '008fc6d3-abec-4870-a155-20fa3631e645',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // tags: { Deployment: 'Development' }
 // }

 return response;
};

操作 825

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/medical-imaging#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考ListTagsForResource中的。

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

SearchImageSets

以下代码示例演示了如何使用 SearchImageSets。

适用于 JavaScript (v3) 的软件开发工具包

用于搜索映像集的实用程序函数。

import { paginateSearchImageSets } from "@aws-sdk/client-medical-imaging";
import { medicalImagingClient } from "../libs/medicalImagingClient.js";

/**
 * @param {string} datastoreId - The data store's ID.
 * @param { import('@aws-sdk/client-medical-imaging').SearchFilter[] } filters - The
 search criteria filters.
 * @param { import('@aws-sdk/client-medical-imaging').Sort } sort - The search
 criteria sort.
 */
export const searchImageSets = async (
 datastoreId = "xxxxxxxx",
 searchCriteria = {},
) => {
 const paginatorConfig = {
 client: medicalImagingClient,
 pageSize: 50,
 };

 const commandParams = {
 datastoreId: datastoreId,
 searchCriteria: searchCriteria,
 };

 const paginator = paginateSearchImageSets(paginatorConfig, commandParams);

操作 826

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/medical-imaging/command/ListTagsForResourceCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/medical-imaging#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const imageSetsMetadataSummaries = [];
 for await (const page of paginator) {
 // Each page contains a list of `jobSummaries`. The list is truncated if is
 larger than `pageSize`.
 imageSetsMetadataSummaries.push(...page.imageSetsMetadataSummaries);
 console.log(page);
 }
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: 'f009ea9c-84ca-4749-b5b6-7164f00a5ada',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // imageSetsMetadataSummaries: [
 // {
 // DICOMTags: [Object],
 // createdAt: "2023-09-19T16:59:40.551Z",
 // imageSetId: '7f75e1b5c0f40eac2b24cf712f485f50',
 // updatedAt: "2023-09-19T16:59:40.551Z",
 // version: 1
 // }]
 // }

 return imageSetsMetadataSummaries;
};

使用案例 #1：EQUAL 运算符。

 const datastoreId = "12345678901234567890123456789012";

 try {
 const searchCriteria = {
 filters: [
 {
 values: [{ DICOMPatientId: "1234567" }],
 operator: "EQUAL",
 },
],
 };

操作 827

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 await searchImageSets(datastoreId, searchCriteria);
 } catch (err) {
 console.error(err);
 }

用例 #2: 使用 DICOMStudy日期和 DICOMStudy时间的 BETWEEN 运算符。

 const datastoreId = "12345678901234567890123456789012";

 try {
 const searchCriteria = {
 filters: [
 {
 values: [
 {
 DICOMStudyDateAndTime: {
 DICOMStudyDate: "19900101",
 DICOMStudyTime: "000000",
 },
 },
 {
 DICOMStudyDateAndTime: {
 DICOMStudyDate: "20230901",
 DICOMStudyTime: "000000",
 },
 },
],
 operator: "BETWEEN",
 },
],
 };

 await searchImageSets(datastoreId, searchCriteria);
 } catch (err) {
 console.error(err);
 }

使用案例 #3：使用 createdAt 的 BETWEEN 运算符。时间研究以前一直存在。

 const datastoreId = "12345678901234567890123456789012";

操作 828

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 try {
 const searchCriteria = {
 filters: [
 {
 values: [
 { createdAt: new Date("1985-04-12T23:20:50.52Z") },
 { createdAt: new Date() },
],
 operator: "BETWEEN",
 },
],
 };

 await searchImageSets(datastoreId, searchCriteria);
 } catch (err) {
 console.error(err);
 }

用例 #4: DICOMSeries InstanceUID 上的 EQUAL 运算符和 updateDat 上的 BETWEEN 运算符，
在 updateDat 字段上按照 ASC 顺序对响应进行排序。

 const datastoreId = "12345678901234567890123456789012";

 try {
 const searchCriteria = {
 filters: [
 {
 values: [
 { updatedAt: new Date("1985-04-12T23:20:50.52Z") },
 { updatedAt: new Date() },
],
 operator: "BETWEEN",
 },
 {
 values: [
 {
 DICOMSeriesInstanceUID:
 "1.1.123.123456.1.12.1.1234567890.1234.12345678.123",
 },
],
 operator: "EQUAL",

操作 829

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 },
],
 sort: {
 sortOrder: "ASC",
 sortField: "updatedAt",
 },
 };

 await searchImageSets(datastoreId, searchCriteria);
 } catch (err) {
 console.error(err);
 }

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考SearchImageSets中
的。

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

StartDICOMImportJob

以下代码示例演示了如何使用 StartDICOMImportJob。

适用于 JavaScript (v3) 的软件开发工具包

import { StartDICOMImportJobCommand } from "@aws-sdk/client-medical-imaging";
import { medicalImagingClient } from "../libs/medicalImagingClient.js";

/**
 * @param {string} jobName - The name of the import job.
 * @param {string} datastoreId - The ID of the data store.
 * @param {string} dataAccessRoleArn - The Amazon Resource Name (ARN) of the role
 that grants permission.
 * @param {string} inputS3Uri - The URI of the S3 bucket containing the input files.
 * @param {string} outputS3Uri - The URI of the S3 bucket where the output files are
 stored.
 */
export const startDicomImportJob = async (

操作 830

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/medical-imaging/command/SearchImageSetsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/medical-imaging#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 jobName = "test-1",
 datastoreId = "12345678901234567890123456789012",
 dataAccessRoleArn = "arn:aws:iam::xxxxxxxxxxxx:role/ImportJobDataAccessRole",
 inputS3Uri = "s3://medical-imaging-dicom-input/dicom_input/",
 outputS3Uri = "s3://medical-imaging-output/job_output/",
) => {
 const response = await medicalImagingClient.send(
 new StartDICOMImportJobCommand({
 jobName: jobName,
 datastoreId: datastoreId,
 dataAccessRoleArn: dataAccessRoleArn,
 inputS3Uri: inputS3Uri,
 outputS3Uri: outputS3Uri,
 }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '6e81d191-d46b-4e48-a08a-cdcc7e11eb79',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // datastoreId: 'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx',
 // jobId: 'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx',
 // jobStatus: 'SUBMITTED',
 // submittedAt: 2023-09-22T14:48:45.767Z
 // }
 return response;
};

• 有关 API 的详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API 参考》中的 “启动
DICOMImport Job”。

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

操作 831

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/medical-imaging/command/StartDICOMImportJobCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/medical-imaging/command/StartDICOMImportJobCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/medical-imaging#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

TagResource

以下代码示例演示了如何使用 TagResource。

适用于 JavaScript (v3) 的软件开发工具包

import { TagResourceCommand } from "@aws-sdk/client-medical-imaging";
import { medicalImagingClient } from "../libs/medicalImagingClient.js";

/**
 * @param {string} resourceArn - The Amazon Resource Name (ARN) for the data store
 or image set.
 * @param {Record<string,string>} tags - The tags to add to the resource as JSON.
 * - For example: {"Deployment" : "Development"}
 */
export const tagResource = async (
 resourceArn = "arn:aws:medical-imaging:us-east-1:xxxxxx:datastore/xxxxx/imageset/
xxx",
 tags = {},
) => {
 const response = await medicalImagingClient.send(
 new TagResourceCommand({ resourceArn: resourceArn, tags: tags }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 204,
 // requestId: '8a6de9a3-ec8e-47ef-8643-473518b19d45',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // }
 // }

 return response;
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考TagResource中的。

操作 832

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/medical-imaging/command/TagResourceCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

UntagResource

以下代码示例演示了如何使用 UntagResource。

适用于 JavaScript (v3) 的软件开发工具包

import { UntagResourceCommand } from "@aws-sdk/client-medical-imaging";
import { medicalImagingClient } from "../libs/medicalImagingClient.js";

/**
 * @param {string} resourceArn - The Amazon Resource Name (ARN) for the data store
 or image set.
 * @param {string[]} tagKeys - The keys of the tags to remove.
 */
export const untagResource = async (
 resourceArn = "arn:aws:medical-imaging:us-east-1:xxxxxx:datastore/xxxxx/imageset/
xxx",
 tagKeys = [],
) => {
 const response = await medicalImagingClient.send(
 new UntagResourceCommand({ resourceArn: resourceArn, tagKeys: tagKeys }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 204,
 // requestId: '8a6de9a3-ec8e-47ef-8643-473518b19d45',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // }
 // }

 return response;
};

操作 833

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/medical-imaging#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考UntagResource中
的。

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

UpdateImageSetMetadata

以下代码示例演示了如何使用 UpdateImageSetMetadata。

适用于 JavaScript (v3) 的软件开发工具包

import { UpdateImageSetMetadataCommand } from "@aws-sdk/client-medical-imaging";
import { medicalImagingClient } from "../libs/medicalImagingClient.js";

/**
 * @param {string} datastoreId - The ID of the HealthImaging data store.
 * @param {string} imageSetId - The ID of the HealthImaging image set.
 * @param {string} latestVersionId - The ID of the HealthImaging image set version.
 * @param {{}} updateMetadata - The metadata to update.
 * @param {boolean} force - Force the update.
 */
export const updateImageSetMetadata = async (
 datastoreId = "xxxxxxxxxx",
 imageSetId = "xxxxxxxxxx",
 latestVersionId = "1",
 updateMetadata = "{}",
 force = false,
) => {
 try {
 const response = await medicalImagingClient.send(
 new UpdateImageSetMetadataCommand({
 datastoreId: datastoreId,
 imageSetId: imageSetId,
 latestVersionId: latestVersionId,
 updateImageSetMetadataUpdates: updateMetadata,
 force: force,

操作 834

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/medical-imaging/command/UntagResourceCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/medical-imaging#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '7966e869-e311-4bff-92ec-56a61d3003ea',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // createdAt: 2023-09-22T14:49:26.427Z,
 // datastoreId: 'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx',
 // imageSetId: 'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx',
 // imageSetState: 'LOCKED',
 // imageSetWorkflowStatus: 'UPDATING',
 // latestVersionId: '4',
 // updatedAt: 2023-09-27T19:41:43.494Z
 // }
 return response;
 } catch (err) {
 console.error(err);
 }
};

使用案例 #1：插入或更新属性并强制更新。

 const insertAttributes = JSON.stringify({
 SchemaVersion: 1.1,
 Study: {
 DICOM: {
 StudyDescription: "CT CHEST",
 },
 },
 });

 const updateMetadata = {
 DICOMUpdates: {
 updatableAttributes: new TextEncoder().encode(insertAttributes),
 },
 };

操作 835

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 await updateImageSetMetadata(
 datastoreID,
 imageSetID,
 versionID,
 updateMetadata,
 true,
);

使用案例 #2：移除属性。

 // Attribute key and value must match the existing attribute.
 const remove_attribute = JSON.stringify({
 SchemaVersion: 1.1,
 Study: {
 DICOM: {
 StudyDescription: "CT CHEST",
 },
 },
 });

 const updateMetadata = {
 DICOMUpdates: {
 removableAttributes: new TextEncoder().encode(remove_attribute),
 },
 };

 await updateImageSetMetadata(
 datastoreID,
 imageSetID,
 versionID,
 updateMetadata,
);

使用案例 #3：移除实例。

 const remove_instance = JSON.stringify({
 SchemaVersion: 1.1,
 Study: {
 Series: {
 "1.1.1.1.1.1.12345.123456789012.123.12345678901234.1": {

操作 836

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 Instances: {
 "1.1.1.1.1.1.12345.123456789012.123.12345678901234.1": {},
 },
 },
 },
 },
 });

 const updateMetadata = {
 DICOMUpdates: {
 removableAttributes: new TextEncoder().encode(remove_instance),
 },
 };

 await updateImageSetMetadata(
 datastoreID,
 imageSetID,
 versionID,
 updateMetadata,
);

使用案例 #4：恢复到早期版本。

 const updateMetadata = {
 revertToVersionId: "1",
 };

 await updateImageSetMetadata(
 datastoreID,
 imageSetID,
 versionID,
 updateMetadata,
);

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考UpdateImageSetMetadata中的。

操作 837

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/medical-imaging/command/UpdateImageSetMetadataCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

场景

开始使用影像集和影像帧

以下代码示例说明如何导入 DICOM 文件和在中下载图像框架。 HealthImaging

该实现构造为命令行应用程序。

• 设置 DICOM 导入的资源。

• 将 DICOM 文件导入数据存储中。

• 检索导入任务 IDs 的影像集。

• 检索影像集 IDs 的图像框。

• 下载、解码并验证影像帧。

• 清理资源。

适用于 JavaScript (v3) 的软件开发工具包

编排步骤（index.js）。

import {
 parseScenarioArgs,
 Scenario,
} from "@aws-doc-sdk-examples/lib/scenario/index.js";
import {
 saveState,
 loadState,
} from "@aws-doc-sdk-examples/lib/scenario/steps-common.js";

import {
 createStack,
 deployStack,
 getAccountId,
 getDatastoreName,

场景 838

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/medical-imaging#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 getStackName,
 outputState,
 waitForStackCreation,
} from "./deploy-steps.js";
import {
 doCopy,
 selectDataset,
 copyDataset,
 outputCopiedObjects,
} from "./dataset-steps.js";
import {
 doImport,
 outputImportJobStatus,
 startDICOMImport,
 waitForImportJobCompletion,
} from "./import-steps.js";
import {
 getManifestFile,
 outputImageSetIds,
 parseManifestFile,
} from "./image-set-steps.js";
import {
 getImageSetMetadata,
 outputImageFrameIds,
} from "./image-frame-steps.js";
import { decodeAndVerifyImages, doVerify } from "./verify-steps.js";
import {
 confirmCleanup,
 deleteImageSets,
 deleteStack,
} from "./clean-up-steps.js";

const context = {};

const scenarios = {
 deploy: new Scenario(
 "Deploy Resources",
 [
 deployStack,
 getStackName,
 getDatastoreName,
 getAccountId,
 createStack,
 waitForStackCreation,

场景 839

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 outputState,
 saveState,
],
 context,
),
 demo: new Scenario(
 "Run Demo",
 [
 loadState,
 doCopy,
 selectDataset,
 copyDataset,
 outputCopiedObjects,
 doImport,
 startDICOMImport,
 waitForImportJobCompletion,
 outputImportJobStatus,
 getManifestFile,
 parseManifestFile,
 outputImageSetIds,
 getImageSetMetadata,
 outputImageFrameIds,
 doVerify,
 decodeAndVerifyImages,
 saveState,
],
 context,
),
 destroy: new Scenario(
 "Clean Up Resources",
 [loadState, confirmCleanup, deleteImageSets, deleteStack],
 context,
),
};

// Call function if run directly
import { fileURLToPath } from "node:url";
if (process.argv[1] === fileURLToPath(import.meta.url)) {
 parseScenarioArgs(scenarios, {
 name: "Health Imaging Workflow",
 description:
 "Work with DICOM images using an AWS Health Imaging data store.",
 synopsis:

场景 840

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 "node index.js --scenario <deploy | demo | destroy> [-h|--help] [-y|--yes] [-
v|--verbose]",
 });
}

部署资源（deploy-steps.js）。

import fs from "node:fs/promises";
import path from "node:path";

import {
 CloudFormationClient,
 CreateStackCommand,
 DescribeStacksCommand,
} from "@aws-sdk/client-cloudformation";
import { STSClient, GetCallerIdentityCommand } from "@aws-sdk/client-sts";

import {
 ScenarioAction,
 ScenarioInput,
 ScenarioOutput,
} from "@aws-doc-sdk-examples/lib/scenario/index.js";
import { retry } from "@aws-doc-sdk-examples/lib/utils/util-timers.js";

const cfnClient = new CloudFormationClient({});
const stsClient = new STSClient({});

const __dirname = path.dirname(new URL(import.meta.url).pathname);
const cfnTemplatePath = path.join(
 __dirname,
 "../../../../../scenarios/features/healthimaging_image_sets/resources/
cfn_template.yaml",
);

export const deployStack = new ScenarioInput(
 "deployStack",
 "Do you want to deploy the CloudFormation stack?",
 { type: "confirm" },
);

export const getStackName = new ScenarioInput(
 "getStackName",

场景 841

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 "Enter a name for the CloudFormation stack:",
 { type: "input", skipWhen: (/** @type {{}} */ state) => !state.deployStack },
);

export const getDatastoreName = new ScenarioInput(
 "getDatastoreName",
 "Enter a name for the HealthImaging datastore:",
 { type: "input", skipWhen: (/** @type {{}} */ state) => !state.deployStack },
);

export const getAccountId = new ScenarioAction(
 "getAccountId",
 async (/** @type {{}} */ state) => {
 const command = new GetCallerIdentityCommand({});
 const response = await stsClient.send(command);
 state.accountId = response.Account;
 },
 {
 skipWhen: (/** @type {{}} */ state) => !state.deployStack,
 },
);

export const createStack = new ScenarioAction(
 "createStack",
 async (/** @type {{}} */ state) => {
 const stackName = state.getStackName;
 const datastoreName = state.getDatastoreName;
 const accountId = state.accountId;

 const command = new CreateStackCommand({
 StackName: stackName,
 TemplateBody: await fs.readFile(cfnTemplatePath, "utf8"),
 Capabilities: ["CAPABILITY_IAM"],
 Parameters: [
 {
 ParameterKey: "datastoreName",
 ParameterValue: datastoreName,
 },
 {
 ParameterKey: "userAccountID",
 ParameterValue: accountId,
 },
],
 });

场景 842

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const response = await cfnClient.send(command);
 state.stackId = response.StackId;
 },
 { skipWhen: (/** @type {{}} */ state) => !state.deployStack },
);

export const waitForStackCreation = new ScenarioAction(
 "waitForStackCreation",
 async (/** @type {{}} */ state) => {
 const command = new DescribeStacksCommand({
 StackName: state.stackId,
 });

 await retry({ intervalInMs: 10000, maxRetries: 60 }, async () => {
 const response = await cfnClient.send(command);
 const stack = response.Stacks?.find(
 (s) => s.StackName === state.getStackName,
);
 if (!stack || stack.StackStatus === "CREATE_IN_PROGRESS") {
 throw new Error("Stack creation is still in progress");
 }
 if (stack.StackStatus === "CREATE_COMPLETE") {
 state.stackOutputs = stack.Outputs?.reduce((acc, output) => {
 acc[output.OutputKey] = output.OutputValue;
 return acc;
 }, {});
 } else {
 throw new Error(
 `Stack creation failed with status: ${stack.StackStatus}`,
);
 }
 });
 },
 {
 skipWhen: (/** @type {{}} */ state) => !state.deployStack,
 },
);

export const outputState = new ScenarioOutput(
 "outputState",
 (/** @type {{}} */ state) => {
 /**

场景 843

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * @type {{ stackOutputs: { DatastoreID: string, BucketName: string, RoleArn:
 string }}}
 */
 const { stackOutputs } = state;
 return `Stack creation completed. Output values:
Datastore ID: ${stackOutputs?.DatastoreID}
Bucket Name: ${stackOutputs?.BucketName}
Role ARN: ${stackOutputs?.RoleArn}
 `;
 },
 { skipWhen: (/** @type {{}} */ state) => !state.deployStack },
);

复制 DICOM 文件（dataset-steps.js）。

import {
 S3Client,
 CopyObjectCommand,
 ListObjectsV2Command,
} from "@aws-sdk/client-s3";

import {
 ScenarioAction,
 ScenarioInput,
 ScenarioOutput,
} from "@aws-doc-sdk-examples/lib/scenario/index.js";

const s3Client = new S3Client({});

const datasetOptions = [
 {
 name: "CT of chest (2 images)",
 value: "00029d25-fb18-4d42-aaa5-a0897d1ac8f7",
 },
 {
 name: "CT of pelvis (57 images)",
 value: "00025d30-ef8f-4135-a35a-d83eff264fc1",
 },
 {
 name: "MRI of head (192 images)",
 value: "0002d261-8a5d-4e63-8e2e-0cbfac87b904",
 },

场景 844

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 {
 name: "MRI of breast (92 images)",
 value: "0002dd07-0b7f-4a68-a655-44461ca34096",
 },
];

/**
 * @typedef {{ stackOutputs: {
 * BucketName: string,
 * DatastoreID: string,
 * doCopy: boolean
 * }}} State
 */

export const selectDataset = new ScenarioInput(
 "selectDataset",
 (state) => {
 if (!state.doCopy) {
 process.exit(0);
 }
 return "Select a DICOM dataset to import:";
 },
 {
 type: "select",
 choices: datasetOptions,
 },
);

export const doCopy = new ScenarioInput(
 "doCopy",
 "Do you want to copy images from the public dataset into your bucket?",
 {
 type: "confirm",
 },
);

export const copyDataset = new ScenarioAction(
 "copyDataset",
 async (/** @type { State } */ state) => {
 const inputBucket = state.stackOutputs.BucketName;
 const inputPrefix = "input/";
 const selectedDatasetId = state.selectDataset;

 const sourceBucket = "idc-open-data";

场景 845

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const sourcePrefix = `${selectedDatasetId}`;

 const listObjectsCommand = new ListObjectsV2Command({
 Bucket: sourceBucket,
 Prefix: sourcePrefix,
 });

 const objects = await s3Client.send(listObjectsCommand);

 const copyPromises = objects.Contents.map((object) => {
 const sourceKey = object.Key;
 const destinationKey = `${inputPrefix}${sourceKey
 .split("/")
 .slice(1)
 .join("/")}`;

 const copyCommand = new CopyObjectCommand({
 Bucket: inputBucket,
 CopySource: `/${sourceBucket}/${sourceKey}`,
 Key: destinationKey,
 });

 return s3Client.send(copyCommand);
 });

 const results = await Promise.all(copyPromises);
 state.copiedObjects = results.length;
 },
);

export const outputCopiedObjects = new ScenarioOutput(
 "outputCopiedObjects",
 (state) => `${state.copiedObjects} DICOM files were copied.`,
);

开始导入到数据存储（import-steps.js）。

import {
 MedicalImagingClient,
 StartDICOMImportJobCommand,
 GetDICOMImportJobCommand,
} from "@aws-sdk/client-medical-imaging";

场景 846

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

import {
 ScenarioAction,
 ScenarioOutput,
 ScenarioInput,
} from "@aws-doc-sdk-examples/lib/scenario/index.js";
import { retry } from "@aws-doc-sdk-examples/lib/utils/util-timers.js";

/**
 * @typedef {{ stackOutputs: {
 * BucketName: string,
 * DatastoreID: string,
 * RoleArn: string
 * }}} State
 */

export const doImport = new ScenarioInput(
 "doImport",
 "Do you want to import DICOM images into your datastore?",
 {
 type: "confirm",
 default: true,
 },
);

export const startDICOMImport = new ScenarioAction(
 "startDICOMImport",
 async (/** @type {State} */ state) => {
 if (!state.doImport) {
 process.exit(0);
 }
 const medicalImagingClient = new MedicalImagingClient({});
 const inputS3Uri = `s3://${state.stackOutputs.BucketName}/input/`;
 const outputS3Uri = `s3://${state.stackOutputs.BucketName}/output/`;

 const command = new StartDICOMImportJobCommand({
 dataAccessRoleArn: state.stackOutputs.RoleArn,
 datastoreId: state.stackOutputs.DatastoreID,
 inputS3Uri,
 outputS3Uri,
 });

 const response = await medicalImagingClient.send(command);
 state.importJobId = response.jobId;

场景 847

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 },
);

export const waitForImportJobCompletion = new ScenarioAction(
 "waitForImportJobCompletion",
 async (/** @type {State} */ state) => {
 const medicalImagingClient = new MedicalImagingClient({});
 const command = new GetDICOMImportJobCommand({
 datastoreId: state.stackOutputs.DatastoreID,
 jobId: state.importJobId,
 });

 await retry({ intervalInMs: 10000, maxRetries: 60 }, async () => {
 const response = await medicalImagingClient.send(command);
 const jobStatus = response.jobProperties?.jobStatus;
 if (!jobStatus || jobStatus === "IN_PROGRESS") {
 throw new Error("Import job is still in progress");
 }
 if (jobStatus === "COMPLETED") {
 state.importJobOutputS3Uri = response.jobProperties.outputS3Uri;
 } else {
 throw new Error(`Import job failed with status: ${jobStatus}`);
 }
 });
 },
);

export const outputImportJobStatus = new ScenarioOutput(
 "outputImportJobStatus",
 (state) =>
 `DICOM import job completed. Output location: ${state.importJobOutputS3Uri}`,
);

获取图像集 IDs (image-set-steps.js-)。

import { S3Client, GetObjectCommand } from "@aws-sdk/client-s3";

import {
 ScenarioAction,
 ScenarioOutput,
} from "@aws-doc-sdk-examples/lib/scenario/index.js";

场景 848

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

/**
 * @typedef {{ stackOutputs: {
 * BucketName: string,
 * DatastoreID: string,
 * RoleArn: string
 * }, importJobId: string,
 * importJobOutputS3Uri: string,
 * imageSetIds: string[],
 * manifestContent: { jobSummary: { imageSetsSummary: { imageSetId: string }[] } }
 * }} State
 */

const s3Client = new S3Client({});

export const getManifestFile = new ScenarioAction(
 "getManifestFile",
 async (/** @type {State} */ state) => {
 const bucket = state.stackOutputs.BucketName;
 const prefix = `output/${state.stackOutputs.DatastoreID}-DicomImport-
${state.importJobId}/`;
 const key = `${prefix}job-output-manifest.json`;

 const command = new GetObjectCommand({
 Bucket: bucket,
 Key: key,
 });

 const response = await s3Client.send(command);
 const manifestContent = await response.Body.transformToString();
 state.manifestContent = JSON.parse(manifestContent);
 },
);

export const parseManifestFile = new ScenarioAction(
 "parseManifestFile",
 (/** @type {State} */ state) => {
 const imageSetIds =
 state.manifestContent.jobSummary.imageSetsSummary.reduce((ids, next) => {
 return Object.assign({}, ids, {
 [next.imageSetId]: next.imageSetId,
 });
 }, {});
 state.imageSetIds = Object.keys(imageSetIds);
 },

场景 849

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

);

export const outputImageSetIds = new ScenarioOutput(
 "outputImageSetIds",
 (/** @type {State} */ state) =>
 `The image sets created by this import job are: \n${state.imageSetIds
 .map((id) => `Image set: ${id}`)
 .join("\n")}`,
);

获取图像框 IDs (image-frame-steps.js)。

import {
 MedicalImagingClient,
 GetImageSetMetadataCommand,
} from "@aws-sdk/client-medical-imaging";
import { gunzip } from "node:zlib";
import { promisify } from "node:util";

import {
 ScenarioAction,
 ScenarioOutput,
} from "@aws-doc-sdk-examples/lib/scenario/index.js";

const gunzipAsync = promisify(gunzip);

/**
 * @typedef {Object} DICOMValueRepresentation
 * @property {string} name
 * @property {string} type
 * @property {string} value
 */

/**
 * @typedef {Object} ImageFrameInformation
 * @property {string} ID
 * @property {Array<{ Checksum: number, Height: number, Width: number }>}
 PixelDataChecksumFromBaseToFullResolution
 * @property {number} MinPixelValue
 * @property {number} MaxPixelValue
 * @property {number} FrameSizeInBytes
 */

场景 850

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

/**
 * @typedef {Object} DICOMMetadata
 * @property {Object} DICOM
 * @property {DICOMValueRepresentation[]} DICOMVRs
 * @property {ImageFrameInformation[]} ImageFrames
 */

/**
 * @typedef {Object} Series
 * @property {{ [key: string]: DICOMMetadata }} Instances
 */

/**
 * @typedef {Object} Study
 * @property {Object} DICOM
 * @property {Series[]} Series
 */

/**
 * @typedef {Object} Patient
 * @property {Object} DICOM
 */

/**
 * @typedef {{
 * SchemaVersion: string,
 * DatastoreID: string,
 * ImageSetID: string,
 * Patient: Patient,
 * Study: Study
 * }} ImageSetMetadata
 */

/**
 * @typedef {{ stackOutputs: {
 * BucketName: string,
 * DatastoreID: string,
 * RoleArn: string
 * }, imageSetIds: string[] }} State
 */

const medicalImagingClient = new MedicalImagingClient({});

场景 851

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

export const getImageSetMetadata = new ScenarioAction(
 "getImageSetMetadata",
 async (/** @type {State} */ state) => {
 const outputMetadata = [];

 for (const imageSetId of state.imageSetIds) {
 const command = new GetImageSetMetadataCommand({
 datastoreId: state.stackOutputs.DatastoreID,
 imageSetId,
 });

 const response = await medicalImagingClient.send(command);
 const compressedMetadataBlob =
 await response.imageSetMetadataBlob.transformToByteArray();
 const decompressedMetadata = await gunzipAsync(compressedMetadataBlob);
 const imageSetMetadata = JSON.parse(decompressedMetadata.toString());

 outputMetadata.push(imageSetMetadata);
 }

 state.imageSetMetadata = outputMetadata;
 },
);

export const outputImageFrameIds = new ScenarioOutput(
 "outputImageFrameIds",
 (/** @type {State & { imageSetMetadata: ImageSetMetadata[] }} */ state) => {
 let output = "";

 for (const metadata of state.imageSetMetadata) {
 const imageSetId = metadata.ImageSetID;
 /** @type {DICOMMetadata[]} */
 const instances = Object.values(metadata.Study.Series).flatMap(
 (series) => {
 return Object.values(series.Instances);
 },
);
 const imageFrameIds = instances.flatMap((instance) =>
 instance.ImageFrames.map((frame) => frame.ID),
);

 output += `Image set ID: ${imageSetId}\nImage frame IDs:\n
${imageFrameIds.join(
 "\n",

场景 852

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

)}\n\n`;
 }

 return output;
 },
);

验证映像帧（verify-steps.js）。使用Amazon HealthImaging 像素数据验证库进行验证。

import { spawn } from "node:child_process";

import {
 ScenarioAction,
 ScenarioInput,
} from "@aws-doc-sdk-examples/lib/scenario/index.js";

/**
 * @typedef {Object} DICOMValueRepresentation
 * @property {string} name
 * @property {string} type
 * @property {string} value
 */

/**
 * @typedef {Object} ImageFrameInformation
 * @property {string} ID
 * @property {Array<{ Checksum: number, Height: number, Width: number }>}
 PixelDataChecksumFromBaseToFullResolution
 * @property {number} MinPixelValue
 * @property {number} MaxPixelValue
 * @property {number} FrameSizeInBytes
 */

/**
 * @typedef {Object} DICOMMetadata
 * @property {Object} DICOM
 * @property {DICOMValueRepresentation[]} DICOMVRs
 * @property {ImageFrameInformation[]} ImageFrames
 */

/**
 * @typedef {Object} Series

场景 853

https://github.com/aws-samples/aws-healthimaging-samples/tree/main/pixel-data-verification

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * @property {{ [key: string]: DICOMMetadata }} Instances
 */

/**
 * @typedef {Object} Study
 * @property {Object} DICOM
 * @property {Series[]} Series
 */

/**
 * @typedef {Object} Patient
 * @property {Object} DICOM
 */

/**
 * @typedef {{
 * SchemaVersion: string,
 * DatastoreID: string,
 * ImageSetID: string,
 * Patient: Patient,
 * Study: Study
 * }} ImageSetMetadata
 */

/**
 * @typedef {{ stackOutputs: {
 * BucketName: string,
 * DatastoreID: string,
 * RoleArn: string
 * }, imageSetMetadata: ImageSetMetadata[] }} State
 */

export const doVerify = new ScenarioInput(
 "doVerify",
 "Do you want to verify the imported images?",
 {
 type: "confirm",
 default: true,
 },
);

export const decodeAndVerifyImages = new ScenarioAction(
 "decodeAndVerifyImages",
 async (/** @type {State} */ state) => {

场景 854

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 if (!state.doVerify) {
 process.exit(0);
 }
 const verificationTool = "./pixel-data-verification/index.js";

 for (const metadata of state.imageSetMetadata) {
 const datastoreId = state.stackOutputs.DatastoreID;
 const imageSetId = metadata.ImageSetID;

 for (const [seriesInstanceUid, series] of Object.entries(
 metadata.Study.Series,
)) {
 for (const [sopInstanceUid, _] of Object.entries(series.Instances)) {
 console.log(
 `Verifying image set ${imageSetId} with series ${seriesInstanceUid} and
 sop ${sopInstanceUid}`,
);
 const child = spawn(
 "node",
 [
 verificationTool,
 datastoreId,
 imageSetId,
 seriesInstanceUid,
 sopInstanceUid,
],
 { stdio: "inherit" },
);

 await new Promise((resolve, reject) => {
 child.on("exit", (code) => {
 if (code === 0) {
 resolve();
 } else {
 reject(
 new Error(
 `Verification tool exited with code ${code} for image set
 ${imageSetId}`,
),
);
 }
 });
 });
 }

场景 855

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }
 }
 },
);

摧毁资源（clean-up-steps.js）。

import {
 CloudFormationClient,
 DeleteStackCommand,
} from "@aws-sdk/client-cloudformation";
import {
 MedicalImagingClient,
 DeleteImageSetCommand,
} from "@aws-sdk/client-medical-imaging";

import {
 ScenarioAction,
 ScenarioInput,
} from "@aws-doc-sdk-examples/lib/scenario/index.js";

/**
 * @typedef {Object} DICOMValueRepresentation
 * @property {string} name
 * @property {string} type
 * @property {string} value
 */

/**
 * @typedef {Object} ImageFrameInformation
 * @property {string} ID
 * @property {Array<{ Checksum: number, Height: number, Width: number }>}
 PixelDataChecksumFromBaseToFullResolution
 * @property {number} MinPixelValue
 * @property {number} MaxPixelValue
 * @property {number} FrameSizeInBytes
 */

/**
 * @typedef {Object} DICOMMetadata
 * @property {Object} DICOM
 * @property {DICOMValueRepresentation[]} DICOMVRs

场景 856

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * @property {ImageFrameInformation[]} ImageFrames
 */

/**
 * @typedef {Object} Series
 * @property {{ [key: string]: DICOMMetadata }} Instances
 */

/**
 * @typedef {Object} Study
 * @property {Object} DICOM
 * @property {Series[]} Series
 */

/**
 * @typedef {Object} Patient
 * @property {Object} DICOM
 */

/**
 * @typedef {{
 * SchemaVersion: string,
 * DatastoreID: string,
 * ImageSetID: string,
 * Patient: Patient,
 * Study: Study
 * }} ImageSetMetadata
 */

/**
 * @typedef {{ stackOutputs: {
 * BucketName: string,
 * DatastoreID: string,
 * RoleArn: string
 * }, imageSetMetadata: ImageSetMetadata[] }} State
 */

const cfnClient = new CloudFormationClient({});
const medicalImagingClient = new MedicalImagingClient({});

export const confirmCleanup = new ScenarioInput(
 "confirmCleanup",
 "Do you want to delete the created resources?",
 { type: "confirm" },

场景 857

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

);

export const deleteImageSets = new ScenarioAction(
 "deleteImageSets",
 async (/** @type {State} */ state) => {
 const datastoreId = state.stackOutputs.DatastoreID;

 for (const metadata of state.imageSetMetadata) {
 const command = new DeleteImageSetCommand({
 datastoreId,
 imageSetId: metadata.ImageSetID,
 });

 try {
 await medicalImagingClient.send(command);
 console.log(`Successfully deleted image set ${metadata.ImageSetID}`);
 } catch (e) {
 if (e instanceof Error) {
 if (e.name === "ConflictException") {
 console.log(`Image set ${metadata.ImageSetID} already deleted`);
 }
 }
 }
 }
 },
 {
 skipWhen: (/** @type {{}} */ state) => !state.confirmCleanup,
 },
);

export const deleteStack = new ScenarioAction(
 "deleteStack",
 async (/** @type {State} */ state) => {
 const stackName = state.getStackName;

 const command = new DeleteStackCommand({
 StackName: stackName,
 });

 await cfnClient.send(command);
 console.log(`Stack ${stackName} deletion initiated`);
 },
 {
 skipWhen: (/** @type {{}} */ state) => !state.confirmCleanup,

场景 858

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 },
);

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的以下主
题。

• DeleteImageSet

• Get DICOMImport Job

• GetImageFrame

• GetImageSetMetadata

• SearchImageSets

• 开始 DICOMImport Job

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

标记数据存储

以下代码示例显示了如何为 HealthImaging 数据存储添加标签。

适用于 JavaScript (v3) 的软件开发工具包

标记数据存储。

 try {
 const datastoreArn =
 "arn:aws:medical-imaging:us-
east-1:123456789012:datastore/12345678901234567890123456789012";
 const tags = {
 Deployment: "Development",
 };
 await tagResource(datastoreArn, tags);
 } catch (e) {
 console.log(e);
 }

场景 859

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/medical-imaging/command/DeleteImageSetCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/medical-imaging/command/GetDICOMImportJobCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/medical-imaging/command/GetImageFrameCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/medical-imaging/command/GetImageSetMetadataCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/medical-imaging/command/SearchImageSetsCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/medical-imaging/command/StartDICOMImportJobCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/medical-imaging#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

用于标记资源的实用程序函数。

import { TagResourceCommand } from "@aws-sdk/client-medical-imaging";
import { medicalImagingClient } from "../libs/medicalImagingClient.js";

/**
 * @param {string} resourceArn - The Amazon Resource Name (ARN) for the data store
 or image set.
 * @param {Record<string,string>} tags - The tags to add to the resource as JSON.
 * - For example: {"Deployment" : "Development"}
 */
export const tagResource = async (
 resourceArn = "arn:aws:medical-imaging:us-east-1:xxxxxx:datastore/xxxxx/imageset/
xxx",
 tags = {},
) => {
 const response = await medicalImagingClient.send(
 new TagResourceCommand({ resourceArn: resourceArn, tags: tags }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 204,
 // requestId: '8a6de9a3-ec8e-47ef-8643-473518b19d45',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // }
 // }

 return response;
};

列出数据存储的标签。

 try {
 const datastoreArn =
 "arn:aws:medical-imaging:us-
east-1:123456789012:datastore/12345678901234567890123456789012";
 const { tags } = await listTagsForResource(datastoreArn);
 console.log(tags);

场景 860

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 } catch (e) {
 console.log(e);
 }

用于列出资源标签的实用程序函数。

import { ListTagsForResourceCommand } from "@aws-sdk/client-medical-imaging";
import { medicalImagingClient } from "../libs/medicalImagingClient.js";

/**
 * @param {string} resourceArn - The Amazon Resource Name (ARN) for the data store
 or image set.
 */
export const listTagsForResource = async (
 resourceArn = "arn:aws:medical-imaging:us-east-1:abc:datastore/def/imageset/ghi",
) => {
 const response = await medicalImagingClient.send(
 new ListTagsForResourceCommand({ resourceArn: resourceArn }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '008fc6d3-abec-4870-a155-20fa3631e645',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // tags: { Deployment: 'Development' }
 // }

 return response;
};

取消标记数据存储。

 try {
 const datastoreArn =
 "arn:aws:medical-imaging:us-
east-1:123456789012:datastore/12345678901234567890123456789012";

场景 861

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const keys = ["Deployment"];
 await untagResource(datastoreArn, keys);
 } catch (e) {
 console.log(e);
 }

用于取消标记资源的实用程序函数。

import { UntagResourceCommand } from "@aws-sdk/client-medical-imaging";
import { medicalImagingClient } from "../libs/medicalImagingClient.js";

/**
 * @param {string} resourceArn - The Amazon Resource Name (ARN) for the data store
 or image set.
 * @param {string[]} tagKeys - The keys of the tags to remove.
 */
export const untagResource = async (
 resourceArn = "arn:aws:medical-imaging:us-east-1:xxxxxx:datastore/xxxxx/imageset/
xxx",
 tagKeys = [],
) => {
 const response = await medicalImagingClient.send(
 new UntagResourceCommand({ resourceArn: resourceArn, tagKeys: tagKeys }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 204,
 // requestId: '8a6de9a3-ec8e-47ef-8643-473518b19d45',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // }
 // }

 return response;
};

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的以下主
题。

场景 862

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• ListTagsForResource

• TagResource

• UntagResource

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

标记映像集

以下代码示例显示了如何为 HealthImaging 图像集添加标签。

适用于 JavaScript (v3) 的软件开发工具包

标记映像集。

 try {
 const imagesetArn =
 "arn:aws:medical-imaging:us-
east-1:123456789012:datastore/12345678901234567890123456789012/
imageset/12345678901234567890123456789012";
 const tags = {
 Deployment: "Development",
 };
 await tagResource(imagesetArn, tags);
 } catch (e) {
 console.log(e);
 }

用于标记资源的实用程序函数。

import { TagResourceCommand } from "@aws-sdk/client-medical-imaging";
import { medicalImagingClient } from "../libs/medicalImagingClient.js";

/**
 * @param {string} resourceArn - The Amazon Resource Name (ARN) for the data store
 or image set.
 * @param {Record<string,string>} tags - The tags to add to the resource as JSON.

场景 863

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/medical-imaging/command/ListTagsForResourceCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/medical-imaging/command/TagResourceCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/medical-imaging/command/UntagResourceCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/medical-imaging#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * - For example: {"Deployment" : "Development"}
 */
export const tagResource = async (
 resourceArn = "arn:aws:medical-imaging:us-east-1:xxxxxx:datastore/xxxxx/imageset/
xxx",
 tags = {},
) => {
 const response = await medicalImagingClient.send(
 new TagResourceCommand({ resourceArn: resourceArn, tags: tags }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 204,
 // requestId: '8a6de9a3-ec8e-47ef-8643-473518b19d45',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // }
 // }

 return response;
};

列出映像集的标签。

 try {
 const imagesetArn =
 "arn:aws:medical-imaging:us-
east-1:123456789012:datastore/12345678901234567890123456789012/
imageset/12345678901234567890123456789012";
 const { tags } = await listTagsForResource(imagesetArn);
 console.log(tags);
 } catch (e) {
 console.log(e);
 }

用于列出资源标签的实用程序函数。

import { ListTagsForResourceCommand } from "@aws-sdk/client-medical-imaging";

场景 864

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

import { medicalImagingClient } from "../libs/medicalImagingClient.js";

/**
 * @param {string} resourceArn - The Amazon Resource Name (ARN) for the data store
 or image set.
 */
export const listTagsForResource = async (
 resourceArn = "arn:aws:medical-imaging:us-east-1:abc:datastore/def/imageset/ghi",
) => {
 const response = await medicalImagingClient.send(
 new ListTagsForResourceCommand({ resourceArn: resourceArn }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '008fc6d3-abec-4870-a155-20fa3631e645',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // tags: { Deployment: 'Development' }
 // }

 return response;
};

取消标记映像集。

 try {
 const imagesetArn =
 "arn:aws:medical-imaging:us-
east-1:123456789012:datastore/12345678901234567890123456789012/
imageset/12345678901234567890123456789012";
 const keys = ["Deployment"];
 await untagResource(imagesetArn, keys);
 } catch (e) {
 console.log(e);
 }

场景 865

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

用于取消标记资源的实用程序函数。

import { UntagResourceCommand } from "@aws-sdk/client-medical-imaging";
import { medicalImagingClient } from "../libs/medicalImagingClient.js";

/**
 * @param {string} resourceArn - The Amazon Resource Name (ARN) for the data store
 or image set.
 * @param {string[]} tagKeys - The keys of the tags to remove.
 */
export const untagResource = async (
 resourceArn = "arn:aws:medical-imaging:us-east-1:xxxxxx:datastore/xxxxx/imageset/
xxx",
 tagKeys = [],
) => {
 const response = await medicalImagingClient.send(
 new UntagResourceCommand({ resourceArn: resourceArn, tagKeys: tagKeys }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 204,
 // requestId: '8a6de9a3-ec8e-47ef-8643-473518b19d45',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // }
 // }

 return response;
};

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的以下主
题。

• ListTagsForResource

• TagResource

• UntagResource

场景 866

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/medical-imaging/command/ListTagsForResourceCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/medical-imaging/command/TagResourceCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/medical-imaging/command/UntagResourceCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

使用适用于 JavaScript (v3) 的开发工具包的 IAM 示例

以下代码示例向您展示了如何使用带有 IAM 的 适用于 JavaScript 的 Amazon SDK (v3) 来执行操作和
实现常见场景。

基本功能是向您展示如何在服务中执行基本操作的代码示例。

操作是大型程序的代码摘录，必须在上下文中运行。您可以通过操作了解如何调用单个服务函数，还可
以通过函数相关场景的上下文查看操作。

场景是向您演示如何通过在一个服务中调用多个函数或与其他 Amazon Web Services 服务结合来完成
特定任务的代码示例。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

• 开始使用

• 基本功能

• 操作

• 场景

开始使用

开始使用 IAM

以下代码示例展示了如何开始使用 IAM。

IAM 867

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/medical-imaging#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { IAMClient, paginateListPolicies } from "@aws-sdk/client-iam";

const client = new IAMClient({});

export const listLocalPolicies = async () => {
 /**
 * In v3, the clients expose paginateOperationName APIs that are written using
 async generators so that you can use async iterators in a for await..of loop.
 * https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/index.html#paginators
 */
 const paginator = paginateListPolicies(
 { client, pageSize: 10 },
 // List only customer managed policies.
 { Scope: "Local" },
);

 console.log("IAM policies defined in your account:");
 let policyCount = 0;
 for await (const page of paginator) {
 if (page.Policies) {
 for (const policy of page.Policies) {
 console.log(`${policy.PolicyName}`);
 policyCount++;
 }
 }
 }
 console.log(`Found ${policyCount} policies.`);
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考ListPolicies中的。

开始使用 868

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/ListPoliciesCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

基本功能

了解基本功能

以下代码示例展示了如何创建用户并代入角色。

Warning

为了避免安全风险，在开发专用软件或处理真实数据时，请勿使用 IAM 用户进行身份验证，而
是使用与身份提供者的联合身份验证，例如 Amazon IAM Identity Center。

• 创建没有权限的用户。

• 创建授予列出账户的 Amazon S3 存储桶的权限的角色

• 添加策略以允许用户代入该角色。

• 代入角色并使用临时凭证列出 S3 存储桶，然后清除资源。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

创建 IAM 用户和授予列出 Amazon S3 存储桶的权限的角色。用户仅具有代入该角色的权限。代入
该角色后，使用临时凭证列出该账户的存储桶。

import {
 CreateUserCommand,
 GetUserCommand,
 CreateAccessKeyCommand,
 CreatePolicyCommand,
 CreateRoleCommand,
 AttachRolePolicyCommand,
 DeleteAccessKeyCommand,
 DeleteUserCommand,
 DeleteRoleCommand,
 DeletePolicyCommand,

基本功能 869

https://docs.amazonaws.cn/singlesignon/latest/userguide/what-is.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 DetachRolePolicyCommand,
 IAMClient,
} from "@aws-sdk/client-iam";
import { ListBucketsCommand, S3Client } from "@aws-sdk/client-s3";
import { AssumeRoleCommand, STSClient } from "@aws-sdk/client-sts";
import { retry } from "@aws-doc-sdk-examples/lib/utils/util-timers.js";
import { ScenarioInput } from "@aws-doc-sdk-examples/lib/scenario/index.js";

// Set the parameters.
const iamClient = new IAMClient({});
const userName = "iam_basic_test_username";
const policyName = "iam_basic_test_policy";
const roleName = "iam_basic_test_role";

/**
 * Create a new IAM user. If the user already exists, give
 * the option to delete and re-create it.
 * @param {string} name
 */
export const createUser = async (name, confirmAll = false) => {
 try {
 const { User } = await iamClient.send(
 new GetUserCommand({ UserName: name }),
);
 const input = new ScenarioInput(
 "deleteUser",
 "Do you want to delete and remake this user?",
 { type: "confirm" },
);
 const deleteUser = await input.handle({}, { confirmAll });
 // If the user exists, and you want to delete it, delete the user
 // and then create it again.
 if (deleteUser) {
 await iamClient.send(new DeleteUserCommand({ UserName: User.UserName }));
 await iamClient.send(new CreateUserCommand({ UserName: name }));
 } else {
 console.warn(
 `${name} already exists. The scenario may not work as expected.`,
);
 return User;
 }
 } catch (caught) {
 // If there is no user by that name, create one.
 if (caught instanceof Error && caught.name === "NoSuchEntityException") {

基本功能 870

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const { User } = await iamClient.send(
 new CreateUserCommand({ UserName: name }),
);
 return User;
 }
 throw caught;
 }
};

export const main = async (confirmAll = false) => {
 // Create a user. The user has no permissions by default.
 const User = await createUser(userName, confirmAll);

 if (!User) {
 throw new Error("User not created");
 }

 // Create an access key. This key is used to authenticate the new user to
 // Amazon Simple Storage Service (Amazon S3) and AWS Security Token Service (AWS
 STS).
 // It's not best practice to use access keys. For more information, see https://
aws.amazon.com/iam/resources/best-practices/.
 const createAccessKeyResponse = await iamClient.send(
 new CreateAccessKeyCommand({ UserName: userName }),
);

 if (
 !createAccessKeyResponse.AccessKey?.AccessKeyId ||
 !createAccessKeyResponse.AccessKey?.SecretAccessKey
) {
 throw new Error("Access key not created");
 }

 const {
 AccessKey: { AccessKeyId, SecretAccessKey },
 } = createAccessKeyResponse;

 let s3Client = new S3Client({
 credentials: {
 accessKeyId: AccessKeyId,
 secretAccessKey: SecretAccessKey,
 },
 });

基本功能 871

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // Retry the list buckets operation until it succeeds. InvalidAccessKeyId is
 // thrown while the user and access keys are still stabilizing.
 await retry({ intervalInMs: 1000, maxRetries: 300 }, async () => {
 try {
 return await listBuckets(s3Client);
 } catch (err) {
 if (err instanceof Error && err.name === "InvalidAccessKeyId") {
 throw err;
 }
 }
 });

 // Retry the create role operation until it succeeds. A MalformedPolicyDocument
 error
 // is thrown while the user and access keys are still stabilizing.
 const { Role } = await retry(
 {
 intervalInMs: 2000,
 maxRetries: 60,
 },
 () =>
 iamClient.send(
 new CreateRoleCommand({
 AssumeRolePolicyDocument: JSON.stringify({
 Version: "2012-10-17",
 Statement: [
 {
 Effect: "Allow",
 Principal: {
 // Allow the previously created user to assume this role.
 AWS: User.Arn,
 },
 Action: "sts:AssumeRole",
 },
],
 }),
 RoleName: roleName,
 }),
),
);

 if (!Role) {
 throw new Error("Role not created");
 }

基本功能 872

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // Create a policy that allows the user to list S3 buckets.
 const { Policy: listBucketPolicy } = await iamClient.send(
 new CreatePolicyCommand({
 PolicyDocument: JSON.stringify({
 Version: "2012-10-17",
 Statement: [
 {
 Effect: "Allow",
 Action: ["s3:ListAllMyBuckets"],
 Resource: "*",
 },
],
 }),
 PolicyName: policyName,
 }),
);

 if (!listBucketPolicy) {
 throw new Error("Policy not created");
 }

 // Attach the policy granting the 's3:ListAllMyBuckets' action to the role.
 await iamClient.send(
 new AttachRolePolicyCommand({
 PolicyArn: listBucketPolicy.Arn,
 RoleName: Role.RoleName,
 }),
);

 // Assume the role.
 const stsClient = new STSClient({
 credentials: {
 accessKeyId: AccessKeyId,
 secretAccessKey: SecretAccessKey,
 },
 });

 // Retry the assume role operation until it succeeds.
 const { Credentials } = await retry(
 { intervalInMs: 2000, maxRetries: 60 },
 () =>
 stsClient.send(
 new AssumeRoleCommand({

基本功能 873

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 RoleArn: Role.Arn,
 RoleSessionName: `iamBasicScenarioSession-${Math.floor(
 Math.random() * 1000000,
)}`,
 DurationSeconds: 900,
 }),
),
);

 if (!Credentials?.AccessKeyId || !Credentials?.SecretAccessKey) {
 throw new Error("Credentials not created");
 }

 s3Client = new S3Client({
 credentials: {
 accessKeyId: Credentials.AccessKeyId,
 secretAccessKey: Credentials.SecretAccessKey,
 sessionToken: Credentials.SessionToken,
 },
 });

 // List the S3 buckets again.
 // Retry the list buckets operation until it succeeds. AccessDenied might
 // be thrown while the role policy is still stabilizing.
 await retry({ intervalInMs: 2000, maxRetries: 120 }, () =>
 listBuckets(s3Client),
);

 // Clean up.
 await iamClient.send(
 new DetachRolePolicyCommand({
 PolicyArn: listBucketPolicy.Arn,
 RoleName: Role.RoleName,
 }),
);

 await iamClient.send(
 new DeletePolicyCommand({
 PolicyArn: listBucketPolicy.Arn,
 }),
);

 await iamClient.send(
 new DeleteRoleCommand({

基本功能 874

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 RoleName: Role.RoleName,
 }),
);

 await iamClient.send(
 new DeleteAccessKeyCommand({
 UserName: userName,
 AccessKeyId,
 }),
);

 await iamClient.send(
 new DeleteUserCommand({
 UserName: userName,
 }),
);
};

/**
 *
 * @param {S3Client} s3Client
 */
const listBuckets = async (s3Client) => {
 const { Buckets } = await s3Client.send(new ListBucketsCommand({}));

 if (!Buckets) {
 throw new Error("Buckets not listed");
 }

 console.log(Buckets.map((bucket) => bucket.Name).join("\n"));
};

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的以下主
题。

• AttachRolePolicy

• CreateAccessKey

• CreatePolicy

• CreateRole

• CreateUser

基本功能 875

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/AttachRolePolicyCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/CreateAccessKeyCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/CreatePolicyCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/CreateRoleCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/CreateUserCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• DeleteAccessKey

• DeletePolicy

• DeleteRole

• DeleteUser

• DeleteUserPolicy

• DetachRolePolicy

• PutUserPolicy

操作

AttachRolePolicy

以下代码示例演示了如何使用 AttachRolePolicy。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

附加策略。

import { AttachRolePolicyCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} policyArn
 * @param {string} roleName
 */
export const attachRolePolicy = (policyArn, roleName) => {
 const command = new AttachRolePolicyCommand({
 PolicyArn: policyArn,
 RoleName: roleName,
 });

操作 876

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/DeleteAccessKeyCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/DeletePolicyCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/DeleteRoleCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/DeleteUserCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/DeleteUserPolicyCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/DetachRolePolicyCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/PutUserPolicyCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 return client.send(command);
};

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-policies.html#iam-
examples-policies-attaching-role-policy。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考AttachRolePolicy中
的。

CreateAccessKey

以下代码示例演示了如何使用 CreateAccessKey。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

创建访问密钥。

import { CreateAccessKeyCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} userName
 */
export const createAccessKey = (userName) => {
 const command = new CreateAccessKeyCommand({ UserName: userName });
 return client.send(command);
};

操作 877

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-policies.html#iam-examples-policies-attaching-role-policy
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-policies.html#iam-examples-policies-attaching-role-policy
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-policies.html#iam-examples-policies-attaching-role-policy
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/AttachRolePolicyCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-managing-access-
keys.html#iam-examples-managing-access-keys-creating。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考CreateAccessKey中
的。

CreateAccountAlias

以下代码示例演示了如何使用 CreateAccountAlias。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

创建账户别名。

import { CreateAccountAliasCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} alias - A unique name for the account alias.
 * @returns
 */
export const createAccountAlias = (alias) => {
 const command = new CreateAccountAliasCommand({
 AccountAlias: alias,
 });

 return client.send(command);
};

操作 878

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-managing-access-keys.html#iam-examples-managing-access-keys-creating
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-managing-access-keys.html#iam-examples-managing-access-keys-creating
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-managing-access-keys.html#iam-examples-managing-access-keys-creating
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/CreateAccessKeyCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-account-
aliases.html#iam-examples-account-aliases-creating。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考CreateAccountAlias中的。

CreateGroup

以下代码示例演示了如何使用 CreateGroup。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { CreateGroupCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} groupName
 */
export const createGroup = async (groupName) => {
 const command = new CreateGroupCommand({ GroupName: groupName });

 const response = await client.send(command);
 console.log(response);
 return response;
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考CreateGroup中的。

CreateInstanceProfile

以下代码示例演示了如何使用 CreateInstanceProfile。

操作 879

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-account-aliases.html#iam-examples-account-aliases-creating
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-account-aliases.html#iam-examples-account-aliases-creating
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-account-aliases.html#iam-examples-account-aliases-creating
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/CreateAccountAliasCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/CreateGroupCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

 const { InstanceProfile } = await iamClient.send(
 new CreateInstanceProfileCommand({
 InstanceProfileName: NAMES.ssmOnlyInstanceProfileName,
 }),
);
 await waitUntilInstanceProfileExists(
 { client: iamClient },
 { InstanceProfileName: NAMES.ssmOnlyInstanceProfileName },
);

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考CreateInstanceProfile中的。

CreatePolicy

以下代码示例演示了如何使用 CreatePolicy。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

创建策略。

import { CreatePolicyCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

操作 880

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/wkflw-resilient-service#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/CreateInstanceProfileCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

/**
 *
 * @param {string} policyName
 */
export const createPolicy = (policyName) => {
 const command = new CreatePolicyCommand({
 PolicyDocument: JSON.stringify({
 Version: "2012-10-17",
 Statement: [
 {
 Effect: "Allow",
 Action: "*",
 Resource: "*",
 },
],
 }),
 PolicyName: policyName,
 });

 return client.send(command);
};

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-policies.html#iam-
examples-policies-creating。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考CreatePolicy中的。

CreateRole

以下代码示例演示了如何使用 CreateRole。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

创建角色。

操作 881

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-policies.html#iam-examples-policies-creating
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-policies.html#iam-examples-policies-creating
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-policies.html#iam-examples-policies-creating
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/CreatePolicyCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

import { CreateRoleCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} roleName
 */
export const createRole = (roleName) => {
 const command = new CreateRoleCommand({
 AssumeRolePolicyDocument: JSON.stringify({
 Version: "2012-10-17",
 Statement: [
 {
 Effect: "Allow",
 Principal: {
 Service: "lambda.amazonaws.com",
 },
 Action: "sts:AssumeRole",
 },
],
 }),
 RoleName: roleName,
 });

 return client.send(command);
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考CreateRole中的。

CreateSAMLProvider

以下代码示例演示了如何使用 CreateSAMLProvider。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

操作 882

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/CreateRoleCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

import { CreateSAMLProviderCommand, IAMClient } from "@aws-sdk/client-iam";
import { readFileSync } from "node:fs";
import * as path from "node:path";
import { dirnameFromMetaUrl } from "@aws-doc-sdk-examples/lib/utils/util-fs.js";

const client = new IAMClient({});

/**
 * This sample document was generated using Auth0.
 * For more information on generating this document,
 see https://docs.aws.amazon.com/IAM/latest/UserGuide/
id_roles_providers_create_saml.html#samlstep1.
 */
const sampleMetadataDocument = readFileSync(
 path.join(
 dirnameFromMetaUrl(import.meta.url),
 "../../../../resources/sample_files/sample_saml_metadata.xml",
),
);

/**
 *
 * @param {*} providerName
 * @returns
 */
export const createSAMLProvider = async (providerName) => {
 const command = new CreateSAMLProviderCommand({
 Name: providerName,
 SAMLMetadataDocument: sampleMetadataDocument.toString(),
 });

 const response = await client.send(command);
 console.log(response);
 return response;
};

• 有关 API 的详细信息，请参阅SAMLProvider在 适用于 JavaScript 的 Amazon SDK API 参
考中创建。

操作 883

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/CreateSAMLProviderCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

CreateServiceLinkedRole

以下代码示例演示了如何使用 CreateServiceLinkedRole。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

创建服务相关角色。

import {
 CreateServiceLinkedRoleCommand,
 GetRoleCommand,
 IAMClient,
} from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} serviceName
 */
export const createServiceLinkedRole = async (serviceName) => {
 const command = new CreateServiceLinkedRoleCommand({
 // For a list of AWS services that support service-linked roles,
 // see https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-
that-work-with-iam.html.
 //
 // For a list of AWS service endpoints, see https://docs.aws.amazon.com/general/
latest/gr/aws-service-information.html.
 AWSServiceName: serviceName,
 });
 try {
 const response = await client.send(command);
 console.log(response);
 return response;
 } catch (caught) {
 if (
 caught instanceof Error &&

操作 884

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 caught.name === "InvalidInputException" &&
 caught.message.includes(
 "Service role name AWSServiceRoleForElasticBeanstalk has been taken in this
 account",
)
) {
 console.warn(caught.message);
 return client.send(
 new GetRoleCommand({ RoleName: "AWSServiceRoleForElasticBeanstalk" }),
);
 }
 throw caught;
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考CreateServiceLinkedRole中的。

CreateUser

以下代码示例演示了如何使用 CreateUser。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

创建 用户。

import { CreateUserCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} name
 */
export const createUser = (name) => {

操作 885

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/CreateServiceLinkedRoleCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const command = new CreateUserCommand({ UserName: name });
 return client.send(command);
};

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-managing-
users.html#iam-examples-managing-users-creating-users。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考CreateUser中的。

DeleteAccessKey

以下代码示例演示了如何使用 DeleteAccessKey。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

删除访问密钥。

import { DeleteAccessKeyCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} userName
 * @param {string} accessKeyId
 */
export const deleteAccessKey = (userName, accessKeyId) => {
 const command = new DeleteAccessKeyCommand({
 AccessKeyId: accessKeyId,
 UserName: userName,
 });

 return client.send(command);
};

操作 886

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-managing-users.html#iam-examples-managing-users-creating-users
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-managing-users.html#iam-examples-managing-users-creating-users
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-managing-users.html#iam-examples-managing-users-creating-users
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/CreateUserCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-managing-access-
keys.html#iam-examples-managing-access-keys-deleting。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DeleteAccessKey中
的。

DeleteAccountAlias

以下代码示例演示了如何使用 DeleteAccountAlias。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

删除账户别名。

import { DeleteAccountAliasCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} alias
 */
export const deleteAccountAlias = (alias) => {
 const command = new DeleteAccountAliasCommand({ AccountAlias: alias });

 return client.send(command);
};

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-account-
aliases.html#iam-examples-account-aliases-deleting。

操作 887

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-managing-access-keys.html#iam-examples-managing-access-keys-deleting
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-managing-access-keys.html#iam-examples-managing-access-keys-deleting
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-managing-access-keys.html#iam-examples-managing-access-keys-deleting
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/DeleteAccessKeyCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-account-aliases.html#iam-examples-account-aliases-deleting
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-account-aliases.html#iam-examples-account-aliases-deleting
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-account-aliases.html#iam-examples-account-aliases-deleting

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考DeleteAccountAlias中的。

DeleteGroup

以下代码示例演示了如何使用 DeleteGroup。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { DeleteGroupCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} groupName
 */
export const deleteGroup = async (groupName) => {
 const command = new DeleteGroupCommand({
 GroupName: groupName,
 });

 const response = await client.send(command);
 console.log(response);
 return response;
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DeleteGroup中的。

DeleteInstanceProfile

以下代码示例演示了如何使用 DeleteInstanceProfile。

操作 888

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/DeleteAccountAliasCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/DeleteGroupCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

 const client = new IAMClient({});
 await client.send(
 new DeleteInstanceProfileCommand({
 InstanceProfileName: NAMES.instanceProfileName,
 }),
);

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考DeleteInstanceProfile中的。

DeletePolicy

以下代码示例演示了如何使用 DeletePolicy。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

删除策略。

import { DeletePolicyCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *

操作 889

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/wkflw-resilient-service#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/DeleteInstanceProfileCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam/#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * @param {string} policyArn
 */
export const deletePolicy = (policyArn) => {
 const command = new DeletePolicyCommand({ PolicyArn: policyArn });
 return client.send(command);
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DeletePolicy中的。

DeleteRole

以下代码示例演示了如何使用 DeleteRole。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

删除角色。

import { DeleteRoleCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} roleName
 */
export const deleteRole = (roleName) => {
 const command = new DeleteRoleCommand({ RoleName: roleName });
 return client.send(command);
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DeleteRole中的。

操作 890

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/DeletePolicyCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/DeleteRoleCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

DeleteRolePolicy

以下代码示例演示了如何使用 DeleteRolePolicy。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { DeleteRolePolicyCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} roleName
 * @param {string} policyName
 */
export const deleteRolePolicy = (roleName, policyName) => {
 const command = new DeleteRolePolicyCommand({
 RoleName: roleName,
 PolicyName: policyName,
 });
 return client.send(command);
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DeleteRolePolicy中
的。

DeleteSAMLProvider

以下代码示例演示了如何使用 DeleteSAMLProvider。

操作 891

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/DeleteRolePolicyCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { DeleteSAMLProviderCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} providerArn
 * @returns
 */
export const deleteSAMLProvider = async (providerArn) => {
 const command = new DeleteSAMLProviderCommand({
 SAMLProviderArn: providerArn,
 });

 const response = await client.send(command);
 console.log(response);
 return response;
};

• 有关 API 的详细信息，请参阅SAMLProvider《适用于 JavaScript 的 Amazon SDK API 参考》中
的 “删除”。

DeleteServerCertificate

以下代码示例演示了如何使用 DeleteServerCertificate。

操作 892

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/DeleteSAMLProviderCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

删除服务器证书。

import { DeleteServerCertificateCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} certName
 */
export const deleteServerCertificate = (certName) => {
 const command = new DeleteServerCertificateCommand({
 ServerCertificateName: certName,
 });

 return client.send(command);
};

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-server-
certificates.html#iam-examples-server-certificates-deleting。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考DeleteServerCertificate中的。

DeleteServiceLinkedRole

以下代码示例演示了如何使用 DeleteServiceLinkedRole。

操作 893

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-server-certificates.html#iam-examples-server-certificates-deleting
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-server-certificates.html#iam-examples-server-certificates-deleting
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-server-certificates.html#iam-examples-server-certificates-deleting
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/DeleteServerCertificateCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { DeleteServiceLinkedRoleCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} roleName
 */
export const deleteServiceLinkedRole = (roleName) => {
 const command = new DeleteServiceLinkedRoleCommand({ RoleName: roleName });
 return client.send(command);
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考DeleteServiceLinkedRole中的。

DeleteUser

以下代码示例演示了如何使用 DeleteUser。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

删除用户。

import { DeleteUserCommand, IAMClient } from "@aws-sdk/client-iam";

操作 894

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/DeleteServiceLinkedRoleCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const client = new IAMClient({});

/**
 *
 * @param {string} name
 */
export const deleteUser = (name) => {
 const command = new DeleteUserCommand({ UserName: name });
 return client.send(command);
};

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-managing-
users.html#iam-examples-managing-users-deleting-users。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DeleteUser中的。

DetachRolePolicy

以下代码示例演示了如何使用 DetachRolePolicy。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

分离策略。

import { DetachRolePolicyCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} policyArn
 * @param {string} roleName
 */

操作 895

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-managing-users.html#iam-examples-managing-users-deleting-users
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-managing-users.html#iam-examples-managing-users-deleting-users
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-managing-users.html#iam-examples-managing-users-deleting-users
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/DeleteUserCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

export const detachRolePolicy = (policyArn, roleName) => {
 const command = new DetachRolePolicyCommand({
 PolicyArn: policyArn,
 RoleName: roleName,
 });

 return client.send(command);
};

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-policies.html#iam-
examples-policies-detaching-role-policy。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DetachRolePolicy中
的。

GetAccessKeyLastUsed

以下代码示例演示了如何使用 GetAccessKeyLastUsed。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

获取访问密钥。

import { GetAccessKeyLastUsedCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} accessKeyId
 */
export const getAccessKeyLastUsed = async (accessKeyId) => {
 const command = new GetAccessKeyLastUsedCommand({
 AccessKeyId: accessKeyId,

操作 896

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-policies.html#iam-examples-policies-detaching-role-policy
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-policies.html#iam-examples-policies-detaching-role-policy
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-policies.html#iam-examples-policies-detaching-role-policy
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/DetachRolePolicyCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 });

 const response = await client.send(command);

 if (response.AccessKeyLastUsed?.LastUsedDate) {
 console.log(`
 ${accessKeyId} was last used by ${response.UserName} via
 the ${response.AccessKeyLastUsed.ServiceName} service on
 ${response.AccessKeyLastUsed.LastUsedDate.toISOString()}
 `);
 }

 return response;
};

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-managing-access-
keys.html#iam-examples-managing-access-keys-last-used。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考GetAccessKeyLastUsed中的。

GetAccountPasswordPolicy

以下代码示例演示了如何使用 GetAccountPasswordPolicy。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

获取账户密码策略。

import {
 GetAccountPasswordPolicyCommand,
 IAMClient,
} from "@aws-sdk/client-iam";

操作 897

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-managing-access-keys.html#iam-examples-managing-access-keys-last-used
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-managing-access-keys.html#iam-examples-managing-access-keys-last-used
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-managing-access-keys.html#iam-examples-managing-access-keys-last-used
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/GetAccessKeyLastUsedCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const client = new IAMClient({});

export const getAccountPasswordPolicy = async () => {
 const command = new GetAccountPasswordPolicyCommand({});

 const response = await client.send(command);
 console.log(response.PasswordPolicy);
 return response;
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考GetAccountPasswordPolicy中的。

GetPolicy

以下代码示例演示了如何使用 GetPolicy。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

获取策略。

import { GetPolicyCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} policyArn
 */
export const getPolicy = (policyArn) => {
 const command = new GetPolicyCommand({
 PolicyArn: policyArn,
 });

 return client.send(command);

操作 898

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/GetAccountPasswordPolicyCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

};

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-policies.html#iam-
examples-policies-getting。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考GetPolicy中的。

GetRole

以下代码示例演示了如何使用 GetRole。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

获取角色。

import { GetRoleCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} roleName
 */
export const getRole = (roleName) => {
 const command = new GetRoleCommand({
 RoleName: roleName,
 });

 return client.send(command);
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考GetRole中的。

操作 899

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-policies.html#iam-examples-policies-getting
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-policies.html#iam-examples-policies-getting
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-policies.html#iam-examples-policies-getting
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/GetPolicyCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/GetRoleCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

GetServerCertificate

以下代码示例演示了如何使用 GetServerCertificate。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

获取服务器证书。

import { GetServerCertificateCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} certName
 * @returns
 */
export const getServerCertificate = async (certName) => {
 const command = new GetServerCertificateCommand({
 ServerCertificateName: certName,
 });

 const response = await client.send(command);
 console.log(response);
 return response;
};

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-server-
certificates.html#iam-examples-server-certificates-getting。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考GetServerCertificate中的。

操作 900

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-server-certificates.html#iam-examples-server-certificates-getting
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-server-certificates.html#iam-examples-server-certificates-getting
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-server-certificates.html#iam-examples-server-certificates-getting
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/GetServerCertificateCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

GetServiceLinkedRoleDeletionStatus

以下代码示例演示了如何使用 GetServiceLinkedRoleDeletionStatus。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import {
 GetServiceLinkedRoleDeletionStatusCommand,
 IAMClient,
} from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} deletionTaskId
 */
export const getServiceLinkedRoleDeletionStatus = (deletionTaskId) => {
 const command = new GetServiceLinkedRoleDeletionStatusCommand({
 DeletionTaskId: deletionTaskId,
 });

 return client.send(command);
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考GetServiceLinkedRoleDeletionStatus中的。

ListAccessKeys

以下代码示例演示了如何使用 ListAccessKeys。

操作 901

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/GetServiceLinkedRoleDeletionStatusCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

列出访问密钥。

import { ListAccessKeysCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 * A generator function that handles paginated results.
 * The AWS SDK for JavaScript (v3) provides {@link https://docs.aws.amazon.com/
AWSJavaScriptSDK/v3/latest/index.html#paginators | paginator} functions to simplify
 this.
 *
 * @param {string} userName
 */
export async function* listAccessKeys(userName) {
 const command = new ListAccessKeysCommand({
 MaxItems: 5,
 UserName: userName,
 });

 /**
 * @type {import("@aws-sdk/client-iam").ListAccessKeysCommandOutput | undefined}
 */
 let response = await client.send(command);

 while (response?.AccessKeyMetadata?.length) {
 for (const key of response.AccessKeyMetadata) {
 yield key;
 }

 if (response.IsTruncated) {
 response = await client.send(
 new ListAccessKeysCommand({
 Marker: response.Marker,
 }),

操作 902

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

);
 } else {
 break;
 }
 }
}

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-managing-access-
keys.html#iam-examples-managing-access-keys-listing。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考ListAccessKeys中
的。

ListAccountAliases

以下代码示例演示了如何使用 ListAccountAliases。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

列出账户别名。

import { ListAccountAliasesCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 * A generator function that handles paginated results.
 * The AWS SDK for JavaScript (v3) provides {@link https://docs.aws.amazon.com/
AWSJavaScriptSDK/v3/latest/index.html#paginators | paginator} functions to simplify
 this.
 */
export async function* listAccountAliases() {
 const command = new ListAccountAliasesCommand({ MaxItems: 5 });

操作 903

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-managing-access-keys.html#iam-examples-managing-access-keys-listing
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-managing-access-keys.html#iam-examples-managing-access-keys-listing
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-managing-access-keys.html#iam-examples-managing-access-keys-listing
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/ListAccessKeysCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 let response = await client.send(command);

 while (response.AccountAliases?.length) {
 for (const alias of response.AccountAliases) {
 yield alias;
 }

 if (response.IsTruncated) {
 response = await client.send(
 new ListAccountAliasesCommand({
 Marker: response.Marker,
 MaxItems: 5,
 }),
);
 } else {
 break;
 }
 }
}

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-account-
aliases.html#iam-examples-account-aliases-listing。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考ListAccountAliases中
的。

ListAttachedRolePolicies

以下代码示例演示了如何使用 ListAttachedRolePolicies。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

列出附加到角色的策略。

操作 904

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-account-aliases.html#iam-examples-account-aliases-listing
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-account-aliases.html#iam-examples-account-aliases-listing
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-account-aliases.html#iam-examples-account-aliases-listing
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/ListAccountAliasesCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

import {
 ListAttachedRolePoliciesCommand,
 IAMClient,
} from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 * A generator function that handles paginated results.
 * The AWS SDK for JavaScript (v3) provides {@link https://docs.aws.amazon.com/
AWSJavaScriptSDK/v3/latest/index.html#paginators | paginator} functions to simplify
 this.
 * @param {string} roleName
 */
export async function* listAttachedRolePolicies(roleName) {
 const command = new ListAttachedRolePoliciesCommand({
 RoleName: roleName,
 });

 let response = await client.send(command);

 while (response.AttachedPolicies?.length) {
 for (const policy of response.AttachedPolicies) {
 yield policy;
 }

 if (response.IsTruncated) {
 response = await client.send(
 new ListAttachedRolePoliciesCommand({
 RoleName: roleName,
 Marker: response.Marker,
 }),
);
 } else {
 break;
 }
 }
}

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考ListAttachedRolePolicies中的。

操作 905

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/ListAttachedRolePoliciesCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

ListGroups

以下代码示例演示了如何使用 ListGroups。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

列出组。

import { ListGroupsCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 * A generator function that handles paginated results.
 * The AWS SDK for JavaScript (v3) provides {@link https://docs.aws.amazon.com/
AWSJavaScriptSDK/v3/latest/index.html#paginators | paginator} functions to simplify
 this.
 */
export async function* listGroups() {
 const command = new ListGroupsCommand({
 MaxItems: 10,
 });

 let response = await client.send(command);

 while (response.Groups?.length) {
 for (const group of response.Groups) {
 yield group;
 }

 if (response.IsTruncated) {
 response = await client.send(
 new ListGroupsCommand({
 Marker: response.Marker,
 MaxItems: 10,
 }),
);

操作 906

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 } else {
 break;
 }
 }
}

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考ListGroups中的。

ListPolicies

以下代码示例演示了如何使用 ListPolicies。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

列出策略。

import { ListPoliciesCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 * A generator function that handles paginated results.
 * The AWS SDK for JavaScript (v3) provides {@link https://docs.aws.amazon.com/
AWSJavaScriptSDK/v3/latest/index.html#paginators | paginator} functions to simplify
 this.
 *
 */
export async function* listPolicies() {
 const command = new ListPoliciesCommand({
 MaxItems: 10,
 OnlyAttached: false,
 // List only the customer managed policies in your Amazon Web Services account.
 Scope: "Local",
 });

操作 907

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/ListGroupsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 let response = await client.send(command);

 while (response.Policies?.length) {
 for (const policy of response.Policies) {
 yield policy;
 }

 if (response.IsTruncated) {
 response = await client.send(
 new ListPoliciesCommand({
 Marker: response.Marker,
 MaxItems: 10,
 OnlyAttached: false,
 Scope: "Local",
 }),
);
 } else {
 break;
 }
 }
}

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考ListPolicies中的。

ListRolePolicies

以下代码示例演示了如何使用 ListRolePolicies。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

列出策略。

import { ListRolePoliciesCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

操作 908

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/ListPoliciesCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

/**
 * A generator function that handles paginated results.
 * The AWS SDK for JavaScript (v3) provides {@link https://docs.aws.amazon.com/
AWSJavaScriptSDK/v3/latest/index.html#paginators | paginator} functions to simplify
 this.
 *
 * @param {string} roleName
 */
export async function* listRolePolicies(roleName) {
 const command = new ListRolePoliciesCommand({
 RoleName: roleName,
 MaxItems: 10,
 });

 let response = await client.send(command);

 while (response.PolicyNames?.length) {
 for (const policyName of response.PolicyNames) {
 yield policyName;
 }

 if (response.IsTruncated) {
 response = await client.send(
 new ListRolePoliciesCommand({
 RoleName: roleName,
 MaxItems: 10,
 Marker: response.Marker,
 }),
);
 } else {
 break;
 }
 }
}

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考ListRolePolicies中
的。

ListRoles

以下代码示例演示了如何使用 ListRoles。

操作 909

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/ListRolePoliciesCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

列出角色。

import { ListRolesCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 * A generator function that handles paginated results.
 * The AWS SDK for JavaScript (v3) provides {@link https://docs.aws.amazon.com/
AWSJavaScriptSDK/v3/latest/index.html#paginators | paginator} functions to simplify
 this.
 *
 */
export async function* listRoles() {
 const command = new ListRolesCommand({
 MaxItems: 10,
 });

 /**
 * @type {import("@aws-sdk/client-iam").ListRolesCommandOutput | undefined}
 */
 let response = await client.send(command);

 while (response?.Roles?.length) {
 for (const role of response.Roles) {
 yield role;
 }

 if (response.IsTruncated) {
 response = await client.send(
 new ListRolesCommand({
 Marker: response.Marker,
 }),
);
 } else {

操作 910

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 break;
 }
 }
}

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考ListRoles中的。

ListSAMLProviders

以下代码示例演示了如何使用 ListSAMLProviders。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

列出 SAML 提供商。

import { ListSAMLProvidersCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

export const listSamlProviders = async () => {
 const command = new ListSAMLProvidersCommand({});

 const response = await client.send(command);
 console.log(response);
 return response;
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考SAMLProviders中
的列表。

ListServerCertificates

以下代码示例演示了如何使用 ListServerCertificates。

操作 911

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/ListRolesCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/ListSAMLProvidersCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

列出证书。

import { ListServerCertificatesCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 * A generator function that handles paginated results.
 * The AWS SDK for JavaScript (v3) provides {@link https://docs.aws.amazon.com/
AWSJavaScriptSDK/v3/latest/index.html#paginators | paginator} functions to simplify
 this.
 *
 */
export async function* listServerCertificates() {
 const command = new ListServerCertificatesCommand({});
 let response = await client.send(command);

 while (response.ServerCertificateMetadataList?.length) {
 for await (const cert of response.ServerCertificateMetadataList) {
 yield cert;
 }

 if (response.IsTruncated) {
 response = await client.send(new ListServerCertificatesCommand({}));
 } else {
 break;
 }
 }
}

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-server-
certificates.html#iam-examples-server-certificates-listing。

操作 912

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-server-certificates.html#iam-examples-server-certificates-listing
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-server-certificates.html#iam-examples-server-certificates-listing
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-server-certificates.html#iam-examples-server-certificates-listing

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考ListServerCertificates中的。

ListUsers

以下代码示例演示了如何使用 ListUsers。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

列出用户。

import { ListUsersCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

export const listUsers = async () => {
 const command = new ListUsersCommand({ MaxItems: 10 });

 const response = await client.send(command);

 for (const { UserName, CreateDate } of response.Users) {
 console.log(`${UserName} created on: ${CreateDate}`);
 }
 return response;
};

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-managing-
users.html#iam-examples-managing-users-listing-users。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考ListUsers中的。

操作 913

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/ListServerCertificatesCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-managing-users.html#iam-examples-managing-users-listing-users
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-managing-users.html#iam-examples-managing-users-listing-users
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-managing-users.html#iam-examples-managing-users-listing-users
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/ListUsersCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

PutRolePolicy

以下代码示例演示了如何使用 PutRolePolicy。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { PutRolePolicyCommand, IAMClient } from "@aws-sdk/client-iam";

const examplePolicyDocument = JSON.stringify({
 Version: "2012-10-17",
 Statement: [
 {
 Sid: "VisualEditor0",
 Effect: "Allow",
 Action: [
 "s3:ListBucketMultipartUploads",
 "s3:ListBucketVersions",
 "s3:ListBucket",
 "s3:ListMultipartUploadParts",
],
 Resource: "arn:aws:s3:::amzn-s3-demo-bucket",
 },
 {
 Sid: "VisualEditor1",
 Effect: "Allow",
 Action: [
 "s3:ListStorageLensConfigurations",
 "s3:ListAccessPointsForObjectLambda",
 "s3:ListAllMyBuckets",
 "s3:ListAccessPoints",
 "s3:ListJobs",
 "s3:ListMultiRegionAccessPoints",
],
 Resource: "*",
 },
],
});

操作 914

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const client = new IAMClient({});

/**
 *
 * @param {string} roleName
 * @param {string} policyName
 * @param {string} policyDocument
 */
export const putRolePolicy = async (roleName, policyName, policyDocument) => {
 const command = new PutRolePolicyCommand({
 RoleName: roleName,
 PolicyName: policyName,
 PolicyDocument: policyDocument,
 });

 const response = await client.send(command);
 console.log(response);
 return response;
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考PutRolePolicy中的。

UpdateAccessKey

以下代码示例演示了如何使用 UpdateAccessKey。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

更新访问密钥。

import {
 UpdateAccessKeyCommand,
 IAMClient,
 StatusType,

操作 915

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/PutRolePolicyCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

} from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} userName
 * @param {string} accessKeyId
 */
export const updateAccessKey = (userName, accessKeyId) => {
 const command = new UpdateAccessKeyCommand({
 AccessKeyId: accessKeyId,
 Status: StatusType.Inactive,
 UserName: userName,
 });

 return client.send(command);
};

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-managing-access-
keys.html#iam-examples-managing-access-keys-updating。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考UpdateAccessKey中
的。

UpdateServerCertificate

以下代码示例演示了如何使用 UpdateServerCertificate。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

更新服务器证书。

import { UpdateServerCertificateCommand, IAMClient } from "@aws-sdk/client-iam";

操作 916

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-managing-access-keys.html#iam-examples-managing-access-keys-updating
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-managing-access-keys.html#iam-examples-managing-access-keys-updating
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-managing-access-keys.html#iam-examples-managing-access-keys-updating
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/UpdateAccessKeyCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const client = new IAMClient({});

/**
 *
 * @param {string} currentName
 * @param {string} newName
 */
export const updateServerCertificate = (currentName, newName) => {
 const command = new UpdateServerCertificateCommand({
 ServerCertificateName: currentName,
 NewServerCertificateName: newName,
 });

 return client.send(command);
};

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-server-
certificates.html#iam-examples-server-certificates-updating。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考UpdateServerCertificate中的。

UpdateUser

以下代码示例演示了如何使用 UpdateUser。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

更新用户。

import { UpdateUserCommand, IAMClient } from "@aws-sdk/client-iam";

操作 917

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-server-certificates.html#iam-examples-server-certificates-updating
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-server-certificates.html#iam-examples-server-certificates-updating
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-server-certificates.html#iam-examples-server-certificates-updating
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/UpdateServerCertificateCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const client = new IAMClient({});

/**
 *
 * @param {string} currentUserName
 * @param {string} newUserName
 */
export const updateUser = (currentUserName, newUserName) => {
 const command = new UpdateUserCommand({
 UserName: currentUserName,
 NewUserName: newUserName,
 });

 return client.send(command);
};

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-managing-
users.html#iam-examples-managing-users-updating-users。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考UpdateUser中的。

UploadServerCertificate

以下代码示例演示了如何使用 UploadServerCertificate。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { UploadServerCertificateCommand, IAMClient } from "@aws-sdk/client-iam";
import { readFileSync } from "node:fs";
import { dirnameFromMetaUrl } from "@aws-doc-sdk-examples/lib/utils/util-fs.js";
import * as path from "node:path";

const client = new IAMClient({});

操作 918

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-managing-users.html#iam-examples-managing-users-updating-users
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-managing-users.html#iam-examples-managing-users-updating-users
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/iam-examples-managing-users.html#iam-examples-managing-users-updating-users
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/UpdateUserCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iam#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const certMessage = `Generate a certificate and key with the following command, or
 the equivalent for your system.

openssl req -x509 -newkey rsa:4096 -sha256 -days 3650 -nodes \
-keyout example.key -out example.crt -subj "/CN=example.com" \
-addext "subjectAltName=DNS:example.com,DNS:www.example.net,IP:10.0.0.1"
`;

const getCertAndKey = () => {
 try {
 const cert = readFileSync(
 path.join(dirnameFromMetaUrl(import.meta.url), "./example.crt"),
);
 const key = readFileSync(
 path.join(dirnameFromMetaUrl(import.meta.url), "./example.key"),
);
 return { cert, key };
 } catch (err) {
 if (err.code === "ENOENT") {
 throw new Error(
 `Certificate and/or private key not found. ${certMessage}`,
);
 }

 throw err;
 }
};

/**
 *
 * @param {string} certificateName
 */
export const uploadServerCertificate = (certificateName) => {
 const { cert, key } = getCertAndKey();
 const command = new UploadServerCertificateCommand({
 ServerCertificateName: certificateName,
 CertificateBody: cert.toString(),
 PrivateKey: key.toString(),
 });

 return client.send(command);
};

操作 919

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考UploadServerCertificate中的。

场景

构建和管理弹性服务

以下代码示例演示了如何创建可返回书籍、电影和歌曲推荐的负载均衡的 Web 服务。该示例演示服务
如何响应故障，以及如何重组服务以提高故障发生时的弹性。

• 使用 Amazon A EC2 uto Scaling 组根据启动模板创建亚马逊弹性计算云 (Amazon EC2) 实例，并将
实例数量保持在指定范围内。

• 使用弹性负载均衡处理和分发 HTTP 请求。

• 监控自动扩缩组中实例的运行状况，并仅将请求转发到运行状况良好的实例。

• 在每个 EC2 实例上运行 Python 网络服务器来处理 HTTP 请求。Web 服务器以建议和运行状况检查
作为响应。

• 使用 Amazon DynamoDB 表模拟推荐服务。

• 通过更新 Amazon Systems Manager 参数来控制 Web 服务器对请求和运行状况检查的响应。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

在命令提示符中运行交互式场景。

#!/usr/bin/env node
// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

import {
 Scenario,
 parseScenarioArgs,
} from "@aws-doc-sdk-examples/lib/scenario/index.js";

场景 920

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/UploadServerCertificateCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/wkflw-resilient-service#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

/**
 * The workflow steps are split into three stages:
 * - deploy
 * - demo
 * - destroy
 *
 * Each of these stages has a corresponding file prefixed with steps-*.
 */
import { deploySteps } from "./steps-deploy.js";
import { demoSteps } from "./steps-demo.js";
import { destroySteps } from "./steps-destroy.js";

/**
 * The context is passed to every scenario. Scenario steps
 * will modify the context.
 */
const context = {};

/**
 * Three Scenarios are created for the workflow. A Scenario is an orchestration
 class
 * that simplifies running a series of steps.
 */
export const scenarios = {
 // Deploys all resources necessary for the workflow.
 deploy: new Scenario("Resilient Workflow - Deploy", deploySteps, context),
 // Demonstrates how a fragile web service can be made more resilient.
 demo: new Scenario("Resilient Workflow - Demo", demoSteps, context),
 // Destroys the resources created for the workflow.
 destroy: new Scenario("Resilient Workflow - Destroy", destroySteps, context),
};

// Call function if run directly
import { fileURLToPath } from "node:url";

if (process.argv[1] === fileURLToPath(import.meta.url)) {
 parseScenarioArgs(scenarios, {
 name: "Resilient Workflow",
 synopsis:
 "node index.js --scenario <deploy | demo | destroy> [-h|--help] [-y|--yes] [-
v|--verbose]",
 description: "Deploy and interact with scalable EC2 instances.",
 });
}

场景 921

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

创建部署所有资源的步骤。

import { join } from "node:path";
import { readFileSync, writeFileSync } from "node:fs";
import axios from "axios";

import {
 BatchWriteItemCommand,
 CreateTableCommand,
 DynamoDBClient,
 waitUntilTableExists,
} from "@aws-sdk/client-dynamodb";
import {
 EC2Client,
 CreateKeyPairCommand,
 CreateLaunchTemplateCommand,
 DescribeAvailabilityZonesCommand,
 DescribeVpcsCommand,
 DescribeSubnetsCommand,
 DescribeSecurityGroupsCommand,
 AuthorizeSecurityGroupIngressCommand,
} from "@aws-sdk/client-ec2";
import {
 IAMClient,
 CreatePolicyCommand,
 CreateRoleCommand,
 CreateInstanceProfileCommand,
 AddRoleToInstanceProfileCommand,
 AttachRolePolicyCommand,
 waitUntilInstanceProfileExists,
} from "@aws-sdk/client-iam";
import { SSMClient, GetParameterCommand } from "@aws-sdk/client-ssm";
import {
 CreateAutoScalingGroupCommand,
 AutoScalingClient,
 AttachLoadBalancerTargetGroupsCommand,
} from "@aws-sdk/client-auto-scaling";
import {
 CreateListenerCommand,
 CreateLoadBalancerCommand,
 CreateTargetGroupCommand,

场景 922

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 ElasticLoadBalancingV2Client,
 waitUntilLoadBalancerAvailable,
} from "@aws-sdk/client-elastic-load-balancing-v2";

import {
 ScenarioOutput,
 ScenarioInput,
 ScenarioAction,
} from "@aws-doc-sdk-examples/lib/scenario/index.js";
import { saveState } from "@aws-doc-sdk-examples/lib/scenario/steps-common.js";
import { retry } from "@aws-doc-sdk-examples/lib/utils/util-timers.js";

import { MESSAGES, NAMES, RESOURCES_PATH, ROOT } from "./constants.js";
import { initParamsSteps } from "./steps-reset-params.js";

/**
 * @type {import('@aws-doc-sdk-examples/lib/scenario.js').Step[]}
 */
export const deploySteps = [
 new ScenarioOutput("introduction", MESSAGES.introduction, { header: true }),
 new ScenarioInput("confirmDeployment", MESSAGES.confirmDeployment, {
 type: "confirm",
 }),
 new ScenarioAction(
 "handleConfirmDeployment",
 (c) => c.confirmDeployment === false && process.exit(),
),
 new ScenarioOutput(
 "creatingTable",
 MESSAGES.creatingTable.replace("${TABLE_NAME}", NAMES.tableName),
),
 new ScenarioAction("createTable", async () => {
 const client = new DynamoDBClient({});
 await client.send(
 new CreateTableCommand({
 TableName: NAMES.tableName,
 ProvisionedThroughput: {
 ReadCapacityUnits: 5,
 WriteCapacityUnits: 5,
 },
 AttributeDefinitions: [
 {
 AttributeName: "MediaType",
 AttributeType: "S",

场景 923

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 },
 {
 AttributeName: "ItemId",
 AttributeType: "N",
 },
],
 KeySchema: [
 {
 AttributeName: "MediaType",
 KeyType: "HASH",
 },
 {
 AttributeName: "ItemId",
 KeyType: "RANGE",
 },
],
 }),
);
 await waitUntilTableExists({ client }, { TableName: NAMES.tableName });
 }),
 new ScenarioOutput(
 "createdTable",
 MESSAGES.createdTable.replace("${TABLE_NAME}", NAMES.tableName),
),
 new ScenarioOutput(
 "populatingTable",
 MESSAGES.populatingTable.replace("${TABLE_NAME}", NAMES.tableName),
),
 new ScenarioAction("populateTable", () => {
 const client = new DynamoDBClient({});
 /**
 * @type {{ default: import("@aws-sdk/client-dynamodb").PutRequest['Item'][] }}
 */
 const recommendations = JSON.parse(
 readFileSync(join(RESOURCES_PATH, "recommendations.json")),
);

 return client.send(
 new BatchWriteItemCommand({
 RequestItems: {
 [NAMES.tableName]: recommendations.map((item) => ({
 PutRequest: { Item: item },
 })),
 },

场景 924

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }),
);
 }),
 new ScenarioOutput(
 "populatedTable",
 MESSAGES.populatedTable.replace("${TABLE_NAME}", NAMES.tableName),
),
 new ScenarioOutput(
 "creatingKeyPair",
 MESSAGES.creatingKeyPair.replace("${KEY_PAIR_NAME}", NAMES.keyPairName),
),
 new ScenarioAction("createKeyPair", async () => {
 const client = new EC2Client({});
 const { KeyMaterial } = await client.send(
 new CreateKeyPairCommand({
 KeyName: NAMES.keyPairName,
 }),
);

 writeFileSync(`${NAMES.keyPairName}.pem`, KeyMaterial, { mode: 0o600 });
 }),
 new ScenarioOutput(
 "createdKeyPair",
 MESSAGES.createdKeyPair.replace("${KEY_PAIR_NAME}", NAMES.keyPairName),
),
 new ScenarioOutput(
 "creatingInstancePolicy",
 MESSAGES.creatingInstancePolicy.replace(
 "${INSTANCE_POLICY_NAME}",
 NAMES.instancePolicyName,
),
),
 new ScenarioAction("createInstancePolicy", async (state) => {
 const client = new IAMClient({});
 const {
 Policy: { Arn },
 } = await client.send(
 new CreatePolicyCommand({
 PolicyName: NAMES.instancePolicyName,
 PolicyDocument: readFileSync(
 join(RESOURCES_PATH, "instance_policy.json"),
),
 }),
);

场景 925

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 state.instancePolicyArn = Arn;
 }),
 new ScenarioOutput("createdInstancePolicy", (state) =>
 MESSAGES.createdInstancePolicy
 .replace("${INSTANCE_POLICY_NAME}", NAMES.instancePolicyName)
 .replace("${INSTANCE_POLICY_ARN}", state.instancePolicyArn),
),
 new ScenarioOutput(
 "creatingInstanceRole",
 MESSAGES.creatingInstanceRole.replace(
 "${INSTANCE_ROLE_NAME}",
 NAMES.instanceRoleName,
),
),
 new ScenarioAction("createInstanceRole", () => {
 const client = new IAMClient({});
 return client.send(
 new CreateRoleCommand({
 RoleName: NAMES.instanceRoleName,
 AssumeRolePolicyDocument: readFileSync(
 join(ROOT, "assume-role-policy.json"),
),
 }),
);
 }),
 new ScenarioOutput(
 "createdInstanceRole",
 MESSAGES.createdInstanceRole.replace(
 "${INSTANCE_ROLE_NAME}",
 NAMES.instanceRoleName,
),
),
 new ScenarioOutput(
 "attachingPolicyToRole",
 MESSAGES.attachingPolicyToRole
 .replace("${INSTANCE_ROLE_NAME}", NAMES.instanceRoleName)
 .replace("${INSTANCE_POLICY_NAME}", NAMES.instancePolicyName),
),
 new ScenarioAction("attachPolicyToRole", async (state) => {
 const client = new IAMClient({});
 await client.send(
 new AttachRolePolicyCommand({
 RoleName: NAMES.instanceRoleName,
 PolicyArn: state.instancePolicyArn,

场景 926

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }),
);
 }),
 new ScenarioOutput(
 "attachedPolicyToRole",
 MESSAGES.attachedPolicyToRole
 .replace("${INSTANCE_POLICY_NAME}", NAMES.instancePolicyName)
 .replace("${INSTANCE_ROLE_NAME}", NAMES.instanceRoleName),
),
 new ScenarioOutput(
 "creatingInstanceProfile",
 MESSAGES.creatingInstanceProfile.replace(
 "${INSTANCE_PROFILE_NAME}",
 NAMES.instanceProfileName,
),
),
 new ScenarioAction("createInstanceProfile", async (state) => {
 const client = new IAMClient({});
 const {
 InstanceProfile: { Arn },
 } = await client.send(
 new CreateInstanceProfileCommand({
 InstanceProfileName: NAMES.instanceProfileName,
 }),
);
 state.instanceProfileArn = Arn;

 await waitUntilInstanceProfileExists(
 { client },
 { InstanceProfileName: NAMES.instanceProfileName },
);
 }),
 new ScenarioOutput("createdInstanceProfile", (state) =>
 MESSAGES.createdInstanceProfile
 .replace("${INSTANCE_PROFILE_NAME}", NAMES.instanceProfileName)
 .replace("${INSTANCE_PROFILE_ARN}", state.instanceProfileArn),
),
 new ScenarioOutput(
 "addingRoleToInstanceProfile",
 MESSAGES.addingRoleToInstanceProfile
 .replace("${INSTANCE_PROFILE_NAME}", NAMES.instanceProfileName)
 .replace("${INSTANCE_ROLE_NAME}", NAMES.instanceRoleName),
),
 new ScenarioAction("addRoleToInstanceProfile", () => {

场景 927

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const client = new IAMClient({});
 return client.send(
 new AddRoleToInstanceProfileCommand({
 RoleName: NAMES.instanceRoleName,
 InstanceProfileName: NAMES.instanceProfileName,
 }),
);
 }),
 new ScenarioOutput(
 "addedRoleToInstanceProfile",
 MESSAGES.addedRoleToInstanceProfile
 .replace("${INSTANCE_PROFILE_NAME}", NAMES.instanceProfileName)
 .replace("${INSTANCE_ROLE_NAME}", NAMES.instanceRoleName),
),
 ...initParamsSteps,
 new ScenarioOutput("creatingLaunchTemplate", MESSAGES.creatingLaunchTemplate),
 new ScenarioAction("createLaunchTemplate", async () => {
 const ssmClient = new SSMClient({});
 const { Parameter } = await ssmClient.send(
 new GetParameterCommand({
 Name: "/aws/service/ami-amazon-linux-latest/amzn2-ami-hvm-x86_64-gp2",
 }),
);
 const ec2Client = new EC2Client({});
 await ec2Client.send(
 new CreateLaunchTemplateCommand({
 LaunchTemplateName: NAMES.launchTemplateName,
 LaunchTemplateData: {
 InstanceType: "t3.micro",
 ImageId: Parameter.Value,
 IamInstanceProfile: { Name: NAMES.instanceProfileName },
 UserData: readFileSync(
 join(RESOURCES_PATH, "server_startup_script.sh"),
).toString("base64"),
 KeyName: NAMES.keyPairName,
 },
 }),
);
 }),
 new ScenarioOutput(
 "createdLaunchTemplate",
 MESSAGES.createdLaunchTemplate.replace(
 "${LAUNCH_TEMPLATE_NAME}",
 NAMES.launchTemplateName,

场景 928

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

),
),
 new ScenarioOutput(
 "creatingAutoScalingGroup",
 MESSAGES.creatingAutoScalingGroup.replace(
 "${AUTO_SCALING_GROUP_NAME}",
 NAMES.autoScalingGroupName,
),
),
 new ScenarioAction("createAutoScalingGroup", async (state) => {
 const ec2Client = new EC2Client({});
 const { AvailabilityZones } = await ec2Client.send(
 new DescribeAvailabilityZonesCommand({}),
);
 state.availabilityZoneNames = AvailabilityZones.map((az) => az.ZoneName);
 const autoScalingClient = new AutoScalingClient({});
 await retry({ intervalInMs: 1000, maxRetries: 30 }, () =>
 autoScalingClient.send(
 new CreateAutoScalingGroupCommand({
 AvailabilityZones: state.availabilityZoneNames,
 AutoScalingGroupName: NAMES.autoScalingGroupName,
 LaunchTemplate: {
 LaunchTemplateName: NAMES.launchTemplateName,
 Version: "$Default",
 },
 MinSize: 3,
 MaxSize: 3,
 }),
),
);
 }),
 new ScenarioOutput(
 "createdAutoScalingGroup",
 /**
 * @param {{ availabilityZoneNames: string[] }} state
 */
 (state) =>
 MESSAGES.createdAutoScalingGroup
 .replace("${AUTO_SCALING_GROUP_NAME}", NAMES.autoScalingGroupName)
 .replace(
 "${AVAILABILITY_ZONE_NAMES}",
 state.availabilityZoneNames.join(", "),
),
),

场景 929

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 new ScenarioInput("confirmContinue", MESSAGES.confirmContinue, {
 type: "confirm",
 }),
 new ScenarioOutput("loadBalancer", MESSAGES.loadBalancer),
 new ScenarioOutput("gettingVpc", MESSAGES.gettingVpc),
 new ScenarioAction("getVpc", async (state) => {
 const client = new EC2Client({});
 const { Vpcs } = await client.send(
 new DescribeVpcsCommand({
 Filters: [{ Name: "is-default", Values: ["true"] }],
 }),
);
 state.defaultVpc = Vpcs[0].VpcId;
 }),
 new ScenarioOutput("gotVpc", (state) =>
 MESSAGES.gotVpc.replace("${VPC_ID}", state.defaultVpc),
),
 new ScenarioOutput("gettingSubnets", MESSAGES.gettingSubnets),
 new ScenarioAction("getSubnets", async (state) => {
 const client = new EC2Client({});
 const { Subnets } = await client.send(
 new DescribeSubnetsCommand({
 Filters: [
 { Name: "vpc-id", Values: [state.defaultVpc] },
 { Name: "availability-zone", Values: state.availabilityZoneNames },
 { Name: "default-for-az", Values: ["true"] },
],
 }),
);
 state.subnets = Subnets.map((subnet) => subnet.SubnetId);
 }),
 new ScenarioOutput(
 "gotSubnets",
 /**
 * @param {{ subnets: string[] }} state
 */
 (state) =>
 MESSAGES.gotSubnets.replace("${SUBNETS}", state.subnets.join(", ")),
),
 new ScenarioOutput(
 "creatingLoadBalancerTargetGroup",
 MESSAGES.creatingLoadBalancerTargetGroup.replace(
 "${TARGET_GROUP_NAME}",
 NAMES.loadBalancerTargetGroupName,

场景 930

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

),
),
 new ScenarioAction("createLoadBalancerTargetGroup", async (state) => {
 const client = new ElasticLoadBalancingV2Client({});
 const { TargetGroups } = await client.send(
 new CreateTargetGroupCommand({
 Name: NAMES.loadBalancerTargetGroupName,
 Protocol: "HTTP",
 Port: 80,
 HealthCheckPath: "/healthcheck",
 HealthCheckIntervalSeconds: 10,
 HealthCheckTimeoutSeconds: 5,
 HealthyThresholdCount: 2,
 UnhealthyThresholdCount: 2,
 VpcId: state.defaultVpc,
 }),
);
 const targetGroup = TargetGroups[0];
 state.targetGroupArn = targetGroup.TargetGroupArn;
 state.targetGroupProtocol = targetGroup.Protocol;
 state.targetGroupPort = targetGroup.Port;
 }),
 new ScenarioOutput(
 "createdLoadBalancerTargetGroup",
 MESSAGES.createdLoadBalancerTargetGroup.replace(
 "${TARGET_GROUP_NAME}",
 NAMES.loadBalancerTargetGroupName,
),
),
 new ScenarioOutput(
 "creatingLoadBalancer",
 MESSAGES.creatingLoadBalancer.replace("${LB_NAME}", NAMES.loadBalancerName),
),
 new ScenarioAction("createLoadBalancer", async (state) => {
 const client = new ElasticLoadBalancingV2Client({});
 const { LoadBalancers } = await client.send(
 new CreateLoadBalancerCommand({
 Name: NAMES.loadBalancerName,
 Subnets: state.subnets,
 }),
);
 state.loadBalancerDns = LoadBalancers[0].DNSName;
 state.loadBalancerArn = LoadBalancers[0].LoadBalancerArn;
 await waitUntilLoadBalancerAvailable(

场景 931

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 { client },
 { Names: [NAMES.loadBalancerName] },
);
 }),
 new ScenarioOutput("createdLoadBalancer", (state) =>
 MESSAGES.createdLoadBalancer
 .replace("${LB_NAME}", NAMES.loadBalancerName)
 .replace("${DNS_NAME}", state.loadBalancerDns),
),
 new ScenarioOutput(
 "creatingListener",
 MESSAGES.creatingLoadBalancerListener
 .replace("${LB_NAME}", NAMES.loadBalancerName)
 .replace("${TARGET_GROUP_NAME}", NAMES.loadBalancerTargetGroupName),
),
 new ScenarioAction("createListener", async (state) => {
 const client = new ElasticLoadBalancingV2Client({});
 const { Listeners } = await client.send(
 new CreateListenerCommand({
 LoadBalancerArn: state.loadBalancerArn,
 Protocol: state.targetGroupProtocol,
 Port: state.targetGroupPort,
 DefaultActions: [
 { Type: "forward", TargetGroupArn: state.targetGroupArn },
],
 }),
);
 const listener = Listeners[0];
 state.loadBalancerListenerArn = listener.ListenerArn;
 }),
 new ScenarioOutput("createdListener", (state) =>
 MESSAGES.createdLoadBalancerListener.replace(
 "${LB_LISTENER_ARN}",
 state.loadBalancerListenerArn,
),
),
 new ScenarioOutput(
 "attachingLoadBalancerTargetGroup",
 MESSAGES.attachingLoadBalancerTargetGroup
 .replace("${TARGET_GROUP_NAME}", NAMES.loadBalancerTargetGroupName)
 .replace("${AUTO_SCALING_GROUP_NAME}", NAMES.autoScalingGroupName),
),
 new ScenarioAction("attachLoadBalancerTargetGroup", async (state) => {
 const client = new AutoScalingClient({});

场景 932

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 await client.send(
 new AttachLoadBalancerTargetGroupsCommand({
 AutoScalingGroupName: NAMES.autoScalingGroupName,
 TargetGroupARNs: [state.targetGroupArn],
 }),
);
 }),
 new ScenarioOutput(
 "attachedLoadBalancerTargetGroup",
 MESSAGES.attachedLoadBalancerTargetGroup,
),
 new ScenarioOutput("verifyingInboundPort", MESSAGES.verifyingInboundPort),
 new ScenarioAction(
 "verifyInboundPort",
 /**
 *
 * @param {{ defaultSecurityGroup: import('@aws-sdk/client-ec2').SecurityGroup}}
 state
 */
 async (state) => {
 const client = new EC2Client({});
 const { SecurityGroups } = await client.send(
 new DescribeSecurityGroupsCommand({
 Filters: [{ Name: "group-name", Values: ["default"] }],
 }),
);
 if (!SecurityGroups) {
 state.verifyInboundPortError = new Error(MESSAGES.noSecurityGroups);
 }
 state.defaultSecurityGroup = SecurityGroups[0];

 /**
 * @type {string}
 */
 const ipResponse = (await axios.get("http://checkip.amazonaws.com")).data;
 state.myIp = ipResponse.trim();
 const myIpRules = state.defaultSecurityGroup.IpPermissions.filter(
 ({ IpRanges }) =>
 IpRanges.some(
 ({ CidrIp }) =>
 CidrIp.startsWith(state.myIp) || CidrIp === "0.0.0.0/0",
),
)
 .filter(({ IpProtocol }) => IpProtocol === "tcp")

场景 933

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 .filter(({ FromPort }) => FromPort === 80);

 state.myIpRules = myIpRules;
 },
),
 new ScenarioOutput(
 "verifiedInboundPort",
 /**
 * @param {{ myIpRules: any[] }} state
 */
 (state) => {
 if (state.myIpRules.length > 0) {
 return MESSAGES.foundIpRules.replace(
 "${IP_RULES}",
 JSON.stringify(state.myIpRules, null, 2),
);
 }
 return MESSAGES.noIpRules;
 },
),
 new ScenarioInput(
 "shouldAddInboundRule",
 /**
 * @param {{ myIpRules: any[] }} state
 */
 (state) => {
 if (state.myIpRules.length > 0) {
 return false;
 }
 return MESSAGES.noIpRules;
 },
 { type: "confirm" },
),
 new ScenarioAction(
 "addInboundRule",
 /**
 * @param {{ defaultSecurityGroup: import('@aws-sdk/client-
ec2').SecurityGroup }} state
 */
 async (state) => {
 if (!state.shouldAddInboundRule) {
 return;
 }

场景 934

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const client = new EC2Client({});
 await client.send(
 new AuthorizeSecurityGroupIngressCommand({
 GroupId: state.defaultSecurityGroup.GroupId,
 CidrIp: `${state.myIp}/32`,
 FromPort: 80,
 ToPort: 80,
 IpProtocol: "tcp",
 }),
);
 },
),
 new ScenarioOutput("addedInboundRule", (state) => {
 if (state.shouldAddInboundRule) {
 return MESSAGES.addedInboundRule.replace("${IP_ADDRESS}", state.myIp);
 }
 return false;
 }),
 new ScenarioOutput("verifyingEndpoint", (state) =>
 MESSAGES.verifyingEndpoint.replace("${DNS_NAME}", state.loadBalancerDns),
),
 new ScenarioAction("verifyEndpoint", async (state) => {
 try {
 const response = await retry({ intervalInMs: 2000, maxRetries: 30 }, () =>
 axios.get(`http://${state.loadBalancerDns}`),
);
 state.endpointResponse = JSON.stringify(response.data, null, 2);
 } catch (e) {
 state.verifyEndpointError = e;
 }
 }),
 new ScenarioOutput("verifiedEndpoint", (state) => {
 if (state.verifyEndpointError) {
 console.error(state.verifyEndpointError);
 } else {
 return MESSAGES.verifiedEndpoint.replace(
 "${ENDPOINT_RESPONSE}",
 state.endpointResponse,
);
 }
 }),
 saveState,
];

场景 935

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

创建运行演示的步骤。

import { readFileSync } from "node:fs";
import { join } from "node:path";

import axios from "axios";

import {
 DescribeTargetGroupsCommand,
 DescribeTargetHealthCommand,
 ElasticLoadBalancingV2Client,
} from "@aws-sdk/client-elastic-load-balancing-v2";
import {
 DescribeInstanceInformationCommand,
 PutParameterCommand,
 SSMClient,
 SendCommandCommand,
} from "@aws-sdk/client-ssm";
import {
 IAMClient,
 CreatePolicyCommand,
 CreateRoleCommand,
 AttachRolePolicyCommand,
 CreateInstanceProfileCommand,
 AddRoleToInstanceProfileCommand,
 waitUntilInstanceProfileExists,
} from "@aws-sdk/client-iam";
import {
 AutoScalingClient,
 DescribeAutoScalingGroupsCommand,
 TerminateInstanceInAutoScalingGroupCommand,
} from "@aws-sdk/client-auto-scaling";
import {
 DescribeIamInstanceProfileAssociationsCommand,
 EC2Client,
 RebootInstancesCommand,
 ReplaceIamInstanceProfileAssociationCommand,
} from "@aws-sdk/client-ec2";

import {
 ScenarioAction,

场景 936

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 ScenarioInput,
 ScenarioOutput,
} from "@aws-doc-sdk-examples/lib/scenario/scenario.js";
import { retry } from "@aws-doc-sdk-examples/lib/utils/util-timers.js";

import { MESSAGES, NAMES, RESOURCES_PATH } from "./constants.js";
import { findLoadBalancer } from "./shared.js";

const getRecommendation = new ScenarioAction(
 "getRecommendation",
 async (state) => {
 const loadBalancer = await findLoadBalancer(NAMES.loadBalancerName);
 if (loadBalancer) {
 state.loadBalancerDnsName = loadBalancer.DNSName;
 try {
 state.recommendation = (
 await axios.get(`http://${state.loadBalancerDnsName}`)
).data;
 } catch (e) {
 state.recommendation = e instanceof Error ? e.message : e;
 }
 } else {
 throw new Error(MESSAGES.demoFindLoadBalancerError);
 }
 },
);

const getRecommendationResult = new ScenarioOutput(
 "getRecommendationResult",
 (state) =>
 `Recommendation:\n${JSON.stringify(state.recommendation, null, 2)}`,
 { preformatted: true },
);

const getHealthCheck = new ScenarioAction("getHealthCheck", async (state) => {
 const client = new ElasticLoadBalancingV2Client({});
 const { TargetGroups } = await client.send(
 new DescribeTargetGroupsCommand({
 Names: [NAMES.loadBalancerTargetGroupName],
 }),
);

 const { TargetHealthDescriptions } = await client.send(
 new DescribeTargetHealthCommand({

场景 937

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 TargetGroupArn: TargetGroups[0].TargetGroupArn,
 }),
);
 state.targetHealthDescriptions = TargetHealthDescriptions;
});

const getHealthCheckResult = new ScenarioOutput(
 "getHealthCheckResult",
 /**
 * @param {{ targetHealthDescriptions: import('@aws-sdk/client-elastic-load-
balancing-v2').TargetHealthDescription[]}} state
 */
 (state) => {
 const status = state.targetHealthDescriptions
 .map((th) => `${th.Target.Id}: ${th.TargetHealth.State}`)
 .join("\n");
 return `Health check:\n${status}`;
 },
 { preformatted: true },
);

const loadBalancerLoop = new ScenarioAction(
 "loadBalancerLoop",
 getRecommendation.action,
 {
 whileConfig: {
 whileFn: ({ loadBalancerCheck }) => loadBalancerCheck,
 input: new ScenarioInput(
 "loadBalancerCheck",
 MESSAGES.demoLoadBalancerCheck,
 {
 type: "confirm",
 },
),
 output: getRecommendationResult,
 },
 },
);

const healthCheckLoop = new ScenarioAction(
 "healthCheckLoop",
 getHealthCheck.action,
 {
 whileConfig: {

场景 938

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 whileFn: ({ healthCheck }) => healthCheck,
 input: new ScenarioInput("healthCheck", MESSAGES.demoHealthCheck, {
 type: "confirm",
 }),
 output: getHealthCheckResult,
 },
 },
);

const statusSteps = [
 getRecommendation,
 getRecommendationResult,
 getHealthCheck,
 getHealthCheckResult,
];

/**
 * @type {import('@aws-doc-sdk-examples/lib/scenario.js').Step[]}
 */
export const demoSteps = [
 new ScenarioOutput("header", MESSAGES.demoHeader, { header: true }),
 new ScenarioOutput("sanityCheck", MESSAGES.demoSanityCheck),
 ...statusSteps,
 new ScenarioInput(
 "brokenDependencyConfirmation",
 MESSAGES.demoBrokenDependencyConfirmation,
 { type: "confirm" },
),
 new ScenarioAction("brokenDependency", async (state) => {
 if (!state.brokenDependencyConfirmation) {
 process.exit();
 } else {
 const client = new SSMClient({});
 state.badTableName = `fake-table-${Date.now()}`;
 await client.send(
 new PutParameterCommand({
 Name: NAMES.ssmTableNameKey,
 Value: state.badTableName,
 Overwrite: true,
 Type: "String",
 }),
);
 }
 }),

场景 939

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 new ScenarioOutput("testBrokenDependency", (state) =>
 MESSAGES.demoTestBrokenDependency.replace(
 "${TABLE_NAME}",
 state.badTableName,
),
),
 ...statusSteps,
 new ScenarioInput(
 "staticResponseConfirmation",
 MESSAGES.demoStaticResponseConfirmation,
 { type: "confirm" },
),
 new ScenarioAction("staticResponse", async (state) => {
 if (!state.staticResponseConfirmation) {
 process.exit();
 } else {
 const client = new SSMClient({});
 await client.send(
 new PutParameterCommand({
 Name: NAMES.ssmFailureResponseKey,
 Value: "static",
 Overwrite: true,
 Type: "String",
 }),
);
 }
 }),
 new ScenarioOutput("testStaticResponse", MESSAGES.demoTestStaticResponse),
 ...statusSteps,
 new ScenarioInput(
 "badCredentialsConfirmation",
 MESSAGES.demoBadCredentialsConfirmation,
 { type: "confirm" },
),
 new ScenarioAction("badCredentialsExit", (state) => {
 if (!state.badCredentialsConfirmation) {
 process.exit();
 }
 }),
 new ScenarioAction("fixDynamoDBName", async () => {
 const client = new SSMClient({});
 await client.send(
 new PutParameterCommand({
 Name: NAMES.ssmTableNameKey,

场景 940

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 Value: NAMES.tableName,
 Overwrite: true,
 Type: "String",
 }),
);
 }),
 new ScenarioAction(
 "badCredentials",
 /**
 * @param {{ targetInstance: import('@aws-sdk/client-auto-scaling').Instance }}
 state
 */
 async (state) => {
 await createSsmOnlyInstanceProfile();
 const autoScalingClient = new AutoScalingClient({});
 const { AutoScalingGroups } = await autoScalingClient.send(
 new DescribeAutoScalingGroupsCommand({
 AutoScalingGroupNames: [NAMES.autoScalingGroupName],
 }),
);
 state.targetInstance = AutoScalingGroups[0].Instances[0];
 const ec2Client = new EC2Client({});
 const { IamInstanceProfileAssociations } = await ec2Client.send(
 new DescribeIamInstanceProfileAssociationsCommand({
 Filters: [
 { Name: "instance-id", Values: [state.targetInstance.InstanceId] },
],
 }),
);
 state.instanceProfileAssociationId =
 IamInstanceProfileAssociations[0].AssociationId;
 await retry({ intervalInMs: 1000, maxRetries: 30 }, () =>
 ec2Client.send(
 new ReplaceIamInstanceProfileAssociationCommand({
 AssociationId: state.instanceProfileAssociationId,
 IamInstanceProfile: { Name: NAMES.ssmOnlyInstanceProfileName },
 }),
),
);

 await ec2Client.send(
 new RebootInstancesCommand({
 InstanceIds: [state.targetInstance.InstanceId],
 }),

场景 941

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

);

 const ssmClient = new SSMClient({});
 await retry({ intervalInMs: 20000, maxRetries: 15 }, async () => {
 const { InstanceInformationList } = await ssmClient.send(
 new DescribeInstanceInformationCommand({}),
);

 const instance = InstanceInformationList.find(
 (info) => info.InstanceId === state.targetInstance.InstanceId,
);

 if (!instance) {
 throw new Error("Instance not found.");
 }
 });

 await ssmClient.send(
 new SendCommandCommand({
 InstanceIds: [state.targetInstance.InstanceId],
 DocumentName: "AWS-RunShellScript",
 Parameters: { commands: ["cd / && sudo python3 server.py 80"] },
 }),
);
 },
),
 new ScenarioOutput(
 "testBadCredentials",
 /**
 * @param {{ targetInstance: import('@aws-sdk/client-ssm').InstanceInformation}}
 state
 */
 (state) =>
 MESSAGES.demoTestBadCredentials.replace(
 "${INSTANCE_ID}",
 state.targetInstance.InstanceId,
),
),
 loadBalancerLoop,
 new ScenarioInput(
 "deepHealthCheckConfirmation",
 MESSAGES.demoDeepHealthCheckConfirmation,
 { type: "confirm" },
),

场景 942

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 new ScenarioAction("deepHealthCheckExit", (state) => {
 if (!state.deepHealthCheckConfirmation) {
 process.exit();
 }
 }),
 new ScenarioAction("deepHealthCheck", async () => {
 const client = new SSMClient({});
 await client.send(
 new PutParameterCommand({
 Name: NAMES.ssmHealthCheckKey,
 Value: "deep",
 Overwrite: true,
 Type: "String",
 }),
);
 }),
 new ScenarioOutput("testDeepHealthCheck", MESSAGES.demoTestDeepHealthCheck),
 healthCheckLoop,
 loadBalancerLoop,
 new ScenarioInput(
 "killInstanceConfirmation",
 /**
 * @param {{ targetInstance: import('@aws-sdk/client-
ssm').InstanceInformation }} state
 */
 (state) =>
 MESSAGES.demoKillInstanceConfirmation.replace(
 "${INSTANCE_ID}",
 state.targetInstance.InstanceId,
),
 { type: "confirm" },
),
 new ScenarioAction("killInstanceExit", (state) => {
 if (!state.killInstanceConfirmation) {
 process.exit();
 }
 }),
 new ScenarioAction(
 "killInstance",
 /**
 * @param {{ targetInstance: import('@aws-sdk/client-
ssm').InstanceInformation }} state
 */
 async (state) => {

场景 943

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const client = new AutoScalingClient({});
 await client.send(
 new TerminateInstanceInAutoScalingGroupCommand({
 InstanceId: state.targetInstance.InstanceId,
 ShouldDecrementDesiredCapacity: false,
 }),
);
 },
),
 new ScenarioOutput("testKillInstance", MESSAGES.demoTestKillInstance),
 healthCheckLoop,
 loadBalancerLoop,
 new ScenarioInput("failOpenConfirmation", MESSAGES.demoFailOpenConfirmation, {
 type: "confirm",
 }),
 new ScenarioAction("failOpenExit", (state) => {
 if (!state.failOpenConfirmation) {
 process.exit();
 }
 }),
 new ScenarioAction("failOpen", () => {
 const client = new SSMClient({});
 return client.send(
 new PutParameterCommand({
 Name: NAMES.ssmTableNameKey,
 Value: `fake-table-${Date.now()}`,
 Overwrite: true,
 Type: "String",
 }),
);
 }),
 new ScenarioOutput("testFailOpen", MESSAGES.demoFailOpenTest),
 healthCheckLoop,
 loadBalancerLoop,
 new ScenarioInput(
 "resetTableConfirmation",
 MESSAGES.demoResetTableConfirmation,
 { type: "confirm" },
),
 new ScenarioAction("resetTableExit", (state) => {
 if (!state.resetTableConfirmation) {
 process.exit();
 }
 }),

场景 944

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 new ScenarioAction("resetTable", async () => {
 const client = new SSMClient({});
 await client.send(
 new PutParameterCommand({
 Name: NAMES.ssmTableNameKey,
 Value: NAMES.tableName,
 Overwrite: true,
 Type: "String",
 }),
);
 }),
 new ScenarioOutput("testResetTable", MESSAGES.demoTestResetTable),
 healthCheckLoop,
 loadBalancerLoop,
];

async function createSsmOnlyInstanceProfile() {
 const iamClient = new IAMClient({});
 const { Policy } = await iamClient.send(
 new CreatePolicyCommand({
 PolicyName: NAMES.ssmOnlyPolicyName,
 PolicyDocument: readFileSync(
 join(RESOURCES_PATH, "ssm_only_policy.json"),
),
 }),
);
 await iamClient.send(
 new CreateRoleCommand({
 RoleName: NAMES.ssmOnlyRoleName,
 AssumeRolePolicyDocument: JSON.stringify({
 Version: "2012-10-17",
 Statement: [
 {
 Effect: "Allow",
 Principal: { Service: "ec2.amazonaws.com" },
 Action: "sts:AssumeRole",
 },
],
 }),
 }),
);
 await iamClient.send(
 new AttachRolePolicyCommand({
 RoleName: NAMES.ssmOnlyRoleName,

场景 945

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 PolicyArn: Policy.Arn,
 }),
);
 await iamClient.send(
 new AttachRolePolicyCommand({
 RoleName: NAMES.ssmOnlyRoleName,
 PolicyArn: "arn:aws:iam::aws:policy/AmazonSSMManagedInstanceCore",
 }),
);
 const { InstanceProfile } = await iamClient.send(
 new CreateInstanceProfileCommand({
 InstanceProfileName: NAMES.ssmOnlyInstanceProfileName,
 }),
);
 await waitUntilInstanceProfileExists(
 { client: iamClient },
 { InstanceProfileName: NAMES.ssmOnlyInstanceProfileName },
);
 await iamClient.send(
 new AddRoleToInstanceProfileCommand({
 InstanceProfileName: NAMES.ssmOnlyInstanceProfileName,
 RoleName: NAMES.ssmOnlyRoleName,
 }),
);

 return InstanceProfile;
}

创建销毁所有资源的步骤。

import { unlinkSync } from "node:fs";

import { DynamoDBClient, DeleteTableCommand } from "@aws-sdk/client-dynamodb";
import {
 EC2Client,
 DeleteKeyPairCommand,
 DeleteLaunchTemplateCommand,
 RevokeSecurityGroupIngressCommand,
} from "@aws-sdk/client-ec2";
import {
 IAMClient,
 DeleteInstanceProfileCommand,

场景 946

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 RemoveRoleFromInstanceProfileCommand,
 DeletePolicyCommand,
 DeleteRoleCommand,
 DetachRolePolicyCommand,
 paginateListPolicies,
} from "@aws-sdk/client-iam";
import {
 AutoScalingClient,
 DeleteAutoScalingGroupCommand,
 TerminateInstanceInAutoScalingGroupCommand,
 UpdateAutoScalingGroupCommand,
 paginateDescribeAutoScalingGroups,
} from "@aws-sdk/client-auto-scaling";
import {
 DeleteLoadBalancerCommand,
 DeleteTargetGroupCommand,
 DescribeTargetGroupsCommand,
 ElasticLoadBalancingV2Client,
} from "@aws-sdk/client-elastic-load-balancing-v2";

import {
 ScenarioOutput,
 ScenarioInput,
 ScenarioAction,
} from "@aws-doc-sdk-examples/lib/scenario/index.js";
import { loadState } from "@aws-doc-sdk-examples/lib/scenario/steps-common.js";
import { retry } from "@aws-doc-sdk-examples/lib/utils/util-timers.js";

import { MESSAGES, NAMES } from "./constants.js";
import { findLoadBalancer } from "./shared.js";

/**
 * @type {import('@aws-doc-sdk-examples/lib/scenario.js').Step[]}
 */
export const destroySteps = [
 loadState,
 new ScenarioInput("destroy", MESSAGES.destroy, { type: "confirm" }),
 new ScenarioAction(
 "abort",
 (state) => state.destroy === false && process.exit(),
),
 new ScenarioAction("deleteTable", async (c) => {
 try {
 const client = new DynamoDBClient({});

场景 947

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 await client.send(new DeleteTableCommand({ TableName: NAMES.tableName }));
 } catch (e) {
 c.deleteTableError = e;
 }
 }),
 new ScenarioOutput("deleteTableResult", (state) => {
 if (state.deleteTableError) {
 console.error(state.deleteTableError);
 return MESSAGES.deleteTableError.replace(
 "${TABLE_NAME}",
 NAMES.tableName,
);
 }
 return MESSAGES.deletedTable.replace("${TABLE_NAME}", NAMES.tableName);
 }),
 new ScenarioAction("deleteKeyPair", async (state) => {
 try {
 const client = new EC2Client({});
 await client.send(
 new DeleteKeyPairCommand({ KeyName: NAMES.keyPairName }),
);
 unlinkSync(`${NAMES.keyPairName}.pem`);
 } catch (e) {
 state.deleteKeyPairError = e;
 }
 }),
 new ScenarioOutput("deleteKeyPairResult", (state) => {
 if (state.deleteKeyPairError) {
 console.error(state.deleteKeyPairError);
 return MESSAGES.deleteKeyPairError.replace(
 "${KEY_PAIR_NAME}",
 NAMES.keyPairName,
);
 }
 return MESSAGES.deletedKeyPair.replace(
 "${KEY_PAIR_NAME}",
 NAMES.keyPairName,
);
 }),
 new ScenarioAction("detachPolicyFromRole", async (state) => {
 try {
 const client = new IAMClient({});
 const policy = await findPolicy(NAMES.instancePolicyName);

场景 948

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 if (!policy) {
 state.detachPolicyFromRoleError = new Error(
 `Policy ${NAMES.instancePolicyName} not found.`,
);
 } else {
 await client.send(
 new DetachRolePolicyCommand({
 RoleName: NAMES.instanceRoleName,
 PolicyArn: policy.Arn,
 }),
);
 }
 } catch (e) {
 state.detachPolicyFromRoleError = e;
 }
 }),
 new ScenarioOutput("detachedPolicyFromRole", (state) => {
 if (state.detachPolicyFromRoleError) {
 console.error(state.detachPolicyFromRoleError);
 return MESSAGES.detachPolicyFromRoleError
 .replace("${INSTANCE_POLICY_NAME}", NAMES.instancePolicyName)
 .replace("${INSTANCE_ROLE_NAME}", NAMES.instanceRoleName);
 }
 return MESSAGES.detachedPolicyFromRole
 .replace("${INSTANCE_POLICY_NAME}", NAMES.instancePolicyName)
 .replace("${INSTANCE_ROLE_NAME}", NAMES.instanceRoleName);
 }),
 new ScenarioAction("deleteInstancePolicy", async (state) => {
 const client = new IAMClient({});
 const policy = await findPolicy(NAMES.instancePolicyName);

 if (!policy) {
 state.deletePolicyError = new Error(
 `Policy ${NAMES.instancePolicyName} not found.`,
);
 } else {
 return client.send(
 new DeletePolicyCommand({
 PolicyArn: policy.Arn,
 }),
);
 }
 }),
 new ScenarioOutput("deletePolicyResult", (state) => {

场景 949

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 if (state.deletePolicyError) {
 console.error(state.deletePolicyError);
 return MESSAGES.deletePolicyError.replace(
 "${INSTANCE_POLICY_NAME}",
 NAMES.instancePolicyName,
);
 }
 return MESSAGES.deletedPolicy.replace(
 "${INSTANCE_POLICY_NAME}",
 NAMES.instancePolicyName,
);
 }),
 new ScenarioAction("removeRoleFromInstanceProfile", async (state) => {
 try {
 const client = new IAMClient({});
 await client.send(
 new RemoveRoleFromInstanceProfileCommand({
 RoleName: NAMES.instanceRoleName,
 InstanceProfileName: NAMES.instanceProfileName,
 }),
);
 } catch (e) {
 state.removeRoleFromInstanceProfileError = e;
 }
 }),
 new ScenarioOutput("removeRoleFromInstanceProfileResult", (state) => {
 if (state.removeRoleFromInstanceProfile) {
 console.error(state.removeRoleFromInstanceProfileError);
 return MESSAGES.removeRoleFromInstanceProfileError
 .replace("${INSTANCE_PROFILE_NAME}", NAMES.instanceProfileName)
 .replace("${INSTANCE_ROLE_NAME}", NAMES.instanceRoleName);
 }
 return MESSAGES.removedRoleFromInstanceProfile
 .replace("${INSTANCE_PROFILE_NAME}", NAMES.instanceProfileName)
 .replace("${INSTANCE_ROLE_NAME}", NAMES.instanceRoleName);
 }),
 new ScenarioAction("deleteInstanceRole", async (state) => {
 try {
 const client = new IAMClient({});
 await client.send(
 new DeleteRoleCommand({
 RoleName: NAMES.instanceRoleName,
 }),
);

场景 950

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 } catch (e) {
 state.deleteInstanceRoleError = e;
 }
 }),
 new ScenarioOutput("deleteInstanceRoleResult", (state) => {
 if (state.deleteInstanceRoleError) {
 console.error(state.deleteInstanceRoleError);
 return MESSAGES.deleteInstanceRoleError.replace(
 "${INSTANCE_ROLE_NAME}",
 NAMES.instanceRoleName,
);
 }
 return MESSAGES.deletedInstanceRole.replace(
 "${INSTANCE_ROLE_NAME}",
 NAMES.instanceRoleName,
);
 }),
 new ScenarioAction("deleteInstanceProfile", async (state) => {
 try {
 const client = new IAMClient({});
 await client.send(
 new DeleteInstanceProfileCommand({
 InstanceProfileName: NAMES.instanceProfileName,
 }),
);
 } catch (e) {
 state.deleteInstanceProfileError = e;
 }
 }),
 new ScenarioOutput("deleteInstanceProfileResult", (state) => {
 if (state.deleteInstanceProfileError) {
 console.error(state.deleteInstanceProfileError);
 return MESSAGES.deleteInstanceProfileError.replace(
 "${INSTANCE_PROFILE_NAME}",
 NAMES.instanceProfileName,
);
 }
 return MESSAGES.deletedInstanceProfile.replace(
 "${INSTANCE_PROFILE_NAME}",
 NAMES.instanceProfileName,
);
 }),
 new ScenarioAction("deleteAutoScalingGroup", async (state) => {
 try {

场景 951

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 await terminateGroupInstances(NAMES.autoScalingGroupName);
 await retry({ intervalInMs: 60000, maxRetries: 60 }, async () => {
 await deleteAutoScalingGroup(NAMES.autoScalingGroupName);
 });
 } catch (e) {
 state.deleteAutoScalingGroupError = e;
 }
 }),
 new ScenarioOutput("deleteAutoScalingGroupResult", (state) => {
 if (state.deleteAutoScalingGroupError) {
 console.error(state.deleteAutoScalingGroupError);
 return MESSAGES.deleteAutoScalingGroupError.replace(
 "${AUTO_SCALING_GROUP_NAME}",
 NAMES.autoScalingGroupName,
);
 }
 return MESSAGES.deletedAutoScalingGroup.replace(
 "${AUTO_SCALING_GROUP_NAME}",
 NAMES.autoScalingGroupName,
);
 }),
 new ScenarioAction("deleteLaunchTemplate", async (state) => {
 const client = new EC2Client({});
 try {
 await client.send(
 new DeleteLaunchTemplateCommand({
 LaunchTemplateName: NAMES.launchTemplateName,
 }),
);
 } catch (e) {
 state.deleteLaunchTemplateError = e;
 }
 }),
 new ScenarioOutput("deleteLaunchTemplateResult", (state) => {
 if (state.deleteLaunchTemplateError) {
 console.error(state.deleteLaunchTemplateError);
 return MESSAGES.deleteLaunchTemplateError.replace(
 "${LAUNCH_TEMPLATE_NAME}",
 NAMES.launchTemplateName,
);
 }
 return MESSAGES.deletedLaunchTemplate.replace(
 "${LAUNCH_TEMPLATE_NAME}",
 NAMES.launchTemplateName,

场景 952

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

);
 }),
 new ScenarioAction("deleteLoadBalancer", async (state) => {
 try {
 const client = new ElasticLoadBalancingV2Client({});
 const loadBalancer = await findLoadBalancer(NAMES.loadBalancerName);
 await client.send(
 new DeleteLoadBalancerCommand({
 LoadBalancerArn: loadBalancer.LoadBalancerArn,
 }),
);
 await retry({ intervalInMs: 1000, maxRetries: 60 }, async () => {
 const lb = await findLoadBalancer(NAMES.loadBalancerName);
 if (lb) {
 throw new Error("Load balancer still exists.");
 }
 });
 } catch (e) {
 state.deleteLoadBalancerError = e;
 }
 }),
 new ScenarioOutput("deleteLoadBalancerResult", (state) => {
 if (state.deleteLoadBalancerError) {
 console.error(state.deleteLoadBalancerError);
 return MESSAGES.deleteLoadBalancerError.replace(
 "${LB_NAME}",
 NAMES.loadBalancerName,
);
 }
 return MESSAGES.deletedLoadBalancer.replace(
 "${LB_NAME}",
 NAMES.loadBalancerName,
);
 }),
 new ScenarioAction("deleteLoadBalancerTargetGroup", async (state) => {
 const client = new ElasticLoadBalancingV2Client({});
 try {
 const { TargetGroups } = await client.send(
 new DescribeTargetGroupsCommand({
 Names: [NAMES.loadBalancerTargetGroupName],
 }),
);

 await retry({ intervalInMs: 1000, maxRetries: 30 }, () =>

场景 953

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 client.send(
 new DeleteTargetGroupCommand({
 TargetGroupArn: TargetGroups[0].TargetGroupArn,
 }),
),
);
 } catch (e) {
 state.deleteLoadBalancerTargetGroupError = e;
 }
 }),
 new ScenarioOutput("deleteLoadBalancerTargetGroupResult", (state) => {
 if (state.deleteLoadBalancerTargetGroupError) {
 console.error(state.deleteLoadBalancerTargetGroupError);
 return MESSAGES.deleteLoadBalancerTargetGroupError.replace(
 "${TARGET_GROUP_NAME}",
 NAMES.loadBalancerTargetGroupName,
);
 }
 return MESSAGES.deletedLoadBalancerTargetGroup.replace(
 "${TARGET_GROUP_NAME}",
 NAMES.loadBalancerTargetGroupName,
);
 }),
 new ScenarioAction("detachSsmOnlyRoleFromProfile", async (state) => {
 try {
 const client = new IAMClient({});
 await client.send(
 new RemoveRoleFromInstanceProfileCommand({
 InstanceProfileName: NAMES.ssmOnlyInstanceProfileName,
 RoleName: NAMES.ssmOnlyRoleName,
 }),
);
 } catch (e) {
 state.detachSsmOnlyRoleFromProfileError = e;
 }
 }),
 new ScenarioOutput("detachSsmOnlyRoleFromProfileResult", (state) => {
 if (state.detachSsmOnlyRoleFromProfileError) {
 console.error(state.detachSsmOnlyRoleFromProfileError);
 return MESSAGES.detachSsmOnlyRoleFromProfileError
 .replace("${ROLE_NAME}", NAMES.ssmOnlyRoleName)
 .replace("${PROFILE_NAME}", NAMES.ssmOnlyInstanceProfileName);
 }
 return MESSAGES.detachedSsmOnlyRoleFromProfile

场景 954

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 .replace("${ROLE_NAME}", NAMES.ssmOnlyRoleName)
 .replace("${PROFILE_NAME}", NAMES.ssmOnlyInstanceProfileName);
 }),
 new ScenarioAction("detachSsmOnlyCustomRolePolicy", async (state) => {
 try {
 const iamClient = new IAMClient({});
 const ssmOnlyPolicy = await findPolicy(NAMES.ssmOnlyPolicyName);
 await iamClient.send(
 new DetachRolePolicyCommand({
 RoleName: NAMES.ssmOnlyRoleName,
 PolicyArn: ssmOnlyPolicy.Arn,
 }),
);
 } catch (e) {
 state.detachSsmOnlyCustomRolePolicyError = e;
 }
 }),
 new ScenarioOutput("detachSsmOnlyCustomRolePolicyResult", (state) => {
 if (state.detachSsmOnlyCustomRolePolicyError) {
 console.error(state.detachSsmOnlyCustomRolePolicyError);
 return MESSAGES.detachSsmOnlyCustomRolePolicyError
 .replace("${ROLE_NAME}", NAMES.ssmOnlyRoleName)
 .replace("${POLICY_NAME}", NAMES.ssmOnlyPolicyName);
 }
 return MESSAGES.detachedSsmOnlyCustomRolePolicy
 .replace("${ROLE_NAME}", NAMES.ssmOnlyRoleName)
 .replace("${POLICY_NAME}", NAMES.ssmOnlyPolicyName);
 }),
 new ScenarioAction("detachSsmOnlyAWSRolePolicy", async (state) => {
 try {
 const iamClient = new IAMClient({});
 await iamClient.send(
 new DetachRolePolicyCommand({
 RoleName: NAMES.ssmOnlyRoleName,
 PolicyArn: "arn:aws:iam::aws:policy/AmazonSSMManagedInstanceCore",
 }),
);
 } catch (e) {
 state.detachSsmOnlyAWSRolePolicyError = e;
 }
 }),
 new ScenarioOutput("detachSsmOnlyAWSRolePolicyResult", (state) => {
 if (state.detachSsmOnlyAWSRolePolicyError) {
 console.error(state.detachSsmOnlyAWSRolePolicyError);

场景 955

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 return MESSAGES.detachSsmOnlyAWSRolePolicyError
 .replace("${ROLE_NAME}", NAMES.ssmOnlyRoleName)
 .replace("${POLICY_NAME}", "AmazonSSMManagedInstanceCore");
 }
 return MESSAGES.detachedSsmOnlyAWSRolePolicy
 .replace("${ROLE_NAME}", NAMES.ssmOnlyRoleName)
 .replace("${POLICY_NAME}", "AmazonSSMManagedInstanceCore");
 }),
 new ScenarioAction("deleteSsmOnlyInstanceProfile", async (state) => {
 try {
 const iamClient = new IAMClient({});
 await iamClient.send(
 new DeleteInstanceProfileCommand({
 InstanceProfileName: NAMES.ssmOnlyInstanceProfileName,
 }),
);
 } catch (e) {
 state.deleteSsmOnlyInstanceProfileError = e;
 }
 }),
 new ScenarioOutput("deleteSsmOnlyInstanceProfileResult", (state) => {
 if (state.deleteSsmOnlyInstanceProfileError) {
 console.error(state.deleteSsmOnlyInstanceProfileError);
 return MESSAGES.deleteSsmOnlyInstanceProfileError.replace(
 "${INSTANCE_PROFILE_NAME}",
 NAMES.ssmOnlyInstanceProfileName,
);
 }
 return MESSAGES.deletedSsmOnlyInstanceProfile.replace(
 "${INSTANCE_PROFILE_NAME}",
 NAMES.ssmOnlyInstanceProfileName,
);
 }),
 new ScenarioAction("deleteSsmOnlyPolicy", async (state) => {
 try {
 const iamClient = new IAMClient({});
 const ssmOnlyPolicy = await findPolicy(NAMES.ssmOnlyPolicyName);
 await iamClient.send(
 new DeletePolicyCommand({
 PolicyArn: ssmOnlyPolicy.Arn,
 }),
);
 } catch (e) {
 state.deleteSsmOnlyPolicyError = e;

场景 956

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }
 }),
 new ScenarioOutput("deleteSsmOnlyPolicyResult", (state) => {
 if (state.deleteSsmOnlyPolicyError) {
 console.error(state.deleteSsmOnlyPolicyError);
 return MESSAGES.deleteSsmOnlyPolicyError.replace(
 "${POLICY_NAME}",
 NAMES.ssmOnlyPolicyName,
);
 }
 return MESSAGES.deletedSsmOnlyPolicy.replace(
 "${POLICY_NAME}",
 NAMES.ssmOnlyPolicyName,
);
 }),
 new ScenarioAction("deleteSsmOnlyRole", async (state) => {
 try {
 const iamClient = new IAMClient({});
 await iamClient.send(
 new DeleteRoleCommand({
 RoleName: NAMES.ssmOnlyRoleName,
 }),
);
 } catch (e) {
 state.deleteSsmOnlyRoleError = e;
 }
 }),
 new ScenarioOutput("deleteSsmOnlyRoleResult", (state) => {
 if (state.deleteSsmOnlyRoleError) {
 console.error(state.deleteSsmOnlyRoleError);
 return MESSAGES.deleteSsmOnlyRoleError.replace(
 "${ROLE_NAME}",
 NAMES.ssmOnlyRoleName,
);
 }
 return MESSAGES.deletedSsmOnlyRole.replace(
 "${ROLE_NAME}",
 NAMES.ssmOnlyRoleName,
);
 }),
 new ScenarioAction(
 "revokeSecurityGroupIngress",
 async (

场景 957

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 /** @type {{ myIp: string, defaultSecurityGroup: { GroupId: string } }} */
 state,
) => {
 const ec2Client = new EC2Client({});

 try {
 await ec2Client.send(
 new RevokeSecurityGroupIngressCommand({
 GroupId: state.defaultSecurityGroup.GroupId,
 CidrIp: `${state.myIp}/32`,
 FromPort: 80,
 ToPort: 80,
 IpProtocol: "tcp",
 }),
);
 } catch (e) {
 state.revokeSecurityGroupIngressError = e;
 }
 },
),
 new ScenarioOutput("revokeSecurityGroupIngressResult", (state) => {
 if (state.revokeSecurityGroupIngressError) {
 console.error(state.revokeSecurityGroupIngressError);
 return MESSAGES.revokeSecurityGroupIngressError.replace(
 "${IP}",
 state.myIp,
);
 }
 return MESSAGES.revokedSecurityGroupIngress.replace("${IP}", state.myIp);
 }),
];

/**
 * @param {string} policyName
 */
async function findPolicy(policyName) {
 const client = new IAMClient({});
 const paginatedPolicies = paginateListPolicies({ client }, {});
 for await (const page of paginatedPolicies) {
 const policy = page.Policies.find((p) => p.PolicyName === policyName);
 if (policy) {
 return policy;
 }
 }

场景 958

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

}

/**
 * @param {string} groupName
 */
async function deleteAutoScalingGroup(groupName) {
 const client = new AutoScalingClient({});
 try {
 await client.send(
 new DeleteAutoScalingGroupCommand({
 AutoScalingGroupName: groupName,
 }),
);
 } catch (err) {
 if (!(err instanceof Error)) {
 throw err;
 }
 console.log(err.name);
 throw err;
 }
}

/**
 * @param {string} groupName
 */
async function terminateGroupInstances(groupName) {
 const autoScalingClient = new AutoScalingClient({});
 const group = await findAutoScalingGroup(groupName);
 await autoScalingClient.send(
 new UpdateAutoScalingGroupCommand({
 AutoScalingGroupName: group.AutoScalingGroupName,
 MinSize: 0,
 }),
);
 for (const i of group.Instances) {
 await retry({ intervalInMs: 1000, maxRetries: 30 }, () =>
 autoScalingClient.send(
 new TerminateInstanceInAutoScalingGroupCommand({
 InstanceId: i.InstanceId,
 ShouldDecrementDesiredCapacity: true,
 }),
),
);
 }

场景 959

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

}

async function findAutoScalingGroup(groupName) {
 const client = new AutoScalingClient({});
 const paginatedGroups = paginateDescribeAutoScalingGroups({ client }, {});
 for await (const page of paginatedGroups) {
 const group = page.AutoScalingGroups.find(
 (g) => g.AutoScalingGroupName === groupName,
);
 if (group) {
 return group;
 }
 }
 throw new Error(`Auto scaling group ${groupName} not found.`);
}

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的以下主
题。

• AttachLoadBalancerTargetGroups

• CreateAutoScalingGroup

• CreateInstanceProfile

• CreateLaunchTemplate

• CreateListener

• CreateLoadBalancer

• CreateTargetGroup

• DeleteAutoScalingGroup

• DeleteInstanceProfile

• DeleteLaunchTemplate

• DeleteLoadBalancer

• DeleteTargetGroup

• DescribeAutoScalingGroups

• DescribeAvailabilityZones

• DescribeIamInstanceProfileAssociations

• DescribeInstances

• DescribeLoadBalancers场景 960

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/auto-scaling/command/AttachLoadBalancerTargetGroupsCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/auto-scaling/command/CreateAutoScalingGroupCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/CreateInstanceProfileCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/CreateLaunchTemplateCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/CreateListenerCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/CreateLoadBalancerCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/CreateTargetGroupCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/auto-scaling/command/DeleteAutoScalingGroupCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iam/command/DeleteInstanceProfileCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/DeleteLaunchTemplateCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/DeleteLoadBalancerCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/DeleteTargetGroupCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/auto-scaling/command/DescribeAutoScalingGroupsCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/DescribeAvailabilityZonesCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/DescribeIamInstanceProfileAssociationsCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/DescribeInstancesCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/DescribeLoadBalancersCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• DescribeSubnets

• DescribeTargetGroups

• DescribeTargetHealth

• DescribeVpcs

• RebootInstances

• ReplaceIamInstanceProfileAssociation

• TerminateInstanceInAutoScalingGroup

• UpdateAutoScalingGroup

Amazon IoT SiteWise 使用适用于 JavaScript (v3) 的 SDK 的示例

以下代码示例向您展示了如何通过使用 适用于 JavaScript 的 Amazon SDK (v3) 来执行操作和实现常
见场景 Amazon IoT SiteWise。

基本功能是向您展示如何在服务中执行基本操作的代码示例。

操作是大型程序的代码摘录，必须在上下文中运行。您可以通过操作了解如何调用单个服务函数，还可
以通过函数相关场景的上下文查看操作。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

• 开始使用

• 基本功能

• 操作

开始使用

你好 Amazon IoT SiteWise

以下代码示例展示了如何开始使用 Amazon IoT SiteWise。

Amazon IoT SiteWise 961

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/DescribeSubnetsCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/DescribeTargetGroupsCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/elastic-load-balancing-v2/command/DescribeTargetHealthCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/DescribeVpcsCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/RebootInstancesCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ec2/command/ReplaceIamInstanceProfileAssociationCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/auto-scaling/command/TerminateInstanceInAutoScalingGroupCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/auto-scaling/command/UpdateAutoScalingGroupCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import {
 paginateListAssetModels,
 IoTSiteWiseClient,
} from "@aws-sdk/client-iotsitewise";

// Call ListDocuments and display the result.
export const main = async () => {
 const client = new IoTSiteWiseClient();
 const listAssetModelsPaginated = [];
 console.log(
 "Hello, AWS Systems Manager! Let's list some of your documents:\n",
);
 try {
 // The paginate function is a wrapper around the base command.
 const paginator = paginateListAssetModels({ client }, { maxResults: 5 });
 for await (const page of paginator) {
 listAssetModelsPaginated.push(...page.assetModelSummaries);
 }
 } catch (caught) {
 console.error(`There was a problem saying hello: ${caught.message}`);
 throw caught;
 }
 for (const { name, creationDate } of listAssetModelsPaginated) {
 console.log(`${name} - ${creationDate}`);
 }
};

// Call function if run directly.
import { fileURLToPath } from "node:url";
if (process.argv[1] === fileURLToPath(import.meta.url)) {
 main();
}

开始使用 962

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iotsitewise#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考ListAssetModels中
的。

基本功能

了解基本功能

以下代码示例展示了如何：

• 创建 Amazon IoT SiteWise 资产模型。

• 创建 Amazon IoT SiteWise 资产。

• 检索属性 ID 值。

• 向 Amazon IoT SiteWise 资产发送数据。

• 检索 Amazon IoT SiteWise 资产属性的值。

• 创建 Amazon IoT SiteWise 门户。

• 创建 Amazon IoT SiteWise 网关。

• 描述网 Amazon IoT SiteWise 关。

• 删除资 Amazon IoT SiteWise 产。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import {
 Scenario,
 ScenarioAction,
 ScenarioInput,
 ScenarioOutput,
 //} from "@aws-doc-sdk-examples/lib/scenario/index.js";
} from "../../libs/scenario/index.js";
import {
 IoTSiteWiseClient,
 CreateAssetModelCommand,

基本功能 963

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iotsitewise/command/ListAssetModelsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iotsitewise#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 CreateAssetCommand,
 ListAssetModelPropertiesCommand,
 BatchPutAssetPropertyValueCommand,
 GetAssetPropertyValueCommand,
 CreatePortalCommand,
 DescribePortalCommand,
 CreateGatewayCommand,
 DescribeGatewayCommand,
 DeletePortalCommand,
 DeleteGatewayCommand,
 DeleteAssetCommand,
 DeleteAssetModelCommand,
 DescribeAssetModelCommand,
} from "@aws-sdk/client-iotsitewise";
import {
 CloudFormationClient,
 CreateStackCommand,
 DeleteStackCommand,
 DescribeStacksCommand,
 waitUntilStackExists,
 waitUntilStackCreateComplete,
 waitUntilStackDeleteComplete,
} from "@aws-sdk/client-cloudformation";
import { wait } from "@aws-doc-sdk-examples/lib/utils/util-timers.js";
import { parseArgs } from "node:util";
import { readFileSync } from "node:fs";
import { fileURLToPath } from "node:url";
import { dirname } from "node:path";

const __filename = fileURLToPath(import.meta.url);
const __dirname = dirname(__filename);
const stackName = "SiteWiseBasicsStack";

/**
 * @typedef {{
 * iotSiteWiseClient: import('@aws-sdk/client-iotsitewise').IotSiteWiseClient,
 * cloudFormationClient: import('@aws-sdk/client-
cloudformation').CloudFormationClient,
 * stackName,
 * stack,
 * askToDeleteResources: true,
 * asset: {assetName: "MyAsset1"},
 * assetModel: {assetModelName: "MyAssetModel1"},
 * portal: {portalName: "MyPortal1"},

基本功能 964

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * gateway: {gatewayName: "MyGateway1"},
 * propertyIds: [],
 * contactEmail: "user@mydomain.com",
 * thing: "MyThing1",
 * sampleData: { temperature: 23.5, humidity: 65.0}
 * }} State
 */

/**
 * Used repeatedly to have the user press enter.
 * @type {ScenarioInput}
 */
const pressEnter = new ScenarioInput("continue", "Press Enter to continue", {
 type: "confirm",
});

const greet = new ScenarioOutput(
 "greet",
 `AWS IoT SiteWise is a fully managed industrial software-as-a-service (SaaS)
 that makes it easy to collect, store, organize, and monitor data from industrial
 equipment and processes. It is designed to help industrial and manufacturing
 organizations collect data from their equipment and processes, and use that data to
 make informed decisions about their operations.
One of the key features of AWS IoT SiteWise is its ability to connect to a wide
 range of industrial equipment and systems, including programmable logic controllers
 (PLCs), sensors, and other industrial devices. It can collect data from these
 devices and organize it into a unified data model, making it easier to analyze and
 gain insights from the data. AWS IoT SiteWise also provides tools for visualizing
 the data, setting up alarms and alerts, and generating reports.
Another key feature of AWS IoT SiteWise is its ability to scale to handle large
 volumes of data. It can collect and store data from thousands of devices and
 process millions of data points per second, making it suitable for large-scale
 industrial operations. Additionally, AWS IoT SiteWise is designed to be secure
 and compliant, with features like role-based access controls, data encryption,
 and integration with other AWS services for additional security and compliance
 features.

Let's get started...`,
 { header: true },
);

const displayBuildCloudFormationStack = new ScenarioOutput(
 "displayBuildCloudFormationStack",

基本功能 965

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 "This scenario uses AWS CloudFormation to create an IAM role that is required for
 this scenario. The stack will now be deployed.",
);

const sdkBuildCloudFormationStack = new ScenarioAction(
 "sdkBuildCloudFormationStack",
 async (/** @type {State} */ state) => {
 try {
 const data = readFileSync(
 `${__dirname}/../../../../resources/cfn/iotsitewise_basics/SitewiseRoles-
template.yml`,
 "utf8",
);
 await state.cloudFormationClient.send(
 new CreateStackCommand({
 StackName: stackName,
 TemplateBody: data,
 Capabilities: ["CAPABILITY_IAM"],
 }),
);
 await waitUntilStackExists(
 { client: state.cloudFormationClient },
 { StackName: stackName },
);
 await waitUntilStackCreateComplete(
 { client: state.cloudFormationClient },
 { StackName: stackName },
);
 const stack = await state.cloudFormationClient.send(
 new DescribeStacksCommand({
 StackName: stackName,
 }),
);
 state.stack = stack.Stacks[0].Outputs[0];
 console.log(`The ARN of the IAM role is ${state.stack.OutputValue}`);
 } catch (caught) {
 console.error(caught.message);
 throw caught;
 }
 },
);

const displayCreateAWSSiteWiseAssetModel = new ScenarioOutput(
 "displayCreateAWSSiteWiseAssetModel",

基本功能 966

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 `1. Create an AWS SiteWise Asset Model
An AWS IoT SiteWise Asset Model is a way to represent the physical assets, such
 as equipment, processes, and systems, that exist in an industrial environment.
 This model provides a structured and hierarchical representation of these assets,
 allowing users to define the relationships and properties of each asset.

This scenario creates two asset model properties: temperature and humidity.`,
);

const sdkCreateAWSSiteWiseAssetModel = new ScenarioAction(
 "sdkCreateAWSSiteWiseAssetModel",
 async (/** @type {State} */ state) => {
 let assetModelResponse;
 try {
 assetModelResponse = await state.iotSiteWiseClient.send(
 new CreateAssetModelCommand({
 assetModelName: state.assetModel.assetModelName,
 assetModelProperties: [
 {
 name: "Temperature",
 dataType: "DOUBLE",
 type: {
 measurement: {},
 },
 },
 {
 name: "Humidity",
 dataType: "DOUBLE",
 type: {
 measurement: {},
 },
 },
],
 }),
);
 state.assetModel.assetModelId = assetModelResponse.assetModelId;
 console.log(
 `Asset Model successfully created. Asset Model ID:
 ${state.assetModel.assetModelId}`,
);
 } catch (caught) {
 if (caught.name === "ResourceAlreadyExistsException") {
 console.log(
 `The Asset Model ${state.assetModel.assetModelName} already exists.`,

基本功能 967

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

);
 throw caught;
 }
 console.error(`${caught.message}`);
 throw caught;
 }
 },
);

const displayCreateAWSIoTSiteWiseAssetModel = new ScenarioOutput(
 "displayCreateAWSIoTSiteWiseAssetModel",
 `2. Create an AWS IoT SiteWise Asset
The IoT SiteWise model that we just created defines the structure and metadata for
 your physical assets. Now we create an asset from the asset model.

Let's wait 30 seconds for the asset to be ready.`,
);

const waitThirtySeconds = new ScenarioAction("waitThirtySeconds", async () => {
 await wait(30); // wait 30 seconds
 console.log("Time's up! Let's check the asset's status.");
});

const sdkCreateAWSIoTSiteWiseAssetModel = new ScenarioAction(
 "sdkCreateAWSIoTSiteWiseAssetModel",
 async (/** @type {State} */ state) => {
 try {
 const assetResponse = await state.iotSiteWiseClient.send(
 new CreateAssetCommand({
 assetModelId: state.assetModel.assetModelId,
 assetName: state.asset.assetName,
 }),
);
 state.asset.assetId = assetResponse.assetId;
 console.log(`Asset created with ID: ${state.asset.assetId}`);
 } catch (caught) {
 if (caught.name === "ResourceNotFoundException") {
 console.log(
 `The Asset ${state.assetModel.assetModelName} was not found.`,
);
 throw caught;
 }
 console.error(`${caught.message}`);
 throw caught;

基本功能 968

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }
 },
);

const displayRetrievePropertyId = new ScenarioOutput(
 "displayRetrievePropertyId",
 `3. Retrieve the property ID values

To send data to an asset, we need to get the property ID values. In this scenario,
 we access the temperature and humidity property ID values.`,
);

const sdkRetrievePropertyId = new ScenarioAction(
 "sdkRetrievePropertyId",
 async (state) => {
 try {
 const retrieveResponse = await state.iotSiteWiseClient.send(
 new ListAssetModelPropertiesCommand({
 assetModelId: state.assetModel.assetModelId,
 }),
);
 for (const retrieveResponseKey in
 retrieveResponse.assetModelPropertySummaries) {
 if (
 retrieveResponse.assetModelPropertySummaries[retrieveResponseKey]
 .name === "Humidity"
) {
 state.propertyIds.Humidity =
 retrieveResponse.assetModelPropertySummaries[
 retrieveResponseKey
].id;
 }
 if (
 retrieveResponse.assetModelPropertySummaries[retrieveResponseKey]
 .name === "Temperature"
) {
 state.propertyIds.Temperature =
 retrieveResponse.assetModelPropertySummaries[
 retrieveResponseKey
].id;
 }
 }
 console.log(`The Humidity propertyId is ${state.propertyIds.Humidity}`);
 console.log(

基本功能 969

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 `The Temperature propertyId is ${state.propertyIds.Temperature}`,
);
 } catch (caught) {
 if (caught.name === "IoTSiteWiseException") {
 console.log(
 `There was a problem retrieving the properties: ${caught.message}`,
);
 throw caught;
 }
 console.error(`${caught.message}`);
 throw caught;
 }
 },
);

const displaySendDataToIoTSiteWiseAsset = new ScenarioOutput(
 "displaySendDataToIoTSiteWiseAsset",
 `4. Send data to an AWS IoT SiteWise Asset

By sending data to an IoT SiteWise Asset, you can aggregate data from multiple
 sources, normalize the data into a standard format, and store it in a centralized
 location. This makes it easier to analyze and gain insights from the data.

In this example, we generate sample temperature and humidity data and send it to the
 AWS IoT SiteWise asset.`,
);

const sdkSendDataToIoTSiteWiseAsset = new ScenarioAction(
 "sdkSendDataToIoTSiteWiseAsset",
 async (state) => {
 try {
 const sendResponse = await state.iotSiteWiseClient.send(
 new BatchPutAssetPropertyValueCommand({
 entries: [
 {
 entryId: "entry-3",
 assetId: state.asset.assetId,
 propertyId: state.propertyIds.Humidity,
 propertyValues: [
 {
 value: {
 doubleValue: state.sampleData.humidity,
 },
 timestamp: {

基本功能 970

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 timeInSeconds: Math.floor(Date.now() / 1000),
 },
 },
],
 },
 {
 entryId: "entry-4",
 assetId: state.asset.assetId,
 propertyId: state.propertyIds.Temperature,
 propertyValues: [
 {
 value: {
 doubleValue: state.sampleData.temperature,
 },
 timestamp: {
 timeInSeconds: Math.floor(Date.now() / 1000),
 },
 },
],
 },
],
 }),
);
 console.log("The data was sent successfully.");
 } catch (caught) {
 if (caught.name === "ResourceNotFoundException") {
 console.log(`The Asset ${state.asset.assetName} was not found.`);
 throw caught;
 }
 console.error(`${caught.message}`);
 throw caught;
 }
 },
);

const displayRetrieveValueOfIoTSiteWiseAsset = new ScenarioOutput(
 "displayRetrieveValueOfIoTSiteWiseAsset",
 `5. Retrieve the value of the IoT SiteWise Asset property

IoT SiteWise is an AWS service that allows you to collect, process, and analyze
 industrial data from connected equipment and sensors. One of the key benefits of
 reading an IoT SiteWise property is the ability to gain valuable insights from your
 industrial data.`,
);

基本功能 971

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const sdkRetrieveValueOfIoTSiteWiseAsset = new ScenarioAction(
 "sdkRetrieveValueOfIoTSiteWiseAsset",
 async (/** @type {State} */ state) => {
 try {
 const temperatureResponse = await state.iotSiteWiseClient.send(
 new GetAssetPropertyValueCommand({
 assetId: state.asset.assetId,
 propertyId: state.propertyIds.Temperature,
 }),
);
 const humidityResponse = await state.iotSiteWiseClient.send(
 new GetAssetPropertyValueCommand({
 assetId: state.asset.assetId,
 propertyId: state.propertyIds.Humidity,
 }),
);
 console.log(
 `The property value for Temperature is
 ${temperatureResponse.propertyValue.value.doubleValue}`,
);
 console.log(
 `The property value for Humidity is
 ${humidityResponse.propertyValue.value.doubleValue}`,
);
 } catch (caught) {
 if (caught.name === "ResourceNotFoundException") {
 console.log(`The Asset ${state.asset.assetName} was not found.`);
 throw caught;
 }
 console.error(`${caught.message}`);
 throw caught;
 }
 },
);

const displayCreateIoTSiteWisePortal = new ScenarioOutput(
 "displayCreateIoTSiteWisePortal",
 `6. Create an IoT SiteWise Portal

An IoT SiteWise Portal allows you to aggregate data from multiple industrial
 sources, such as sensors, equipment, and control systems, into a centralized
 platform.`,
);

基本功能 972

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const sdkCreateIoTSiteWisePortal = new ScenarioAction(
 "sdkCreateIoTSiteWisePortal",
 async (/** @type {State} */ state) => {
 try {
 const createPortalResponse = await state.iotSiteWiseClient.send(
 new CreatePortalCommand({
 portalName: state.portal.portalName,
 portalContactEmail: state.contactEmail,
 roleArn: state.stack.OutputValue,
 }),
);
 state.portal = { ...state.portal, ...createPortalResponse };
 await wait(5); // Allow the portal to properly propagate.
 console.log(
 `Portal created successfully. Portal ID ${createPortalResponse.portalId}`,
);
 } catch (caught) {
 if (caught.name === "IoTSiteWiseException") {
 console.log(
 `There was a problem creating the Portal: ${caught.message}.`,
);
 throw caught;
 }
 console.error(`${caught.message}`);
 throw caught;
 }
 },
);

const displayDescribePortal = new ScenarioOutput(
 "displayDescribePortal",
 `7. Describe the Portal

In this step, we get a description of the portal and display the portal URL.`,
);

const sdkDescribePortal = new ScenarioAction(
 "sdkDescribePortal",
 async (/** @type {State} */ state) => {
 try {
 const describePortalResponse = await state.iotSiteWiseClient.send(
 new DescribePortalCommand({
 portalId: state.portal.portalId,

基本功能 973

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }),
);
 console.log(`Portal URL: ${describePortalResponse.portalStartUrl}`);
 } catch (caught) {
 if (caught.name === "ResourceNotFoundException") {
 console.log(`The Portal ${state.portal.portalName} was not found.`);
 throw caught;
 }
 console.error(`${caught.message}`);
 throw caught;
 }
 },
);

const displayCreateIoTSiteWiseGateway = new ScenarioOutput(
 "displayCreateIoTSiteWiseGateway",
 `8. Create an IoT SiteWise Gateway

IoT SiteWise Gateway serves as the bridge between industrial equipment, sensors, and
 the cloud-based IoT SiteWise service. It is responsible for securely collecting,
 processing, and transmitting data from various industrial assets to the IoT
 SiteWise platform, enabling real-time monitoring, analysis, and optimization of
 industrial operations.`,
);

const sdkCreateIoTSiteWiseGateway = new ScenarioAction(
 "sdkCreateIoTSiteWiseGateway",
 async (/** @type {State} */ state) => {
 try {
 const createGatewayResponse = await state.iotSiteWiseClient.send(
 new CreateGatewayCommand({
 gatewayName: state.gateway.gatewayName,
 gatewayPlatform: {
 greengrassV2: {
 coreDeviceThingName: state.thing,
 },
 },
 }),
);
 console.log(
 `Gateway creation completed successfully. ID is
 ${createGatewayResponse.gatewayId}`,
);
 state.gateway.gatewayId = createGatewayResponse.gatewayId;

基本功能 974

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 } catch (caught) {
 if (caught.name === "IoTSiteWiseException") {
 console.log(
 `There was a problem creating the gateway: ${caught.message}.`,
);
 throw caught;
 }
 console.error(`${caught.message}`);
 throw caught;
 }
 },
);

const displayDescribeIoTSiteWiseGateway = new ScenarioOutput(
 "displayDescribeIoTSiteWiseGateway",
 "9. Describe the IoT SiteWise Gateway",
);

const sdkDescribeIoTSiteWiseGateway = new ScenarioAction(
 "sdkDescribeIoTSiteWiseGateway",
 async (/** @type {State} */ state) => {
 try {
 const describeGatewayResponse = await state.iotSiteWiseClient.send(
 new DescribeGatewayCommand({
 gatewayId: state.gateway.gatewayId,
 }),
);
 console.log("Gateway creation completed successfully.");
 console.log(`Gateway Name: ${describeGatewayResponse.gatewayName}`);
 console.log(`Gateway ARN: ${describeGatewayResponse.gatewayArn}`);
 console.log(
 `Gateway Platform: ${Object.keys(describeGatewayResponse.gatewayPlatform)}`,
);
 console.log(
 `Gateway Creation Date: ${describeGatewayResponse.creationDate}`,
);
 } catch (caught) {
 if (caught.name === "ResourceNotFoundException") {
 console.log(`The Gateway ${state.gateway.gatewayId} was not found.`);
 throw caught;
 }
 console.error(`${caught.message}`);
 throw caught;
 }

基本功能 975

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 },
);

const askToDeleteResources = new ScenarioInput(
 "askToDeleteResources",
 `10. Delete the AWS IoT SiteWise Assets

Before you can delete the Asset Model, you must delete the assets.`,
 { type: "confirm" },
);

const displayConfirmDeleteResources = new ScenarioAction(
 "displayConfirmDeleteResources",
 async (/** @type {State} */ state) => {
 if (state.askToDeleteResources) {
 return "You selected to delete the SiteWise assets.";
 }
 return "The resources will not be deleted. Please delete them manually to avoid
 charges.";
 },
);

const sdkDeleteResources = new ScenarioAction(
 "sdkDeleteResources",
 async (/** @type {State} */ state) => {
 await wait(10); // Give the portal status time to catch up.
 try {
 await state.iotSiteWiseClient.send(
 new DeletePortalCommand({
 portalId: state.portal.portalId,
 }),
);
 console.log(
 `Portal ${state.portal.portalName} was deleted successfully.`,
);
 } catch (caught) {
 if (caught.name === "ResourceNotFoundException") {
 console.log(`The Portal ${state.portal.portalName} was not found.`);
 } else {
 console.log(`When trying to delete the portal: ${caught.message}`);
 }
 }

 try {

基本功能 976

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 await state.iotSiteWiseClient.send(
 new DeleteGatewayCommand({
 gatewayId: state.gateway.gatewayId,
 }),
);
 console.log(
 `Gateway ${state.gateway.gatewayName} was deleted successfully.`,
);
 } catch (caught) {
 if (caught.name === "ResourceNotFoundException") {
 console.log(`The Gateway ${state.gateway.gatewayId} was not found.`);
 } else {
 console.log(`When trying to delete the gateway: ${caught.message}`);
 }
 }

 try {
 await state.iotSiteWiseClient.send(
 new DeleteAssetCommand({
 assetId: state.asset.assetId,
 }),
);
 await wait(5); // Allow the delete to finish.
 console.log(`Asset ${state.asset.assetName} was deleted successfully.`);
 } catch (caught) {
 if (caught.name === "ResourceNotFoundException") {
 console.log(`The Asset ${state.asset.assetName} was not found.`);
 } else {
 console.log(`When deleting the asset: ${caught.message}`);
 }
 }

 await wait(30); // Allow asset deletion to finish.
 try {
 await state.iotSiteWiseClient.send(
 new DeleteAssetModelCommand({
 assetModelId: state.assetModel.assetModelId,
 }),
);
 console.log(
 `Asset Model ${state.assetModel.assetModelName} was deleted successfully.`,
);
 } catch (caught) {
 if (caught.name === "ResourceNotFoundException") {

基本功能 977

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 console.log(
 `The Asset Model ${state.assetModel.assetModelName} was not found.`,
);
 } else {
 console.log(`When deleting the asset model: ${caught.message}`);
 }
 }

 try {
 await state.cloudFormationClient.send(
 new DeleteStackCommand({
 StackName: stackName,
 }),
);
 await waitUntilStackDeleteComplete(
 { client: state.cloudFormationClient },
 { StackName: stackName },
);
 console.log("The stack was deleted successfully.");
 } catch (caught) {
 console.log(
 `${caught.message}. The stack was NOT deleted. Please clean up the resources
 manually.`,
);
 }
 },
 { skipWhen: (/** @type {{}} */ state) => !state.askToDeleteResources },
);

const goodbye = new ScenarioOutput(
 "goodbye",
 "This concludes the IoT Sitewise Basics scenario for the AWS Javascript SDK v3.
 Thank you!",
);

const myScenario = new Scenario(
 "IoTSiteWise Basics",
 [
 greet,
 pressEnter,
 displayBuildCloudFormationStack,
 sdkBuildCloudFormationStack,
 pressEnter,
 displayCreateAWSSiteWiseAssetModel,

基本功能 978

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 sdkCreateAWSSiteWiseAssetModel,
 displayCreateAWSIoTSiteWiseAssetModel,
 pressEnter,
 waitThirtySeconds,
 sdkCreateAWSIoTSiteWiseAssetModel,
 pressEnter,
 displayRetrievePropertyId,
 sdkRetrievePropertyId,
 pressEnter,
 displaySendDataToIoTSiteWiseAsset,
 sdkSendDataToIoTSiteWiseAsset,
 pressEnter,
 displayRetrieveValueOfIoTSiteWiseAsset,
 sdkRetrieveValueOfIoTSiteWiseAsset,
 pressEnter,
 displayCreateIoTSiteWisePortal,
 sdkCreateIoTSiteWisePortal,
 pressEnter,
 displayDescribePortal,
 sdkDescribePortal,
 pressEnter,
 displayCreateIoTSiteWiseGateway,
 sdkCreateIoTSiteWiseGateway,
 pressEnter,
 displayDescribeIoTSiteWiseGateway,
 sdkDescribeIoTSiteWiseGateway,
 pressEnter,
 askToDeleteResources,
 displayConfirmDeleteResources,
 sdkDeleteResources,
 goodbye,
],
 {
 iotSiteWiseClient: new IoTSiteWiseClient({}),
 cloudFormationClient: new CloudFormationClient({}),
 asset: { assetName: "MyAsset1" },
 assetModel: { assetModelName: "MyAssetModel1" },
 portal: { portalName: "MyPortal1" },
 gateway: { gatewayName: "MyGateway1" },
 propertyIds: [],
 contactEmail: "user@mydomain.com",
 thing: "MyThing1",
 sampleData: { temperature: 23.5, humidity: 65.0 },
 },

基本功能 979

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

);

/** @type {{ stepHandlerOptions: StepHandlerOptions }} */
export const main = async (stepHandlerOptions) => {
 await myScenario.run(stepHandlerOptions);
};

// Invoke main function if this file was run directly.
if (process.argv[1] === fileURLToPath(import.meta.url)) {
 const { values } = parseArgs({
 options: {
 yes: {
 type: "boolean",
 short: "y",
 },
 },
 });
 main({ confirmAll: values.yes });
}

操作

BatchPutAssetPropertyValue

以下代码示例演示了如何使用 BatchPutAssetPropertyValue。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import {
 BatchPutAssetPropertyValueCommand,
 IoTSiteWiseClient,
} from "@aws-sdk/client-iotsitewise";
import { parseArgs } from "node:util";

操作 980

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iotsitewise#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

/**
 * Batch put asset property values.
 * @param {{ entries : array }}
 */
export const main = async ({ entries }) => {
 const client = new IoTSiteWiseClient({});
 try {
 const result = await client.send(
 new BatchPutAssetPropertyValueCommand({
 entries: entries,
 }),
);
 console.log("Asset properties batch put successfully.");
 return result;
 } catch (caught) {
 if (caught instanceof Error && caught.name === "ResourceNotFound") {
 console.warn(`${caught.message}. A resource could not be found.`);
 } else {
 throw caught;
 }
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考BatchPutAssetPropertyValue中的。

CreateAsset

以下代码示例演示了如何使用 CreateAsset。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import {

操作 981

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iotsitewise/command/BatchPutAssetPropertyValueCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iotsitewise#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 CreateAssetCommand,
 IoTSiteWiseClient,
} from "@aws-sdk/client-iotsitewise";
import { parseArgs } from "node:util";

/**
 * Create an Asset.
 * @param {{ assetName : string, assetModelId: string }}
 */
export const main = async ({ assetName, assetModelId }) => {
 const client = new IoTSiteWiseClient({});
 try {
 const result = await client.send(
 new CreateAssetCommand({
 assetName: assetName, // The name to give the Asset.
 assetModelId: assetModelId, // The ID of the asset model from which to
 create the asset.
 }),
);
 console.log("Asset created successfully.");
 return result;
 } catch (caught) {
 if (caught instanceof Error && caught.name === "ResourceNotFound") {
 console.warn(
 `${caught.message}. The asset model could not be found. Please check the
 asset model id.`,
);
 } else {
 throw caught;
 }
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考CreateAsset中的。

CreateAssetModel

以下代码示例演示了如何使用 CreateAssetModel。

操作 982

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iotsitewise/command/CreateAssetCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import {
 CreateAssetModelCommand,
 IoTSiteWiseClient,
} from "@aws-sdk/client-iotsitewise";
import { parseArgs } from "node:util";

/**
 * Create an Asset Model.
 * @param {{ assetName : string, assetModelId: string }}
 */
export const main = async ({ assetModelName, assetModelId }) => {
 const client = new IoTSiteWiseClient({});
 try {
 const result = await client.send(
 new CreateAssetModelCommand({
 assetModelName: assetModelName, // The name to give the Asset Model.
 }),
);
 console.log("Asset model created successfully.");
 return result;
 } catch (caught) {
 if (caught instanceof Error && caught.name === "IoTSiteWiseError") {
 console.warn(
 `${caught.message}. There was a problem creating the asset model.`,
);
 } else {
 throw caught;
 }
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考CreateAssetModel中
的。

操作 983

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iotsitewise#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iotsitewise/command/CreateAssetModelCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

CreateGateway

以下代码示例演示了如何使用 CreateGateway。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import {
 CreateGatewayCommand,
 IoTSiteWiseClient,
} from "@aws-sdk/client-iotsitewise";
import { parseArgs } from "node:util";

/**
 * Create a Gateway.
 * @param {{ }}
 */
export const main = async ({ gatewayName }) => {
 const client = new IoTSiteWiseClient({});
 try {
 const result = await client.send(
 new CreateGatewayCommand({
 gatewayName: gatewayName, // The name to give the created Gateway.
 }),
);
 console.log("Gateway created successfully.");
 return result;
 } catch (caught) {
 if (caught instanceof Error && caught.name === "IoTSiteWiseError") {
 console.warn(
 `${caught.message}. There was a problem creating the Gateway.`,
);
 } else {
 throw caught;
 }
 }
};

操作 984

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iotsitewise#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考CreateGateway中
的。

DeleteAsset

以下代码示例演示了如何使用 DeleteAsset。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import {
 DeleteAssetCommand,
 IoTSiteWiseClient,
} from "@aws-sdk/client-iotsitewise";
import { parseArgs } from "node:util";

/**
 * Delete an asset.
 * @param {{ assetId : string }}
 */
export const main = async ({ assetId }) => {
 const client = new IoTSiteWiseClient({});
 try {
 await client.send(
 new DeleteAssetCommand({
 assetId: assetId, // The model id to delete.
 }),
);
 console.log("Asset deleted successfully.");
 return { assetDeleted: true };
 } catch (caught) {
 if (caught instanceof Error && caught.name === "ResourceNotFound") {
 console.warn(
 `${caught.message}. There was a problem deleting the asset.`,

操作 985

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iotsitewise/command/CreateGatewayCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iotsitewise#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

);
 } else {
 throw caught;
 }
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DeleteAsset中的。

DeleteAssetModel

以下代码示例演示了如何使用 DeleteAssetModel。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import {
 DeleteAssetModelCommand,
 IoTSiteWiseClient,
} from "@aws-sdk/client-iotsitewise";
import { parseArgs } from "node:util";

/**
 * Delete an asset model.
 * @param {{ assetModelId : string }}
 */
export const main = async ({ assetModelId }) => {
 const client = new IoTSiteWiseClient({});
 try {
 await client.send(
 new DeleteAssetModelCommand({
 assetModelId: assetModelId, // The model id to delete.
 }),
);
 console.log("Asset model deleted successfully.");
 return { assetModelDeleted: true };

操作 986

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iotsitewise/command/DeleteAssetCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iotsitewise#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 } catch (caught) {
 if (caught instanceof Error && caught.name === "ResourceNotFound") {
 console.warn(
 `${caught.message}. There was a problem deleting the asset model.`,
);
 } else {
 throw caught;
 }
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DeleteAssetModel中
的。

DeleteGateway

以下代码示例演示了如何使用 DeleteGateway。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import {
 DeleteGatewayCommand,
 IoTSiteWiseClient,
} from "@aws-sdk/client-iotsitewise";
import { parseArgs } from "node:util";

/**
 * Create an SSM document.
 * @param {{ content: string, name: string, documentType?: DocumentType }}
 */
export const main = async ({ gatewayId }) => {
 const client = new IoTSiteWiseClient({});
 try {
 await client.send(

操作 987

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iotsitewise/command/DeleteAssetModelCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iotsitewise#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 new DeleteGatewayCommand({
 gatewayId: gatewayId, // The ID of the Gateway to describe.
 }),
);
 console.log("Gateway deleted successfully.");
 return { gatewayDeleted: true };
 } catch (caught) {
 if (caught instanceof Error && caught.name === "ResourceNotFound") {
 console.warn(
 `${caught.message}. The Gateway could not be found. Please check the Gateway
 Id.`,
);
 } else {
 throw caught;
 }
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DeleteGateway中
的。

DescribeAssetModel

以下代码示例演示了如何使用 DescribeAssetModel。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import {
 DescribeAssetModelCommand,
 IoTSiteWiseClient,
} from "@aws-sdk/client-iotsitewise";
import { parseArgs } from "node:util";

/**

操作 988

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iotsitewise/command/DeleteGatewayCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iotsitewise#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * Describe an asset model.
 * @param {{ assetModelId : string }}
 */
export const main = async ({ assetModelId }) => {
 const client = new IoTSiteWiseClient({});
 try {
 const { assetModelDescription } = await client.send(
 new DescribeAssetModelCommand({
 assetModelId: assetModelId, // The ID of the Gateway to describe.
 }),
);
 console.log("Asset model information retrieved successfully.");
 return { assetModelDescription: assetModelDescription };
 } catch (caught) {
 if (caught instanceof Error && caught.name === "ResourceNotFound") {
 console.warn(
 `${caught.message}. The asset model could not be found. Please check the
 asset model id.`,
);
 } else {
 throw caught;
 }
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考DescribeAssetModel中的。

DescribeGateway

以下代码示例演示了如何使用 DescribeGateway。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

操作 989

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iotsitewise/command/DescribeAssetModelCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iotsitewise#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

import {
 DescribeGatewayCommand,
 IoTSiteWiseClient,
} from "@aws-sdk/client-iotsitewise";
import { parseArgs } from "node:util";

/**
 * Create an SSM document.
 * @param {{ content: string, name: string, documentType?: DocumentType }}
 */
export const main = async ({ gatewayId }) => {
 const client = new IoTSiteWiseClient({});
 try {
 const { gatewayDescription } = await client.send(
 new DescribeGatewayCommand({
 gatewayId: gatewayId, // The ID of the Gateway to describe.
 }),
);
 console.log("Gateway information retrieved successfully.");
 return { gatewayDescription: gatewayDescription };
 } catch (caught) {
 if (caught instanceof Error && caught.name === "ResourceNotFound") {
 console.warn(
 `${caught.message}. The Gateway could not be found. Please check the Gateway
 Id.`,
);
 } else {
 throw caught;
 }
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DescribeGateway中
的。

GetAssetPropertyValue

以下代码示例演示了如何使用 GetAssetPropertyValue。

操作 990

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iotsitewise/command/DescribeGatewayCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import {
 GetAssetPropertyValueCommand,
 IoTSiteWiseClient,
} from "@aws-sdk/client-iotsitewise";
import { parseArgs } from "node:util";

/**
 * Describe an asset property value.
 * @param {{ entryId : string }}
 */
export const main = async ({ entryId }) => {
 const client = new IoTSiteWiseClient({});
 try {
 const result = await client.send(
 new GetAssetPropertyValueCommand({
 entryId: entryId, // The ID of the Gateway to describe.
 }),
);
 console.log("Asset property information retrieved successfully.");
 return result;
 } catch (caught) {
 if (caught instanceof Error && caught.name === "ResourceNotFound") {
 console.warn(
 `${caught.message}. The asset property entry could not be found. Please
 check the entry id.`,
);
 } else {
 throw caught;
 }
 }
};

操作 991

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iotsitewise#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考GetAssetPropertyValue中的。

ListAssetModels

以下代码示例演示了如何使用 ListAssetModels。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import {
 ListAssetModelsCommand,
 IoTSiteWiseClient,
} from "@aws-sdk/client-iotsitewise";
import { parseArgs } from "node:util";

/**
 * List asset models.
 * @param {{ assetModelTypes : array }}
 */
export const main = async ({ assetModelTypes = [] }) => {
 const client = new IoTSiteWiseClient({});
 try {
 const result = await client.send(
 new ListAssetModelsCommand({
 assetModelTypes: assetModelTypes, // The model types to list
 }),
);
 console.log("Asset model types retrieved successfully.");
 return result;
 } catch (caught) {
 if (caught instanceof Error && caught.name === "IoTSiteWiseError") {
 console.warn(
 `${caught.message}. There was a problem listing the asset model types.`,
);
 } else {
 throw caught;

操作 992

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iotsitewise/command/GetAssetPropertyValueCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iotsitewise#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考ListAssetModels中
的。

使用适用于 JavaScript (v3) 的 SDK 的 Kinesis 示例
以下代码示例向您展示了如何使用带有 Kinesis 的 适用于 JavaScript 的 Amazon SDK (v3) 来执行操作
和实现常见场景。

操作是大型程序的代码摘录，必须在上下文中运行。您可以通过操作了解如何调用单个服务函数，还可
以通过函数相关场景的上下文查看操作。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

• 操作

• 无服务器示例

操作

PutRecords

以下代码示例演示了如何使用 PutRecords。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { PutRecordsCommand, KinesisClient } from "@aws-sdk/client-kinesis";

Kinesis 993

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/iotsitewise/command/ListAssetModelsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/kinesis#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

/**
 * Put multiple records into a Kinesis stream.
 * @param {{ streamArn: string }} config
 */
export const main = async ({ streamArn }) => {
 const client = new KinesisClient({});
 try {
 await client.send(
 new PutRecordsCommand({
 StreamARN: streamArn,
 Records: [
 {
 Data: new Uint8Array(),
 /**
 * Determines which shard in the stream the data record is assigned to.
 * Partition keys are Unicode strings with a maximum length limit of 256
 * characters for each key. Amazon Kinesis Data Streams uses the
 partition
 * key as input to a hash function that maps the partition key and
 * associated data to a specific shard.
 */
 PartitionKey: "TEST_KEY",
 },
 {
 Data: new Uint8Array(),
 PartitionKey: "TEST_KEY",
 },
],
 }),
);
 } catch (caught) {
 if (caught instanceof Error) {
 //
 } else {
 throw caught;
 }
 }
};

// Call function if run directly.
import { fileURLToPath } from "node:url";
import { parseArgs } from "node:util";

操作 994

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

if (process.argv[1] === fileURLToPath(import.meta.url)) {
 const options = {
 streamArn: {
 type: "string",
 description: "The ARN of the stream.",
 },
 };

 const { values } = parseArgs({ options });
 main(values);
}

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考PutRecords中的。

无服务器示例

通过 Kinesis 触发器调用 Lambda 函数

以下代码示例展示了如何实现一个 Lambda 函数，该函数接收因接收来自 Kinesis 流的记录而触发的事
件。该函数检索 Kinesis 有效负载，将 Base64 解码，并记录下记录内容。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在无服务器示例存储库中查找完整示例，并了解如何进行设置
和运行。

使用 Lambda 消耗 Kinesis 事件。 JavaScript

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
exports.handler = async (event, context) => {
 for (const record of event.Records) {
 try {
 console.log(`Processed Kinesis Event - EventID: ${record.eventID}`);
 const recordData = await getRecordDataAsync(record.kinesis);
 console.log(`Record Data: ${recordData}`);
 // TODO: Do interesting work based on the new data

无服务器示例 995

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/kinesis/command/PutRecordsCommand
https://github.com/aws-samples/serverless-snippets/blob/main/integration-kinesis-to-lambda

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 } catch (err) {
 console.error(`An error occurred ${err}`);
 throw err;
 }
 }
 console.log(`Successfully processed ${event.Records.length} records.`);
};

async function getRecordDataAsync(payload) {
 var data = Buffer.from(payload.data, "base64").toString("utf-8");
 await Promise.resolve(1); //Placeholder for actual async work
 return data;
}

使用 Lambda 消耗 Kinesis 事件。 TypeScript

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import {
 KinesisStreamEvent,
 Context,
 KinesisStreamHandler,
 KinesisStreamRecordPayload,
} from "aws-lambda";
import { Buffer } from "buffer";
import { Logger } from "@aws-lambda-powertools/logger";

const logger = new Logger({
 logLevel: "INFO",
 serviceName: "kinesis-stream-handler-sample",
});

export const functionHandler: KinesisStreamHandler = async (
 event: KinesisStreamEvent,
 context: Context
): Promise<void> => {
 for (const record of event.Records) {
 try {
 logger.info(`Processed Kinesis Event - EventID: ${record.eventID}`);
 const recordData = await getRecordDataAsync(record.kinesis);
 logger.info(`Record Data: ${recordData}`);
 // TODO: Do interesting work based on the new data

无服务器示例 996

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 } catch (err) {
 logger.error(`An error occurred ${err}`);
 throw err;
 }
 logger.info(`Successfully processed ${event.Records.length} records.`);
 }
};

async function getRecordDataAsync(
 payload: KinesisStreamRecordPayload
): Promise<string> {
 var data = Buffer.from(payload.data, "base64").toString("utf-8");
 await Promise.resolve(1); //Placeholder for actual async work
 return data;
}

通过 Kinesis 触发器报告 Lambda 函数批处理项目失败

以下代码示例展示了如何为接收来自 Kinesis 流的事件的 Lambda 函数实现部分批处理响应。该函数在
响应中报告批处理项目失败，并指示 Lambda 稍后重试这些消息。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在无服务器示例存储库中查找完整示例，并了解如何进行设置
和运行。

报告使用 Javascript 进行 Lambda Kinesis 批处理项目失败。

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
exports.handler = async (event, context) => {
 for (const record of event.Records) {
 try {
 console.log(`Processed Kinesis Event - EventID: ${record.eventID}`);
 const recordData = await getRecordDataAsync(record.kinesis);
 console.log(`Record Data: ${recordData}`);
 // TODO: Do interesting work based on the new data

无服务器示例 997

https://github.com/aws-samples/serverless-snippets/blob/main/integration-kinesis-to-lambda-with-batch-item-handling

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 } catch (err) {
 console.error(`An error occurred ${err}`);
 /* Since we are working with streams, we can return the failed item
 immediately.
 Lambda will immediately begin to retry processing from this failed item
 onwards. */
 return {
 batchItemFailures: [{ itemIdentifier: record.kinesis.sequenceNumber }],
 };
 }
 }
 console.log(`Successfully processed ${event.Records.length} records.`);
 return { batchItemFailures: [] };
};

async function getRecordDataAsync(payload) {
 var data = Buffer.from(payload.data, "base64").toString("utf-8");
 await Promise.resolve(1); //Placeholder for actual async work
 return data;
}

使用 Lambda 报告 Kinesis 批处理项目失败。 TypeScript

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import {
 KinesisStreamEvent,
 Context,
 KinesisStreamHandler,
 KinesisStreamRecordPayload,
 KinesisStreamBatchResponse,
} from "aws-lambda";
import { Buffer } from "buffer";
import { Logger } from "@aws-lambda-powertools/logger";

const logger = new Logger({
 logLevel: "INFO",
 serviceName: "kinesis-stream-handler-sample",
});

export const functionHandler: KinesisStreamHandler = async (
 event: KinesisStreamEvent,

无服务器示例 998

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 context: Context
): Promise<KinesisStreamBatchResponse> => {
 for (const record of event.Records) {
 try {
 logger.info(`Processed Kinesis Event - EventID: ${record.eventID}`);
 const recordData = await getRecordDataAsync(record.kinesis);
 logger.info(`Record Data: ${recordData}`);
 // TODO: Do interesting work based on the new data
 } catch (err) {
 logger.error(`An error occurred ${err}`);
 /* Since we are working with streams, we can return the failed item
 immediately.
 Lambda will immediately begin to retry processing from this failed item
 onwards. */
 return {
 batchItemFailures: [{ itemIdentifier: record.kinesis.sequenceNumber }],
 };
 }
 }
 logger.info(`Successfully processed ${event.Records.length} records.`);
 return { batchItemFailures: [] };
};

async function getRecordDataAsync(
 payload: KinesisStreamRecordPayload
): Promise<string> {
 var data = Buffer.from(payload.data, "base64").toString("utf-8");
 await Promise.resolve(1); //Placeholder for actual async work
 return data;
}

使用适用于 JavaScript (v3) 的软件开发工具包的 Lambda 示例

以下代码示例向您展示了如何使用带有 Lambda 的 适用于 JavaScript 的 Amazon SDK (v3) 来执行操
作和实现常见场景。

基本功能是向您展示如何在服务中执行基本操作的代码示例。

操作是大型程序的代码摘录，必须在上下文中运行。您可以通过操作了解如何调用单个服务函数，还可
以通过函数相关场景的上下文查看操作。

Lambda 999

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

场景是向您演示如何通过在一个服务中调用多个函数或与其他 Amazon Web Services 服务结合来完成
特定任务的代码示例。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

• 开始使用

• 基本功能

• 操作

• 场景

• 无服务器示例

开始使用

开始使用 Lambda

以下代码示例展示了如何开始使用 Lambda。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { LambdaClient, paginateListFunctions } from "@aws-sdk/client-lambda";

const client = new LambdaClient({});

export const helloLambda = async () => {
 const paginator = paginateListFunctions({ client }, {});
 const functions = [];

 for await (const page of paginator) {
 const funcNames = page.Functions.map((f) => f.FunctionName);
 functions.push(...funcNames);
 }

开始使用 1000

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/lambda#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 console.log("Functions:");
 console.log(functions.join("\n"));
 return functions;
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考ListFunctions中的。

基本功能

了解基本功能

以下代码示例展示了如何：

• 创建 IAM 角色和 Lambda 函数，然后上传处理程序代码。

• 使用单个参数来调用函数并获取结果。

• 更新函数代码并使用环境变量进行配置。

• 使用新参数来调用函数并获取结果。显示返回的执行日志。

• 列出账户函数，然后清除函数。

有关更多信息，请参阅使用控制台创建 Lambda 函数。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

创建一个 Amazon Identity and Access Management (IAM) 角色来授予 Lambda 写入日志的权限。

 logger.log(`Creating role (${NAME_ROLE_LAMBDA})...`);
 const response = await createRole(NAME_ROLE_LAMBDA);

import { AttachRolePolicyCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

基本功能 1001

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/lambda/command/ListFunctionsCommand
https://docs.amazonaws.cn/lambda/latest/dg/getting-started-create-function.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/lambda/scenarios/basic#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

/**
 *
 * @param {string} policyArn
 * @param {string} roleName
 */
export const attachRolePolicy = (policyArn, roleName) => {
 const command = new AttachRolePolicyCommand({
 PolicyArn: policyArn,
 RoleName: roleName,
 });

 return client.send(command);
};

创建 Lambda 函数并上传处理程序代码。

const createFunction = async (funcName, roleArn) => {
 const client = new LambdaClient({});
 const code = await readFile(`${dirname}../functions/${funcName}.zip`);

 const command = new CreateFunctionCommand({
 Code: { ZipFile: code },
 FunctionName: funcName,
 Role: roleArn,
 Architectures: [Architecture.arm64],
 Handler: "index.handler", // Required when sending a .zip file
 PackageType: PackageType.Zip, // Required when sending a .zip file
 Runtime: Runtime.nodejs16x, // Required when sending a .zip file
 });

 return client.send(command);
};

调用单参数函数并得出结果。

const invoke = async (funcName, payload) => {
 const client = new LambdaClient({});
 const command = new InvokeCommand({
 FunctionName: funcName,
 Payload: JSON.stringify(payload),

基本功能 1002

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 LogType: LogType.Tail,
 });

 const { Payload, LogResult } = await client.send(command);
 const result = Buffer.from(Payload).toString();
 const logs = Buffer.from(LogResult, "base64").toString();
 return { logs, result };
};

更新函数代码并使用环境变量配置其 Lambda 环境。

const updateFunctionCode = async (funcName, newFunc) => {
 const client = new LambdaClient({});
 const code = await readFile(`${dirname}../functions/${newFunc}.zip`);
 const command = new UpdateFunctionCodeCommand({
 ZipFile: code,
 FunctionName: funcName,
 Architectures: [Architecture.arm64],
 Handler: "index.handler", // Required when sending a .zip file
 PackageType: PackageType.Zip, // Required when sending a .zip file
 Runtime: Runtime.nodejs16x, // Required when sending a .zip file
 });

 return client.send(command);
};

const updateFunctionConfiguration = (funcName) => {
 const client = new LambdaClient({});
 const config = readFileSync(`${dirname}../functions/config.json`).toString();
 const command = new UpdateFunctionConfigurationCommand({
 ...JSON.parse(config),
 FunctionName: funcName,
 });
 const result = client.send(command);
 waitForFunctionUpdated({ FunctionName: funcName });
 return result;
};

列出您账户的函数。

const listFunctions = () => {

基本功能 1003

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const client = new LambdaClient({});
 const command = new ListFunctionsCommand({});

 return client.send(command);
};

删除 IAM 角色和 Lambda 函数。

import { DeleteRoleCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} roleName
 */
export const deleteRole = (roleName) => {
 const command = new DeleteRoleCommand({ RoleName: roleName });
 return client.send(command);
};

/**
 * @param {string} funcName
 */
const deleteFunction = (funcName) => {
 const client = new LambdaClient({});
 const command = new DeleteFunctionCommand({ FunctionName: funcName });
 return client.send(command);
};

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的以下主
题。

• CreateFunction

• DeleteFunction

• GetFunction

• Invoke

• ListFunctions

• UpdateFunctionCode

基本功能 1004

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/lambda/command/CreateFunctionCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/lambda/command/DeleteFunctionCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/lambda/command/GetFunctionCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/lambda/command/InvokeCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/lambda/command/ListFunctionsCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/lambda/command/UpdateFunctionCodeCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• UpdateFunctionConfiguration

操作

CreateFunction

以下代码示例演示了如何使用 CreateFunction。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

const createFunction = async (funcName, roleArn) => {
 const client = new LambdaClient({});
 const code = await readFile(`${dirname}../functions/${funcName}.zip`);

 const command = new CreateFunctionCommand({
 Code: { ZipFile: code },
 FunctionName: funcName,
 Role: roleArn,
 Architectures: [Architecture.arm64],
 Handler: "index.handler", // Required when sending a .zip file
 PackageType: PackageType.Zip, // Required when sending a .zip file
 Runtime: Runtime.nodejs16x, // Required when sending a .zip file
 });

 return client.send(command);
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考CreateFunction中
的。

DeleteFunction

以下代码示例演示了如何使用 DeleteFunction。

操作 1005

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/lambda/command/UpdateFunctionConfigurationCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/lambda#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/lambda/command/CreateFunctionCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

/**
 * @param {string} funcName
 */
const deleteFunction = (funcName) => {
 const client = new LambdaClient({});
 const command = new DeleteFunctionCommand({ FunctionName: funcName });
 return client.send(command);
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DeleteFunction中
的。

GetFunction

以下代码示例演示了如何使用 GetFunction。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

const getFunction = (funcName) => {
 const client = new LambdaClient({});
 const command = new GetFunctionCommand({ FunctionName: funcName });
 return client.send(command);
};

操作 1006

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/lambda#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/lambda/command/DeleteFunctionCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/lambda#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考GetFunction中的。

Invoke

以下代码示例演示了如何使用 Invoke。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

const invoke = async (funcName, payload) => {
 const client = new LambdaClient({});
 const command = new InvokeCommand({
 FunctionName: funcName,
 Payload: JSON.stringify(payload),
 LogType: LogType.Tail,
 });

 const { Payload, LogResult } = await client.send(command);
 const result = Buffer.from(Payload).toString();
 const logs = Buffer.from(LogResult, "base64").toString();
 return { logs, result };
};

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的
Invoke。

ListFunctions

以下代码示例演示了如何使用 ListFunctions。

操作 1007

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/lambda/command/GetFunctionCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/lambda#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/lambda/command/InvokeCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

const listFunctions = () => {
 const client = new LambdaClient({});
 const command = new ListFunctionsCommand({});

 return client.send(command);
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考ListFunctions中的。

UpdateFunctionCode

以下代码示例演示了如何使用 UpdateFunctionCode。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

const updateFunctionCode = async (funcName, newFunc) => {
 const client = new LambdaClient({});
 const code = await readFile(`${dirname}../functions/${newFunc}.zip`);
 const command = new UpdateFunctionCodeCommand({
 ZipFile: code,
 FunctionName: funcName,
 Architectures: [Architecture.arm64],
 Handler: "index.handler", // Required when sending a .zip file
 PackageType: PackageType.Zip, // Required when sending a .zip file

操作 1008

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/lambda#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/lambda/command/ListFunctionsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/lambda#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 Runtime: Runtime.nodejs16x, // Required when sending a .zip file
 });

 return client.send(command);
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考UpdateFunctionCode中的。

UpdateFunctionConfiguration

以下代码示例演示了如何使用 UpdateFunctionConfiguration。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

const updateFunctionConfiguration = (funcName) => {
 const client = new LambdaClient({});
 const config = readFileSync(`${dirname}../functions/config.json`).toString();
 const command = new UpdateFunctionConfigurationCommand({
 ...JSON.parse(config),
 FunctionName: funcName,
 });
 const result = client.send(command);
 waitForFunctionUpdated({ FunctionName: funcName });
 return result;
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考UpdateFunctionConfiguration中的。

操作 1009

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/lambda/command/UpdateFunctionCodeCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/lambda#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/lambda/command/UpdateFunctionConfigurationCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

场景

使用 Lambda 函数自动确认已知用户

以下代码示例显示了如何使用 Lambda 函数自动确认已知的 Amazon Cognito 用户。

• 配置用户池以调用 PreSignUp 触发器的 Lambda 函数。

• 将用户注册到 Amazon Cognito

• Lambda 函数会扫描 DynamoDB 表并自动确认已知用户。

• 以新用户身份登录，然后清理资源。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

配置交互式“场景”运行。 JavaScript (v3) 示例共享一个场景运行器，以简化复杂的示例。完整的源
代码已打开 GitHub。

import { AutoConfirm } from "./scenario-auto-confirm.js";

/**
 * The context is passed to every scenario. Scenario steps
 * will modify the context.
 */
const context = {
 errors: [],
 users: [
 {
 UserName: "test_user_1",
 UserEmail: "test_email_1@example.com",
 },
 {
 UserName: "test_user_2",
 UserEmail: "test_email_2@example.com",
 },
 {

场景 1010

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/wkflw-pools-triggers#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 UserName: "test_user_3",
 UserEmail: "test_email_3@example.com",
 },
],
};

/**
 * Three Scenarios are created for the workflow. A Scenario is an orchestration
 class
 * that simplifies running a series of steps.
 */
export const scenarios = {
 // Demonstrate automatically confirming known users in a database.
 "auto-confirm": AutoConfirm(context),
};

// Call function if run directly
import { fileURLToPath } from "node:url";
import { parseScenarioArgs } from "@aws-doc-sdk-examples/lib/scenario/index.js";

if (process.argv[1] === fileURLToPath(import.meta.url)) {
 parseScenarioArgs(scenarios, {
 name: "Cognito user pools and triggers",
 description:
 "Demonstrate how to use the AWS SDKs to customize Amazon Cognito
 authentication behavior.",
 });
}

此场景演示了如何自动确认已知用户。其编排了示例步骤。

import { wait } from "@aws-doc-sdk-examples/lib/utils/util-timers.js";
import {
 Scenario,
 ScenarioAction,
 ScenarioInput,
 ScenarioOutput,
} from "@aws-doc-sdk-examples/lib/scenario/scenario.js";

import {
 getStackOutputs,
 logCleanUpReminder,

场景 1011

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 promptForStackName,
 promptForStackRegion,
 skipWhenErrors,
} from "./steps-common.js";
import { populateTable } from "./actions/dynamodb-actions.js";
import {
 addPreSignUpHandler,
 deleteUser,
 getUser,
 signIn,
 signUpUser,
} from "./actions/cognito-actions.js";
import {
 getLatestLogStreamForLambda,
 getLogEvents,
} from "./actions/cloudwatch-logs-actions.js";

/**
 * @typedef {{
 * errors: Error[],
 * password: string,
 * users: { UserName: string, UserEmail: string }[],
 * selectedUser?: string,
 * stackName?: string,
 * stackRegion?: string,
 * token?: string,
 * confirmDeleteSignedInUser?: boolean,
 * TableName?: string,
 * UserPoolClientId?: string,
 * UserPoolId?: string,
 * UserPoolArn?: string,
 * AutoConfirmHandlerArn?: string,
 * AutoConfirmHandlerName?: string
 * }} State
 */

const greeting = new ScenarioOutput(
 "greeting",
 (/** @type {State} */ state) => `This demo will populate some users into the \
database created as part of the "${state.stackName}" stack. \
Then the AutoConfirmHandler will be linked to the PreSignUp \
trigger from Cognito. Finally, you will choose a user to sign up.`,
 { skipWhen: skipWhenErrors },
);

场景 1012

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const logPopulatingUsers = new ScenarioOutput(
 "logPopulatingUsers",
 "Populating the DynamoDB table with some users.",
 { skipWhenErrors: skipWhenErrors },
);

const logPopulatingUsersComplete = new ScenarioOutput(
 "logPopulatingUsersComplete",
 "Done populating users.",
 { skipWhen: skipWhenErrors },
);

const populateUsers = new ScenarioAction(
 "populateUsers",
 async (/** @type {State} */ state) => {
 const [_, err] = await populateTable({
 region: state.stackRegion,
 tableName: state.TableName,
 items: state.users,
 });
 if (err) {
 state.errors.push(err);
 }
 },
 {
 skipWhen: skipWhenErrors,
 },
);

const logSetupSignUpTrigger = new ScenarioOutput(
 "logSetupSignUpTrigger",
 "Setting up the PreSignUp trigger for the Cognito User Pool.",
 { skipWhen: skipWhenErrors },
);

const setupSignUpTrigger = new ScenarioAction(
 "setupSignUpTrigger",
 async (/** @type {State} */ state) => {
 const [_, err] = await addPreSignUpHandler({
 region: state.stackRegion,
 userPoolId: state.UserPoolId,
 handlerArn: state.AutoConfirmHandlerArn,
 });

场景 1013

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 if (err) {
 state.errors.push(err);
 }
 },
 {
 skipWhen: skipWhenErrors,
 },
);

const logSetupSignUpTriggerComplete = new ScenarioOutput(
 "logSetupSignUpTriggerComplete",
 (
 /** @type {State} */ state,
) => `The lambda function "${state.AutoConfirmHandlerName}" \
has been configured as the PreSignUp trigger handler for the user pool
 "${state.UserPoolId}".`,
 { skipWhen: skipWhenErrors },
);

const selectUser = new ScenarioInput(
 "selectedUser",
 "Select a user to sign up.",
 {
 type: "select",
 choices: (/** @type {State} */ state) => state.users.map((u) => u.UserName),
 skipWhen: skipWhenErrors,
 default: (/** @type {State} */ state) => state.users[0].UserName,
 },
);

const checkIfUserAlreadyExists = new ScenarioAction(
 "checkIfUserAlreadyExists",
 async (/** @type {State} */ state) => {
 const [user, err] = await getUser({
 region: state.stackRegion,
 userPoolId: state.UserPoolId,
 username: state.selectedUser,
 });

 if (err?.name === "UserNotFoundException") {
 // Do nothing. We're not expecting the user to exist before
 // sign up is complete.
 return;
 }

场景 1014

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 if (err) {
 state.errors.push(err);
 return;
 }

 if (user) {
 state.errors.push(
 new Error(
 `The user "${state.selectedUser}" already exists in the user pool
 "${state.UserPoolId}".`,
),
);
 }
 },
 {
 skipWhen: skipWhenErrors,
 },
);

const createPassword = new ScenarioInput(
 "password",
 "Enter a password that has at least eight characters, uppercase, lowercase,
 numbers and symbols.",
 { type: "password", skipWhen: skipWhenErrors, default: "Abcd1234!" },
);

const logSignUpExistingUser = new ScenarioOutput(
 "logSignUpExistingUser",
 (/** @type {State} */ state) => `Signing up user "${state.selectedUser}".`,
 { skipWhen: skipWhenErrors },
);

const signUpExistingUser = new ScenarioAction(
 "signUpExistingUser",
 async (/** @type {State} */ state) => {
 const signUp = (password) =>
 signUpUser({
 region: state.stackRegion,
 userPoolClientId: state.UserPoolClientId,
 username: state.selectedUser,
 email: state.users.find((u) => u.UserName === state.selectedUser)
 .UserEmail,
 password,

场景 1015

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 });

 let [_, err] = await signUp(state.password);

 while (err?.name === "InvalidPasswordException") {
 console.warn("The password you entered was invalid.");
 await createPassword.handle(state);
 [_, err] = await signUp(state.password);
 }

 if (err) {
 state.errors.push(err);
 }
 },
 { skipWhen: skipWhenErrors },
);

const logSignUpExistingUserComplete = new ScenarioOutput(
 "logSignUpExistingUserComplete",
 (/** @type {State} */ state) =>
 `"${state.selectedUser} was signed up successfully.`,
 { skipWhen: skipWhenErrors },
);

const logLambdaLogs = new ScenarioAction(
 "logLambdaLogs",
 async (/** @type {State} */ state) => {
 console.log(
 "Waiting a few seconds to let Lambda write to CloudWatch Logs...\n",
);
 await wait(10);

 const [logStream, logStreamErr] = await getLatestLogStreamForLambda({
 functionName: state.AutoConfirmHandlerName,
 region: state.stackRegion,
 });
 if (logStreamErr) {
 state.errors.push(logStreamErr);
 return;
 }

 console.log(
 `Getting some recent events from log stream "${logStream.logStreamName}"`,
);

场景 1016

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const [logEvents, logEventsErr] = await getLogEvents({
 functionName: state.AutoConfirmHandlerName,
 region: state.stackRegion,
 eventCount: 10,
 logStreamName: logStream.logStreamName,
 });
 if (logEventsErr) {
 state.errors.push(logEventsErr);
 return;
 }

 console.log(logEvents.map((ev) => `\t${ev.message}`).join(""));
 },
 { skipWhen: skipWhenErrors },
);

const logSignInUser = new ScenarioOutput(
 "logSignInUser",
 (/** @type {State} */ state) => `Let's sign in as ${state.selectedUser}`,
 { skipWhen: skipWhenErrors },
);

const signInUser = new ScenarioAction(
 "signInUser",
 async (/** @type {State} */ state) => {
 const [response, err] = await signIn({
 region: state.stackRegion,
 clientId: state.UserPoolClientId,
 username: state.selectedUser,
 password: state.password,
 });

 if (err?.name === "PasswordResetRequiredException") {
 state.errors.push(new Error("Please reset your password."));
 return;
 }

 if (err) {
 state.errors.push(err);
 return;
 }

 state.token = response?.AuthenticationResult?.AccessToken;
 },

场景 1017

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 { skipWhen: skipWhenErrors },
);

const logSignInUserComplete = new ScenarioOutput(
 "logSignInUserComplete",
 (/** @type {State} */ state) =>
 `Successfully signed in. Your access token starts with: ${state.token.slice(0,
 11)}`,
 { skipWhen: skipWhenErrors },
);

const confirmDeleteSignedInUser = new ScenarioInput(
 "confirmDeleteSignedInUser",
 "Do you want to delete the currently signed in user?",
 { type: "confirm", skipWhen: skipWhenErrors },
);

const deleteSignedInUser = new ScenarioAction(
 "deleteSignedInUser",
 async (/** @type {State} */ state) => {
 const [_, err] = await deleteUser({
 region: state.stackRegion,
 accessToken: state.token,
 });

 if (err) {
 state.errors.push(err);
 }
 },
 {
 skipWhen: (/** @type {State} */ state) =>
 skipWhenErrors(state) || !state.confirmDeleteSignedInUser,
 },
);

const logErrors = new ScenarioOutput(
 "logErrors",
 (/** @type {State}*/ state) => {
 const errorList = state.errors
 .map((err) => ` - ${err.name}: ${err.message}`)
 .join("\n");
 return `Scenario errors found:\n${errorList}`;
 },
 {

场景 1018

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // Don't log errors when there aren't any!
 skipWhen: (/** @type {State} */ state) => state.errors.length === 0,
 },
);

export const AutoConfirm = (context) =>
 new Scenario(
 "AutoConfirm",
 [
 promptForStackName,
 promptForStackRegion,
 getStackOutputs,
 greeting,
 logPopulatingUsers,
 populateUsers,
 logPopulatingUsersComplete,
 logSetupSignUpTrigger,
 setupSignUpTrigger,
 logSetupSignUpTriggerComplete,
 selectUser,
 checkIfUserAlreadyExists,
 createPassword,
 logSignUpExistingUser,
 signUpExistingUser,
 logSignUpExistingUserComplete,
 logLambdaLogs,
 logSignInUser,
 signInUser,
 logSignInUserComplete,
 confirmDeleteSignedInUser,
 deleteSignedInUser,
 logCleanUpReminder,
 logErrors,
],
 context,
);

这些步骤与其他场景共享。

import {
 ScenarioAction,
 ScenarioInput,

场景 1019

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 ScenarioOutput,
} from "@aws-doc-sdk-examples/lib/scenario/scenario.js";
import { getCfnOutputs } from "@aws-doc-sdk-examples/lib/sdk/cfn-outputs.js";

export const skipWhenErrors = (state) => state.errors.length > 0;

export const getStackOutputs = new ScenarioAction(
 "getStackOutputs",
 async (state) => {
 if (!state.stackName || !state.stackRegion) {
 state.errors.push(
 new Error(
 "No stack name or region provided. The stack name and \
region are required to fetch CFN outputs relevant to this example.",
),
);
 return;
 }

 const outputs = await getCfnOutputs(state.stackName, state.stackRegion);
 Object.assign(state, outputs);
 },
);

export const promptForStackName = new ScenarioInput(
 "stackName",
 "Enter the name of the stack you deployed earlier.",
 { type: "input", default: "PoolsAndTriggersStack" },
);

export const promptForStackRegion = new ScenarioInput(
 "stackRegion",
 "Enter the region of the stack you deployed earlier.",
 { type: "input", default: "us-east-1" },
);

export const logCleanUpReminder = new ScenarioOutput(
 "logCleanUpReminder",
 "All done. Remember to run 'cdk destroy' to teardown the stack.",
 { skipWhen: skipWhenErrors },
);

场景 1020

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

具有 Lambda 函数的 PreSignUp 触发器的处理程序。

import type { PreSignUpTriggerEvent, Handler } from "aws-lambda";
import type { UserRepository } from "./user-repository";
import { DynamoDBUserRepository } from "./user-repository";

export class PreSignUpHandler {
 private userRepository: UserRepository;

 constructor(userRepository: UserRepository) {
 this.userRepository = userRepository;
 }

 private isPreSignUpTriggerSource(event: PreSignUpTriggerEvent): boolean {
 return event.triggerSource === "PreSignUp_SignUp";
 }

 private getEventUserEmail(event: PreSignUpTriggerEvent): string {
 return event.request.userAttributes.email;
 }

 async handlePreSignUpTriggerEvent(
 event: PreSignUpTriggerEvent,
): Promise<PreSignUpTriggerEvent> {
 console.log(
 `Received presignup from ${event.triggerSource} for user '${event.userName}'`,
);

 if (!this.isPreSignUpTriggerSource(event)) {
 return event;
 }

 const eventEmail = this.getEventUserEmail(event);
 console.log(`Looking up email ${eventEmail}.`);
 const storedUserInfo =
 await this.userRepository.getUserInfoByEmail(eventEmail);

 if (!storedUserInfo) {
 console.log(
 `Email ${eventEmail} not found. Email verification is required.`,
);
 return event;
 }

场景 1021

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 if (storedUserInfo.UserName !== event.userName) {
 console.log(
 `UserEmail ${eventEmail} found, but stored UserName
 '${storedUserInfo.UserName}' does not match supplied UserName '${event.userName}'.
 Verification is required.`,
);
 } else {
 console.log(
 `UserEmail ${eventEmail} found with matching UserName
 ${storedUserInfo.UserName}. User is confirmed.`,
);
 event.response.autoConfirmUser = true;
 event.response.autoVerifyEmail = true;
 }
 return event;
 }
}

const createPreSignUpHandler = (): PreSignUpHandler => {
 const tableName = process.env.TABLE_NAME;
 if (!tableName) {
 throw new Error("TABLE_NAME environment variable is not set");
 }

 const userRepository = new DynamoDBUserRepository(tableName);
 return new PreSignUpHandler(userRepository);
};

export const handler: Handler = async (event: PreSignUpTriggerEvent) => {
 const preSignUpHandler = createPreSignUpHandler();
 return preSignUpHandler.handlePreSignUpTriggerEvent(event);
};

CloudWatch 日志操作模块。

import {
 CloudWatchLogsClient,
 GetLogEventsCommand,
 OrderBy,
 paginateDescribeLogStreams,
} from "@aws-sdk/client-cloudwatch-logs";

场景 1022

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

/**
 * Get the latest log stream for a Lambda function.
 * @param {{ functionName: string, region: string }} config
 * @returns {Promise<[import("@aws-sdk/client-cloudwatch-logs").LogStream | null,
 unknown]>}
 */
export const getLatestLogStreamForLambda = async ({ functionName, region }) => {
 try {
 const logGroupName = `/aws/lambda/${functionName}`;
 const cwlClient = new CloudWatchLogsClient({ region });
 const paginator = paginateDescribeLogStreams(
 { client: cwlClient },
 {
 descending: true,
 limit: 1,
 orderBy: OrderBy.LastEventTime,
 logGroupName,
 },
);

 for await (const page of paginator) {
 return [page.logStreams[0], null];
 }
 } catch (err) {
 return [null, err];
 }
};

/**
 * Get the log events for a Lambda function's log stream.
 * @param {{
 * functionName: string,
 * logStreamName: string,
 * eventCount: number,
 * region: string
 * }} config
 * @returns {Promise<[import("@aws-sdk/client-cloudwatch-logs").OutputLogEvent[] |
 null, unknown]>}
 */
export const getLogEvents = async ({
 functionName,
 logStreamName,
 eventCount,

场景 1023

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 region,
}) => {
 try {
 const cwlClient = new CloudWatchLogsClient({ region });
 const logGroupName = `/aws/lambda/${functionName}`;
 const response = await cwlClient.send(
 new GetLogEventsCommand({
 logStreamName: logStreamName,
 limit: eventCount,
 logGroupName: logGroupName,
 }),
);

 return [response.events, null];
 } catch (err) {
 return [null, err];
 }
};

Amazon Cognito 操作的模块。

import {
 AdminGetUserCommand,
 CognitoIdentityProviderClient,
 DeleteUserCommand,
 InitiateAuthCommand,
 SignUpCommand,
 UpdateUserPoolCommand,
} from "@aws-sdk/client-cognito-identity-provider";

/**
 * Connect a Lambda function to the PreSignUp trigger for a Cognito user pool
 * @param {{ region: string, userPoolId: string, handlerArn: string }} config
 * @returns {Promise<[import("@aws-sdk/client-cognito-identity-
provider").UpdateUserPoolCommandOutput | null, unknown]>}
 */
export const addPreSignUpHandler = async ({
 region,
 userPoolId,
 handlerArn,
}) => {

场景 1024

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 try {
 const cognitoClient = new CognitoIdentityProviderClient({
 region,
 });

 const command = new UpdateUserPoolCommand({
 UserPoolId: userPoolId,
 LambdaConfig: {
 PreSignUp: handlerArn,
 },
 });

 const response = await cognitoClient.send(command);
 return [response, null];
 } catch (err) {
 return [null, err];
 }
};

/**
 * Attempt to register a user to a user pool with a given username and password.
 * @param {{
 * region: string,
 * userPoolClientId: string,
 * username: string,
 * email: string,
 * password: string
 * }} config
 * @returns {Promise<[import("@aws-sdk/client-cognito-identity-
provider").SignUpCommandOutput | null, unknown]>}
 */
export const signUpUser = async ({
 region,
 userPoolClientId,
 username,
 email,
 password,
}) => {
 try {
 const cognitoClient = new CognitoIdentityProviderClient({
 region,
 });

 const response = await cognitoClient.send(

场景 1025

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 new SignUpCommand({
 ClientId: userPoolClientId,
 Username: username,
 Password: password,
 UserAttributes: [{ Name: "email", Value: email }],
 }),
);
 return [response, null];
 } catch (err) {
 return [null, err];
 }
};

/**
 * Sign in a user to Amazon Cognito using a username and password authentication
 flow.
 * @param {{ region: string, clientId: string, username: string, password: string }}
 config
 * @returns {Promise<[import("@aws-sdk/client-cognito-identity-
provider").InitiateAuthCommandOutput | null, unknown]>}
 */
export const signIn = async ({ region, clientId, username, password }) => {
 try {
 const cognitoClient = new CognitoIdentityProviderClient({ region });
 const response = await cognitoClient.send(
 new InitiateAuthCommand({
 AuthFlow: "USER_PASSWORD_AUTH",
 ClientId: clientId,
 AuthParameters: { USERNAME: username, PASSWORD: password },
 }),
);
 return [response, null];
 } catch (err) {
 return [null, err];
 }
};

/**
 * Retrieve an existing user from a user pool.
 * @param {{ region: string, userPoolId: string, username: string }} config
 * @returns {Promise<[import("@aws-sdk/client-cognito-identity-
provider").AdminGetUserCommandOutput | null, unknown]>}
 */
export const getUser = async ({ region, userPoolId, username }) => {

场景 1026

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 try {
 const cognitoClient = new CognitoIdentityProviderClient({ region });
 const response = await cognitoClient.send(
 new AdminGetUserCommand({
 UserPoolId: userPoolId,
 Username: username,
 }),
);
 return [response, null];
 } catch (err) {
 return [null, err];
 }
};

/**
 * Delete the signed-in user. Useful for allowing a user to delete their
 * own profile.
 * @param {{ region: string, accessToken: string }} config
 * @returns {Promise<[import("@aws-sdk/client-cognito-identity-
provider").DeleteUserCommandOutput | null, unknown]>}
 */
export const deleteUser = async ({ region, accessToken }) => {
 try {
 const client = new CognitoIdentityProviderClient({ region });
 const response = await client.send(
 new DeleteUserCommand({ AccessToken: accessToken }),
);
 return [response, null];
 } catch (err) {
 return [null, err];
 }
};

DynamoDB 操作的模块。

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";
import {
 BatchWriteCommand,
 DynamoDBDocumentClient,
} from "@aws-sdk/lib-dynamodb";

场景 1027

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

/**
 * Populate a DynamoDB table with provide items.
 * @param {{ region: string, tableName: string, items: Record<string, unknown>[] }}
 config
 * @returns {Promise<[import("@aws-sdk/lib-dynamodb").BatchWriteCommandOutput |
 null, unknown]>}
 */
export const populateTable = async ({ region, tableName, items }) => {
 try {
 const ddbClient = new DynamoDBClient({ region });
 const docClient = DynamoDBDocumentClient.from(ddbClient);
 const response = await docClient.send(
 new BatchWriteCommand({
 RequestItems: {
 [tableName]: items.map((item) => ({
 PutRequest: {
 Item: item,
 },
 })),
 },
 }),
);
 return [response, null];
 } catch (err) {
 return [null, err];
 }
};

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的以下主
题。

• DeleteUser

• InitiateAuth

• SignUp

• UpdateUserPool

创建无服务器应用程序来管理照片

以下代码示例演示如何创建无服务器应用程序，让用户能够使用标签管理照片。

场景 1028

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/DeleteUserCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/InitiateAuthCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/SignUpCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/UpdateUserPoolCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

演示如何开发照片资产管理应用程序，该应用程序使用 Amazon Rekognition 检测图像中的标签并
将其存储以供日后检索。

有关如何设置和运行的完整源代码和说明，请参阅上的完整示例 GitHub。

要深入了解这个例子的起源，请参阅 Amazon 社区上的博文。

本示例中使用的服务

• API Gateway

• DynamoDB

• Lambda

• Amazon Rekognition

• Amazon S3

• Amazon SNS

创建用于分析客户反馈的应用程序

以下代码示例说明如何创建应用程序来分析客户意见卡、翻译其母语、确定其情绪并根据译后的文本生
成音频文件。

适用于 JavaScript (v3) 的软件开发工具包

此示例应用程序可分析并存储客户反馈卡。具体来说，它满足了纽约市一家虚构酒店的需求。酒
店以实体意见卡的形式收集来自不同语种的客人的反馈。该反馈通过 Web 客户端上传到应用程序
中。意见卡图片上传后，将执行以下步骤：

• 使用 Amazon Textract 从图片中提取文本。

• Amazon Comprehend 确定所提取文本的情绪及其语言。

• 使用 Amazon Translate 将所提取文本翻译为英语。

• Amazon Polly 根据所提取文本合成音频文件。

完整的应用程序可使用 Amazon CDK 进行部署。有关源代码和部署说明，请参阅中的项目
GitHub。以下摘录显示了在 Lambda 函数中 适用于 JavaScript 的 Amazon SDK 是如何使用的。

import {
 ComprehendClient,

场景 1029

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/photo-asset-manager
https://community.aws/posts/cloud-journeys/01-serverless-image-recognition-app
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/feedback-sentiment-analyzer
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/feedback-sentiment-analyzer

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 DetectDominantLanguageCommand,
 DetectSentimentCommand,
} from "@aws-sdk/client-comprehend";

/**
 * Determine the language and sentiment of the extracted text.
 *
 * @param {{ source_text: string}} extractTextOutput
 */
export const handler = async (extractTextOutput) => {
 const comprehendClient = new ComprehendClient({});

 const detectDominantLanguageCommand = new DetectDominantLanguageCommand({
 Text: extractTextOutput.source_text,
 });

 // The source language is required for sentiment analysis and
 // translation in the next step.
 const { Languages } = await comprehendClient.send(
 detectDominantLanguageCommand,
);

 const languageCode = Languages[0].LanguageCode;

 const detectSentimentCommand = new DetectSentimentCommand({
 Text: extractTextOutput.source_text,
 LanguageCode: languageCode,
 });

 const { Sentiment } = await comprehendClient.send(detectSentimentCommand);

 return {
 sentiment: Sentiment,
 language_code: languageCode,
 };
};

import {
 DetectDocumentTextCommand,
 TextractClient,
} from "@aws-sdk/client-textract";

/**

场景 1030

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * Fetch the S3 object from the event and analyze it using Amazon Textract.
 *
 * @param {import("@types/aws-lambda").EventBridgeEvent<"Object Created">}
 eventBridgeS3Event
 */
export const handler = async (eventBridgeS3Event) => {
 const textractClient = new TextractClient();

 const detectDocumentTextCommand = new DetectDocumentTextCommand({
 Document: {
 S3Object: {
 Bucket: eventBridgeS3Event.bucket,
 Name: eventBridgeS3Event.object,
 },
 },
 });

 // Textract returns a list of blocks. A block can be a line, a page, word, etc.
 // Each block also contains geometry of the detected text.
 // For more information on the Block type, see https://docs.aws.amazon.com/
textract/latest/dg/API_Block.html.
 const { Blocks } = await textractClient.send(detectDocumentTextCommand);

 // For the purpose of this example, we are only interested in words.
 const extractedWords = Blocks.filter((b) => b.BlockType === "WORD").map(
 (b) => b.Text,
);

 return extractedWords.join(" ");
};

import { PollyClient, SynthesizeSpeechCommand } from "@aws-sdk/client-polly";
import { S3Client } from "@aws-sdk/client-s3";
import { Upload } from "@aws-sdk/lib-storage";

/**
 * Synthesize an audio file from text.
 *
 * @param {{ bucket: string, translated_text: string, object: string}}
 sourceDestinationConfig
 */
export const handler = async (sourceDestinationConfig) => {
 const pollyClient = new PollyClient({});

场景 1031

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const synthesizeSpeechCommand = new SynthesizeSpeechCommand({
 Engine: "neural",
 Text: sourceDestinationConfig.translated_text,
 VoiceId: "Ruth",
 OutputFormat: "mp3",
 });

 const { AudioStream } = await pollyClient.send(synthesizeSpeechCommand);

 const audioKey = `${sourceDestinationConfig.object}.mp3`;

 // Store the audio file in S3.
 const s3Client = new S3Client();
 const upload = new Upload({
 client: s3Client,
 params: {
 Bucket: sourceDestinationConfig.bucket,
 Key: audioKey,
 Body: AudioStream,
 ContentType: "audio/mp3",
 },
 });

 await upload.done();
 return audioKey;
};

import {
 TranslateClient,
 TranslateTextCommand,
} from "@aws-sdk/client-translate";

/**
 * Translate the extracted text to English.
 *
 * @param {{ extracted_text: string, source_language_code: string}}
 textAndSourceLanguage
 */
export const handler = async (textAndSourceLanguage) => {
 const translateClient = new TranslateClient({});

 const translateCommand = new TranslateTextCommand({

场景 1032

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 SourceLanguageCode: textAndSourceLanguage.source_language_code,
 TargetLanguageCode: "en",
 Text: textAndSourceLanguage.extracted_text,
 });

 const { TranslatedText } = await translateClient.send(translateCommand);

 return { translated_text: TranslatedText };
};

本示例中使用的服务

• Amazon Comprehend

• Lambda

• Amazon Polly

• Amazon Textract

• Amazon Translate

从浏览器调用 Lambda 函数

以下代码示例显示了如何从浏览器调用 Amazon Lambda 函数。

适用于 JavaScript (v3) 的软件开发工具包

您可以创建一个基于浏览器的应用程序，该应用程序使用 Amazon Lambda 函数更新包含用户选择
的 Amazon DynamoDB 表。此应用程序使用 适用于 JavaScript 的 Amazon SDK v3。

有关如何设置和运行的完整源代码和说明，请参阅上的完整示例GitHub。

本示例中使用的服务

• DynamoDB

• Lambda

使用 API Gateway 调用 Lambda 函数

以下代码示例展示了如何创建由 Amazon API Gateway 调用的 Amazon Lambda 函数。

场景 1033

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/lambda-for-browser

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

演示如何使用 Lambda JavaScript 运行时 API 创建 Amazon Lambda 函数。此示例调用不同
的 Amazon 服务来执行特定的用例。此示例展示了如何创建通过 Amazon API Gateway 调用的
Lambda 函数，该函数扫描 Amazon DynamoDB 表获取工作周年纪念日，并使用 Amazon Simple
Notification Service (Amazon SNS)向员工发送文本消息，祝贺他们的周年纪念日。

有关如何设置和运行的完整源代码和说明，请参阅上的完整示例GitHub。

该示例也可在 适用于 JavaScript 的 Amazon SDK v3 开发人员指南中找到。

本示例中使用的服务

• API Gateway

• DynamoDB

• Lambda

• Amazon SNS

使用计划的事件调用 Lambda 函数

以下代码示例显示如何创建由 Amazon EventBridge 计划事件调用的 Amazon Lambda 函数。

适用于 JavaScript (v3) 的软件开发工具包

演示如何创建调用函数的 Amazon EventBridge 计划事件。 Amazon Lambda 配置 EventBridge 为
使用 cron 表达式来调度 Lambda 函数的调用时间。在此示例中，您将使用 Lambda 运行时 API 创
建一个 Lambda 函数。 JavaScript 此示例调用不同的 Amazon 服务来执行特定的用例。此示例展
示了如何创建一个应用程序，在其一周年纪念日时向员工发送移动短信表示祝贺。

有关如何设置和运行的完整源代码和说明，请参阅上的完整示例GitHub。

该示例也可在 适用于 JavaScript 的 Amazon SDK v3 开发人员指南中找到。

本示例中使用的服务

• CloudWatch 日志

• DynamoDB

• EventBridge

• Lambda

• Amazon SNS

场景 1034

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/lambda-api-gateway
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/api-gateway-invoking-lambda-example.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/lambda-scheduled-events
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/scheduled-events-invoking-lambda-example.html

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

无服务器示例

使用 Lambda 函数连接到 Amazon RDS 数据库

以下代码示例显示如何实现连接到 RDS 数据库的 Lambda 函数。该函数发出一个简单的数据库请求并
返回结果。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在无服务器示例存储库中查找完整示例，并了解如何进行设置
和运行。

使用在 Lambda 函数中连接到亚马逊 RDS 数据库。 JavaScript

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
/*
Node.js code here.
*/
// ES6+ example
import { Signer } from "@aws-sdk/rds-signer";
import mysql from 'mysql2/promise';

async function createAuthToken() {
 // Define connection authentication parameters
 const dbinfo = {

 hostname: process.env.ProxyHostName,
 port: process.env.Port,
 username: process.env.DBUserName,
 region: process.env.AWS_REGION,

 }

 // Create RDS Signer object
 const signer = new Signer(dbinfo);

 // Request authorization token from RDS, specifying the username
 const token = await signer.getAuthToken();

无服务器示例 1035

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-connect-rds-iam

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 return token;
}

async function dbOps() {

 // Obtain auth token
 const token = await createAuthToken();
 // Define connection configuration
 let connectionConfig = {
 host: process.env.ProxyHostName,
 user: process.env.DBUserName,
 password: token,
 database: process.env.DBName,
 ssl: 'Amazon RDS'
 }
 // Create the connection to the DB
 const conn = await mysql.createConnection(connectionConfig);
 // Obtain the result of the query
 const [res,] = await conn.execute('select ?+? as sum', [3, 2]);
 return res;

}

export const handler = async (event) => {
 // Execute database flow
 const result = await dbOps();
 // Return result
 return {
 statusCode: 200,
 body: JSON.stringify("The selected sum is: " + result[0].sum)
 }
};

使用在 Lambda 函数中连接到亚马逊 RDS 数据库。 TypeScript

import { Signer } from "@aws-sdk/rds-signer";
import mysql from 'mysql2/promise';

// RDS settings
// Using '!' (non-null assertion operator) to tell the TypeScript compiler that the
 DB settings are not null or undefined,

无服务器示例 1036

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const proxy_host_name = process.env.PROXY_HOST_NAME!
const port = parseInt(process.env.PORT!)
const db_name = process.env.DB_NAME!
const db_user_name = process.env.DB_USER_NAME!
const aws_region = process.env.AWS_REGION!

async function createAuthToken(): Promise<string> {

 // Create RDS Signer object
 const signer = new Signer({
 hostname: proxy_host_name,
 port: port,
 region: aws_region,
 username: db_user_name
 });

 // Request authorization token from RDS, specifying the username
 const token = await signer.getAuthToken();
 return token;
}

async function dbOps(): Promise<mysql.QueryResult | undefined> {
 try {
 // Obtain auth token
 const token = await createAuthToken();
 const conn = await mysql.createConnection({
 host: proxy_host_name,
 user: db_user_name,
 password: token,
 database: db_name,
 ssl: 'Amazon RDS' // Ensure you have the CA bundle for SSL connection
 });
 const [rows, fields] = await conn.execute('SELECT ? + ? AS sum', [3, 2]);
 console.log('result:', rows);
 return rows;
 }
 catch (err) {
 console.log(err);
 }
}

export const lambdaHandler = async (event: any): Promise<{ statusCode: number; body:
 string }> => {

无服务器示例 1037

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // Execute database flow
 const result = await dbOps();

 // Return error is result is undefined
 if (result == undefined)
 return {
 statusCode: 500,
 body: JSON.stringify(`Error with connection to DB host`)
 }

 // Return result
 return {
 statusCode: 200,
 body: JSON.stringify(`The selected sum is: ${result[0].sum}`)
 };
};

通过 Kinesis 触发器调用 Lambda 函数

以下代码示例展示了如何实现一个 Lambda 函数，该函数接收因接收来自 Kinesis 流的记录而触发的事
件。该函数检索 Kinesis 有效负载，将 Base64 解码，并记录下记录内容。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在无服务器示例存储库中查找完整示例，并了解如何进行设置
和运行。

使用 Lambda 消耗 Kinesis 事件。 JavaScript

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
exports.handler = async (event, context) => {
 for (const record of event.Records) {
 try {
 console.log(`Processed Kinesis Event - EventID: ${record.eventID}`);
 const recordData = await getRecordDataAsync(record.kinesis);
 console.log(`Record Data: ${recordData}`);
 // TODO: Do interesting work based on the new data

无服务器示例 1038

https://github.com/aws-samples/serverless-snippets/blob/main/integration-kinesis-to-lambda

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 } catch (err) {
 console.error(`An error occurred ${err}`);
 throw err;
 }
 }
 console.log(`Successfully processed ${event.Records.length} records.`);
};

async function getRecordDataAsync(payload) {
 var data = Buffer.from(payload.data, "base64").toString("utf-8");
 await Promise.resolve(1); //Placeholder for actual async work
 return data;
}

使用 Lambda 消耗 Kinesis 事件。 TypeScript

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import {
 KinesisStreamEvent,
 Context,
 KinesisStreamHandler,
 KinesisStreamRecordPayload,
} from "aws-lambda";
import { Buffer } from "buffer";
import { Logger } from "@aws-lambda-powertools/logger";

const logger = new Logger({
 logLevel: "INFO",
 serviceName: "kinesis-stream-handler-sample",
});

export const functionHandler: KinesisStreamHandler = async (
 event: KinesisStreamEvent,
 context: Context
): Promise<void> => {
 for (const record of event.Records) {
 try {
 logger.info(`Processed Kinesis Event - EventID: ${record.eventID}`);
 const recordData = await getRecordDataAsync(record.kinesis);
 logger.info(`Record Data: ${recordData}`);
 // TODO: Do interesting work based on the new data

无服务器示例 1039

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 } catch (err) {
 logger.error(`An error occurred ${err}`);
 throw err;
 }
 logger.info(`Successfully processed ${event.Records.length} records.`);
 }
};

async function getRecordDataAsync(
 payload: KinesisStreamRecordPayload
): Promise<string> {
 var data = Buffer.from(payload.data, "base64").toString("utf-8");
 await Promise.resolve(1); //Placeholder for actual async work
 return data;
}

通过 DynamoDB 触发器调用 Lambda 函数

以下代码示例演示如何实现一个 Lambda 函数，该函数接收通过接收来自 DynamoDB 流的记录而触发
的事件。该函数检索 DynamoDB 有效负载，并记录下记录内容。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在无服务器示例存储库中查找完整示例，并了解如何进行设置
和运行。

使用 Lambda 使用一个 DynamoDB 事件。 JavaScript

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
exports.handler = async (event, context) => {
 console.log(JSON.stringify(event, null, 2));
 event.Records.forEach(record => {
 logDynamoDBRecord(record);
 });
};

无服务器示例 1040

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const logDynamoDBRecord = (record) => {
 console.log(record.eventID);
 console.log(record.eventName);
 console.log(`DynamoDB Record: ${JSON.stringify(record.dynamodb)}`);
};

使用 Lambda 使用一个 DynamoDB 事件。 TypeScript

export const handler = async (event, context) => {
 console.log(JSON.stringify(event, null, 2));
 event.Records.forEach(record => {
 logDynamoDBRecord(record);
 });
}
const logDynamoDBRecord = (record) => {
 console.log(record.eventID);
 console.log(record.eventName);
 console.log(`DynamoDB Record: ${JSON.stringify(record.dynamodb)}`);
};

通过 Amazon DocumentDB 触发器调用 Lambda 函数

以下代码示例演示如何实现一个 Lambda 函数，该函数接收通过接收来自 DocumentDB 更改流的记录
而触发的事件。该函数检索 DocumentDB 有效负载，并记录下记录内容。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在无服务器示例存储库中查找完整示例，并了解如何进行设置
和运行。

使用 Lambda 使用亚马逊文档数据库事件。 JavaScript

console.log('Loading function');
exports.handler = async (event, context) => {
 event.events.forEach(record => {
 logDocumentDBEvent(record);
 });

无服务器示例 1041

https://github.com/aws-samples/serverless-snippets/tree/main/integration-docdb-to-lambda

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 return 'OK';
};

const logDocumentDBEvent = (record) => {
 console.log('Operation type: ' + record.event.operationType);
 console.log('db: ' + record.event.ns.db);
 console.log('collection: ' + record.event.ns.coll);
 console.log('Full document:', JSON.stringify(record.event.fullDocument, null,
 2));
};

使用 Lambda 使用亚马逊文档数据库事件 TypeScript

import { DocumentDBEventRecord, DocumentDBEventSubscriptionContext } from 'aws-
lambda';

console.log('Loading function');

export const handler = async (
 event: DocumentDBEventSubscriptionContext,
 context: any
): Promise<string> => {
 event.events.forEach((record: DocumentDBEventRecord) => {
 logDocumentDBEvent(record);
 });
 return 'OK';
};

const logDocumentDBEvent = (record: DocumentDBEventRecord): void => {
 console.log('Operation type: ' + record.event.operationType);
 console.log('db: ' + record.event.ns.db);
 console.log('collection: ' + record.event.ns.coll);
 console.log('Full document:', JSON.stringify(record.event.fullDocument, null, 2));
};

通过 Amazon MSK 触发器调用 Lambda 函数

以下代码示例演示如何实现一个 Lambda 函数，该函数接收通过接收来自 Amazon MSK 集群的记录而
触发的事件。该函数检索 MSK 有效负载，并记录下记录内容。

无服务器示例 1042

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在无服务器示例存储库中查找完整示例，并了解如何进行设置
和运行。

使用 Lambda JavaScript 使用亚马逊 MSK 事件。

exports.handler = async (event) => {
 // Iterate through keys
 for (let key in event.records) {
 console.log('Key: ', key)
 // Iterate through records
 event.records[key].map((record) => {
 console.log('Record: ', record)
 // Decode base64
 const msg = Buffer.from(record.value, 'base64').toString()
 console.log('Message:', msg)
 })
 }
}

使用 Lambda TypeScript 使用亚马逊 MSK 事件。

import { MSKEvent, Context } from "aws-lambda";
import { Buffer } from "buffer";
import { Logger } from "@aws-lambda-powertools/logger";

const logger = new Logger({
 logLevel: "INFO",
 serviceName: "msk-handler-sample",
});

export const handler = async (
 event: MSKEvent,
 context: Context
): Promise<void> => {
 for (const [topic, topicRecords] of Object.entries(event.records)) {
 logger.info(`Processing key: ${topic}`);

无服务器示例 1043

https://github.com/aws-samples/serverless-snippets/tree/main/integration-msk-to-lambda

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // Process each record in the partition
 for (const record of topicRecords) {
 try {
 // Decode the message value from base64
 const decodedMessage = Buffer.from(record.value, 'base64').toString();

 logger.info({
 message: decodedMessage
 });
 }
 catch (error) {
 logger.error('Error processing event', { error });
 throw error;
 }
 };
 }
}

通过 Amazon S3 触发器调用 Lambda 函数

以下代码示例展示了如何实现一个 Lambda 函数，该函数接收通过将对象上传到 S3 桶而触发的事件。
该函数从事件参数中检索 S3 存储桶名称和对象密钥，并调用 Amazon S3 API 来检索和记录对象的内
容类型。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在无服务器示例存储库中查找完整示例，并了解如何进行设置
和运行。

使用 Lambda 使用 S3 事件。 JavaScript

import { S3Client, HeadObjectCommand } from "@aws-sdk/client-s3";

const client = new S3Client();

export const handler = async (event, context) => {

无服务器示例 1044

https://github.com/aws-samples/serverless-snippets/tree/main/integration-s3-to-lambda

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // Get the object from the event and show its content type
 const bucket = event.Records[0].s3.bucket.name;
 const key = decodeURIComponent(event.Records[0].s3.object.key.replace(/\+/g, '
 '));

 try {
 const { ContentType } = await client.send(new HeadObjectCommand({
 Bucket: bucket,
 Key: key,
 }));

 console.log('CONTENT TYPE:', ContentType);
 return ContentType;

 } catch (err) {
 console.log(err);
 const message = `Error getting object ${key} from bucket ${bucket}. Make
 sure they exist and your bucket is in the same region as this function.`;
 console.log(message);
 throw new Error(message);
 }
};

使用 Lambda 使用 S3 事件。 TypeScript

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import { S3Event } from 'aws-lambda';
import { S3Client, HeadObjectCommand } from '@aws-sdk/client-s3';

const s3 = new S3Client({ region: process.env.AWS_REGION });

export const handler = async (event: S3Event): Promise<string | undefined> => {
 // Get the object from the event and show its content type
 const bucket = event.Records[0].s3.bucket.name;
 const key = decodeURIComponent(event.Records[0].s3.object.key.replace(/\+/g, '
 '));
 const params = {
 Bucket: bucket,
 Key: key,
 };

无服务器示例 1045

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 try {
 const { ContentType } = await s3.send(new HeadObjectCommand(params));
 console.log('CONTENT TYPE:', ContentType);
 return ContentType;
 } catch (err) {
 console.log(err);
 const message = `Error getting object ${key} from bucket ${bucket}. Make sure
 they exist and your bucket is in the same region as this function.`;
 console.log(message);
 throw new Error(message);
 }
};

通过 Amazon SNS 触发器调用 Lambda 函数

以下代码示例展示了如何实现一个 Lambda 函数，该函数接收因接收来自 SNS 主题的消息而触发的事
件。该函数从事件参数检索消息并记录每条消息的内容。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在无服务器示例存储库中查找完整示例，并了解如何进行设置
和运行。

使用 Lambda JavaScript 消费 SNS 事件。

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
exports.handler = async (event, context) => {
 for (const record of event.Records) {
 await processMessageAsync(record);
 }
 console.info("done");
};

async function processMessageAsync(record) {
 try {
 const message = JSON.stringify(record.Sns.Message);
 console.log(`Processed message ${message}`);

无服务器示例 1046

https://github.com/aws-samples/serverless-snippets/blob/main/integration-sns-to-lambda

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 await Promise.resolve(1); //Placeholder for actual async work
 } catch (err) {
 console.error("An error occurred");
 throw err;
 }
}

使用 Lambda TypeScript 消费 SNS 事件。

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import { SNSEvent, Context, SNSHandler, SNSEventRecord } from "aws-lambda";

export const functionHandler: SNSHandler = async (
 event: SNSEvent,
 context: Context
): Promise<void> => {
 for (const record of event.Records) {
 await processMessageAsync(record);
 }
 console.info("done");
};

async function processMessageAsync(record: SNSEventRecord): Promise<any> {
 try {
 const message: string = JSON.stringify(record.Sns.Message);
 console.log(`Processed message ${message}`);
 await Promise.resolve(1); //Placeholder for actual async work
 } catch (err) {
 console.error("An error occurred");
 throw err;
 }
}

通过 Amazon SQS 触发器调用 Lambda 函数

以下代码示例展示了如何实现一个 Lambda 函数，该函数接收因接收来自 SNS 队列的消息而触发的事
件。该函数从事件参数检索消息并记录每条消息的内容。

无服务器示例 1047

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在无服务器示例存储库中查找完整示例，并了解如何进行设置
和运行。

使用 Lambd JavaScript a 使用 SQS 事件。

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
exports.handler = async (event, context) => {
 for (const message of event.Records) {
 await processMessageAsync(message);
 }
 console.info("done");
};

async function processMessageAsync(message) {
 try {
 console.log(`Processed message ${message.body}`);
 // TODO: Do interesting work based on the new message
 await Promise.resolve(1); //Placeholder for actual async work
 } catch (err) {
 console.error("An error occurred");
 throw err;
 }
}

使用 Lambd TypeScript a 使用 SQS 事件。

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import { SQSEvent, Context, SQSHandler, SQSRecord } from "aws-lambda";

export const functionHandler: SQSHandler = async (
 event: SQSEvent,
 context: Context
): Promise<void> => {
 for (const message of event.Records) {

无服务器示例 1048

https://github.com/aws-samples/serverless-snippets/blob/main/integration-sqs-to-lambda

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 await processMessageAsync(message);
 }
 console.info("done");
};

async function processMessageAsync(message: SQSRecord): Promise<any> {
 try {
 console.log(`Processed message ${message.body}`);
 // TODO: Do interesting work based on the new message
 await Promise.resolve(1); //Placeholder for actual async work
 } catch (err) {
 console.error("An error occurred");
 throw err;
 }
}

通过 Kinesis 触发器报告 Lambda 函数批处理项目失败

以下代码示例展示了如何为接收来自 Kinesis 流的事件的 Lambda 函数实现部分批处理响应。该函数在
响应中报告批处理项目失败，并指示 Lambda 稍后重试这些消息。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在无服务器示例存储库中查找完整示例，并了解如何进行设置
和运行。

报告使用 Javascript 进行 Lambda Kinesis 批处理项目失败。

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
exports.handler = async (event, context) => {
 for (const record of event.Records) {
 try {
 console.log(`Processed Kinesis Event - EventID: ${record.eventID}`);
 const recordData = await getRecordDataAsync(record.kinesis);
 console.log(`Record Data: ${recordData}`);
 // TODO: Do interesting work based on the new data

无服务器示例 1049

https://github.com/aws-samples/serverless-snippets/blob/main/integration-kinesis-to-lambda-with-batch-item-handling

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 } catch (err) {
 console.error(`An error occurred ${err}`);
 /* Since we are working with streams, we can return the failed item
 immediately.
 Lambda will immediately begin to retry processing from this failed item
 onwards. */
 return {
 batchItemFailures: [{ itemIdentifier: record.kinesis.sequenceNumber }],
 };
 }
 }
 console.log(`Successfully processed ${event.Records.length} records.`);
 return { batchItemFailures: [] };
};

async function getRecordDataAsync(payload) {
 var data = Buffer.from(payload.data, "base64").toString("utf-8");
 await Promise.resolve(1); //Placeholder for actual async work
 return data;
}

使用 Lambda 报告 Kinesis 批处理项目失败。 TypeScript

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import {
 KinesisStreamEvent,
 Context,
 KinesisStreamHandler,
 KinesisStreamRecordPayload,
 KinesisStreamBatchResponse,
} from "aws-lambda";
import { Buffer } from "buffer";
import { Logger } from "@aws-lambda-powertools/logger";

const logger = new Logger({
 logLevel: "INFO",
 serviceName: "kinesis-stream-handler-sample",
});

export const functionHandler: KinesisStreamHandler = async (
 event: KinesisStreamEvent,

无服务器示例 1050

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 context: Context
): Promise<KinesisStreamBatchResponse> => {
 for (const record of event.Records) {
 try {
 logger.info(`Processed Kinesis Event - EventID: ${record.eventID}`);
 const recordData = await getRecordDataAsync(record.kinesis);
 logger.info(`Record Data: ${recordData}`);
 // TODO: Do interesting work based on the new data
 } catch (err) {
 logger.error(`An error occurred ${err}`);
 /* Since we are working with streams, we can return the failed item
 immediately.
 Lambda will immediately begin to retry processing from this failed item
 onwards. */
 return {
 batchItemFailures: [{ itemIdentifier: record.kinesis.sequenceNumber }],
 };
 }
 }
 logger.info(`Successfully processed ${event.Records.length} records.`);
 return { batchItemFailures: [] };
};

async function getRecordDataAsync(
 payload: KinesisStreamRecordPayload
): Promise<string> {
 var data = Buffer.from(payload.data, "base64").toString("utf-8");
 await Promise.resolve(1); //Placeholder for actual async work
 return data;
}

通过 DynamoDB 触发器报告 Lambda 函数批处理项目失败

以下代码示例演示如何为接收来自 DynamoDB 流的事件的 Lambda 函数实现部分批处理响应。该函数
在响应中报告批处理项目失败，并指示 Lambda 稍后重试这些消息。

无服务器示例 1051

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在无服务器示例存储库中查找完整示例，并了解如何进行设置
和运行。

使用 Lambda 报告 DynamoDB 批处理项目失败。 JavaScript

export const handler = async (event) => {
 const records = event.Records;
 let curRecordSequenceNumber = "";

 for (const record of records) {
 try {
 // Process your record
 curRecordSequenceNumber = record.dynamodb.SequenceNumber;
 } catch (e) {
 // Return failed record's sequence number
 return { batchItemFailures: [{ itemIdentifier: curRecordSequenceNumber }] };
 }
 }

 return { batchItemFailures: [] };
};

使用 Lambda 报告 DynamoDB 批处理项目失败。 TypeScript

import {
 DynamoDBBatchResponse,
 DynamoDBBatchItemFailure,
 DynamoDBStreamEvent,
} from "aws-lambda";

export const handler = async (
 event: DynamoDBStreamEvent
): Promise<DynamoDBBatchResponse> => {
 const batchItemFailures: DynamoDBBatchItemFailure[] = [];
 let curRecordSequenceNumber;

无服务器示例 1052

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda-with-batch-item-handling

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 for (const record of event.Records) {
 curRecordSequenceNumber = record.dynamodb?.SequenceNumber;

 if (curRecordSequenceNumber) {
 batchItemFailures.push({
 itemIdentifier: curRecordSequenceNumber,
 });
 }
 }

 return { batchItemFailures: batchItemFailures };
};

报告使用 Amazon SQS 触发器进行 Lambda 函数批处理项目失败

以下代码示例展示了如何为接收来自 SQS 队列的事件的 Lambda 函数实现部分批处理响应。该函数在
响应中报告批处理项目失败，并指示 Lambda 稍后重试这些消息。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在无服务器示例存储库中查找完整示例，并了解如何进行设置
和运行。

使用报告 Lambda JavaScript 的 SQS 批处理项目失败。

// Node.js 20.x Lambda runtime, AWS SDK for Javascript V3
export const handler = async (event, context) => {
 const batchItemFailures = [];
 for (const record of event.Records) {
 try {
 await processMessageAsync(record, context);
 } catch (error) {
 batchItemFailures.push({ itemIdentifier: record.messageId });
 }
 }
 return { batchItemFailures };
};

无服务器示例 1053

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-sqs-report-batch-item-failures

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

async function processMessageAsync(record, context) {
 if (record.body && record.body.includes("error")) {
 throw new Error("There is an error in the SQS Message.");
 }
 console.log(`Processed message: ${record.body}`);
}

使用报告 Lambda TypeScript 的 SQS 批处理项目失败。

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import { SQSEvent, SQSBatchResponse, Context, SQSBatchItemFailure, SQSRecord } from
 'aws-lambda';

export const handler = async (event: SQSEvent, context: Context):
 Promise<SQSBatchResponse> => {
 const batchItemFailures: SQSBatchItemFailure[] = [];

 for (const record of event.Records) {
 try {
 await processMessageAsync(record);
 } catch (error) {
 batchItemFailures.push({ itemIdentifier: record.messageId });
 }
 }

 return {batchItemFailures: batchItemFailures};
};

async function processMessageAsync(record: SQSRecord): Promise<void> {
 if (record.body && record.body.includes("error")) {
 throw new Error('There is an error in the SQS Message.');
 }
 console.log(`Processed message ${record.body}`);
}

使用适用于 JavaScript (v3) 的软件开发工具包的 Amazon Lex 示例

以下代码示例向您展示如何使用带有 Amazon Lex 的 适用于 JavaScript 的 Amazon SDK (v3) 来执行
操作和实现常见场景。

Amazon Lex 1054

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

场景是向您演示如何通过在一个服务中调用多个函数或与其他 Amazon Web Services 服务结合来完成
特定任务的代码示例。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

• 场景

场景

构建 Amazon Lex 聊天机器人

以下代码示例演示如何创建用于吸引网站访客的聊天机器人。

适用于 JavaScript (v3) 的软件开发工具包

展示如何使用 Amazon Lex API 在 Web 应用程序中创建聊天机器人，以吸引网站访客。

有关如何设置和运行的完整源代码和说明，请参阅 适用于 JavaScript 的 Amazon SDK 开发者指南
中的构建 Amazon Lex 聊天机器人的完整示例。

本示例中使用的服务

• Amazon Comprehend

• Amazon Lex

• Amazon Translate

使用适用于 JavaScript (v3) 的软件开发工具包的亚马逊位置示例

以下代码示例向您展示了如何使用带有 Amazon Location 的 适用于 JavaScript 的 Amazon SDK (v3)
来执行操作和实现常见场景。

基本功能是向您展示如何在服务中执行基本操作的代码示例。

操作是大型程序的代码摘录，必须在上下文中运行。您可以通过操作了解如何调用单个服务函数，还可
以通过函数相关场景的上下文查看操作。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

场景 1055

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/lex-bot-example.html

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

主题

• 开始使用

• 基本功能

• 操作

开始使用

Hello Amazon Location

以下代码示例显示了如何开始使用 Amazon Location Service。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库 中查找完整示例，了解如何进行设
置和运行。

import { fileURLToPath } from "node:url";
import {
 LocationClient,
 ListGeofenceCollectionsCommand,
} from "@aws-sdk/client-location";

/**
 * Lists geofences from a specified geofence collection asynchronously.
 */
export const main = async () => {
 const region = "eu-west-1";
 const locationClient = new LocationClient({ region: region });
 const listGeofenceCollParams = {
 MaxResults: 100,
 };
 try {
 const command = new ListGeofenceCollectionsCommand(listGeofenceCollParams);
 const response = await locationClient.send(command);
 const geofenceEntries = response.Entries;
 if (geofenceEntries.length === 0) {
 console.log("No Geofences were found in the collection.");

开始使用 1056

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/location/#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 } else {
 for (const geofenceEntry of geofenceEntries) {
 console.log(`Geofence ID: ${geofenceEntry.CollectionName}`);
 }
 }
 } catch (error) {
 console.error(
 `A validation error occurred while creating geofence: ${error} \n Exiting
 program.`,
);
 return;
 }
};

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的以下主
题。

• ListGeofenceCollections

• ListGeofences

基本功能

了解基本功能

以下代码示例展示了如何：

• 创建 Amazon Location 地图。

• 创建 Amazon Location API 密钥。

• 显示地图 URL。

• 创建地理围栏集合。

• 存储地理围栏几何结构。

• 创建跟踪器资源。

• 更新设备的位置。

• 检索指定设备的最新位置更新。

• 创建路线计算器。

• 确定西雅图和温哥华之间的距离。

基本功能 1057

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/location/command/ListGeofenceCollectionsCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/location/command/ListGeofencesCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 使用更高级别的 Amazon 位置 APIs。

• 删除 Amazon Location 资产。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

/*
Before running this JavaScript code example, set up your development environment,
 including your credentials.
This demo illustrates how to use the AWS SDK for JavaScript (v3) to work with Amazon
 Location Service.

For more information, see the following documentation topic:

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/getting-
started.html
*/

import {
 Scenario,
 ScenarioAction,
 ScenarioInput,
 ScenarioOutput,
} from "@aws-doc-sdk-examples/lib/scenario/index.js";

import {
 CreateMapCommand,
 CreateGeofenceCollectionCommand,
 PutGeofenceCommand,
 CreateTrackerCommand,
 BatchUpdateDevicePositionCommand,
 GetDevicePositionCommand,
 CreateRouteCalculatorCommand,
 CalculateRouteCommand,
 LocationClient,

基本功能 1058

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/location/scenarios#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 ConflictException,
 ResourceNotFoundException,
 DeleteGeofenceCollectionCommand,
 DeleteRouteCalculatorCommand,
 DeleteTrackerCommand,
 DeleteMapCommand,
} from "@aws-sdk/client-location";

import {
 GeoPlacesClient,
 ReverseGeocodeCommand,
 SearchNearbyCommand,
 SearchTextCommand,
 GetPlaceCommand,
 ValidationException,
} from "@aws-sdk/client-geo-places";

import { parseArgs } from "node:util";
import { fileURLToPath } from "node:url";

/*The inputs for this example can be edited in the ./input.json.*/
import data from "./inputs.json" with { type: "json" };

/**
 * Used repeatedly to have the user press enter.
 * @type {ScenarioInput}
 */
/* v8 ignore next 3 */
const pressEnter = new ScenarioInput("continue", "Press Enter to continue", {
 type: "confirm",
 verbose: "false",
});

const pressEnterConfirm = new ScenarioInput(
 "confirm",
 "Press Enter to continue",
 {
 type: "confirm",
 verbose: "false",
 },
);

const region = "eu-west-1";

基本功能 1059

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const locationClient = new LocationClient({ region: region });

const greet = new ScenarioOutput(
 "greet",
 "Welcome to the Amazon Location Use demo! \n" +
 "AWS Location Service is a fully managed service offered by Amazon Web Services
 (AWS) that " +
 "provides location-based services for developers. This service simplifies " +
 "the integration of location-based features into applications, making it " +
 "Maps: The service provides access to high-quality maps, satellite imagery, " +
 "and geospatial data from various providers, allowing developers to " +
 "easily embed maps into their applications:\n" +
 "Tracking: The Location Service enables real-time tracking of mobile devices, "
 +
 "assets, or other entities, allowing developers to build applications " +
 "that can monitor the location of people, vehicles, or other objects.\n" +
 "Geocoding: The service provides the ability to convert addresses or " +
 "location names into geographic coordinates (latitude and longitude), " +
 "and vice versa, enabling developers to integrate location-based search " +
 "and routing functionality into their applications. " +
 "Please define values ./inputs.json for each user-defined variable used in this
 app. Otherwise the default is used:\n" +
 "- mapName: The name of the map to be create (default is 'AWSMap').\n" +
 "- keyName: The name of the API key to create (default is ' AWSApiKey')\n" +
 "- collectionName: The name of the geofence collection (default is
 'AWSLocationCollection')\n" +
 "- geoId: The geographic identifier used for the geofence or map (default is
 'geoId')\n" +
 "- trackerName: The name of the tracker (default is 'geoTracker')\n" +
 "- calculatorName: The name of the route calculator (default is
 'AWSRouteCalc')\n" +
 "- deviceId: The ID of the device (default is 'iPhone-112356')",

 { header: true },
);
const displayCreateAMap = new ScenarioOutput(
 "displayCreateAMap",
 "1. Create a map\n" +
 "An AWS Location map can enhance the user experience of your " +
 " application by providing accurate and personalized location-based " +
 " features. For example, you could use the geocoding capabilities to " +
 " allow users to search for and locate businesses, landmarks, or " +
 " other points of interest within a specific region.",
);

基本功能 1060

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const sdkCreateAMap = new ScenarioAction(
 "sdkCreateAMap",
 async (/** @type {State} */ state) => {
 const createMapParams = {
 MapName: `${data.inputs.mapName}`,
 Configuration: { style: "VectorEsriNavigation" },
 };
 try {
 const command = new CreateMapCommand(createMapParams);
 const response = await locationClient.send(command);
 state.MapName = response.MapName;
 console.log("Map created. Map ARN is: ", state.MapName);
 } catch (error) {
 console.error("Error creating map: ", error);
 throw error;
 }
 },
);

const displayMapUrl = new ScenarioOutput(
 "displayMapUrl",
 "2. Display Map URL\n" +
 "When you embed a map in a web app or website, the API key is " +
 "included in the map tile URL to authenticate requests. You can " +
 "restrict API keys to specific AWS Location operations (e.g., only " +
 "maps, not geocoding). API keys can expire, ensuring temporary " +
 "access control.\n" +
 "In order to get the MAP URL you need to create and get the API Key value. " +
 "You can create and get the key value using the AWS Management Console under " +
 "Location Services. These operations cannot be completed using the " +
 "AWS SDK. For more information about getting the key value, see " +
 "the AWS Location Documentation.",
);

const sdkDisplayMapUrl = new ScenarioAction(
 "sdkDisplayMapUrl",
 async (/** @type {State} */ state) => {
 const mapURL = `https://maps.geo.aws.amazon.com/maps/v0/maps/${state.MapName}/
tiles/{z}/{x}/{y}?key=API_KEY_VALUE`;
 state.mapURL = mapURL;
 console.log(

基本功能 1061

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 `Replace \'API_KEY_VALUE\' in the following URL with the value for the API key
 you create and get from the AWS Management Console under Location Services. This is
 then the Map URL you can embed this URL in your Web app:\n
${state.mapURL}`,
);
 },
);
const displayCreateGeoFenceColl = new ScenarioOutput(
 "displayCreateGeoFenceColl",
 "3. Create a geofence collection, which manages and stores geofences.",
);

const sdkCreateGeoFenceColl = new ScenarioAction(
 "sdkCreateGeoFenceColl",
 async (/** @type {State} */ state) => {
 // Creates a new geofence collection.
 const geoFenceCollParams = {
 CollectionName: `${data.inputs.collectionName}`,
 };
 try {
 const command = new CreateGeofenceCollectionCommand(geoFenceCollParams);
 const response = await locationClient.send(command);
 state.CollectionName = response.CollectionName;
 console.log(
 `The geofence collection was successfully created: ${state.CollectionName}`,
);
 } catch (caught) {
 if (caught instanceof ConflictException) {
 console.error(
 `An unexpected error occurred while creating the geofence collection:
 ${caught.message} \n Exiting program.`,
);
 return;
 }
 }
 },
);
const displayStoreGeometry = new ScenarioOutput(
 "displayStoreGeometry",
 "4. Store a geofence geometry in a given geofence collection. " +
 "An AWS Location geofence is a virtual boundary that defines a geographic area "
 +
 "on a map. It is a useful feature for tracking the location of " +
 "assets or monitoring the movement of objects within a specific region. " +

基本功能 1062

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 "To define a geofence, you need to specify the coordinates of a " +
 "polygon that represents the area of interest. The polygon must be " +
 "defined in a counter-clockwise direction, meaning that the points of " +
 "the polygon must be listed in a counter-clockwise order. " +
 "This is a requirement for the AWS Location service to correctly " +
 "interpret the geofence and ensure that the location data is " +
 "accurately processed within the defined area.",
);

const sdkStoreGeometry = new ScenarioAction(
 "sdkStoreGeometry",
 async (/** @type {State} */ state) => {
 const geoFenceGeoParams = {
 CollectionName: `${data.inputs.collectionName}`,
 GeofenceId: `${data.inputs.geoId}`,
 Geometry: {
 Polygon: [
 [
 [-122.3381, 47.6101],
 [-122.3281, 47.6101],
 [-122.3281, 47.6201],
 [-122.3381, 47.6201],
 [-122.3381, 47.6101],
],
],
 },
 };
 try {
 const command = new PutGeofenceCommand(geoFenceGeoParams);
 const response = await locationClient.send(command);
 state.GeoFencId = response.GeofenceId;
 console.log("GeoFence created. GeoFence ID is: ", state.GeoFencId);
 } catch (caught) {
 if (caught instanceof ValidationException) {
 console.error(
 `A validation error occurred while creating geofence: ${caught.message} \n
 Exiting program.`,
);
 return;
 }
 }
 },
);
const displayCreateTracker = new ScenarioOutput(

基本功能 1063

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 "displayCreateTracker",
 "5. Create a tracker resource which lets you retrieve current and historical
 location of devices.",
);

const sdkCreateTracker = new ScenarioAction(
 "sdkCreateTracker",
 async (/** @type {State} */ state) => {
 //Creates a new tracker resource in your AWS account, which you can use to track
 the location of devices.
 const createTrackerParams = {
 TrackerName: `${data.inputs.trackerName}`,
 Description: "Created using the JavaScript V3 SDK",
 PositionFiltering: "TimeBased",
 };
 try {
 const command = new CreateTrackerCommand(createTrackerParams);
 const response = await locationClient.send(command);
 state.trackerName = response.TrackerName;
 console.log("Tracker created. Tracker name is : ", state.trackerName);
 } catch (caught) {
 if (caught instanceof ResourceNotFoundException) {
 console.error(
 `A validation error occurred while creating geofence: ${caught.message} \n
 Exiting program.`,
);
 } else {
 `An unexpected error error occurred: ${caught.message} \n Exiting program.`;
 }
 return;
 }
 },
);
const displayUpdatePosition = new ScenarioOutput(
 "displayUpdatePosition",
 "6. Update the position of a device in the location tracking system." +
 "The AWS Location Service does not enforce a strict format for deviceId, but it
 must:\n " +
 "- Be a string (case-sensitive).\n" +
 "- Be 1–100 characters long.\n" +
 "- Contain only: Alphanumeric characters (A-Z, a-z, 0-9); Underscores (_);
 Hyphens (-); and be the same ID used when sending and retrieving positions.",
);

基本功能 1064

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const sdkUpdatePosition = new ScenarioAction(
 "sdkUpdatePosition",
 async (/** @type {State} */ state) => {
 // Updates the position of a device in the location tracking system.

 const updateDevicePosParams = {
 TrackerName: `${data.inputs.trackerName}`,
 Updates: [
 {
 DeviceId: `${data.inputs.deviceId}`,
 SampleTime: new Date(),
 Position: [-122.4194, 37.7749],
 },
],
 };
 try {
 const command = new BatchUpdateDevicePositionCommand(
 updateDevicePosParams,
);
 const response = await locationClient.send(command);
 console.log(
 `Device with id ${data.inputs.deviceId} was successfully updated in the
 location tracking system. `,
);
 } catch (caught) {
 if (caught instanceof ResourceNotFoundException) {
 console.error(
 `A validation error occurred while updating the device: ${caught.message}
 \n Exiting program.`,
);
 }
 }
 },
);
const displayRetrievePosition = new ScenarioOutput(
 "displayRetrievePosition",
 "7. Retrieve the most recent position update for a specified device.",
);

const sdkRetrievePosition = new ScenarioAction(
 "sdkRetrievePosition",
 async (/** @type {State} */ state) => {
 const devicePositionParams = {
 TrackerName: `${data.inputs.trackerName}`,

基本功能 1065

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 DeviceId: `${data.inputs.deviceId}`,
 };
 try {
 const command = new GetDevicePositionCommand(devicePositionParams);
 const response = await locationClient.send(command);
 state.position = response.Position;
 console.log("Successfully fetched device position: : ", state.position);
 } catch (caught) {
 if (caught instanceof ResourceNotFoundException) {
 console.error(
 `"The resource was not found: ${caught.message} \n Exiting program.`,
);
 } else {
 `An unexpected error error occurred: ${caught.message} \n Exiting program.`;
 }
 return;
 }
 },
);
const displayCreateRouteCalc = new ScenarioOutput(
 "displayCreateRouteCalc",
 "8. Create a route calculator.",
);

const sdkCreateRouteCalc = new ScenarioAction(
 "sdkCreateRouteCalc",
 async (/** @type {State} */ state) => {
 const routeCalcParams = {
 CalculatorName: `${data.inputs.calculatorName}`,
 DataSource: "Esri",
 };
 try {
 // Creates a new route calculator with the specified name and data source.
 const command = new CreateRouteCalculatorCommand(routeCalcParams);
 const response = await locationClient.send(command);
 state.CalculatorName = response.CalculatorName;
 console.log(
 "Route calculator created successfully. Calculator name is: ",
 state.CalculatorName,
);
 } catch (caught) {
 if (caught instanceof ConflictException) {
 console.error(
 `An conflict occurred: ${caught.message} \n Exiting program.`,

基本功能 1066

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

);
 return;
 }
 }
 },
);
const displayDetermineDist = new ScenarioOutput(
 "displayDetermineDist",
 "9. Determine the distance between Seattle and Vancouver using the route
 calculator.",
);

const sdkDetermineDist = new ScenarioAction(
 "sdkDetermineDist",
 async (/** @type {State} */ state) => {
 // Calculates the distance between two locations asynchronously.
 const determineDist = {
 CalculatorName: `${data.inputs.calculatorName}`,
 DeparturePosition: [-122.3321, 47.6062],
 DestinationPosition: [-123.1216, 49.2827],
 TravelMode: "Car",
 DistanceUnit: "Kilometers",
 };
 try {
 const command = new CalculateRouteCommand(determineDist);
 const response = await locationClient.send(command);

 console.log(
 "Successfully calculated route. The distance in kilometers is : ",
 response.Summary.Distance,
);
 } catch (caught) {
 if (caught instanceof ResourceNotFoundException) {
 console.error(
 `Failed to calculate route: ${caught.message} \n Exiting program.`,
);
 }
 return;
 }
 },
);
const displayUseGeoPlacesClient = new ScenarioOutput(
 "displayUseGeoPlacesClient",
 "10. Use the GeoPlacesAsyncClient to perform additional operations. " +

基本功能 1067

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 "This scenario will show use of the GeoPlacesClient that enables" +
 "location search and geocoding capabilities for your applications. " +
 "We are going to use this client to perform these AWS Location tasks: \n" +
 " - Reverse Geocoding (reverseGeocode): Converts geographic coordinates into
 addresses.\n " +
 " - Place Search (searchText): Finds places based on search queries.\n " +
 " - Nearby Search (searchNearby): Finds places near a specific location.\n " +
 "First we will perform a Reverse Geocoding operation",
);

const sdkUseGeoPlacesClient = new ScenarioAction(
 "sdkUseGeoPlacesClient",
 async (/** @type {State} */ state) => {
 const geoPlacesClient = new GeoPlacesClient({ region: region });

 const reverseGeoCodeParams = {
 QueryPosition: [-122.4194, 37.7749],
 };
 const searchTextParams = {
 QueryText: "coffee shop",
 BiasPosition: [-122.4194, 37.7749], //San Fransisco
 };
 const searchNearbyParams = {
 QueryPosition: [-122.4194, 37.7749],
 QueryRadius: Number("1000"),
 };
 try {
 /* Performs reverse geocoding using the AWS Geo Places API.
 Reverse geocoding is the process of converting geographic coordinates (latitude
 and longitude) to a human-readable address.
 This method uses the latitude and longitude of San Francisco as the input, and
 prints the resulting address.*/

 console.log("Use latitude 37.7749 and longitude -122.4194.");
 const command = new ReverseGeocodeCommand(reverseGeoCodeParams);
 const response = await geoPlacesClient.send(command);
 console.log(
 "Successfully calculated route. The distance in kilometers is : ",
 response.ResultItems[0].Distance,
);
 } catch (caught) {
 if (caught instanceof ValidationException) {
 console.error(
 `An conflict occurred: ${caught.message} \n Exiting program.`,

基本功能 1068

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

);
 return;
 }
 }
 try {
 console.log(
 "Now we are going to perform a text search using coffee shop",
);

 /*Searches for a place using the provided search query and prints the detailed
 information of the first result.
 @param searchTextParams the search query to be used for the place search (ex,
 coffee shop)*/

 const command = new SearchTextCommand(searchTextParams);
 const response = await geoPlacesClient.send(command);
 const placeId = response.ResultItems[0].PlaceId.toString();
 const getPlaceCommand = new GetPlaceCommand({
 PlaceId: placeId,
 });
 const getPlaceResponse = await geoPlacesClient.send(getPlaceCommand);
 console.log(
 `Detailed Place Information: \n Name and address:
 ${getPlaceResponse.Address.Label}`,
);

 const foodTypes = getPlaceResponse.FoodTypes;
 if (foodTypes.length) {
 console.log("Food Types: ");
 for (const foodType of foodTypes) {
 console.log("- ", foodType.LocalizedName);
 }
 } else {
 console.log("No food types available.");
 }
 } catch (caught) {
 if (caught instanceof ValidationException) {
 console.error(
 `An conflict occurred: ${caught.message} \n Exiting program.`,
);
 return;
 }
 }
 try {

基本功能 1069

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 console.log("\nNow we are going to perform a nearby search.");
 const command = new SearchNearbyCommand(searchNearbyParams);
 const response = await geoPlacesClient.send(command);
 const resultItems = response.ResultItems;
 console.log("\nSuccessfully performed nearby search.");
 for (const resultItem of resultItems) {
 console.log("Name and address: ", resultItem.Address.Label);
 console.log("Distance: ", resultItem.Distance);
 }
 } catch (caught) {
 if (caught instanceof ValidationException) {
 console.error(
 `An conflict occurred: ${caught.message} \n Exiting program.`,
);
 return;
 }
 }
 },
);

const displayDeleteResources = new ScenarioOutput(
 "displayDeleteResources",
 "11. Delete the AWS Location Services resources. " +
 "Would you like to delete the AWS Location Services resources? (y/n)",
);

const sdkDeleteResources = new ScenarioAction(
 "sdkDeleteResources",
 async (/** @type {State} */ state) => {
 const deleteGeofenceCollParams = {
 CollectionName: `${state.CollectionName}`,
 };
 const deleteRouteCalculatorParams = {
 CalculatorName: `${state.CalculatorName}`,
 };
 const deleteTrackerParams = { TrackerName: `${state.trackerName}` };
 const deleteMapParams = { MapName: `${state.MapName}` };
 try {
 const command = new DeleteMapCommand(deleteMapParams);
 const response = await locationClient.send(command);
 console.log("Map deleted.");
 } catch (error) {
 console.log("Error deleting map: ", error);
 }

基本功能 1070

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 try {
 const command = new DeleteGeofenceCollectionCommand(
 deleteGeofenceCollParams,
);
 const response = await locationClient.send(command);
 console.log("Geofence collection deleted.");
 } catch (error) {
 console.log("Error deleting geofence collection: ", error);
 }
 try {
 const command = new DeleteRouteCalculatorCommand(
 deleteRouteCalculatorParams,
);
 const response = await locationClient.send(command);
 console.log("Route calculator deleted.");
 } catch (error) {
 console.log("Error deleting route calculator: ", error);
 }
 try {
 const command = new DeleteTrackerCommand(deleteTrackerParams);
 const response = await locationClient.send(command);
 console.log("Tracker deleted.");
 } catch (error) {
 console.log("Error deleting tracker: ", error);
 }
 },
);

const goodbye = new ScenarioOutput(
 "goodbye",
 "Thank you for checking out the Amazon Location Service Use demo. We hope you " +
 "learned something new, or got some inspiration for your own apps today!" +
 " For more Amazon Location Services examples in different programming languages,
 have a look at: " +
 "https://docs.aws.amazon.com/code-library/latest/ug/
location_code_examples.html",
);

const myScenario = new Scenario("Location Services Scenario", [
 greet,
 pressEnter,
 displayCreateAMap,
 sdkCreateAMap,
 pressEnter,

基本功能 1071

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 displayMapUrl,
 sdkDisplayMapUrl,
 pressEnter,
 displayCreateGeoFenceColl,
 sdkCreateGeoFenceColl,
 pressEnter,
 displayStoreGeometry,
 sdkStoreGeometry,
 pressEnter,
 displayCreateTracker,
 sdkCreateTracker,
 pressEnter,
 displayUpdatePosition,
 sdkUpdatePosition,
 pressEnter,
 displayRetrievePosition,
 sdkRetrievePosition,
 pressEnter,
 displayCreateRouteCalc,
 sdkCreateRouteCalc,
 pressEnter,
 displayDetermineDist,
 sdkDetermineDist,
 pressEnter,
 displayUseGeoPlacesClient,
 sdkUseGeoPlacesClient,
 pressEnter,
 displayDeleteResources,
 pressEnterConfirm,
 sdkDeleteResources,
 goodbye,
]);

/** @type {{ stepHandlerOptions: StepHandlerOptions }} */
export const main = async (stepHandlerOptions) => {
 await myScenario.run(stepHandlerOptions);
};

// Invoke main function if this file was run directly.
if (process.argv[1] === fileURLToPath(import.meta.url)) {
 const { values } = parseArgs({
 options: {
 yes: {
 type: "boolean",

基本功能 1072

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 short: "y",
 },
 },
 });
 main({ confirmAll: values.yes });
}

操作

BatchUpdateDevicePosition

以下代码示例演示了如何使用 BatchUpdateDevicePosition。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { fileURLToPath } from "node:url";
import {
 BatchUpdateDevicePositionCommand,
 LocationClient,
 ResourceNotFoundException,
} from "@aws-sdk/client-location";
import data from "./inputs.json" with { type: "json" };
const region = "eu-west-1";
const locationClient = new LocationClient({ region: region });
const updateDevicePosParams = {
 TrackerName: `${data.inputs.trackerName}`,
 Updates: [
 {
 DeviceId: `${data.inputs.deviceId}`,
 SampleTime: new Date(),
 Position: [-122.4194, 37.7749],
 },
],
};

操作 1073

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/location/actions#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

export const main = async () => {
 try {
 const command = new BatchUpdateDevicePositionCommand(updateDevicePosParams);
 const response = await locationClient.send(command);
 //console.log("response ", response.Errors[0].Error);

 console.log(
 `Device with id ${data.inputs.deviceId} was successfully updated in the
 location tracking system. `,
 response,
);
 } catch (error) {
 console.log("error ", error);
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考BatchUpdateDevicePosition中的。

CalculateRoute

以下代码示例演示了如何使用 CalculateRoute。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { fileURLToPath } from "node:url";
import {
 CalculateRouteCommand,
 ResourceNotFoundException,
 LocationClient,
} from "@aws-sdk/client-location";
import data from "./inputs.json" with { type: "json" };

操作 1074

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/location/command/BatchUpdateDevicePositionCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/location/actions#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const region = "eu-west-1";
const locationClient = new LocationClient({ region: region });

export const main = async () => {
 const routeCalcParams = {
 CalculatorName: `${data.inputs.calculatorName}`,
 DeparturePosition: [-122.3321, 47.6062],
 DestinationPosition: [-123.1216, 49.2827],
 TravelMode: "Car",
 DistanceUnit: "Kilometers",
 };
 try {
 const command = new CalculateRouteCommand(routeCalcParams);
 const response = await locationClient.send(command);

 console.log(
 "Successfully calculated route. The distance in kilometers is : ",
 response.Summary.Distance,
);
 } catch (caught) {
 if (caught instanceof ResourceNotFoundException) {
 console.error(
 `An conflict occurred: ${caught.message} \n Exiting program.`,
);
 return;
 }
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考CalculateRoute中
的。

CreateGeofenceCollection

以下代码示例演示了如何使用 CreateGeofenceCollection。

操作 1075

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/location/command/CalculateRouteCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { fileURLToPath } from "node:url";
import {
 ConflictException,
 CreateGeofenceCollectionCommand,
 LocationClient,
} from "@aws-sdk/client-location";
import data from "./inputs.json" with { type: "json" };

const region = "eu-west-1";

export const main = async () => {
 const geoFenceCollParams = {
 CollectionName: `${data.inputs.collectionName}`,
 };
 const locationClient = new LocationClient({ region: region });
 try {
 const command = new CreateGeofenceCollectionCommand(geoFenceCollParams);
 const response = await locationClient.send(command);
 console.log(
 "Collection created. Collection name is: ",
 response.CollectionName,
);
 } catch (caught) {
 if (caught instanceof ConflictException) {
 console.error("A conflict occurred. Exiting program.");
 return;
 }
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考CreateGeofenceCollection中的。

操作 1076

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/location/actions#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/location/command/CreateGeofenceCollectionCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

CreateMap

以下代码示例演示了如何使用 CreateMap。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { fileURLToPath } from "node:url";
import { CreateMapCommand, LocationClient } from "@aws-sdk/client-location";
import data from "./inputs.json" with { type: "json" };

const region = "eu-west-1";

export const main = async () => {
 const CreateMapCommandInput = {
 MapName: `${data.inputs.mapName}`,
 Configuration: { style: "VectorEsriNavigation" },
 };
 const locationClient = new LocationClient({ region: region });
 try {
 const command = new CreateMapCommand(CreateMapCommandInput);
 const response = await locationClient.send(command);
 console.log("Map created. Map ARN is : ", response.MapArn);
 } catch (error) {
 console.error("Error creating map: ", error);
 throw error;
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考CreateMap中的。

CreateRouteCalculator

以下代码示例演示了如何使用 CreateRouteCalculator。

操作 1077

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/location/actions#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/location/command/CreateMapCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { fileURLToPath } from "node:url";
import {
 ConflictException,
 CreateRouteCalculatorCommand,
 LocationClient,
} from "@aws-sdk/client-location";
import data from "./inputs.json" with { type: "json" };

const region = "eu-west-1";
const locationClient = new LocationClient({ region: region });

export const main = async () => {
 const routeCalcParams = {
 CalculatorName: `${data.inputs.calculatorName}`,
 DataSource: "Esri",
 };
 try {
 const command = new CreateRouteCalculatorCommand(routeCalcParams);
 const response = await locationClient.send(command);

 console.log(
 "Route calculator created successfully. Calculator name is ",
 response.CalculatorName,
);
 } catch (caught) {
 if (caught instanceof ConflictException) {
 console.error(
 `An conflict occurred: ${caught.message} \n Exiting program.`,
);
 return;
 }
 }
};

操作 1078

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/location/actions#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考CreateRouteCalculator中的。

CreateTracker

以下代码示例演示了如何使用 CreateTracker。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { fileURLToPath } from "node:url";
import { CreateTrackerCommand, LocationClient } from "@aws-sdk/client-location";
import data from "./inputs.json" with { type: "json" };

const region = "eu-west-1";

export const main = async () => {
 const createTrackerParams = {
 TrackerName: `${data.inputs.trackerName}`,
 };
 const locationClient = new LocationClient({ region: region });
 try {
 const command = new CreateTrackerCommand(createTrackerParams);
 const response = await locationClient.send(command);
 //state.trackerName - response.TrackerName;
 console.log("Tracker created. Tracker name is : ", response.TrackerName);
 } catch (error) {
 console.error("Error creating map: ", error);
 throw error;
 }
};

操作 1079

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/location/command/CreateRouteCalculatorCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/location/actions#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考CreateTracker中的。

DeleteGeofenceCollection

以下代码示例演示了如何使用 DeleteGeofenceCollection。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { fileURLToPath } from "node:url";
import {
 DeleteGeofenceCollectionCommand,
 LocationClient,
 ResourceNotFoundException,
} from "@aws-sdk/client-location";
import data from "./inputs.json" with { type: "json" };

const region = "eu-west-1";

export const main = async () => {
 const deleteGeofenceCollParams = {
 CollectionName: `${data.inputs.collectionName}`,
 };
 const locationClient = new LocationClient({ region: region });
 try {
 const command = new DeleteGeofenceCollectionCommand(
 deleteGeofenceCollParams,
);
 const response = await locationClient.send(command);
 console.log("Collection deleted.");
 } catch (caught) {
 if (caught instanceof ResourceNotFoundException) {
 console.error(
 `${data.inputs.collectionName} Geofence collection not found.`,
);
 return;
 }

操作 1080

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/location/command/CreateTrackerCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/location/actions#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考DeleteGeofenceCollection中的。

DeleteMap

以下代码示例演示了如何使用 DeleteMap。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { fileURLToPath } from "node:url";
import {
 DeleteMapCommand,
 LocationClient,
 ResourceNotFoundException,
} from "@aws-sdk/client-location";
import data from "./inputs.json" with { type: "json" };

const region = "eu-west-1";

export const main = async () => {
 const deleteMapParams = {
 MapName: `${data.inputs.mapName}`,
 };
 try {
 const locationClient = new LocationClient({ region: region });
 const command = new DeleteMapCommand(deleteMapParams);
 const response = await locationClient.send(command);
 console.log("Map deleted.");
 } catch (caught) {
 if (caught instanceof ResourceNotFoundException) {

操作 1081

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/location/command/DeleteGeofenceCollectionCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/location/actions#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 console.error(`${data.inputs.mapName} map not found.`);
 return;
 }
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DeleteMap中的。

DeleteRouteCalculator

以下代码示例演示了如何使用 DeleteRouteCalculator。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { fileURLToPath } from "node:url";
import {
 DeleteRouteCalculatorCommand,
 LocationClient,
 ResourceNotFoundException,
} from "@aws-sdk/client-location";
import data from "./inputs.json" with { type: "json" };

const region = "eu-west-1";

export const main = async () => {
 const deleteRouteCalculatorParams = {
 CalculatorName: `${data.inputs.calculatorName}`,
 };
 try {
 const locationClient = new LocationClient({ region: region });
 const command = new DeleteRouteCalculatorCommand(
 deleteRouteCalculatorParams,
);
 const response = await locationClient.send(command);

操作 1082

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/location/command/DeleteMapCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/location/actions#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 console.log("Route calculator deleted.");
 } catch (caught) {
 if (caught instanceof ResourceNotFoundException) {
 console.error(
 `${data.inputs.calculatorName} route calculator not found.`,
);
 return;
 }
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考DeleteRouteCalculator中的。

DeleteTracker

以下代码示例演示了如何使用 DeleteTracker。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { fileURLToPath } from "node:url";
import {
 DeleteTrackerCommand,
 LocationClient,
 ResourceNotFoundException,
} from "@aws-sdk/client-location";
import data from "./inputs.json" with { type: "json" };

const region = "eu-west-1";

export const main = async () => {
 const deleteTrackerParams = {
 TrackerName: `${data.inputs.trackerName}`,

操作 1083

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/location/command/DeleteRouteCalculatorCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/location/actions#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 };
 try {
 const locationClient = new LocationClient({ region: region });
 const command = new DeleteTrackerCommand(deleteTrackerParams);
 const response = await locationClient.send(command);
 console.log("Tracker deleted.");
 } catch (caught) {
 if (caught instanceof ResourceNotFoundException) {
 console.error(`${data.inputs.trackerName} tracker not found.`);
 return;
 }
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DeleteTracker中的。

GetDevicePosition

以下代码示例演示了如何使用 GetDevicePosition。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { fileURLToPath } from "node:url";
import {
 GetDevicePositionCommand,
 LocationClient,
 ResourceNotFoundException,
} from "@aws-sdk/client-location";
import data from "./inputs.json" with { type: "json" };

const region = "eu-west-1";

export const main = async () => {

操作 1084

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/location/command/DeleteTrackerCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/location/actions#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const locationClient = new LocationClient({ region: region });
 const deviceId = `${data.inputs.deviceId}`;
 const trackerName = `${data.inputs.trackerName}`;

 const devicePositionParams = {
 DeviceId: deviceId,
 TrackerName: trackerName,
 };
 try {
 const command = new GetDevicePositionCommand(devicePositionParams);
 const response = await locationClient.send(command);
 //state.position = response.position;
 console.log("Successfully fetched device position: ", response);
 } catch (error) {
 console.log("Error ", error);
 /* if (caught instanceof ResourceNotFoundException) {
 console.error(
 `"The resource was not found: ${caught.message} \n Exiting program.`,
);
 } else {
 `An unexpected error error occurred: ${caught.message} \n Exiting program.`;
 }
 return;*/
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考GetDevicePosition中
的。

PutGeofence

以下代码示例演示了如何使用 PutGeofence。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

操作 1085

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/location/command/GetDevicePositionCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/location/actions#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

import { fileURLToPath } from "node:url";
import {
 PutGeofenceCommand,
 LocationClient,
 ValidationException,
} from "@aws-sdk/client-location";
import data from "./inputs.json" with { type: "json" };

const region = "eu-west-1";
const locationClient = new LocationClient({ region: region });
export const main = async () => {
 const geoFenceGeoParams = {
 CollectionName: `${data.inputs.collectionName}`,
 GeofenceId: `${data.inputs.geoId}`,
 Geometry: {
 Polygon: [
 [
 [-122.3381, 47.6101],
 [-122.3281, 47.6101],
 [-122.3281, 47.6201],
 [-122.3381, 47.6201],
 [-122.3381, 47.6101],
],
],
 },
 };
 try {
 const command = new PutGeofenceCommand(geoFenceGeoParams);
 const response = await locationClient.send(command);
 console.log("GeoFence created. GeoFence ID is: ", response.GeofenceId);
 } catch (error) {
 console.error(
 `A validation error occurred while creating geofence: ${error} \n Exiting
 program.`,
);
 return;
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考PutGeofence中的。

操作 1086

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/location/command/PutGeofenceCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

使用适用于 JavaScript (v3) 的软件开发工具包的亚马逊 MSK 示例

以下代码示例向您展示如何使用带有 Amazon MSK 的 适用于 JavaScript 的 Amazon SDK (v3) 来执行
操作和实现常见场景。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

• 无服务器示例

无服务器示例

通过 Amazon MSK 触发器调用 Lambda 函数

以下代码示例演示如何实现一个 Lambda 函数，该函数接收通过接收来自 Amazon MSK 集群的记录而
触发的事件。该函数检索 MSK 有效负载，并记录下记录内容。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在无服务器示例存储库中查找完整示例，并了解如何进行设置
和运行。

使用 Lambda JavaScript 使用亚马逊 MSK 事件。

exports.handler = async (event) => {
 // Iterate through keys
 for (let key in event.records) {
 console.log('Key: ', key)
 // Iterate through records
 event.records[key].map((record) => {
 console.log('Record: ', record)
 // Decode base64
 const msg = Buffer.from(record.value, 'base64').toString()
 console.log('Message:', msg)

Amazon MSK 1087

https://github.com/aws-samples/serverless-snippets/tree/main/integration-msk-to-lambda

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 })
 }
}

使用 Lambda TypeScript 使用亚马逊 MSK 事件。

import { MSKEvent, Context } from "aws-lambda";
import { Buffer } from "buffer";
import { Logger } from "@aws-lambda-powertools/logger";

const logger = new Logger({
 logLevel: "INFO",
 serviceName: "msk-handler-sample",
});

export const handler = async (
 event: MSKEvent,
 context: Context
): Promise<void> => {
 for (const [topic, topicRecords] of Object.entries(event.records)) {
 logger.info(`Processing key: ${topic}`);

 // Process each record in the partition
 for (const record of topicRecords) {
 try {
 // Decode the message value from base64
 const decodedMessage = Buffer.from(record.value, 'base64').toString();

 logger.info({
 message: decodedMessage
 });
 }
 catch (error) {
 logger.error('Error processing event', { error });
 throw error;
 }
 };
 }
}

无服务器示例 1088

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

Amazon 使用适用于 JavaScript (v3) 的软件开发工具包对示例进行
个性化设置

以下代码示例向您展示了如何使用带有 Amazon Personalize 的 适用于 JavaScript 的 Amazon SDK
(v3) 来执行操作和实现常见场景。

操作是大型程序的代码摘录，必须在上下文中运行。您可以通过操作了解如何调用单个服务函数，还可
以通过函数相关场景的上下文查看操作。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

• 操作

操作

CreateBatchInferenceJob

以下代码示例演示了如何使用 CreateBatchInferenceJob。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

// Get service clients module and commands using ES6 syntax.
import { CreateBatchInferenceJobCommand } from "@aws-sdk/client-personalize";
import { personalizeClient } from "./libs/personalizeClients.js";

// Or, create the client here.
// const personalizeClient = new PersonalizeClient({ region: "REGION"});

// Set the batch inference job's parameters.

Amazon Personalize 1089

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/personalize#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

export const createBatchInferenceJobParam = {
 jobName: "JOB_NAME",
 jobInput: {
 s3DataSource: {
 path: "INPUT_PATH",
 },
 },
 jobOutput: {
 s3DataDestination: {
 path: "OUTPUT_PATH",
 },
 },
 roleArn: "ROLE_ARN",
 solutionVersionArn: "SOLUTION_VERSION_ARN",
 numResults: 20,
};

export const run = async () => {
 try {
 const response = await personalizeClient.send(
 new CreateBatchInferenceJobCommand(createBatchInferenceJobParam),
);
 console.log("Success", response);
 return response; // For unit tests.
 } catch (err) {
 console.log("Error", err);
 }
};
run();

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考CreateBatchInferenceJob中的。

CreateBatchSegmentJob

以下代码示例演示了如何使用 CreateBatchSegmentJob。

操作 1090

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/personalize/command/CreateBatchInferenceJobCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

// Get service clients module and commands using ES6 syntax.
import { CreateBatchSegmentJobCommand } from "@aws-sdk/client-personalize";
import { personalizeClient } from "./libs/personalizeClients.js";

// Or, create the client here.
// const personalizeClient = new PersonalizeClient({ region: "REGION"});

// Set the batch segment job's parameters.

export const createBatchSegmentJobParam = {
 jobName: "NAME",
 jobInput: {
 s3DataSource: {
 path: "INPUT_PATH",
 },
 },
 jobOutput: {
 s3DataDestination: {
 path: "OUTPUT_PATH",
 },
 },
 roleArn: "ROLE_ARN",
 solutionVersionArn: "SOLUTION_VERSION_ARN",
 numResults: 20,
};

export const run = async () => {
 try {
 const response = await personalizeClient.send(
 new CreateBatchSegmentJobCommand(createBatchSegmentJobParam),
);
 console.log("Success", response);
 return response; // For unit tests.
 } catch (err) {

操作 1091

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/personalize#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 console.log("Error", err);
 }
};
run();

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考CreateBatchSegmentJob中的。

CreateCampaign

以下代码示例演示了如何使用 CreateCampaign。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

// Get service clients module and commands using ES6 syntax.

import { CreateCampaignCommand } from "@aws-sdk/client-personalize";
import { personalizeClient } from "./libs/personalizeClients.js";

// Or, create the client here.
// const personalizeClient = new PersonalizeClient({ region: "REGION"});

// Set the campaign's parameters.
export const createCampaignParam = {
 solutionVersionArn: "SOLUTION_VERSION_ARN" /* required */,
 name: "NAME" /* required */,
 minProvisionedTPS: 1 /* optional integer */,
};

export const run = async () => {
 try {
 const response = await personalizeClient.send(
 new CreateCampaignCommand(createCampaignParam),
);

操作 1092

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/personalize/command/CreateBatchSegmentJobCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/personalize#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 console.log("Success", response);
 return response; // For unit tests.
 } catch (err) {
 console.log("Error", err);
 }
};
run();

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考CreateCampaign中
的。

CreateDataset

以下代码示例演示了如何使用 CreateDataset。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

// Get service clients module and commands using ES6 syntax.
import { CreateDatasetCommand } from "@aws-sdk/client-personalize";
import { personalizeClient } from "./libs/personalizeClients.js";

// Or, create the client here.
// const personalizeClient = new PersonalizeClient({ region: "REGION"});

// Set the dataset's parameters.
export const createDatasetParam = {
 datasetGroupArn: "DATASET_GROUP_ARN" /* required */,
 datasetType: "DATASET_TYPE" /* required */,
 name: "NAME" /* required */,
 schemaArn: "SCHEMA_ARN" /* required */,
};

export const run = async () => {
 try {

操作 1093

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/personalize/command/CreateCampaignCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/personalize#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const response = await personalizeClient.send(
 new CreateDatasetCommand(createDatasetParam),
);
 console.log("Success", response);
 return response; // For unit tests.
 } catch (err) {
 console.log("Error", err);
 }
};
run();

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考CreateDataset中
的。

CreateDatasetExportJob

以下代码示例演示了如何使用 CreateDatasetExportJob。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

// Get service clients module and commands using ES6 syntax.
import { CreateDatasetExportJobCommand } from "@aws-sdk/client-personalize";
import { personalizeClient } from "./libs/personalizeClients.js";

// Or, create the client here.
// const personalizeClient = new PersonalizeClient({ region: "REGION"});

// Set the export job parameters.
export const datasetExportJobParam = {
 datasetArn: "DATASET_ARN" /* required */,
 jobOutput: {
 s3DataDestination: {
 path: "S3_DESTINATION_PATH" /* required */,
 //kmsKeyArn: 'ARN' /* include if your bucket uses AWS KMS for encryption

操作 1094

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/personalize/command/CreateDatasetCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/personalize#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 },
 },
 jobName: "NAME" /* required */,
 roleArn: "ROLE_ARN" /* required */,
};

export const run = async () => {
 try {
 const response = await personalizeClient.send(
 new CreateDatasetExportJobCommand(datasetExportJobParam),
);
 console.log("Success", response);
 return response; // For unit tests.
 } catch (err) {
 console.log("Error", err);
 }
};
run();

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考CreateDatasetExportJob中的。

CreateDatasetGroup

以下代码示例演示了如何使用 CreateDatasetGroup。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

// Get service clients module and commands using ES6 syntax.

import { CreateDatasetGroupCommand } from "@aws-sdk/client-personalize";
import { personalizeClient } from "./libs/personalizeClients.js";

// Or, create the client here.

操作 1095

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/personalize/command/CreateDatasetExportJobCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/personalize#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

// const personalizeClient = new PersonalizeClient({ region: "REGION"});

// Set the dataset group parameters.
export const createDatasetGroupParam = {
 name: "NAME" /* required */,
};

export const run = async (createDatasetGroupParam) => {
 try {
 const response = await personalizeClient.send(
 new CreateDatasetGroupCommand(createDatasetGroupParam),
);
 console.log("Success", response);
 return "Run successfully"; // For unit tests.
 } catch (err) {
 console.log("Error", err);
 }
};
run(createDatasetGroupParam);

创建域数据集组。

// Get service clients module and commands using ES6 syntax.
import { CreateDatasetGroupCommand } from "@aws-sdk/client-personalize";
import { personalizeClient } from "./libs/personalizeClients.js";

// Or, create the client here.
// const personalizeClient = new PersonalizeClient({ region: "REGION"});

// Set the domain dataset group parameters.
export const domainDatasetGroupParams = {
 name: "NAME" /* required */,
 domain:
 "DOMAIN" /* required for a domain dsg, specify ECOMMERCE or VIDEO_ON_DEMAND */,
};

export const run = async () => {
 try {
 const response = await personalizeClient.send(
 new CreateDatasetGroupCommand(domainDatasetGroupParams),
);
 console.log("Success", response);

操作 1096

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 return response; // For unit tests.
 } catch (err) {
 console.log("Error", err);
 }
};
run();

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考CreateDatasetGroup中的。

CreateDatasetImportJob

以下代码示例演示了如何使用 CreateDatasetImportJob。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

// Get service clients module and commands using ES6 syntax.
import { CreateDatasetImportJobCommand } from "@aws-sdk/client-personalize";
import { personalizeClient } from "./libs/personalizeClients.js";

// Or, create the client here.
// const personalizeClient = new PersonalizeClient({ region: "REGION"});

// Set the dataset import job parameters.
export const datasetImportJobParam = {
 datasetArn: "DATASET_ARN" /* required */,
 dataSource: {
 /* required */
 dataLocation: "S3_PATH",
 },
 jobName: "NAME" /* required */,
 roleArn: "ROLE_ARN" /* required */,
};

操作 1097

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/personalize/command/CreateDatasetGroupCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/personalize#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

export const run = async () => {
 try {
 const response = await personalizeClient.send(
 new CreateDatasetImportJobCommand(datasetImportJobParam),
);
 console.log("Success", response);
 return response; // For unit tests.
 } catch (err) {
 console.log("Error", err);
 }
};
run();

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考CreateDatasetImportJob中的。

CreateEventTracker

以下代码示例演示了如何使用 CreateEventTracker。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

// Get service clients module and commands using ES6 syntax.
import { CreateEventTrackerCommand } from "@aws-sdk/client-personalize";
import { personalizeClient } from "./libs/personalizeClients.js";

// Or, create the client here.
// const personalizeClient = new PersonalizeClient({ region: "REGION"});

// Set the event tracker's parameters.
export const createEventTrackerParam = {
 datasetGroupArn: "DATASET_GROUP_ARN" /* required */,
 name: "NAME" /* required */,
};

操作 1098

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/personalize/command/CreateDatasetImportJobCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/personalize#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

export const run = async () => {
 try {
 const response = await personalizeClient.send(
 new CreateEventTrackerCommand(createEventTrackerParam),
);
 console.log("Success", response);
 return response; // For unit tests.
 } catch (err) {
 console.log("Error", err);
 }
};
run();

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考CreateEventTracker中的。

CreateFilter

以下代码示例演示了如何使用 CreateFilter。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

// Get service clients module and commands using ES6 syntax.
import { CreateFilterCommand } from "@aws-sdk/client-personalize";
import { personalizeClient } from "./libs/personalizeClients.js";
// Or, create the client here.
// const personalizeClient = new PersonalizeClient({ region: "REGION"});

// Set the filter's parameters.
export const createFilterParam = {
 datasetGroupArn: "DATASET_GROUP_ARN" /* required */,
 name: "NAME" /* required */,
 filterExpression: "FILTER_EXPRESSION" /*required */,

操作 1099

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/personalize/command/CreateEventTrackerCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/personalize#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

};

export const run = async () => {
 try {
 const response = await personalizeClient.send(
 new CreateFilterCommand(createFilterParam),
);
 console.log("Success", response);
 return response; // For unit tests.
 } catch (err) {
 console.log("Error", err);
 }
};
run();

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考CreateFilter中的。

CreateRecommender

以下代码示例演示了如何使用 CreateRecommender。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

// Get service clients module and commands using ES6 syntax.
import { CreateRecommenderCommand } from "@aws-sdk/client-personalize";
import { personalizeClient } from "./libs/personalizeClients.js";

// Or, create the client here.
// const personalizeClient = new PersonalizeClient({ region: "REGION"});

// Set the recommender's parameters.
export const createRecommenderParam = {
 name: "NAME" /* required */,
 recipeArn: "RECIPE_ARN" /* required */,
 datasetGroupArn: "DATASET_GROUP_ARN" /* required */,

操作 1100

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/personalize/command/CreateFilterCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/personalize#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

};

export const run = async () => {
 try {
 const response = await personalizeClient.send(
 new CreateRecommenderCommand(createRecommenderParam),
);
 console.log("Success", response);
 return response; // For unit tests.
 } catch (err) {
 console.log("Error", err);
 }
};
run();

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考CreateRecommender中的。

CreateSchema

以下代码示例演示了如何使用 CreateSchema。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

// Get service clients module and commands using ES6 syntax.
import { CreateSchemaCommand } from "@aws-sdk/client-personalize";
import { personalizeClient } from "./libs/personalizeClients.js";

// Or, create the client here.
// const personalizeClient = new PersonalizeClient({ region: "REGION"});

import fs from "node:fs";

const schemaFilePath = "SCHEMA_PATH";

操作 1101

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/personalize/command/CreateRecommenderCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/personalize#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

let mySchema = "";

try {
 mySchema = fs.readFileSync(schemaFilePath).toString();
} catch (err) {
 mySchema = "TEST"; // For unit tests.
}
// Set the schema parameters.
export const createSchemaParam = {
 name: "NAME" /* required */,
 schema: mySchema /* required */,
};

export const run = async () => {
 try {
 const response = await personalizeClient.send(
 new CreateSchemaCommand(createSchemaParam),
);
 console.log("Success", response);
 return response; // For unit tests.
 } catch (err) {
 console.log("Error", err);
 }
};
run();

创建含域的架构。

// Get service clients module and commands using ES6 syntax.
import { CreateSchemaCommand } from "@aws-sdk/client-personalize";
import { personalizeClient } from "./libs/personalizeClients.js";

// Or, create the client here.
// const personalizeClient = new PersonalizeClient({ region: "REGION"});

import fs from "node:fs";

const schemaFilePath = "SCHEMA_PATH";
let mySchema = "";

try {
 mySchema = fs.readFileSync(schemaFilePath).toString();

操作 1102

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

} catch (err) {
 mySchema = "TEST"; // for unit tests.
}

// Set the domain schema parameters.
export const createDomainSchemaParam = {
 name: "NAME" /* required */,
 schema: mySchema /* required */,
 domain:
 "DOMAIN" /* required for a domain dataset group, specify ECOMMERCE or
 VIDEO_ON_DEMAND */,
};

export const run = async () => {
 try {
 const response = await personalizeClient.send(
 new CreateSchemaCommand(createDomainSchemaParam),
);
 console.log("Success", response);
 return response; // For unit tests.
 } catch (err) {
 console.log("Error", err);
 }
};
run();

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考CreateSchema中
的。

CreateSolution

以下代码示例演示了如何使用 CreateSolution。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

操作 1103

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/personalize/command/CreateSchemaCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/personalize#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

// Get service clients module and commands using ES6 syntax.
import { CreateSolutionCommand } from "@aws-sdk/client-personalize";
import { personalizeClient } from "./libs/personalizeClients.js";
// Or, create the client here.
// const personalizeClient = new PersonalizeClient({ region: "REGION"});

// Set the solution parameters.
export const createSolutionParam = {
 datasetGroupArn: "DATASET_GROUP_ARN" /* required */,
 recipeArn: "RECIPE_ARN" /* required */,
 name: "NAME" /* required */,
};

export const run = async () => {
 try {
 const response = await personalizeClient.send(
 new CreateSolutionCommand(createSolutionParam),
);
 console.log("Success", response);
 return response; // For unit tests.
 } catch (err) {
 console.log("Error", err);
 }
};
run();

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考CreateSolution中
的。

CreateSolutionVersion

以下代码示例演示了如何使用 CreateSolutionVersion。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

操作 1104

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/personalize/command/CreateSolutionCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/personalize#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

// Get service clients module and commands using ES6 syntax.
import { CreateSolutionVersionCommand } from "@aws-sdk/client-personalize";
import { personalizeClient } from "./libs/personalizeClients.js";
// Or, create the client here.
// const personalizeClient = new PersonalizeClient({ region: "REGION"});

// Set the solution version parameters.
export const solutionVersionParam = {
 solutionArn: "SOLUTION_ARN" /* required */,
};

export const run = async () => {
 try {
 const response = await personalizeClient.send(
 new CreateSolutionVersionCommand(solutionVersionParam),
);
 console.log("Success", response);
 return response; // For unit tests.
 } catch (err) {
 console.log("Error", err);
 }
};
run();

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考CreateSolutionVersion中的。

Amazon 使用适用于 JavaScript (v3) 的软件开发工具包对事件进行
个性化设置示例
以下代码示例向您展示了如何使用带有 Amazon Personalize Events 的 适用于 JavaScript 的 Amazon
SDK (v3) 来执行操作和实现常见场景。

操作是大型程序的代码摘录，必须在上下文中运行。您可以通过操作了解如何调用单个服务函数，还可
以通过函数相关场景的上下文查看操作。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

Amazon Personalize Events 1105

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/personalize/command/CreateSolutionVersionCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 操作

操作

PutEvents

以下代码示例演示了如何使用 PutEvents。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

// Get service clients module and commands using ES6 syntax.
import { PutEventsCommand } from "@aws-sdk/client-personalize-events";
import { personalizeEventsClient } from "./libs/personalizeClients.js";
// Or, create the client here.
// const personalizeEventsClient = new PersonalizeEventsClient({ region: "REGION"});

// Convert your UNIX timestamp to a Date.
const sentAtDate = new Date(1613443801 * 1000); // 1613443801 is a testing value.
 Replace it with your sentAt timestamp in UNIX format.

// Set put events parameters.
const putEventsParam = {
 eventList: [
 /* required */
 {
 eventType: "EVENT_TYPE" /* required */,
 sentAt: sentAtDate /* required, must be a Date with js */,
 eventId: "EVENT_ID" /* optional */,
 itemId: "ITEM_ID" /* optional */,
 },
],
 sessionId: "SESSION_ID" /* required */,
 trackingId: "TRACKING_ID" /* required */,
 userId: "USER_ID" /* required */,
};

操作 1106

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/personalize#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

export const run = async () => {
 try {
 const response = await personalizeEventsClient.send(
 new PutEventsCommand(putEventsParam),
);
 console.log("Success!", response);
 return response; // For unit tests.
 } catch (err) {
 console.log("Error", err);
 }
};
run();

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考PutEvents中的。

PutItems

以下代码示例演示了如何使用 PutItems。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

// Get service clients module and commands using ES6 syntax.
import { PutItemsCommand } from "@aws-sdk/client-personalize-events";
import { personalizeEventsClient } from "./libs/personalizeClients.js";
// Or, create the client here.
// const personalizeEventsClient = new PersonalizeEventsClient({ region: "REGION"});

// Set the put items parameters. For string properties and values, use the \
 character to escape quotes.
const putItemsParam = {
 datasetArn: "DATASET_ARN" /* required */,
 items: [
 /* required */
 {

操作 1107

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/personalize-events/command/PutEventsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/personalize#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 itemId: "ITEM_ID" /* required */,
 properties:
 '{"PROPERTY1_NAME": "PROPERTY1_VALUE", "PROPERTY2_NAME": "PROPERTY2_VALUE",
 "PROPERTY3_NAME": "PROPERTY3_VALUE"}' /* optional */,
 },
],
};
export const run = async () => {
 try {
 const response = await personalizeEventsClient.send(
 new PutItemsCommand(putItemsParam),
);
 console.log("Success!", response);
 return response; // For unit tests.
 } catch (err) {
 console.log("Error", err);
 }
};
run();

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考PutItems中的。

PutUsers

以下代码示例演示了如何使用 PutUsers。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

// Get service clients module and commands using ES6 syntax.
import { PutUsersCommand } from "@aws-sdk/client-personalize-events";
import { personalizeEventsClient } from "./libs/personalizeClients.js";
// Or, create the client here.
// const personalizeEventsClient = new PersonalizeEventsClient({ region: "REGION"});

操作 1108

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/personalize-events/command/PutItemsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/personalize#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

// Set the put users parameters. For string properties and values, use the \
 character to escape quotes.
const putUsersParam = {
 datasetArn: "DATASET_ARN",
 users: [
 {
 userId: "USER_ID",
 properties: '{"PROPERTY1_NAME": "PROPERTY1_VALUE"}',
 },
],
};
export const run = async () => {
 try {
 const response = await personalizeEventsClient.send(
 new PutUsersCommand(putUsersParam),
);
 console.log("Success!", response);
 return response; // For unit tests.
 } catch (err) {
 console.log("Error", err);
 }
};
run();

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考PutUsers中的。

Amazon 使用适用于 JavaScript (v3) 的软件开发工具包对运行时进
行个性化示例

以下代码示例向您展示了如何使用带有 Amazon Personalize Runtime 的 适用于 JavaScript 的
Amazon SDK (v3) 来执行操作和实现常见场景。

操作是大型程序的代码摘录，必须在上下文中运行。您可以通过操作了解如何调用单个服务函数，还可
以通过函数相关场景的上下文查看操作。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

• 操作

Amazon Personalize Runtime 1109

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/personalize-events/command/PutUsersCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

操作

GetPersonalizedRanking

以下代码示例演示了如何使用 GetPersonalizedRanking。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

// Get service clients module and commands using ES6 syntax.
import { GetPersonalizedRankingCommand } from "@aws-sdk/client-personalize-runtime";
import { personalizeRuntimeClient } from "./libs/personalizeClients.js";
// Or, create the client here.
// const personalizeRuntimeClient = new PersonalizeRuntimeClient({ region:
 "REGION"});

// Set the ranking request parameters.
export const getPersonalizedRankingParam = {
 campaignArn: "CAMPAIGN_ARN" /* required */,
 userId: "USER_ID" /* required */,
 inputList: ["ITEM_ID_1", "ITEM_ID_2", "ITEM_ID_3", "ITEM_ID_4"],
};

export const run = async () => {
 try {
 const response = await personalizeRuntimeClient.send(
 new GetPersonalizedRankingCommand(getPersonalizedRankingParam),
);
 console.log("Success!", response);
 return response; // For unit tests.
 } catch (err) {
 console.log("Error", err);
 }
};
run();

操作 1110

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/personalize#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考GetPersonalizedRanking中的。

GetRecommendations

以下代码示例演示了如何使用 GetRecommendations。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

// Get service clients module and commands using ES6 syntax.
import { GetRecommendationsCommand } from "@aws-sdk/client-personalize-runtime";

import { personalizeRuntimeClient } from "./libs/personalizeClients.js";
// Or, create the client here.
// const personalizeRuntimeClient = new PersonalizeRuntimeClient({ region:
 "REGION"});

// Set the recommendation request parameters.
export const getRecommendationsParam = {
 campaignArn: "CAMPAIGN_ARN" /* required */,
 userId: "USER_ID" /* required */,
 numResults: 15 /* optional */,
};

export const run = async () => {
 try {
 const response = await personalizeRuntimeClient.send(
 new GetRecommendationsCommand(getRecommendationsParam),
);
 console.log("Success!", response);
 return response; // For unit tests.
 } catch (err) {
 console.log("Error", err);
 }
};
run();

操作 1111

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/personalize-runtime/command/GetPersonalizedRankingCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/personalize#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

使用筛选条件（自定义数据集组）获取推荐。

// Get service clients module and commands using ES6 syntax.
import { GetRecommendationsCommand } from "@aws-sdk/client-personalize-runtime";
import { personalizeRuntimeClient } from "./libs/personalizeClients.js";
// Or, create the client here.
// const personalizeRuntimeClient = new PersonalizeRuntimeClient({ region:
 "REGION"});

// Set the recommendation request parameters.
export const getRecommendationsParam = {
 recommenderArn: "RECOMMENDER_ARN" /* required */,
 userId: "USER_ID" /* required */,
 numResults: 15 /* optional */,
};

export const run = async () => {
 try {
 const response = await personalizeRuntimeClient.send(
 new GetRecommendationsCommand(getRecommendationsParam),
);
 console.log("Success!", response);
 return response; // For unit tests.
 } catch (err) {
 console.log("Error", err);
 }
};
run();

从在域数据集组中创建的推荐系统处获取经过筛选的推荐。

// Get service clients module and commands using ES6 syntax.
import { GetRecommendationsCommand } from "@aws-sdk/client-personalize-runtime";
import { personalizeRuntimeClient } from "./libs/personalizeClients.js";
// Or, create the client here:
// const personalizeRuntimeClient = new PersonalizeRuntimeClient({ region:
 "REGION"});

// Set recommendation request parameters.

操作 1112

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

export const getRecommendationsParam = {
 campaignArn: "CAMPAIGN_ARN" /* required */,
 userId: "USER_ID" /* required */,
 numResults: 15 /* optional */,
 filterArn: "FILTER_ARN" /* required to filter recommendations */,
 filterValues: {
 PROPERTY:
 '"VALUE"' /* Only required if your filter has a placeholder parameter */,
 },
};

export const run = async () => {
 try {
 const response = await personalizeRuntimeClient.send(
 new GetRecommendationsCommand(getRecommendationsParam),
);
 console.log("Success!", response);
 return response; // For unit tests.
 } catch (err) {
 console.log("Error", err);
 }
};
run();

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考GetRecommendations中的。

使用适用于 JavaScript (v3) 的软件开发工具包的亚马逊 Pinpoint 示
例

以下代码示例向您展示了如何使用带有 Amazon Pinpoint 的 适用于 JavaScript 的 Amazon SDK (v3)
来执行操作和实现常见场景。

操作是大型程序的代码摘录，必须在上下文中运行。您可以通过操作了解如何调用单个服务函数，还可
以通过函数相关场景的上下文查看操作。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

Amazon Pinpoint 1113

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/personalize-runtime/command/GetRecommendationsCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 操作

操作

SendMessages

以下代码示例演示了如何使用 SendMessages。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库 中查找完整示例，了解如何进行设
置和运行。

在单独的模块中创建客户端并将其导出。

import { PinpointClient } from "@aws-sdk/client-pinpoint";
// Set the AWS Region.
const REGION = "us-east-1";
export const pinClient = new PinpointClient({ region: REGION });

发送电子邮件。

// Import required AWS SDK clients and commands for Node.js
import { SendMessagesCommand } from "@aws-sdk/client-pinpoint";
import { pinClient } from "./libs/pinClient.js";

// The FromAddress must be verified in SES.
const fromAddress = "FROM_ADDRESS";
const toAddress = "TO_ADDRESS";
const projectId = "PINPOINT_PROJECT_ID";

// The subject line of the email.
const subject = "Amazon Pinpoint Test (AWS SDK for JavaScript in Node.js)";

// The email body for recipients with non-HTML email clients.
const body_text = `Amazon Pinpoint Test (SDK for JavaScript in Node.js)
--

操作 1114

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/pinpoint#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

This email was sent with Amazon Pinpoint using the AWS SDK for JavaScript in
 Node.js.
For more information, see https://aws.amazon.com/sdk-for-node-js/`;

// The body of the email for recipients whose email clients support HTML content.
const body_html = `<html>
<head></head>
<body>
 <h1>Amazon Pinpoint Test (SDK for JavaScript in Node.js)</h1>
 <p>This email was sent with
 the Amazon Pinpoint Email API
 using the

 AWS SDK for JavaScript in Node.js.</p>
</body>
</html>`;

// The character encoding for the subject line and message body of the email.
const charset = "UTF-8";

const params = {
 ApplicationId: projectId,
 MessageRequest: {
 Addresses: {
 [toAddress]: {
 ChannelType: "EMAIL",
 },
 },
 MessageConfiguration: {
 EmailMessage: {
 FromAddress: fromAddress,
 SimpleEmail: {
 Subject: {
 Charset: charset,
 Data: subject,
 },
 HtmlPart: {
 Charset: charset,
 Data: body_html,
 },
 TextPart: {
 Charset: charset,
 Data: body_text,
 },

操作 1115

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 },
 },
 },
 },
};

const run = async () => {
 try {
 const { MessageResponse } = await pinClient.send(
 new SendMessagesCommand(params),
);

 if (!MessageResponse) {
 throw new Error("No message response.");
 }

 if (!MessageResponse.Result) {
 throw new Error("No message result.");
 }

 const recipientResult = MessageResponse.Result[toAddress];

 if (recipientResult.StatusCode !== 200) {
 throw new Error(recipientResult.StatusMessage);
 }
 console.log(recipientResult.MessageId);
 } catch (err) {
 console.log(err.message);
 }
};

run();

发送短信。

// Import required AWS SDK clients and commands for Node.js
import { SendMessagesCommand } from "@aws-sdk/client-pinpoint";
import { pinClient } from "./libs/pinClient.js";

/* The phone number or short code to send the message from. The phone number
 or short code that you specify has to be associated with your Amazon Pinpoint

操作 1116

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

account. For best results, specify long codes in E.164 format. */
const originationNumber = "SENDER_NUMBER"; //e.g., +1XXXXXXXXXX

// The recipient's phone number. For best results, you should specify the phone
 number in E.164 format.
const destinationNumber = "RECEIVER_NUMBER"; //e.g., +1XXXXXXXXXX

// The content of the SMS message.
const message =
 "This message was sent through Amazon Pinpoint " +
 "using the AWS SDK for JavaScript in Node.js. Reply STOP to " +
 "opt out.";

/*The Amazon Pinpoint project/application ID to use when you send this message.
Make sure that the SMS channel is enabled for the project or application
that you choose.*/
const projectId = "PINPOINT_PROJECT_ID"; //e.g., XXXXXXXX66e4e9986478cXXXXXXXXX

/* The type of SMS message that you want to send. If you plan to send
time-sensitive content, specify TRANSACTIONAL. If you plan to send
marketing-related content, specify PROMOTIONAL.*/
const messageType = "TRANSACTIONAL";

// The registered keyword associated with the originating short code.
const registeredKeyword = "myKeyword";

/* The sender ID to use when sending the message. Support for sender ID
// varies by country or region. For more information, see
https://docs.aws.amazon.com/pinpoint/latest/userguide/channels-sms-countries.html.*/

const senderId = "MySenderID";

// Specify the parameters to pass to the API.
const params = {
 ApplicationId: projectId,
 MessageRequest: {
 Addresses: {
 [destinationNumber]: {
 ChannelType: "SMS",
 },
 },
 MessageConfiguration: {
 SMSMessage: {
 Body: message,

操作 1117

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 Keyword: registeredKeyword,
 MessageType: messageType,
 OriginationNumber: originationNumber,
 SenderId: senderId,
 },
 },
 },
};

const run = async () => {
 try {
 const data = await pinClient.send(new SendMessagesCommand(params));
 console.log(
 `Message sent!
 ${data.MessageResponse.Result[destinationNumber].StatusMessage}`,
);
 } catch (err) {
 console.log(err);
 }
};
run();

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考SendMessages中
的。

使用适用于 JavaScript (v3) 的软件开发工具包的 Amazon Polly 示例

以下代码示例向您展示了如何使用带有 Amazon Polly 的 适用于 JavaScript 的 Amazon SDK (v3) 来执
行操作和实现常见场景。

场景是向您演示如何通过在一个服务中调用多个函数或与其他 Amazon Web Services 服务结合来完成
特定任务的代码示例。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

• 场景

Amazon Polly 1118

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/pinpoint/command/SendMessagesCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

场景

创建用于分析客户反馈的应用程序

以下代码示例说明如何创建应用程序来分析客户意见卡、翻译其母语、确定其情绪并根据译后的文本生
成音频文件。

适用于 JavaScript (v3) 的软件开发工具包

此示例应用程序可分析并存储客户反馈卡。具体来说，它满足了纽约市一家虚构酒店的需求。酒
店以实体意见卡的形式收集来自不同语种的客人的反馈。该反馈通过 Web 客户端上传到应用程序
中。意见卡图片上传后，将执行以下步骤：

• 使用 Amazon Textract 从图片中提取文本。

• Amazon Comprehend 确定所提取文本的情绪及其语言。

• 使用 Amazon Translate 将所提取文本翻译为英语。

• Amazon Polly 根据所提取文本合成音频文件。

完整的应用程序可使用 Amazon CDK 进行部署。有关源代码和部署说明，请参阅中的项目
GitHub。以下摘录显示了在 Lambda 函数中 适用于 JavaScript 的 Amazon SDK 是如何使用的。

import {
 ComprehendClient,
 DetectDominantLanguageCommand,
 DetectSentimentCommand,
} from "@aws-sdk/client-comprehend";

/**
 * Determine the language and sentiment of the extracted text.
 *
 * @param {{ source_text: string}} extractTextOutput
 */
export const handler = async (extractTextOutput) => {
 const comprehendClient = new ComprehendClient({});

 const detectDominantLanguageCommand = new DetectDominantLanguageCommand({
 Text: extractTextOutput.source_text,
 });

 // The source language is required for sentiment analysis and
 // translation in the next step.
 const { Languages } = await comprehendClient.send(

场景 1119

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/feedback-sentiment-analyzer
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/feedback-sentiment-analyzer

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 detectDominantLanguageCommand,
);

 const languageCode = Languages[0].LanguageCode;

 const detectSentimentCommand = new DetectSentimentCommand({
 Text: extractTextOutput.source_text,
 LanguageCode: languageCode,
 });

 const { Sentiment } = await comprehendClient.send(detectSentimentCommand);

 return {
 sentiment: Sentiment,
 language_code: languageCode,
 };
};

import {
 DetectDocumentTextCommand,
 TextractClient,
} from "@aws-sdk/client-textract";

/**
 * Fetch the S3 object from the event and analyze it using Amazon Textract.
 *
 * @param {import("@types/aws-lambda").EventBridgeEvent<"Object Created">}
 eventBridgeS3Event
 */
export const handler = async (eventBridgeS3Event) => {
 const textractClient = new TextractClient();

 const detectDocumentTextCommand = new DetectDocumentTextCommand({
 Document: {
 S3Object: {
 Bucket: eventBridgeS3Event.bucket,
 Name: eventBridgeS3Event.object,
 },
 },
 });

 // Textract returns a list of blocks. A block can be a line, a page, word, etc.
 // Each block also contains geometry of the detected text.

场景 1120

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // For more information on the Block type, see https://docs.aws.amazon.com/
textract/latest/dg/API_Block.html.
 const { Blocks } = await textractClient.send(detectDocumentTextCommand);

 // For the purpose of this example, we are only interested in words.
 const extractedWords = Blocks.filter((b) => b.BlockType === "WORD").map(
 (b) => b.Text,
);

 return extractedWords.join(" ");
};

import { PollyClient, SynthesizeSpeechCommand } from "@aws-sdk/client-polly";
import { S3Client } from "@aws-sdk/client-s3";
import { Upload } from "@aws-sdk/lib-storage";

/**
 * Synthesize an audio file from text.
 *
 * @param {{ bucket: string, translated_text: string, object: string}}
 sourceDestinationConfig
 */
export const handler = async (sourceDestinationConfig) => {
 const pollyClient = new PollyClient({});

 const synthesizeSpeechCommand = new SynthesizeSpeechCommand({
 Engine: "neural",
 Text: sourceDestinationConfig.translated_text,
 VoiceId: "Ruth",
 OutputFormat: "mp3",
 });

 const { AudioStream } = await pollyClient.send(synthesizeSpeechCommand);

 const audioKey = `${sourceDestinationConfig.object}.mp3`;

 // Store the audio file in S3.
 const s3Client = new S3Client();
 const upload = new Upload({
 client: s3Client,
 params: {
 Bucket: sourceDestinationConfig.bucket,
 Key: audioKey,

场景 1121

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 Body: AudioStream,
 ContentType: "audio/mp3",
 },
 });

 await upload.done();
 return audioKey;
};

import {
 TranslateClient,
 TranslateTextCommand,
} from "@aws-sdk/client-translate";

/**
 * Translate the extracted text to English.
 *
 * @param {{ extracted_text: string, source_language_code: string}}
 textAndSourceLanguage
 */
export const handler = async (textAndSourceLanguage) => {
 const translateClient = new TranslateClient({});

 const translateCommand = new TranslateTextCommand({
 SourceLanguageCode: textAndSourceLanguage.source_language_code,
 TargetLanguageCode: "en",
 Text: textAndSourceLanguage.extracted_text,
 });

 const { TranslatedText } = await translateClient.send(translateCommand);

 return { translated_text: TranslatedText };
};

本示例中使用的服务

• Amazon Comprehend

• Lambda

• Amazon Polly

• Amazon Textract

• Amazon Translate

场景 1122

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

使用适用于 JavaScript (v3) 的开发工具包的 Amazon RDS 示例

以下代码示例向您展示了如何在 Amazon RDS 中使用 适用于 JavaScript 的 Amazon SDK (v3) 来执行
操作和实现常见场景。

场景是向您演示如何通过在一个服务中调用多个函数或与其他 Amazon Web Services 服务结合来完成
特定任务的代码示例。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

• 场景

• 无服务器示例

场景

创建 Aurora Serverless 工作项跟踪器

以下代码示例演示如何创建 Web 应用程序，来跟踪 Amazon Aurora Serverless 数据库中的工作项，
以及使用 Amazon Simple Email Service（Amazon SES）发送报告。

适用于 JavaScript (v3) 的软件开发工具包

演示如何使用 适用于 JavaScript 的 Amazon SDK (v3) 创建一个 Web 应用程序，该应用程序使用
亚马逊简单电子邮件服务 (Amazon SES) Service 跟踪亚马逊 Aurora 数据库中的工作项目并通过电
子邮件发送报告。此示例使用由 React.js 构建的前端与 Express Node.js 后端进行交互。

• 将 React.js 网络应用程序与集成 Amazon Web Services 服务。

• 列出、添加以及更新 Aurora 表中的项目。

• 使用 Amazon SES 以电子邮件形式发送已筛选工作项的报告。

• 使用随附的 Amazon CloudFormation 脚本部署和管理示例资源。

有关如何设置和运行的完整源代码和说明，请参阅上的完整示例GitHub。

本示例中使用的服务

• Aurora

• Amazon RDS

Amazon RDS 1123

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/aurora-serverless-app

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• Amazon RDS 数据服务

• Amazon SES

无服务器示例

使用 Lambda 函数连接到 Amazon RDS 数据库

以下代码示例显示如何实现连接到 RDS 数据库的 Lambda 函数。该函数发出一个简单的数据库请求并
返回结果。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在无服务器示例存储库中查找完整示例，并了解如何进行设置
和运行。

使用在 Lambda 函数中连接到亚马逊 RDS 数据库。 JavaScript

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
/*
Node.js code here.
*/
// ES6+ example
import { Signer } from "@aws-sdk/rds-signer";
import mysql from 'mysql2/promise';

async function createAuthToken() {
 // Define connection authentication parameters
 const dbinfo = {

 hostname: process.env.ProxyHostName,
 port: process.env.Port,
 username: process.env.DBUserName,
 region: process.env.AWS_REGION,

 }

 // Create RDS Signer object

无服务器示例 1124

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-connect-rds-iam

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const signer = new Signer(dbinfo);

 // Request authorization token from RDS, specifying the username
 const token = await signer.getAuthToken();
 return token;
}

async function dbOps() {

 // Obtain auth token
 const token = await createAuthToken();
 // Define connection configuration
 let connectionConfig = {
 host: process.env.ProxyHostName,
 user: process.env.DBUserName,
 password: token,
 database: process.env.DBName,
 ssl: 'Amazon RDS'
 }
 // Create the connection to the DB
 const conn = await mysql.createConnection(connectionConfig);
 // Obtain the result of the query
 const [res,] = await conn.execute('select ?+? as sum', [3, 2]);
 return res;

}

export const handler = async (event) => {
 // Execute database flow
 const result = await dbOps();
 // Return result
 return {
 statusCode: 200,
 body: JSON.stringify("The selected sum is: " + result[0].sum)
 }
};

使用在 Lambda 函数中连接到亚马逊 RDS 数据库。 TypeScript

import { Signer } from "@aws-sdk/rds-signer";
import mysql from 'mysql2/promise';

无服务器示例 1125

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

// RDS settings
// Using '!' (non-null assertion operator) to tell the TypeScript compiler that the
 DB settings are not null or undefined,
const proxy_host_name = process.env.PROXY_HOST_NAME!
const port = parseInt(process.env.PORT!)
const db_name = process.env.DB_NAME!
const db_user_name = process.env.DB_USER_NAME!
const aws_region = process.env.AWS_REGION!

async function createAuthToken(): Promise<string> {

 // Create RDS Signer object
 const signer = new Signer({
 hostname: proxy_host_name,
 port: port,
 region: aws_region,
 username: db_user_name
 });

 // Request authorization token from RDS, specifying the username
 const token = await signer.getAuthToken();
 return token;
}

async function dbOps(): Promise<mysql.QueryResult | undefined> {
 try {
 // Obtain auth token
 const token = await createAuthToken();
 const conn = await mysql.createConnection({
 host: proxy_host_name,
 user: db_user_name,
 password: token,
 database: db_name,
 ssl: 'Amazon RDS' // Ensure you have the CA bundle for SSL connection
 });
 const [rows, fields] = await conn.execute('SELECT ? + ? AS sum', [3, 2]);
 console.log('result:', rows);
 return rows;
 }
 catch (err) {
 console.log(err);
 }

无服务器示例 1126

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

}

export const lambdaHandler = async (event: any): Promise<{ statusCode: number; body:
 string }> => {
 // Execute database flow
 const result = await dbOps();

 // Return error is result is undefined
 if (result == undefined)
 return {
 statusCode: 500,
 body: JSON.stringify(`Error with connection to DB host`)
 }

 // Return result
 return {
 statusCode: 200,
 body: JSON.stringify(`The selected sum is: ${result[0].sum}`)
 };
};

使用适用于 JavaScript (v3) 的软件开发工具包的 Amazon RDS 数据
服务示例

以下代码示例向您展示如何使用带有 Amazon RDS 数据服务的 适用于 JavaScript 的 Amazon SDK
(v3) 来执行操作和实现常见场景。

场景是向您演示如何通过在一个服务中调用多个函数或与其他 Amazon Web Services 服务结合来完成
特定任务的代码示例。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

• 场景

Amazon RDS 数据服务 1127

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

场景

创建 Aurora Serverless 工作项跟踪器

以下代码示例演示如何创建 Web 应用程序，来跟踪 Amazon Aurora Serverless 数据库中的工作项，
以及使用 Amazon Simple Email Service（Amazon SES）发送报告。

适用于 JavaScript (v3) 的软件开发工具包

演示如何使用 适用于 JavaScript 的 Amazon SDK (v3) 创建一个 Web 应用程序，该应用程序使用
亚马逊简单电子邮件服务 (Amazon SES) Service 跟踪亚马逊 Aurora 数据库中的工作项目并通过电
子邮件发送报告。此示例使用由 React.js 构建的前端与 Express Node.js 后端进行交互。

• 将 React.js 网络应用程序与集成 Amazon Web Services 服务。

• 列出、添加以及更新 Aurora 表中的项目。

• 使用 Amazon SES 以电子邮件形式发送已筛选工作项的报告。

• 使用随附的 Amazon CloudFormation 脚本部署和管理示例资源。

有关如何设置和运行的完整源代码和说明，请参阅上的完整示例GitHub。

本示例中使用的服务

• Aurora

• Amazon RDS

• Amazon RDS 数据服务

• Amazon SES

使用适用于 JavaScript (v3) 的软件开发工具包的亚马逊 Redshift 示
例

以下代码示例向您展示了如何使用带有 Amazon Redshift 的 适用于 JavaScript 的 Amazon SDK (v3)
来执行操作和实现常见场景。

操作是大型程序的代码摘录，必须在上下文中运行。您可以通过操作了解如何调用单个服务函数，还可
以通过函数相关场景的上下文查看操作。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

场景 1128

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/aurora-serverless-app

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

主题

• 操作

操作

CreateCluster

以下代码示例演示了如何使用 CreateCluster。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

创建客户端。

import { RedshiftClient } from "@aws-sdk/client-redshift";
// Set the AWS Region.
const REGION = "REGION";
//Set the Redshift Service Object
const redshiftClient = new RedshiftClient({ region: REGION });
export { redshiftClient };

创建集群。

// Import required AWS SDK clients and commands for Node.js
import { CreateClusterCommand } from "@aws-sdk/client-redshift";
import { redshiftClient } from "./libs/redshiftClient.js";

const params = {
 ClusterIdentifier: "CLUSTER_NAME", // Required
 NodeType: "NODE_TYPE", //Required
 MasterUsername: "MASTER_USER_NAME", // Required - must be lowercase
 MasterUserPassword: "MASTER_USER_PASSWORD", // Required - must contain at least
 one uppercase letter, and one number
 ClusterType: "CLUSTER_TYPE", // Required

操作 1129

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/redshift#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 IAMRoleARN: "IAM_ROLE_ARN", // Optional - the ARN of an IAM role with permissions
 your cluster needs to access other AWS services on your behalf, such as Amazon S3.
 ClusterSubnetGroupName: "CLUSTER_SUBNET_GROUPNAME", //Optional - the name of a
 cluster subnet group to be associated with this cluster. Defaults to 'default' if
 not specified.
 DBName: "DATABASE_NAME", // Optional - defaults to 'dev' if not specified
 Port: "PORT_NUMBER", // Optional - defaults to '5439' if not specified
};

const run = async () => {
 try {
 const data = await redshiftClient.send(new CreateClusterCommand(params));
 console.log(
 `Cluster ${data.Cluster.ClusterIdentifier} successfully created`,
);
 return data; // For unit tests.
 } catch (err) {
 console.log("Error", err);
 }
};
run();

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考CreateCluster中的。

DeleteCluster

以下代码示例演示了如何使用 DeleteCluster。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

创建客户端。

import { RedshiftClient } from "@aws-sdk/client-redshift";
// Set the AWS Region.
const REGION = "REGION";

操作 1130

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/redshift/command/CreateClusterCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/redshift#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

//Set the Redshift Service Object
const redshiftClient = new RedshiftClient({ region: REGION });
export { redshiftClient };

创建集群。

// Import required AWS SDK clients and commands for Node.js
import { DeleteClusterCommand } from "@aws-sdk/client-redshift";
import { redshiftClient } from "./libs/redshiftClient.js";

const params = {
 ClusterIdentifier: "CLUSTER_NAME",
 SkipFinalClusterSnapshot: false,
 FinalClusterSnapshotIdentifier: "CLUSTER_SNAPSHOT_ID",
};

const run = async () => {
 try {
 const data = await redshiftClient.send(new DeleteClusterCommand(params));
 console.log("Success, cluster deleted. ", data);
 return data; // For unit tests.
 } catch (err) {
 console.log("Error", err);
 }
};
run();

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DeleteCluster中的。

DescribeClusters

以下代码示例演示了如何使用 DescribeClusters。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

操作 1131

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/redshift/command/DeleteClusterCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/redshift#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

创建客户端。

import { RedshiftClient } from "@aws-sdk/client-redshift";
// Set the AWS Region.
const REGION = "REGION";
//Set the Redshift Service Object
const redshiftClient = new RedshiftClient({ region: REGION });
export { redshiftClient };

描述集群。

// Import required AWS SDK clients and commands for Node.js
import { DescribeClustersCommand } from "@aws-sdk/client-redshift";
import { redshiftClient } from "./libs/redshiftClient.js";

const params = {
 ClusterIdentifier: "CLUSTER_NAME",
};

const run = async () => {
 try {
 const data = await redshiftClient.send(new DescribeClustersCommand(params));
 console.log("Success", data);
 return data; // For unit tests.
 } catch (err) {
 console.log("Error", err);
 }
};
run();

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DescribeClusters中
的。

ModifyCluster

以下代码示例演示了如何使用 ModifyCluster。

操作 1132

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/redshift/command/DescribeClustersCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

创建客户端。

import { RedshiftClient } from "@aws-sdk/client-redshift";
// Set the AWS Region.
const REGION = "REGION";
//Set the Redshift Service Object
const redshiftClient = new RedshiftClient({ region: REGION });
export { redshiftClient };

修改集群。

// Import required AWS SDK clients and commands for Node.js
import { ModifyClusterCommand } from "@aws-sdk/client-redshift";
import { redshiftClient } from "./libs/redshiftClient.js";

// Set the parameters
const params = {
 ClusterIdentifier: "CLUSTER_NAME",
 MasterUserPassword: "NEW_MASTER_USER_PASSWORD",
};

const run = async () => {
 try {
 const data = await redshiftClient.send(new ModifyClusterCommand(params));
 console.log("Success was modified.", data);
 return data; // For unit tests.
 } catch (err) {
 console.log("Error", err);
 }
};
run();

操作 1133

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/redshift#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考ModifyCluster中的。

使用适用于 (v3) 的软件开发工具包的亚马逊 Rekognition 示例
JavaScript

以下代码示例向您展示了如何使用带有 Amazon Rekognition 的 适用于 JavaScript 的 Amazon SDK
(v3) 来执行操作和实现常见场景。

场景是向您演示如何通过在一个服务中调用多个函数或与其他 Amazon Web Services 服务结合来完成
特定任务的代码示例。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

• 场景

场景

创建无服务器应用程序来管理照片

以下代码示例演示如何创建无服务器应用程序，让用户能够使用标签管理照片。

适用于 JavaScript (v3) 的软件开发工具包

演示如何开发照片资产管理应用程序，该应用程序使用 Amazon Rekognition 检测图像中的标签并
将其存储以供日后检索。

有关如何设置和运行的完整源代码和说明，请参阅上的完整示例 GitHub。

要深入了解这个例子的起源，请参阅 Amazon 社区上的博文。

本示例中使用的服务

• API Gateway

• DynamoDB

• Lambda

• Amazon Rekognition

Amazon Rekognition 1134

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/redshift/command/ModifyClusterCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/photo-asset-manager
https://community.aws/posts/cloud-journeys/01-serverless-image-recognition-app

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• Amazon S3

• Amazon SNS

检测图像中的对象

以下代码示例演示如何构建采用 Amazon Rekognition 来按类别检测图像中物体的应用程序。

适用于 JavaScript (v3) 的软件开发工具包

演示如何使用 Amazon Rekogn 适用于 JavaScript 的 Amazon SDK ition 和，创建一款应用程序，
该应用程序使用 Amazon Rekognition 按类别识别位于亚马逊简单存储服务 (Amazon S3) Simple
S3 存储桶中的图像中的对象。该应用程序使用 Amazon Simple Email Service (Amazon SES) 向管
理员发送包含结果的电子邮件通知。

了解如何：

• 使用 Amazon Cognito 创建未经身份验证的用户。

• 使用 Amazon Rekognition 分析包含对象的图像。

• 为 Amazon SES 验证电子邮件地址。

• 使用 Amazon SES 发送电子邮件通知。

有关如何设置和运行的完整源代码和说明，请参阅上的完整示例GitHub。

本示例中使用的服务

• Amazon Rekognition

• Amazon S3

• Amazon SES

使用适用于 JavaScript (v3) 的软件开发工具包的 Amazon S3 示例

以下代码示例向您展示了如何在 Amazon S3 中使用 适用于 JavaScript 的 Amazon SDK (v3) 来执行操
作和实现常见场景。

基本功能是向您展示如何在服务中执行基本操作的代码示例。

操作是大型程序的代码摘录，必须在上下文中运行。您可以通过操作了解如何调用单个服务函数，还可
以通过函数相关场景的上下文查看操作。

Amazon S3 1135

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/photo_analyzer

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

场景是向您演示如何通过在一个服务中调用多个函数或与其他 Amazon Web Services 服务结合来完成
特定任务的代码示例。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

• 开始使用

• 基本功能

• 操作

• 场景

• 无服务器示例

开始使用

开始使用 Amazon S3

以下代码示例显示了如何开始使用 Amazon S3。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import {
 paginateListBuckets,
 S3Client,
 S3ServiceException,
} from "@aws-sdk/client-s3";

/**
 * List the S3 buckets in your configured AWS account.
 */
export const helloS3 = async () => {
 // When no region or credentials are provided, the SDK will use the

开始使用 1136

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/s3#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // region and credentials from the local AWS config.
 const client = new S3Client({});

 try {
 /**
 * @type { import("@aws-sdk/client-s3").Bucket[] }
 */
 const buckets = [];

 for await (const page of paginateListBuckets({ client }, {})) {
 buckets.push(...page.Buckets);
 }
 console.log("Buckets: ");
 console.log(buckets.map((bucket) => bucket.Name).join("\n"));
 return buckets;
 } catch (caught) {
 // ListBuckets does not throw any modeled errors. Any error caught
 // here will be something generic like `AccessDenied`.
 if (caught instanceof S3ServiceException) {
 console.error(`${caught.name}: ${caught.message}`);
 } else {
 // Something besides S3 failed.
 throw caught;
 }
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考ListBuckets中的。

基本功能

了解基本功能

以下代码示例展示了如何：

• 创建桶并将文件上载到其中。

• 从桶中下载对象。

• 将对象复制到存储桶中的子文件夹。

• 列出存储桶中的对象。

• 删除存储桶及其对象。

基本功能 1137

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/s3/command/ListBucketsCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

首先，导入所有必需的模块。

// Used to check if currently running file is this file.
import { fileURLToPath } from "node:url";
import { readdirSync, readFileSync, writeFileSync } from "node:fs";

// Local helper utils.
import { dirnameFromMetaUrl } from "@aws-doc-sdk-examples/lib/utils/util-fs.js";
import { Prompter } from "@aws-doc-sdk-examples/lib/prompter.js";
import { wrapText } from "@aws-doc-sdk-examples/lib/utils/util-string.js";

import {
 S3Client,
 CreateBucketCommand,
 PutObjectCommand,
 ListObjectsCommand,
 CopyObjectCommand,
 GetObjectCommand,
 DeleteObjectsCommand,
 DeleteBucketCommand,
} from "@aws-sdk/client-s3";

前面的导入引用了一些帮助程序实用程序。这些实用程序是本节开头链接的 GitHub 存储库的本地
工具。为了便于参考，请参阅这些实用程序的以下实现。

export const dirnameFromMetaUrl = (metaUrl) =>
 fileURLToPath(new URL(".", metaUrl));

import { select, input, confirm, checkbox, password } from "@inquirer/prompts";

export class Prompter {
 /**
 * @param {{ message: string, choices: { name: string, value: string }[]}} options

基本功能 1138

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/s3#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 */
 select(options) {
 return select(options);
 }

 /**
 * @param {{ message: string }} options
 */
 input(options) {
 return input(options);
 }

 /**
 * @param {{ message: string }} options
 */
 password(options) {
 return password({ ...options, mask: true });
 }

 /**
 * @param {string} prompt
 */
 checkContinue = async (prompt = "") => {
 const prefix = prompt && `${prompt} `;
 const ok = await this.confirm({
 message: `${prefix}Continue?`,
 });
 if (!ok) throw new Error("Exiting...");
 };

 /**
 * @param {{ message: string }} options
 */
 confirm(options) {
 return confirm(options);
 }

 /**
 * @param {{ message: string, choices: { name: string, value: string }[]}} options
 */
 checkbox(options) {
 return checkbox(options);
 }
}

基本功能 1139

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

export const wrapText = (text, char = "=") => {
 const rule = char.repeat(80);
 return `${rule}\n ${text}\n${rule}\n`;
};

S3 中的对象存储在“存储桶”中。让我们定义一个用于创建新存储桶的函数。

export const createBucket = async () => {
 const bucketName = await prompter.input({
 message: "Enter a bucket name. Bucket names must be globally unique:",
 });
 const command = new CreateBucketCommand({ Bucket: bucketName });
 await s3Client.send(command);
 console.log("Bucket created successfully.\n");
 return bucketName;
};

存储桶包含“对象”。此函数将目录的内容作为对象上传到您的存储桶。

export const uploadFilesToBucket = async ({ bucketName, folderPath }) => {
 console.log(`Uploading files from ${folderPath}\n`);
 const keys = readdirSync(folderPath);
 const files = keys.map((key) => {
 const filePath = `${folderPath}/${key}`;
 const fileContent = readFileSync(filePath);
 return {
 Key: key,
 Body: fileContent,
 };
 });

 for (const file of files) {
 await s3Client.send(
 new PutObjectCommand({
 Bucket: bucketName,
 Body: file.Body,
 Key: file.Key,
 }),
);
 console.log(`${file.Key} uploaded successfully.`);

基本功能 1140

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }
};

上传对象后，检查以确认它们已正确上传。你可以 ListObjects 用。您将使用“Key”属性，但响应中
还有其他有用的属性。

export const listFilesInBucket = async ({ bucketName }) => {
 const command = new ListObjectsCommand({ Bucket: bucketName });
 const { Contents } = await s3Client.send(command);
 const contentsList = Contents.map((c) => ` • ${c.Key}`).join("\n");
 console.log("\nHere's a list of files in the bucket:");
 console.log(`${contentsList}\n`);
};

有时，您可能想要将对象从一个桶复制到另一个桶。使用 CopyObject 命令来做到这一点。

export const copyFileFromBucket = async ({ destinationBucket }) => {
 const proceed = await prompter.confirm({
 message: "Would you like to copy an object from another bucket?",
 });

 if (!proceed) {
 return;
 }
 const copy = async () => {
 try {
 const sourceBucket = await prompter.input({
 message: "Enter source bucket name:",
 });
 const sourceKey = await prompter.input({
 message: "Enter source key:",
 });
 const destinationKey = await prompter.input({
 message: "Enter destination key:",
 });

 const command = new CopyObjectCommand({
 Bucket: destinationBucket,
 CopySource: `${sourceBucket}/${sourceKey}`,
 Key: destinationKey,
 });

基本功能 1141

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 await s3Client.send(command);
 await copyFileFromBucket({ destinationBucket });
 } catch (err) {
 console.error("Copy error.");
 console.error(err);
 const retryAnswer = await prompter.confirm({ message: "Try again?" });
 if (retryAnswer) {
 await copy();
 }
 }
 };
 await copy();
};

没有用于从桶中获取多个对象的 SDK 方法。相反，您将创建一个要下载的对象列表并对其进行迭
代。

export const downloadFilesFromBucket = async ({ bucketName }) => {
 const { Contents } = await s3Client.send(
 new ListObjectsCommand({ Bucket: bucketName }),
);
 const path = await prompter.input({
 message: "Enter destination path for files:",
 });

 for (const content of Contents) {
 const obj = await s3Client.send(
 new GetObjectCommand({ Bucket: bucketName, Key: content.Key }),
);
 writeFileSync(
 `${path}/${content.Key}`,
 await obj.Body.transformToByteArray(),
);
 }
 console.log("Files downloaded successfully.\n");
};

是时候清除资源了。桶必须为空才能删除它。这两个函数清空并删除桶。

export const emptyBucket = async ({ bucketName }) => {
 const listObjectsCommand = new ListObjectsCommand({ Bucket: bucketName });

基本功能 1142

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const { Contents } = await s3Client.send(listObjectsCommand);
 const keys = Contents.map((c) => c.Key);

 const deleteObjectsCommand = new DeleteObjectsCommand({
 Bucket: bucketName,
 Delete: { Objects: keys.map((key) => ({ Key: key })) },
 });
 await s3Client.send(deleteObjectsCommand);
 console.log(`${bucketName} emptied successfully.\n`);
};

export const deleteBucket = async ({ bucketName }) => {
 const command = new DeleteBucketCommand({ Bucket: bucketName });
 await s3Client.send(command);
 console.log(`${bucketName} deleted successfully.\n`);
};

“main”函数将所有内容整合在一起。如果您直接运行此文件，将调用 main 函数。

const main = async () => {
 const OBJECT_DIRECTORY = `${dirnameFromMetaUrl(
 import.meta.url,
)}../../../../resources/sample_files/.sample_media`;

 try {
 console.log(wrapText("Welcome to the Amazon S3 getting started example."));
 console.log("Let's create a bucket.");
 const bucketName = await createBucket();
 await prompter.confirm({ message: continueMessage });

 console.log(wrapText("File upload."));
 console.log(
 "I have some default files ready to go. You can edit the source code to
 provide your own.",
);
 await uploadFilesToBucket({
 bucketName,
 folderPath: OBJECT_DIRECTORY,
 });

 await listFilesInBucket({ bucketName });
 await prompter.confirm({ message: continueMessage });

基本功能 1143

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 console.log(wrapText("Copy files."));
 await copyFileFromBucket({ destinationBucket: bucketName });
 await listFilesInBucket({ bucketName });
 await prompter.confirm({ message: continueMessage });

 console.log(wrapText("Download files."));
 await downloadFilesFromBucket({ bucketName });

 console.log(wrapText("Clean up."));
 await emptyBucket({ bucketName });
 await deleteBucket({ bucketName });
 } catch (err) {
 console.error(err);
 }
};

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的以下主
题。

• CopyObject

• CreateBucket

• DeleteBucket

• DeleteObjects

• GetObject

• ListObjectsV2

• PutObject

操作

CopyObject

以下代码示例演示了如何使用 CopyObject。

操作 1144

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/s3/command/CopyObjectCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/s3/command/CreateBucketCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/s3/command/DeleteBucketCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/s3/command/DeleteObjectsCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/s3/command/GetObjectCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/s3/command/ListObjectsV2Command
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/s3/command/PutObjectCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

复制对象。

import {
 S3Client,
 CopyObjectCommand,
 ObjectNotInActiveTierError,
 waitUntilObjectExists,
} from "@aws-sdk/client-s3";

/**
 * Copy an S3 object from one bucket to another.
 *
 * @param {{
 * sourceBucket: string,
 * sourceKey: string,
 * destinationBucket: string,
 * destinationKey: string }} config
 */
export const main = async ({
 sourceBucket,
 sourceKey,
 destinationBucket,
 destinationKey,
}) => {
 const client = new S3Client({});

 try {
 await client.send(
 new CopyObjectCommand({
 CopySource: `${sourceBucket}/${sourceKey}`,
 Bucket: destinationBucket,
 Key: destinationKey,
 }),
);
 await waitUntilObjectExists(

操作 1145

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/s3#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 { client },
 { Bucket: destinationBucket, Key: destinationKey },
);
 console.log(
 `Successfully copied ${sourceBucket}/${sourceKey} to ${destinationBucket}/
${destinationKey}`,
);
 } catch (caught) {
 if (caught instanceof ObjectNotInActiveTierError) {
 console.error(
 `Could not copy ${sourceKey} from ${sourceBucket}. Object is not in the
 active tier.`,
);
 } else {
 throw caught;
 }
 }
};

以对象与提供的对象 ETag 不匹配为条件复制该对象。

import {
 CopyObjectCommand,
 NoSuchKey,
 S3Client,
 S3ServiceException,
} from "@aws-sdk/client-s3";

// Optionally edit the default key name of the copied object in 'object_name.json'
import data from "../scenarios/conditional-requests/object_name.json" assert {
 type: "json",
};

/**
 * Get a single object from a specified S3 bucket.
 * @param {{ sourceBucketName: string, sourceKeyName: string, destinationBucketName:
 string, eTag: string }}
 */
export const main = async ({
 sourceBucketName,
 sourceKeyName,

操作 1146

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 destinationBucketName,
 eTag,
}) => {
 const client = new S3Client({});
 const name = data.name;
 try {
 const response = await client.send(
 new CopyObjectCommand({
 CopySource: `${sourceBucketName}/${sourceKeyName}`,
 Bucket: destinationBucketName,
 Key: `${name}${sourceKeyName}`,
 CopySourceIfMatch: eTag,
 }),
);
 console.log("Successfully copied object to bucket.");
 } catch (caught) {
 if (caught instanceof NoSuchKey) {
 console.error(
 `Error from S3 while copying object "${sourceKeyName}" from
 "${sourceBucketName}". No such key exists.`,
);
 } else if (caught instanceof S3ServiceException) {
 console.error(
 `Unable to copy object "${sourceKeyName}" to bucket "${sourceBucketName}":
 ${caught.name}: ${caught.message}`,
);
 } else {
 throw caught;
 }
 }
};

// Call function if run directly
import { parseArgs } from "node:util";
import {
 isMain,
 validateArgs,
} from "@aws-doc-sdk-examples/lib/utils/util-node.js";

const loadArgs = () => {
 const options = {
 sourceBucketName: {
 type: "string",
 required: true,

操作 1147

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 },
 sourceKeyName: {
 type: "string",
 required: true,
 },
 destinationBucketName: {
 type: "string",
 required: true,
 },
 eTag: {
 type: "string",
 required: true,
 },
 };
 const results = parseArgs({ options });
 const { errors } = validateArgs({ options }, results);
 return { errors, results };
};

if (isMain(import.meta.url)) {
 const { errors, results } = loadArgs();
 if (!errors) {
 main(results.values);
 } else {
 console.error(errors.join("\n"));
 }
}

以对象与提供的对象 ETag 不匹配为条件复制该对象。

import {
 CopyObjectCommand,
 NoSuchKey,
 S3Client,
 S3ServiceException,
} from "@aws-sdk/client-s3";

// Optionally edit the default key name of the copied object in 'object_name.json'
import data from "../scenarios/conditional-requests/object_name.json" assert {
 type: "json",
};

操作 1148

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

/**
 * Get a single object from a specified S3 bucket.
 * @param {{ sourceBucketName: string, sourceKeyName: string, destinationBucketName:
 string, eTag: string }}
 */
export const main = async ({
 sourceBucketName,
 sourceKeyName,
 destinationBucketName,
 eTag,
}) => {
 const client = new S3Client({});
 const name = data.name;

 try {
 const response = await client.send(
 new CopyObjectCommand({
 CopySource: `${sourceBucketName}/${sourceKeyName}`,
 Bucket: destinationBucketName,
 Key: `${name}${sourceKeyName}`,
 CopySourceIfNoneMatch: eTag,
 }),
);
 console.log("Successfully copied object to bucket.");
 } catch (caught) {
 if (caught instanceof NoSuchKey) {
 console.error(
 `Error from S3 while copying object "${sourceKeyName}" from
 "${sourceBucketName}". No such key exists.`,
);
 } else if (caught instanceof S3ServiceException) {
 console.error(
 `Unable to copy object "${sourceKeyName}" to bucket "${sourceBucketName}":
 ${caught.name}: ${caught.message}`,
);
 } else {
 throw caught;
 }
 }
};

// Call function if run directly
import { parseArgs } from "node:util";

操作 1149

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

import {
 isMain,
 validateArgs,
} from "@aws-doc-sdk-examples/lib/utils/util-node.js";

const loadArgs = () => {
 const options = {
 sourceBucketName: {
 type: "string",
 required: true,
 },
 sourceKeyName: {
 type: "string",
 required: true,
 },
 destinationBucketName: {
 type: "string",
 required: true,
 },
 eTag: {
 type: "string",
 required: true,
 },
 };
 const results = parseArgs({ options });
 const { errors } = validateArgs({ options }, results);
 return { errors, results };
};

if (isMain(import.meta.url)) {
 const { errors, results } = loadArgs();
 if (!errors) {
 main(results.values);
 } else {
 console.error(errors.join("\n"));
 }
}

对象在给定时间范围内创建或修改的条件下复制该对象。

import {

操作 1150

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 CopyObjectCommand,
 NoSuchKey,
 S3Client,
 S3ServiceException,
} from "@aws-sdk/client-s3";

// Optionally edit the default key name of the copied object in 'object_name.json'
import data from "../scenarios/conditional-requests/object_name.json" assert {
 type: "json",
};

/**
 * Get a single object from a specified S3 bucket.
 * @param {{ sourceBucketName: string, sourceKeyName: string, destinationBucketName:
 string }}
 */
export const main = async ({
 sourceBucketName,
 sourceKeyName,
 destinationBucketName,
}) => {
 const date = new Date();
 date.setDate(date.getDate() - 1);

 const name = data.name;
 const client = new S3Client({});
 const copySource = `${sourceBucketName}/${sourceKeyName}`;
 const copiedKey = name + sourceKeyName;

 try {
 const response = await client.send(
 new CopyObjectCommand({
 CopySource: copySource,
 Bucket: destinationBucketName,
 Key: copiedKey,
 CopySourceIfModifiedSince: date,
 }),
);
 console.log("Successfully copied object to bucket.");
 } catch (caught) {
 if (caught instanceof NoSuchKey) {
 console.error(
 `Error from S3 while copying object "${sourceKeyName}" from
 "${sourceBucketName}". No such key exists.`,

操作 1151

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

);
 } else if (caught instanceof S3ServiceException) {
 console.error(
 `Error from S3 while copying object from ${sourceBucketName}.
 ${caught.name}: ${caught.message}`,
);
 } else {
 throw caught;
 }
 }
};

// Call function if run directly
import { parseArgs } from "node:util";
import {
 isMain,
 validateArgs,
} from "@aws-doc-sdk-examples/lib/utils/util-node.js";

const loadArgs = () => {
 const options = {
 sourceBucketName: {
 type: "string",
 required: true,
 },
 sourceKeyName: {
 type: "string",
 required: true,
 },
 destinationBucketName: {
 type: "string",
 required: true,
 },
 };
 const results = parseArgs({ options });
 const { errors } = validateArgs({ options }, results);
 return { errors, results };
};

if (isMain(import.meta.url)) {
 const { errors, results } = loadArgs();
 if (!errors) {
 main(results.values);
 } else {

操作 1152

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 console.error(errors.join("\n"));
 }
}

对象未在给定时间范围内创建或修改的条件下复制该对象。

import {
 CopyObjectCommand,
 NoSuchKey,
 S3Client,
 S3ServiceException,
} from "@aws-sdk/client-s3";

// Optionally edit the default key name of the copied object in 'object_name.json'
import data from "../scenarios/conditional-requests/object_name.json" assert {
 type: "json",
};

/**
 * Get a single object from a specified S3 bucket.
 * @param {{ sourceBucketName: string, sourceKeyName: string, destinationBucketName:
 string }}
 */
export const main = async ({
 sourceBucketName,
 sourceKeyName,
 destinationBucketName,
}) => {
 const date = new Date();
 date.setDate(date.getDate() - 1);
 const client = new S3Client({});
 const name = data.name;
 const copiedKey = name + sourceKeyName;
 const copySource = `${sourceBucketName}/${sourceKeyName}`;

 try {
 const response = await client.send(
 new CopyObjectCommand({
 CopySource: copySource,
 Bucket: destinationBucketName,
 Key: copiedKey,

操作 1153

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 CopySourceIfUnmodifiedSince: date,
 }),
);
 console.log("Successfully copied object to bucket.");
 } catch (caught) {
 if (caught instanceof NoSuchKey) {
 console.error(
 `Error from S3 while copying object "${sourceKeyName}" from
 "${sourceBucketName}". No such key exists.`,
);
 } else if (caught instanceof S3ServiceException) {
 console.error(
 `Error from S3 while copying object from ${sourceBucketName}.
 ${caught.name}: ${caught.message}`,
);
 } else {
 throw caught;
 }
 }
};

// Call function if run directly
import { parseArgs } from "node:util";
import {
 isMain,
 validateArgs,
} from "@aws-doc-sdk-examples/lib/utils/util-node.js";

const loadArgs = () => {
 const options = {
 sourceBucketName: {
 type: "string",
 required: true,
 },
 sourceKeyName: {
 type: "string",
 required: true,
 },
 destinationBucketName: {
 type: "string",
 required: true,
 },
 };
 const results = parseArgs({ options });

操作 1154

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const { errors } = validateArgs({ options }, results);
 return { errors, results };
};

if (isMain(import.meta.url)) {
 const { errors, results } = loadArgs();
 if (!errors) {
 main(results.values);
 } else {
 console.error(errors.join("\n"));
 }
}

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考CopyObject中的。

CreateBucket

以下代码示例演示了如何使用 CreateBucket。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

创建存储桶。

import {
 BucketAlreadyExists,
 BucketAlreadyOwnedByYou,
 CreateBucketCommand,
 S3Client,
 waitUntilBucketExists,
} from "@aws-sdk/client-s3";

/**
 * Create an Amazon S3 bucket.
 * @param {{ bucketName: string }} config

操作 1155

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/s3/command/CopyObjectCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/s3#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 */
export const main = async ({ bucketName }) => {
 const client = new S3Client({});

 try {
 const { Location } = await client.send(
 new CreateBucketCommand({
 // The name of the bucket. Bucket names are unique and have several other
 constraints.
 // See https://docs.aws.amazon.com/AmazonS3/latest/userguide/
bucketnamingrules.html
 Bucket: bucketName,
 }),
);
 await waitUntilBucketExists({ client }, { Bucket: bucketName });
 console.log(`Bucket created with location ${Location}`);
 } catch (caught) {
 if (caught instanceof BucketAlreadyExists) {
 console.error(
 `The bucket "${bucketName}" already exists in another AWS account. Bucket
 names must be globally unique.`,
);
 }
 // WARNING: If you try to create a bucket in the North Virginia region,
 // and you already own a bucket in that region with the same name, this
 // error will not be thrown. Instead, the call will return successfully
 // and the ACL on that bucket will be reset.
 else if (caught instanceof BucketAlreadyOwnedByYou) {
 console.error(
 `The bucket "${bucketName}" already exists in this AWS account.`,
);
 } else {
 throw caught;
 }
 }
};

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-creating-
buckets.html#s3-example-creating-buckets-new-bucket-2。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考CreateBucket中的。

操作 1156

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-creating-buckets.html#s3-example-creating-buckets-new-bucket-2
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-creating-buckets.html#s3-example-creating-buckets-new-bucket-2
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-creating-buckets.html#s3-example-creating-buckets-new-bucket-2
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/s3/command/CreateBucketCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

DeleteBucket

以下代码示例演示了如何使用 DeleteBucket。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

删除存储桶。

import {
 DeleteBucketCommand,
 S3Client,
 S3ServiceException,
} from "@aws-sdk/client-s3";

/**
 * Delete an Amazon S3 bucket.
 * @param {{ bucketName: string }}
 */
export const main = async ({ bucketName }) => {
 const client = new S3Client({});
 const command = new DeleteBucketCommand({
 Bucket: bucketName,
 });

 try {
 await client.send(command);
 console.log("Bucket was deleted.");
 } catch (caught) {
 if (
 caught instanceof S3ServiceException &&
 caught.name === "NoSuchBucket"
) {
 console.error(
 `Error from S3 while deleting bucket. The bucket doesn't exist.`,
);
 } else if (caught instanceof S3ServiceException) {
 console.error(

操作 1157

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/s3#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 `Error from S3 while deleting the bucket. ${caught.name}:
 ${caught.message}`,
);
 } else {
 throw caught;
 }
 }
};

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-creating-
buckets.html#s3-example-deleting-buckets。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DeleteBucket中的。

DeleteBucketPolicy

以下代码示例演示了如何使用 DeleteBucketPolicy。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

删除存储桶策略。

import {
 DeleteBucketPolicyCommand,
 S3Client,
 S3ServiceException,
} from "@aws-sdk/client-s3";

/**
 * Remove the policy from an Amazon S3 bucket.
 * @param {{ bucketName: string }}
 */
export const main = async ({ bucketName }) => {

操作 1158

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-creating-buckets.html#s3-example-deleting-buckets
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-creating-buckets.html#s3-example-deleting-buckets
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-creating-buckets.html#s3-example-deleting-buckets
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/s3/command/DeleteBucketCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/s3#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const client = new S3Client({});

 try {
 await client.send(
 new DeleteBucketPolicyCommand({
 Bucket: bucketName,
 }),
);
 console.log(`Bucket policy deleted from "${bucketName}".`);
 } catch (caught) {
 if (
 caught instanceof S3ServiceException &&
 caught.name === "NoSuchBucket"
) {
 console.error(
 `Error from S3 while deleting policy from ${bucketName}. The bucket doesn't
 exist.`,
);
 } else if (caught instanceof S3ServiceException) {
 console.error(
 `Error from S3 while deleting policy from ${bucketName}. ${caught.name}:
 ${caught.message}`,
);
 } else {
 throw caught;
 }
 }
};

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-bucket-policies.html#s3-
example-bucket-policies-delete-policy。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考DeleteBucketPolicy中的。

DeleteBucketWebsite

以下代码示例演示了如何使用 DeleteBucketWebsite。

操作 1159

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-bucket-policies.html#s3-example-bucket-policies-delete-policy
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-bucket-policies.html#s3-example-bucket-policies-delete-policy
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-bucket-policies.html#s3-example-bucket-policies-delete-policy
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/s3/command/DeleteBucketPolicyCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

从存储桶中删除网站配置。

import {
 DeleteBucketWebsiteCommand,
 S3Client,
 S3ServiceException,
} from "@aws-sdk/client-s3";

/**
 * Remove the website configuration for a bucket.
 * @param {{ bucketName: string }}
 */
export const main = async ({ bucketName }) => {
 const client = new S3Client({});

 try {
 await client.send(
 new DeleteBucketWebsiteCommand({
 Bucket: bucketName,
 }),
);
 // The response code will be successful for both removed configurations and
 // configurations that did not exist in the first place.
 console.log(
 `The bucket "${bucketName}" is not longer configured as a website, or it never
 was.`,
);
 } catch (caught) {
 if (
 caught instanceof S3ServiceException &&
 caught.name === "NoSuchBucket"
) {
 console.error(
 `Error from S3 while removing website configuration from ${bucketName}. The
 bucket doesn't exist.`,

操作 1160

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/s3#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

);
 } else if (caught instanceof S3ServiceException) {
 console.error(
 `Error from S3 while removing website configuration from ${bucketName}.
 ${caught.name}: ${caught.message}`,
);
 } else {
 throw caught;
 }
 }
};

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-static-web-host.html#s3-
example-static-web-host-delete-website。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考DeleteBucketWebsite中的。

DeleteObject

以下代码示例演示了如何使用 DeleteObject。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

删除对象。

import {
 DeleteObjectCommand,
 S3Client,
 S3ServiceException,
 waitUntilObjectNotExists,
} from "@aws-sdk/client-s3";

/**

操作 1161

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-static-web-host.html#s3-example-static-web-host-delete-website
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-static-web-host.html#s3-example-static-web-host-delete-website
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-static-web-host.html#s3-example-static-web-host-delete-website
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/s3/command/DeleteBucketWebsiteCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/s3#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * Delete one object from an Amazon S3 bucket.
 * @param {{ bucketName: string, key: string }}
 */
export const main = async ({ bucketName, key }) => {
 const client = new S3Client({});

 try {
 await client.send(
 new DeleteObjectCommand({
 Bucket: bucketName,
 Key: key,
 }),
);
 await waitUntilObjectNotExists(
 { client },
 { Bucket: bucketName, Key: key },
);
 // A successful delete, or a delete for a non-existent object, both return
 // a 204 response code.
 console.log(
 `The object "${key}" from bucket "${bucketName}" was deleted, or it didn't
 exist.`,
);
 } catch (caught) {
 if (
 caught instanceof S3ServiceException &&
 caught.name === "NoSuchBucket"
) {
 console.error(
 `Error from S3 while deleting object from ${bucketName}. The bucket doesn't
 exist.`,
);
 } else if (caught instanceof S3ServiceException) {
 console.error(
 `Error from S3 while deleting object from ${bucketName}. ${caught.name}:
 ${caught.message}`,
);
 } else {
 throw caught;
 }
 }
};

操作 1162

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DeleteObject中的。

DeleteObjects

以下代码示例演示了如何使用 DeleteObjects。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

删除多个对象。

import {
 DeleteObjectsCommand,
 S3Client,
 S3ServiceException,
 waitUntilObjectNotExists,
} from "@aws-sdk/client-s3";

/**
 * Delete multiple objects from an S3 bucket.
 * @param {{ bucketName: string, keys: string[] }}
 */
export const main = async ({ bucketName, keys }) => {
 const client = new S3Client({});

 try {
 const { Deleted } = await client.send(
 new DeleteObjectsCommand({
 Bucket: bucketName,
 Delete: {
 Objects: keys.map((k) => ({ Key: k })),
 },
 }),
);
 for (const key in keys) {
 await waitUntilObjectNotExists(
 { client },

操作 1163

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/s3/command/DeleteObjectCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/s3#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 { Bucket: bucketName, Key: key },
);
 }
 console.log(
 `Successfully deleted ${Deleted.length} objects from S3 bucket. Deleted
 objects:`,
);
 console.log(Deleted.map((d) => ` • ${d.Key}`).join("\n"));
 } catch (caught) {
 if (
 caught instanceof S3ServiceException &&
 caught.name === "NoSuchBucket"
) {
 console.error(
 `Error from S3 while deleting objects from ${bucketName}. The bucket doesn't
 exist.`,
);
 } else if (caught instanceof S3ServiceException) {
 console.error(
 `Error from S3 while deleting objects from ${bucketName}. ${caught.name}:
 ${caught.message}`,
);
 } else {
 throw caught;
 }
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DeleteObjects中的。

GetBucketAcl

以下代码示例演示了如何使用 GetBucketAcl。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

操作 1164

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/s3/command/DeleteObjectsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/s3#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

获取 ACL 权限。

import {
 GetBucketAclCommand,
 S3Client,
 S3ServiceException,
} from "@aws-sdk/client-s3";

/**
 * Retrieves the Access Control List (ACL) for an S3 bucket.
 * @param {{ bucketName: string }}
 */
export const main = async ({ bucketName }) => {
 const client = new S3Client({});

 try {
 const response = await client.send(
 new GetBucketAclCommand({
 Bucket: bucketName,
 }),
);
 console.log(`ACL for bucket "${bucketName}":`);
 console.log(JSON.stringify(response, null, 2));
 } catch (caught) {
 if (
 caught instanceof S3ServiceException &&
 caught.name === "NoSuchBucket"
) {
 console.error(
 `Error from S3 while getting ACL for ${bucketName}. The bucket doesn't
 exist.`,
);
 } else if (caught instanceof S3ServiceException) {
 console.error(
 `Error from S3 while getting ACL for ${bucketName}. ${caught.name}:
 ${caught.message}`,
);
 } else {
 throw caught;
 }
 }
};

操作 1165

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-access-
permissions.html#s3-example-access-permissions-get-acl。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考GetBucketAcl中的。

GetBucketCors

以下代码示例演示了如何使用 GetBucketCors。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

获取存储桶的 CORS 策略。

import {
 GetBucketCorsCommand,
 S3Client,
 S3ServiceException,
} from "@aws-sdk/client-s3";

/**
 * Log the Cross-Origin Resource Sharing (CORS) configuration information
 * set for the bucket.
 * @param {{ bucketName: string }}
 */
export const main = async ({ bucketName }) => {
 const client = new S3Client({});
 const command = new GetBucketCorsCommand({
 Bucket: bucketName,
 });

 try {
 const { CORSRules } = await client.send(command);
 console.log(JSON.stringify(CORSRules));
 CORSRules.forEach((cr, i) => {
 console.log(

操作 1166

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-access-permissions.html#s3-example-access-permissions-get-acl
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-access-permissions.html#s3-example-access-permissions-get-acl
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-access-permissions.html#s3-example-access-permissions-get-acl
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/s3/command/GetBucketAclCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/s3#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 `\nCORSRule ${i + 1}`,
 `\n${"-".repeat(10)}`,
 `\nAllowedHeaders: ${cr.AllowedHeaders}`,
 `\nAllowedMethods: ${cr.AllowedMethods}`,
 `\nAllowedOrigins: ${cr.AllowedOrigins}`,
 `\nExposeHeaders: ${cr.ExposeHeaders}`,
 `\nMaxAgeSeconds: ${cr.MaxAgeSeconds}`,
);
 });
 } catch (caught) {
 if (
 caught instanceof S3ServiceException &&
 caught.name === "NoSuchBucket"
) {
 console.error(
 `Error from S3 while getting bucket CORS rules for ${bucketName}. The bucket
 doesn't exist.`,
);
 } else if (caught instanceof S3ServiceException) {
 console.error(
 `Error from S3 while getting bucket CORS rules for ${bucketName}.
 ${caught.name}: ${caught.message}`,
);
 } else {
 throw caught;
 }
 }
};

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-configuring-
buckets.html#s3-example-configuring-buckets-get-cors。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考GetBucketCors中
的。

GetBucketPolicy

以下代码示例演示了如何使用 GetBucketPolicy。

操作 1167

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-configuring-buckets.html#s3-example-configuring-buckets-get-cors
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-configuring-buckets.html#s3-example-configuring-buckets-get-cors
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-configuring-buckets.html#s3-example-configuring-buckets-get-cors
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/s3/command/GetBucketCorsCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

获取存储桶策略。

import {
 GetBucketPolicyCommand,
 S3Client,
 S3ServiceException,
} from "@aws-sdk/client-s3";

/**
 * Logs the policy for a specified bucket.
 * @param {{ bucketName: string }}
 */
export const main = async ({ bucketName }) => {
 const client = new S3Client({});

 try {
 const { Policy } = await client.send(
 new GetBucketPolicyCommand({
 Bucket: bucketName,
 }),
);
 console.log(`Policy for "${bucketName}":\n${Policy}`);
 } catch (caught) {
 if (
 caught instanceof S3ServiceException &&
 caught.name === "NoSuchBucket"
) {
 console.error(
 `Error from S3 while getting policy from ${bucketName}. The bucket doesn't
 exist.`,
);
 } else if (caught instanceof S3ServiceException) {
 console.error(
 `Error from S3 while getting policy from ${bucketName}. ${caught.name}:
 ${caught.message}`,

操作 1168

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/s3#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

);
 } else {
 throw caught;
 }
 }
};

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-bucket-policies.html#s3-
example-bucket-policies-get-policy。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考GetBucketPolicy中
的。

GetBucketWebsite

以下代码示例演示了如何使用 GetBucketWebsite。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

获取网站配置。

import {
 GetBucketWebsiteCommand,
 S3Client,
 S3ServiceException,
} from "@aws-sdk/client-s3";

/**
 * Log the website configuration for a bucket.
 * @param {{ bucketName }}
 */
export const main = async ({ bucketName }) => {
 const client = new S3Client({});

操作 1169

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-bucket-policies.html#s3-example-bucket-policies-get-policy
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-bucket-policies.html#s3-example-bucket-policies-get-policy
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-bucket-policies.html#s3-example-bucket-policies-get-policy
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/s3/command/GetBucketPolicyCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/s3#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 try {
 const response = await client.send(
 new GetBucketWebsiteCommand({
 Bucket: bucketName,
 }),
);
 console.log(
 `Your bucket is set up to host a website with the following configuration:\n
${JSON.stringify(response, null, 2)}`,
);
 } catch (caught) {
 if (
 caught instanceof S3ServiceException &&
 caught.name === "NoSuchWebsiteConfiguration"
) {
 console.error(
 `Error from S3 while getting website configuration for ${bucketName}. The
 bucket isn't configured as a website.`,
);
 } else if (caught instanceof S3ServiceException) {
 console.error(
 `Error from S3 while getting website configuration for ${bucketName}.
 ${caught.name}: ${caught.message}`,
);
 } else {
 throw caught;
 }
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考GetBucketWebsite中
的。

GetObject

以下代码示例演示了如何使用 GetObject。

操作 1170

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/s3/command/GetBucketWebsiteCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

下载对象。

import {
 GetObjectCommand,
 NoSuchKey,
 S3Client,
 S3ServiceException,
} from "@aws-sdk/client-s3";

/**
 * Get a single object from a specified S3 bucket.
 * @param {{ bucketName: string, key: string }}
 */
export const main = async ({ bucketName, key }) => {
 const client = new S3Client({});

 try {
 const response = await client.send(
 new GetObjectCommand({
 Bucket: bucketName,
 Key: key,
 }),
);
 // The Body object also has 'transformToByteArray' and 'transformToWebStream'
 methods.
 const str = await response.Body.transformToString();
 console.log(str);
 } catch (caught) {
 if (caught instanceof NoSuchKey) {
 console.error(
 `Error from S3 while getting object "${key}" from "${bucketName}". No such
 key exists.`,
);
 } else if (caught instanceof S3ServiceException) {
 console.error(

操作 1171

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/s3#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 `Error from S3 while getting object from ${bucketName}. ${caught.name}:
 ${caught.message}`,
);
 } else {
 throw caught;
 }
 }
};

下载对象的条件是它 ETag 与提供的对象相匹配。

import {
 GetObjectCommand,
 NoSuchKey,
 S3Client,
 S3ServiceException,
} from "@aws-sdk/client-s3";

/**
 * Get a single object from a specified S3 bucket.
 * @param {{ bucketName: string, key: string, eTag: string }}
 */
export const main = async ({ bucketName, key, eTag }) => {
 const client = new S3Client({});

 try {
 const response = await client.send(
 new GetObjectCommand({
 Bucket: bucketName,
 Key: key,
 IfMatch: eTag,
 }),
);
 // The Body object also has 'transformToByteArray' and 'transformToWebStream'
 methods.
 const str = await response.Body.transformToString();
 console.log("Success. Here is text of the file:", str);
 } catch (caught) {
 if (caught instanceof NoSuchKey) {
 console.error(

操作 1172

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 `Error from S3 while getting object "${key}" from "${bucketName}". No such
 key exists.`,
);
 } else if (caught instanceof S3ServiceException) {
 console.error(
 `Error from S3 while getting object from ${bucketName}. ${caught.name}:
 ${caught.message}`,
);
 } else {
 throw caught;
 }
 }
};

// Call function if run directly
import { parseArgs } from "node:util";
import {
 isMain,
 validateArgs,
} from "@aws-doc-sdk-examples/lib/utils/util-node.js";

const loadArgs = () => {
 const options = {
 bucketName: {
 type: "string",
 required: true,
 },
 key: {
 type: "string",
 required: true,
 },
 eTag: {
 type: "string",
 required: true,
 },
 };
 const results = parseArgs({ options });
 const { errors } = validateArgs({ options }, results);
 return { errors, results };
};

if (isMain(import.meta.url)) {
 const { errors, results } = loadArgs();
 if (!errors) {

操作 1173

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 main(results.values);
 } else {
 console.error(errors.join("\n"));
 }
}

下载对象的条件是它与提供的对象 ETag 不匹配。

import {
 GetObjectCommand,
 NoSuchKey,
 S3Client,
 S3ServiceException,
} from "@aws-sdk/client-s3";

/**
 * Get a single object from a specified S3 bucket.
 * @param {{ bucketName: string, key: string, eTag: string }}
 */
export const main = async ({ bucketName, key, eTag }) => {
 const client = new S3Client({});

 try {
 const response = await client.send(
 new GetObjectCommand({
 Bucket: bucketName,
 Key: key,
 IfNoneMatch: eTag,
 }),
);
 // The Body object also has 'transformToByteArray' and 'transformToWebStream'
 methods.
 const str = await response.Body.transformToString();
 console.log("Success. Here is text of the file:", str);
 } catch (caught) {
 if (caught instanceof NoSuchKey) {
 console.error(
 `Error from S3 while getting object "${key}" from "${bucketName}". No such
 key exists.`,
);
 } else if (caught instanceof S3ServiceException) {

操作 1174

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 console.error(
 `Error from S3 while getting object from ${bucketName}. ${caught.name}:
 ${caught.message}`,
);
 } else {
 throw caught;
 }
 }
};

// Call function if run directly
import { parseArgs } from "node:util";
import {
 isMain,
 validateArgs,
} from "@aws-doc-sdk-examples/lib/utils/util-node.js";

const loadArgs = () => {
 const options = {
 bucketName: {
 type: "string",
 required: true,
 },
 key: {
 type: "string",
 required: true,
 },
 eTag: {
 type: "string",
 required: true,
 },
 };
 const results = parseArgs({ options });
 const { errors } = validateArgs({ options }, results);
 return { errors, results };
};

if (isMain(import.meta.url)) {
 const { errors, results } = loadArgs();
 if (!errors) {
 main(results.values);
 } else {
 console.error(errors.join("\n"));
 }

操作 1175

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

}

使用在给定时间范围内创建或修改对象的条件来下载该对象。

import {
 GetObjectCommand,
 NoSuchKey,
 S3Client,
 S3ServiceException,
} from "@aws-sdk/client-s3";

/**
 * Get a single object from a specified S3 bucket.
 * @param {{ bucketName: string, key: string }}
 */
export const main = async ({ bucketName, key }) => {
 const client = new S3Client({});
 const date = new Date();
 date.setDate(date.getDate() - 1);
 try {
 const response = await client.send(
 new GetObjectCommand({
 Bucket: bucketName,
 Key: key,
 IfModifiedSince: date,
 }),
);
 // The Body object also has 'transformToByteArray' and 'transformToWebStream'
 methods.
 const str = await response.Body.transformToString();
 console.log("Success. Here is text of the file:", str);
 } catch (caught) {
 if (caught instanceof NoSuchKey) {
 console.error(
 `Error from S3 while getting object "${key}" from "${bucketName}". No such
 key exists.`,
);
 } else if (caught instanceof S3ServiceException) {
 console.error(
 `Error from S3 while getting object from ${bucketName}. ${caught.name}:
 ${caught.message}`,

操作 1176

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

);
 } else {
 throw caught;
 }
 }
};

// Call function if run directly
import { parseArgs } from "node:util";
import {
 isMain,
 validateArgs,
} from "@aws-doc-sdk-examples/lib/utils/util-node.js";

const loadArgs = () => {
 const options = {
 bucketName: {
 type: "string",
 required: true,
 },
 key: {
 type: "string",
 required: true,
 },
 };
 const results = parseArgs({ options });
 const { errors } = validateArgs({ options }, results);
 return { errors, results };
};

if (isMain(import.meta.url)) {
 const { errors, results } = loadArgs();
 if (!errors) {
 main(results.values);
 } else {
 console.error(errors.join("\n"));
 }
}

使用在给定时间范围内尚未创建或修改对象的条件来下载该对象。

操作 1177

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

import {
 GetObjectCommand,
 NoSuchKey,
 S3Client,
 S3ServiceException,
} from "@aws-sdk/client-s3";

/**
 * Get a single object from a specified S3 bucket.
 * @param {{ bucketName: string, key: string }}
 */
export const main = async ({ bucketName, key }) => {
 const client = new S3Client({});
 const date = new Date();
 date.setDate(date.getDate() - 1);
 try {
 const response = await client.send(
 new GetObjectCommand({
 Bucket: bucketName,
 Key: key,
 IfUnmodifiedSince: date,
 }),
);
 // The Body object also has 'transformToByteArray' and 'transformToWebStream'
 methods.
 const str = await response.Body.transformToString();
 console.log("Success. Here is text of the file:", str);
 } catch (caught) {
 if (caught instanceof NoSuchKey) {
 console.error(
 `Error from S3 while getting object "${key}" from "${bucketName}". No such
 key exists.`,
);
 } else if (caught instanceof S3ServiceException) {
 console.error(
 `Error from S3 while getting object from ${bucketName}. ${caught.name}:
 ${caught.message}`,
);
 } else {
 throw caught;
 }
 }
};

操作 1178

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

// Call function if run directly
import { parseArgs } from "node:util";
import {
 isMain,
 validateArgs,
} from "@aws-doc-sdk-examples/lib/utils/util-node.js";

const loadArgs = () => {
 const options = {
 bucketName: {
 type: "string",
 required: true,
 },
 key: {
 type: "string",
 required: true,
 },
 };
 const results = parseArgs({ options });
 const { errors } = validateArgs({ options }, results);
 return { errors, results };
};

if (isMain(import.meta.url)) {
 const { errors, results } = loadArgs();
 if (!errors) {
 main(results.values);
 } else {
 console.error(errors.join("\n"));
 }
}

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-creating-
buckets.html#s3-example-creating-buckets-get-object。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考GetObject中的。

GetObjectLegalHold

以下代码示例演示了如何使用 GetObjectLegalHold。

操作 1179

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-creating-buckets.html#s3-example-creating-buckets-get-object
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-creating-buckets.html#s3-example-creating-buckets-get-object
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-creating-buckets.html#s3-example-creating-buckets-get-object
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/s3/command/GetObjectCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import {
 GetObjectLegalHoldCommand,
 S3Client,
 S3ServiceException,
} from "@aws-sdk/client-s3";

/**
 * Get an object's current legal hold status.
 * @param {{ bucketName: string, key: string }}
 */
export const main = async ({ bucketName, key }) => {
 const client = new S3Client({});

 try {
 const response = await client.send(
 new GetObjectLegalHoldCommand({
 Bucket: bucketName,
 Key: key,
 // Optionally, you can provide additional parameters
 // ExpectedBucketOwner: "<account ID that is expected to own the bucket>",
 // VersionId: "<the specific version id of the object to check>",
 }),
);
 console.log(`Legal Hold Status: ${response.LegalHold.Status}`);
 } catch (caught) {
 if (
 caught instanceof S3ServiceException &&
 caught.name === "NoSuchBucket"
) {
 console.error(
 `Error from S3 while getting legal hold status for ${key} in ${bucketName}.
 The bucket doesn't exist.`,
);

操作 1180

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/s3#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 } else if (caught instanceof S3ServiceException) {
 console.error(
 `Error from S3 while getting legal hold status for ${key} in ${bucketName}
 from ${bucketName}. ${caught.name}: ${caught.message}`,
);
 } else {
 throw caught;
 }
 }
};

// Call function if run directly
import { parseArgs } from "node:util";
import {
 isMain,
 validateArgs,
} from "@aws-doc-sdk-examples/lib/utils/util-node.js";

const loadArgs = () => {
 const options = {
 bucketName: {
 type: "string",
 required: true,
 },
 key: {
 type: "string",
 required: true,
 },
 };
 const results = parseArgs({ options });
 const { errors } = validateArgs({ options }, results);
 return { errors, results };
};

if (isMain(import.meta.url)) {
 const { errors, results } = loadArgs();
 if (!errors) {
 main(results.values);
 } else {
 console.error(errors.join("\n"));
 }
}

操作 1181

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考GetObjectLegalHold中的。

GetObjectLockConfiguration

以下代码示例演示了如何使用 GetObjectLockConfiguration。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import {
 GetObjectLockConfigurationCommand,
 S3Client,
 S3ServiceException,
} from "@aws-sdk/client-s3";

/**
 * Gets the Object Lock configuration for a bucket.
 * @param {{ bucketName: string }}
 */
export const main = async ({ bucketName }) => {
 const client = new S3Client({});

 try {
 const { ObjectLockConfiguration } = await client.send(
 new GetObjectLockConfigurationCommand({
 Bucket: bucketName,
 // Optionally, you can provide additional parameters
 // ExpectedBucketOwner: "<account ID that is expected to own the bucket>",
 }),
);
 console.log(
 `Object Lock Configuration:\n${JSON.stringify(ObjectLockConfiguration)}`,
);
 } catch (caught) {
 if (
 caught instanceof S3ServiceException &&

操作 1182

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/s3/command/GetObjectLegalHoldCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/s3#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 caught.name === "NoSuchBucket"
) {
 console.error(
 `Error from S3 while getting object lock configuration for ${bucketName}.
 The bucket doesn't exist.`,
);
 } else if (caught instanceof S3ServiceException) {
 console.error(
 `Error from S3 while getting object lock configuration for ${bucketName}.
 ${caught.name}: ${caught.message}`,
);
 } else {
 throw caught;
 }
 }
};

// Call function if run directly
import { parseArgs } from "node:util";
import {
 isMain,
 validateArgs,
} from "@aws-doc-sdk-examples/lib/utils/util-node.js";

const loadArgs = () => {
 const options = {
 bucketName: {
 type: "string",
 required: true,
 },
 };
 const results = parseArgs({ options });
 const { errors } = validateArgs({ options }, results);
 return { errors, results };
};

if (isMain(import.meta.url)) {
 const { errors, results } = loadArgs();
 if (!errors) {
 main(results.values);
 } else {
 console.error(errors.join("\n"));
 }
}

操作 1183

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考GetObjectLockConfiguration中的。

GetObjectRetention

以下代码示例演示了如何使用 GetObjectRetention。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import {
 GetObjectRetentionCommand,
 S3Client,
 S3ServiceException,
} from "@aws-sdk/client-s3";

/**
 * Log the "RetainUntilDate" for an object in an S3 bucket.
 * @param {{ bucketName: string, key: string }}
 */
export const main = async ({ bucketName, key }) => {
 const client = new S3Client({});

 try {
 const { Retention } = await client.send(
 new GetObjectRetentionCommand({
 Bucket: bucketName,
 Key: key,
 }),
);
 console.log(
 `${key} in ${bucketName} will be retained until ${Retention.RetainUntilDate}`,
);

操作 1184

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/s3/command/GetObjectLockConfigurationCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/s3#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 } catch (caught) {
 if (
 caught instanceof S3ServiceException &&
 caught.name === "NoSuchObjectLockConfiguration"
) {
 console.warn(
 `The object "${key}" in the bucket "${bucketName}" does not have an
 ObjectLock configuration.`,
);
 } else if (caught instanceof S3ServiceException) {
 console.error(
 `Error from S3 while getting object retention settings for "${bucketName}".
 ${caught.name}: ${caught.message}`,
);
 } else {
 throw caught;
 }
 }
};

// Call function if run directly
import { parseArgs } from "node:util";
import {
 isMain,
 validateArgs,
} from "@aws-doc-sdk-examples/lib/utils/util-node.js";

const loadArgs = () => {
 const options = {
 bucketName: {
 type: "string",
 required: true,
 },
 key: {
 type: "string",
 required: true,
 },
 };
 const results = parseArgs({ options });
 const { errors } = validateArgs({ options }, results);
 return { errors, results };
};

if (isMain(import.meta.url)) {

操作 1185

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const { errors, results } = loadArgs();
 if (!errors) {
 main(results.values);
 } else {
 console.error(errors.join("\n"));
 }
}

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考GetObjectRetention中的。

ListBuckets

以下代码示例演示了如何使用 ListBuckets。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

列出存储桶。

import {
 paginateListBuckets,
 S3Client,
 S3ServiceException,
} from "@aws-sdk/client-s3";

/**
 * List the Amazon S3 buckets in your account.
 */
export const main = async () => {
 const client = new S3Client({});
 /** @type {?import('@aws-sdk/client-s3').Owner} */
 let Owner = null;

 /** @type {import('@aws-sdk/client-s3').Bucket[]} */

操作 1186

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/s3/command/GetObjectRetentionCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/s3#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const Buckets = [];

 try {
 const paginator = paginateListBuckets({ client }, {});

 for await (const page of paginator) {
 if (!Owner) {
 Owner = page.Owner;
 }

 Buckets.push(...page.Buckets);
 }

 console.log(
 `${Owner.DisplayName} owns ${Buckets.length} bucket${
 Buckets.length === 1 ? "" : "s"
 }:`,
);
 console.log(`${Buckets.map((b) => ` • ${b.Name}`).join("\n")}`);
 } catch (caught) {
 if (caught instanceof S3ServiceException) {
 console.error(
 `Error from S3 while listing buckets. ${caught.name}: ${caught.message}`,
);
 } else {
 throw caught;
 }
 }
};

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-creating-
buckets.html#s3-example-creating-buckets-list-buckets。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考ListBuckets中的。

ListObjectsV2

以下代码示例演示了如何使用 ListObjectsV2。

操作 1187

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-creating-buckets.html#s3-example-creating-buckets-list-buckets
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-creating-buckets.html#s3-example-creating-buckets-list-buckets
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-creating-buckets.html#s3-example-creating-buckets-list-buckets
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/s3/command/ListBucketsCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

列出存储桶中的所有对象。如果有多个对象，则 NextContinuationToken 将使用 IsTruncated 并遍
历完整列表。

import {
 S3Client,
 S3ServiceException,
 // This command supersedes the ListObjectsCommand and is the recommended way to
 list objects.
 paginateListObjectsV2,
} from "@aws-sdk/client-s3";

/**
 * Log all of the object keys in a bucket.
 * @param {{ bucketName: string, pageSize: string }}
 */
export const main = async ({ bucketName, pageSize }) => {
 const client = new S3Client({});
 /** @type {string[][]} */
 const objects = [];
 try {
 const paginator = paginateListObjectsV2(
 { client, /* Max items per page */ pageSize: Number.parseInt(pageSize) },
 { Bucket: bucketName },
);

 for await (const page of paginator) {
 objects.push(page.Contents.map((o) => o.Key));
 }
 objects.forEach((objectList, pageNum) => {
 console.log(
 `Page ${pageNum + 1}\n------\n${objectList.map((o) => `•
 ${o}`).join("\n")}\n`,
);
 });

操作 1188

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/s3#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 } catch (caught) {
 if (
 caught instanceof S3ServiceException &&
 caught.name === "NoSuchBucket"
) {
 console.error(
 `Error from S3 while listing objects for "${bucketName}". The bucket doesn't
 exist.`,
);
 } else if (caught instanceof S3ServiceException) {
 console.error(
 `Error from S3 while listing objects for "${bucketName}". ${caught.name}:
 ${caught.message}`,
);
 } else {
 throw caught;
 }
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考中的
ListObjectsV2。

PutBucketAcl

以下代码示例演示了如何使用 PutBucketAcl。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

放置存储桶 ACL。

import {
 PutBucketAclCommand,
 S3Client,
 S3ServiceException,

操作 1189

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/s3/command/ListObjectsV2Command
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/s3#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

} from "@aws-sdk/client-s3";

/**
 * Grant read access to a user using their canonical AWS account ID.
 *
 * Most Amazon S3 use cases don't require the use of access control lists (ACLs).
 * We recommend that you disable ACLs, except in unusual circumstances where
 * you need to control access for each object individually. Consider a policy
 instead.
 * For more information see https://docs.aws.amazon.com/AmazonS3/latest/userguide/
bucket-policies.html.
 * @param {{ bucketName: string, granteeCanonicalUserId: string,
 ownerCanonicalUserId }}
 */
export const main = async ({
 bucketName,
 granteeCanonicalUserId,
 ownerCanonicalUserId,
}) => {
 const client = new S3Client({});
 const command = new PutBucketAclCommand({
 Bucket: bucketName,
 AccessControlPolicy: {
 Grants: [
 {
 Grantee: {
 // The canonical ID of the user. This ID is an obfuscated form of your
 AWS account number.
 // It's unique to Amazon S3 and can't be found elsewhere.
 // For more information, see https://docs.aws.amazon.com/AmazonS3/
latest/userguide/finding-canonical-user-id.html.
 ID: granteeCanonicalUserId,
 Type: "CanonicalUser",
 },
 // One of FULL_CONTROL | READ | WRITE | READ_ACP | WRITE_ACP
 // https://docs.aws.amazon.com/AmazonS3/latest/API/
API_Grant.html#AmazonS3-Type-Grant-Permission
 Permission: "READ",
 },
],
 Owner: {
 ID: ownerCanonicalUserId,
 },
 },

操作 1190

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 });

 try {
 await client.send(command);
 console.log(`Granted READ access to ${bucketName}`);
 } catch (caught) {
 if (
 caught instanceof S3ServiceException &&
 caught.name === "NoSuchBucket"
) {
 console.error(
 `Error from S3 while setting ACL for bucket ${bucketName}. The bucket
 doesn't exist.`,
);
 } else if (caught instanceof S3ServiceException) {
 console.error(
 `Error from S3 while setting ACL for bucket ${bucketName}. ${caught.name}:
 ${caught.message}`,
);
 } else {
 throw caught;
 }
 }
};

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-access-
permissions.html#s3-example-access-permissions-put-acl。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考PutBucketAcl中的。

PutBucketCors

以下代码示例演示了如何使用 PutBucketCors。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

操作 1191

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-access-permissions.html#s3-example-access-permissions-put-acl
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-access-permissions.html#s3-example-access-permissions-put-acl
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-access-permissions.html#s3-example-access-permissions-put-acl
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/s3/command/PutBucketAclCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/s3#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

添加 CORS 规则。

import {
 PutBucketCorsCommand,
 S3Client,
 S3ServiceException,
} from "@aws-sdk/client-s3";

/**
 * Allows cross-origin requests to an S3 bucket by setting the CORS configuration.
 * @param {{ bucketName: string }}
 */
export const main = async ({ bucketName }) => {
 const client = new S3Client({});

 try {
 await client.send(
 new PutBucketCorsCommand({
 Bucket: bucketName,
 CORSConfiguration: {
 CORSRules: [
 {
 // Allow all headers to be sent to this bucket.
 AllowedHeaders: ["*"],
 // Allow only GET and PUT methods to be sent to this bucket.
 AllowedMethods: ["GET", "PUT"],
 // Allow only requests from the specified origin.
 AllowedOrigins: ["https://www.example.com"],
 // Allow the entity tag (ETag) header to be returned in the response.
 The ETag header
 // The entity tag represents a specific version of the object. The
 ETag reflects
 // changes only to the contents of an object, not its metadata.
 ExposeHeaders: ["ETag"],
 // How long the requesting browser should cache the preflight
 response. After
 // this time, the preflight request will have to be made again.
 MaxAgeSeconds: 3600,
 },
],
 },
 }),
);
 console.log(`Successfully set CORS rules for bucket: ${bucketName}`);

操作 1192

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 } catch (caught) {
 if (
 caught instanceof S3ServiceException &&
 caught.name === "NoSuchBucket"
) {
 console.error(
 `Error from S3 while setting CORS rules for ${bucketName}. The bucket
 doesn't exist.`,
);
 } else if (caught instanceof S3ServiceException) {
 console.error(
 `Error from S3 while setting CORS rules for ${bucketName}. ${caught.name}:
 ${caught.message}`,
);
 } else {
 throw caught;
 }
 }
};

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-configuring-
buckets.html#s3-example-configuring-buckets-put-cors。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考PutBucketCors中
的。

PutBucketPolicy

以下代码示例演示了如何使用 PutBucketPolicy。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

添加策略。

操作 1193

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-configuring-buckets.html#s3-example-configuring-buckets-put-cors
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-configuring-buckets.html#s3-example-configuring-buckets-put-cors
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-configuring-buckets.html#s3-example-configuring-buckets-put-cors
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/s3/command/PutBucketCorsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/s3#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

import {
 PutBucketPolicyCommand,
 S3Client,
 S3ServiceException,
} from "@aws-sdk/client-s3";

/**
 * Grant an IAM role GetObject access to all of the objects
 * in the provided bucket.
 * @param {{ bucketName: string, iamRoleArn: string }}
 */
export const main = async ({ bucketName, iamRoleArn }) => {
 const client = new S3Client({});
 const command = new PutBucketPolicyCommand({
 // This is a resource-based policy. For more information on resource-based
 policies,
 // see https://docs.aws.amazon.com/IAM/latest/UserGuide/
access_policies.html#policies_resource-based.
 Policy: JSON.stringify({
 Version: "2012-10-17",
 Statement: [
 {
 Effect: "Allow",
 Principal: {
 AWS: iamRoleArn,
 },
 Action: "s3:GetObject",
 Resource: `arn:aws:s3:::${bucketName}/*`,
 },
],
 }),
 // Apply the preceding policy to this bucket.
 Bucket: bucketName,
 });

 try {
 await client.send(command);
 console.log(
 `GetObject access to the bucket "${bucketName}" was granted to the provided
 IAM role.`,
);
 } catch (caught) {
 if (

操作 1194

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 caught instanceof S3ServiceException &&
 caught.name === "MalformedPolicy"
) {
 console.error(
 `Error from S3 while setting the bucket policy for the bucket
 "${bucketName}". The policy was malformed.`,
);
 } else if (caught instanceof S3ServiceException) {
 console.error(
 `Error from S3 while setting the bucket policy for the bucket
 "${bucketName}". ${caught.name}: ${caught.message}`,
);
 } else {
 throw caught;
 }
 }
};

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-bucket-policies.html#s3-
example-bucket-policies-set-policy。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考PutBucketPolicy中
的。

PutBucketWebsite

以下代码示例演示了如何使用 PutBucketWebsite。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

设置网站配置。

import {
 PutBucketWebsiteCommand,

操作 1195

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-bucket-policies.html#s3-example-bucket-policies-set-policy
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-bucket-policies.html#s3-example-bucket-policies-set-policy
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-bucket-policies.html#s3-example-bucket-policies-set-policy
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/s3/command/PutBucketPolicyCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/s3#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 S3Client,
 S3ServiceException,
} from "@aws-sdk/client-s3";

/**
 * Configure an Amazon S3 bucket to serve a static website.
 * Website access must also be granted separately. For more information
 * on setting the permissions for website access, see
 * https://docs.aws.amazon.com/AmazonS3/latest/userguide/
WebsiteAccessPermissionsReqd.html.
 *
 * @param {{ bucketName: string }}
 */
export const main = async ({ bucketName }) => {
 const client = new S3Client({});
 const command = new PutBucketWebsiteCommand({
 Bucket: bucketName,
 WebsiteConfiguration: {
 ErrorDocument: {
 // The object key name to use when a 4XX class error occurs.
 Key: "error.html",
 },
 IndexDocument: {
 // A suffix that is appended to a request when the request is
 // for a directory.
 Suffix: "index.html",
 },
 },
 });

 try {
 await client.send(command);
 console.log(
 `The bucket "${bucketName}" has been configured as a static website.`,
);
 } catch (caught) {
 if (
 caught instanceof S3ServiceException &&
 caught.name === "NoSuchBucket"
) {
 console.error(
 `Error from S3 while configuring the bucket "${bucketName}" as a static
 website. The bucket doesn't exist.`,
);

操作 1196

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 } else if (caught instanceof S3ServiceException) {
 console.error(
 `Error from S3 while configuring the bucket "${bucketName}" as a static
 website. ${caught.name}: ${caught.message}`,
);
 } else {
 throw caught;
 }
 }
};

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-static-web-host.html#s3-
example-static-web-host-set-website。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考PutBucketWebsite中
的。

PutObject

以下代码示例演示了如何使用 PutObject。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

上传对象。

import { readFile } from "node:fs/promises";

import {
 PutObjectCommand,
 S3Client,
 S3ServiceException,
} from "@aws-sdk/client-s3";

/**

操作 1197

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-static-web-host.html#s3-example-static-web-host-set-website
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-static-web-host.html#s3-example-static-web-host-set-website
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-static-web-host.html#s3-example-static-web-host-set-website
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/s3/command/PutBucketWebsiteCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/s3#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * Upload a file to an S3 bucket.
 * @param {{ bucketName: string, key: string, filePath: string }}
 */
export const main = async ({ bucketName, key, filePath }) => {
 const client = new S3Client({});
 const command = new PutObjectCommand({
 Bucket: bucketName,
 Key: key,
 Body: await readFile(filePath),
 });

 try {
 const response = await client.send(command);
 console.log(response);
 } catch (caught) {
 if (
 caught instanceof S3ServiceException &&
 caught.name === "EntityTooLarge"
) {
 console.error(
 `Error from S3 while uploading object to ${bucketName}. \
The object was too large. To upload objects larger than 5GB, use the S3 console
 (160GB max) \
or the multipart upload API (5TB max).`,
);
 } else if (caught instanceof S3ServiceException) {
 console.error(
 `Error from S3 while uploading object to ${bucketName}. ${caught.name}:
 ${caught.message}`,
);
 } else {
 throw caught;
 }
 }
};

上传对象的条件是它 ETag 与提供的对象相匹配。

import {
 GetObjectCommand,
 NoSuchKey,

操作 1198

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 S3Client,
 S3ServiceException,
} from "@aws-sdk/client-s3";

/**
 * Get a single object from a specified S3 bucket.
 * @param {{ bucketName: string, key: string, eTag: string }}
 */
export const main = async ({ bucketName, key, eTag }) => {
 const client = new S3Client({});

 try {
 const response = await client.send(
 new GetObjectCommand({
 Bucket: bucketName,
 Key: key,
 IfMatch: eTag,
 }),
);
 // The Body object also has 'transformToByteArray' and 'transformToWebStream'
 methods.
 const str = await response.Body.transformToString();
 console.log("Success. Here is text of the file:", str);
 } catch (caught) {
 if (caught instanceof NoSuchKey) {
 console.error(
 `Error from S3 while getting object "${key}" from "${bucketName}". No such
 key exists.`,
);
 } else if (caught instanceof S3ServiceException) {
 console.error(
 `Error from S3 while getting object from ${bucketName}. ${caught.name}:
 ${caught.message}`,
);
 } else {
 throw caught;
 }
 }
};

// Call function if run directly
import { parseArgs } from "node:util";
import {
 isMain,

操作 1199

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 validateArgs,
} from "@aws-doc-sdk-examples/lib/utils/util-node.js";

const loadArgs = () => {
 const options = {
 bucketName: {
 type: "string",
 required: true,
 },
 key: {
 type: "string",
 required: true,
 },
 eTag: {
 type: "string",
 required: true,
 },
 };
 const results = parseArgs({ options });
 const { errors } = validateArgs({ options }, results);
 return { errors, results };
};

if (isMain(import.meta.url)) {
 const { errors, results } = loadArgs();
 if (!errors) {
 main(results.values);
 } else {
 console.error(errors.join("\n"));
 }
}

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-creating-
buckets.html#s3-example-creating-buckets-new-bucket-2。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考PutObject中的。

PutObjectLegalHold

以下代码示例演示了如何使用 PutObjectLegalHold。

操作 1200

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-creating-buckets.html#s3-example-creating-buckets-new-bucket-2
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-creating-buckets.html#s3-example-creating-buckets-new-bucket-2
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-creating-buckets.html#s3-example-creating-buckets-new-bucket-2
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/s3/command/PutObjectCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import {
 PutObjectLegalHoldCommand,
 S3Client,
 S3ServiceException,
} from "@aws-sdk/client-s3";

/**
 * Apply a legal hold configuration to the specified object.
 * @param {{ bucketName: string, objectKey: string, legalHoldStatus: "ON" | "OFF" }}
 */
export const main = async ({ bucketName, objectKey, legalHoldStatus }) => {
 if (!["OFF", "ON"].includes(legalHoldStatus.toUpperCase())) {
 throw new Error(
 "Invalid parameter. legalHoldStatus must be 'ON' or 'OFF'.",
);
 }

 const client = new S3Client({});
 const command = new PutObjectLegalHoldCommand({
 Bucket: bucketName,
 Key: objectKey,
 LegalHold: {
 // Set the status to 'ON' to place a legal hold on the object.
 // Set the status to 'OFF' to remove the legal hold.
 Status: legalHoldStatus,
 },
 });

 try {
 await client.send(command);
 console.log(
 `Legal hold status set to "${legalHoldStatus}" for "${objectKey}" in
 "${bucketName}"`,
);

操作 1201

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/s3#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 } catch (caught) {
 if (
 caught instanceof S3ServiceException &&
 caught.name === "NoSuchBucket"
) {
 console.error(
 `Error from S3 while modifying legal hold status for "${objectKey}" in
 "${bucketName}". The bucket doesn't exist.`,
);
 } else if (caught instanceof S3ServiceException) {
 console.error(
 `Error from S3 while modifying legal hold status for "${objectKey}" in
 "${bucketName}". ${caught.name}: ${caught.message}`,
);
 } else {
 throw caught;
 }
 }
};

// Call function if run directly
import { parseArgs } from "node:util";
import {
 isMain,
 validateArgs,
} from "@aws-doc-sdk-examples/lib/utils/util-node.js";

const loadArgs = () => {
 const options = {
 bucketName: {
 type: "string",
 required: true,
 },
 objectKey: {
 type: "string",
 required: true,
 },
 legalHoldStatus: {
 type: "string",
 default: "ON",
 },
 };
 const results = parseArgs({ options });
 const { errors } = validateArgs({ options }, results);

操作 1202

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 return { errors, results };
};

if (isMain(import.meta.url)) {
 const { errors, results } = loadArgs();
 if (!errors) {
 main(results.values);
 } else {
 console.error(errors.join("\n"));
 }
}

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考PutObjectLegalHold中的。

PutObjectLockConfiguration

以下代码示例演示了如何使用 PutObjectLockConfiguration。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

设置存储桶的对象锁定配置。

import {
 PutObjectLockConfigurationCommand,
 S3Client,
 S3ServiceException,
} from "@aws-sdk/client-s3";

/**
 * Enable S3 Object Lock for an Amazon S3 bucket.
 * After you enable Object Lock on a bucket, you can't
 * disable Object Lock or suspend versioning for that bucket.
 * @param {{ bucketName: string, enabled: boolean }}
 */

操作 1203

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/s3/command/PutObjectLegalHoldCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/s3#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

export const main = async ({ bucketName }) => {
 const client = new S3Client({});
 const command = new PutObjectLockConfigurationCommand({
 Bucket: bucketName,
 // The Object Lock configuration that you want to apply to the specified bucket.
 ObjectLockConfiguration: {
 ObjectLockEnabled: "Enabled",
 },
 });

 try {
 await client.send(command);
 console.log(`Object Lock for "${bucketName}" enabled.`);
 } catch (caught) {
 if (
 caught instanceof S3ServiceException &&
 caught.name === "NoSuchBucket"
) {
 console.error(
 `Error from S3 while modifying the object lock configuration for the bucket
 "${bucketName}". The bucket doesn't exist.`,
);
 } else if (caught instanceof S3ServiceException) {
 console.error(
 `Error from S3 while modifying the object lock configuration for the bucket
 "${bucketName}". ${caught.name}: ${caught.message}`,
);
 } else {
 throw caught;
 }
 }
};

// Call function if run directly
import { parseArgs } from "node:util";
import {
 isMain,
 validateArgs,
} from "@aws-doc-sdk-examples/lib/utils/util-node.js";

const loadArgs = () => {
 const options = {
 bucketName: {
 type: "string",

操作 1204

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 required: true,
 },
 };
 const results = parseArgs({ options });
 const { errors } = validateArgs({ options }, results);
 return { errors, results };
};

if (isMain(import.meta.url)) {
 const { errors, results } = loadArgs();
 if (!errors) {
 main(results.values);
 } else {
 console.error(errors.join("\n"));
 }
}

设置存储桶的默认保留期。

import {
 PutObjectLockConfigurationCommand,
 S3Client,
 S3ServiceException,
} from "@aws-sdk/client-s3";

/**
 * Change the default retention settings for an object in an Amazon S3 bucket.
 * @param {{ bucketName: string, retentionDays: string }}
 */
export const main = async ({ bucketName, retentionDays }) => {
 const client = new S3Client({});

 try {
 await client.send(
 new PutObjectLockConfigurationCommand({
 Bucket: bucketName,
 // The Object Lock configuration that you want to apply to the specified
 bucket.
 ObjectLockConfiguration: {
 ObjectLockEnabled: "Enabled",
 Rule: {

操作 1205

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // The default Object Lock retention mode and period that you want to
 apply
 // to new objects placed in the specified bucket. Bucket settings
 require
 // both a mode and a period. The period can be either Days or Years but
 // you must select one.
 DefaultRetention: {
 // In governance mode, users can't overwrite or delete an object
 version
 // or alter its lock settings unless they have special permissions.
 With
 // governance mode, you protect objects against being deleted by most
 users,
 // but you can still grant some users permission to alter the
 retention settings
 // or delete the objects if necessary.
 Mode: "GOVERNANCE",
 Days: Number.parseInt(retentionDays),
 },
 },
 },
 }),
);
 console.log(
 `Set default retention mode to "GOVERNANCE" with a retention period of
 ${retentionDays} day(s).`,
);
 } catch (caught) {
 if (
 caught instanceof S3ServiceException &&
 caught.name === "NoSuchBucket"
) {
 console.error(
 `Error from S3 while setting the default object retention for a bucket. The
 bucket doesn't exist.`,
);
 } else if (caught instanceof S3ServiceException) {
 console.error(
 `Error from S3 while setting the default object retention for a bucket.
 ${caught.name}: ${caught.message}`,
);
 } else {
 throw caught;
 }

操作 1206

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }
};

// Call function if run directly
import { parseArgs } from "node:util";
import {
 isMain,
 validateArgs,
} from "@aws-doc-sdk-examples/lib/utils/util-node.js";

const loadArgs = () => {
 const options = {
 bucketName: {
 type: "string",
 required: true,
 },
 retentionDays: {
 type: "string",
 required: true,
 },
 };
 const results = parseArgs({ options });
 const { errors } = validateArgs({ options }, results);
 return { errors, results };
};

if (isMain(import.meta.url)) {
 const { errors, results } = loadArgs();
 if (!errors) {
 main(results.values);
 } else {
 console.error(errors.join("\n"));
 }
}

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考PutObjectLockConfiguration中的。

PutObjectRetention

以下代码示例演示了如何使用 PutObjectRetention。

操作 1207

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/s3/command/PutObjectLockConfigurationCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import {
 PutObjectRetentionCommand,
 S3Client,
 S3ServiceException,
} from "@aws-sdk/client-s3";

/**
 * Place a 24-hour retention period on an object in an Amazon S3 bucket.
 * @param {{ bucketName: string, key: string }}
 */
export const main = async ({ bucketName, key }) => {
 const client = new S3Client({});
 const command = new PutObjectRetentionCommand({
 Bucket: bucketName,
 Key: key,
 BypassGovernanceRetention: false,
 Retention: {
 // In governance mode, users can't overwrite or delete an object version
 // or alter its lock settings unless they have special permissions. With
 // governance mode, you protect objects against being deleted by most users,
 // but you can still grant some users permission to alter the retention
 settings
 // or delete the objects if necessary.
 Mode: "GOVERNANCE",
 RetainUntilDate: new Date(new Date().getTime() + 24 * 60 * 60 * 1000),
 },
 });

 try {
 await client.send(command);
 console.log("Object Retention settings updated.");
 } catch (caught) {
 if (
 caught instanceof S3ServiceException &&

操作 1208

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/s3#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 caught.name === "NoSuchBucket"
) {
 console.error(
 `Error from S3 while modifying the governance mode and retention period on
 an object. The bucket doesn't exist.`,
);
 } else if (caught instanceof S3ServiceException) {
 console.error(
 `Error from S3 while modifying the governance mode and retention period on
 an object. ${caught.name}: ${caught.message}`,
);
 } else {
 throw caught;
 }
 }
};

// Call function if run directly
import { parseArgs } from "node:util";
import {
 isMain,
 validateArgs,
} from "@aws-doc-sdk-examples/lib/utils/util-node.js";

const loadArgs = () => {
 const options = {
 bucketName: {
 type: "string",
 required: true,
 },
 key: {
 type: "string",
 required: true,
 },
 };
 const results = parseArgs({ options });
 const { errors } = validateArgs({ options }, results);
 return { errors, results };
};

if (isMain(import.meta.url)) {
 const { errors, results } = loadArgs();
 if (!errors) {
 main(results.values);

操作 1209

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 } else {
 console.error(errors.join("\n"));
 }
}

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考PutObjectRetention中的。

场景

创建预签名 URL

以下代码示例展示了如何为 Amazon S3 创建预签名 URL 以及如何上传对象。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

创建预签名 URL 以将对象上传到存储桶。

import https from "node:https";

import { XMLParser } from "fast-xml-parser";
import { PutObjectCommand, S3Client } from "@aws-sdk/client-s3";
import { fromIni } from "@aws-sdk/credential-providers";
import { HttpRequest } from "@smithy/protocol-http";
import {
 getSignedUrl,
 S3RequestPresigner,
} from "@aws-sdk/s3-request-presigner";
import { parseUrl } from "@smithy/url-parser";
import { formatUrl } from "@aws-sdk/util-format-url";
import { Hash } from "@smithy/hash-node";

const createPresignedUrlWithoutClient = async ({ region, bucket, key }) => {
 const url = parseUrl(`https://${bucket}.s3.${region}.amazonaws.com/${key}`);
 const presigner = new S3RequestPresigner({

场景 1210

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/s3/command/PutObjectRetentionCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/s3#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 credentials: fromIni(),
 region,
 sha256: Hash.bind(null, "sha256"),
 });

 const signedUrlObject = await presigner.presign(
 new HttpRequest({ ...url, method: "PUT" }),
);
 return formatUrl(signedUrlObject);
};

const createPresignedUrlWithClient = ({ region, bucket, key }) => {
 const client = new S3Client({ region });
 const command = new PutObjectCommand({ Bucket: bucket, Key: key });
 return getSignedUrl(client, command, { expiresIn: 3600 });
};

/**
 * Make a PUT request to the provided URL.
 *
 * @param {string} url
 * @param {string} data
 */
const put = (url, data) => {
 return new Promise((resolve, reject) => {
 const req = https.request(
 url,
 { method: "PUT", headers: { "Content-Length": new Blob([data]).size } },
 (res) => {
 let responseBody = "";
 res.on("data", (chunk) => {
 responseBody += chunk;
 });
 res.on("end", () => {
 const parser = new XMLParser();
 if (res.statusCode >= 200 && res.statusCode <= 299) {
 resolve(parser.parse(responseBody, true));
 } else {
 reject(parser.parse(responseBody, true));
 }
 });
 },
);
 req.on("error", (err) => {

场景 1211

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 reject(err);
 });
 req.write(data);
 req.end();
 });
};

/**
 * Create two presigned urls for uploading an object to an S3 bucket.
 * The first presigned URL is created with credentials from the shared INI file
 * in the current environment. The second presigned URL is created using an
 * existing S3Client instance that has already been provided with credentials.
 * @param {{ bucketName: string, key: string, region: string }}
 */
export const main = async ({ bucketName, key, region }) => {
 try {
 const noClientUrl = await createPresignedUrlWithoutClient({
 bucket: bucketName,
 key,
 region,
 });

 const clientUrl = await createPresignedUrlWithClient({
 bucket: bucketName,
 region,
 key,
 });

 // After you get the presigned URL, you can provide your own file
 // data. Refer to put() above.
 console.log("Calling PUT using presigned URL without client");
 await put(noClientUrl, "Hello World");

 console.log("Calling PUT using presigned URL with client");
 await put(clientUrl, "Hello World");

 console.log("\nDone. Check your S3 console.");
 } catch (caught) {
 if (caught instanceof Error && caught.name === "CredentialsProviderError") {
 console.error(
 `There was an error getting your credentials. Are your local credentials
 configured?\n${caught.name}: ${caught.message}`,
);
 } else {

场景 1212

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 throw caught;
 }
 }
};

创建预签名 URL 以从存储桶下载对象。

import { GetObjectCommand, S3Client } from "@aws-sdk/client-s3";
import { fromIni } from "@aws-sdk/credential-providers";
import { HttpRequest } from "@smithy/protocol-http";
import {
 getSignedUrl,
 S3RequestPresigner,
} from "@aws-sdk/s3-request-presigner";
import { parseUrl } from "@smithy/url-parser";
import { formatUrl } from "@aws-sdk/util-format-url";
import { Hash } from "@smithy/hash-node";

const createPresignedUrlWithoutClient = async ({ region, bucket, key }) => {
 const url = parseUrl(`https://${bucket}.s3.${region}.amazonaws.com/${key}`);
 const presigner = new S3RequestPresigner({
 credentials: fromIni(),
 region,
 sha256: Hash.bind(null, "sha256"),
 });

 const signedUrlObject = await presigner.presign(new HttpRequest(url));
 return formatUrl(signedUrlObject);
};

const createPresignedUrlWithClient = ({ region, bucket, key }) => {
 const client = new S3Client({ region });
 const command = new GetObjectCommand({ Bucket: bucket, Key: key });
 return getSignedUrl(client, command, { expiresIn: 3600 });
};

/**
 * Create two presigned urls for downloading an object from an S3 bucket.
 * The first presigned URL is created with credentials from the shared INI file
 * in the current environment. The second presigned URL is created using an
 * existing S3Client instance that has already been provided with credentials.
 * @param {{ bucketName: string, key: string, region: string }}

场景 1213

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 */
export const main = async ({ bucketName, key, region }) => {
 try {
 const noClientUrl = await createPresignedUrlWithoutClient({
 bucket: bucketName,
 region,
 key,
 });

 const clientUrl = await createPresignedUrlWithClient({
 bucket: bucketName,
 region,
 key,
 });

 console.log("Presigned URL without client");
 console.log(noClientUrl);
 console.log("\n");

 console.log("Presigned URL with client");
 console.log(clientUrl);
 } catch (caught) {
 if (caught instanceof Error && caught.name === "CredentialsProviderError") {
 console.error(
 `There was an error getting your credentials. Are your local credentials
 configured?\n${caught.name}: ${caught.message}`,
);
 } else {
 throw caught;
 }
 }
};

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-creating-
buckets.html#s3-create-presigendurl。

创建无服务器应用程序来管理照片

以下代码示例演示如何创建无服务器应用程序，让用户能够使用标签管理照片。

场景 1214

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-creating-buckets.html#s3-create-presigendurl
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-creating-buckets.html#s3-create-presigendurl
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/s3-example-creating-buckets.html#s3-create-presigendurl

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

演示如何开发照片资产管理应用程序，该应用程序使用 Amazon Rekognition 检测图像中的标签并
将其存储以供日后检索。

有关如何设置和运行的完整源代码和说明，请参阅上的完整示例 GitHub。

要深入了解这个例子的起源，请参阅 Amazon 社区上的博文。

本示例中使用的服务

• API Gateway

• DynamoDB

• Lambda

• Amazon Rekognition

• Amazon S3

• Amazon SNS

创建列出 Amazon S3 对象的网页

以下代码示例展示了如何在网页中列出 Amazon S3 对象。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

以下代码是调用 Amazon SDK 的相关的 React 组件。可以在前面的 GitHub 链接中找到包含此组件
的应用程序的可运行版本。

import { useEffect, useState } from "react";
import {
 ListObjectsCommand,
 type ListObjectsCommandOutput,
 S3Client,
} from "@aws-sdk/client-s3";
import { fromCognitoIdentityPool } from "@aws-sdk/credential-providers";
import "./App.css";

场景 1215

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/photo-asset-manager
https://community.aws/posts/cloud-journeys/01-serverless-image-recognition-app
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/web/s3/list-objects#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

function App() {
 const [objects, setObjects] = useState<
 Required<ListObjectsCommandOutput>["Contents"]
 >([]);

 useEffect(() => {
 const client = new S3Client({
 region: "us-east-1",
 // Unless you have a public bucket, you'll need access to a private bucket.
 // One way to do this is to create an Amazon Cognito identity pool, attach a
 role to the pool,
 // and grant the role access to the 's3:GetObject' action.
 //
 // You'll also need to configure the CORS settings on the bucket to allow
 traffic from
 // this example site. Here's an example configuration that allows all origins.
 Don't
 // do this in production.
 //[
 // {
 // "AllowedHeaders": ["*"],
 // "AllowedMethods": ["GET"],
 // "AllowedOrigins": ["*"],
 // "ExposeHeaders": [],
 // },
 //]
 //
 credentials: fromCognitoIdentityPool({
 clientConfig: { region: "us-east-1" },
 identityPoolId: "<YOUR_IDENTITY_POOL_ID>",
 }),
 });
 const command = new ListObjectsCommand({ Bucket: "bucket-name" });
 client.send(command).then(({ Contents }) => setObjects(Contents || []));
 }, []);

 return (
 <div className="App">
 {objects.map((o) => (
 <div key={o.ETag}>{o.Key}</div>
))}
 </div>
);

场景 1216

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

}

export default App;

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考ListObjects中的。

创建 Amazon Textract 浏览器应用程序

以下代码示例演示如何通过交互式应用程序探索 Amazon Textract 输出。

适用于 JavaScript (v3) 的软件开发工具包

演示如何使用 适用于 JavaScript 的 Amazon SDK 来构建 React 应用程序，该应用程序使用
Amazon Textract 从文档图像中提取数据并将其显示在交互式网页中。此示例在 Web 浏览器
中运行，需要经过身份验证的 Amazon Cognito 身份才能获得凭证。它使用 Amazon Simple
Storage Service（Amazon S3）进行存储；对于通知，它将轮询订阅 Amazon Simple Notification
Service（Amazon SNS）主题的 Amazon Simple Queue Service（Amazon SQS）队列。

有关如何设置和运行的完整源代码和说明，请参阅上的完整示例GitHub。

本示例中使用的服务

• Amazon Cognito Identity

• Amazon S3

• Amazon SNS

• Amazon SQS

• Amazon Textract

删除存储桶中的所有对象

以下代码示例显示如何删除 Amazon S3 存储桶中的所有对象。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

场景 1217

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/s3/command/ListObjectsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/textract-react
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/s3#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

删除给定 Amazon S3 存储桶的所有对象。

import {
 DeleteObjectsCommand,
 paginateListObjectsV2,
 S3Client,
} from "@aws-sdk/client-s3";

/**
 *
 * @param {{ bucketName: string }} config
 */
export const main = async ({ bucketName }) => {
 const client = new S3Client({});
 try {
 console.log(`Deleting all objects in bucket: ${bucketName}`);

 const paginator = paginateListObjectsV2(
 { client },
 {
 Bucket: bucketName,
 },
);

 const objectKeys = [];
 for await (const { Contents } of paginator) {
 objectKeys.push(...Contents.map((obj) => ({ Key: obj.Key })));
 }

 const deleteCommand = new DeleteObjectsCommand({
 Bucket: bucketName,
 Delete: { Objects: objectKeys },
 });

 await client.send(deleteCommand);

 console.log(`All objects deleted from bucket: ${bucketName}`);
 } catch (caught) {
 if (caught instanceof Error) {
 console.error(
 `Failed to empty ${bucketName}. ${caught.name}: ${caught.message}`,
);
 }

场景 1218

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }
};

// Call function if run directly.
import { fileURLToPath } from "node:url";
import { parseArgs } from "node:util";
if (process.argv[1] === fileURLToPath(import.meta.url)) {
 const options = {
 bucketName: {
 type: "string",
 },
 };

 const { values } = parseArgs({ options });
 main(values);
}

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的以下主
题。

• DeleteObjects

• ListObjectsV2

检测图像中的对象

以下代码示例演示如何构建采用 Amazon Rekognition 来按类别检测图像中物体的应用程序。

适用于 JavaScript (v3) 的软件开发工具包

演示如何使用 Amazon Rekogn 适用于 JavaScript 的 Amazon SDK ition 和，创建一款应用程序，
该应用程序使用 Amazon Rekognition 按类别识别位于亚马逊简单存储服务 (Amazon S3) Simple
S3 存储桶中的图像中的对象。该应用程序使用 Amazon Simple Email Service (Amazon SES) 向管
理员发送包含结果的电子邮件通知。

了解如何：

• 使用 Amazon Cognito 创建未经身份验证的用户。

• 使用 Amazon Rekognition 分析包含对象的图像。

• 为 Amazon SES 验证电子邮件地址。

• 使用 Amazon SES 发送电子邮件通知。

场景 1219

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/s3/command/DeleteObjectsCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/s3/command/ListObjectsV2Command

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

有关如何设置和运行的完整源代码和说明，请参阅上的完整示例GitHub。

本示例中使用的服务

• Amazon Rekognition

• Amazon S3

• Amazon SES

锁定 Amazon S3 对象

以下代码示例演示了如何使用 Amazon S3 对象锁定功能。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

场景的入口点（index.js）。这用于编排所有步骤。请访问 GitHub 以查看场景、 ScenarioInput
ScenarioOutput、和的实现细节 ScenarioAction。

import * as Scenarios from "@aws-doc-sdk-examples/lib/scenario/index.js";
import {
 exitOnFalse,
 loadState,
 saveState,
} from "@aws-doc-sdk-examples/lib/scenario/steps-common.js";

import { welcome, welcomeContinue } from "./welcome.steps.js";
import {
 confirmCreateBuckets,
 confirmPopulateBuckets,
 confirmSetLegalHoldFileEnabled,
 confirmSetLegalHoldFileRetention,
 confirmSetRetentionPeriodFileEnabled,
 confirmSetRetentionPeriodFileRetention,
 confirmUpdateLockPolicy,
 confirmUpdateRetention,
 createBuckets,
 createBucketsAction,

场景 1220

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/photo_analyzer
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/s3/scenarios/object-locking#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 getBucketPrefix,
 populateBuckets,
 populateBucketsAction,
 setLegalHoldFileEnabledAction,
 setLegalHoldFileRetentionAction,
 setRetentionPeriodFileEnabledAction,
 setRetentionPeriodFileRetentionAction,
 updateLockPolicy,
 updateLockPolicyAction,
 updateRetention,
 updateRetentionAction,
} from "./setup.steps.js";

/**
 * @param {Scenarios} scenarios
 * @param {Record<string, any>} initialState
 */
export const getWorkflowStages = (scenarios, initialState = {}) => {
 const client = new S3Client({});

 return {
 deploy: new scenarios.Scenario(
 "S3 Object Locking - Deploy",
 [
 welcome(scenarios),
 welcomeContinue(scenarios),
 exitOnFalse(scenarios, "welcomeContinue"),
 getBucketPrefix(scenarios),
 createBuckets(scenarios),
 confirmCreateBuckets(scenarios),
 exitOnFalse(scenarios, "confirmCreateBuckets"),
 createBucketsAction(scenarios, client),
 updateRetention(scenarios),
 confirmUpdateRetention(scenarios),
 exitOnFalse(scenarios, "confirmUpdateRetention"),
 updateRetentionAction(scenarios, client),
 populateBuckets(scenarios),
 confirmPopulateBuckets(scenarios),
 exitOnFalse(scenarios, "confirmPopulateBuckets"),
 populateBucketsAction(scenarios, client),
 updateLockPolicy(scenarios),
 confirmUpdateLockPolicy(scenarios),
 exitOnFalse(scenarios, "confirmUpdateLockPolicy"),
 updateLockPolicyAction(scenarios, client),

场景 1221

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 confirmSetLegalHoldFileEnabled(scenarios),
 setLegalHoldFileEnabledAction(scenarios, client),
 confirmSetRetentionPeriodFileEnabled(scenarios),
 setRetentionPeriodFileEnabledAction(scenarios, client),
 confirmSetLegalHoldFileRetention(scenarios),
 setLegalHoldFileRetentionAction(scenarios, client),
 confirmSetRetentionPeriodFileRetention(scenarios),
 setRetentionPeriodFileRetentionAction(scenarios, client),
 saveState,
],
 initialState,
),
 demo: new scenarios.Scenario(
 "S3 Object Locking - Demo",
 [loadState, replAction(scenarios, client)],
 initialState,
),
 clean: new scenarios.Scenario(
 "S3 Object Locking - Destroy",
 [
 loadState,
 confirmCleanup(scenarios),
 exitOnFalse(scenarios, "confirmCleanup"),
 cleanupAction(scenarios, client),
],
 initialState,
),
 };
};

// Call function if run directly
import { fileURLToPath } from "node:url";
import { S3Client } from "@aws-sdk/client-s3";
import { cleanupAction, confirmCleanup } from "./clean.steps.js";
import { replAction } from "./repl.steps.js";

if (process.argv[1] === fileURLToPath(import.meta.url)) {
 const objectLockingScenarios = getWorkflowStages(Scenarios);
 Scenarios.parseScenarioArgs(objectLockingScenarios, {
 name: "Amazon S3 object locking workflow",
 description:
 "Work with Amazon Simple Storage Service (Amazon S3) object locking
 features.",
 synopsis:

场景 1222

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 "node index.js --scenario <deploy | demo | clean> [-h|--help] [-y|--yes] [-
v|--verbose]",
 });
}

向控制台输出欢迎消息（welcome.steps.js）。

/**
 * @typedef {import("@aws-doc-sdk-examples/lib/scenario/index.js")} Scenarios
 */

/**
 * @param {Scenarios} scenarios
 */
const welcome = (scenarios) =>
 new scenarios.ScenarioOutput(
 "welcome",
 "Welcome to the Amazon Simple Storage Service (S3) Object Locking Feature
 Scenario. For this workflow, we will use the AWS SDK for JavaScript to create
 several S3 buckets and files to demonstrate working with S3 locking features.",
 { header: true },
);

/**
 * @param {Scenarios} scenarios
 */
const welcomeContinue = (scenarios) =>
 new scenarios.ScenarioInput(
 "welcomeContinue",
 "Press Enter when you are ready to start.",
 { type: "confirm" },
);

export { welcome, welcomeContinue };

部署存储桶、对象和文件设置（setup.steps.js）。

import {
 BucketVersioningStatus,
 ChecksumAlgorithm,
 CreateBucketCommand,

场景 1223

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 MFADeleteStatus,
 PutBucketVersioningCommand,
 PutObjectCommand,
 PutObjectLockConfigurationCommand,
 PutObjectLegalHoldCommand,
 PutObjectRetentionCommand,
 ObjectLockLegalHoldStatus,
 ObjectLockRetentionMode,
 GetBucketVersioningCommand,
 BucketAlreadyExists,
 BucketAlreadyOwnedByYou,
 S3ServiceException,
 waitUntilBucketExists,
} from "@aws-sdk/client-s3";

import { retry } from "@aws-doc-sdk-examples/lib/utils/util-timers.js";

/**
 * @typedef {import("@aws-doc-sdk-examples/lib/scenario/index.js")} Scenarios
 */

/**
 * @typedef {import("@aws-sdk/client-s3").S3Client} S3Client
 */

/**
 * @param {Scenarios} scenarios
 */
const getBucketPrefix = (scenarios) =>
 new scenarios.ScenarioInput(
 "bucketPrefix",
 "Provide a prefix that will be used for bucket creation.",
 { type: "input", default: "amzn-s3-demo-bucket" },
);

/**
 * @param {Scenarios} scenarios
 */
const createBuckets = (scenarios) =>
 new scenarios.ScenarioOutput(
 "createBuckets",
 (state) => `The following buckets will be created:
 ${state.bucketPrefix}-no-lock with object lock False.
 ${state.bucketPrefix}-lock-enabled with object lock True.

场景 1224

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 ${state.bucketPrefix}-retention-after-creation with object lock False.`,
 { preformatted: true },
);

/**
 * @param {Scenarios} scenarios
 */
const confirmCreateBuckets = (scenarios) =>
 new scenarios.ScenarioInput("confirmCreateBuckets", "Create the buckets?", {
 type: "confirm",
 });

/**
 * @param {Scenarios} scenarios
 * @param {S3Client} client
 */
const createBucketsAction = (scenarios, client) =>
 new scenarios.ScenarioAction("createBucketsAction", async (state) => {
 const noLockBucketName = `${state.bucketPrefix}-no-lock`;
 const lockEnabledBucketName = `${state.bucketPrefix}-lock-enabled`;
 const retentionBucketName = `${state.bucketPrefix}-retention-after-creation`;

 try {
 await client.send(new CreateBucketCommand({ Bucket: noLockBucketName }));
 await waitUntilBucketExists({ client }, { Bucket: noLockBucketName });
 await client.send(
 new CreateBucketCommand({
 Bucket: lockEnabledBucketName,
 ObjectLockEnabledForBucket: true,
 }),
);
 await waitUntilBucketExists(
 { client },
 { Bucket: lockEnabledBucketName },
);
 await client.send(
 new CreateBucketCommand({ Bucket: retentionBucketName }),
);
 await waitUntilBucketExists({ client }, { Bucket: retentionBucketName });

 state.noLockBucketName = noLockBucketName;
 state.lockEnabledBucketName = lockEnabledBucketName;
 state.retentionBucketName = retentionBucketName;
 } catch (caught) {

场景 1225

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 if (
 caught instanceof BucketAlreadyExists ||
 caught instanceof BucketAlreadyOwnedByYou
) {
 console.error(`${caught.name}: ${caught.message}`);
 state.earlyExit = true;
 } else {
 throw caught;
 }
 }
 });

/**
 * @param {Scenarios} scenarios
 */
const populateBuckets = (scenarios) =>
 new scenarios.ScenarioOutput(
 "populateBuckets",
 (state) => `The following test files will be created:
 file0.txt in ${state.bucketPrefix}-no-lock.
 file1.txt in ${state.bucketPrefix}-no-lock.
 file0.txt in ${state.bucketPrefix}-lock-enabled.
 file1.txt in ${state.bucketPrefix}-lock-enabled.
 file0.txt in ${state.bucketPrefix}-retention-after-creation.
 file1.txt in ${state.bucketPrefix}-retention-after-creation.`,
 { preformatted: true },
);

/**
 * @param {Scenarios} scenarios
 */
const confirmPopulateBuckets = (scenarios) =>
 new scenarios.ScenarioInput(
 "confirmPopulateBuckets",
 "Populate the buckets?",
 { type: "confirm" },
);

/**
 * @param {Scenarios} scenarios
 * @param {S3Client} client
 */
const populateBucketsAction = (scenarios, client) =>
 new scenarios.ScenarioAction("populateBucketsAction", async (state) => {

场景 1226

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 try {
 await client.send(
 new PutObjectCommand({
 Bucket: state.noLockBucketName,
 Key: "file0.txt",
 Body: "Content",
 ChecksumAlgorithm: ChecksumAlgorithm.SHA256,
 }),
);
 await client.send(
 new PutObjectCommand({
 Bucket: state.noLockBucketName,
 Key: "file1.txt",
 Body: "Content",
 ChecksumAlgorithm: ChecksumAlgorithm.SHA256,
 }),
);
 await client.send(
 new PutObjectCommand({
 Bucket: state.lockEnabledBucketName,
 Key: "file0.txt",
 Body: "Content",
 ChecksumAlgorithm: ChecksumAlgorithm.SHA256,
 }),
);
 await client.send(
 new PutObjectCommand({
 Bucket: state.lockEnabledBucketName,
 Key: "file1.txt",
 Body: "Content",
 ChecksumAlgorithm: ChecksumAlgorithm.SHA256,
 }),
);
 await client.send(
 new PutObjectCommand({
 Bucket: state.retentionBucketName,
 Key: "file0.txt",
 Body: "Content",
 ChecksumAlgorithm: ChecksumAlgorithm.SHA256,
 }),
);
 await client.send(
 new PutObjectCommand({
 Bucket: state.retentionBucketName,

场景 1227

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 Key: "file1.txt",
 Body: "Content",
 ChecksumAlgorithm: ChecksumAlgorithm.SHA256,
 }),
);
 } catch (caught) {
 if (caught instanceof S3ServiceException) {
 console.error(
 `Error from S3 while uploading object. ${caught.name}:
 ${caught.message}`,
);
 } else {
 throw caught;
 }
 }
 });

/**
 * @param {Scenarios} scenarios
 */
const updateRetention = (scenarios) =>
 new scenarios.ScenarioOutput(
 "updateRetention",
 (state) => `A bucket can be configured to use object locking with a default
 retention period.
A default retention period will be configured for ${state.bucketPrefix}-retention-
after-creation.`,
 { preformatted: true },
);

/**
 * @param {Scenarios} scenarios
 */
const confirmUpdateRetention = (scenarios) =>
 new scenarios.ScenarioInput(
 "confirmUpdateRetention",
 "Configure default retention period?",
 { type: "confirm" },
);

/**
 * @param {Scenarios} scenarios
 * @param {S3Client} client
 */

场景 1228

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const updateRetentionAction = (scenarios, client) =>
 new scenarios.ScenarioAction("updateRetentionAction", async (state) => {
 await client.send(
 new PutBucketVersioningCommand({
 Bucket: state.retentionBucketName,
 VersioningConfiguration: {
 MFADelete: MFADeleteStatus.Disabled,
 Status: BucketVersioningStatus.Enabled,
 },
 }),
);

 const getBucketVersioning = new GetBucketVersioningCommand({
 Bucket: state.retentionBucketName,
 });

 await retry({ intervalInMs: 500, maxRetries: 10 }, async () => {
 const { Status } = await client.send(getBucketVersioning);
 if (Status !== "Enabled") {
 throw new Error("Bucket versioning is not enabled.");
 }
 });

 await client.send(
 new PutObjectLockConfigurationCommand({
 Bucket: state.retentionBucketName,
 ObjectLockConfiguration: {
 ObjectLockEnabled: "Enabled",
 Rule: {
 DefaultRetention: {
 Mode: "GOVERNANCE",
 Years: 1,
 },
 },
 },
 }),
);
 });

/**
 * @param {Scenarios} scenarios
 */
const updateLockPolicy = (scenarios) =>
 new scenarios.ScenarioOutput(

场景 1229

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 "updateLockPolicy",
 (state) => `Object lock policies can also be added to existing buckets.
An object lock policy will be added to ${state.bucketPrefix}-lock-enabled.`,
 { preformatted: true },
);

/**
 * @param {Scenarios} scenarios
 */
const confirmUpdateLockPolicy = (scenarios) =>
 new scenarios.ScenarioInput(
 "confirmUpdateLockPolicy",
 "Add object lock policy?",
 { type: "confirm" },
);

/**
 * @param {Scenarios} scenarios
 * @param {S3Client} client
 */
const updateLockPolicyAction = (scenarios, client) =>
 new scenarios.ScenarioAction("updateLockPolicyAction", async (state) => {
 await client.send(
 new PutObjectLockConfigurationCommand({
 Bucket: state.lockEnabledBucketName,
 ObjectLockConfiguration: {
 ObjectLockEnabled: "Enabled",
 },
 }),
);
 });

/**
 * @param {Scenarios} scenarios
 * @param {S3Client} client
 */
const confirmSetLegalHoldFileEnabled = (scenarios) =>
 new scenarios.ScenarioInput(
 "confirmSetLegalHoldFileEnabled",
 (state) =>
 `Would you like to add a legal hold to file0.txt in
 ${state.lockEnabledBucketName}?`,
 {
 type: "confirm",

场景 1230

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 },
);

/**
 * @param {Scenarios} scenarios
 * @param {S3Client} client
 */
const setLegalHoldFileEnabledAction = (scenarios, client) =>
 new scenarios.ScenarioAction(
 "setLegalHoldFileEnabledAction",
 async (state) => {
 await client.send(
 new PutObjectLegalHoldCommand({
 Bucket: state.lockEnabledBucketName,
 Key: "file0.txt",
 LegalHold: {
 Status: ObjectLockLegalHoldStatus.ON,
 },
 }),
);
 console.log(
 `Modified legal hold for file0.txt in ${state.lockEnabledBucketName}.`,
);
 },
 { skipWhen: (state) => !state.confirmSetLegalHoldFileEnabled },
);

/**
 * @param {Scenarios} scenarios
 * @param {S3Client} client
 */
const confirmSetRetentionPeriodFileEnabled = (scenarios) =>
 new scenarios.ScenarioInput(
 "confirmSetRetentionPeriodFileEnabled",
 (state) =>
 `Would you like to add a 1 day Governance retention period to file1.txt in
 ${state.lockEnabledBucketName}?
Reminder: Only a user with the s3:BypassGovernanceRetention permission will be able
 to delete this file or its bucket until the retention period has expired.`,
 {
 type: "confirm",
 },
);

场景 1231

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

/**
 * @param {Scenarios} scenarios
 * @param {S3Client} client
 */
const setRetentionPeriodFileEnabledAction = (scenarios, client) =>
 new scenarios.ScenarioAction(
 "setRetentionPeriodFileEnabledAction",
 async (state) => {
 const retentionDate = new Date();
 retentionDate.setDate(retentionDate.getDate() + 1);
 await client.send(
 new PutObjectRetentionCommand({
 Bucket: state.lockEnabledBucketName,
 Key: "file1.txt",
 Retention: {
 Mode: ObjectLockRetentionMode.GOVERNANCE,
 RetainUntilDate: retentionDate,
 },
 }),
);
 console.log(
 `Set retention for file1.txt in ${state.lockEnabledBucketName} until
 ${retentionDate.toISOString().split("T")[0]}.`,
);
 },
 { skipWhen: (state) => !state.confirmSetRetentionPeriodFileEnabled },
);

/**
 * @param {Scenarios} scenarios
 * @param {S3Client} client
 */
const confirmSetLegalHoldFileRetention = (scenarios) =>
 new scenarios.ScenarioInput(
 "confirmSetLegalHoldFileRetention",
 (state) =>
 `Would you like to add a legal hold to file0.txt in
 ${state.retentionBucketName}?`,
 {
 type: "confirm",
 },
);

/**

场景 1232

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * @param {Scenarios} scenarios
 * @param {S3Client} client
 */
const setLegalHoldFileRetentionAction = (scenarios, client) =>
 new scenarios.ScenarioAction(
 "setLegalHoldFileRetentionAction",
 async (state) => {
 await client.send(
 new PutObjectLegalHoldCommand({
 Bucket: state.retentionBucketName,
 Key: "file0.txt",
 LegalHold: {
 Status: ObjectLockLegalHoldStatus.ON,
 },
 }),
);
 console.log(
 `Modified legal hold for file0.txt in ${state.retentionBucketName}.`,
);
 },
 { skipWhen: (state) => !state.confirmSetLegalHoldFileRetention },
);

/**
 * @param {Scenarios} scenarios
 */
const confirmSetRetentionPeriodFileRetention = (scenarios) =>
 new scenarios.ScenarioInput(
 "confirmSetRetentionPeriodFileRetention",
 (state) =>
 `Would you like to add a 1 day Governance retention period to file1.txt in
 ${state.retentionBucketName}?
Reminder: Only a user with the s3:BypassGovernanceRetention permission will be able
 to delete this file or its bucket until the retention period has expired.`,
 {
 type: "confirm",
 },
);

/**
 * @param {Scenarios} scenarios
 * @param {S3Client} client
 */
const setRetentionPeriodFileRetentionAction = (scenarios, client) =>

场景 1233

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 new scenarios.ScenarioAction(
 "setRetentionPeriodFileRetentionAction",
 async (state) => {
 const retentionDate = new Date();
 retentionDate.setDate(retentionDate.getDate() + 1);
 await client.send(
 new PutObjectRetentionCommand({
 Bucket: state.retentionBucketName,
 Key: "file1.txt",
 Retention: {
 Mode: ObjectLockRetentionMode.GOVERNANCE,
 RetainUntilDate: retentionDate,
 },
 BypassGovernanceRetention: true,
 }),
);
 console.log(
 `Set retention for file1.txt in ${state.retentionBucketName} until
 ${retentionDate.toISOString().split("T")[0]}.`,
);
 },
 { skipWhen: (state) => !state.confirmSetRetentionPeriodFileRetention },
);

export {
 getBucketPrefix,
 createBuckets,
 confirmCreateBuckets,
 createBucketsAction,
 populateBuckets,
 confirmPopulateBuckets,
 populateBucketsAction,
 updateRetention,
 confirmUpdateRetention,
 updateRetentionAction,
 updateLockPolicy,
 confirmUpdateLockPolicy,
 updateLockPolicyAction,
 confirmSetLegalHoldFileEnabled,
 setLegalHoldFileEnabledAction,
 confirmSetRetentionPeriodFileEnabled,
 setRetentionPeriodFileEnabledAction,
 confirmSetLegalHoldFileRetention,
 setLegalHoldFileRetentionAction,

场景 1234

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 confirmSetRetentionPeriodFileRetention,
 setRetentionPeriodFileRetentionAction,
};

查看和删除存储桶中的文件（repl.steps.js）。

import {
 ChecksumAlgorithm,
 DeleteObjectCommand,
 GetObjectLegalHoldCommand,
 GetObjectLockConfigurationCommand,
 GetObjectRetentionCommand,
 ListObjectVersionsCommand,
 PutObjectCommand,
} from "@aws-sdk/client-s3";

/**
 * @typedef {import("@aws-doc-sdk-examples/lib/scenario/index.js")} Scenarios
 */

/**
 * @typedef {import("@aws-sdk/client-s3").S3Client} S3Client
 */

const choices = {
 EXIT: 0,
 LIST_ALL_FILES: 1,
 DELETE_FILE: 2,
 DELETE_FILE_WITH_RETENTION: 3,
 OVERWRITE_FILE: 4,
 VIEW_RETENTION_SETTINGS: 5,
 VIEW_LEGAL_HOLD_SETTINGS: 6,
};

/**
 * @param {Scenarios} scenarios
 */
const replInput = (scenarios) =>
 new scenarios.ScenarioInput(
 "replChoice",
 "Explore the S3 locking features by selecting one of the following choices",
 {

场景 1235

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 type: "select",
 choices: [
 { name: "List all files in buckets", value: choices.LIST_ALL_FILES },
 { name: "Attempt to delete a file.", value: choices.DELETE_FILE },
 {
 name: "Attempt to delete a file with retention period bypass.",
 value: choices.DELETE_FILE_WITH_RETENTION,
 },
 { name: "Attempt to overwrite a file.", value: choices.OVERWRITE_FILE },
 {
 name: "View the object and bucket retention settings for a file.",
 value: choices.VIEW_RETENTION_SETTINGS,
 },
 {
 name: "View the legal hold settings for a file.",
 value: choices.VIEW_LEGAL_HOLD_SETTINGS,
 },
 { name: "Finish the workflow.", value: choices.EXIT },
],
 },
);

/**
 * @param {S3Client} client
 * @param {string[]} buckets
 */
const getAllFiles = async (client, buckets) => {
 /** @type {{bucket: string, key: string, version: string}[]} */
 const files = [];
 for (const bucket of buckets) {
 const objectsResponse = await client.send(
 new ListObjectVersionsCommand({ Bucket: bucket }),
);
 for (const version of objectsResponse.Versions || []) {
 const { Key, VersionId } = version;
 files.push({ bucket, key: Key, version: VersionId });
 }
 }

 return files;
};

/**
 * @param {Scenarios} scenarios

场景 1236

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * @param {S3Client} client
 */
const replAction = (scenarios, client) =>
 new scenarios.ScenarioAction(
 "replAction",
 async (state) => {
 const files = await getAllFiles(client, [
 state.noLockBucketName,
 state.lockEnabledBucketName,
 state.retentionBucketName,
]);

 const fileInput = new scenarios.ScenarioInput(
 "selectedFile",
 "Select a file:",
 {
 type: "select",
 choices: files.map((file, index) => ({
 name: `${index + 1}: ${file.bucket}: ${file.key} (version: ${
 file.version
 })`,
 value: index,
 })),
 },
);

 const { replChoice } = state;

 switch (replChoice) {
 case choices.LIST_ALL_FILES: {
 const files = await getAllFiles(client, [
 state.noLockBucketName,
 state.lockEnabledBucketName,
 state.retentionBucketName,
]);
 state.replOutput = files
 .map(
 (file) =>
 `${file.bucket}: ${file.key} (version: ${file.version})`,
)
 .join("\n");
 break;
 }
 case choices.DELETE_FILE: {

场景 1237

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 /** @type {number} */
 const fileToDelete = await fileInput.handle(state);
 const selectedFile = files[fileToDelete];
 try {
 await client.send(
 new DeleteObjectCommand({
 Bucket: selectedFile.bucket,
 Key: selectedFile.key,
 VersionId: selectedFile.version,
 }),
);
 state.replOutput = `Deleted ${selectedFile.key} in
 ${selectedFile.bucket}.`;
 } catch (err) {
 state.replOutput = `Unable to delete object ${selectedFile.key} in
 bucket ${selectedFile.bucket}: ${err.message}`;
 }
 break;
 }
 case choices.DELETE_FILE_WITH_RETENTION: {
 /** @type {number} */
 const fileToDelete = await fileInput.handle(state);
 const selectedFile = files[fileToDelete];
 try {
 await client.send(
 new DeleteObjectCommand({
 Bucket: selectedFile.bucket,
 Key: selectedFile.key,
 VersionId: selectedFile.version,
 BypassGovernanceRetention: true,
 }),
);
 state.replOutput = `Deleted ${selectedFile.key} in
 ${selectedFile.bucket}.`;
 } catch (err) {
 state.replOutput = `Unable to delete object ${selectedFile.key} in
 bucket ${selectedFile.bucket}: ${err.message}`;
 }
 break;
 }
 case choices.OVERWRITE_FILE: {
 /** @type {number} */
 const fileToOverwrite = await fileInput.handle(state);
 const selectedFile = files[fileToOverwrite];

场景 1238

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 try {
 await client.send(
 new PutObjectCommand({
 Bucket: selectedFile.bucket,
 Key: selectedFile.key,
 Body: "New content",
 ChecksumAlgorithm: ChecksumAlgorithm.SHA256,
 }),
);
 state.replOutput = `Overwrote ${selectedFile.key} in
 ${selectedFile.bucket}.`;
 } catch (err) {
 state.replOutput = `Unable to overwrite object ${selectedFile.key} in
 bucket ${selectedFile.bucket}: ${err.message}`;
 }
 break;
 }
 case choices.VIEW_RETENTION_SETTINGS: {
 /** @type {number} */
 const fileToView = await fileInput.handle(state);
 const selectedFile = files[fileToView];
 try {
 const retention = await client.send(
 new GetObjectRetentionCommand({
 Bucket: selectedFile.bucket,
 Key: selectedFile.key,
 VersionId: selectedFile.version,
 }),
);
 const bucketConfig = await client.send(
 new GetObjectLockConfigurationCommand({
 Bucket: selectedFile.bucket,
 }),
);
 state.replOutput = `Object retention for ${selectedFile.key}
 in ${selectedFile.bucket}: ${retention.Retention?.Mode} until
 ${retention.Retention?.RetainUntilDate?.toISOString()}.
Bucket object lock config for ${selectedFile.bucket} in ${selectedFile.bucket}:
Enabled: ${bucketConfig.ObjectLockConfiguration?.ObjectLockEnabled}
Rule:
 ${JSON.stringify(bucketConfig.ObjectLockConfiguration?.Rule?.DefaultRetention)}`;
 } catch (err) {
 state.replOutput = `Unable to fetch object lock retention:
 '${err.message}'`;

场景 1239

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }
 break;
 }
 case choices.VIEW_LEGAL_HOLD_SETTINGS: {
 /** @type {number} */
 const fileToView = await fileInput.handle(state);
 const selectedFile = files[fileToView];
 try {
 const legalHold = await client.send(
 new GetObjectLegalHoldCommand({
 Bucket: selectedFile.bucket,
 Key: selectedFile.key,
 VersionId: selectedFile.version,
 }),
);
 state.replOutput = `Object legal hold for ${selectedFile.key} in
 ${selectedFile.bucket}: Status: ${legalHold.LegalHold?.Status}`;
 } catch (err) {
 state.replOutput = `Unable to fetch legal hold: '${err.message}'`;
 }
 break;
 }
 default:
 throw new Error(`Invalid replChoice: ${replChoice}`);
 }
 },
 {
 whileConfig: {
 whileFn: ({ replChoice }) => replChoice !== choices.EXIT,
 input: replInput(scenarios),
 output: new scenarios.ScenarioOutput(
 "REPL output",
 (state) => state.replOutput,
 { preformatted: true },
),
 },
 },
);

export { replInput, replAction, choices };

销毁所有创建的资源（clean.steps.js）。

场景 1240

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

import {
 DeleteObjectCommand,
 DeleteBucketCommand,
 ListObjectVersionsCommand,
 GetObjectLegalHoldCommand,
 GetObjectRetentionCommand,
 PutObjectLegalHoldCommand,
} from "@aws-sdk/client-s3";

/**
 * @typedef {import("@aws-doc-sdk-examples/lib/scenario/index.js")} Scenarios
 */

/**
 * @typedef {import("@aws-sdk/client-s3").S3Client} S3Client
 */

/**
 * @param {Scenarios} scenarios
 */
const confirmCleanup = (scenarios) =>
 new scenarios.ScenarioInput("confirmCleanup", "Clean up resources?", {
 type: "confirm",
 });

/**
 * @param {Scenarios} scenarios
 * @param {S3Client} client
 */
const cleanupAction = (scenarios, client) =>
 new scenarios.ScenarioAction("cleanupAction", async (state) => {
 const { noLockBucketName, lockEnabledBucketName, retentionBucketName } =
 state;

 const buckets = [
 noLockBucketName,
 lockEnabledBucketName,
 retentionBucketName,
];

 for (const bucket of buckets) {
 /** @type {import("@aws-sdk/client-s3").ListObjectVersionsCommandOutput} */
 let objectsResponse;

场景 1241

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 try {
 objectsResponse = await client.send(
 new ListObjectVersionsCommand({
 Bucket: bucket,
 }),
);
 } catch (e) {
 if (e instanceof Error && e.name === "NoSuchBucket") {
 console.log("Object's bucket has already been deleted.");
 continue;
 }
 throw e;
 }

 for (const version of objectsResponse.Versions || []) {
 const { Key, VersionId } = version;

 try {
 const legalHold = await client.send(
 new GetObjectLegalHoldCommand({
 Bucket: bucket,
 Key,
 VersionId,
 }),
);

 if (legalHold.LegalHold?.Status === "ON") {
 await client.send(
 new PutObjectLegalHoldCommand({
 Bucket: bucket,
 Key,
 VersionId,
 LegalHold: {
 Status: "OFF",
 },
 }),
);
 }
 } catch (err) {
 console.log(
 `Unable to fetch legal hold for ${Key} in ${bucket}: '${err.message}'`,
);
 }

场景 1242

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 try {
 const retention = await client.send(
 new GetObjectRetentionCommand({
 Bucket: bucket,
 Key,
 VersionId,
 }),
);

 if (retention.Retention?.Mode === "GOVERNANCE") {
 await client.send(
 new DeleteObjectCommand({
 Bucket: bucket,
 Key,
 VersionId,
 BypassGovernanceRetention: true,
 }),
);
 }
 } catch (err) {
 console.log(
 `Unable to fetch object lock retention for ${Key} in ${bucket}:
 '${err.message}'`,
);
 }

 await client.send(
 new DeleteObjectCommand({
 Bucket: bucket,
 Key,
 VersionId,
 }),
);
 }

 await client.send(new DeleteBucketCommand({ Bucket: bucket }));
 console.log(`Delete for ${bucket} complete.`);
 }
 });

export { confirmCleanup, cleanupAction };

场景 1243

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的以下主
题。

• GetObjectLegalHold

• GetObjectLockConfiguration

• GetObjectRetention

• PutObjectLegalHold

• PutObjectLockConfiguration

• PutObjectRetention

提出条件请求

以下代码示例演示如何向 Amazon S3 请求添加前提条件。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

工作流程的入口点（index.js）。这用于编排所有步骤。请访问 GitHub 以查看场景、 ScenarioInput
ScenarioOutput、和的实现细节 ScenarioAction。

import * as Scenarios from "@aws-doc-sdk-examples/lib/scenario/index.js";
import {
 exitOnFalse,
 loadState,
 saveState,
} from "@aws-doc-sdk-examples/lib/scenario/steps-common.js";

import { welcome, welcomeContinue } from "./welcome.steps.js";
import {
 confirmCreateBuckets,
 confirmPopulateBuckets,
 createBuckets,
 createBucketsAction,
 getBucketPrefix,
 populateBuckets,

场景 1244

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/s3/command/GetObjectLegalHoldCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/s3/command/GetObjectLockConfigurationCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/s3/command/GetObjectRetentionCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/s3/command/PutObjectLegalHoldCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/s3/command/PutObjectLockConfigurationCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/s3/command/PutObjectRetentionCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/s3/scenarios/conditional-requests#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 populateBucketsAction,
} from "./setup.steps.js";

/**
 * @param {Scenarios} scenarios
 * @param {Record<string, any>} initialState
 */
export const getWorkflowStages = (scenarios, initialState = {}) => {
 const client = new S3Client({});

 return {
 deploy: new scenarios.Scenario(
 "S3 Conditional Requests - Deploy",
 [
 welcome(scenarios),
 welcomeContinue(scenarios),
 exitOnFalse(scenarios, "welcomeContinue"),
 getBucketPrefix(scenarios),
 createBuckets(scenarios),
 confirmCreateBuckets(scenarios),
 exitOnFalse(scenarios, "confirmCreateBuckets"),
 createBucketsAction(scenarios, client),
 populateBuckets(scenarios),
 confirmPopulateBuckets(scenarios),
 exitOnFalse(scenarios, "confirmPopulateBuckets"),
 populateBucketsAction(scenarios, client),
 saveState,
],
 initialState,
),
 demo: new scenarios.Scenario(
 "S3 Conditional Requests - Demo",
 [loadState, welcome(scenarios), replAction(scenarios, client)],
 initialState,
),
 clean: new scenarios.Scenario(
 "S3 Conditional Requests - Destroy",
 [
 loadState,
 confirmCleanup(scenarios),
 exitOnFalse(scenarios, "confirmCleanup"),
 cleanupAction(scenarios, client),
],
 initialState,

场景 1245

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

),
 };
};

// Call function if run directly
import { fileURLToPath } from "node:url";
import { S3Client } from "@aws-sdk/client-s3";
import { cleanupAction, confirmCleanup } from "./clean.steps.js";
import { replAction } from "./repl.steps.js";

if (process.argv[1] === fileURLToPath(import.meta.url)) {
 const objectLockingScenarios = getWorkflowStages(Scenarios);
 Scenarios.parseScenarioArgs(objectLockingScenarios, {
 name: "Amazon S3 object locking workflow",
 description:
 "Work with Amazon Simple Storage Service (Amazon S3) object locking
 features.",
 synopsis:
 "node index.js --scenario <deploy | demo | clean> [-h|--help] [-y|--yes] [-
v|--verbose]",
 });
}

向控制台输出欢迎消息（welcome.steps.js）。

/**
 * @typedef {import("@aws-doc-sdk-examples/lib/scenario/index.js")} Scenarios
 */

/**
 * @param {Scenarios} scenarios
 */
const welcome = (scenarios) =>
 new scenarios.ScenarioOutput(
 "welcome",
 "This example demonstrates the use of conditional requests for S3 operations." +
 " You can use conditional requests to add preconditions to S3 read requests to
 return " +
 "or copy an object based on its Entity tag (ETag), or last modified date.You
 can use " +
 "a conditional write requests to prevent overwrites by ensuring there is no
 existing " +

场景 1246

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 "object with the same key.\n" +
 "This example will enable you to perform conditional reads and writes that
 will succeed " +
 "or fail based on your selected options.\n" +
 "Sample buckets and a sample object will be created as part of the example.\n"
 +
 "Some steps require a key name prefix to be defined by the user. Before you
 begin, you can " +
 "optionally edit this prefix in ./object_name.json. If you do so, please
 reload the scenario before you begin.",
 { header: true },
);

/**
 * @param {Scenarios} scenarios
 */
const welcomeContinue = (scenarios) =>
 new scenarios.ScenarioInput(
 "welcomeContinue",
 "Press Enter when you are ready to start.",
 { type: "confirm" },
);

export { welcome, welcomeContinue };

部署存储桶和对象（setup.steps.js）。

import {
 ChecksumAlgorithm,
 CreateBucketCommand,
 PutObjectCommand,
 BucketAlreadyExists,
 BucketAlreadyOwnedByYou,
 S3ServiceException,
 waitUntilBucketExists,
} from "@aws-sdk/client-s3";

/**
 * @typedef {import("@aws-doc-sdk-examples/lib/scenario/index.js")} Scenarios
 */

/**

场景 1247

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * @typedef {import("@aws-sdk/client-s3").S3Client} S3Client
 */

/**
 * @param {Scenarios} scenarios
 */
const getBucketPrefix = (scenarios) =>
 new scenarios.ScenarioInput(
 "bucketPrefix",
 "Provide a prefix that will be used for bucket creation.",
 { type: "input", default: "amzn-s3-demo-bucket" },
);
/**
 * @param {Scenarios} scenarios
 */
const createBuckets = (scenarios) =>
 new scenarios.ScenarioOutput(
 "createBuckets",
 (state) => `The following buckets will be created:
 ${state.bucketPrefix}-source-bucket.
 ${state.bucketPrefix}-destination-bucket.`,
 { preformatted: true },
);

/**
 * @param {Scenarios} scenarios
 */
const confirmCreateBuckets = (scenarios) =>
 new scenarios.ScenarioInput("confirmCreateBuckets", "Create the buckets?", {
 type: "confirm",
 });

/**
 * @param {Scenarios} scenarios
 * @param {S3Client} client
 */
const createBucketsAction = (scenarios, client) =>
 new scenarios.ScenarioAction("createBucketsAction", async (state) => {
 const sourceBucketName = `${state.bucketPrefix}-source-bucket`;
 const destinationBucketName = `${state.bucketPrefix}-destination-bucket`;

 try {
 await client.send(
 new CreateBucketCommand({

场景 1248

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 Bucket: sourceBucketName,
 }),
);
 await waitUntilBucketExists({ client }, { Bucket: sourceBucketName });
 await client.send(
 new CreateBucketCommand({
 Bucket: destinationBucketName,
 }),
);
 await waitUntilBucketExists(
 { client },
 { Bucket: destinationBucketName },
);

 state.sourceBucketName = sourceBucketName;
 state.destinationBucketName = destinationBucketName;
 } catch (caught) {
 if (
 caught instanceof BucketAlreadyExists ||
 caught instanceof BucketAlreadyOwnedByYou
) {
 console.error(`${caught.name}: ${caught.message}`);
 state.earlyExit = true;
 } else {
 throw caught;
 }
 }
 });

/**
 * @param {Scenarios} scenarios
 */
const populateBuckets = (scenarios) =>
 new scenarios.ScenarioOutput(
 "populateBuckets",
 (state) => `The following test files will be created:
 file01.txt in ${state.bucketPrefix}-source-bucket.`,
 { preformatted: true },
);

/**
 * @param {Scenarios} scenarios
 */
const confirmPopulateBuckets = (scenarios) =>

场景 1249

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 new scenarios.ScenarioInput(
 "confirmPopulateBuckets",
 "Populate the buckets?",
 { type: "confirm" },
);

/**
 * @param {Scenarios} scenarios
 * @param {S3Client} client
 */
const populateBucketsAction = (scenarios, client) =>
 new scenarios.ScenarioAction("populateBucketsAction", async (state) => {
 try {
 await client.send(
 new PutObjectCommand({
 Bucket: state.sourceBucketName,
 Key: "file01.txt",
 Body: "Content",
 ChecksumAlgorithm: ChecksumAlgorithm.SHA256,
 }),
);
 } catch (caught) {
 if (caught instanceof S3ServiceException) {
 console.error(
 `Error from S3 while uploading object. ${caught.name}:
 ${caught.message}`,
);
 } else {
 throw caught;
 }
 }
 });

export {
 confirmCreateBuckets,
 confirmPopulateBuckets,
 createBuckets,
 createBucketsAction,
 getBucketPrefix,
 populateBuckets,
 populateBucketsAction,
};

场景 1250

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

使用 S3 条件请求获取、复制和放置对象（repl.steps.js）。

import path from "node:path";
import { fileURLToPath } from "node:url";
import { dirname } from "node:path";

import {
 ListObjectVersionsCommand,
 GetObjectCommand,
 CopyObjectCommand,
 PutObjectCommand,
} from "@aws-sdk/client-s3";
import data from "./object_name.json" assert { type: "json" };
import { readFile } from "node:fs/promises";
import {
 ScenarioInput,
 Scenario,
 ScenarioAction,
 ScenarioOutput,
} from "../../../libs/scenario/index.js";

/**
 * @typedef {import("@aws-doc-sdk-examples/lib/scenario/index.js")} Scenarios
 */

/**
 * @typedef {import("@aws-sdk/client-s3").S3Client} S3Client
 */

const choices = {
 EXIT: 0,
 LIST_ALL_FILES: 1,
 CONDITIONAL_READ: 2,
 CONDITIONAL_COPY: 3,
 CONDITIONAL_WRITE: 4,
};

/**
 * @param {Scenarios} scenarios
 */
const replInput = (scenarios) =>
 new ScenarioInput(
 "replChoice",

场景 1251

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 "Explore the S3 conditional request features by selecting one of the following
 choices",
 {
 type: "select",
 choices: [
 { name: "Print list of bucket items.", value: choices.LIST_ALL_FILES },
 {
 name: "Perform a conditional read.",
 value: choices.CONDITIONAL_READ,
 },
 {
 name: "Perform a conditional copy. These examples use the key name prefix
 defined in ./object_name.json.",
 value: choices.CONDITIONAL_COPY,
 },
 {
 name: "Perform a conditional write. This example use the sample file ./
text02.txt.",
 value: choices.CONDITIONAL_WRITE,
 },
 { name: "Finish the workflow.", value: choices.EXIT },
],
 },
);

/**
 * @param {S3Client} client
 * @param {string[]} buckets
 */
const getAllFiles = async (client, buckets) => {
 /** @type {{bucket: string, key: string, version: string}[]} */
 const files = [];
 for (const bucket of buckets) {
 const objectsResponse = await client.send(
 new ListObjectVersionsCommand({ Bucket: bucket }),
);
 for (const version of objectsResponse.Versions || []) {
 const { Key } = version;
 files.push({ bucket, key: Key });
 }
 }
 return files;
};

场景 1252

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

/**
 * @param {S3Client} client
 * @param {string[]} buckets
 * @param {string} key
 */
const getEtag = async (client, bucket, key) => {
 const objectsResponse = await client.send(
 new GetObjectCommand({
 Bucket: bucket,
 Key: key,
 }),
);
 return objectsResponse.ETag;
};

/**
 * @param {S3Client} client
 * @param {string[]} buckets
 */

/**
 * @param {Scenarios} scenarios
 * @param {S3Client} client
 */
export const replAction = (scenarios, client) =>
 new ScenarioAction(
 "replAction",
 async (state) => {
 const files = await getAllFiles(client, [
 state.sourceBucketName,
 state.destinationBucketName,
]);

 const fileInput = new scenarios.ScenarioInput(
 "selectedFile",
 "Select a file to use:",
 {
 type: "select",
 choices: files.map((file, index) => ({
 name: `${index + 1}: ${file.bucket}: ${file.key} (Etag: ${
 file.version
 })`,
 value: index,
 })),

场景 1253

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 },
);
 const condReadOptions = new scenarios.ScenarioInput(
 "selectOption",
 "Which conditional read action would you like to take?",
 {
 type: "select",
 choices: [
 "If-Match: using the object's ETag. This condition should succeed.",
 "If-None-Match: using the object's ETag. This condition should fail.",
 "If-Modified-Since: using yesterday's date. This condition should
 succeed.",
 "If-Unmodified-Since: using yesterday's date. This condition should
 fail.",
],
 },
);
 const condCopyOptions = new scenarios.ScenarioInput(
 "selectOption",
 "Which conditional copy action would you like to take?",
 {
 type: "select",
 choices: [
 "If-Match: using the object's ETag. This condition should succeed.",
 "If-None-Match: using the object's ETag. This condition should fail.",
 "If-Modified-Since: using yesterday's date. This condition should
 succeed.",
 "If-Unmodified-Since: using yesterday's date. This condition should
 fail.",
],
 },
);
 const condWriteOptions = new scenarios.ScenarioInput(
 "selectOption",
 "Which conditional write action would you like to take?",
 {
 type: "select",
 choices: [
 "IfNoneMatch condition on the object key: If the key is a duplicate, the
 write will fail.",
],
 },
);

场景 1254

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const { replChoice } = state;

 switch (replChoice) {
 case choices.LIST_ALL_FILES: {
 const files = await getAllFiles(client, [
 state.sourceBucketName,
 state.destinationBucketName,
]);
 state.replOutput = files
 .map(
 (file) => `Items in bucket ${file.bucket}: object: ${file.key} `,
)
 .join("\n");
 break;
 }
 case choices.CONDITIONAL_READ:
 {
 const selectedCondRead = await condReadOptions.handle(state);
 if (
 selectedCondRead ===
 "If-Match: using the object's ETag. This condition should succeed."
) {
 const bucket = state.sourceBucketName;
 const key = "file01.txt";
 const ETag = await getEtag(client, bucket, key);

 try {
 await client.send(
 new GetObjectCommand({
 Bucket: bucket,
 Key: key,
 IfMatch: ETag,
 }),
);
 state.replOutput = `${key} in bucket ${state.sourceBucketName} read
 because ETag provided matches the object's ETag.`;
 } catch (err) {
 state.replOutput = `Unable to read object ${key} in bucket
 ${state.sourceBucketName}: ${err.message}`;
 }
 break;
 }
 if (
 selectedCondRead ===

场景 1255

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 "If-None-Match: using the object's ETag. This condition should fail."
) {
 const bucket = state.sourceBucketName;
 const key = "file01.txt";
 const ETag = await getEtag(client, bucket, key);

 try {
 await client.send(
 new GetObjectCommand({
 Bucket: bucket,
 Key: key,
 IfNoneMatch: ETag,
 }),
);
 state.replOutput = `${key} in ${state.sourceBucketName} was
 returned.`;
 } catch (err) {
 state.replOutput = `${key} in ${state.sourceBucketName} was not
 read: ${err.message}`;
 }
 break;
 }
 if (
 selectedCondRead ===
 "If-Modified-Since: using yesterday's date. This condition should
 succeed."
) {
 const date = new Date();
 date.setDate(date.getDate() - 1);

 const bucket = state.sourceBucketName;
 const key = "file01.txt";
 try {
 await client.send(
 new GetObjectCommand({
 Bucket: bucket,
 Key: key,
 IfModifiedSince: date,
 }),
);
 state.replOutput = `${key} in bucket ${state.sourceBucketName} read
 because it has been created or modified in the last 24 hours.`;
 } catch (err) {

场景 1256

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 state.replOutput = `Unable to read object ${key} in bucket
 ${state.sourceBucketName}: ${err.message}`;
 }
 break;
 }
 if (
 selectedCondRead ===
 "If-Unmodified-Since: using yesterday's date. This condition should
 fail."
) {
 const bucket = state.sourceBucketName;
 const key = "file01.txt";

 const date = new Date();
 date.setDate(date.getDate() - 1);
 try {
 await client.send(
 new GetObjectCommand({
 Bucket: bucket,
 Key: key,
 IfUnmodifiedSince: date,
 }),
);
 state.replOutput = `${key} in ${state.sourceBucketName} was read.`;
 } catch (err) {
 state.replOutput = `${key} in ${state.sourceBucketName} was not
 read: ${err.message}`;
 }
 break;
 }
 }
 break;
 case choices.CONDITIONAL_COPY: {
 const selectedCondCopy = await condCopyOptions.handle(state);
 if (
 selectedCondCopy ===
 "If-Match: using the object's ETag. This condition should succeed."
) {
 const bucket = state.sourceBucketName;
 const key = "file01.txt";
 const ETag = await getEtag(client, bucket, key);

 const copySource = `${bucket}/${key}`;

场景 1257

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // Optionally edit the default key name prefix of the copied object
 in ./object_name.json.
 const name = data.name;
 const copiedKey = `${name}${key}`;
 try {
 await client.send(
 new CopyObjectCommand({
 CopySource: copySource,
 Bucket: state.destinationBucketName,
 Key: copiedKey,
 CopySourceIfMatch: ETag,
 }),
);
 state.replOutput = `${key} copied as ${copiedKey} to bucket
 ${state.destinationBucketName} because ETag provided matches the object's ETag.`;
 } catch (err) {
 state.replOutput = `Unable to copy object ${key} as ${copiedKey} to
 bucket ${state.destinationBucketName}: ${err.message}`;
 }
 break;
 }
 if (
 selectedCondCopy ===
 "If-None-Match: using the object's ETag. This condition should fail."
) {
 const bucket = state.sourceBucketName;
 const key = "file01.txt";
 const ETag = await getEtag(client, bucket, key);
 const copySource = `${bucket}/${key}`;
 // Optionally edit the default key name prefix of the copied object
 in ./object_name.json.
 const name = data.name;
 const copiedKey = `${name}${key}`;

 try {
 await client.send(
 new CopyObjectCommand({
 CopySource: copySource,
 Bucket: state.destinationBucketName,
 Key: copiedKey,
 CopySourceIfNoneMatch: ETag,
 }),
);

场景 1258

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 state.replOutput = `${copiedKey} copied to bucket
 ${state.destinationBucketName}`;
 } catch (err) {
 state.replOutput = `Unable to copy object as ${key} as as ${copiedKey}
 to bucket ${state.destinationBucketName}: ${err.message}`;
 }
 break;
 }
 if (
 selectedCondCopy ===
 "If-Modified-Since: using yesterday's date. This condition should
 succeed."
) {
 const bucket = state.sourceBucketName;
 const key = "file01.txt";
 const copySource = `${bucket}/${key}`;
 // Optionally edit the default key name prefix of the copied object
 in ./object_name.json.
 const name = data.name;
 const copiedKey = `${name}${key}`;

 const date = new Date();
 date.setDate(date.getDate() - 1);

 try {
 await client.send(
 new CopyObjectCommand({
 CopySource: copySource,
 Bucket: state.destinationBucketName,
 Key: copiedKey,
 CopySourceIfModifiedSince: date,
 }),
);
 state.replOutput = `${key} copied as ${copiedKey} to bucket
 ${state.destinationBucketName} because it has been created or modified in the last
 24 hours.`;
 } catch (err) {
 state.replOutput = `Unable to copy object ${key} as ${copiedKey} to
 bucket ${state.destinationBucketName} : ${err.message}`;
 }
 break;
 }
 if (
 selectedCondCopy ===

场景 1259

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 "If-Unmodified-Since: using yesterday's date. This condition should
 fail."
) {
 const bucket = state.sourceBucketName;
 const key = "file01.txt";
 const copySource = `${bucket}/${key}`;
 // Optionally edit the default key name prefix of the copied object
 in ./object_name.json.
 const name = data.name;
 const copiedKey = `${name}${key}`;

 const date = new Date();
 date.setDate(date.getDate() - 1);

 try {
 await client.send(
 new CopyObjectCommand({
 CopySource: copySource,
 Bucket: state.destinationBucketName,
 Key: copiedKey,
 CopySourceIfUnmodifiedSince: date,
 }),
);
 state.replOutput = `${copiedKey} copied to bucket
 ${state.destinationBucketName} because it has not been created or modified in the
 last 24 hours.`;
 } catch (err) {
 state.replOutput = `Unable to copy object ${key} to bucket
 ${state.destinationBucketName}: ${err.message}`;
 }
 }
 break;
 }
 case choices.CONDITIONAL_WRITE:
 {
 const selectedCondWrite = await condWriteOptions.handle(state);
 if (
 selectedCondWrite ===
 "IfNoneMatch condition on the object key: If the key is a duplicate,
 the write will fail."
) {
 // Optionally edit the default key name prefix of the copied object
 in ./object_name.json.
 const key = "text02.txt";

场景 1260

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const __filename = fileURLToPath(import.meta.url);
 const __dirname = dirname(__filename);
 const filePath = path.join(__dirname, "text02.txt");
 try {
 await client.send(
 new PutObjectCommand({
 Bucket: `${state.destinationBucketName}`,
 Key: `${key}`,
 Body: await readFile(filePath),
 IfNoneMatch: "*",
 }),
);
 state.replOutput = `${key} uploaded to bucket
 ${state.destinationBucketName} because the key is not a duplicate.`;
 } catch (err) {
 state.replOutput = `Unable to upload object to bucket
 ${state.destinationBucketName}:${err.message}`;
 }
 break;
 }
 }
 break;

 default:
 throw new Error(`Invalid replChoice: ${replChoice}`);
 }
 },
 {
 whileConfig: {
 whileFn: ({ replChoice }) => replChoice !== choices.EXIT,
 input: replInput(scenarios),
 output: new ScenarioOutput("REPL output", (state) => state.replOutput, {
 preformatted: true,
 }),
 },
 },
);

export { replInput, choices };

销毁所有创建的资源（clean.steps.js）。

场景 1261

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

import {
 DeleteObjectCommand,
 DeleteBucketCommand,
 ListObjectVersionsCommand,
} from "@aws-sdk/client-s3";

/**
 * @typedef {import("@aws-doc-sdk-examples/lib/scenario/index.js")} Scenarios
 */

/**
 * @typedef {import("@aws-sdk/client-s3").S3Client} S3Client
 */

/**
 * @param {Scenarios} scenarios
 */
const confirmCleanup = (scenarios) =>
 new scenarios.ScenarioInput("confirmCleanup", "Clean up resources?", {
 type: "confirm",
 });

/**
 * @param {Scenarios} scenarios
 * @param {S3Client} client
 */
const cleanupAction = (scenarios, client) =>
 new scenarios.ScenarioAction("cleanupAction", async (state) => {
 const { sourceBucketName, destinationBucketName } = state;
 const buckets = [sourceBucketName, destinationBucketName].filter((b) => b);

 for (const bucket of buckets) {
 try {
 let objectsResponse;
 objectsResponse = await client.send(
 new ListObjectVersionsCommand({
 Bucket: bucket,
 }),
);
 for (const version of objectsResponse.Versions || []) {
 const { Key, VersionId } = version;
 try {
 await client.send(

场景 1262

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 new DeleteObjectCommand({
 Bucket: bucket,
 Key,
 VersionId,
 }),
);
 } catch (err) {
 console.log(`An error occurred: ${err.message} `);
 }
 }
 } catch (e) {
 if (e instanceof Error && e.name === "NoSuchBucket") {
 console.log("Objects and buckets have already been deleted.");
 continue;
 }
 throw e;
 }

 await client.send(new DeleteBucketCommand({ Bucket: bucket }));
 console.log(`Delete for ${bucket} complete.`);
 }
 });

export { confirmCleanup, cleanupAction };

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的以下主
题。

• CopyObject

• GetObject

• PutObject

上传或下载大文件

下面的代码示例展示了如何向 Amazon S3 上传大文件或从 Amazon S3 下载大文件。

有关更多信息，请参阅使用分段上传操作上传对象。

场景 1263

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/s3/command/CopyObjectCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/s3/command/GetObjectCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/s3/command/PutObjectCommand
https://docs.amazonaws.cn/AmazonS3/latest/userguide/mpu-upload-object.html

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

上传大文件。

import { S3Client } from "@aws-sdk/client-s3";
import { Upload } from "@aws-sdk/lib-storage";

import {
 ProgressBar,
 logger,
} from "@aws-doc-sdk-examples/lib/utils/util-log.js";

const twentyFiveMB = 25 * 1024 * 1024;

export const createString = (size = twentyFiveMB) => {
 return "x".repeat(size);
};

/**
 * Create a 25MB file and upload it in parts to the specified
 * Amazon S3 bucket.
 * @param {{ bucketName: string, key: string }}
 */
export const main = async ({ bucketName, key }) => {
 const str = createString();
 const buffer = Buffer.from(str, "utf8");
 const progressBar = new ProgressBar({
 description: `Uploading "${key}" to "${bucketName}"`,
 barLength: 30,
 });

 try {
 const upload = new Upload({
 client: new S3Client({}),
 params: {
 Bucket: bucketName,
 Key: key,

场景 1264

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/s3#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 Body: buffer,
 },
 });

 upload.on("httpUploadProgress", ({ loaded, total }) => {
 progressBar.update({ current: loaded, total });
 });

 await upload.done();
 } catch (caught) {
 if (caught instanceof Error && caught.name === "AbortError") {
 logger.error(`Multipart upload was aborted. ${caught.message}`);
 } else {
 throw caught;
 }
 }
};

下载大文件。

import { fileURLToPath } from "node:url";
import { GetObjectCommand, NoSuchKey, S3Client } from "@aws-sdk/client-s3";
import { createWriteStream, rmSync } from "node:fs";

const s3Client = new S3Client({});
const oneMB = 1024 * 1024;

export const getObjectRange = ({ bucket, key, start, end }) => {
 const command = new GetObjectCommand({
 Bucket: bucket,
 Key: key,
 Range: `bytes=${start}-${end}`,
 });

 return s3Client.send(command);
};

/**
 * @param {string | undefined} contentRange
 */
export const getRangeAndLength = (contentRange) => {

场景 1265

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const [range, length] = contentRange.split("/");
 const [start, end] = range.split("-");
 return {
 start: Number.parseInt(start),
 end: Number.parseInt(end),
 length: Number.parseInt(length),
 };
};

export const isComplete = ({ end, length }) => end === length - 1;

const downloadInChunks = async ({ bucket, key }) => {
 const writeStream = createWriteStream(
 fileURLToPath(new URL(`./${key}`, import.meta.url)),
).on("error", (err) => console.error(err));

 let rangeAndLength = { start: -1, end: -1, length: -1 };

 while (!isComplete(rangeAndLength)) {
 const { end } = rangeAndLength;
 const nextRange = { start: end + 1, end: end + oneMB };

 const { ContentRange, Body } = await getObjectRange({
 bucket,
 key,
 ...nextRange,
 });
 console.log(`Downloaded bytes ${nextRange.start} to ${nextRange.end}`);

 writeStream.write(await Body.transformToByteArray());
 rangeAndLength = getRangeAndLength(ContentRange);
 }
};

/**
 * Download a large object from and Amazon S3 bucket.
 *
 * When downloading a large file, you might want to break it down into
 * smaller pieces. Amazon S3 accepts a Range header to specify the start
 * and end of the byte range to be downloaded.
 *
 * @param {{ bucketName: string, key: string }}
 */
export const main = async ({ bucketName, key }) => {

场景 1266

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 try {
 await downloadInChunks({
 bucket: bucketName,
 key: key,
 });
 } catch (caught) {
 if (caught instanceof NoSuchKey) {
 console.error(`Failed to download object. No such key "${key}".`);
 rmSync(key);
 }
 }
};

无服务器示例

通过 Amazon S3 触发器调用 Lambda 函数

以下代码示例展示了如何实现一个 Lambda 函数，该函数接收通过将对象上传到 S3 桶而触发的事件。
该函数从事件参数中检索 S3 存储桶名称和对象密钥，并调用 Amazon S3 API 来检索和记录对象的内
容类型。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在无服务器示例存储库中查找完整示例，并了解如何进行设置
和运行。

使用 Lambda 使用 S3 事件。 JavaScript

import { S3Client, HeadObjectCommand } from "@aws-sdk/client-s3";

const client = new S3Client();

export const handler = async (event, context) => {

 // Get the object from the event and show its content type
 const bucket = event.Records[0].s3.bucket.name;

无服务器示例 1267

https://github.com/aws-samples/serverless-snippets/tree/main/integration-s3-to-lambda

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const key = decodeURIComponent(event.Records[0].s3.object.key.replace(/\+/g, '
 '));

 try {
 const { ContentType } = await client.send(new HeadObjectCommand({
 Bucket: bucket,
 Key: key,
 }));

 console.log('CONTENT TYPE:', ContentType);
 return ContentType;

 } catch (err) {
 console.log(err);
 const message = `Error getting object ${key} from bucket ${bucket}. Make
 sure they exist and your bucket is in the same region as this function.`;
 console.log(message);
 throw new Error(message);
 }
};

使用 Lambda 使用 S3 事件。 TypeScript

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import { S3Event } from 'aws-lambda';
import { S3Client, HeadObjectCommand } from '@aws-sdk/client-s3';

const s3 = new S3Client({ region: process.env.AWS_REGION });

export const handler = async (event: S3Event): Promise<string | undefined> => {
 // Get the object from the event and show its content type
 const bucket = event.Records[0].s3.bucket.name;
 const key = decodeURIComponent(event.Records[0].s3.object.key.replace(/\+/g, '
 '));
 const params = {
 Bucket: bucket,
 Key: key,
 };
 try {
 const { ContentType } = await s3.send(new HeadObjectCommand(params));
 console.log('CONTENT TYPE:', ContentType);

无服务器示例 1268

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 return ContentType;
 } catch (err) {
 console.log(err);
 const message = `Error getting object ${key} from bucket ${bucket}. Make sure
 they exist and your bucket is in the same region as this function.`;
 console.log(message);
 throw new Error(message);
 }
};

SageMaker 使用适用于 JavaScript (v3) 的 SDK 的人工智能示例

以下代码示例向您展示了如何使用带有 SageMaker AI 的 适用于 JavaScript 的 Amazon SDK (v3) 来执
行操作和实现常见场景。

操作是大型程序的代码摘录，必须在上下文中运行。您可以通过操作了解如何调用单个服务函数，还可
以通过函数相关场景的上下文查看操作。

场景是向您演示如何通过在一个服务中调用多个函数或与其他 Amazon Web Services 服务结合来完成
特定任务的代码示例。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

• 开始使用

• 操作

• 场景

开始使用

你好 SageMaker AI

以下代码示例显示了如何开始使用 SageMaker AI。

SageMaker AI 1269

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import {
 SageMakerClient,
 ListNotebookInstancesCommand,
} from "@aws-sdk/client-sagemaker";

const client = new SageMakerClient({
 region: "us-west-2",
});

export const helloSagemaker = async () => {
 const command = new ListNotebookInstancesCommand({ MaxResults: 5 });

 const response = await client.send(command);
 console.log(
 "Hello Amazon SageMaker! Let's list some of your notebook instances:",
);

 const instances = response.NotebookInstances || [];

 if (instances.length === 0) {
 console.log(
 "• No notebook instances found. Try creating one in the AWS Management Console
 or with the CreateNotebookInstanceCommand.",
);
 } else {
 console.log(
 instances
 .map(
 (i) =>
 `• Instance: ${i.NotebookInstanceName}\n Arn:${
 i.NotebookInstanceArn
 } \n Creation Date: ${i.CreationTime.toISOString()}`,
)
 .join("\n"),

开始使用 1270

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sagemaker#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

);
 }

 return response;
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考ListNotebookInstances中的。

操作

CreatePipeline

以下代码示例演示了如何使用 CreatePipeline。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

使用本地提供的 JSON 定义创建 SageMaker AI 管道的函数。

/**
 * Create the Amazon SageMaker pipeline using a JSON pipeline definition. The
 definition
 * can also be provided as an Amazon S3 object using PipelineDefinitionS3Location.
 * @param {{roleArn: string, name: string, sagemakerClient: import('@aws-sdk/client-
sagemaker').SageMakerClient}} props
 */
export async function createSagemakerPipeline({
 // Assumes an AWS IAM role has been created for this pipeline.
 roleArn,
 name,
 // Assumes an AWS Lambda function has been created for this pipeline.
 functionArn,
 sagemakerClient,
}) {
 const pipelineDefinition = readFileSync(

操作 1271

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sagemaker/command/ListNotebookInstancesCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sagemaker#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // dirnameFromMetaUrl is a local utility function. You can find its
 implementation
 // on GitHub.
 `${dirnameFromMetaUrl(
 import.meta.url,
)}../../../../../scenarios/features/sagemaker_pipelines/resources/
GeoSpatialPipeline.json`,
)
 .toString()
 .replace(/*FUNCTION_ARN*/g, functionArn);

 let arn = null;

 const createPipeline = () =>
 sagemakerClient.send(
 new CreatePipelineCommand({
 PipelineName: name,
 PipelineDefinition: pipelineDefinition,
 RoleArn: roleArn,
 }),
);

 try {
 const { PipelineArn } = await createPipeline();
 arn = PipelineArn;
 } catch (caught) {
 if (
 caught instanceof Error &&
 caught.name === "ValidationException" &&
 caught.message.includes(
 "Pipeline names must be unique within an AWS account and region",
)
) {
 const { PipelineArn } = await sagemakerClient.send(
 new DescribePipelineCommand({ PipelineName: name }),
);
 arn = PipelineArn;
 } else {
 throw caught;
 }
 }

 return {
 arn,

操作 1272

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 cleanUp: async () => {
 await sagemakerClient.send(
 new DeletePipelineCommand({ PipelineName: name }),
);
 },
 };
}

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考CreatePipeline中
的。

DeletePipeline

以下代码示例演示了如何使用 DeletePipeline。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

删除 SageMaker AI 管道的语法。这段代码是更大函数的一部分。有关更多上下文，请参阅 “创建管
道” 或 GitHub 存储库。

 await sagemakerClient.send(
 new DeletePipelineCommand({ PipelineName: name }),
);

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DeletePipeline中
的。

DescribePipelineExecution

以下代码示例演示了如何使用 DescribePipelineExecution。

操作 1273

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sagemaker/command/CreatePipelineCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sagemaker#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sagemaker/command/DeletePipelineCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

等待 A SageMaker I 管道执行成功、失败或停止。

/**
 * Poll the executing pipeline until the status is 'SUCCEEDED', 'STOPPED', or
 'FAILED'.
 * @param {{ arn: string, sagemakerClient: import('@aws-sdk/client-
sagemaker').SageMakerClient, wait: (ms: number) => Promise<void>}} props
 */
export async function waitForPipelineComplete({ arn, sagemakerClient, wait }) {
 const command = new DescribePipelineExecutionCommand({
 PipelineExecutionArn: arn,
 });

 let complete = false;
 const intervalInSeconds = 15;
 const COMPLETION_STATUSES = [
 PipelineExecutionStatus.FAILED,
 PipelineExecutionStatus.STOPPED,
 PipelineExecutionStatus.SUCCEEDED,
];

 do {
 const { PipelineExecutionStatus: status, FailureReason } =
 await sagemakerClient.send(command);

 complete = COMPLETION_STATUSES.includes(status);

 if (!complete) {
 console.log(
 `Pipeline is ${status}. Waiting ${intervalInSeconds} seconds before checking
 again.`,
);
 await wait(intervalInSeconds);
 } else if (status === PipelineExecutionStatus.FAILED) {
 throw new Error(`Pipeline failed because: ${FailureReason}`);

操作 1274

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sagemaker#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 } else if (status === PipelineExecutionStatus.STOPPED) {
 throw new Error("Pipeline was forcefully stopped.");
 } else {
 console.log(`Pipeline execution ${status}.`);
 }
 } while (!complete);
}

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考DescribePipelineExecution中的。

StartPipelineExecution

以下代码示例演示了如何使用 StartPipelineExecution。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

启动 A SageMaker I 管道执行。

/**
 * Start the execution of the Amazon SageMaker pipeline. Parameters that are
 * passed in are used in the AWS Lambda function.
 * @param {{
 * name: string,
 * sagemakerClient: import('@aws-sdk/client-sagemaker').SageMakerClient,
 * roleArn: string,
 * queueUrl: string,
 * s3InputBucketName: string,
 * }} props
 */
export async function startPipelineExecution({
 sagemakerClient,
 name,
 bucketName,
 roleArn,

操作 1275

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sagemaker/command/DescribePipelineExecutionCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sagemaker#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 queueUrl,
}) {
 /**
 * The Vector Enrichment Job requests CSV data. This configuration points to a CSV
 * file in an Amazon S3 bucket.
 * @type {import("@aws-sdk/client-sagemaker-
geospatial").VectorEnrichmentJobInputConfig}
 */
 const inputConfig = {
 DataSourceConfig: {
 S3Data: {
 S3Uri: `s3://${bucketName}/input/sample_data.csv`,
 },
 },
 DocumentType: VectorEnrichmentJobDocumentType.CSV,
 };

 /**
 * The Vector Enrichment Job adds additional data to the source CSV. This
 configuration points
 * to an Amazon S3 prefix where the output will be stored.
 * @type {import("@aws-sdk/client-sagemaker-
geospatial").ExportVectorEnrichmentJobOutputConfig}
 */
 const outputConfig = {
 S3Data: {
 S3Uri: `s3://${bucketName}/output/`,
 },
 };

 /**
 * This job will be a Reverse Geocoding Vector Enrichment Job. Reverse Geocoding
 requires
 * latitude and longitude values.
 * @type {import("@aws-sdk/client-sagemaker-
geospatial").VectorEnrichmentJobConfig}
 */
 const jobConfig = {
 ReverseGeocodingConfig: {
 XAttributeName: "Longitude",
 YAttributeName: "Latitude",
 },
 };

操作 1276

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const { PipelineExecutionArn } = await sagemakerClient.send(
 new StartPipelineExecutionCommand({
 PipelineName: name,
 PipelineExecutionDisplayName: `${name}-example-execution`,
 PipelineParameters: [
 { Name: "parameter_execution_role", Value: roleArn },
 { Name: "parameter_queue_url", Value: queueUrl },
 {
 Name: "parameter_vej_input_config",
 Value: JSON.stringify(inputConfig),
 },
 {
 Name: "parameter_vej_export_config",
 Value: JSON.stringify(outputConfig),
 },
 {
 Name: "parameter_step_1_vej_config",
 Value: JSON.stringify(jobConfig),
 },
],
 }),
);

 return {
 arn: PipelineExecutionArn,
 };
}

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考StartPipelineExecution中的。

场景

开始使用地理空间作业和管道

以下代码示例演示了操作流程：

• 为管道设置资源。

• 设置用于执行地理空间作业的管道。

• 启动管道执行。

场景 1277

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sagemaker/command/StartPipelineExecutionCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 监控执行的状态。

• 查看管道的输出。

• 清理资源。

有关更多信息，请参阅在 Community.aws Amazon SDKs 上使用创建和运行 SageMaker 管道。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

以下文件摘录包含使用 SageMaker AI 客户端管理管道的函数。

import { readFileSync } from "node:fs";

import {
 CreateRoleCommand,
 DeleteRoleCommand,
 CreatePolicyCommand,
 DeletePolicyCommand,
 AttachRolePolicyCommand,
 DetachRolePolicyCommand,
 GetRoleCommand,
 ListPoliciesCommand,
} from "@aws-sdk/client-iam";

import {
 PublishLayerVersionCommand,
 DeleteLayerVersionCommand,
 CreateFunctionCommand,
 Runtime,
 DeleteFunctionCommand,
 CreateEventSourceMappingCommand,
 DeleteEventSourceMappingCommand,
 GetFunctionCommand,
} from "@aws-sdk/client-lambda";

import {

场景 1278

https://community.aws/posts/create-and-run-sagemaker-pipelines-using-aws-sdks
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sagemaker#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 PutObjectCommand,
 CreateBucketCommand,
 DeleteBucketCommand,
 DeleteObjectCommand,
 GetObjectCommand,
 ListObjectsV2Command,
} from "@aws-sdk/client-s3";

import {
 CreatePipelineCommand,
 DeletePipelineCommand,
 DescribePipelineCommand,
 DescribePipelineExecutionCommand,
 PipelineExecutionStatus,
 StartPipelineExecutionCommand,
} from "@aws-sdk/client-sagemaker";

import { VectorEnrichmentJobDocumentType } from "@aws-sdk/client-sagemaker-
geospatial";

import {
 CreateQueueCommand,
 DeleteQueueCommand,
 GetQueueAttributesCommand,
 GetQueueUrlCommand,
} from "@aws-sdk/client-sqs";

import { dirnameFromMetaUrl } from "@aws-doc-sdk-examples/lib/utils/util-fs.js";
import { retry } from "@aws-doc-sdk-examples/lib/utils/util-timers.js";

/**
 * Create the AWS IAM role that will be assumed by AWS Lambda.
 * @param {{ name: string, iamClient: import('@aws-sdk/client-iam').IAMClient }}
 props
 */
export async function createLambdaExecutionRole({ name, iamClient }) {
 const createRole = () =>
 iamClient.send(
 new CreateRoleCommand({
 RoleName: name,
 AssumeRolePolicyDocument: JSON.stringify({
 Version: "2012-10-17",
 Statement: [
 {

场景 1279

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 Effect: "Allow",
 Action: ["sts:AssumeRole"],
 Principal: { Service: ["lambda.amazonaws.com"] },
 },
],
 }),
 }),
);

 let role = null;

 try {
 const { Role } = await createRole();
 role = Role;
 } catch (caught) {
 if (
 caught instanceof Error &&
 caught.name === "EntityAlreadyExistsException"
) {
 const { Role } = await iamClient.send(
 new GetRoleCommand({ RoleName: name }),
);
 role = Role;
 } else {
 throw caught;
 }
 }

 return {
 arn: role.Arn,
 cleanUp: async () => {
 await iamClient.send(new DeleteRoleCommand({ RoleName: name }));
 },
 };
}

/**
 * Create an AWS IAM policy that will be attached to the AWS IAM role assumed by the
 AWS Lambda function.
 * The policy grants permission to work with Amazon SQS, Amazon CloudWatch, and
 Amazon SageMaker.
 * @param {{name: string, iamClient: import('@aws-sdk/client-iam').IAMClient,
 pipelineExecutionRoleArn: string}} props
 */

场景 1280

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

export async function createLambdaExecutionPolicy({
 name,
 iamClient,
 pipelineExecutionRoleArn,
}) {
 const policyConfig = {
 Version: "2012-10-17",
 Statement: [
 {
 Effect: "Allow",
 Action: [
 "sqs:ReceiveMessage",
 "sqs:DeleteMessage",
 "sqs:GetQueueAttributes",
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "sagemaker-geospatial:StartVectorEnrichmentJob",
 "sagemaker-geospatial:GetVectorEnrichmentJob",
 "sagemaker:SendPipelineExecutionStepFailure",
 "sagemaker:SendPipelineExecutionStepSuccess",
 "sagemaker-geospatial:ExportVectorEnrichmentJob",
],
 Resource: "*",
 },
 {
 Effect: "Allow",
 // The AWS Lambda function needs permission to pass the pipeline execution
 role to
 // the StartVectorEnrichmentCommand. This restriction prevents an AWS Lambda
 function
 // from elevating privileges. For more information, see:
 // https://docs.aws.amazon.com/IAM/latest/UserGuide/
id_roles_use_passrole.html
 Action: ["iam:PassRole"],
 Resource: `${pipelineExecutionRoleArn}`,
 Condition: {
 StringEquals: {
 "iam:PassedToService": [
 "sagemaker.amazonaws.com",
 "sagemaker-geospatial.amazonaws.com",
],
 },
 },

场景 1281

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 },
],
 };

 const createPolicy = () =>
 iamClient.send(
 new CreatePolicyCommand({
 PolicyDocument: JSON.stringify(policyConfig),
 PolicyName: name,
 }),
);

 let policy = null;

 try {
 const { Policy } = await createPolicy();
 policy = Policy;
 } catch (caught) {
 if (
 caught instanceof Error &&
 caught.name === "EntityAlreadyExistsException"
) {
 const { Policies } = await iamClient.send(new ListPoliciesCommand({}));
 if (Policies) {
 policy = Policies.find((p) => p.PolicyName === name);
 } else {
 throw new Error("No policies found.");
 }
 } else {
 throw caught;
 }
 }

 return {
 arn: policy?.Arn,
 policyConfig,
 cleanUp: async () => {
 await iamClient.send(new DeletePolicyCommand({ PolicyArn: policy?.Arn }));
 },
 };
}

/**
 * Attach an AWS IAM policy to an AWS IAM role.

场景 1282

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * @param {{roleName: string, policyArn: string, iamClient: import('@aws-sdk/client-
iam').IAMClient}} props
 */
export async function attachPolicy({ roleName, policyArn, iamClient }) {
 const attachPolicyCommand = new AttachRolePolicyCommand({
 RoleName: roleName,
 PolicyArn: policyArn,
 });

 await iamClient.send(attachPolicyCommand);
 return {
 cleanUp: async () => {
 await iamClient.send(
 new DetachRolePolicyCommand({
 RoleName: roleName,
 PolicyArn: policyArn,
 }),
);
 },
 };
}

/**
 * Create an AWS Lambda layer that contains the Amazon SageMaker and Amazon
 SageMaker Geospatial clients
 * in the runtime. The default runtime supports v3.188.0 of the JavaScript SDK. The
 Amazon SageMaker
 * Geospatial client wasn't introduced until v3.221.0.
 * @param {{ name: string, lambdaClient: import('@aws-sdk/client-
lambda').LambdaClient }} props
 */
export async function createLambdaLayer({ name, lambdaClient }) {
 const layerPath = `${dirnameFromMetaUrl(import.meta.url)}lambda/nodejs.zip`;
 const { LayerVersionArn, Version } = await lambdaClient.send(
 new PublishLayerVersionCommand({
 LayerName: name,
 Content: {
 ZipFile: Uint8Array.from(readFileSync(layerPath)),
 },
 }),
);

 return {
 versionArn: LayerVersionArn,

场景 1283

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 version: Version,
 cleanUp: async () => {
 await lambdaClient.send(
 new DeleteLayerVersionCommand({
 LayerName: name,
 VersionNumber: Version,
 }),
);
 },
 };
}

/**
 * Deploy the AWS Lambda function that will be used to respond to Amazon SageMaker
 pipeline
 * execution steps.
 * @param {{roleArn: string, name: string, lambdaClient: import('@aws-sdk/client-
lambda').LambdaClient, layerVersionArn: string}} props
 */
export async function createLambdaFunction({
 name,
 roleArn,
 lambdaClient,
 layerVersionArn,
}) {
 const lambdaPath = `${dirnameFromMetaUrl(
 import.meta.url,
)}lambda/dist/index.mjs.zip`;

 // If a function of the same name already exists, return that
 // function's ARN instead. By default this is
 // "sagemaker-wkflw-lambda-function", so collisions are
 // unlikely.
 const createFunction = async () => {
 try {
 return await lambdaClient.send(
 new CreateFunctionCommand({
 Code: {
 ZipFile: Uint8Array.from(readFileSync(lambdaPath)),
 },
 Runtime: Runtime.nodejs18x,
 Handler: "index.handler",
 Layers: [layerVersionArn],
 FunctionName: name,

场景 1284

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 Role: roleArn,
 }),
);
 } catch (caught) {
 if (
 caught instanceof Error &&
 caught.name === "ResourceConflictException"
) {
 const { Configuration } = await lambdaClient.send(
 new GetFunctionCommand({ FunctionName: name }),
);
 return Configuration;
 }
 throw caught;
 }
 };

 // Function creation fails if the Role is not ready. This retries
 // function creation until it succeeds or it times out.
 const { FunctionArn } = await retry(
 { intervalInMs: 1000, maxRetries: 60 },
 createFunction,
);

 return {
 arn: FunctionArn,
 cleanUp: async () => {
 await lambdaClient.send(
 new DeleteFunctionCommand({ FunctionName: name }),
);
 },
 };
}

/**
 * This uploads some sample coordinate data to an Amazon S3 bucket.
 * The Amazon SageMaker Geospatial vector enrichment job will take the simple Lat/
Long
 * coordinates in this file and augment them with more detailed location data.
 * @param {{bucketName: string, s3Client: import('@aws-sdk/client-s3').S3Client}}
 props
 */
export async function uploadCSVDataToS3({ bucketName, s3Client }) {
 const s3Path = `${dirnameFromMetaUrl(

场景 1285

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 import.meta.url,
)}../../../../../scenarios/features/sagemaker_pipelines/resources/
latlongtest.csv`;

 await s3Client.send(
 new PutObjectCommand({
 Bucket: bucketName,
 Key: "input/sample_data.csv",
 Body: readFileSync(s3Path),
 }),
);
}

/**
 * Create the AWS IAM role that will be assumed by the Amazon SageMaker pipeline.
 * @param {{name: string, iamClient: import('@aws-sdk/client-iam').IAMClient, wait:
 (ms: number) => Promise<void>}} props
 */
export async function createSagemakerRole({ name, iamClient, wait }) {
 let role = null;

 const createRole = () =>
 iamClient.send(
 new CreateRoleCommand({
 RoleName: name,
 AssumeRolePolicyDocument: JSON.stringify({
 Version: "2012-10-17",
 Statement: [
 {
 Effect: "Allow",
 Action: ["sts:AssumeRole"],
 Principal: {
 Service: [
 "sagemaker.amazonaws.com",
 "sagemaker-geospatial.amazonaws.com",
],
 },
 },
],
 }),
 }),
);

 try {

场景 1286

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const { Role } = await createRole();
 role = Role;
 // Wait for the role to be ready.
 await wait(10);
 } catch (caught) {
 if (
 caught instanceof Error &&
 caught.name === "EntityAlreadyExistsException"
) {
 const { Role } = await iamClient.send(
 new GetRoleCommand({ RoleName: name }),
);
 role = Role;
 } else {
 throw caught;
 }
 }

 return {
 arn: role.Arn,
 cleanUp: async () => {
 await iamClient.send(new DeleteRoleCommand({ RoleName: name }));
 },
 };
}

/**
 * Create the Amazon SageMaker execution policy. This policy grants permission to
 * invoke the AWS Lambda function, read/write to the Amazon S3 bucket, and send
 messages to
 * the Amazon SQS queue.
 * @param {{ name: string, sqsQueueArn: string, lambdaArn: string, iamClient:
 import('@aws-sdk/client-iam').IAMClient, s3BucketName: string}} props
 */
export async function createSagemakerExecutionPolicy({
 sqsQueueArn,
 lambdaArn,
 iamClient,
 name,
 s3BucketName,
}) {
 const policyConfig = {
 Version: "2012-10-17",
 Statement: [

场景 1287

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 {
 Effect: "Allow",
 Action: ["lambda:InvokeFunction"],
 Resource: lambdaArn,
 },
 {
 Effect: "Allow",
 Action: ["s3:*"],
 Resource: [
 `arn:aws:s3:::${s3BucketName}`,
 `arn:aws:s3:::${s3BucketName}/*`,
],
 },
 {
 Effect: "Allow",
 Action: ["sqs:SendMessage"],
 Resource: sqsQueueArn,
 },
],
 };

 const createPolicy = () =>
 iamClient.send(
 new CreatePolicyCommand({
 PolicyDocument: JSON.stringify(policyConfig),
 PolicyName: name,
 }),
);

 let policy = null;

 try {
 const { Policy } = await createPolicy();
 policy = Policy;
 } catch (caught) {
 if (
 caught instanceof Error &&
 caught.name === "EntityAlreadyExistsException"
) {
 const { Policies } = await iamClient.send(new ListPoliciesCommand({}));
 if (Policies) {
 policy = Policies.find((p) => p.PolicyName === name);
 } else {
 throw new Error("No policies found.");

场景 1288

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }
 } else {
 throw caught;
 }
 }

 return {
 arn: policy?.Arn,
 policyConfig,
 cleanUp: async () => {
 await iamClient.send(new DeletePolicyCommand({ PolicyArn: policy?.Arn }));
 },
 };
}

/**
 * Create the Amazon SageMaker pipeline using a JSON pipeline definition. The
 definition
 * can also be provided as an Amazon S3 object using PipelineDefinitionS3Location.
 * @param {{roleArn: string, name: string, sagemakerClient: import('@aws-sdk/client-
sagemaker').SageMakerClient}} props
 */
export async function createSagemakerPipeline({
 // Assumes an AWS IAM role has been created for this pipeline.
 roleArn,
 name,
 // Assumes an AWS Lambda function has been created for this pipeline.
 functionArn,
 sagemakerClient,
}) {
 const pipelineDefinition = readFileSync(
 // dirnameFromMetaUrl is a local utility function. You can find its
 implementation
 // on GitHub.
 `${dirnameFromMetaUrl(
 import.meta.url,
)}../../../../../scenarios/features/sagemaker_pipelines/resources/
GeoSpatialPipeline.json`,
)
 .toString()
 .replace(/*FUNCTION_ARN*/g, functionArn);

 let arn = null;

场景 1289

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const createPipeline = () =>
 sagemakerClient.send(
 new CreatePipelineCommand({
 PipelineName: name,
 PipelineDefinition: pipelineDefinition,
 RoleArn: roleArn,
 }),
);

 try {
 const { PipelineArn } = await createPipeline();
 arn = PipelineArn;
 } catch (caught) {
 if (
 caught instanceof Error &&
 caught.name === "ValidationException" &&
 caught.message.includes(
 "Pipeline names must be unique within an AWS account and region",
)
) {
 const { PipelineArn } = await sagemakerClient.send(
 new DescribePipelineCommand({ PipelineName: name }),
);
 arn = PipelineArn;
 } else {
 throw caught;
 }
 }

 return {
 arn,
 cleanUp: async () => {
 await sagemakerClient.send(
 new DeletePipelineCommand({ PipelineName: name }),
);
 },
 };
}

/**
 * Create an Amazon SQS queue. The Amazon SageMaker pipeline will send messages
 * to this queue that are then processed by the AWS Lambda function.
 * @param {{name: string, sqsClient: import('@aws-sdk/client-sqs').SQSClient}} props
 */

场景 1290

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

export async function createSQSQueue({ name, sqsClient }) {
 const createSqsQueue = () =>
 sqsClient.send(
 new CreateQueueCommand({
 QueueName: name,
 Attributes: {
 DelaySeconds: "5",
 ReceiveMessageWaitTimeSeconds: "5",
 VisibilityTimeout: "300",
 },
 }),
);

 let queueUrl = null;
 try {
 const { QueueUrl } = await createSqsQueue();
 queueUrl = QueueUrl;
 } catch (caught) {
 if (caught instanceof Error && caught.name === "QueueNameExists") {
 const { QueueUrl } = await sqsClient.send(
 new GetQueueUrlCommand({ QueueName: name }),
);
 queueUrl = QueueUrl;
 } else {
 throw caught;
 }
 }

 const { Attributes } = await retry(
 { intervalInMs: 1000, maxRetries: 60 },
 () =>
 sqsClient.send(
 new GetQueueAttributesCommand({
 QueueUrl: queueUrl,
 AttributeNames: ["QueueArn"],
 }),
),
);

 return {
 queueUrl,
 queueArn: Attributes.QueueArn,
 cleanUp: async () => {
 await sqsClient.send(new DeleteQueueCommand({ QueueUrl: queueUrl }));

场景 1291

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 },
 };
}

/**
 * Configure the AWS Lambda function to long poll for messages from the Amazon SQS
 * queue.
 * @param {{
 * paginateListEventSourceMappings: () => Generator<import('@aws-sdk/client-
lambda').ListEventSourceMappingsCommandOutput>,
 * lambdaName: string,
 * queueArn: string,
 * lambdaClient: import('@aws-sdk/client-lambda').LambdaClient}} props
 */
export async function configureLambdaSQSEventSource({
 lambdaName,
 queueArn,
 lambdaClient,
 paginateListEventSourceMappings,
}) {
 let uuid = null;
 const createEvenSourceMapping = () =>
 lambdaClient.send(
 new CreateEventSourceMappingCommand({
 EventSourceArn: queueArn,
 FunctionName: lambdaName,
 }),
);

 try {
 const { UUID } = await createEvenSourceMapping();
 uuid = UUID;
 } catch (caught) {
 if (
 caught instanceof Error &&
 caught.name === "ResourceConflictException"
) {
 const paginator = paginateListEventSourceMappings(
 { client: lambdaClient },
 {},
);
 /**
 * @type {import('@aws-sdk/client-lambda').EventSourceMappingConfiguration[]}
 */

场景 1292

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const eventSourceMappings = [];
 for await (const page of paginator) {
 eventSourceMappings.concat(page.EventSourceMappings || []);
 }

 const { Configuration } = await lambdaClient.send(
 new GetFunctionCommand({ FunctionName: lambdaName }),
);

 uuid = eventSourceMappings.find(
 (mapping) =>
 mapping.EventSourceArn === queueArn &&
 mapping.FunctionArn === Configuration.FunctionArn,
).UUID;
 } else {
 throw caught;
 }
 }

 return {
 cleanUp: async () => {
 await lambdaClient.send(
 new DeleteEventSourceMappingCommand({
 UUID: uuid,
 }),
);
 },
 };
}

/**
 * Create an Amazon S3 bucket that will store the simple coordinate file as input
 * and the output of the Amazon SageMaker Geospatial vector enrichment job.
 * @param {{
 * s3Client: import('@aws-sdk/client-s3').S3Client,
 * name: string,
 * paginateListObjectsV2: () => Generator<import('@aws-sdk/client-
s3').ListObjectsCommandOutput>
 * }} props
 */
export async function createS3Bucket({
 name,
 s3Client,
 paginateListObjectsV2,

场景 1293

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

}) {
 await s3Client.send(new CreateBucketCommand({ Bucket: name }));

 return {
 cleanUp: async () => {
 const paginator = paginateListObjectsV2(
 { client: s3Client },
 { Bucket: name },
);
 for await (const page of paginator) {
 const objects = page.Contents;
 if (objects) {
 for (const object of objects) {
 await s3Client.send(
 new DeleteObjectCommand({ Bucket: name, Key: object.Key }),
);
 }
 }
 }
 await s3Client.send(new DeleteBucketCommand({ Bucket: name }));
 },
 };
}

/**
 * Start the execution of the Amazon SageMaker pipeline. Parameters that are
 * passed in are used in the AWS Lambda function.
 * @param {{
 * name: string,
 * sagemakerClient: import('@aws-sdk/client-sagemaker').SageMakerClient,
 * roleArn: string,
 * queueUrl: string,
 * s3InputBucketName: string,
 * }} props
 */
export async function startPipelineExecution({
 sagemakerClient,
 name,
 bucketName,
 roleArn,
 queueUrl,
}) {
 /**
 * The Vector Enrichment Job requests CSV data. This configuration points to a CSV

场景 1294

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * file in an Amazon S3 bucket.
 * @type {import("@aws-sdk/client-sagemaker-
geospatial").VectorEnrichmentJobInputConfig}
 */
 const inputConfig = {
 DataSourceConfig: {
 S3Data: {
 S3Uri: `s3://${bucketName}/input/sample_data.csv`,
 },
 },
 DocumentType: VectorEnrichmentJobDocumentType.CSV,
 };

 /**
 * The Vector Enrichment Job adds additional data to the source CSV. This
 configuration points
 * to an Amazon S3 prefix where the output will be stored.
 * @type {import("@aws-sdk/client-sagemaker-
geospatial").ExportVectorEnrichmentJobOutputConfig}
 */
 const outputConfig = {
 S3Data: {
 S3Uri: `s3://${bucketName}/output/`,
 },
 };

 /**
 * This job will be a Reverse Geocoding Vector Enrichment Job. Reverse Geocoding
 requires
 * latitude and longitude values.
 * @type {import("@aws-sdk/client-sagemaker-
geospatial").VectorEnrichmentJobConfig}
 */
 const jobConfig = {
 ReverseGeocodingConfig: {
 XAttributeName: "Longitude",
 YAttributeName: "Latitude",
 },
 };

 const { PipelineExecutionArn } = await sagemakerClient.send(
 new StartPipelineExecutionCommand({
 PipelineName: name,
 PipelineExecutionDisplayName: `${name}-example-execution`,

场景 1295

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 PipelineParameters: [
 { Name: "parameter_execution_role", Value: roleArn },
 { Name: "parameter_queue_url", Value: queueUrl },
 {
 Name: "parameter_vej_input_config",
 Value: JSON.stringify(inputConfig),
 },
 {
 Name: "parameter_vej_export_config",
 Value: JSON.stringify(outputConfig),
 },
 {
 Name: "parameter_step_1_vej_config",
 Value: JSON.stringify(jobConfig),
 },
],
 }),
);

 return {
 arn: PipelineExecutionArn,
 };
}

/**
 * Poll the executing pipeline until the status is 'SUCCEEDED', 'STOPPED', or
 'FAILED'.
 * @param {{ arn: string, sagemakerClient: import('@aws-sdk/client-
sagemaker').SageMakerClient, wait: (ms: number) => Promise<void>}} props
 */
export async function waitForPipelineComplete({ arn, sagemakerClient, wait }) {
 const command = new DescribePipelineExecutionCommand({
 PipelineExecutionArn: arn,
 });

 let complete = false;
 const intervalInSeconds = 15;
 const COMPLETION_STATUSES = [
 PipelineExecutionStatus.FAILED,
 PipelineExecutionStatus.STOPPED,
 PipelineExecutionStatus.SUCCEEDED,
];

 do {

场景 1296

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const { PipelineExecutionStatus: status, FailureReason } =
 await sagemakerClient.send(command);

 complete = COMPLETION_STATUSES.includes(status);

 if (!complete) {
 console.log(
 `Pipeline is ${status}. Waiting ${intervalInSeconds} seconds before checking
 again.`,
);
 await wait(intervalInSeconds);
 } else if (status === PipelineExecutionStatus.FAILED) {
 throw new Error(`Pipeline failed because: ${FailureReason}`);
 } else if (status === PipelineExecutionStatus.STOPPED) {
 throw new Error("Pipeline was forcefully stopped.");
 } else {
 console.log(`Pipeline execution ${status}.`);
 }
 } while (!complete);
}

/**
 * Return the string value of an Amazon S3 object.
 * @param {{ bucket: string, key: string, s3Client: import('@aws-sdk/client-
s3').S3Client}} param0
 */
export async function getObject({ bucket, s3Client }) {
 const prefix = "output/";
 const { Contents } = await s3Client.send(
 new ListObjectsV2Command({ MaxKeys: 1, Bucket: bucket, Prefix: prefix }),
);

 if (!Contents.length) {
 throw new Error("No objects found in bucket.");
 }

 // Find the CSV file.
 const outputObject = Contents.find((obj) => obj.Key.endsWith(".csv"));

 if (!outputObject) {
 throw new Error(`No CSV file found in bucket with the prefix "${prefix}".`);
 }

 const { Body } = await s3Client.send(

场景 1297

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 new GetObjectCommand({
 Bucket: bucket,
 Key: outputObject.Key,
 }),
);

 return Body.transformToString();
}

此函数摘自一个文件，该文件使用前面的库函数来设置 A SageMaker I 管道、执行该管道并删除所
有已创建的资源。

import { retry, wait } from "@aws-doc-sdk-examples/lib/utils/util-timers.js";
import {
 attachPolicy,
 configureLambdaSQSEventSource,
 createLambdaExecutionPolicy,
 createLambdaExecutionRole,
 createLambdaFunction,
 createLambdaLayer,
 createS3Bucket,
 createSQSQueue,
 createSagemakerExecutionPolicy,
 createSagemakerPipeline,
 createSagemakerRole,
 getObject,
 startPipelineExecution,
 uploadCSVDataToS3,
 waitForPipelineComplete,
} from "./lib.js";
import { MESSAGES } from "./messages.js";

export class SageMakerPipelinesWkflw {
 names = {
 LAMBDA_EXECUTION_ROLE: "sagemaker-wkflw-lambda-execution-role",
 LAMBDA_EXECUTION_ROLE_POLICY:
 "sagemaker-wkflw-lambda-execution-role-policy",
 LAMBDA_FUNCTION: "sagemaker-wkflw-lambda-function",
 LAMBDA_LAYER: "sagemaker-wkflw-lambda-layer",
 SAGE_MAKER_EXECUTION_ROLE: "sagemaker-wkflw-pipeline-execution-role",
 SAGE_MAKER_EXECUTION_ROLE_POLICY:
 "sagemaker-wkflw-pipeline-execution-role-policy",

场景 1298

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 SAGE_MAKER_PIPELINE: "sagemaker-wkflw-pipeline",
 SQS_QUEUE: "sagemaker-wkflw-sqs-queue",
 S3_BUCKET: `sagemaker-wkflw-s3-bucket-${Date.now()}`,
 };

 cleanUpFunctions = [];

 /**
 * @param {import("@aws-doc-sdk-examples/lib/prompter.js").Prompter} prompter
 * @param {import("@aws-doc-sdk-examples/lib/logger.js").Logger} logger
 * @param {{ IAM: import("@aws-sdk/client-iam").IAMClient, Lambda: import("@aws-
sdk/client-lambda").LambdaClient, SageMaker: import("@aws-sdk/client-
sagemaker").SageMakerClient, S3: import("@aws-sdk/client-s3").S3Client, SQS:
 import("@aws-sdk/client-sqs").SQSClient }} clients
 */
 constructor(prompter, logger, clients) {
 this.prompter = prompter;
 this.logger = logger;
 this.clients = clients;
 }

 async run() {
 try {
 await this.startWorkflow();
 } catch (err) {
 console.error(err);
 throw err;
 } finally {
 this.logger.logSeparator();
 const doCleanUp = await this.prompter.confirm({
 message: "Clean up resources?",
 });
 if (doCleanUp) {
 await this.cleanUp();
 }
 }
 }

 async cleanUp() {
 // Run all of the clean up functions. If any fail, we log the error and
 continue.
 // This ensures all clean up functions are run.
 for (let i = this.cleanUpFunctions.length - 1; i >= 0; i--) {
 await retry(

场景 1299

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 { intervalInMs: 1000, maxRetries: 60, swallowError: true },
 this.cleanUpFunctions[i],
);
 }
 }

 async startWorkflow() {
 this.logger.logSeparator(MESSAGES.greetingHeader);
 await this.logger.log(MESSAGES.greeting);

 this.logger.logSeparator();
 await this.logger.log(
 MESSAGES.creatingRole.replace(
 "${ROLE_NAME}",
 this.names.LAMBDA_EXECUTION_ROLE,
),
);

 // Create an IAM role that will be assumed by the AWS Lambda function. This
 function
 // is triggered by Amazon SQS messages and calls SageMaker and SageMaker
 GeoSpatial actions.
 const { arn: lambdaExecutionRoleArn, cleanUp: lambdaExecutionRoleCleanUp } =
 await createLambdaExecutionRole({
 name: this.names.LAMBDA_EXECUTION_ROLE,
 iamClient: this.clients.IAM,
 });
 // Add a clean up step to a stack for every resource created.
 this.cleanUpFunctions.push(lambdaExecutionRoleCleanUp);

 await this.logger.log(
 MESSAGES.roleCreated.replace(
 "${ROLE_NAME}",
 this.names.LAMBDA_EXECUTION_ROLE,
),
);

 this.logger.logSeparator();

 await this.logger.log(
 MESSAGES.creatingRole.replace(
 "${ROLE_NAME}",
 this.names.SAGE_MAKER_EXECUTION_ROLE,
),

场景 1300

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

);

 // Create an IAM role that will be assumed by the SageMaker pipeline. The
 pipeline
 // sends messages to an Amazon SQS queue and puts/retrieves Amazon S3 objects.
 const {
 arn: pipelineExecutionRoleArn,
 cleanUp: pipelineExecutionRoleCleanUp,
 } = await createSagemakerRole({
 iamClient: this.clients.IAM,
 name: this.names.SAGE_MAKER_EXECUTION_ROLE,
 wait,
 });
 this.cleanUpFunctions.push(pipelineExecutionRoleCleanUp);

 await this.logger.log(
 MESSAGES.roleCreated.replace(
 "${ROLE_NAME}",
 this.names.SAGE_MAKER_EXECUTION_ROLE,
),
);

 this.logger.logSeparator();

 // Create an IAM policy that allows the AWS Lambda function to invoke SageMaker
 APIs.
 const {
 arn: lambdaExecutionPolicyArn,
 policy: lambdaPolicy,
 cleanUp: lambdaExecutionPolicyCleanUp,
 } = await createLambdaExecutionPolicy({
 name: this.names.LAMBDA_EXECUTION_ROLE_POLICY,
 s3BucketName: this.names.S3_BUCKET,
 iamClient: this.clients.IAM,
 pipelineExecutionRoleArn,
 });
 this.cleanUpFunctions.push(lambdaExecutionPolicyCleanUp);

 console.log(JSON.stringify(lambdaPolicy, null, 2), "\n");

 await this.logger.log(
 MESSAGES.attachPolicy
 .replace("${POLICY_NAME}", this.names.LAMBDA_EXECUTION_ROLE_POLICY)
 .replace("${ROLE_NAME}", this.names.LAMBDA_EXECUTION_ROLE),

场景 1301

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

);

 await this.prompter.checkContinue();

 // Attach the Lambda execution policy to the execution role.
 const { cleanUp: lambdaExecutionRolePolicyCleanUp } = await attachPolicy({
 roleName: this.names.LAMBDA_EXECUTION_ROLE,
 policyArn: lambdaExecutionPolicyArn,
 iamClient: this.clients.IAM,
 });
 this.cleanUpFunctions.push(lambdaExecutionRolePolicyCleanUp);

 await this.logger.log(MESSAGES.policyAttached);

 this.logger.logSeparator();

 // Create Lambda layer for SageMaker packages.
 const { versionArn: layerVersionArn, cleanUp: lambdaLayerCleanUp } =
 await createLambdaLayer({
 name: this.names.LAMBDA_LAYER,
 lambdaClient: this.clients.Lambda,
 });
 this.cleanUpFunctions.push(lambdaLayerCleanUp);

 await this.logger.log(
 MESSAGES.creatingFunction.replace(
 "${FUNCTION_NAME}",
 this.names.LAMBDA_FUNCTION,
),
);

 // Create the Lambda function with the execution role.
 const { arn: lambdaArn, cleanUp: lambdaCleanUp } =
 await createLambdaFunction({
 roleArn: lambdaExecutionRoleArn,
 lambdaClient: this.clients.Lambda,
 name: this.names.LAMBDA_FUNCTION,
 layerVersionArn,
 });
 this.cleanUpFunctions.push(lambdaCleanUp);

 await this.logger.log(
 MESSAGES.functionCreated.replace(
 "${FUNCTION_NAME}",

场景 1302

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 this.names.LAMBDA_FUNCTION,
),
);

 this.logger.logSeparator();

 await this.logger.log(
 MESSAGES.creatingSQSQueue.replace("${QUEUE_NAME}", this.names.SQS_QUEUE),
);

 // Create an SQS queue for the SageMaker pipeline.
 const {
 queueUrl,
 queueArn,
 cleanUp: queueCleanUp,
 } = await createSQSQueue({
 name: this.names.SQS_QUEUE,
 sqsClient: this.clients.SQS,
 });
 this.cleanUpFunctions.push(queueCleanUp);

 await this.logger.log(
 MESSAGES.sqsQueueCreated.replace("${QUEUE_NAME}", this.names.SQS_QUEUE),
);

 this.logger.logSeparator();

 await this.logger.log(
 MESSAGES.configuringLambdaSQSEventSource
 .replace("${LAMBDA_NAME}", this.names.LAMBDA_FUNCTION)
 .replace("${QUEUE_NAME}", this.names.SQS_QUEUE),
);

 // Configure the SQS queue as an event source for the Lambda.
 const { cleanUp: lambdaSQSEventSourceCleanUp } =
 await configureLambdaSQSEventSource({
 lambdaArn,
 lambdaName: this.names.LAMBDA_FUNCTION,
 queueArn,
 sqsClient: this.clients.SQS,
 lambdaClient: this.clients.Lambda,
 });
 this.cleanUpFunctions.push(lambdaSQSEventSourceCleanUp);

场景 1303

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 await this.logger.log(
 MESSAGES.lambdaSQSEventSourceConfigured
 .replace("${LAMBDA_NAME}", this.names.LAMBDA_FUNCTION)
 .replace("${QUEUE_NAME}", this.names.SQS_QUEUE),
);

 this.logger.logSeparator();

 // Create an IAM policy that allows the SageMaker pipeline to invoke AWS Lambda
 // and send messages to the Amazon SQS queue.
 const {
 arn: pipelineExecutionPolicyArn,
 policy: sagemakerPolicy,
 cleanUp: pipelineExecutionPolicyCleanUp,
 } = await createSagemakerExecutionPolicy({
 sqsQueueArn: queueArn,
 lambdaArn,
 iamClient: this.clients.IAM,
 name: this.names.SAGE_MAKER_EXECUTION_ROLE_POLICY,
 s3BucketName: this.names.S3_BUCKET,
 });
 this.cleanUpFunctions.push(pipelineExecutionPolicyCleanUp);

 console.log(JSON.stringify(sagemakerPolicy, null, 2));

 await this.logger.log(
 MESSAGES.attachPolicy
 .replace("${POLICY_NAME}", this.names.SAGE_MAKER_EXECUTION_ROLE_POLICY)
 .replace("${ROLE_NAME}", this.names.SAGE_MAKER_EXECUTION_ROLE),
);

 await this.prompter.checkContinue();

 // Attach the SageMaker execution policy to the execution role.
 const { cleanUp: pipelineExecutionRolePolicyCleanUp } = await attachPolicy({
 roleName: this.names.SAGE_MAKER_EXECUTION_ROLE,
 policyArn: pipelineExecutionPolicyArn,
 iamClient: this.clients.IAM,
 });
 this.cleanUpFunctions.push(pipelineExecutionRolePolicyCleanUp);
 // Wait for the role to be ready. If the role is used immediately,
 // the pipeline will fail.
 await wait(5);

场景 1304

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 await this.logger.log(MESSAGES.policyAttached);

 this.logger.logSeparator();

 await this.logger.log(
 MESSAGES.creatingPipeline.replace(
 "${PIPELINE_NAME}",
 this.names.SAGE_MAKER_PIPELINE,
),
);

 // Create the SageMaker pipeline.
 const { cleanUp: pipelineCleanUp } = await createSagemakerPipeline({
 roleArn: pipelineExecutionRoleArn,
 functionArn: lambdaArn,
 sagemakerClient: this.clients.SageMaker,
 name: this.names.SAGE_MAKER_PIPELINE,
 });
 this.cleanUpFunctions.push(pipelineCleanUp);

 await this.logger.log(
 MESSAGES.pipelineCreated.replace(
 "${PIPELINE_NAME}",
 this.names.SAGE_MAKER_PIPELINE,
),
);

 this.logger.logSeparator();

 await this.logger.log(
 MESSAGES.creatingS3Bucket.replace("${BUCKET_NAME}", this.names.S3_BUCKET),
);

 // Create an S3 bucket for storing inputs and outputs.
 const { cleanUp: s3BucketCleanUp } = await createS3Bucket({
 name: this.names.S3_BUCKET,
 s3Client: this.clients.S3,
 });
 this.cleanUpFunctions.push(s3BucketCleanUp);

 await this.logger.log(
 MESSAGES.s3BucketCreated.replace("${BUCKET_NAME}", this.names.S3_BUCKET),
);

场景 1305

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 this.logger.logSeparator();

 await this.logger.log(
 MESSAGES.uploadingInputData.replace(
 "${BUCKET_NAME}",
 this.names.S3_BUCKET,
),
);

 // Upload CSV Lat/Long data to S3.
 await uploadCSVDataToS3({
 bucketName: this.names.S3_BUCKET,
 s3Client: this.clients.S3,
 });

 await this.logger.log(MESSAGES.inputDataUploaded);

 this.logger.logSeparator();

 await this.prompter.checkContinue(MESSAGES.executePipeline);

 // Execute the SageMaker pipeline.
 const { arn: pipelineExecutionArn } = await startPipelineExecution({
 name: this.names.SAGE_MAKER_PIPELINE,
 sagemakerClient: this.clients.SageMaker,
 roleArn: pipelineExecutionRoleArn,
 bucketName: this.names.S3_BUCKET,
 queueUrl,
 });

 // Wait for the pipeline execution to finish.
 await waitForPipelineComplete({
 arn: pipelineExecutionArn,
 sagemakerClient: this.clients.SageMaker,
 wait,
 });

 this.logger.logSeparator();

 await this.logger.log(MESSAGES.outputDelay);

 // The getOutput function will throw an error if the output is not
 // found. The retry function will retry a failed function call once
 // ever 10 seconds for 2 minutes.

场景 1306

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const output = await retry({ intervalInMs: 10000, maxRetries: 12 }, () =>
 getObject({
 bucket: this.names.S3_BUCKET,
 s3Client: this.clients.S3,
 }),
);

 this.logger.logSeparator();
 await this.logger.log(MESSAGES.outputDataRetrieved);
 console.log(output.split("\n").slice(0, 6).join("\n"));
 }
}

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的以下主
题。

• CreatePipeline

• DeletePipeline

• DescribePipelineExecution

• StartPipelineExecution

• UpdatePipeline

使用适用于 JavaScript (v3) 的 SDK 的 Secrets Manager 示例

以下代码示例向您展示了如何使用带有 Secrets Manager 的 适用于 JavaScript 的 Amazon SDK (v3)
来执行操作和实现常见场景。

操作是大型程序的代码摘录，必须在上下文中运行。您可以通过操作了解如何调用单个服务函数，还可
以通过函数相关场景的上下文查看操作。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

• 操作

Secrets Manager 1307

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sagemaker/command/CreatePipelineCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sagemaker/command/DeletePipelineCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sagemaker/command/DescribePipelineExecutionCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sagemaker/command/StartPipelineExecutionCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sagemaker/command/UpdatePipelineCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

操作

GetSecretValue

以下代码示例演示了如何使用 GetSecretValue。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import {
 GetSecretValueCommand,
 SecretsManagerClient,
} from "@aws-sdk/client-secrets-manager";

export const getSecretValue = async (secretName = "SECRET_NAME") => {
 const client = new SecretsManagerClient();
 const response = await client.send(
 new GetSecretValueCommand({
 SecretId: secretName,
 }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '584eb612-f8b0-48c9-855e-6d246461b604',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // ARN: 'arn:aws:secretsmanager:us-east-1:xxxxxxxxxxxx:secret:binary-
secret-3873048-xxxxxx',
 // CreatedDate: 2023-08-08T19:29:51.294Z,
 // Name: 'binary-secret-3873048',
 // SecretBinary: Uint8Array(11) [
 // 98, 105, 110, 97, 114,

操作 1308

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/secrets-manager#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // 121, 32, 100, 97, 116,
 // 97
 //],
 // VersionId: '712083f4-0d26-415e-8044-16735142cd6a',
 // VersionStages: ['AWSCURRENT']
 // }

 if (response.SecretString) {
 return response.SecretString;
 }

 if (response.SecretBinary) {
 return response.SecretBinary;
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考GetSecretValue中
的。

使用适用于 JavaScript (v3) 的软件开发工具包的 Amazon SES 示例

以下代码示例向您展示如何使用带有 Amazon SES 的 适用于 JavaScript 的 Amazon SDK (v3) 来执行
操作和实现常见场景。

操作是大型程序的代码摘录，必须在上下文中运行。您可以通过操作了解如何调用单个服务函数，还可
以通过函数相关场景的上下文查看操作。

场景是向您演示如何通过在一个服务中调用多个函数或与其他 Amazon Web Services 服务结合来完成
特定任务的代码示例。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

• 操作

• 场景

Amazon SES 1309

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/secrets-manager/command/GetSecretValueCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

操作

CreateReceiptFilter

以下代码示例演示了如何使用 CreateReceiptFilter。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import {
 CreateReceiptFilterCommand,
 ReceiptFilterPolicy,
} from "@aws-sdk/client-ses";
import { sesClient } from "./libs/sesClient.js";
import { getUniqueName } from "@aws-doc-sdk-examples/lib/utils/util-string.js";

const createCreateReceiptFilterCommand = ({ policy, ipOrRange, name }) => {
 return new CreateReceiptFilterCommand({
 Filter: {
 IpFilter: {
 Cidr: ipOrRange, // string, either a single IP address (10.0.0.1) or an IP
 address range in CIDR notation (10.0.0.1/24)).
 Policy: policy, // enum ReceiptFilterPolicy, email traffic from the filtered
 addressesOptions.
 },
 /*
 The name of the IP address filter. Only ASCII letters, numbers, underscores,
 or dashes.
 Must be less than 64 characters and start and end with a letter or number.
 */
 Name: name,
 },
 });
};

const FILTER_NAME = getUniqueName("ReceiptFilter");

操作 1310

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ses#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const run = async () => {
 const createReceiptFilterCommand = createCreateReceiptFilterCommand({
 policy: ReceiptFilterPolicy.Allow,
 ipOrRange: "10.0.0.1",
 name: FILTER_NAME,
 });

 try {
 return await sesClient.send(createReceiptFilterCommand);
 } catch (caught) {
 if (caught instanceof Error && caught.name === "MessageRejected") {
 /** @type { import('@aws-sdk/client-ses').MessageRejected} */
 const messageRejectedError = caught;
 return messageRejectedError;
 }
 throw caught;
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考CreateReceiptFilter中的。

CreateReceiptRule

以下代码示例演示了如何使用 CreateReceiptRule。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { CreateReceiptRuleCommand, TlsPolicy } from "@aws-sdk/client-ses";
import { sesClient } from "./libs/sesClient.js";
import { getUniqueName } from "@aws-doc-sdk-examples/lib/utils/util-string.js";

const RULE_SET_NAME = getUniqueName("RuleSetName");

操作 1311

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ses/command/CreateReceiptFilterCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ses#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const RULE_NAME = getUniqueName("RuleName");
const S3_BUCKET_NAME = getUniqueName("S3BucketName");

const createS3ReceiptRuleCommand = ({
 bucketName,
 emailAddresses,
 name,
 ruleSet,
}) => {
 return new CreateReceiptRuleCommand({
 Rule: {
 Actions: [
 {
 S3Action: {
 BucketName: bucketName,
 ObjectKeyPrefix: "email",
 },
 },
],
 Recipients: emailAddresses,
 Enabled: true,
 Name: name,
 ScanEnabled: false,
 TlsPolicy: TlsPolicy.Optional,
 },
 RuleSetName: ruleSet, // Required
 });
};

const run = async () => {
 const s3ReceiptRuleCommand = createS3ReceiptRuleCommand({
 bucketName: S3_BUCKET_NAME,
 emailAddresses: ["email@example.com"],
 name: RULE_NAME,
 ruleSet: RULE_SET_NAME,
 });

 try {
 return await sesClient.send(s3ReceiptRuleCommand);
 } catch (err) {
 console.log("Failed to create S3 receipt rule.", err);
 throw err;
 }
};

操作 1312

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考CreateReceiptRule中的。

CreateReceiptRuleSet

以下代码示例演示了如何使用 CreateReceiptRuleSet。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { CreateReceiptRuleSetCommand } from "@aws-sdk/client-ses";
import { sesClient } from "./libs/sesClient.js";
import { getUniqueName } from "@aws-doc-sdk-examples/lib/utils/util-string.js";

const RULE_SET_NAME = getUniqueName("RuleSetName");

const createCreateReceiptRuleSetCommand = (ruleSetName) => {
 return new CreateReceiptRuleSetCommand({ RuleSetName: ruleSetName });
};

const run = async () => {
 const createReceiptRuleSetCommand =
 createCreateReceiptRuleSetCommand(RULE_SET_NAME);

 try {
 return await sesClient.send(createReceiptRuleSetCommand);
 } catch (err) {
 console.log("Failed to create receipt rule set", err);
 return err;
 }
};

操作 1313

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ses/command/CreateReceiptRuleCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ses#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考CreateReceiptRuleSet中的。

CreateTemplate

以下代码示例演示了如何使用 CreateTemplate。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { CreateTemplateCommand } from "@aws-sdk/client-ses";
import { sesClient } from "./libs/sesClient.js";
import { getUniqueName } from "@aws-doc-sdk-examples/lib/utils/util-string.js";

const TEMPLATE_NAME = getUniqueName("TestTemplateName");

const createCreateTemplateCommand = () => {
 return new CreateTemplateCommand({
 /**
 * The template feature in Amazon SES is based on the Handlebars template
 system.
 */
 Template: {
 /**
 * The name of an existing template in Amazon SES.
 */
 TemplateName: TEMPLATE_NAME,
 HtmlPart: `
 <h1>Hello, {{contact.firstName}}!</h1>
 <p>
 Did you know Amazon has a mascot named Peccy?
 </p>
 `,
 SubjectPart: "Amazon Tip",
 },
 });

操作 1314

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ses/command/CreateReceiptRuleSetCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ses#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

};

const run = async () => {
 const createTemplateCommand = createCreateTemplateCommand();

 try {
 return await sesClient.send(createTemplateCommand);
 } catch (err) {
 console.log("Failed to create template.", err);
 return err;
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考CreateTemplate中
的。

DeleteIdentity

以下代码示例演示了如何使用 DeleteIdentity。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { DeleteIdentityCommand } from "@aws-sdk/client-ses";
import { sesClient } from "./libs/sesClient.js";

const IDENTITY_EMAIL = "fake@example.com";

const createDeleteIdentityCommand = (identityName) => {
 return new DeleteIdentityCommand({
 Identity: identityName,
 });
};

const run = async () => {

操作 1315

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ses/command/CreateTemplateCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ses#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const deleteIdentityCommand = createDeleteIdentityCommand(IDENTITY_EMAIL);

 try {
 return await sesClient.send(deleteIdentityCommand);
 } catch (err) {
 console.log("Failed to delete identity.", err);
 return err;
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DeleteIdentity中的。

DeleteReceiptFilter

以下代码示例演示了如何使用 DeleteReceiptFilter。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { DeleteReceiptFilterCommand } from "@aws-sdk/client-ses";
import { sesClient } from "./libs/sesClient.js";
import { getUniqueName } from "@aws-doc-sdk-examples/lib/utils/util-string.js";

const RECEIPT_FILTER_NAME = getUniqueName("ReceiptFilterName");

const createDeleteReceiptFilterCommand = (filterName) => {
 return new DeleteReceiptFilterCommand({ FilterName: filterName });
};

const run = async () => {
 const deleteReceiptFilterCommand =
 createDeleteReceiptFilterCommand(RECEIPT_FILTER_NAME);

 try {
 return await sesClient.send(deleteReceiptFilterCommand);

操作 1316

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ses/command/DeleteIdentityCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ses#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 } catch (err) {
 console.log("Error deleting receipt filter.", err);
 return err;
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考DeleteReceiptFilter中的。

DeleteReceiptRule

以下代码示例演示了如何使用 DeleteReceiptRule。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { DeleteReceiptRuleCommand } from "@aws-sdk/client-ses";
import { getUniqueName } from "@aws-doc-sdk-examples/lib/utils/util-string.js";
import { sesClient } from "./libs/sesClient.js";

const RULE_NAME = getUniqueName("RuleName");
const RULE_SET_NAME = getUniqueName("RuleSetName");

const createDeleteReceiptRuleCommand = () => {
 return new DeleteReceiptRuleCommand({
 RuleName: RULE_NAME,
 RuleSetName: RULE_SET_NAME,
 });
};

const run = async () => {
 const deleteReceiptRuleCommand = createDeleteReceiptRuleCommand();
 try {
 return await sesClient.send(deleteReceiptRuleCommand);
 } catch (err) {

操作 1317

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ses/command/DeleteReceiptFilterCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ses#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 console.log("Failed to delete receipt rule.", err);
 return err;
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DeleteReceiptRule中
的。

DeleteReceiptRuleSet

以下代码示例演示了如何使用 DeleteReceiptRuleSet。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { DeleteReceiptRuleSetCommand } from "@aws-sdk/client-ses";
import { getUniqueName } from "@aws-doc-sdk-examples/lib/utils/util-string.js";
import { sesClient } from "./libs/sesClient.js";

const RULE_SET_NAME = getUniqueName("RuleSetName");

const createDeleteReceiptRuleSetCommand = () => {
 return new DeleteReceiptRuleSetCommand({ RuleSetName: RULE_SET_NAME });
};

const run = async () => {
 const deleteReceiptRuleSetCommand = createDeleteReceiptRuleSetCommand();

 try {
 return await sesClient.send(deleteReceiptRuleSetCommand);
 } catch (err) {
 console.log("Failed to delete receipt rule set.", err);
 return err;
 }
};

操作 1318

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ses/command/DeleteReceiptRuleCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ses#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考DeleteReceiptRuleSet中的。

DeleteTemplate

以下代码示例演示了如何使用 DeleteTemplate。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { DeleteTemplateCommand } from "@aws-sdk/client-ses";
import { getUniqueName } from "@aws-doc-sdk-examples/lib/utils/util-string.js";
import { sesClient } from "./libs/sesClient.js";

const TEMPLATE_NAME = getUniqueName("TemplateName");

const createDeleteTemplateCommand = (templateName) =>
 new DeleteTemplateCommand({ TemplateName: templateName });

const run = async () => {
 const deleteTemplateCommand = createDeleteTemplateCommand(TEMPLATE_NAME);

 try {
 return await sesClient.send(deleteTemplateCommand);
 } catch (err) {
 console.log("Failed to delete template.", err);
 return err;
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DeleteTemplate中
的。

操作 1319

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ses/command/DeleteReceiptRuleSetCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ses#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ses/command/DeleteTemplateCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

GetTemplate

以下代码示例演示了如何使用 GetTemplate。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { GetTemplateCommand } from "@aws-sdk/client-ses";
import { getUniqueName } from "@aws-doc-sdk-examples/lib/utils/util-string.js";
import { sesClient } from "./libs/sesClient.js";

const TEMPLATE_NAME = getUniqueName("TemplateName");

const createGetTemplateCommand = (templateName) =>
 new GetTemplateCommand({ TemplateName: templateName });

const run = async () => {
 const getTemplateCommand = createGetTemplateCommand(TEMPLATE_NAME);

 try {
 return await sesClient.send(getTemplateCommand);
 } catch (caught) {
 if (caught instanceof Error && caught.name === "MessageRejected") {
 /** @type { import('@aws-sdk/client-ses').MessageRejected} */
 const messageRejectedError = caught;
 return messageRejectedError;
 }
 throw caught;
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考GetTemplate中的。

ListIdentities

以下代码示例演示了如何使用 ListIdentities。

操作 1320

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ses#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ses/command/GetTemplateCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { ListIdentitiesCommand } from "@aws-sdk/client-ses";
import { sesClient } from "./libs/sesClient.js";

const createListIdentitiesCommand = () =>
 new ListIdentitiesCommand({ IdentityType: "EmailAddress", MaxItems: 10 });

const run = async () => {
 const listIdentitiesCommand = createListIdentitiesCommand();

 try {
 return await sesClient.send(listIdentitiesCommand);
 } catch (err) {
 console.log("Failed to list identities.", err);
 return err;
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考ListIdentities中的。

ListReceiptFilters

以下代码示例演示了如何使用 ListReceiptFilters。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

操作 1321

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ses#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ses/command/ListIdentitiesCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ses#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

import { ListReceiptFiltersCommand } from "@aws-sdk/client-ses";
import { sesClient } from "./libs/sesClient.js";

const createListReceiptFiltersCommand = () => new ListReceiptFiltersCommand({});

const run = async () => {
 const listReceiptFiltersCommand = createListReceiptFiltersCommand();

 return await sesClient.send(listReceiptFiltersCommand);
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考ListReceiptFilters中
的。

ListTemplates

以下代码示例演示了如何使用 ListTemplates。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { ListTemplatesCommand } from "@aws-sdk/client-ses";
import { sesClient } from "./libs/sesClient.js";

const createListTemplatesCommand = (maxItems) =>
 new ListTemplatesCommand({ MaxItems: maxItems });

const run = async () => {
 const listTemplatesCommand = createListTemplatesCommand(10);

 try {
 return await sesClient.send(listTemplatesCommand);
 } catch (err) {
 console.log("Failed to list templates.", err);
 return err;

操作 1322

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ses/command/ListReceiptFiltersCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ses#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考ListTemplates中的。

SendBulkTemplatedEmail

以下代码示例演示了如何使用 SendBulkTemplatedEmail。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { SendBulkTemplatedEmailCommand } from "@aws-sdk/client-ses";
import {
 getUniqueName,
 postfix,
} from "@aws-doc-sdk-examples/lib/utils/util-string.js";
import { sesClient } from "./libs/sesClient.js";

/**
 * Replace this with the name of an existing template.
 */
const TEMPLATE_NAME = getUniqueName("ReminderTemplate");

/**
 * Replace these with existing verified emails.
 */
const VERIFIED_EMAIL_1 = postfix(getUniqueName("Bilbo"), "@example.com");
const VERIFIED_EMAIL_2 = postfix(getUniqueName("Frodo"), "@example.com");

const USERS = [
 { firstName: "Bilbo", emailAddress: VERIFIED_EMAIL_1 },
 { firstName: "Frodo", emailAddress: VERIFIED_EMAIL_2 },
];

/**

操作 1323

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ses/command/ListTemplatesCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ses#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 *
 * @param { { emailAddress: string, firstName: string }[] } users
 * @param { string } templateName the name of an existing template in SES
 * @returns { SendBulkTemplatedEmailCommand }
 */
const createBulkReminderEmailCommand = (users, templateName) => {
 return new SendBulkTemplatedEmailCommand({
 /**
 * Each 'Destination' uses a corresponding set of replacement data. We can map
 each user
 * to a 'Destination' and provide user specific replacement data to create
 personalized emails.
 *
 * Here's an example of how a template would be replaced with user data:
 * Template: <h1>Hello {{name}},</h1><p>Don't forget about the party gifts!</p>
 * Destination 1: <h1>Hello Bilbo,</h1><p>Don't forget about the party gifts!</
p>
 * Destination 2: <h1>Hello Frodo,</h1><p>Don't forget about the party gifts!</
p>
 */
 Destinations: users.map((user) => ({
 Destination: { ToAddresses: [user.emailAddress] },
 ReplacementTemplateData: JSON.stringify({ name: user.firstName }),
 })),
 DefaultTemplateData: JSON.stringify({ name: "Shireling" }),
 Source: VERIFIED_EMAIL_1,
 Template: templateName,
 });
};

const run = async () => {
 const sendBulkTemplateEmailCommand = createBulkReminderEmailCommand(
 USERS,
 TEMPLATE_NAME,
);
 try {
 return await sesClient.send(sendBulkTemplateEmailCommand);
 } catch (caught) {
 if (caught instanceof Error && caught.name === "MessageRejected") {
 /** @type { import('@aws-sdk/client-ses').MessageRejected} */
 const messageRejectedError = caught;
 return messageRejectedError;
 }
 throw caught;

操作 1324

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考SendBulkTemplatedEmail中的。

SendEmail

以下代码示例演示了如何使用 SendEmail。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { SendEmailCommand } from "@aws-sdk/client-ses";
import { sesClient } from "./libs/sesClient.js";

const createSendEmailCommand = (toAddress, fromAddress) => {
 return new SendEmailCommand({
 Destination: {
 /* required */
 CcAddresses: [
 /* more items */
],
 ToAddresses: [
 toAddress,
 /* more To-email addresses */
],
 },
 Message: {
 /* required */
 Body: {
 /* required */
 Html: {
 Charset: "UTF-8",
 Data: "HTML_FORMAT_BODY",

操作 1325

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ses/command/SendBulkTemplatedEmailCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ses#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 },
 Text: {
 Charset: "UTF-8",
 Data: "TEXT_FORMAT_BODY",
 },
 },
 Subject: {
 Charset: "UTF-8",
 Data: "EMAIL_SUBJECT",
 },
 },
 Source: fromAddress,
 ReplyToAddresses: [
 /* more items */
],
 });
};

const run = async () => {
 const sendEmailCommand = createSendEmailCommand(
 "recipient@example.com",
 "sender@example.com",
);

 try {
 return await sesClient.send(sendEmailCommand);
 } catch (caught) {
 if (caught instanceof Error && caught.name === "MessageRejected") {
 /** @type { import('@aws-sdk/client-ses').MessageRejected} */
 const messageRejectedError = caught;
 return messageRejectedError;
 }
 throw caught;
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考SendEmail中的。

SendRawEmail

以下代码示例演示了如何使用 SendRawEmail。

操作 1326

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ses/command/SendEmailCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

使用 nodemailer 发送带附件的电子邮件。

import sesClientModule from "@aws-sdk/client-ses";
/**
 * nodemailer wraps the SES SDK and calls SendRawEmail. Use this for more advanced
 * functionality like adding attachments to your email.
 *
 * https://nodemailer.com/transports/ses
 */
import nodemailer from "nodemailer";

/**
 * @param {string} from An Amazon SES verified email address.
 * @param {*} to An Amazon SES verified email address.
 */
export const sendEmailWithAttachments = (
 from = "from@example.com",
 to = "to@example.com",
) => {
 const ses = new sesClientModule.SESClient({});
 const transporter = nodemailer.createTransport({
 SES: { ses, aws: sesClientModule },
 });

 return new Promise((resolve, reject) => {
 transporter.sendMail(
 {
 from,
 to,
 subject: "Hello World",
 text: "Greetings from Amazon SES!",
 attachments: [{ content: "Hello World!", filename: "hello.txt" }],
 },
 (err, info) => {
 if (err) {

操作 1327

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ses#code-examples
https://nodemailer.com/transports/ses

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 reject(err);
 } else {
 resolve(info);
 }
 },
);
 });
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考SendRawEmail中
的。

SendTemplatedEmail

以下代码示例演示了如何使用 SendTemplatedEmail。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { SendTemplatedEmailCommand } from "@aws-sdk/client-ses";
import {
 getUniqueName,
 postfix,
} from "@aws-doc-sdk-examples/lib/utils/util-string.js";
import { sesClient } from "./libs/sesClient.js";

/**
 * Replace this with the name of an existing template.
 */
const TEMPLATE_NAME = getUniqueName("ReminderTemplate");

/**
 * Replace these with existing verified emails.
 */
const VERIFIED_EMAIL = postfix(getUniqueName("Bilbo"), "@example.com");

操作 1328

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ses/command/SendRawEmailCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ses#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const USER = { firstName: "Bilbo", emailAddress: VERIFIED_EMAIL };

/**
 *
 * @param { { emailAddress: string, firstName: string } } user
 * @param { string } templateName - The name of an existing template in Amazon SES.
 * @returns { SendTemplatedEmailCommand }
 */
const createReminderEmailCommand = (user, templateName) => {
 return new SendTemplatedEmailCommand({
 /**
 * Here's an example of how a template would be replaced with user data:
 * Template: <h1>Hello {{contact.firstName}},</h1><p>Don't forget about the
 party gifts!</p>
 * Destination: <h1>Hello Bilbo,</h1><p>Don't forget about the party gifts!</p>
 */
 Destination: { ToAddresses: [user.emailAddress] },
 TemplateData: JSON.stringify({ contact: { firstName: user.firstName } }),
 Source: VERIFIED_EMAIL,
 Template: templateName,
 });
};

const run = async () => {
 const sendReminderEmailCommand = createReminderEmailCommand(
 USER,
 TEMPLATE_NAME,
);
 try {
 return await sesClient.send(sendReminderEmailCommand);
 } catch (caught) {
 if (caught instanceof Error && caught.name === "MessageRejected") {
 /** @type { import('@aws-sdk/client-ses').MessageRejected} */
 const messageRejectedError = caught;
 return messageRejectedError;
 }
 throw caught;
 }
};

操作 1329

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考SendTemplatedEmail中的。

UpdateTemplate

以下代码示例演示了如何使用 UpdateTemplate。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { UpdateTemplateCommand } from "@aws-sdk/client-ses";
import { getUniqueName } from "@aws-doc-sdk-examples/lib/utils/util-string.js";
import { sesClient } from "./libs/sesClient.js";

const TEMPLATE_NAME = getUniqueName("TemplateName");
const HTML_PART = "<h1>Hello, World!</h1>";

const createUpdateTemplateCommand = () => {
 return new UpdateTemplateCommand({
 Template: {
 TemplateName: TEMPLATE_NAME,
 HtmlPart: HTML_PART,
 SubjectPart: "Example",
 TextPart: "Updated template text.",
 },
 });
};

const run = async () => {
 const updateTemplateCommand = createUpdateTemplateCommand();

 try {
 return await sesClient.send(updateTemplateCommand);
 } catch (err) {
 console.log("Failed to update template.", err);
 return err;
 }

操作 1330

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ses/command/SendTemplatedEmailCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ses#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考UpdateTemplate中
的。

VerifyDomainIdentity

以下代码示例演示了如何使用 VerifyDomainIdentity。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { VerifyDomainIdentityCommand } from "@aws-sdk/client-ses";
import {
 getUniqueName,
 postfix,
} from "@aws-doc-sdk-examples/lib/utils/util-string.js";
import { sesClient } from "./libs/sesClient.js";

/**
 * You must have access to the domain's DNS settings to complete the
 * domain verification process.
 */
const DOMAIN_NAME = postfix(getUniqueName("Domain"), ".example.com");

const createVerifyDomainIdentityCommand = () => {
 return new VerifyDomainIdentityCommand({ Domain: DOMAIN_NAME });
};

const run = async () => {
 const VerifyDomainIdentityCommand = createVerifyDomainIdentityCommand();

 try {
 return await sesClient.send(VerifyDomainIdentityCommand);
 } catch (err) {

操作 1331

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ses/command/UpdateTemplateCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ses#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 console.log("Failed to verify domain.", err);
 return err;
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考VerifyDomainIdentity中的。

VerifyEmailIdentity

以下代码示例演示了如何使用 VerifyEmailIdentity。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

// Import required AWS SDK clients and commands for Node.js
import { VerifyEmailIdentityCommand } from "@aws-sdk/client-ses";
import { sesClient } from "./libs/sesClient.js";

const EMAIL_ADDRESS = "name@example.com";

const createVerifyEmailIdentityCommand = (emailAddress) => {
 return new VerifyEmailIdentityCommand({ EmailAddress: emailAddress });
};

const run = async () => {
 const verifyEmailIdentityCommand =
 createVerifyEmailIdentityCommand(EMAIL_ADDRESS);
 try {
 return await sesClient.send(verifyEmailIdentityCommand);
 } catch (err) {
 console.log("Failed to verify email identity.", err);
 return err;
 }
};

操作 1332

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ses/command/VerifyDomainIdentityCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ses#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考VerifyEmailIdentity中
的。

场景

构建 Amazon Transcribe 流式传输应用程序

以下代码示例展示如何构建可实时录制、转录与翻译实时音频，并通过电子邮件发送结果的应用程序。

适用于 JavaScript (v3) 的软件开发工具包

演示了如何使用 Amazon Transcribe 构建可实时录制、转录与翻译实时音频，并通过 Amazon
Simple Email Service (Amazon SES) 以电子邮件发送结果的应用程序。

有关如何设置和运行的完整源代码和说明，请参阅上的完整示例GitHub。

本示例中使用的服务

• Amazon Comprehend

• Amazon SES

• Amazon Transcribe

• Amazon Translate

创建 Aurora Serverless 工作项跟踪器

以下代码示例演示如何创建 Web 应用程序，来跟踪 Amazon Aurora Serverless 数据库中的工作项，
以及使用 Amazon Simple Email Service（Amazon SES）发送报告。

适用于 JavaScript (v3) 的软件开发工具包

演示如何使用 适用于 JavaScript 的 Amazon SDK (v3) 创建一个 Web 应用程序，该应用程序使用
亚马逊简单电子邮件服务 (Amazon SES) Service 跟踪亚马逊 Aurora 数据库中的工作项目并通过电
子邮件发送报告。此示例使用由 React.js 构建的前端与 Express Node.js 后端进行交互。

• 将 React.js 网络应用程序与集成 Amazon Web Services 服务。

• 列出、添加以及更新 Aurora 表中的项目。

• 使用 Amazon SES 以电子邮件形式发送已筛选工作项的报告。

• 使用随附的 Amazon CloudFormation 脚本部署和管理示例资源。

场景 1333

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ses/command/VerifyEmailIdentityCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/transcribe-streaming-app

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

有关如何设置和运行的完整源代码和说明，请参阅上的完整示例GitHub。

本示例中使用的服务

• Aurora

• Amazon RDS

• Amazon RDS 数据服务

• Amazon SES

检测图像中的对象

以下代码示例演示如何构建采用 Amazon Rekognition 来按类别检测图像中物体的应用程序。

适用于 JavaScript (v3) 的软件开发工具包

演示如何使用 Amazon Rekogn 适用于 JavaScript 的 Amazon SDK ition 和，创建一款应用程序，
该应用程序使用 Amazon Rekognition 按类别识别位于亚马逊简单存储服务 (Amazon S3) Simple
S3 存储桶中的图像中的对象。该应用程序使用 Amazon Simple Email Service (Amazon SES) 向管
理员发送包含结果的电子邮件通知。

了解如何：

• 使用 Amazon Cognito 创建未经身份验证的用户。

• 使用 Amazon Rekognition 分析包含对象的图像。

• 为 Amazon SES 验证电子邮件地址。

• 使用 Amazon SES 发送电子邮件通知。

有关如何设置和运行的完整源代码和说明，请参阅上的完整示例GitHub。

本示例中使用的服务

• Amazon Rekognition

• Amazon S3

• Amazon SES

使用适用于 JavaScript (v3) 的软件开发工具包的亚马逊 SNS 示例

以下代码示例向您展示如何使用带有 Amazon SNS 的 适用于 JavaScript 的 Amazon SDK (v3) 来执行
操作和实现常见场景。

Amazon SNS 1334

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/aurora-serverless-app
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/photo_analyzer

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

操作是大型程序的代码摘录，必须在上下文中运行。您可以通过操作了解如何调用单个服务函数，还可
以通过函数相关场景的上下文查看操作。

场景是向您演示如何通过在一个服务中调用多个函数或与其他 Amazon Web Services 服务结合来完成
特定任务的代码示例。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

• 开始使用

• 操作

• 场景

• 无服务器示例

开始使用

开始使用 Amazon SNS

以下代码示例显示了如何开始使用 Amazon SNS。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

初始化 SNS 客户端，并在您的账户中列出主题。

import { SNSClient, paginateListTopics } from "@aws-sdk/client-sns";

export const helloSns = async () => {
 // The configuration object (`{}`) is required. If the region and credentials
 // are omitted, the SDK uses your local configuration if it exists.
 const client = new SNSClient({});

 // You can also use `ListTopicsCommand`, but to use that command you must

开始使用 1335

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sns#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // handle the pagination yourself. You can do that by sending the
 `ListTopicsCommand`
 // with the `NextToken` parameter from the previous request.
 const paginatedTopics = paginateListTopics({ client }, {});
 const topics = [];

 for await (const page of paginatedTopics) {
 if (page.Topics?.length) {
 topics.push(...page.Topics);
 }
 }

 const suffix = topics.length === 1 ? "" : "s";

 console.log(
 `Hello, Amazon SNS! You have ${topics.length} topic${suffix} in your account.`,
);
 console.log(topics.map((t) => ` * ${t.TopicArn}`).join("\n"));
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考ListTopics中的。

操作

CheckIfPhoneNumberIsOptedOut

以下代码示例演示了如何使用 CheckIfPhoneNumberIsOptedOut。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库 中查找完整示例，了解如何进行设
置和运行。

在单独的模块中创建客户端并将其导出。

import { SNSClient } from "@aws-sdk/client-sns";

操作 1336

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sns/command/ListTopicsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sns#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

// The AWS Region can be provided here using the `region` property. If you leave it
 blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

导入 SDK 和客户端模块，然后调用 API。

import { CheckIfPhoneNumberIsOptedOutCommand } from "@aws-sdk/client-sns";

import { snsClient } from "../libs/snsClient.js";

export const checkIfPhoneNumberIsOptedOut = async (
 phoneNumber = "5555555555",
) => {
 const command = new CheckIfPhoneNumberIsOptedOutCommand({
 phoneNumber,
 });

 const response = await snsClient.send(command);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '3341c28a-cdc8-5b39-a3ee-9fb0ee125732',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // isOptedOut: false
 // }
 return response;
};

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK Developer Guide》。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考CheckIfPhoneNumberIsOptedOut中的。

操作 1337

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/sns-examples-sending-sms.html#sending-sms-checkifphonenumberisoptedout
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sns/command/CheckIfPhoneNumberIsOptedOutCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

ConfirmSubscription

以下代码示例演示了如何使用 ConfirmSubscription。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库 中查找完整示例，了解如何进行设
置和运行。

在单独的模块中创建客户端并将其导出。

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave it
 blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

导入 SDK 和客户端模块，然后调用 API。

import { ConfirmSubscriptionCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

/**
 * @param {string} token - This token is sent the subscriber. Only subscribers
 * that are not AWS services (HTTP/S, email) need to be
 confirmed.
 * @param {string} topicArn - The ARN of the topic for which you wish to confirm a
 subscription.
 */
export const confirmSubscription = async (
 token = "TOKEN",
 topicArn = "TOPIC_ARN",
) => {
 const response = await snsClient.send(
 // A subscription only needs to be confirmed if the endpoint type is
 // HTTP/S, email, or in another AWS account.
 new ConfirmSubscriptionCommand({

操作 1338

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sns#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 Token: token,
 TopicArn: topicArn,
 // If this is true, the subscriber cannot unsubscribe while unauthenticated.
 AuthenticateOnUnsubscribe: "false",
 }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '4bb5bce9-805a-5517-8333-e1d2cface90b',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // SubscriptionArn: 'arn:aws:sns:us-east-1:xxxxxxxxxxxx:TOPIC_NAME:xxxxxxxx-
xxxx-xxxx-xxxx-xxxxxxxxxxxx'
 // }
 return response;
};

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK Developer Guide》。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考ConfirmSubscription中的。

CreateTopic

以下代码示例演示了如何使用 CreateTopic。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库 中查找完整示例，了解如何进行设
置和运行。

在单独的模块中创建客户端并将其导出。

操作 1339

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/sns-examples-sending-sms.html#sending-sms-getattributes
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sns/command/ConfirmSubscriptionCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sns#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave it
 blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

导入 SDK 和客户端模块，然后调用 API。

import { CreateTopicCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

/**
 * @param {string} topicName - The name of the topic to create.
 */
export const createTopic = async (topicName = "TOPIC_NAME") => {
 const response = await snsClient.send(
 new CreateTopicCommand({ Name: topicName }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '087b8ad2-4593-50c4-a496-d7e90b82cf3e',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // TopicArn: 'arn:aws:sns:us-east-1:xxxxxxxxxxxx:TOPIC_NAME'
 // }
 return response;
};

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK Developer Guide》。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考CreateTopic中的。

操作 1340

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/sns-examples-managing-topics.html#sns-examples-managing-topics-createtopic
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sns/command/CreateTopicCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

DeleteTopic

以下代码示例演示了如何使用 DeleteTopic。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库 中查找完整示例，了解如何进行设
置和运行。

在单独的模块中创建客户端并将其导出。

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave it
 blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

导入 SDK 和客户端模块，然后调用 API。

import { DeleteTopicCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

/**
 * @param {string} topicArn - The ARN of the topic to delete.
 */
export const deleteTopic = async (topicArn = "TOPIC_ARN") => {
 const response = await snsClient.send(
 new DeleteTopicCommand({ TopicArn: topicArn }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: 'a10e2886-5a8f-5114-af36-75bd39498332',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,

操作 1341

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sns#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // totalRetryDelay: 0
 // }
 // }
};

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK Developer Guide》。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DeleteTopic中的。

GetSMSAttributes

以下代码示例演示了如何使用 GetSMSAttributes。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库 中查找完整示例，了解如何进行设
置和运行。

在单独的模块中创建客户端并将其导出。

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave it
 blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

导入 SDK 和客户端模块，然后调用 API。

import { GetSMSAttributesCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

export const getSmsAttributes = async () => {
 const response = await snsClient.send(
 // If you have not modified the account-level mobile settings of SNS,
 // the DefaultSMSType is undefined. For this example, it was set to
 // Transactional.

操作 1342

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/sns-examples-managing-topics.html#sns-examples-managing-topics-deletetopic
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sns/command/DeleteTopicCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sns#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 new GetSMSAttributesCommand({ attributes: ["DefaultSMSType"] }),
);

 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '67ad8386-4169-58f1-bdb9-debd281d48d5',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // attributes: { DefaultSMSType: 'Transactional' }
 // }
 return response;
};

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK Developer Guide》。

• 有关 API 的详细信息，请参阅 Get SMSAttributes in 适用于 JavaScript 的 Amazon SDK API 参
考。

GetTopicAttributes

以下代码示例演示了如何使用 GetTopicAttributes。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库 中查找完整示例，了解如何进行设
置和运行。

在单独的模块中创建客户端并将其导出。

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave it
 blank

操作 1343

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/sns-examples-subscribing-unubscribing-topics.html#sns-confirm-subscription-email
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sns/command/GetSMSAttributesCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sns#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

导入 SDK 和客户端模块，然后调用 API。

import { GetTopicAttributesCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

/**
 * @param {string} topicArn - The ARN of the topic to retrieve attributes for.
 */
export const getTopicAttributes = async (topicArn = "TOPIC_ARN") => {
 const response = await snsClient.send(
 new GetTopicAttributesCommand({
 TopicArn: topicArn,
 }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '36b6a24e-5473-5d4e-ac32-ff72d9a73d94',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // Attributes: {
 // Policy: '{...}',
 // Owner: 'xxxxxxxxxxxx',
 // SubscriptionsPending: '1',
 // TopicArn: 'arn:aws:sns:us-east-1:xxxxxxxxxxxx:mytopic',
 // TracingConfig: 'PassThrough',
 // EffectiveDeliveryPolicy: '{"http":{"defaultHealthyRetryPolicy":
{"minDelayTarget":20,"maxDelayTarget":20,"numRetries":3,"numMaxDelayRetries":0,"numNoDelayRetries":0,"numMinDelayRetries":0,"backoffFunction":"linear"},"disableSubscriptionOverrides":false,"defaultRequestPolicy":
{"headerContentType":"text/plain; charset=UTF-8"}}}',
 // SubscriptionsConfirmed: '0',
 // DisplayName: '',
 // SubscriptionsDeleted: '1'
 // }
 // }
 return response;

操作 1344

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

};

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK Developer Guide》。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考GetTopicAttributes中
的。

ListSubscriptions

以下代码示例演示了如何使用 ListSubscriptions。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库 中查找完整示例，了解如何进行设
置和运行。

在单独的模块中创建客户端并将其导出。

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave it
 blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

导入 SDK 和客户端模块，然后调用 API。

import { ListSubscriptionsByTopicCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

/**
 * @param {string} topicArn - The ARN of the topic for which you wish to list
 subscriptions.
 */
export const listSubscriptionsByTopic = async (topicArn = "TOPIC_ARN") => {
 const response = await snsClient.send(

操作 1345

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/sns-examples-managing-topics.html#sns-examples-managing-topicsgetttopicattributes
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sns/command/GetTopicAttributesCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sns#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 new ListSubscriptionsByTopicCommand({ TopicArn: topicArn }),
);

 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '0934fedf-0c4b-572e-9ed2-a3e38fadb0c8',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // Subscriptions: [
 // {
 // SubscriptionArn: 'PendingConfirmation',
 // Owner: '901487484989',
 // Protocol: 'email',
 // Endpoint: 'corepyle@amazon.com',
 // TopicArn: 'arn:aws:sns:us-east-1:901487484989:mytopic'
 // }
 //]
 // }
 return response;
};

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK Developer Guide》。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考ListSubscriptions中
的。

ListTopics

以下代码示例演示了如何使用 ListTopics。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库 中查找完整示例，了解如何进行设
置和运行。

操作 1346

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/sns-examples-managing-topics.html#sns-examples-managing-topicsgetttopicattributes
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sns/command/ListSubscriptionsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sns#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

在单独的模块中创建客户端并将其导出。

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave it
 blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

导入 SDK 和客户端模块，然后调用 API。

import { ListTopicsCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

export const listTopics = async () => {
 const response = await snsClient.send(new ListTopicsCommand({}));
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '936bc5ad-83ca-53c2-b0b7-9891167b909e',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // Topics: [{ TopicArn: 'arn:aws:sns:us-east-1:xxxxxxxxxxxx:mytopic' }]
 // }
 return response;
};

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK Developer Guide》。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考ListTopics中的。

Publish

以下代码示例演示了如何使用 Publish。

操作 1347

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/sns-examples-managing-topics.html#sns-examples-managing-topics-listtopics
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sns/command/ListTopicsCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库 中查找完整示例，了解如何进行设
置和运行。

在单独的模块中创建客户端并将其导出。

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave it
 blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

导入 SDK 和客户端模块，然后调用 API。

import { PublishCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

/**
 * @param {string | Record<string, any>} message - The message to send. Can be a
 plain string or an object
 * if you are using the `json`
 `MessageStructure`.
 * @param {string} topicArn - The ARN of the topic to which you would like to
 publish.
 */
export const publish = async (
 message = "Hello from SNS!",
 topicArn = "TOPIC_ARN",
) => {
 const response = await snsClient.send(
 new PublishCommand({
 Message: message,
 TopicArn: topicArn,
 }),
);
 console.log(response);

操作 1348

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sns#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: 'e7f77526-e295-5325-9ee4-281a43ad1f05',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // MessageId: 'xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx'
 // }
 return response;
};

使用组、复制和属性选项向主题发布消息。

 async publishMessages() {
 const message = await this.prompter.input({
 message: MESSAGES.publishMessagePrompt,
 });

 let groupId;
 let deduplicationId;
 let choices;

 if (this.isFifo) {
 await this.logger.log(MESSAGES.groupIdNotice);
 groupId = await this.prompter.input({
 message: MESSAGES.groupIdPrompt,
 });

 if (this.autoDedup === false) {
 await this.logger.log(MESSAGES.deduplicationIdNotice);
 deduplicationId = await this.prompter.input({
 message: MESSAGES.deduplicationIdPrompt,
 });
 }

 choices = await this.prompter.checkbox({
 message: MESSAGES.messageAttributesPrompt,
 choices: toneChoices,
 });

操作 1349

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }

 await this.snsClient.send(
 new PublishCommand({
 TopicArn: this.topicArn,
 Message: message,
 ...(groupId
 ? {
 MessageGroupId: groupId,
 }
 : {}),
 ...(deduplicationId
 ? {
 MessageDeduplicationId: deduplicationId,
 }
 : {}),
 ...(choices
 ? {
 MessageAttributes: {
 tone: {
 DataType: "String.Array",
 StringValue: JSON.stringify(choices),
 },
 },
 }
 : {}),
 }),
);

 const publishAnother = await this.prompter.confirm({
 message: MESSAGES.publishAnother,
 });

 if (publishAnother) {
 await this.publishMessages();
 }
 }

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/sns-examples-publishing-
messages.html。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考中的 Publish。

操作 1350

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/sns-examples-publishing-messages.html
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/sns-examples-publishing-messages.html
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/sns-examples-publishing-messages.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sns/command/PublishCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

SetSMSAttributes

以下代码示例演示了如何使用 SetSMSAttributes。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库 中查找完整示例，了解如何进行设
置和运行。

在单独的模块中创建客户端并将其导出。

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave it
 blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

导入 SDK 和客户端模块，然后调用 API。

import { SetSMSAttributesCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

/**
 * @param {"Transactional" | "Promotional"} defaultSmsType
 */
export const setSmsType = async (defaultSmsType = "Transactional") => {
 const response = await snsClient.send(
 new SetSMSAttributesCommand({
 attributes: {
 // Promotional – (Default) Noncritical messages, such as marketing messages.
 // Transactional – Critical messages that support customer transactions,
 // such as one-time passcodes for multi-factor authentication.
 DefaultSMSType: defaultSmsType,
 },
 }),
);
 console.log(response);

操作 1351

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sns#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '1885b977-2d7e-535e-8214-e44be727e265',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // }
 // }
 return response;
};

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK Developer Guide》。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考SMSAttributes中的设
置。

SetTopicAttributes

以下代码示例演示了如何使用 SetTopicAttributes。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库 中查找完整示例，了解如何进行设
置和运行。

在单独的模块中创建客户端并将其导出。

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave it
 blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

导入 SDK 和客户端模块，然后调用 API。

操作 1352

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/sns-examples-sending-sms.html#sending-sms-setattributes
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sns/command/SetSMSAttributesCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sns/command/SetSMSAttributesCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sns#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

import { SetTopicAttributesCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

export const setTopicAttributes = async (
 topicArn = "TOPIC_ARN",
 attributeName = "DisplayName",
 attributeValue = "Test Topic",
) => {
 const response = await snsClient.send(
 new SetTopicAttributesCommand({
 AttributeName: attributeName,
 AttributeValue: attributeValue,
 TopicArn: topicArn,
 }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: 'd1b08d0e-e9a4-54c3-b8b1-d03238d2b935',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // }
 // }
 return response;
};

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK Developer Guide》。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考SetTopicAttributes中
的。

Subscribe

以下代码示例演示了如何使用 Subscribe。

操作 1353

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/sns-examples-managing-topics.html#sns-examples-managing-topicsstttopicattributes
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sns/command/SetTopicAttributesCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库 中查找完整示例，了解如何进行设
置和运行。

在单独的模块中创建客户端并将其导出。

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave it
 blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

导入 SDK 和客户端模块，然后调用 API。

import { SubscribeCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

/**
 * @param {string} topicArn - The ARN of the topic for which you wish to confirm a
 subscription.
 * @param {string} emailAddress - The email address that is subscribed to the topic.
 */
export const subscribeEmail = async (
 topicArn = "TOPIC_ARN",
 emailAddress = "usern@me.com",
) => {
 const response = await snsClient.send(
 new SubscribeCommand({
 Protocol: "email",
 TopicArn: topicArn,
 Endpoint: emailAddress,
 }),
);
 console.log(response);
 // {

操作 1354

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sns#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: 'c8e35bcd-b3c0-5940-9f66-06f6fcc108f0',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // SubscriptionArn: 'pending confirmation'
 // }
};

将移动应用程序订阅到主题。

import { SubscribeCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

/**
 * @param {string} topicArn - The ARN of the topic the subscriber is subscribing to.
 * @param {string} endpoint - The Endpoint ARN of an application. This endpoint is
 created
 * when an application registers for notifications.
 */
export const subscribeApp = async (
 topicArn = "TOPIC_ARN",
 endpoint = "ENDPOINT",
) => {
 const response = await snsClient.send(
 new SubscribeCommand({
 Protocol: "application",
 TopicArn: topicArn,
 Endpoint: endpoint,
 }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: 'c8e35bcd-b3c0-5940-9f66-06f6fcc108f0',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,

操作 1355

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // totalRetryDelay: 0
 // },
 // SubscriptionArn: 'pending confirmation'
 // }
 return response;
};

将 Lambda 函数订阅到主题。

import { SubscribeCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

/**
 * @param {string} topicArn - The ARN of the topic the subscriber is subscribing to.
 * @param {string} endpoint - The Endpoint ARN of and AWS Lambda function.
 */
export const subscribeLambda = async (
 topicArn = "TOPIC_ARN",
 endpoint = "ENDPOINT",
) => {
 const response = await snsClient.send(
 new SubscribeCommand({
 Protocol: "lambda",
 TopicArn: topicArn,
 Endpoint: endpoint,
 }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: 'c8e35bcd-b3c0-5940-9f66-06f6fcc108f0',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // SubscriptionArn: 'pending confirmation'
 // }
 return response;
};

操作 1356

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

将 SQS 队列订阅到主题。

import { SubscribeCommand, SNSClient } from "@aws-sdk/client-sns";

const client = new SNSClient({});

export const subscribeQueue = async (
 topicArn = "TOPIC_ARN",
 queueArn = "QUEUE_ARN",
) => {
 const command = new SubscribeCommand({
 TopicArn: topicArn,
 Protocol: "sqs",
 Endpoint: queueArn,
 });

 const response = await client.send(command);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '931e13d9-5e2b-543f-8781-4e9e494c5ff2',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // SubscriptionArn: 'arn:aws:sns:us-east-1:xxxxxxxxxxxx:subscribe-queue-
test-430895:xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx'
 // }
 return response;
};

使用筛选器订阅主题。

import { SubscribeCommand, SNSClient } from "@aws-sdk/client-sns";

const client = new SNSClient({});

export const subscribeQueueFiltered = async (
 topicArn = "TOPIC_ARN",
 queueArn = "QUEUE_ARN",

操作 1357

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

) => {
 const command = new SubscribeCommand({
 TopicArn: topicArn,
 Protocol: "sqs",
 Endpoint: queueArn,
 Attributes: {
 // This subscription will only receive messages with the 'event' attribute set
 to 'order_placed'.
 FilterPolicyScope: "MessageAttributes",
 FilterPolicy: JSON.stringify({
 event: ["order_placed"],
 }),
 },
 });

 const response = await client.send(command);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '931e13d9-5e2b-543f-8781-4e9e494c5ff2',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // SubscriptionArn: 'arn:aws:sns:us-east-1:xxxxxxxxxxxx:subscribe-queue-
test-430895:xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx'
 // }
 return response;
};

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/sns-examples-managing-
topics.html#sns-examples-subscribing-email。

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的
Subscribe。

Unsubscribe

以下代码示例演示了如何使用 Unsubscribe。

操作 1358

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/sns-examples-managing-topics.html#sns-examples-subscribing-email
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/sns-examples-managing-topics.html#sns-examples-subscribing-email
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/sns-examples-managing-topics.html#sns-examples-subscribing-email
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sns/command/SubscribeCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库 中查找完整示例，了解如何进行设
置和运行。

在单独的模块中创建客户端并将其导出。

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave it
 blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

导入 SDK 和客户端模块，然后调用 API。

import { UnsubscribeCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

/**
 * @param {string} subscriptionArn - The ARN of the subscription to cancel.
 */
const unsubscribe = async (
 subscriptionArn = "arn:aws:sns:us-east-1:xxxxxxxxxxxx:mytopic:xxxxxxxx-xxxx-xxxx-
xxxx-xxxxxxxxxxxx",
) => {
 const response = await snsClient.send(
 new UnsubscribeCommand({
 SubscriptionArn: subscriptionArn,
 }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '0178259a-9204-507c-b620-78a7570a44c6',
 // extendedRequestId: undefined,
 // cfId: undefined,

操作 1359

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sns#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // attempts: 1,
 // totalRetryDelay: 0
 // }
 // }
 return response;
};

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK Developer Guide》。

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的
Unsubscribe。

场景

构建应用程序以将数据提交到 DynamoDB 表

以下代码示例演示如何构建将数据提交到 Amazon DynamoDB 表并在用户更新该表时通知您的应用程
序。

适用于 JavaScript (v3) 的软件开发工具包

此示例展示了如何构建一个应用程序，使用户能够向 Amazon DynamoDB 表提交数据，并使用
Amazon Simple Notification Service (Amazon SNS) 向管理员发送文本消息。

有关如何设置和运行的完整源代码和说明，请参阅上的完整示例GitHub。

该示例也可在 适用于 JavaScript 的 Amazon SDK v3 开发人员指南中找到。

本示例中使用的服务

• DynamoDB

• Amazon SNS

创建无服务器应用程序来管理照片

以下代码示例演示如何创建无服务器应用程序，让用户能够使用标签管理照片。

适用于 JavaScript (v3) 的软件开发工具包

演示如何开发照片资产管理应用程序，该应用程序使用 Amazon Rekognition 检测图像中的标签并
将其存储以供日后检索。

场景 1360

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/sns-examples-managing-topics.html#sns-examples-unsubscribing
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sns/command/UnsubscribeCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/submit-data-app
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/cross-service-example-submitting-data.html

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

有关如何设置和运行的完整源代码和说明，请参阅上的完整示例 GitHub。

要深入了解这个例子的起源，请参阅 Amazon 社区上的博文。

本示例中使用的服务

• API Gateway

• DynamoDB

• Lambda

• Amazon Rekognition

• Amazon S3

• Amazon SNS

创建 Amazon Textract 浏览器应用程序

以下代码示例演示如何通过交互式应用程序探索 Amazon Textract 输出。

适用于 JavaScript (v3) 的软件开发工具包

演示如何使用 适用于 JavaScript 的 Amazon SDK 来构建 React 应用程序，该应用程序使用
Amazon Textract 从文档图像中提取数据并将其显示在交互式网页中。此示例在 Web 浏览器
中运行，需要经过身份验证的 Amazon Cognito 身份才能获得凭证。它使用 Amazon Simple
Storage Service（Amazon S3）进行存储；对于通知，它将轮询订阅 Amazon Simple Notification
Service（Amazon SNS）主题的 Amazon Simple Queue Service（Amazon SQS）队列。

有关如何设置和运行的完整源代码和说明，请参阅上的完整示例GitHub。

本示例中使用的服务

• Amazon Cognito Identity

• Amazon S3

• Amazon SNS

• Amazon SQS

• Amazon Textract

将消息发布到队列

以下代码示例演示了操作流程：

场景 1361

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/photo-asset-manager
https://community.aws/posts/cloud-journeys/01-serverless-image-recognition-app
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/textract-react

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 创建主题（FIFO 或非 FIFO）。

• 针对主题订阅多个队列，并提供应用筛选条件的选项。

• 将消息发布到主题。

• 轮询队列中是否有收到的消息。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

这是此场景的入口点。

import { SNSClient } from "@aws-sdk/client-sns";
import { SQSClient } from "@aws-sdk/client-sqs";

import { TopicsQueuesWkflw } from "./TopicsQueuesWkflw.js";
import { Prompter } from "@aws-doc-sdk-examples/lib/prompter.js";

export const startSnsWorkflow = () => {
 const snsClient = new SNSClient({});
 const sqsClient = new SQSClient({});
 const prompter = new Prompter();
 const logger = console;

 const wkflw = new TopicsQueuesWkflw(snsClient, sqsClient, prompter, logger);

 wkflw.start();
};

前面的代码提供必要的依赖关系并启动此场景。下一节包含示例的大部分内容。

const toneChoices = [
 { name: "cheerful", value: "cheerful" },
 { name: "funny", value: "funny" },

场景 1362

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/wkflw-topics-queues#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 { name: "serious", value: "serious" },
 { name: "sincere", value: "sincere" },
];

export class TopicsQueuesWkflw {
 // SNS topic is configured as First-In-First-Out
 isFifo = true;

 // Automatic content-based deduplication is enabled.
 autoDedup = false;

 snsClient;
 sqsClient;
 topicName;
 topicArn;
 subscriptionArns = [];
 /**
 * @type {{ queueName: string, queueArn: string, queueUrl: string, policy?:
 string }[]}
 */
 queues = [];
 prompter;

 /**
 * @param {import('@aws-sdk/client-sns').SNSClient} snsClient
 * @param {import('@aws-sdk/client-sqs').SQSClient} sqsClient
 * @param {import('../../libs/prompter.js').Prompter} prompter
 * @param {import('../../libs/logger.js').Logger} logger
 */
 constructor(snsClient, sqsClient, prompter, logger) {
 this.snsClient = snsClient;
 this.sqsClient = sqsClient;
 this.prompter = prompter;
 this.logger = logger;
 }

 async welcome() {
 await this.logger.log(MESSAGES.description);
 }

 async confirmFifo() {
 await this.logger.log(MESSAGES.snsFifoDescription);
 this.isFifo = await this.prompter.confirm({
 message: MESSAGES.snsFifoPrompt,

场景 1363

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 });

 if (this.isFifo) {
 this.logger.logSeparator(MESSAGES.headerDedup);
 await this.logger.log(MESSAGES.deduplicationNotice);
 await this.logger.log(MESSAGES.deduplicationDescription);
 this.autoDedup = await this.prompter.confirm({
 message: MESSAGES.deduplicationPrompt,
 });
 }
 }

 async createTopic() {
 await this.logger.log(MESSAGES.creatingTopics);
 this.topicName = await this.prompter.input({
 message: MESSAGES.topicNamePrompt,
 });
 if (this.isFifo) {
 this.topicName += ".fifo";
 this.logger.logSeparator(MESSAGES.headerFifoNaming);
 await this.logger.log(MESSAGES.appendFifoNotice);
 }

 const response = await this.snsClient.send(
 new CreateTopicCommand({
 Name: this.topicName,
 Attributes: {
 FifoTopic: this.isFifo ? "true" : "false",
 ...(this.autoDedup ? { ContentBasedDeduplication: "true" } : {}),
 },
 }),
);

 this.topicArn = response.TopicArn;

 await this.logger.log(
 MESSAGES.topicCreatedNotice
 .replace("${TOPIC_NAME}", this.topicName)
 .replace("${TOPIC_ARN}", this.topicArn),
);
 }

 async createQueues() {
 await this.logger.log(MESSAGES.createQueuesNotice);

场景 1364

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // Increase this number to add more queues.
 const maxQueues = 2;

 for (let i = 0; i < maxQueues; i++) {
 await this.logger.log(MESSAGES.queueCount.replace("${COUNT}", i + 1));
 let queueName = await this.prompter.input({
 message: MESSAGES.queueNamePrompt.replace(
 "${EXAMPLE_NAME}",
 i === 0 ? "good-news" : "bad-news",
),
 });

 if (this.isFifo) {
 queueName += ".fifo";
 await this.logger.log(MESSAGES.appendFifoNotice);
 }

 const response = await this.sqsClient.send(
 new CreateQueueCommand({
 QueueName: queueName,
 Attributes: { ...(this.isFifo ? { FifoQueue: "true" } : {}) },
 }),
);

 const { Attributes } = await this.sqsClient.send(
 new GetQueueAttributesCommand({
 QueueUrl: response.QueueUrl,
 AttributeNames: ["QueueArn"],
 }),
);

 this.queues.push({
 queueName,
 queueArn: Attributes.QueueArn,
 queueUrl: response.QueueUrl,
 });

 await this.logger.log(
 MESSAGES.queueCreatedNotice
 .replace("${QUEUE_NAME}", queueName)
 .replace("${QUEUE_URL}", response.QueueUrl)
 .replace("${QUEUE_ARN}", Attributes.QueueArn),
);
 }

场景 1365

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }

 async attachQueueIamPolicies() {
 for (const [index, queue] of this.queues.entries()) {
 const policy = JSON.stringify(
 {
 Statement: [
 {
 Effect: "Allow",
 Principal: {
 Service: "sns.amazonaws.com",
 },
 Action: "sqs:SendMessage",
 Resource: queue.queueArn,
 Condition: {
 ArnEquals: {
 "aws:SourceArn": this.topicArn,
 },
 },
 },
],
 },
 null,
 2,
);

 if (index !== 0) {
 this.logger.logSeparator();
 }

 await this.logger.log(MESSAGES.attachPolicyNotice);
 console.log(policy);
 const addPolicy = await this.prompter.confirm({
 message: MESSAGES.addPolicyConfirmation.replace(
 "${QUEUE_NAME}",
 queue.queueName,
),
 });

 if (addPolicy) {
 await this.sqsClient.send(
 new SetQueueAttributesCommand({
 QueueUrl: queue.queueUrl,
 Attributes: {

场景 1366

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 Policy: policy,
 },
 }),
);
 queue.policy = policy;
 } else {
 await this.logger.log(
 MESSAGES.policyNotAttachedNotice.replace(
 "${QUEUE_NAME}",
 queue.queueName,
),
);
 }
 }
 }

 async subscribeQueuesToTopic() {
 for (const [index, queue] of this.queues.entries()) {
 /**
 * @type {import('@aws-sdk/client-sns').SubscribeCommandInput}
 */
 const subscribeParams = {
 TopicArn: this.topicArn,
 Protocol: "sqs",
 Endpoint: queue.queueArn,
 };
 let tones = [];

 if (this.isFifo) {
 if (index === 0) {
 await this.logger.log(MESSAGES.fifoFilterNotice);
 }
 tones = await this.prompter.checkbox({
 message: MESSAGES.fifoFilterSelect.replace(
 "${QUEUE_NAME}",
 queue.queueName,
),
 choices: toneChoices,
 });

 if (tones.length) {
 subscribeParams.Attributes = {
 FilterPolicyScope: "MessageAttributes",
 FilterPolicy: JSON.stringify({

场景 1367

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 tone: tones,
 }),
 };
 }
 }

 const { SubscriptionArn } = await this.snsClient.send(
 new SubscribeCommand(subscribeParams),
);

 this.subscriptionArns.push(SubscriptionArn);

 await this.logger.log(
 MESSAGES.queueSubscribedNotice
 .replace("${QUEUE_NAME}", queue.queueName)
 .replace("${TOPIC_NAME}", this.topicName)
 .replace("${TONES}", tones.length ? tones.join(", ") : "none"),
);
 }
 }

 async publishMessages() {
 const message = await this.prompter.input({
 message: MESSAGES.publishMessagePrompt,
 });

 let groupId;
 let deduplicationId;
 let choices;

 if (this.isFifo) {
 await this.logger.log(MESSAGES.groupIdNotice);
 groupId = await this.prompter.input({
 message: MESSAGES.groupIdPrompt,
 });

 if (this.autoDedup === false) {
 await this.logger.log(MESSAGES.deduplicationIdNotice);
 deduplicationId = await this.prompter.input({
 message: MESSAGES.deduplicationIdPrompt,
 });
 }

 choices = await this.prompter.checkbox({

场景 1368

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 message: MESSAGES.messageAttributesPrompt,
 choices: toneChoices,
 });
 }

 await this.snsClient.send(
 new PublishCommand({
 TopicArn: this.topicArn,
 Message: message,
 ...(groupId
 ? {
 MessageGroupId: groupId,
 }
 : {}),
 ...(deduplicationId
 ? {
 MessageDeduplicationId: deduplicationId,
 }
 : {}),
 ...(choices
 ? {
 MessageAttributes: {
 tone: {
 DataType: "String.Array",
 StringValue: JSON.stringify(choices),
 },
 },
 }
 : {}),
 }),
);

 const publishAnother = await this.prompter.confirm({
 message: MESSAGES.publishAnother,
 });

 if (publishAnother) {
 await this.publishMessages();
 }
 }

 async receiveAndDeleteMessages() {
 for (const queue of this.queues) {
 const { Messages } = await this.sqsClient.send(

场景 1369

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 new ReceiveMessageCommand({
 QueueUrl: queue.queueUrl,
 }),
);

 if (Messages) {
 await this.logger.log(
 MESSAGES.messagesReceivedNotice.replace(
 "${QUEUE_NAME}",
 queue.queueName,
),
);
 console.log(Messages);

 await this.sqsClient.send(
 new DeleteMessageBatchCommand({
 QueueUrl: queue.queueUrl,
 Entries: Messages.map((message) => ({
 Id: message.MessageId,
 ReceiptHandle: message.ReceiptHandle,
 })),
 }),
);
 } else {
 await this.logger.log(
 MESSAGES.noMessagesReceivedNotice.replace(
 "${QUEUE_NAME}",
 queue.queueName,
),
);
 }
 }

 const deleteAndPoll = await this.prompter.confirm({
 message: MESSAGES.deleteAndPollConfirmation,
 });

 if (deleteAndPoll) {
 await this.receiveAndDeleteMessages();
 }
 }

 async destroyResources() {
 for (const subscriptionArn of this.subscriptionArns) {

场景 1370

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 await this.snsClient.send(
 new UnsubscribeCommand({ SubscriptionArn: subscriptionArn }),
);
 }

 for (const queue of this.queues) {
 await this.sqsClient.send(
 new DeleteQueueCommand({ QueueUrl: queue.queueUrl }),
);
 }

 if (this.topicArn) {
 await this.snsClient.send(
 new DeleteTopicCommand({ TopicArn: this.topicArn }),
);
 }
 }

 async start() {
 console.clear();

 try {
 this.logger.logSeparator(MESSAGES.headerWelcome);
 await this.welcome();
 this.logger.logSeparator(MESSAGES.headerFifo);
 await this.confirmFifo();
 this.logger.logSeparator(MESSAGES.headerCreateTopic);
 await this.createTopic();
 this.logger.logSeparator(MESSAGES.headerCreateQueues);
 await this.createQueues();
 this.logger.logSeparator(MESSAGES.headerAttachPolicy);
 await this.attachQueueIamPolicies();
 this.logger.logSeparator(MESSAGES.headerSubscribeQueues);
 await this.subscribeQueuesToTopic();
 this.logger.logSeparator(MESSAGES.headerPublishMessage);
 await this.publishMessages();
 this.logger.logSeparator(MESSAGES.headerReceiveMessages);
 await this.receiveAndDeleteMessages();
 } catch (err) {
 console.error(err);
 } finally {
 await this.destroyResources();
 }
 }

场景 1371

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

}

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的以下主
题。

• CreateQueue

• CreateTopic

• DeleteMessageBatch

• DeleteQueue

• DeleteTopic

• GetQueueAttributes

• 发布

• ReceiveMessage

• SetQueueAttributes

• Subscribe

• Unsubscribe

使用 API Gateway 调用 Lambda 函数

以下代码示例展示了如何创建由 Amazon API Gateway 调用的 Amazon Lambda 函数。

适用于 JavaScript (v3) 的软件开发工具包

演示如何使用 Lambda JavaScript 运行时 API 创建 Amazon Lambda 函数。此示例调用不同
的 Amazon 服务来执行特定的用例。此示例展示了如何创建通过 Amazon API Gateway 调用的
Lambda 函数，该函数扫描 Amazon DynamoDB 表获取工作周年纪念日，并使用 Amazon Simple
Notification Service (Amazon SNS)向员工发送文本消息，祝贺他们的周年纪念日。

有关如何设置和运行的完整源代码和说明，请参阅上的完整示例GitHub。

该示例也可在 适用于 JavaScript 的 Amazon SDK v3 开发人员指南中找到。

本示例中使用的服务

• API Gateway

• DynamoDB

• Lambda

场景 1372

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sqs/command/CreateQueueCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sns/command/CreateTopicCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sqs/command/DeleteMessageBatchCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sqs/command/DeleteQueueCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sns/command/DeleteTopicCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sqs/command/GetQueueAttributesCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sns/command/PublishCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sqs/command/ReceiveMessageCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sqs/command/SetQueueAttributesCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sns/command/SubscribeCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sns/command/UnsubscribeCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/lambda-api-gateway
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/api-gateway-invoking-lambda-example.html

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• Amazon SNS

使用计划的事件调用 Lambda 函数

以下代码示例显示如何创建由 Amazon EventBridge 计划事件调用的 Amazon Lambda 函数。

适用于 JavaScript (v3) 的软件开发工具包

演示如何创建调用函数的 Amazon EventBridge 计划事件。 Amazon Lambda 配置 EventBridge 为
使用 cron 表达式来调度 Lambda 函数的调用时间。在此示例中，您将使用 Lambda 运行时 API 创
建一个 Lambda 函数。 JavaScript 此示例调用不同的 Amazon 服务来执行特定的用例。此示例展
示了如何创建一个应用程序，在其一周年纪念日时向员工发送移动短信表示祝贺。

有关如何设置和运行的完整源代码和说明，请参阅上的完整示例GitHub。

该示例也可在 适用于 JavaScript 的 Amazon SDK v3 开发人员指南中找到。

本示例中使用的服务

• CloudWatch 日志

• DynamoDB

• EventBridge

• Lambda

• Amazon SNS

无服务器示例

通过 Amazon SNS 触发器调用 Lambda 函数

以下代码示例展示了如何实现一个 Lambda 函数，该函数接收因接收来自 SNS 主题的消息而触发的事
件。该函数从事件参数检索消息并记录每条消息的内容。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在无服务器示例存储库中查找完整示例，并了解如何进行设置
和运行。

无服务器示例 1373

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/lambda-scheduled-events
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/scheduled-events-invoking-lambda-example.html
https://github.com/aws-samples/serverless-snippets/blob/main/integration-sns-to-lambda

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

使用 Lambda JavaScript 消费 SNS 事件。

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
exports.handler = async (event, context) => {
 for (const record of event.Records) {
 await processMessageAsync(record);
 }
 console.info("done");
};

async function processMessageAsync(record) {
 try {
 const message = JSON.stringify(record.Sns.Message);
 console.log(`Processed message ${message}`);
 await Promise.resolve(1); //Placeholder for actual async work
 } catch (err) {
 console.error("An error occurred");
 throw err;
 }
}

使用 Lambda TypeScript 消费 SNS 事件。

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import { SNSEvent, Context, SNSHandler, SNSEventRecord } from "aws-lambda";

export const functionHandler: SNSHandler = async (
 event: SNSEvent,
 context: Context
): Promise<void> => {
 for (const record of event.Records) {
 await processMessageAsync(record);
 }
 console.info("done");
};

async function processMessageAsync(record: SNSEventRecord): Promise<any> {
 try {
 const message: string = JSON.stringify(record.Sns.Message);
 console.log(`Processed message ${message}`);

无服务器示例 1374

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 await Promise.resolve(1); //Placeholder for actual async work
 } catch (err) {
 console.error("An error occurred");
 throw err;
 }
}

使用适用于 JavaScript (v3) 的软件开发工具包的亚马逊 SQS 示例

以下代码示例向您展示如何使用带有 Amazon SQS 的 适用于 JavaScript 的 Amazon SDK (v3) 来执行
操作和实现常见场景。

操作是大型程序的代码摘录，必须在上下文中运行。您可以通过操作了解如何调用单个服务函数，还可
以通过函数相关场景的上下文查看操作。

场景是向您演示如何通过在一个服务中调用多个函数或与其他 Amazon Web Services 服务结合来完成
特定任务的代码示例。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

• 开始使用

• 操作

• 场景

• 无服务器示例

开始使用

开始使用 Amazon SQS

以下代码示例显示了如何开始使用 Amazon SQS。

Amazon SQS 1375

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

初始化 Amazon SQS 客户端并列出队列。

import { SQSClient, paginateListQueues } from "@aws-sdk/client-sqs";

export const helloSqs = async () => {
 // The configuration object (`{}`) is required. If the region and credentials
 // are omitted, the SDK uses your local configuration if it exists.
 const client = new SQSClient({});

 // You can also use `ListQueuesCommand`, but to use that command you must
 // handle the pagination yourself. You can do that by sending the
 `ListQueuesCommand`
 // with the `NextToken` parameter from the previous request.
 const paginatedQueues = paginateListQueues({ client }, {});
 const queues = [];

 for await (const page of paginatedQueues) {
 if (page.QueueUrls?.length) {
 queues.push(...page.QueueUrls);
 }
 }

 const suffix = queues.length === 1 ? "" : "s";

 console.log(
 `Hello, Amazon SQS! You have ${queues.length} queue${suffix} in your account.`,
);
 console.log(queues.map((t) => ` * ${t}`).join("\n"));
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考ListQueues中的。

开始使用 1376

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sqs#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sqs/command/ListQueuesCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

操作

ChangeMessageVisibility

以下代码示例演示了如何使用 ChangeMessageVisibility。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

接收 Amazon SQS 消息并更改其超时可见性。

import {
 ReceiveMessageCommand,
 ChangeMessageVisibilityCommand,
 SQSClient,
} from "@aws-sdk/client-sqs";

const client = new SQSClient({});
const SQS_QUEUE_URL = "queue_url";

const receiveMessage = (queueUrl) =>
 client.send(
 new ReceiveMessageCommand({
 AttributeNames: ["SentTimestamp"],
 MaxNumberOfMessages: 1,
 MessageAttributeNames: ["All"],
 QueueUrl: queueUrl,
 WaitTimeSeconds: 1,
 }),
);

export const main = async (queueUrl = SQS_QUEUE_URL) => {
 const { Messages } = await receiveMessage(queueUrl);

 const response = await client.send(
 new ChangeMessageVisibilityCommand({
 QueueUrl: queueUrl,

操作 1377

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sqs#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 ReceiptHandle: Messages[0].ReceiptHandle,
 VisibilityTimeout: 20,
 }),
);
 console.log(response);
 return response;
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考ChangeMessageVisibility中的。

CreateQueue

以下代码示例演示了如何使用 CreateQueue。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

创建 Amazon SQS 标准队列。

import { CreateQueueCommand, SQSClient } from "@aws-sdk/client-sqs";

const client = new SQSClient({});
const SQS_QUEUE_NAME = "test-queue";

export const main = async (sqsQueueName = SQS_QUEUE_NAME) => {
 const command = new CreateQueueCommand({
 QueueName: sqsQueueName,
 Attributes: {
 DelaySeconds: "60",
 MessageRetentionPeriod: "86400",
 },
 });

 const response = await client.send(command);

操作 1378

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sqs/command/ChangeMessageVisibilityCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sqs#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 console.log(response);
 return response;
};

使用长轮询创建 Amazon SQS 队列。

import { CreateQueueCommand, SQSClient } from "@aws-sdk/client-sqs";

const client = new SQSClient({});
const SQS_QUEUE_NAME = "queue_name";

export const main = async (queueName = SQS_QUEUE_NAME) => {
 const response = await client.send(
 new CreateQueueCommand({
 QueueName: queueName,
 Attributes: {
 // When the wait time for the ReceiveMessage API action is greater than 0,
 // long polling is in effect. The maximum long polling wait time is 20
 // seconds. Long polling helps reduce the cost of using Amazon SQS by,
 // eliminating the number of empty responses and false empty responses.
 // https://docs.aws.amazon.com/AWSSimpleQueueService/latest/
SQSDeveloperGuide/sqs-short-and-long-polling.html
 ReceiveMessageWaitTimeSeconds: "20",
 },
 }),
);
 console.log(response);
 return response;
};

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/sqs-examples-using-
queues.html#sqs-examples-using-queues-create-queue。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考CreateQueue中的。

DeleteMessage

以下代码示例演示了如何使用 DeleteMessage。

操作 1379

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/sqs-examples-using-queues.html#sqs-examples-using-queues-create-queue
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/sqs-examples-using-queues.html#sqs-examples-using-queues-create-queue
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/sqs-examples-using-queues.html#sqs-examples-using-queues-create-queue
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sqs/command/CreateQueueCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

接收和删除 Amazon SQS 消息。

import {
 ReceiveMessageCommand,
 DeleteMessageCommand,
 SQSClient,
 DeleteMessageBatchCommand,
} from "@aws-sdk/client-sqs";

const client = new SQSClient({});
const SQS_QUEUE_URL = "queue_url";

const receiveMessage = (queueUrl) =>
 client.send(
 new ReceiveMessageCommand({
 AttributeNames: ["SentTimestamp"],
 MaxNumberOfMessages: 10,
 MessageAttributeNames: ["All"],
 QueueUrl: queueUrl,
 WaitTimeSeconds: 20,
 VisibilityTimeout: 20,
 }),
);

export const main = async (queueUrl = SQS_QUEUE_URL) => {
 const { Messages } = await receiveMessage(queueUrl);

 if (!Messages) {
 return;
 }

 if (Messages.length === 1) {
 console.log(Messages[0].Body);
 await client.send(
 new DeleteMessageCommand({

操作 1380

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sqs#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 QueueUrl: queueUrl,
 ReceiptHandle: Messages[0].ReceiptHandle,
 }),
);
 } else {
 await client.send(
 new DeleteMessageBatchCommand({
 QueueUrl: queueUrl,
 Entries: Messages.map((message) => ({
 Id: message.MessageId,
 ReceiptHandle: message.ReceiptHandle,
 })),
 }),
);
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DeleteMessage中
的。

DeleteMessageBatch

以下代码示例演示了如何使用 DeleteMessageBatch。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import {
 ReceiveMessageCommand,
 DeleteMessageCommand,
 SQSClient,
 DeleteMessageBatchCommand,
} from "@aws-sdk/client-sqs";

const client = new SQSClient({});

操作 1381

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sqs/command/DeleteMessageCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sqs#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const SQS_QUEUE_URL = "queue_url";

const receiveMessage = (queueUrl) =>
 client.send(
 new ReceiveMessageCommand({
 AttributeNames: ["SentTimestamp"],
 MaxNumberOfMessages: 10,
 MessageAttributeNames: ["All"],
 QueueUrl: queueUrl,
 WaitTimeSeconds: 20,
 VisibilityTimeout: 20,
 }),
);

export const main = async (queueUrl = SQS_QUEUE_URL) => {
 const { Messages } = await receiveMessage(queueUrl);

 if (!Messages) {
 return;
 }

 if (Messages.length === 1) {
 console.log(Messages[0].Body);
 await client.send(
 new DeleteMessageCommand({
 QueueUrl: queueUrl,
 ReceiptHandle: Messages[0].ReceiptHandle,
 }),
);
 } else {
 await client.send(
 new DeleteMessageBatchCommand({
 QueueUrl: queueUrl,
 Entries: Messages.map((message) => ({
 Id: message.MessageId,
 ReceiptHandle: message.ReceiptHandle,
 })),
 }),
);
 }
};

操作 1382

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考DeleteMessageBatch中的。

DeleteQueue

以下代码示例演示了如何使用 DeleteQueue。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

删除 Amazon SQS 队列。

import { DeleteQueueCommand, SQSClient } from "@aws-sdk/client-sqs";

const client = new SQSClient({});
const SQS_QUEUE_URL = "test-queue-url";

export const main = async (queueUrl = SQS_QUEUE_URL) => {
 const command = new DeleteQueueCommand({ QueueUrl: queueUrl });

 const response = await client.send(command);
 console.log(response);
 return response;
};

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/sqs-examples-using-
queues.html#sqs-examples-using-queues-delete-queue。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DeleteQueue中的。

GetQueueAttributes

以下代码示例演示了如何使用 GetQueueAttributes。

操作 1383

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sqs/command/DeleteMessageBatchCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sqs#code-examples
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/sqs-examples-using-queues.html#sqs-examples-using-queues-delete-queue
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/sqs-examples-using-queues.html#sqs-examples-using-queues-delete-queue
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/sqs-examples-using-queues.html#sqs-examples-using-queues-delete-queue
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sqs/command/DeleteQueueCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { GetQueueAttributesCommand, SQSClient } from "@aws-sdk/client-sqs";

const client = new SQSClient({});
const SQS_QUEUE_URL = "queue-url";

export const getQueueAttributes = async (queueUrl = SQS_QUEUE_URL) => {
 const command = new GetQueueAttributesCommand({
 QueueUrl: queueUrl,
 AttributeNames: ["DelaySeconds"],
 });

 const response = await client.send(command);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '747a1192-c334-5682-a508-4cd5e8dc4e79',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // Attributes: { DelaySeconds: '1' }
 // }
 return response;
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考GetQueueAttributes中的。

操作 1384

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sqs#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sqs/command/GetQueueAttributesCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

GetQueueUrl

以下代码示例演示了如何使用 GetQueueUrl。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

获取 Amazon SQS 队列的 URL。

import { GetQueueUrlCommand, SQSClient } from "@aws-sdk/client-sqs";

const client = new SQSClient({});
const SQS_QUEUE_NAME = "test-queue";

export const main = async (queueName = SQS_QUEUE_NAME) => {
 const command = new GetQueueUrlCommand({ QueueName: queueName });

 const response = await client.send(command);
 console.log(response);
 return response;
};

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/sqs-examples-using-
queues.html#sqs-examples-using-queues-get-queue-url。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考GetQueueUrl中的。

ListQueues

以下代码示例演示了如何使用 ListQueues。

操作 1385

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sqs#code-examples
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/sqs-examples-using-queues.html#sqs-examples-using-queues-get-queue-url
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/sqs-examples-using-queues.html#sqs-examples-using-queues-get-queue-url
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/sqs-examples-using-queues.html#sqs-examples-using-queues-get-queue-url
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sqs/command/GetQueueUrlCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

列出 Amazon SQS 队列。

import { paginateListQueues, SQSClient } from "@aws-sdk/client-sqs";

const client = new SQSClient({});

export const main = async () => {
 const paginatedListQueues = paginateListQueues({ client }, {});

 /** @type {string[]} */
 const urls = [];
 for await (const page of paginatedListQueues) {
 const nextUrls = page.QueueUrls?.filter((qurl) => !!qurl) || [];
 urls.push(...nextUrls);
 for (const url of urls) {
 console.log(url);
 }
 }

 return urls;
};

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/sqs-examples-using-
queues.html#sqs-examples-using-queues-listing-queues。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考ListQueues中的。

ReceiveMessage

以下代码示例演示了如何使用 ReceiveMessage。

操作 1386

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sqs#code-examples
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/sqs-examples-using-queues.html#sqs-examples-using-queues-listing-queues
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/sqs-examples-using-queues.html#sqs-examples-using-queues-listing-queues
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/sqs-examples-using-queues.html#sqs-examples-using-queues-listing-queues
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sqs/command/ListQueuesCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

接收来自 Amazon SQS 队列的消息。

import {
 ReceiveMessageCommand,
 DeleteMessageCommand,
 SQSClient,
 DeleteMessageBatchCommand,
} from "@aws-sdk/client-sqs";

const client = new SQSClient({});
const SQS_QUEUE_URL = "queue_url";

const receiveMessage = (queueUrl) =>
 client.send(
 new ReceiveMessageCommand({
 AttributeNames: ["SentTimestamp"],
 MaxNumberOfMessages: 10,
 MessageAttributeNames: ["All"],
 QueueUrl: queueUrl,
 WaitTimeSeconds: 20,
 VisibilityTimeout: 20,
 }),
);

export const main = async (queueUrl = SQS_QUEUE_URL) => {
 const { Messages } = await receiveMessage(queueUrl);

 if (!Messages) {
 return;
 }

 if (Messages.length === 1) {
 console.log(Messages[0].Body);
 await client.send(
 new DeleteMessageCommand({

操作 1387

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sqs#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 QueueUrl: queueUrl,
 ReceiptHandle: Messages[0].ReceiptHandle,
 }),
);
 } else {
 await client.send(
 new DeleteMessageBatchCommand({
 QueueUrl: queueUrl,
 Entries: Messages.map((message) => ({
 Id: message.MessageId,
 ReceiptHandle: message.ReceiptHandle,
 })),
 }),
);
 }
};

使用长轮询支持接收来自 Amazon SQS 队列的消息。

import { ReceiveMessageCommand, SQSClient } from "@aws-sdk/client-sqs";

const client = new SQSClient({});
const SQS_QUEUE_URL = "queue-url";

export const main = async (queueUrl = SQS_QUEUE_URL) => {
 const command = new ReceiveMessageCommand({
 AttributeNames: ["SentTimestamp"],
 MaxNumberOfMessages: 1,
 MessageAttributeNames: ["All"],
 QueueUrl: queueUrl,
 // The duration (in seconds) for which the call waits for a message
 // to arrive in the queue before returning. If a message is available,
 // the call returns sooner than WaitTimeSeconds. If no messages are
 // available and the wait time expires, the call returns successfully
 // with an empty list of messages.
 // https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/
API_ReceiveMessage.html#API_ReceiveMessage_RequestSyntax
 WaitTimeSeconds: 20,
 });

 const response = await client.send(command);
 console.log(response);

操作 1388

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 return response;
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考ReceiveMessage中
的。

SendMessage

以下代码示例演示了如何使用 SendMessage。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

向 Amazon SQS 队列发送消息。

import { SendMessageCommand, SQSClient } from "@aws-sdk/client-sqs";

const client = new SQSClient({});
const SQS_QUEUE_URL = "queue_url";

export const main = async (sqsQueueUrl = SQS_QUEUE_URL) => {
 const command = new SendMessageCommand({
 QueueUrl: sqsQueueUrl,
 DelaySeconds: 10,
 MessageAttributes: {
 Title: {
 DataType: "String",
 StringValue: "The Whistler",
 },
 Author: {
 DataType: "String",
 StringValue: "John Grisham",
 },
 WeeksOn: {
 DataType: "Number",
 StringValue: "6",

操作 1389

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sqs/command/ReceiveMessageCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sqs#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 },
 },
 MessageBody:
 "Information about current NY Times fiction bestseller for week of
 12/11/2016.",
 });

 const response = await client.send(command);
 console.log(response);
 return response;
};

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/sqs-examples-send-receive-
messages.html#sqs-examples-send-receive-messages-sending。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考SendMessage中的。

SetQueueAttributes

以下代码示例演示了如何使用 SetQueueAttributes。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { SetQueueAttributesCommand, SQSClient } from "@aws-sdk/client-sqs";

const client = new SQSClient({});
const SQS_QUEUE_URL = "queue-url";

export const main = async (queueUrl = SQS_QUEUE_URL) => {
 const command = new SetQueueAttributesCommand({
 QueueUrl: queueUrl,
 Attributes: {
 DelaySeconds: "1",
 },

操作 1390

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/sqs-examples-send-receive-messages.html#sqs-examples-send-receive-messages-sending
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/sqs-examples-send-receive-messages.html#sqs-examples-send-receive-messages-sending
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/sqs-examples-send-receive-messages.html#sqs-examples-send-receive-messages-sending
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sqs/command/SendMessageCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sqs#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 });

 const response = await client.send(command);
 console.log(response);
 return response;
};

将 Amazon SQS 队列配置为使用长轮询。

import { SetQueueAttributesCommand, SQSClient } from "@aws-sdk/client-sqs";

const client = new SQSClient({});
const SQS_QUEUE_URL = "queue_url";

export const main = async (queueUrl = SQS_QUEUE_URL) => {
 const command = new SetQueueAttributesCommand({
 Attributes: {
 ReceiveMessageWaitTimeSeconds: "20",
 },
 QueueUrl: queueUrl,
 });

 const response = await client.send(command);
 console.log(response);
 return response;
};

配置死信队列。

import { SetQueueAttributesCommand, SQSClient } from "@aws-sdk/client-sqs";

const client = new SQSClient({});
const SQS_QUEUE_URL = "queue_url";
const DEAD_LETTER_QUEUE_ARN = "dead_letter_queue_arn";

export const main = async (
 queueUrl = SQS_QUEUE_URL,
 deadLetterQueueArn = DEAD_LETTER_QUEUE_ARN,
) => {
 const command = new SetQueueAttributesCommand({
 Attributes: {

操作 1391

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 RedrivePolicy: JSON.stringify({
 // Amazon SQS supports dead-letter queues (DLQ), which other
 // queues (source queues) can target for messages that can't
 // be processed (consumed) successfully.
 // https://docs.aws.amazon.com/AWSSimpleQueueService/latest/
SQSDeveloperGuide/sqs-dead-letter-queues.html
 deadLetterTargetArn: deadLetterQueueArn,
 maxReceiveCount: "10",
 }),
 },
 QueueUrl: queueUrl,
 });

 const response = await client.send(command);
 console.log(response);
 return response;
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考SetQueueAttributes中的。

场景

创建 Amazon Textract 浏览器应用程序

以下代码示例演示如何通过交互式应用程序探索 Amazon Textract 输出。

适用于 JavaScript (v3) 的软件开发工具包

演示如何使用 适用于 JavaScript 的 Amazon SDK 来构建 React 应用程序，该应用程序使用
Amazon Textract 从文档图像中提取数据并将其显示在交互式网页中。此示例在 Web 浏览器
中运行，需要经过身份验证的 Amazon Cognito 身份才能获得凭证。它使用 Amazon Simple
Storage Service（Amazon S3）进行存储；对于通知，它将轮询订阅 Amazon Simple Notification
Service（Amazon SNS）主题的 Amazon Simple Queue Service（Amazon SQS）队列。

有关如何设置和运行的完整源代码和说明，请参阅上的完整示例GitHub。

本示例中使用的服务

• Amazon Cognito Identity

• Amazon S3

场景 1392

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sqs/command/SetQueueAttributesCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/textract-react

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• Amazon SNS

• Amazon SQS

• Amazon Textract

将消息发布到队列

以下代码示例演示了操作流程：

• 创建主题（FIFO 或非 FIFO）。

• 针对主题订阅多个队列，并提供应用筛选条件的选项。

• 将消息发布到主题。

• 轮询队列中是否有收到的消息。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

这是此场景的入口点。

import { SNSClient } from "@aws-sdk/client-sns";
import { SQSClient } from "@aws-sdk/client-sqs";

import { TopicsQueuesWkflw } from "./TopicsQueuesWkflw.js";
import { Prompter } from "@aws-doc-sdk-examples/lib/prompter.js";

export const startSnsWorkflow = () => {
 const snsClient = new SNSClient({});
 const sqsClient = new SQSClient({});
 const prompter = new Prompter();
 const logger = console;

 const wkflw = new TopicsQueuesWkflw(snsClient, sqsClient, prompter, logger);

 wkflw.start();
};

场景 1393

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/wkflw-topics-queues#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

前面的代码提供必要的依赖关系并启动此场景。下一节包含示例的大部分内容。

const toneChoices = [
 { name: "cheerful", value: "cheerful" },
 { name: "funny", value: "funny" },
 { name: "serious", value: "serious" },
 { name: "sincere", value: "sincere" },
];

export class TopicsQueuesWkflw {
 // SNS topic is configured as First-In-First-Out
 isFifo = true;

 // Automatic content-based deduplication is enabled.
 autoDedup = false;

 snsClient;
 sqsClient;
 topicName;
 topicArn;
 subscriptionArns = [];
 /**
 * @type {{ queueName: string, queueArn: string, queueUrl: string, policy?:
 string }[]}
 */
 queues = [];
 prompter;

 /**
 * @param {import('@aws-sdk/client-sns').SNSClient} snsClient
 * @param {import('@aws-sdk/client-sqs').SQSClient} sqsClient
 * @param {import('../../libs/prompter.js').Prompter} prompter
 * @param {import('../../libs/logger.js').Logger} logger
 */
 constructor(snsClient, sqsClient, prompter, logger) {
 this.snsClient = snsClient;
 this.sqsClient = sqsClient;
 this.prompter = prompter;
 this.logger = logger;

场景 1394

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }

 async welcome() {
 await this.logger.log(MESSAGES.description);
 }

 async confirmFifo() {
 await this.logger.log(MESSAGES.snsFifoDescription);
 this.isFifo = await this.prompter.confirm({
 message: MESSAGES.snsFifoPrompt,
 });

 if (this.isFifo) {
 this.logger.logSeparator(MESSAGES.headerDedup);
 await this.logger.log(MESSAGES.deduplicationNotice);
 await this.logger.log(MESSAGES.deduplicationDescription);
 this.autoDedup = await this.prompter.confirm({
 message: MESSAGES.deduplicationPrompt,
 });
 }
 }

 async createTopic() {
 await this.logger.log(MESSAGES.creatingTopics);
 this.topicName = await this.prompter.input({
 message: MESSAGES.topicNamePrompt,
 });
 if (this.isFifo) {
 this.topicName += ".fifo";
 this.logger.logSeparator(MESSAGES.headerFifoNaming);
 await this.logger.log(MESSAGES.appendFifoNotice);
 }

 const response = await this.snsClient.send(
 new CreateTopicCommand({
 Name: this.topicName,
 Attributes: {
 FifoTopic: this.isFifo ? "true" : "false",
 ...(this.autoDedup ? { ContentBasedDeduplication: "true" } : {}),
 },
 }),
);

 this.topicArn = response.TopicArn;

场景 1395

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 await this.logger.log(
 MESSAGES.topicCreatedNotice
 .replace("${TOPIC_NAME}", this.topicName)
 .replace("${TOPIC_ARN}", this.topicArn),
);
 }

 async createQueues() {
 await this.logger.log(MESSAGES.createQueuesNotice);
 // Increase this number to add more queues.
 const maxQueues = 2;

 for (let i = 0; i < maxQueues; i++) {
 await this.logger.log(MESSAGES.queueCount.replace("${COUNT}", i + 1));
 let queueName = await this.prompter.input({
 message: MESSAGES.queueNamePrompt.replace(
 "${EXAMPLE_NAME}",
 i === 0 ? "good-news" : "bad-news",
),
 });

 if (this.isFifo) {
 queueName += ".fifo";
 await this.logger.log(MESSAGES.appendFifoNotice);
 }

 const response = await this.sqsClient.send(
 new CreateQueueCommand({
 QueueName: queueName,
 Attributes: { ...(this.isFifo ? { FifoQueue: "true" } : {}) },
 }),
);

 const { Attributes } = await this.sqsClient.send(
 new GetQueueAttributesCommand({
 QueueUrl: response.QueueUrl,
 AttributeNames: ["QueueArn"],
 }),
);

 this.queues.push({
 queueName,
 queueArn: Attributes.QueueArn,

场景 1396

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 queueUrl: response.QueueUrl,
 });

 await this.logger.log(
 MESSAGES.queueCreatedNotice
 .replace("${QUEUE_NAME}", queueName)
 .replace("${QUEUE_URL}", response.QueueUrl)
 .replace("${QUEUE_ARN}", Attributes.QueueArn),
);
 }
 }

 async attachQueueIamPolicies() {
 for (const [index, queue] of this.queues.entries()) {
 const policy = JSON.stringify(
 {
 Statement: [
 {
 Effect: "Allow",
 Principal: {
 Service: "sns.amazonaws.com",
 },
 Action: "sqs:SendMessage",
 Resource: queue.queueArn,
 Condition: {
 ArnEquals: {
 "aws:SourceArn": this.topicArn,
 },
 },
 },
],
 },
 null,
 2,
);

 if (index !== 0) {
 this.logger.logSeparator();
 }

 await this.logger.log(MESSAGES.attachPolicyNotice);
 console.log(policy);
 const addPolicy = await this.prompter.confirm({
 message: MESSAGES.addPolicyConfirmation.replace(

场景 1397

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 "${QUEUE_NAME}",
 queue.queueName,
),
 });

 if (addPolicy) {
 await this.sqsClient.send(
 new SetQueueAttributesCommand({
 QueueUrl: queue.queueUrl,
 Attributes: {
 Policy: policy,
 },
 }),
);
 queue.policy = policy;
 } else {
 await this.logger.log(
 MESSAGES.policyNotAttachedNotice.replace(
 "${QUEUE_NAME}",
 queue.queueName,
),
);
 }
 }
 }

 async subscribeQueuesToTopic() {
 for (const [index, queue] of this.queues.entries()) {
 /**
 * @type {import('@aws-sdk/client-sns').SubscribeCommandInput}
 */
 const subscribeParams = {
 TopicArn: this.topicArn,
 Protocol: "sqs",
 Endpoint: queue.queueArn,
 };
 let tones = [];

 if (this.isFifo) {
 if (index === 0) {
 await this.logger.log(MESSAGES.fifoFilterNotice);
 }
 tones = await this.prompter.checkbox({
 message: MESSAGES.fifoFilterSelect.replace(

场景 1398

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 "${QUEUE_NAME}",
 queue.queueName,
),
 choices: toneChoices,
 });

 if (tones.length) {
 subscribeParams.Attributes = {
 FilterPolicyScope: "MessageAttributes",
 FilterPolicy: JSON.stringify({
 tone: tones,
 }),
 };
 }
 }

 const { SubscriptionArn } = await this.snsClient.send(
 new SubscribeCommand(subscribeParams),
);

 this.subscriptionArns.push(SubscriptionArn);

 await this.logger.log(
 MESSAGES.queueSubscribedNotice
 .replace("${QUEUE_NAME}", queue.queueName)
 .replace("${TOPIC_NAME}", this.topicName)
 .replace("${TONES}", tones.length ? tones.join(", ") : "none"),
);
 }
 }

 async publishMessages() {
 const message = await this.prompter.input({
 message: MESSAGES.publishMessagePrompt,
 });

 let groupId;
 let deduplicationId;
 let choices;

 if (this.isFifo) {
 await this.logger.log(MESSAGES.groupIdNotice);
 groupId = await this.prompter.input({
 message: MESSAGES.groupIdPrompt,

场景 1399

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 });

 if (this.autoDedup === false) {
 await this.logger.log(MESSAGES.deduplicationIdNotice);
 deduplicationId = await this.prompter.input({
 message: MESSAGES.deduplicationIdPrompt,
 });
 }

 choices = await this.prompter.checkbox({
 message: MESSAGES.messageAttributesPrompt,
 choices: toneChoices,
 });
 }

 await this.snsClient.send(
 new PublishCommand({
 TopicArn: this.topicArn,
 Message: message,
 ...(groupId
 ? {
 MessageGroupId: groupId,
 }
 : {}),
 ...(deduplicationId
 ? {
 MessageDeduplicationId: deduplicationId,
 }
 : {}),
 ...(choices
 ? {
 MessageAttributes: {
 tone: {
 DataType: "String.Array",
 StringValue: JSON.stringify(choices),
 },
 },
 }
 : {}),
 }),
);

 const publishAnother = await this.prompter.confirm({
 message: MESSAGES.publishAnother,

场景 1400

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 });

 if (publishAnother) {
 await this.publishMessages();
 }
 }

 async receiveAndDeleteMessages() {
 for (const queue of this.queues) {
 const { Messages } = await this.sqsClient.send(
 new ReceiveMessageCommand({
 QueueUrl: queue.queueUrl,
 }),
);

 if (Messages) {
 await this.logger.log(
 MESSAGES.messagesReceivedNotice.replace(
 "${QUEUE_NAME}",
 queue.queueName,
),
);
 console.log(Messages);

 await this.sqsClient.send(
 new DeleteMessageBatchCommand({
 QueueUrl: queue.queueUrl,
 Entries: Messages.map((message) => ({
 Id: message.MessageId,
 ReceiptHandle: message.ReceiptHandle,
 })),
 }),
);
 } else {
 await this.logger.log(
 MESSAGES.noMessagesReceivedNotice.replace(
 "${QUEUE_NAME}",
 queue.queueName,
),
);
 }
 }

 const deleteAndPoll = await this.prompter.confirm({

场景 1401

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 message: MESSAGES.deleteAndPollConfirmation,
 });

 if (deleteAndPoll) {
 await this.receiveAndDeleteMessages();
 }
 }

 async destroyResources() {
 for (const subscriptionArn of this.subscriptionArns) {
 await this.snsClient.send(
 new UnsubscribeCommand({ SubscriptionArn: subscriptionArn }),
);
 }

 for (const queue of this.queues) {
 await this.sqsClient.send(
 new DeleteQueueCommand({ QueueUrl: queue.queueUrl }),
);
 }

 if (this.topicArn) {
 await this.snsClient.send(
 new DeleteTopicCommand({ TopicArn: this.topicArn }),
);
 }
 }

 async start() {
 console.clear();

 try {
 this.logger.logSeparator(MESSAGES.headerWelcome);
 await this.welcome();
 this.logger.logSeparator(MESSAGES.headerFifo);
 await this.confirmFifo();
 this.logger.logSeparator(MESSAGES.headerCreateTopic);
 await this.createTopic();
 this.logger.logSeparator(MESSAGES.headerCreateQueues);
 await this.createQueues();
 this.logger.logSeparator(MESSAGES.headerAttachPolicy);
 await this.attachQueueIamPolicies();
 this.logger.logSeparator(MESSAGES.headerSubscribeQueues);
 await this.subscribeQueuesToTopic();

场景 1402

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 this.logger.logSeparator(MESSAGES.headerPublishMessage);
 await this.publishMessages();
 this.logger.logSeparator(MESSAGES.headerReceiveMessages);
 await this.receiveAndDeleteMessages();
 } catch (err) {
 console.error(err);
 } finally {
 await this.destroyResources();
 }
 }
}

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的以下主
题。

• CreateQueue

• CreateTopic

• DeleteMessageBatch

• DeleteQueue

• DeleteTopic

• GetQueueAttributes

• 发布

• ReceiveMessage

• SetQueueAttributes

• Subscribe

• Unsubscribe

无服务器示例

通过 Amazon SQS 触发器调用 Lambda 函数

以下代码示例展示了如何实现一个 Lambda 函数，该函数接收因接收来自 SNS 队列的消息而触发的事
件。该函数从事件参数检索消息并记录每条消息的内容。

无服务器示例 1403

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sqs/command/CreateQueueCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sns/command/CreateTopicCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sqs/command/DeleteMessageBatchCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sqs/command/DeleteQueueCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sns/command/DeleteTopicCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sqs/command/GetQueueAttributesCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sns/command/PublishCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sqs/command/ReceiveMessageCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sqs/command/SetQueueAttributesCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sns/command/SubscribeCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sns/command/UnsubscribeCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在无服务器示例存储库中查找完整示例，并了解如何进行设置
和运行。

使用 Lambd JavaScript a 使用 SQS 事件。

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
exports.handler = async (event, context) => {
 for (const message of event.Records) {
 await processMessageAsync(message);
 }
 console.info("done");
};

async function processMessageAsync(message) {
 try {
 console.log(`Processed message ${message.body}`);
 // TODO: Do interesting work based on the new message
 await Promise.resolve(1); //Placeholder for actual async work
 } catch (err) {
 console.error("An error occurred");
 throw err;
 }
}

使用 Lambd TypeScript a 使用 SQS 事件。

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import { SQSEvent, Context, SQSHandler, SQSRecord } from "aws-lambda";

export const functionHandler: SQSHandler = async (
 event: SQSEvent,
 context: Context
): Promise<void> => {
 for (const message of event.Records) {

无服务器示例 1404

https://github.com/aws-samples/serverless-snippets/blob/main/integration-sqs-to-lambda

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 await processMessageAsync(message);
 }
 console.info("done");
};

async function processMessageAsync(message: SQSRecord): Promise<any> {
 try {
 console.log(`Processed message ${message.body}`);
 // TODO: Do interesting work based on the new message
 await Promise.resolve(1); //Placeholder for actual async work
 } catch (err) {
 console.error("An error occurred");
 throw err;
 }
}

报告使用 Amazon SQS 触发器进行 Lambda 函数批处理项目失败

以下代码示例展示了如何为接收来自 SQS 队列的事件的 Lambda 函数实现部分批处理响应。该函数在
响应中报告批处理项目失败，并指示 Lambda 稍后重试这些消息。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在无服务器示例存储库中查找完整示例，并了解如何进行设置
和运行。

使用报告 Lambda JavaScript 的 SQS 批处理项目失败。

// Node.js 20.x Lambda runtime, AWS SDK for Javascript V3
export const handler = async (event, context) => {
 const batchItemFailures = [];
 for (const record of event.Records) {
 try {
 await processMessageAsync(record, context);
 } catch (error) {
 batchItemFailures.push({ itemIdentifier: record.messageId });
 }

无服务器示例 1405

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-sqs-report-batch-item-failures

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }
 return { batchItemFailures };
};

async function processMessageAsync(record, context) {
 if (record.body && record.body.includes("error")) {
 throw new Error("There is an error in the SQS Message.");
 }
 console.log(`Processed message: ${record.body}`);
}

使用报告 Lambda TypeScript 的 SQS 批处理项目失败。

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import { SQSEvent, SQSBatchResponse, Context, SQSBatchItemFailure, SQSRecord } from
 'aws-lambda';

export const handler = async (event: SQSEvent, context: Context):
 Promise<SQSBatchResponse> => {
 const batchItemFailures: SQSBatchItemFailure[] = [];

 for (const record of event.Records) {
 try {
 await processMessageAsync(record);
 } catch (error) {
 batchItemFailures.push({ itemIdentifier: record.messageId });
 }
 }

 return {batchItemFailures: batchItemFailures};
};

async function processMessageAsync(record: SQSRecord): Promise<void> {
 if (record.body && record.body.includes("error")) {
 throw new Error('There is an error in the SQS Message.');
 }
 console.log(`Processed message ${record.body}`);
}

无服务器示例 1406

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

使用 JavaScript (v3) 软件开发工具包的 Step Functions 示例

以下代码示例向您展示了如何使用带有 Step Functions 的 适用于 JavaScript 的 Amazon SDK (v3) 来
执行操作和实现常见场景。

操作是大型程序的代码摘录，必须在上下文中运行。您可以通过操作了解如何调用单个服务函数，还可
以通过函数相关场景的上下文查看操作。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

• 操作

操作

StartExecution

以下代码示例演示了如何使用 StartExecution。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { SFNClient, StartExecutionCommand } from "@aws-sdk/client-sfn";

/**
 * @param {{ sfnClient: SFNClient, stateMachineArn: string }} config
 */
export async function startExecution({ sfnClient, stateMachineArn }) {
 const response = await sfnClient.send(
 new StartExecutionCommand({
 stateMachineArn,
 }),
);

Step Functions 1407

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sfn#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 console.log(response);
 // Example response:
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '202a9309-c16a-454b-adeb-c4d19afe3bf2',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // executionArn: 'arn:aws:states:us-
east-1:000000000000:execution:MyStateMachine:aaaaaaaa-f787-49fb-a20c-1b61c64eafe6',
 // startDate: 2024-01-04T15:54:08.362Z
 // }
 return response;
}

// Call function if run directly
import { fileURLToPath } from "node:url";
if (process.argv[1] === fileURLToPath(import.meta.url)) {
 startExecution({ sfnClient: new SFNClient({}), stateMachineArn: "ARN" });
}

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考StartExecution中
的。

Amazon STS 使用适用于 JavaScript (v3) 的 SDK 的示例

以下代码示例向您展示了如何通过使用 适用于 JavaScript 的 Amazon SDK (v3) 来执行操作和实现常
见场景 Amazon STS。

操作是大型程序的代码摘录，必须在上下文中运行。您可以通过操作了解如何调用单个服务函数，还可
以通过函数相关场景的上下文查看操作。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

• 操作

Amazon STS 1408

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sfn/command/StartExecutionCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

操作

AssumeRole

以下代码示例演示了如何使用 AssumeRole。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

创建客户端。

import { STSClient } from "@aws-sdk/client-sts";
// Set the AWS Region.
const REGION = "us-east-1";
// Create an AWS STS service client object.
export const client = new STSClient({ region: REGION });

代入 IAM 角色。

import { AssumeRoleCommand } from "@aws-sdk/client-sts";

import { client } from "../libs/client.js";

export const main = async () => {
 try {
 // Returns a set of temporary security credentials that you can use to
 // access Amazon Web Services resources that you might not normally
 // have access to.
 const command = new AssumeRoleCommand({
 // The Amazon Resource Name (ARN) of the role to assume.
 RoleArn: "ROLE_ARN",
 // An identifier for the assumed role session.
 RoleSessionName: "session1",
 // The duration, in seconds, of the role session. The value specified
 // can range from 900 seconds (15 minutes) up to the maximum session

操作 1409

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sts#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // duration set for the role.
 DurationSeconds: 900,
 });
 const response = await client.send(command);
 console.log(response);
 } catch (err) {
 console.error(err);
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考AssumeRole中的。

Amazon Web Services 支持 使用适用于 JavaScript (v3) 的 SDK 的
示例

以下代码示例向您展示了如何通过使用 适用于 JavaScript 的 Amazon SDK (v3) 来执行操作和实现常
见场景 Amazon Web Services 支持。

基本功能是向您展示如何在服务中执行基本操作的代码示例。

操作是大型程序的代码摘录，必须在上下文中运行。您可以通过操作了解如何调用单个服务函数，还可
以通过函数相关场景的上下文查看操作。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

• 开始使用

• 基本功能

• 操作

开始使用

你好 Amazon Web Services 支持

以下代码示例展示了如何开始使用 Amazon Web Services 支持。

Amazon Web Services 支持 1410

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sts/command/AssumeRoleCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

调用 `main()` 运行该示例。

import {
 DescribeServicesCommand,
 SupportClient,
} from "@aws-sdk/client-support";

// Change the value of 'region' to your preferred AWS Region.
const client = new SupportClient({ region: "us-east-1" });

const getServiceCount = async () => {
 try {
 const { services } = await client.send(new DescribeServicesCommand({}));
 return services.length;
 } catch (err) {
 if (err.name === "SubscriptionRequiredException") {
 throw new Error(
 "You must be subscribed to the AWS Support plan to use this feature.",
);
 }
 throw err;
 }
};

export const main = async () => {
 try {
 const count = await getServiceCount();
 console.log(`Hello, AWS Support! There are ${count} services available.`);
 } catch (err) {
 console.error("Failed to get service count: ", err.message);
 }
};

开始使用 1411

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/support#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DescribeServices中
的。

基本功能

了解基本功能

以下代码示例演示了操作流程：

• 获取并显示案例的可用服务和严重级别。

• 使用选定的服务、类别和严重性级别创建支持案例。

• 获取并显示当天打开案例的列表。

• 向新案例添加附件集和通信。

• 描述该案例的新附件和通信。

• 解析案例。

• 获取并显示当天未解决的案例列表。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

在终端中运行交互式场景。

import {
 AddAttachmentsToSetCommand,
 AddCommunicationToCaseCommand,
 CreateCaseCommand,
 DescribeAttachmentCommand,
 DescribeCasesCommand,
 DescribeCommunicationsCommand,
 DescribeServicesCommand,
 DescribeSeverityLevelsCommand,
 ResolveCaseCommand,
 SupportClient,

基本功能 1412

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/support/command/DescribeServicesCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/support#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

} from "@aws-sdk/client-support";
import * as inquirer from "@inquirer/prompts";
import { retry } from "@aws-doc-sdk-examples/lib/utils/util-timers.js";

const wrapText = (text, char = "=") => {
 const rule = char.repeat(80);
 return `${rule}\n ${text}\n${rule}\n`;
};

const client = new SupportClient({ region: "us-east-1" });

// Verify that the account has a Support plan.
export const verifyAccount = async () => {
 const command = new DescribeServicesCommand({});

 try {
 await client.send(command);
 } catch (err) {
 if (err.name === "SubscriptionRequiredException") {
 throw new Error(
 "You must be subscribed to the AWS Support plan to use this feature.",
);
 }
 throw err;
 }
};

/**
 * Select a service from the list returned from DescribeServices.
 */
export const getService = async () => {
 const { services } = await client.send(new DescribeServicesCommand({}));
 const selectedService = await inquirer.select({
 message:
 "Select a service. Your support case will be created for this service. The
 list of services is truncated for readability.",
 choices: services.slice(0, 10).map((s) => ({ name: s.name, value: s })),
 });
 return selectedService;
};

/**
 * @param {{ categories: import('@aws-sdk/client-support').Category[]}} service
 */

基本功能 1413

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

export const getCategory = async (service) => {
 const selectedCategory = await inquirer.select({
 message: "Select a category.",
 choices: service.categories.map((c) => ({ name: c.name, value: c })),
 });
 return selectedCategory;
};

// Get the available severity levels for the account.
export const getSeverityLevel = async () => {
 const command = new DescribeSeverityLevelsCommand({});
 const { severityLevels } = await client.send(command);
 const selectedSeverityLevel = await inquirer.select({
 message: "Select a severity level.",
 choices: severityLevels.map((s) => ({ name: s.name, value: s })),
 });
 return selectedSeverityLevel;
};

/**
 * Create a new support case
 * @param {{
 * selectedService: import('@aws-sdk/client-support').Service
 * selectedCategory: import('@aws-sdk/client-support').Category
 * selectedSeverityLevel: import('@aws-sdk/client-support').SeverityLevel
 * }} selections
 * @returns
 */
export const createCase = async ({
 selectedService,
 selectedCategory,
 selectedSeverityLevel,
}) => {
 const command = new CreateCaseCommand({
 subject: "IGNORE: Test case",
 communicationBody: "This is a test. Please ignore.",
 serviceCode: selectedService.code,
 categoryCode: selectedCategory.code,
 severityCode: selectedSeverityLevel.code,
 });
 const { caseId } = await client.send(command);
 return caseId;
};

基本功能 1414

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

// Get a list of open support cases created today.
export const getTodaysOpenCases = async () => {
 const d = new Date();
 const startOfToday = new Date(d.getFullYear(), d.getMonth(), d.getDate());
 const command = new DescribeCasesCommand({
 includeCommunications: false,
 afterTime: startOfToday.toISOString(),
 });

 const { cases } = await client.send(command);

 if (cases.length === 0) {
 throw new Error(
 "Unexpected number of cases. Expected more than 0 open cases.",
);
 }
 return cases;
};

// Create an attachment set.
export const createAttachmentSet = async () => {
 const command = new AddAttachmentsToSetCommand({
 attachments: [
 {
 fileName: "example.txt",
 data: new TextEncoder().encode("some example text"),
 },
],
 });
 const { attachmentSetId } = await client.send(command);
 return attachmentSetId;
};

export const linkAttachmentSetToCase = async (attachmentSetId, caseId) => {
 const command = new AddCommunicationToCaseCommand({
 attachmentSetId,
 caseId,
 communicationBody: "Adding attachment set to case.",
 });
 await client.send(command);
};

// Get all communications for a support case.
export const getCommunications = async (caseId) => {

基本功能 1415

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const command = new DescribeCommunicationsCommand({
 caseId,
 });
 const { communications } = await client.send(command);
 return communications;
};

/**
 * @param {import('@aws-sdk/client-support').Communication[]} communications
 */
export const getFirstAttachment = (communications) => {
 const firstCommWithAttachment = communications.find(
 (c) => c.attachmentSet.length > 0,
);
 return firstCommWithAttachment?.attachmentSet[0].attachmentId;
};

// Get an attachment.
export const getAttachment = async (attachmentId) => {
 const command = new DescribeAttachmentCommand({
 attachmentId,
 });
 const { attachment } = await client.send(command);
 return attachment;
};

// Resolve the case matching the given case ID.
export const resolveCase = async (caseId) => {
 const shouldResolve = await inquirer.confirm({
 message: `Do you want to resolve ${caseId}?`,
 });

 if (shouldResolve) {
 const command = new ResolveCaseCommand({
 caseId: caseId,
 });

 await client.send(command);
 return true;
 }
 return false;
};

/**

基本功能 1416

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * Find a specific case in the list of provided cases by case ID.
 * If the case is not found, and the results are paginated, continue
 * paging through the results.
 * @param {{
 * caseId: string,
 * cases: import('@aws-sdk/client-support').CaseDetails[]
 * nextToken: string
 * }} options
 * @returns
 */
export const findCase = async ({ caseId, cases, nextToken }) => {
 const foundCase = cases.find((c) => c.caseId === caseId);

 if (foundCase) {
 return foundCase;
 }

 if (nextToken) {
 const response = await client.send(
 new DescribeCasesCommand({
 nextToken,
 includeResolvedCases: true,
 }),
);
 return findCase({
 caseId,
 cases: response.cases,
 nextToken: response.nextToken,
 });
 }

 throw new Error(`${caseId} not found.`);
};

// Get all cases created today.
export const getTodaysResolvedCases = async (caseIdToWaitFor) => {
 const d = new Date("2023-01-18");
 const startOfToday = new Date(d.getFullYear(), d.getMonth(), d.getDate());
 const command = new DescribeCasesCommand({
 includeCommunications: false,
 afterTime: startOfToday.toISOString(),
 includeResolvedCases: true,
 });
 const { cases, nextToken } = await client.send(command);

基本功能 1417

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 await findCase({ cases, caseId: caseIdToWaitFor, nextToken });
 return cases.filter((c) => c.status === "resolved");
};

const main = async () => {
 let caseId;
 try {
 console.log(wrapText("Welcome to the AWS Support basic usage scenario."));

 // Verify that the account is subscribed to support.
 await verifyAccount();

 // Provided a truncated list of services and prompt the user to select one.
 const selectedService = await getService();

 // Provided the categories for the selected service and prompt the user to
 select one.
 const selectedCategory = await getCategory(selectedService);

 // Provide the severity available severity levels for the account and prompt the
 user to select one.
 const selectedSeverityLevel = await getSeverityLevel();

 // Create a support case.
 console.log("\nCreating a support case.");
 caseId = await createCase({
 selectedService,
 selectedCategory,
 selectedSeverityLevel,
 });
 console.log(`Support case created: ${caseId}`);

 // Display a list of open support cases created today.
 const todaysOpenCases = await retry(
 { intervalInMs: 1000, maxRetries: 15 },
 getTodaysOpenCases,
);
 console.log(
 `\nOpen support cases created today: ${todaysOpenCases.length}`,
);
 console.log(todaysOpenCases.map((c) => `${c.caseId}`).join("\n"));

 // Create an attachment set.
 console.log("\nCreating an attachment set.");

基本功能 1418

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const attachmentSetId = await createAttachmentSet();
 console.log(`Attachment set created: ${attachmentSetId}`);

 // Add the attachment set to the support case.
 console.log(`\nAdding attachment set to ${caseId}`);
 await linkAttachmentSetToCase(attachmentSetId, caseId);
 console.log(`Attachment set added to ${caseId}`);

 // List the communications for a support case.
 console.log(`\nListing communications for ${caseId}`);
 const communications = await getCommunications(caseId);
 console.log(
 communications
 .map(
 (c) =>
 `Communication created on ${c.timeCreated}. Has
 ${c.attachmentSet.length} attachments.`,
)
 .join("\n"),
);

 // Describe the first attachment.
 console.log(`\nDescribing attachment ${attachmentSetId}`);
 const attachmentId = getFirstAttachment(communications);
 const attachment = await getAttachment(attachmentId);
 console.log(
 `Attachment is the file '${
 attachment.fileName
 }' with data: \n${new TextDecoder().decode(attachment.data)}`,
);

 // Confirm that the support case should be resolved.
 const isResolved = await resolveCase(caseId);
 if (isResolved) {
 // List the resolved cases and include the one previously created.
 // Resolved cases can take a while to appear.
 console.log(
 "\nWaiting for case status to be marked as resolved. This can take some
 time.",
);
 const resolvedCases = await retry(
 { intervalInMs: 20000, maxRetries: 15 },
 () => getTodaysResolvedCases(caseId),
);

基本功能 1419

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 console.log("Resolved cases:");
 console.log(resolvedCases.map((c) => c.caseId).join("\n"));
 }
 } catch (err) {
 console.error(err);
 }
};

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的以下主
题。

• AddAttachmentsToSet

• AddCommunicationToCase

• CreateCase

• DescribeAttachment

• DescribeCases

• DescribeCommunications

• DescribeServices

• DescribeSeverityLevels

• ResolveCase

操作

AddAttachmentsToSet

以下代码示例演示了如何使用 AddAttachmentsToSet。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { AddAttachmentsToSetCommand } from "@aws-sdk/client-support";

操作 1420

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/support/command/AddAttachmentsToSetCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/support/command/AddCommunicationToCaseCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/support/command/CreateCaseCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/support/command/DescribeAttachmentCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/support/command/DescribeCasesCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/support/command/DescribeCommunicationsCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/support/command/DescribeServicesCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/support/command/DescribeSeverityLevelsCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/support/command/ResolveCaseCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/support#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

import { client } from "../libs/client.js";

export const main = async () => {
 try {
 // Create a new attachment set or add attachments to an existing set.
 // Provide an 'attachmentSetId' value to add attachments to an existing set.
 // Use AddCommunicationToCase or CreateCase to associate an attachment set with
 a support case.
 const response = await client.send(
 new AddAttachmentsToSetCommand({
 // You can add up to three attachments per set. The size limit is 5 MB per
 attachment.
 attachments: [
 {
 fileName: "example.txt",
 data: new TextEncoder().encode("some example text"),
 },
],
 }),
);
 // Use this ID in AddCommunicationToCase or CreateCase.
 console.log(response.attachmentSetId);
 return response;
 } catch (err) {
 console.error(err);
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考AddAttachmentsToSet中的。

AddCommunicationToCase

以下代码示例演示了如何使用 AddCommunicationToCase。

操作 1421

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/support/command/AddAttachmentsToSetCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { AddCommunicationToCaseCommand } from "@aws-sdk/client-support";

import { client } from "../libs/client.js";

export const main = async () => {
 let attachmentSetId;

 try {
 // Add a communication to a case.
 const response = await client.send(
 new AddCommunicationToCaseCommand({
 communicationBody: "Adding an attachment.",
 // Set value to an existing support case id.
 caseId: "CASE_ID",
 // Optional. Set value to an existing attachment set id to add attachments
 to the case.
 attachmentSetId,
 }),
);
 console.log(response);
 return response;
 } catch (err) {
 console.error(err);
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考AddCommunicationToCase中的。

CreateCase

以下代码示例演示了如何使用 CreateCase。

操作 1422

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/support#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/support/command/AddCommunicationToCaseCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { CreateCaseCommand } from "@aws-sdk/client-support";

import { client } from "../libs/client.js";

export const main = async () => {
 try {
 // Create a new case and log the case id.
 // Important: This creates a real support case in your account.
 const response = await client.send(
 new CreateCaseCommand({
 // The subject line of the case.
 subject: "IGNORE: Test case",
 // Use DescribeServices to find available service codes for each service.
 serviceCode: "service-quicksight-end-user",
 // Use DescribeSecurityLevels to find available severity codes for your
 support plan.
 severityCode: "low",
 // Use DescribeServices to find available category codes for each service.
 categoryCode: "end-user-support",
 // The main description of the support case.
 communicationBody: "This is a test. Please ignore.",
 }),
);
 console.log(response.caseId);
 return response;
 } catch (err) {
 console.error(err);
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考CreateCase中的。

操作 1423

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/support#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/support/command/CreateCaseCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

DescribeAttachment

以下代码示例演示了如何使用 DescribeAttachment。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { DescribeAttachmentCommand } from "@aws-sdk/client-support";

import { client } from "../libs/client.js";

export const main = async () => {
 try {
 // Get the metadata and content of an attachment.
 const response = await client.send(
 new DescribeAttachmentCommand({
 // Set value to an existing attachment id.
 // Use DescribeCommunications or DescribeCases to find an attachment id.
 attachmentId: "ATTACHMENT_ID",
 }),
);
 console.log(response.attachment?.fileName);
 return response;
 } catch (err) {
 console.error(err);
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考DescribeAttachment中的。

DescribeCases

以下代码示例演示了如何使用 DescribeCases。

操作 1424

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/support#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/support/command/DescribeAttachmentCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { DescribeCasesCommand } from "@aws-sdk/client-support";

import { client } from "../libs/client.js";

export const main = async () => {
 try {
 // Get all of the unresolved cases in your account.
 // Filter or expand results by providing parameters to the DescribeCasesCommand.
 Refer
 // to the TypeScript definition and the API doc for more information on possible
 parameters.
 // https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/clients/client-
support/interfaces/describecasescommandinput.html
 const response = await client.send(new DescribeCasesCommand({}));
 const caseIds = response.cases.map((supportCase) => supportCase.caseId);
 console.log(caseIds);
 return response;
 } catch (err) {
 console.error(err);
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DescribeCases中
的。

DescribeCommunications

以下代码示例演示了如何使用 DescribeCommunications。

操作 1425

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/support#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/support/command/DescribeCasesCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { DescribeCommunicationsCommand } from "@aws-sdk/client-support";

import { client } from "../libs/client.js";

export const main = async () => {
 try {
 // Get all communications for the support case.
 // Filter results by providing parameters to the DescribeCommunicationsCommand.
 Refer
 // to the TypeScript definition and the API doc for more information on possible
 parameters.
 // https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/clients/client-
support/interfaces/describecommunicationscommandinput.html
 const response = await client.send(
 new DescribeCommunicationsCommand({
 // Set value to an existing case id.
 caseId: "CASE_ID",
 }),
);
 const text = response.communications.map((item) => item.body).join("\n");
 console.log(text);
 return response;
 } catch (err) {
 console.error(err);
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考DescribeCommunications中的。

操作 1426

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/support#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/support/command/DescribeCommunicationsCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

DescribeSeverityLevels

以下代码示例演示了如何使用 DescribeSeverityLevels。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { DescribeSeverityLevelsCommand } from "@aws-sdk/client-support";

import { client } from "../libs/client.js";

export const main = async () => {
 try {
 // Get the list of severity levels.
 // The available values depend on the support plan for the account.
 const response = await client.send(new DescribeSeverityLevelsCommand({}));
 console.log(response.severityLevels);
 return response;
 } catch (err) {
 console.error(err);
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考DescribeSeverityLevels中的。

ResolveCase

以下代码示例演示了如何使用 ResolveCase。

操作 1427

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/support#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/support/command/DescribeSeverityLevelsCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { ResolveCaseCommand } from "@aws-sdk/client-support";

import { client } from "../libs/client.js";

const main = async () => {
 try {
 const response = await client.send(
 new ResolveCaseCommand({
 caseId: "CASE_ID",
 }),
);

 console.log(response.finalCaseStatus);
 return response;
 } catch (err) {
 console.error(err);
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考ResolveCase中的。

使用适用于 JavaScript (v3) 的 Systems Manager 示例

以下代码示例向您展示了如何使用带有 Systems Manager 的 适用于 JavaScript 的 Amazon SDK (v3)
来执行操作和实现常见场景。

基本功能是向您展示如何在服务中执行基本操作的代码示例。

操作是大型程序的代码摘录，必须在上下文中运行。您可以通过操作了解如何调用单个服务函数，还可
以通过函数相关场景的上下文查看操作。

Systems Manager 1428

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/support#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/support/command/ResolveCaseCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

• 开始使用

• 基本功能

• 操作

开始使用

开始使用 Systems Manager

以下代码示例展示了如何开始使用 Systems Manager。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { paginateListDocuments, SSMClient } from "@aws-sdk/client-ssm";

// Call ListDocuments and display the result.
export const main = async () => {
 const client = new SSMClient();
 const listDocumentsPaginated = [];
 console.log(
 "Hello, AWS Systems Manager! Let's list some of your documents:\n",
);
 try {
 // The paginate function is a wrapper around the base command.
 const paginator = paginateListDocuments({ client }, { MaxResults: 5 });
 for await (const page of paginator) {
 listDocumentsPaginated.push(...page.DocumentIdentifiers);
 }
 } catch (caught) {
 console.error(`There was a problem saying hello: ${caught.message}`);
 throw caught;

开始使用 1429

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ssm#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }

 for (const { Name, DocumentFormat, CreatedDate } of listDocumentsPaginated) {
 console.log(`${Name} - ${DocumentFormat} - ${CreatedDate}`);
 }
};

// Call function if run directly.
import { fileURLToPath } from "node:url";
if (process.argv[1] === fileURLToPath(import.meta.url)) {
 main();
}

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考ListDocuments中
的。

基本功能

了解基本功能

以下代码示例展示了如何：

• 创建维护时段。

• 修改维护时段计划。

• 创建文档。

• 向指定 EC2 实例发送命令。

• 创建一个 OpsItem.

• 更新并解决 OpsItem。

• 删除维护时段 OpsItem、和文档。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库 中查找完整示例，了解如何进行设
置和运行。

基本功能 1430

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ssm/command/ListDocumentsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ssm#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

import {
 Scenario,
 ScenarioAction,
 ScenarioInput,
 ScenarioOutput,
} from "@aws-doc-sdk-examples/lib/scenario/index.js";
import { fileURLToPath } from "node:url";
import {
 CreateDocumentCommand,
 CreateMaintenanceWindowCommand,
 CreateOpsItemCommand,
 DeleteDocumentCommand,
 DeleteMaintenanceWindowCommand,
 DeleteOpsItemCommand,
 DescribeOpsItemsCommand,
 DocumentAlreadyExists,
 OpsItemStatus,
 waitUntilCommandExecuted,
 CancelCommandCommand,
 paginateListCommandInvocations,
 SendCommandCommand,
 UpdateMaintenanceWindowCommand,
 UpdateOpsItemCommand,
 SSMClient,
} from "@aws-sdk/client-ssm";
import { parseArgs } from "node:util";

/**
 * @typedef {{
 * ssmClient: import('@aws-sdk/client-ssm').SSMClient,
 * documentName?: string
 * maintenanceWindow?: string
 * winId?: int
 * ec2InstanceId?: string
 * requestedDateTime?: Date
 * opsItemId?: string
 * askToDeleteResources?: boolean
 * }} State
 */

const defaultMaintenanceWindow = "ssm-maintenance-window";
const defaultDocumentName = "ssmdocument";

基本功能 1431

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

// The timeout duration is highly dependent on the specific setup and environment
 necessary. This example handles only the most common error cases, and uses a much
 shorter duration than most productions systems would use.
const COMMAND_TIMEOUT_DURATION_SECONDS = 30; // 30 seconds

const pressEnter = new ScenarioInput("continue", "Press Enter to continue", {
 type: "confirm",
});

const greet = new ScenarioOutput(
 "greet",
 `Welcome to the AWS Systems Manager SDK Getting Started scenario.
 This program demonstrates how to interact with Systems Manager using the AWS SDK
 for JavaScript V3.
 Systems Manager is the operations hub for your AWS applications and resources
 and a secure end-to-end management solution.
 The program's primary functions include creating a maintenance window, creating
 a document, sending a command to a document,
 listing documents, listing commands, creating an OpsItem, modifying an OpsItem,
 and deleting Systems Manager resources.
 Upon completion of the program, all AWS resources are cleaned up.
 Let's get started...`,
 { header: true },
);

const createMaintenanceWindow = new ScenarioOutput(
 "createMaintenanceWindow",
 "Step 1: Create a Systems Manager maintenance window.",
);

const getMaintenanceWindow = new ScenarioInput(
 "maintenanceWindow",
 "Please enter the maintenance window name:",
 { type: "input", default: defaultMaintenanceWindow },
);

export const sdkCreateMaintenanceWindow = new ScenarioAction(
 "sdkCreateMaintenanceWindow",
 async (/** @type {State} */ state) => {
 try {
 const response = await state.ssmClient.send(
 new CreateMaintenanceWindowCommand({
 Name: state.maintenanceWindow,

基本功能 1432

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 Schedule: "cron(0 10 ? * MON-FRI *)", //The schedule of the maintenance
 window in the form of a cron or rate expression.
 Duration: 2, //The duration of the maintenance window in hours.
 Cutoff: 1, //The number of hours before the end of the maintenance window
 that Amazon Web Services Systems Manager stops scheduling new tasks for execution.
 AllowUnassociatedTargets: true, //Allow the maintenance window to run on
 managed nodes, even if you haven't registered those nodes as targets.
 }),
);
 state.winId = response.WindowId;
 } catch (caught) {
 console.error(caught.message);
 console.log(
 `An error occurred while creating the maintenance window. Please fix the
 error and try again. Error message: ${caught.message}`,
);
 throw caught;
 }
 },
);

const modifyMaintenanceWindow = new ScenarioOutput(
 "modifyMaintenanceWindow",
 "Modify the maintenance window by changing the schedule.",
);

const sdkModifyMaintenanceWindow = new ScenarioAction(
 "sdkModifyMaintenanceWindow",
 async (/** @type {State} */ state) => {
 try {
 await state.ssmClient.send(
 new UpdateMaintenanceWindowCommand({
 WindowId: state.winId,
 Schedule: "cron(0 0 ? * MON *)",
 }),
);
 } catch (caught) {
 console.error(caught.message);
 console.log(
 `An error occurred while modifying the maintenance window. Please fix the
 error and try again. Error message: ${caught.message}`,
);
 throw caught;
 }

基本功能 1433

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 },
);

const createSystemsManagerActions = new ScenarioOutput(
 "createSystemsManagerActions",
 "Create a document that defines the actions that Systems Manager performs on your
 EC2 instance.",
);

const getDocumentName = new ScenarioInput(
 "documentName",
 "Please enter the document: ",
 { type: "input", default: defaultDocumentName },
);

const sdkCreateSSMDoc = new ScenarioAction(
 "sdkCreateSSMDoc",
 async (/** @type {State} */ state) => {
 const contentData = `{
 "schemaVersion": "2.2",
 "description": "Run a simple shell command",
 "mainSteps": [
 {
 "action": "aws:runShellScript",
 "name": "runEchoCommand",
 "inputs": {
 "runCommand": [
 "echo 'Hello, world!'"
]
 }
 }
]
 }`;
 try {
 await state.ssmClient.send(
 new CreateDocumentCommand({
 Content: contentData,
 Name: state.documentName,
 DocumentType: "Command",
 }),
);
 } catch (caught) {
 console.log(`Exception type: (${typeof caught})`);
 if (caught instanceof DocumentAlreadyExists) {

基本功能 1434

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 console.log("Document already exists. Continuing...\n");
 } else {
 console.error(caught.message);
 console.log(
 `An error occurred while creating the document. Please fix the error and
 try again. Error message: ${caught.message}`,
);
 throw caught;
 }
 }
 },
);

const ec2HelloWorld = new ScenarioOutput(
 "ec2HelloWorld",
 `Now you have the option of running a command on an EC2 instance that echoes
 'Hello, world!'. In order to run this command, you must provide the instance ID
 of a Linux EC2 instance. If you do not already have a running Linux EC2 instance
 in your account, you can create one using the AWS console. For information about
 creating an EC2 instance, see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
ec2-launch-instance-wizard.html.`,
);

const enterIdOrSkipEC2HelloWorld = new ScenarioInput(
 "enterIdOrSkipEC2HelloWorld",
 "Enter your EC2 InstanceId or press enter to skip this step: ",
 { type: "input", default: "" },
);

const sdkEC2HelloWorld = new ScenarioAction(
 "sdkEC2HelloWorld",
 async (/** @type {State} */ state) => {
 try {
 const response = await state.ssmClient.send(
 new SendCommandCommand({
 DocumentName: state.documentName,
 InstanceIds: [state.ec2InstanceId],
 TimeoutSeconds: COMMAND_TIMEOUT_DURATION_SECONDS,
 }),
);
 state.CommandId = response.Command.CommandId;
 } catch (caught) {
 console.error(caught.message);
 console.log(

基本功能 1435

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 `An error occurred while sending the command. Please fix the error and try
 again. Error message: ${caught.message}`,
);
 throw caught;
 }
 },
 {
 skipWhen: (/** @type {State} */ state) =>
 state.enterIdOrSkipEC2HelloWorld === "",
 },
);

const sdkGetCommandTime = new ScenarioAction(
 "sdkGetCommandTime",
 async (/** @type {State} */ state) => {
 const listInvocationsPaginated = [];
 console.log(
 "Let's get the time when the specific command was sent to the specific managed
 node.",
);

 console.log(
 `First, we'll wait for the command to finish executing. This may take up to
 ${COMMAND_TIMEOUT_DURATION_SECONDS} seconds.`,
);
 const commandExecutedResult = waitUntilCommandExecuted(
 { client: state.ssmClient },
 {
 CommandId: state.CommandId,
 InstanceId: state.ec2InstanceId,
 },
);
 // This is necessary because the TimeoutSeconds of SendCommandCommand is only
 for the delivery, not execution.
 try {
 await new Promise((_, reject) =>
 setTimeout(
 reject,
 COMMAND_TIMEOUT_DURATION_SECONDS * 1000,
 new Error("Command Timed Out"),
),
);
 } catch (caught) {
 if (caught.message === "Command Timed Out") {

基本功能 1436

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 commandExecutedResult.state = "TIMED_OUT";
 } else {
 throw caught;
 }
 }

 if (commandExecutedResult.state !== "SUCCESS") {
 console.log(
 `The command with id: ${state.CommandId} did not execute in the allotted
 time. Canceling command.`,
);
 state.ssmClient.send(
 new CancelCommandCommand({
 CommandId: state.CommandId,
 }),
);
 state.enterIdOrSkipEC2HelloWorld === "";
 return;
 }

 for await (const page of paginateListCommandInvocations(
 { client: state.ssmClient },
 { CommandId: state.CommandId },
)) {
 listInvocationsPaginated.push(...page.CommandInvocations);
 }
 /**
 * @type {import('@aws-sdk/client-ssm').CommandInvocation}
 */
 const commandInvocation = listInvocationsPaginated.shift(); // Because the call
 was made with CommandId, there's only one result, so shift it off.
 state.requestedDateTime = commandInvocation.RequestedDateTime;

 console.log(
 `The command invocation happened at: ${state.requestedDateTime}.`,
);
 },
 {
 skipWhen: (/** @type {State} */ state) =>
 state.enterIdOrSkipEC2HelloWorld === "",
 },
);

const createSSMOpsItem = new ScenarioOutput(

基本功能 1437

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 "createSSMOpsItem",
 `Now we will create a Systems Manager OpsItem. An OpsItem is a feature provided by
 the Systems Manager service. It is a type of operational data item that allows you
 to manage and track various operational issues, events, or tasks within your AWS
 environment.
You can create OpsItems to track and manage operational issues as they arise. For
 example, you could create an OpsItem whenever your application detects a critical
 error or an anomaly in your infrastructure.`,
);

const sdkCreateSSMOpsItem = new ScenarioAction(
 "sdkCreateSSMOpsItem",
 async (/** @type {State} */ state) => {
 try {
 const response = await state.ssmClient.send(
 new CreateOpsItemCommand({
 Description: "Created by the System Manager Javascript API",
 Title: "Disk Space Alert",
 Source: "EC2",
 Category: "Performance",
 Severity: "2",
 }),
);
 state.opsItemId = response.OpsItemId;
 } catch (caught) {
 console.error(caught.message);
 console.log(
 `An error occurred while creating the ops item. Please fix the error and try
 again. Error message: ${caught.message}`,
);
 throw caught;
 }
 },
);

const updateOpsItem = new ScenarioOutput(
 "updateOpsItem",
 (/** @type {State} */ state) =>
 `Now we will update the OpsItem: ${state.opsItemId}`,
);

const sdkUpdateOpsItem = new ScenarioAction(
 "sdkUpdateOpsItem",
 async (/** @type {State} */ state) => {

基本功能 1438

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 try {
 const _response = await state.ssmClient.send(
 new UpdateOpsItemCommand({
 OpsItemId: state.opsItemId,
 Description: `An update to ${state.opsItemId}`,
 }),
);
 } catch (caught) {
 console.error(caught.message);
 console.log(
 `An error occurred while updating the ops item. Please fix the error and try
 again. Error message: ${caught.message}`,
);
 throw caught;
 }
 },
);

const getOpsItemStatus = new ScenarioOutput(
 "getOpsItemStatus",
 (/** @type {State} */ state) =>
 `Now we will get the status of the OpsItem: ${state.opsItemId}`,
);

const sdkOpsItemStatus = new ScenarioAction(
 "sdkGetOpsItemStatus",
 async (/** @type {State} */ state) => {
 try {
 const response = await state.ssmClient.send(
 new DescribeOpsItemsCommand({
 OpsItemId: state.opsItemId,
 }),
);
 state.opsItemStatus = response.OpsItemStatus;
 } catch (caught) {
 console.error(caught.message);
 console.log(
 `An error occurred while describing the ops item. Please fix the error and
 try again. Error message: ${caught.message}`,
);
 throw caught;
 }
 },
);

基本功能 1439

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const resolveOpsItem = new ScenarioOutput(
 "resolveOpsItem",
 (/** @type {State} */ state) =>
 `Now we will resolve the OpsItem: ${state.opsItemId}`,
);

const sdkResolveOpsItem = new ScenarioAction(
 "sdkResolveOpsItem",
 async (/** @type {State} */ state) => {
 try {
 const _response = await state.ssmClient.send(
 new UpdateOpsItemCommand({
 OpsItemId: state.opsItemId,
 Status: OpsItemStatus.RESOLVED,
 }),
);
 } catch (caught) {
 console.error(caught.message);
 console.log(
 `An error occurred while updating the ops item. Please fix the error and try
 again. Error message: ${caught.message}`,
);
 throw caught;
 }
 },
);

const askToDeleteResources = new ScenarioInput(
 "askToDeleteResources",
 "Would you like to delete the Systems Manager resources created during this
 example run?",
 { type: "confirm" },
);

const confirmDeleteChoice = new ScenarioOutput(
 "confirmDeleteChoice",
 (/** @type {State} */ state) => {
 if (state.askToDeleteResources) {
 return "You chose to delete the resources.";
 }
 return "The Systems Manager resources will not be deleted. Please delete them
 manually to avoid charges.";
 },

基本功能 1440

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

);

export const sdkDeleteResources = new ScenarioAction(
 "sdkDeleteResources",
 async (/** @type {State} */ state) => {
 try {
 await state.ssmClient.send(
 new DeleteOpsItemCommand({
 OpsItemId: state.opsItemId,
 }),
);
 console.log(`The ops item: ${state.opsItemId} was successfully deleted.`);
 } catch (caught) {
 console.log(
 `There was a problem deleting the ops item: ${state.opsItemId}. Please
 delete it manually. Error: ${caught.message}`,
);
 }

 try {
 await state.ssmClient.send(
 new DeleteMaintenanceWindowCommand({
 Name: state.maintenanceWindow,
 WindowId: state.winId,
 }),
);
 console.log(
 `The maintenance window: ${state.maintenanceWindow} was successfully
 deleted.`,
);
 } catch (caught) {
 console.log(
 `There was a problem deleting the maintenance window: ${state.opsItemId}.
 Please delete it manually. Error: ${caught.message}`,
);
 }

 try {
 await state.ssmClient.send(
 new DeleteDocumentCommand({
 Name: state.documentName,
 }),
);
 console.log(

基本功能 1441

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 `The document: ${state.documentName} was successfully deleted.`,
);
 } catch (caught) {
 console.log(
 `There was a problem deleting the document: ${state.documentName}. Please
 delete it manually. Error: ${caught.message}`,
);
 }
 },
 { skipWhen: (/** @type {{}} */ state) => !state.askToDeleteResources },
);

const goodbye = new ScenarioOutput(
 "goodbye",
 "This concludes the Systems Manager Basics scenario for the AWS Javascript SDK v3.
 Thank you!",
);

const myScenario = new Scenario(
 "SSM Basics",
 [
 greet,
 pressEnter,
 createMaintenanceWindow,
 getMaintenanceWindow,
 sdkCreateMaintenanceWindow,
 modifyMaintenanceWindow,
 pressEnter,
 sdkModifyMaintenanceWindow,
 createSystemsManagerActions,
 getDocumentName,
 sdkCreateSSMDoc,
 ec2HelloWorld,
 enterIdOrSkipEC2HelloWorld,
 sdkEC2HelloWorld,
 sdkGetCommandTime,
 pressEnter,
 createSSMOpsItem,
 pressEnter,
 sdkCreateSSMOpsItem,
 updateOpsItem,
 pressEnter,
 sdkUpdateOpsItem,
 getOpsItemStatus,

基本功能 1442

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 pressEnter,
 sdkOpsItemStatus,
 resolveOpsItem,
 pressEnter,
 sdkResolveOpsItem,
 askToDeleteResources,
 confirmDeleteChoice,
 sdkDeleteResources,
 goodbye,
],
 { ssmClient: new SSMClient({}) },
);

/** @type {{ stepHandlerOptions: StepHandlerOptions }} */
export const main = async (stepHandlerOptions) => {
 await myScenario.run(stepHandlerOptions);
};

// Invoke main function if this file was run directly.
if (process.argv[1] === fileURLToPath(import.meta.url)) {
 const { values } = parseArgs({
 options: {
 yes: {
 type: "boolean",
 short: "y",
 },
 },
 });
 main({ confirmAll: values.yes });
}

• 有关 API 详细信息，请参阅《适用于 JavaScript 的 Amazon SDK API Reference》中的以下主
题。

• CreateDocument

• CreateMaintenanceWindow

• CreateOpsItem

• DeleteMaintenanceWindow

• ListCommandInvocations

• SendCommand

基本功能 1443

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ssm/command/CreateDocumentCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ssm/command/CreateMaintenanceWindowCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ssm/command/CreateOpsItemCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ssm/command/DeleteMaintenanceWindowCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ssm/command/ListCommandInvocationsCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ssm/command/SendCommandCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• UpdateOpsItem

操作

CreateDocument

以下代码示例演示了如何使用 CreateDocument。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { CreateDocumentCommand, SSMClient } from "@aws-sdk/client-ssm";
import { parseArgs } from "node:util";

/**
 * Create an SSM document.
 * @param {{ content: string, name: string, documentType?: DocumentType }}
 */
export const main = async ({ content, name, documentType }) => {
 const client = new SSMClient({});
 try {
 const { documentDescription } = await client.send(
 new CreateDocumentCommand({
 Content: content, // The content for the new SSM document. The content must
 not exceed 64KB.
 Name: name,
 DocumentType: documentType, // Document format type can be JSON, YAML, or
 TEXT. The default format is JSON.
 }),
);
 console.log("Document created successfully.");
 return { DocumentDescription: documentDescription };
 } catch (caught) {
 if (caught instanceof Error && caught.name === "DocumentAlreadyExists") {
 console.warn(`${caught.message}. Did you provide a new document name?`);
 } else {

操作 1444

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ssm/command/UpdateOpsItemCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ssm#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 throw caught;
 }
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考CreateDocument中
的。

CreateMaintenanceWindow

以下代码示例演示了如何使用 CreateMaintenanceWindow。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { CreateMaintenanceWindowCommand, SSMClient } from "@aws-sdk/client-ssm";
import { parseArgs } from "node:util";

/**
 * Create an SSM maintenance window.
 * @param {{ name: string, allowUnassociatedTargets: boolean, duration: number,
 cutoff: number, schedule: string, description?: string }}
 */
export const main = async ({
 name,
 allowUnassociatedTargets, // Allow the maintenance window to run on managed nodes,
 even if you haven't registered those nodes as targets.
 duration, // The duration of the maintenance window in hours.
 cutoff, // The number of hours before the end of the maintenance window that
 Amazon Web Services Systems Manager stops scheduling new tasks for execution.
 schedule, // The schedule of the maintenance window in the form of a cron or rate
 expression.
 description = undefined,
}) => {
 const client = new SSMClient({});

操作 1445

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ssm/command/CreateDocumentCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ssm#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 try {
 const { windowId } = await client.send(
 new CreateMaintenanceWindowCommand({
 Name: name,
 Description: description,
 AllowUnassociatedTargets: allowUnassociatedTargets, // Allow the maintenance
 window to run on managed nodes, even if you haven't registered those nodes as
 targets.
 Duration: duration, // The duration of the maintenance window in hours.
 Cutoff: cutoff, // The number of hours before the end of the maintenance
 window that Amazon Web Services Systems Manager stops scheduling new tasks for
 execution.
 Schedule: schedule, // The schedule of the maintenance window in the form of
 a cron or rate expression.
 }),
);
 console.log(`Maintenance window created with Id: ${windowId}`);
 return { WindowId: windowId };
 } catch (caught) {
 if (caught instanceof Error && caught.name === "MissingParameter") {
 console.warn(`${caught.message}. Did you provide these values?`);
 } else {
 throw caught;
 }
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考CreateMaintenanceWindow中的。

CreateOpsItem

以下代码示例演示了如何使用 CreateOpsItem。

操作 1446

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ssm/command/CreateMaintenanceWindowCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { CreateOpsItemCommand, SSMClient } from "@aws-sdk/client-ssm";
import { parseArgs } from "node:util";

/**
 * Create an SSM OpsItem.
 * @param {{ title: string, source: string, category?: string, severity?: string }}
 */
export const main = async ({
 title,
 source,
 category = undefined,
 severity = undefined,
}) => {
 const client = new SSMClient({});
 try {
 const { opsItemArn, opsItemId } = await client.send(
 new CreateOpsItemCommand({
 Title: title,
 Source: source, // The origin of the OpsItem, such as Amazon EC2 or Systems
 Manager.
 Category: category,
 Severity: severity,
 }),
);
 console.log(`Ops item created with id: ${opsItemId}`);
 return { OpsItemArn: opsItemArn, OpsItemId: opsItemId };
 } catch (caught) {
 if (caught instanceof Error && caught.name === "MissingParameter") {
 console.warn(`${caught.message}. Did you provide these values?`);
 } else {
 throw caught;
 }
 }
};

操作 1447

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ssm#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考CreateOpsItem中
的。

DeleteDocument

以下代码示例演示了如何使用 DeleteDocument。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { DeleteDocumentCommand, SSMClient } from "@aws-sdk/client-ssm";
import { parseArgs } from "node:util";

/**
 * Delete an SSM document.
 * @param {{ documentName: string }}
 */
export const main = async ({ documentName }) => {
 const client = new SSMClient({});
 try {
 await client.send(new DeleteDocumentCommand({ Name: documentName }));
 console.log(`Document '${documentName}' deleted.`);
 return { Deleted: true };
 } catch (caught) {
 if (caught instanceof Error && caught.name === "MissingParameter") {
 console.warn(`${caught.message}. Did you provide this value?`);
 } else {
 throw caught;
 }
 }
};

操作 1448

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ssm/command/CreateOpsItemCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ssm#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DeleteDocument中
的。

DeleteMaintenanceWindow

以下代码示例演示了如何使用 DeleteMaintenanceWindow。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { DeleteMaintenanceWindowCommand, SSMClient } from "@aws-sdk/client-ssm";
import { parseArgs } from "node:util";

/**
 * Delete an SSM maintenance window.
 * @param {{ windowId: string }}
 */
export const main = async ({ windowId }) => {
 const client = new SSMClient({});
 try {
 await client.send(
 new DeleteMaintenanceWindowCommand({ WindowId: windowId }),
);
 console.log(`Maintenance window '${windowId}' deleted.`);
 return { Deleted: true };
 } catch (caught) {
 if (caught instanceof Error && caught.name === "MissingParameter") {
 console.warn(`${caught.message}. Did you provide this value?`);
 } else {
 throw caught;
 }
 }
};

操作 1449

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ssm/command/DeleteDocumentCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ssm#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考DeleteMaintenanceWindow中的。

DescribeOpsItems

以下代码示例演示了如何使用 DescribeOpsItems。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import {
 OpsItemFilterOperator,
 OpsItemFilterKey,
 paginateDescribeOpsItems,
 SSMClient,
} from "@aws-sdk/client-ssm";
import { parseArgs } from "node:util";

/**
 * Describe SSM OpsItems.
 * @param {{ opsItemId: string }}
 */
export const main = async ({ opsItemId }) => {
 const client = new SSMClient({});
 try {
 const describeOpsItemsPaginated = [];
 for await (const page of paginateDescribeOpsItems(
 { client },
 {
 OpsItemFilters: {
 Key: OpsItemFilterKey.OPSITEM_ID,
 Operator: OpsItemFilterOperator.EQUAL,
 Values: opsItemId,
 },
 },
)) {
 describeOpsItemsPaginated.push(...page.OpsItemSummaries);

操作 1450

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ssm/command/DeleteMaintenanceWindowCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ssm#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }
 console.log("Here are the ops items:");
 console.log(describeOpsItemsPaginated);
 return { OpsItemSummaries: describeOpsItemsPaginated };
 } catch (caught) {
 if (caught instanceof Error && caught.name === "MissingParameter") {
 console.warn(`${caught.message}. Did you provide this value?`);
 }
 throw caught;
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考DescribeOpsItems中
的。

ListCommandInvocations

以下代码示例演示了如何使用 ListCommandInvocations。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { paginateListCommandInvocations, SSMClient } from "@aws-sdk/client-ssm";
import { parseArgs } from "node:util";

/**
 * List SSM command invocations on an instance.
 * @param {{ instanceId: string }}
 */
export const main = async ({ instanceId }) => {
 const client = new SSMClient({});
 try {
 const listCommandInvocationsPaginated = [];
 // The paginate function is a wrapper around the base command.
 const paginator = paginateListCommandInvocations(

操作 1451

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ssm/command/DescribeOpsItemsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ssm#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 { client },
 {
 InstanceId: instanceId,
 },
);
 for await (const page of paginator) {
 listCommandInvocationsPaginated.push(...page.CommandInvocations);
 }
 console.log("Here is the list of command invocations:");
 console.log(listCommandInvocationsPaginated);
 return { CommandInvocations: listCommandInvocationsPaginated };
 } catch (caught) {
 if (caught instanceof Error && caught.name === "ValidationError") {
 console.warn(`${caught.message}. Did you provide a valid instance ID?`);
 }
 throw caught;
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考ListCommandInvocations中的。

SendCommand

以下代码示例演示了如何使用 SendCommand。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { SendCommandCommand, SSMClient } from "@aws-sdk/client-ssm";
import { parseArgs } from "node:util";

/**
 * Send an SSM command to a managed node.
 * @param {{ documentName: string }}

操作 1452

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ssm/command/ListCommandInvocationsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ssm#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 */
export const main = async ({ documentName }) => {
 const client = new SSMClient({});
 try {
 await client.send(
 new SendCommandCommand({
 DocumentName: documentName,
 }),
);
 console.log("Command sent successfully.");
 return { Success: true };
 } catch (caught) {
 if (caught instanceof Error && caught.name === "ValidationError") {
 console.warn(`${caught.message}. Did you provide a valid document name?`);
 } else {
 throw caught;
 }
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考SendCommand中
的。

UpdateMaintenanceWindow

以下代码示例演示了如何使用 UpdateMaintenanceWindow。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { UpdateMaintenanceWindowCommand, SSMClient } from "@aws-sdk/client-ssm";
import { parseArgs } from "node:util";

/**
 * Update an SSM maintenance window.

操作 1453

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ssm/command/SendCommandCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ssm#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * @param {{ windowId: string, allowUnassociatedTargets?: boolean, duration?:
 number, enabled?: boolean, name?: string, schedule?: string }}
 */
export const main = async ({
 windowId,
 allowUnassociatedTargets = undefined, //Allow the maintenance window to run on
 managed nodes, even if you haven't registered those nodes as targets.
 duration = undefined, //The duration of the maintenance window in hours.
 enabled = undefined,
 name = undefined,
 schedule = undefined, //The schedule of the maintenance window in the form of a
 cron or rate expression.
}) => {
 const client = new SSMClient({});
 try {
 const { opsItemArn, opsItemId } = await client.send(
 new UpdateMaintenanceWindowCommand({
 WindowId: windowId,
 AllowUnassociatedTargets: allowUnassociatedTargets,
 Duration: duration,
 Enabled: enabled,
 Name: name,
 Schedule: schedule,
 }),
);
 console.log("Maintenance window updated.");
 return { OpsItemArn: opsItemArn, OpsItemId: opsItemId };
 } catch (caught) {
 if (caught instanceof Error && caught.name === "ValidationError") {
 console.warn(`${caught.message}. Are these values correct?`);
 } else {
 throw caught;
 }
 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考UpdateMaintenanceWindow中的。

UpdateOpsItem

以下代码示例演示了如何使用 UpdateOpsItem。

操作 1454

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ssm/command/UpdateMaintenanceWindowCommand

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

import { UpdateOpsItemCommand, SSMClient } from "@aws-sdk/client-ssm";
import { parseArgs } from "node:util";

/**
 * Update an SSM OpsItem.
 * @param {{ opsItemId: string, status?: OpsItemStatus }}
 */
export const main = async ({
 opsItemId,
 status = undefined, // The OpsItem status. Status can be Open, In Progress, or
 Resolved
}) => {
 const client = new SSMClient({});
 try {
 await client.send(
 new UpdateOpsItemCommand({
 OpsItemId: opsItemId,
 Status: status,
 }),
);
 console.log("Ops item updated.");
 return { Success: true };
 } catch (caught) {
 if (
 caught instanceof Error &&
 caught.name === "OpsItemLimitExceededException"
) {
 console.warn(
 `Couldn't create ops item because you have exceeded your open OpsItem limit.
 ${caught.message}.`,
);
 } else {
 throw caught;
 }

操作 1455

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ssm#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 }
};

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参考UpdateOpsItem中
的。

使用适用于 JavaScript (v3) 的软件开发工具包的 Amazon Textract
示例

以下代码示例向您展示了如何使用带有 Amazon Textract 的 适用于 JavaScript 的 Amazon SDK (v3)
来执行操作和实现常见场景。

场景是向您演示如何通过在一个服务中调用多个函数或与其他 Amazon Web Services 服务结合来完成
特定任务的代码示例。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

• 场景

场景

创建 Amazon Textract 浏览器应用程序

以下代码示例演示如何通过交互式应用程序探索 Amazon Textract 输出。

适用于 JavaScript (v3) 的软件开发工具包

演示如何使用 适用于 JavaScript 的 Amazon SDK 来构建 React 应用程序，该应用程序使用
Amazon Textract 从文档图像中提取数据并将其显示在交互式网页中。此示例在 Web 浏览器
中运行，需要经过身份验证的 Amazon Cognito 身份才能获得凭证。它使用 Amazon Simple
Storage Service（Amazon S3）进行存储；对于通知，它将轮询订阅 Amazon Simple Notification
Service（Amazon SNS）主题的 Amazon Simple Queue Service（Amazon SQS）队列。

有关如何设置和运行的完整源代码和说明，请参阅上的完整示例GitHub。

Amazon Textract 1456

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/ssm/command/UpdateOpsItemCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/textract-react

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

本示例中使用的服务

• Amazon Cognito Identity

• Amazon S3

• Amazon SNS

• Amazon SQS

• Amazon Textract

创建用于分析客户反馈的应用程序

以下代码示例说明如何创建应用程序来分析客户意见卡、翻译其母语、确定其情绪并根据译后的文本生
成音频文件。

适用于 JavaScript (v3) 的软件开发工具包

此示例应用程序可分析并存储客户反馈卡。具体来说，它满足了纽约市一家虚构酒店的需求。酒
店以实体意见卡的形式收集来自不同语种的客人的反馈。该反馈通过 Web 客户端上传到应用程序
中。意见卡图片上传后，将执行以下步骤：

• 使用 Amazon Textract 从图片中提取文本。

• Amazon Comprehend 确定所提取文本的情绪及其语言。

• 使用 Amazon Translate 将所提取文本翻译为英语。

• Amazon Polly 根据所提取文本合成音频文件。

完整的应用程序可使用 Amazon CDK 进行部署。有关源代码和部署说明，请参阅中的项目
GitHub。以下摘录显示了在 Lambda 函数中 适用于 JavaScript 的 Amazon SDK 是如何使用的。

import {
 ComprehendClient,
 DetectDominantLanguageCommand,
 DetectSentimentCommand,
} from "@aws-sdk/client-comprehend";

/**
 * Determine the language and sentiment of the extracted text.
 *
 * @param {{ source_text: string}} extractTextOutput
 */
export const handler = async (extractTextOutput) => {
 const comprehendClient = new ComprehendClient({});

场景 1457

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/feedback-sentiment-analyzer
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/feedback-sentiment-analyzer

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const detectDominantLanguageCommand = new DetectDominantLanguageCommand({
 Text: extractTextOutput.source_text,
 });

 // The source language is required for sentiment analysis and
 // translation in the next step.
 const { Languages } = await comprehendClient.send(
 detectDominantLanguageCommand,
);

 const languageCode = Languages[0].LanguageCode;

 const detectSentimentCommand = new DetectSentimentCommand({
 Text: extractTextOutput.source_text,
 LanguageCode: languageCode,
 });

 const { Sentiment } = await comprehendClient.send(detectSentimentCommand);

 return {
 sentiment: Sentiment,
 language_code: languageCode,
 };
};

import {
 DetectDocumentTextCommand,
 TextractClient,
} from "@aws-sdk/client-textract";

/**
 * Fetch the S3 object from the event and analyze it using Amazon Textract.
 *
 * @param {import("@types/aws-lambda").EventBridgeEvent<"Object Created">}
 eventBridgeS3Event
 */
export const handler = async (eventBridgeS3Event) => {
 const textractClient = new TextractClient();

 const detectDocumentTextCommand = new DetectDocumentTextCommand({
 Document: {
 S3Object: {

场景 1458

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 Bucket: eventBridgeS3Event.bucket,
 Name: eventBridgeS3Event.object,
 },
 },
 });

 // Textract returns a list of blocks. A block can be a line, a page, word, etc.
 // Each block also contains geometry of the detected text.
 // For more information on the Block type, see https://docs.aws.amazon.com/
textract/latest/dg/API_Block.html.
 const { Blocks } = await textractClient.send(detectDocumentTextCommand);

 // For the purpose of this example, we are only interested in words.
 const extractedWords = Blocks.filter((b) => b.BlockType === "WORD").map(
 (b) => b.Text,
);

 return extractedWords.join(" ");
};

import { PollyClient, SynthesizeSpeechCommand } from "@aws-sdk/client-polly";
import { S3Client } from "@aws-sdk/client-s3";
import { Upload } from "@aws-sdk/lib-storage";

/**
 * Synthesize an audio file from text.
 *
 * @param {{ bucket: string, translated_text: string, object: string}}
 sourceDestinationConfig
 */
export const handler = async (sourceDestinationConfig) => {
 const pollyClient = new PollyClient({});

 const synthesizeSpeechCommand = new SynthesizeSpeechCommand({
 Engine: "neural",
 Text: sourceDestinationConfig.translated_text,
 VoiceId: "Ruth",
 OutputFormat: "mp3",
 });

 const { AudioStream } = await pollyClient.send(synthesizeSpeechCommand);

 const audioKey = `${sourceDestinationConfig.object}.mp3`;

场景 1459

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 // Store the audio file in S3.
 const s3Client = new S3Client();
 const upload = new Upload({
 client: s3Client,
 params: {
 Bucket: sourceDestinationConfig.bucket,
 Key: audioKey,
 Body: AudioStream,
 ContentType: "audio/mp3",
 },
 });

 await upload.done();
 return audioKey;
};

import {
 TranslateClient,
 TranslateTextCommand,
} from "@aws-sdk/client-translate";

/**
 * Translate the extracted text to English.
 *
 * @param {{ extracted_text: string, source_language_code: string}}
 textAndSourceLanguage
 */
export const handler = async (textAndSourceLanguage) => {
 const translateClient = new TranslateClient({});

 const translateCommand = new TranslateTextCommand({
 SourceLanguageCode: textAndSourceLanguage.source_language_code,
 TargetLanguageCode: "en",
 Text: textAndSourceLanguage.extracted_text,
 });

 const { TranslatedText } = await translateClient.send(translateCommand);

 return { translated_text: TranslatedText };
};

场景 1460

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

本示例中使用的服务

• Amazon Comprehend

• Lambda

• Amazon Polly

• Amazon Textract

• Amazon Translate

使用适用于 JavaScript (v3) 的软件开发工具包的 Amazon
Transcribe 示例

以下代码示例向您展示了如何使用带有 Amazon Transcribe 的 适用于 JavaScript 的 Amazon SDK (v3)
来执行操作和实现常见场景。

操作是大型程序的代码摘录，必须在上下文中运行。您可以通过操作了解如何调用单个服务函数，还可
以通过函数相关场景的上下文查看操作。

场景是向您演示如何通过在一个服务中调用多个函数或与其他 Amazon Web Services 服务结合来完成
特定任务的代码示例。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

• 操作

• 场景

操作

DeleteMedicalTranscriptionJob

以下代码示例演示了如何使用 DeleteMedicalTranscriptionJob。

Amazon Transcribe 1461

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

创建客户端。

import { TranscribeClient } from "@aws-sdk/client-transcribe";
// Set the AWS Region.
const REGION = "REGION"; //e.g. "us-east-1"
// Create an Amazon Transcribe service client object.
const transcribeClient = new TranscribeClient({ region: REGION });
export { transcribeClient };

删除医疗转录作业。

// Import the required AWS SDK clients and commands for Node.js
import { DeleteMedicalTranscriptionJobCommand } from "@aws-sdk/client-transcribe";
import { transcribeClient } from "./libs/transcribeClient.js";

// Set the parameters
export const params = {
 MedicalTranscriptionJobName: "MEDICAL_JOB_NAME", // For example,
 'medical_transciption_demo'
};

export const run = async () => {
 try {
 const data = await transcribeClient.send(
 new DeleteMedicalTranscriptionJobCommand(params),
);
 console.log("Success - deleted");
 return data; // For unit tests.
 } catch (err) {
 console.log("Error", err);
 }
};
run();

操作 1462

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/transcribe#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/transcribe-medical-examples-
section.html#transcribe-delete-medical-job。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考DeleteMedicalTranscriptionJob中的。

DeleteTranscriptionJob

以下代码示例演示了如何使用 DeleteTranscriptionJob。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

删除转录作业。

// Import the required AWS SDK clients and commands for Node.js
import { DeleteTranscriptionJobCommand } from "@aws-sdk/client-transcribe";
import { transcribeClient } from "./libs/transcribeClient.js";

// Set the parameters
export const params = {
 TranscriptionJobName: "JOB_NAME", // Required. For example, 'transciption_demo'
};

export const run = async () => {
 try {
 const data = await transcribeClient.send(
 new DeleteTranscriptionJobCommand(params),
);
 console.log("Success - deleted");
 return data; // For unit tests.
 } catch (err) {

操作 1463

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/transcribe-medical-examples-section.html#transcribe-delete-medical-job
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/transcribe-medical-examples-section.html#transcribe-delete-medical-job
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/transcribe-medical-examples-section.html#transcribe-delete-medical-job
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/transcribe/command/DeleteMedicalTranscriptionJobCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/transcribe#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 console.log("Error", err);
 }
};
run();

创建客户端。

import { TranscribeClient } from "@aws-sdk/client-transcribe";
// Set the AWS Region.
const REGION = "REGION"; //e.g. "us-east-1"
// Create an Amazon Transcribe service client object.
const transcribeClient = new TranscribeClient({ region: REGION });
export { transcribeClient };

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/transcribe-examples-
section.html#transcribe-delete-job。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考DeleteTranscriptionJob中的。

ListMedicalTranscriptionJobs

以下代码示例演示了如何使用 ListMedicalTranscriptionJobs。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

创建客户端。

import { TranscribeClient } from "@aws-sdk/client-transcribe";
// Set the AWS Region.

操作 1464

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/transcribe-examples-section.html#transcribe-delete-job
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/transcribe-examples-section.html#transcribe-delete-job
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/transcribe-examples-section.html#transcribe-delete-job
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/transcribe/command/DeleteTranscriptionJobCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/transcribe#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const REGION = "REGION"; //e.g. "us-east-1"
// Create an Amazon Transcribe service client object.
const transcribeClient = new TranscribeClient({ region: REGION });
export { transcribeClient };

列出医疗转录作业。

// Import the required AWS SDK clients and commands for Node.js
import { StartMedicalTranscriptionJobCommand } from "@aws-sdk/client-transcribe";
import { transcribeClient } from "./libs/transcribeClient.js";

// Set the parameters
export const params = {
 MedicalTranscriptionJobName: "MEDICAL_JOB_NAME", // Required
 OutputBucketName: "OUTPUT_BUCKET_NAME", // Required
 Specialty: "PRIMARYCARE", // Required. Possible values are 'PRIMARYCARE'
 Type: "JOB_TYPE", // Required. Possible values are 'CONVERSATION' and 'DICTATION'
 LanguageCode: "LANGUAGE_CODE", // For example, 'en-US'
 MediaFormat: "SOURCE_FILE_FORMAT", // For example, 'wav'
 Media: {
 MediaFileUri: "SOURCE_FILE_LOCATION",
 // The S3 object location of the input media file. The URI must be in the same
 region
 // as the API endpoint that you are calling.For example,
 // "https://transcribe-demo.s3-REGION.amazonaws.com/hello_world.wav"
 },
};

export const run = async () => {
 try {
 const data = await transcribeClient.send(
 new StartMedicalTranscriptionJobCommand(params),
);
 console.log("Success - put", data);
 return data; // For unit tests.
 } catch (err) {
 console.log("Error", err);
 }
};
run();

操作 1465

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/transcribe-medical-examples-
section.html#transcribe-list-medical-jobs。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考ListMedicalTranscriptionJobs中的。

ListTranscriptionJobs

以下代码示例演示了如何使用 ListTranscriptionJobs。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

列出转录作业。

// Import the required AWS SDK clients and commands for Node.js

import { ListTranscriptionJobsCommand } from "@aws-sdk/client-transcribe";
import { transcribeClient } from "./libs/transcribeClient.js";

// Set the parameters
export const params = {
 JobNameContains: "KEYWORD", // Not required. Returns only transcription
 // job names containing this string
};

export const run = async () => {
 try {
 const data = await transcribeClient.send(
 new ListTranscriptionJobsCommand(params),
);
 console.log("Success", data.TranscriptionJobSummaries);
 return data; // For unit tests.
 } catch (err) {
 console.log("Error", err);
 }

操作 1466

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/transcribe-medical-examples-section.html#transcribe-list-medical-jobs
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/transcribe-medical-examples-section.html#transcribe-list-medical-jobs
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/transcribe-medical-examples-section.html#transcribe-list-medical-jobs
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/transcribe/command/ListMedicalTranscriptionJobsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/transcribe#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

};
run();

创建客户端。

import { TranscribeClient } from "@aws-sdk/client-transcribe";
// Set the AWS Region.
const REGION = "REGION"; //e.g. "us-east-1"
// Create an Amazon Transcribe service client object.
const transcribeClient = new TranscribeClient({ region: REGION });
export { transcribeClient };

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/transcribe-examples-
section.html#transcribe-list-jobs。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考ListTranscriptionJobs中的。

StartMedicalTranscriptionJob

以下代码示例演示了如何使用 StartMedicalTranscriptionJob。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

创建客户端。

import { TranscribeClient } from "@aws-sdk/client-transcribe";
// Set the AWS Region.
const REGION = "REGION"; //e.g. "us-east-1"
// Create an Amazon Transcribe service client object.
const transcribeClient = new TranscribeClient({ region: REGION });

操作 1467

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/transcribe-examples-section.html#transcribe-list-jobs
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/transcribe-examples-section.html#transcribe-list-jobs
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/transcribe-examples-section.html#transcribe-list-jobs
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/transcribe/command/ListTranscriptionJobsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/transcribe#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

export { transcribeClient };

启动医疗转录作业。

// Import the required AWS SDK clients and commands for Node.js
import { StartMedicalTranscriptionJobCommand } from "@aws-sdk/client-transcribe";
import { transcribeClient } from "./libs/transcribeClient.js";

// Set the parameters
export const params = {
 MedicalTranscriptionJobName: "MEDICAL_JOB_NAME", // Required
 OutputBucketName: "OUTPUT_BUCKET_NAME", // Required
 Specialty: "PRIMARYCARE", // Required. Possible values are 'PRIMARYCARE'
 Type: "JOB_TYPE", // Required. Possible values are 'CONVERSATION' and 'DICTATION'
 LanguageCode: "LANGUAGE_CODE", // For example, 'en-US'
 MediaFormat: "SOURCE_FILE_FORMAT", // For example, 'wav'
 Media: {
 MediaFileUri: "SOURCE_FILE_LOCATION",
 // The S3 object location of the input media file. The URI must be in the same
 region
 // as the API endpoint that you are calling.For example,
 // "https://transcribe-demo.s3-REGION.amazonaws.com/hello_world.wav"
 },
};

export const run = async () => {
 try {
 const data = await transcribeClient.send(
 new StartMedicalTranscriptionJobCommand(params),
);
 console.log("Success - put", data);
 return data; // For unit tests.
 } catch (err) {
 console.log("Error", err);
 }
};
run();

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/transcribe-medical-examples-
section.html#transcribe-start-medical-transcription。

操作 1468

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/transcribe-medical-examples-section.html#transcribe-start-medical-transcription
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/transcribe-medical-examples-section.html#transcribe-start-medical-transcription
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/transcribe-medical-examples-section.html#transcribe-start-medical-transcription

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考StartMedicalTranscriptionJob中的。

StartTranscriptionJob

以下代码示例演示了如何使用 StartTranscriptionJob。

适用于 JavaScript (v3) 的软件开发工具包

Note

还有更多相关信息 GitHub。在 Amazon 代码示例存储库中查找完整示例，了解如何进行设
置和运行。

启动转录作业。

// Import the required AWS SDK clients and commands for Node.js
import { StartTranscriptionJobCommand } from "@aws-sdk/client-transcribe";
import { transcribeClient } from "./libs/transcribeClient.js";

// Set the parameters
export const params = {
 TranscriptionJobName: "JOB_NAME",
 LanguageCode: "LANGUAGE_CODE", // For example, 'en-US'
 MediaFormat: "SOURCE_FILE_FORMAT", // For example, 'wav'
 Media: {
 MediaFileUri: "SOURCE_LOCATION",
 // For example, "https://transcribe-demo.s3-REGION.amazonaws.com/
hello_world.wav"
 },
 OutputBucketName: "OUTPUT_BUCKET_NAME",
};

export const run = async () => {
 try {
 const data = await transcribeClient.send(
 new StartTranscriptionJobCommand(params),
);
 console.log("Success - put", data);
 return data; // For unit tests.
 } catch (err) {

操作 1469

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/transcribe/command/StartMedicalTranscriptionJobCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/transcribe#code-examples

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 console.log("Error", err);
 }
};
run();

创建客户端。

import { TranscribeClient } from "@aws-sdk/client-transcribe";
// Set the AWS Region.
const REGION = "REGION"; //e.g. "us-east-1"
// Create an Amazon Transcribe service client object.
const transcribeClient = new TranscribeClient({ region: REGION });
export { transcribeClient };

• 有关更多信息，请参阅《适用于 JavaScript 的 Amazon SDK 开发人员指南》https://
docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/transcribe-examples-
section.html#transcribe-start-transcription。

• 有关 API 的详细信息，请参阅 适用于 JavaScript 的 Amazon SDK API 参
考StartTranscriptionJob中的。

场景

构建 Amazon Transcribe 流式传输应用程序

以下代码示例展示如何构建可实时录制、转录与翻译实时音频，并通过电子邮件发送结果的应用程序。

适用于 JavaScript (v3) 的软件开发工具包

演示了如何使用 Amazon Transcribe 构建可实时录制、转录与翻译实时音频，并通过 Amazon
Simple Email Service (Amazon SES) 以电子邮件发送结果的应用程序。

有关如何设置和运行的完整源代码和说明，请参阅上的完整示例GitHub。

本示例中使用的服务

• Amazon Comprehend

• Amazon SES

• Amazon Transcribe

场景 1470

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/transcribe-examples-section.html#transcribe-start-transcription
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/transcribe-examples-section.html#transcribe-start-transcription
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/transcribe-examples-section.html#transcribe-start-transcription
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/transcribe/command/StartTranscriptionJobCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/transcribe-streaming-app

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• Amazon Translate

使用 JavaScript (v3) 软件开发工具包的 Amazon Translate 示例

以下代码示例向您展示了如何使用带有 Amazon Translate 的 适用于 JavaScript 的 Amazon SDK (v3)
来执行操作和实现常见场景。

场景是向您演示如何通过在一个服务中调用多个函数或与其他 Amazon Web Services 服务结合来完成
特定任务的代码示例。

每个示例都包含一个指向完整源代码的链接，您可以从中找到有关如何在上下文中设置和运行代码的说
明。

主题

• 场景

场景

构建 Amazon Transcribe 流式传输应用程序

以下代码示例展示如何构建可实时录制、转录与翻译实时音频，并通过电子邮件发送结果的应用程序。

适用于 JavaScript (v3) 的软件开发工具包

演示了如何使用 Amazon Transcribe 构建可实时录制、转录与翻译实时音频，并通过 Amazon
Simple Email Service (Amazon SES) 以电子邮件发送结果的应用程序。

有关如何设置和运行的完整源代码和说明，请参阅上的完整示例GitHub。

本示例中使用的服务

• Amazon Comprehend

• Amazon SES

• Amazon Transcribe

• Amazon Translate

构建 Amazon Lex 聊天机器人

以下代码示例演示如何创建用于吸引网站访客的聊天机器人。

Amazon Translate 1471

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/transcribe-streaming-app

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript (v3) 的软件开发工具包

展示如何使用 Amazon Lex API 在 Web 应用程序中创建聊天机器人，以吸引网站访客。

有关如何设置和运行的完整源代码和说明，请参阅 适用于 JavaScript 的 Amazon SDK 开发者指南
中的构建 Amazon Lex 聊天机器人的完整示例。

本示例中使用的服务

• Amazon Comprehend

• Amazon Lex

• Amazon Translate

创建用于分析客户反馈的应用程序

以下代码示例说明如何创建应用程序来分析客户意见卡、翻译其母语、确定其情绪并根据译后的文本生
成音频文件。

适用于 JavaScript (v3) 的软件开发工具包

此示例应用程序可分析并存储客户反馈卡。具体来说，它满足了纽约市一家虚构酒店的需求。酒
店以实体意见卡的形式收集来自不同语种的客人的反馈。该反馈通过 Web 客户端上传到应用程序
中。意见卡图片上传后，将执行以下步骤：

• 使用 Amazon Textract 从图片中提取文本。

• Amazon Comprehend 确定所提取文本的情绪及其语言。

• 使用 Amazon Translate 将所提取文本翻译为英语。

• Amazon Polly 根据所提取文本合成音频文件。

完整的应用程序可使用 Amazon CDK 进行部署。有关源代码和部署说明，请参阅中的项目
GitHub。以下摘录显示了在 Lambda 函数中 适用于 JavaScript 的 Amazon SDK 是如何使用的。

import {
 ComprehendClient,
 DetectDominantLanguageCommand,
 DetectSentimentCommand,
} from "@aws-sdk/client-comprehend";

/**
 * Determine the language and sentiment of the extracted text.
 *

场景 1472

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/lex-bot-example.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/feedback-sentiment-analyzer
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/feedback-sentiment-analyzer

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 * @param {{ source_text: string}} extractTextOutput
 */
export const handler = async (extractTextOutput) => {
 const comprehendClient = new ComprehendClient({});

 const detectDominantLanguageCommand = new DetectDominantLanguageCommand({
 Text: extractTextOutput.source_text,
 });

 // The source language is required for sentiment analysis and
 // translation in the next step.
 const { Languages } = await comprehendClient.send(
 detectDominantLanguageCommand,
);

 const languageCode = Languages[0].LanguageCode;

 const detectSentimentCommand = new DetectSentimentCommand({
 Text: extractTextOutput.source_text,
 LanguageCode: languageCode,
 });

 const { Sentiment } = await comprehendClient.send(detectSentimentCommand);

 return {
 sentiment: Sentiment,
 language_code: languageCode,
 };
};

import {
 DetectDocumentTextCommand,
 TextractClient,
} from "@aws-sdk/client-textract";

/**
 * Fetch the S3 object from the event and analyze it using Amazon Textract.
 *
 * @param {import("@types/aws-lambda").EventBridgeEvent<"Object Created">}
 eventBridgeS3Event
 */
export const handler = async (eventBridgeS3Event) => {
 const textractClient = new TextractClient();

场景 1473

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const detectDocumentTextCommand = new DetectDocumentTextCommand({
 Document: {
 S3Object: {
 Bucket: eventBridgeS3Event.bucket,
 Name: eventBridgeS3Event.object,
 },
 },
 });

 // Textract returns a list of blocks. A block can be a line, a page, word, etc.
 // Each block also contains geometry of the detected text.
 // For more information on the Block type, see https://docs.aws.amazon.com/
textract/latest/dg/API_Block.html.
 const { Blocks } = await textractClient.send(detectDocumentTextCommand);

 // For the purpose of this example, we are only interested in words.
 const extractedWords = Blocks.filter((b) => b.BlockType === "WORD").map(
 (b) => b.Text,
);

 return extractedWords.join(" ");
};

import { PollyClient, SynthesizeSpeechCommand } from "@aws-sdk/client-polly";
import { S3Client } from "@aws-sdk/client-s3";
import { Upload } from "@aws-sdk/lib-storage";

/**
 * Synthesize an audio file from text.
 *
 * @param {{ bucket: string, translated_text: string, object: string}}
 sourceDestinationConfig
 */
export const handler = async (sourceDestinationConfig) => {
 const pollyClient = new PollyClient({});

 const synthesizeSpeechCommand = new SynthesizeSpeechCommand({
 Engine: "neural",
 Text: sourceDestinationConfig.translated_text,
 VoiceId: "Ruth",
 OutputFormat: "mp3",
 });

场景 1474

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 const { AudioStream } = await pollyClient.send(synthesizeSpeechCommand);

 const audioKey = `${sourceDestinationConfig.object}.mp3`;

 // Store the audio file in S3.
 const s3Client = new S3Client();
 const upload = new Upload({
 client: s3Client,
 params: {
 Bucket: sourceDestinationConfig.bucket,
 Key: audioKey,
 Body: AudioStream,
 ContentType: "audio/mp3",
 },
 });

 await upload.done();
 return audioKey;
};

import {
 TranslateClient,
 TranslateTextCommand,
} from "@aws-sdk/client-translate";

/**
 * Translate the extracted text to English.
 *
 * @param {{ extracted_text: string, source_language_code: string}}
 textAndSourceLanguage
 */
export const handler = async (textAndSourceLanguage) => {
 const translateClient = new TranslateClient({});

 const translateCommand = new TranslateTextCommand({
 SourceLanguageCode: textAndSourceLanguage.source_language_code,
 TargetLanguageCode: "en",
 Text: textAndSourceLanguage.extracted_text,
 });

 const { TranslatedText } = await translateClient.send(translateCommand);

场景 1475

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 return { translated_text: TranslatedText };
};

本示例中使用的服务

• Amazon Comprehend

• Lambda

• Amazon Polly

• Amazon Textract

• Amazon Translate

场景 1476

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

本 Amazon 产品或服务的安全性

云安全性一直是 Amazon Web Services（Amazon）的重中之重。作为 Amazon 客户，您将从专为满
足大多数安全敏感型企业的要求而打造的数据中心和网络架构中受益。安全是双方共同承担 Amazon
的责任。责任共担模式将其描述为云的安全性和云中的安全性。

云安全 — Amazon 负责保护运行 Amazon 云中提供的所有服务的基础架构，并为您提供可以安全使用
的服务。我们的安全责任是重中之重 Amazon，作为Amazon 合规计划的一部分，第三方审计师定期测
试和验证我们安全的有效性。

云端安全 — 您的责任由您使用的 Amazon 服务以及其他因素决定，包括数据的敏感性、组织的要求以
及适用的法律和法规。

本 Amazon 产品或服务通过其支持的特定 Amazon Web Services (Amazon) 服务遵循分担责任模式。
有关 Amazon 服务安全信息，请参阅Amazon 服务安全文档页面和合规计划合 Amazon 规工作范围内
的Amazon 服务。

主题

• 本 Amazon 产品或服务中的数据保护

• 身份和访问管理

• 此 Amazon 产品或服务的合规性验证

• 本 Amazon 产品或服务的弹性

• 本 Amazon 产品或服务的基础设施安全

• 强制使用最低版本的 TLS

本 Amazon 产品或服务中的数据保护

分 Amazon 分担责任模型适用于本 Amazon 产品或服务中的数据保护。如本模型所述 Amazon ，负责
保护运行所有内容的全球基础架构 Amazon Web Services 云。您负责维护对托管在此基础结构上的内
容的控制。您还负责您所使用的 Amazon Web Services 服务 的安全配置和管理任务。有关数据隐私的
更多信息，请参阅数据隐私常见问题。

出于数据保护目的，我们建议您保护 Amazon Web Services 账户 凭证并使用 Amazon IAM Identity
Center 或 Amazon Identity and Access Management (IAM) 设置个人用户。这样，每个用户只获得履
行其工作职责所需的权限。还建议您通过以下方式保护数据：

数据保护 1477

https://www.amazonaws.cn/compliance/shared-responsibility-model/
https://www.amazonaws.cn/compliance/programs/
https://www.amazonaws.cn/compliance/shared-responsibility-model/
https://docs.amazonaws.cn/security/?id=docs_gateway#aws-security
https://www.amazonaws.cn/compliance/services-in-scope/
https://www.amazonaws.cn/compliance/services-in-scope/
https://www.amazonaws.cn/compliance/shared-responsibility-model/
https://www.amazonaws.cn/compliance/data-privacy-faq/

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 对每个账户使用多重身份验证（MFA）。

• 用于 SSL/TLS 与 Amazon 资源通信。我们要求使用 TLS 1.2，建议使用 TLS 1.3。

• 使用设置 API 和用户活动日志 Amazon CloudTrail。有关使用 CloudTrail 跟踪捕获 Amazon 活动的
信息，请参阅《Amazon CloudTrail 用户指南》中的使用跟 CloudTrail 踪。

• 使用 Amazon 加密解决方案以及其中的所有默认安全控件 Amazon Web Services 服务。

• 使用高级托管安全服务（例如 Amazon Macie），它有助于发现和保护存储在 Amazon S3 中的敏感
数据。

• 如果您在 Amazon 通过命令行界面或 API 进行访问时需要经过 FIPS 140-3 验证的加密模块，请使用
FIPS 端点。有关可用的 FIPS 端点的更多信息，请参阅《美国联邦信息处理标准（FIPS）第 140-3
版》https://www.amazonaws.cn/compliance/fips/。

强烈建议您切勿将机密信息或敏感信息（如您客户的电子邮件地址）放入标签或自由格式文本字段
（如名称字段）。这包括您使用控制台、API 或 Amazon Web Services 服务 使用本 Amazon 产品或
服务或其他产品或服务时 Amazon SDKs。 Amazon CLI在用于名称的标签或自由格式文本字段中输入
的任何数据都可能会用于计费或诊断日志。如果您向外部服务器提供 URL，强烈建议您不要在网址中
包含凭证信息来验证对该服务器的请求。

身份和访问管理

Amazon Identity and Access Management (IAM) Amazon Web Services 服务 可帮助管理员安全地控
制对 Amazon 资源的访问权限。IAM 管理员控制谁可以进行身份验证（登录）和授权（拥有权限）使
用 Amazon 资源。您可以使用 IAM Amazon Web Services 服务 ，无需支付额外费用。

主题

• 受众

• 使用身份进行身份验证

• 使用策略管理访问

• 如何 Amazon Web Services 服务 使用 IAM

• 对 Amazon 身份和访问进行故障排除

受众

您的使用方式 Amazon Identity and Access Management (IAM) 会有所不同，具体取决于您所做的工作
Amazon。

身份和访问管理 1478

https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-trails.html
https://www.amazonaws.cn/compliance/fips/

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

服务用户-如果您 Amazon Web Services 服务 曾经完成工作，则您的管理员会为您提供所需的凭证和
权限。当你使用更多 Amazon 功能来完成工作时，你可能需要额外的权限。了解如何管理访问权限有
助于您向管理员请求适合的权限。如果您无法访问中的功能 Amazon，请参阅对 Amazon 身份和访问
进行故障排除或 Amazon Web Services 服务 您正在使用的用户指南。

服务管理员-如果您负责公司的 Amazon 资源，则可能拥有完全访问权限 Amazon。您的工作是确定您
的服务用户应访问哪些 Amazon 功能和资源。然后，您必须向 IAM 管理员提交请求以更改服务用户的
权限。请查看该页面上的信息以了解 IAM 的基本概念。要详细了解您的公司如何使用 IAM Amazon，
请参阅 Amazon Web Services 服务 您正在使用的用户指南。

IAM 管理员：如果您是 IAM 管理员，您可能希望了解如何编写策略以管理对 Amazon的访问权限的详
细信息。要查看您可以在 IAM 中使用的 Amazon 基于身份的策略示例，请参阅 Amazon Web Services
服务 您正在使用的用户指南。

使用身份进行身份验证

身份验证是您 Amazon 使用身份凭证登录的方式。您必须以 IAM 用户身份进行身份验证 Amazon Web
Services 账户根用户，或者通过担任 IAM 角色进行身份验证。

对于编程访问， Amazon 提供 SDK 和 CLI 来对请求进行加密签名。有关更多信息，请参阅《IAM 用户
指南》中的适用于 API 请求的Amazon 签名版本 4。

Amazon Web Services 账户 root 用户

创建时 Amazon Web Services 账户，首先会有一个名为 Amazon Web Services 账户 root 用户的登录
身份，该身份可以完全访问所有资源 Amazon Web Services 服务 和资源。我们强烈建议不要使用根
用户进行日常任务。有关需要根用户凭证的任务，请参阅《IAM 用户指南》中的需要根用户凭证的任
务。

联合身份

作为最佳实践，要求人类用户使用与身份提供商的联合身份验证才能 Amazon Web Services 服务 使用
临时证书进行访问。

联合身份是指来自您的企业目录、Web 身份提供商的用户 Amazon Directory Service ，或者 Amazon
Web Services 服务 使用来自身份源的凭据进行访问的用户。联合身份代入可提供临时凭证的角色。

使用身份进行身份验证 1479

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_sigv.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_root-user.html#root-user-tasks

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

IAM 用户和群组

IAM 用户是对某个人员或应用程序具有特定权限的一个身份。建议使用临时凭证，而非具有长期凭证
的 IAM 用户。有关更多信息，请参阅 IAM 用户指南中的要求人类用户使用身份提供商的联合身份验证
才能 Amazon 使用临时证书进行访问。

IAM 组指定一组 IAM 用户，便于更轻松地对大量用户进行权限管理。有关更多信息，请参阅《IAM 用
户指南》中的 IAM 用户使用案例。

IAM 角色

IAM 角色是具有特定权限的身份，可提供临时凭证。您可以通过从用户切换到 IAM 角色（控制台）或
调用 Amazon CLI 或 Amazon API 操作来代入角色。有关更多信息，请参阅《IAM 用户指南》中的担
任角色的方法。

IAM 角色对于联合用户访问、临时 IAM 用户权限、跨账户访问、跨服务访问以及在 Amazon 上运行的
应用程序非常有用。 EC2有关更多信息，请参阅《IAM 用户指南》中的 IAM 中的跨账户资源访问。

使用策略管理访问

您可以 Amazon 通过创建策略并将其附加到 Amazon 身份或资源来控制中的访问权限。策略定义了与
身份或资源关联时的权限。 Amazon 在委托人提出请求时评估这些政策。大多数策略都以 JSON 文档
的 Amazon 形式存储在中。有关 JSON 策略文档的更多信息，请参阅《IAM 用户指南》中的 JSON 策
略概述。

管理员使用策略，通过定义哪个主体可以在什么条件下对哪些资源执行哪些操作来指定谁有权访问什
么。

默认情况下，用户和角色没有权限。IAM 管理员创建 IAM 策略并将其添加到角色中，然后用户可以担
任这些角色。IAM 策略定义权限，与执行操作所用的方法无关。

基于身份的策略

基于身份的策略是您附加到身份（用户、组或角色）的 JSON 权限策略文档。这些策略控制身份可
以执行什么操作、对哪些资源执行以及在什么条件下执行。要了解如何创建基于身份的策略，请参阅
《IAM 用户指南》中的使用客户管理型策略定义自定义 IAM 权限。

基于身份的策略可以是内联策略（直接嵌入到单个身份中）或托管策略（附加到多个身份的独立策
略）。要了解如何在托管策略和内联策略之间进行选择，请参阅《IAM 用户指南》中的在托管策略与
内联策略之间进行选择。

使用策略管理访问 1480

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp
https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_groups.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/gs-identities-iam-users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

基于资源的策略

基于资源的策略是附加到资源的 JSON 策略文档。示例包括 IAM 角色信任策略和 Amazon S3 存储桶
策略。在支持基于资源的策略的服务中，服务管理员可以使用它们来控制对特定资源的访问。您必须在
基于资源的策略中指定主体。

基于资源的策略是位于该服务中的内联策略。您不能在基于资源的策略中使用 IAM 中的 Amazon 托管
策略。

访问控制列表 (ACLs)

访问控制列表 (ACLs) 控制哪些委托人（账户成员、用户或角色）有权访问资源。 ACLs 与基于资源的
策略类似，尽管它们不使用 JSON 策略文档格式。

Amazon S3 和 Amazon VPC 就是支持的服务示例 ACLs。 Amazon WAF要了解更多信息 ACLs，请参
阅《亚马逊简单存储服务开发者指南》中的访问控制列表 (ACL) 概述。

其他策略类型

Amazon 支持其他策略类型，这些策略类型可以设置更常见的策略类型授予的最大权限：

• 权限边界 – 设置基于身份的策略可以授予 IAM 实体的最大权限。有关更多信息，请参阅《 IAM 用户
指南》中的 IAM 实体的权限边界。

• 服务控制策略 (SCPs)-在中指定组织或组织单位的最大权限 Amazon Organizations。有关更多信
息，请参阅《Amazon Organizations 用户指南》中的服务控制策略。

• 资源控制策略 (RCPs)-设置账户中资源的最大可用权限。有关更多信息，请参阅《Amazon
Organizations 用户指南》中的资源控制策略 (RCPs)。

• 会话策略 – 在为角色或联合用户创建临时会话时，作为参数传递的高级策略。有关更多信息，请参
阅《IAM 用户指南》中的会话策略。

多个策略类型

当多个类型的策略应用于一个请求时，生成的权限更加复杂和难以理解。要了解在涉及多种策略类型时
如何 Amazon 确定是否允许请求，请参阅 IAM 用户指南中的策略评估逻辑。

如何 Amazon Web Services 服务 使用 IAM

要全面了解如何 Amazon Web Services 服务 使用大多数 IAM 功能，请参阅 IAM 用户指南中的与 IAM
配合使用的Amazon 服务。

如何 Amazon Web Services 服务 使用 IAM 1481

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/acl-overview.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.amazonaws.cn/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.amazonaws.cn/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

要了解如何在 IAM 中 Amazon Web Services 服务 使用特定的，请参阅相关服务的《用户指南》的安
全部分。

对 Amazon 身份和访问进行故障排除

使用以下信息来帮助您诊断和修复在使用 Amazon 和 IAM 时可能遇到的常见问题。

主题

• 我无权在以下位置执行操作 Amazon

• 我无权执行 iam：PassRole

• 我想允许我以外的人 Amazon Web Services 账户 访问我的 Amazon 资源

我无权在以下位置执行操作 Amazon

如果您收到错误提示，指明您无权执行某个操作，则必须更新策略以允许执行该操作。

当 mateojackson IAM 用户尝试使用控制台查看有关虚构 my-example-widget 资源的详细信息，
但不拥有虚构 awes:GetWidget 权限时，会发生以下示例错误。

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 awes:GetWidget on resource: my-example-widget

在此情况下，必须更新 mateojackson 用户的策略，以允许使用 awes:GetWidget 操作访问 my-
example-widget 资源。

如果您需要帮助，请联系您的 Amazon 管理员。您的管理员是提供登录凭证的人。

我无权执行 iam：PassRole

如果您收到一个错误，表明您无权执行 iam:PassRole 操作，则必须更新策略以允许您将角色传递
给。 Amazon

有些 Amazon Web Services 服务 允许您将现有角色传递给该服务，而不是创建新的服务角色或服务相
关角色。为此，您必须具有将角色传递到服务的权限。

当名为 marymajor 的 IAM 用户尝试使用控制台在 Amazon中执行操作时，会发生以下示例错误。但
是，服务必须具有服务角色所授予的权限才可执行此操作。Mary 不具有将角色传递到服务的权限。

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

对 Amazon 身份和访问进行故障排除 1482

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

在这种情况下，必须更新 Mary 的策略以允许她执行 iam:PassRole 操作。

如果您需要帮助，请联系您的 Amazon 管理员。您的管理员是提供登录凭证的人。

我想允许我以外的人 Amazon Web Services 账户 访问我的 Amazon 资源

您可以创建一个角色，以便其他账户中的用户或您组织外的人员可以使用该角色来访问您的资源。您可
以指定谁值得信赖，可以代入角色。对于支持基于资源的策略或访问控制列表 (ACLs) 的服务，您可以
使用这些策略向人们授予访问您的资源的权限。

要了解更多信息，请参阅以下内容：

• 要了解是否 Amazon 支持这些功能，请参阅如何 Amazon Web Services 服务 使用 IAM。

• 要了解如何提供对您拥有的资源的访问权限 Amazon Web Services 账户 ，请参阅 IAM 用户指南中
的向您拥有 Amazon Web Services 账户 的另一个 IAM 用户提供访问权限。

• 要了解如何向第三方提供对您的资源的访问权限 Amazon Web Services 账户，请参阅 IAM 用户指
南中的向第三方提供访问权限。 Amazon Web Services 账户

• 要了解如何通过身份联合验证提供访问权限，请参阅《IAM 用户指南》中的为经过外部身份验证的
用户（身份联合验证）提供访问权限。

• 要了解使用角色和基于资源的策略进行跨账户访问之间的差别，请参阅《IAM 用户指南》中的 IAM
中的跨账户资源访问。

此 Amazon 产品或服务的合规性验证

要了解是否属于特定合规计划的范围，请参阅Amazon Web Services 服务 “” Amazon Web Services 服
务 中的 “按合规计划划分的范围”，然后选择您感兴趣的合规计划。 Amazon Web Services 服务 有关
一般信息，请参阅合规计划。

您可以使用下载第三方审计报告 Amazon Artifact。有关更多信息，请参阅中的 “下载报告” Amazon
Artifact。

您在使用 Amazon Web Services 服务 时的合规责任取决于您的数据的敏感性、贵公司的合规目标
以及适用的法律和法规。有关您在使用时的合规责任的更多信息 Amazon Web Services 服务，请参
阅Amazon 安全文档。

本 Amazon 产品或服务通过其支持的特定 Amazon Web Services (Amazon) 服务遵循分担责任模式。
有关 Amazon 服务安全信息，请参阅Amazon 服务安全文档页面和合规计划合 Amazon 规工作范围内
的Amazon 服务。

合规性验证 1483

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://www.amazonaws.cn/compliance/services-in-scope/
https://www.amazonaws.cn/compliance/services-in-scope/
https://www.amazonaws.cn/compliance/programs/
https://docs.amazonaws.cn/artifact/latest/ug/downloading-documents.html
https://docs.amazonaws.cn/artifact/latest/ug/downloading-documents.html
https://docs.amazonaws.cn/security/
https://www.amazonaws.cn/compliance/shared-responsibility-model/
https://docs.amazonaws.cn/security/?id=docs_gateway#aws-security
https://www.amazonaws.cn/compliance/services-in-scope/
https://www.amazonaws.cn/compliance/services-in-scope/

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

本 Amazon 产品或服务的弹性

Amazon 全球基础设施是围绕 Amazon Web Services 区域 可用区构建的。

Amazon Web Services 区域 提供多个物理分隔和隔离的可用区，这些可用区通过低延迟、高吞吐量和
高度冗余的网络连接。

利用可用区，您可以设计和操作在可用区之间无中断地自动实现失效转移的应用程序和数据库。与传统
的单个或多个数据中心基础设施相比，可用区具有更高的可用性、容错能力和可扩展性。

有关 Amazon 区域和可用区的更多信息，请参阅Amazon 全球基础设施。

本 Amazon 产品或服务通过其支持的特定 Amazon Web Services (Amazon) 服务遵循分担责任模式。
有关 Amazon 服务安全信息，请参阅Amazon 服务安全文档页面和合规计划合 Amazon 规工作范围内
的Amazon 服务。

本 Amazon 产品或服务的基础设施安全

本 Amazon 产品或服务使用托管服务，因此受到 Amazon 全球网络安全的保护。有关 Amazon 安全服
务以及如何 Amazon 保护基础设施的信息，请参阅Amazon 云安全。要使用基础设施安全的最佳实践
来设计您的 Amazon 环境，请参阅 S Amazon ecurity Pillar Well-Architected Fram ework 中的基础设
施保护。

您可以使用 Amazon 已发布的 API 调用通过网络访问此 Amazon 产品或服务。客户端必须支持以下内
容：

• 传输层安全性协议（TLS）。我们要求使用 TLS 1.2，建议使用 TLS 1.3。

• 具有完全向前保密（PFS）的密码套件，例如 DHE（临时 Diffie-Hellman）或 ECDHE（临时椭圆曲
线 Diffie-Hellman）。大多数现代系统（如 Java 7 及更高版本）都支持这些模式。

此外，必须使用访问密钥 ID 和与 IAM 主体关联的秘密访问密钥来对请求进行签名。或者，您可以使用
Amazon Security Token Service（Amazon STS）生成临时安全凭证来对请求进行签名。

本 Amazon 产品或服务通过其支持的特定 Amazon Web Services (Amazon) 服务遵循分担责任模式。
有关 Amazon 服务安全信息，请参阅Amazon 服务安全文档页面和合规计划合 Amazon 规工作范围内
的Amazon 服务。

恢复能力 1484

https://www.amazonaws.cn/about-aws/global-infrastructure/
https://www.amazonaws.cn/compliance/shared-responsibility-model/
https://docs.amazonaws.cn/security/?id=docs_gateway#aws-security
https://www.amazonaws.cn/compliance/services-in-scope/
https://www.amazonaws.cn/compliance/services-in-scope/
https://www.amazonaws.cn/security/
https://docs.amazonaws.cn/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.amazonaws.cn/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.amazonaws.cn/STS/latest/APIReference/Welcome.html
https://www.amazonaws.cn/compliance/shared-responsibility-model/
https://docs.amazonaws.cn/security/?id=docs_gateway#aws-security
https://www.amazonaws.cn/compliance/services-in-scope/
https://www.amazonaws.cn/compliance/services-in-scope/

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

强制使用最低版本的 TLS

要在与 Amazon 服务通信时提高安全性，请将配置 适用于 JavaScript 的 Amazon SDK 为使用 TLS
1.2 或更高版本。

传输层安全性协议（TLS）是 Web 浏览器和其它应用程序使用的一种协议，用于确保通过网络交换的
数据的隐私和完整性。

Important

自 2024 年 6 月 10 日起，我们宣布在每个 Amazon 地区的 Amazon 服务 API 终端节点上都
可用 TLS 1.3。 适用于 JavaScript 的 Amazon SDK v3 本身不会协商 TLS 版本。相反，它使
用由 Node.js 确定的 TLS 版本，该版本可通过 https.Agent 进行配置。 Amazon 建议使用
Node.js 的当前活动 LTS 版本。

在 Node.js 中验证并强制执行 TLS

当你将 Node.js 适用于 JavaScript 的 Amazon SDK 与一起使用时，底层 Node.js 安全层用于设置 TLS
版本。

Node.js 12.0.0 及更高版本使用支持 TLS 1.3 的最低版本 OpenSSL 1.1.1b。当 TLS 1.3 可用
时，Node.js 默认使用该版本。如有必要，您可以明确指定其他版本。

验证 OpenSSL 和 TLS 的版本

要获取计算机上的 Node.js 使用的 OpenSSL 版本，请运行以下命令。

node -p process.versions

列表中的 OpenSSL 版本是 Node.js 使用的版本，如以下示例所示。

openssl: '1.1.1b'

要获取计算机上的 Node.js 使用的 TLS 版本，请启动 Node shell 并按顺序运行以下命令。

> var tls = require("tls");
> var tlsSocket = new tls.TLSSocket();

强制使用最低版本的 TLS 1485

https://www.amazonaws.cn/blogs//security/faster-aws-cloud-connections-with-tls-1-3/

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

> tlsSocket.getProtocol();

最后一条命令输出 TLS 版本，如以下示例所示。

'TLSv1.3'

Node.js 默认使用此版本的 TLS，如果调用不成功，则会尝试协商另一个版本的 TLS。

检查支持的最低和最高 TLS 版本

开发人员可以使用以下脚本来检查 Node.js 中支持的最低和最高 TLS 版本：

import tls from "tls";
console.log("Supported TLS versions:", tls.DEFAULT_MIN_VERSION + " to " +
 tls.DEFAULT_MAX_VERSION);

最后一个命令输出默认的最低和最高 TLS 版本，如以下示例所示。

Supported TLS versions: TLSv1.2 to TLSv1.3

强制使用最低版本的 TLS

当调用失败时，Node.js 会协商 TLS 的版本。您可以在此协商期间强制执行允许的最低 TLS 版本，无
论是在命令行运行脚本时，还是在根据 JavaScript 代码中的请求运行脚本时。

要通过命令行指定最低 TLS 版本，必须使用 Node.js 版本 11.4.0 或更高版本。要安装特定的 Node.js
版本，请先按照 Node Version Manager Installing and Updating 中的步骤安装 Node Version Manager
(nvm)。然后运行以下命令来安装并使用特定版本的 Node.js。

nvm install 11
nvm use 11

Enforce TLS 1.2

要强制规定 TLS 1.2 是允许的最低版本，请在运行脚本时指定 --tls-min-v1.2 参数，如以下示
例所示。

node --tls-min-v1.2 yourScript.js

在 Node.js 中验证并强制执行 TLS 1486

https://github.com/nvm-sh/nvm#installing-and-updating

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

要在 JavaScript 代码中为特定请求指定允许的最低 TLS 版本，请使用minVersion参数指定协
议，如以下示例所示。

import https from "https";
import { NodeHttpHandler } from "@smithy/node-http-handler";
import { DynamoDBClient } from "@aws-sdk/client-dynamodb";

const client = new DynamoDBClient({
 region: "us-west-2",
 requestHandler: new NodeHttpHandler({
 httpsAgent: new https.Agent(
 {
 minVersion: 'TLSv1.2'
 }
)
 })
});

Enforce TLS 1.3

要强制规定 TLS 1.3 是允许的最低版本，请在运行脚本时指定 --tls-min-v1.3 参数，如以下示
例所示。

node --tls-min-v1.3 yourScript.js

要在 JavaScript 代码中为特定请求指定允许的最低 TLS 版本，请使用minVersion参数指定协
议，如以下示例所示。

import https from "https";
import { NodeHttpHandler } from "@smithy/node-http-handler";
import { DynamoDBClient } from "@aws-sdk/client-dynamodb";

const client = new DynamoDBClient({
 region: "us-west-2",
 requestHandler: new NodeHttpHandler({
 httpsAgent: new https.Agent(
 {
 minVersion: 'TLSv1.3'
 }
)
 })
});

在 Node.js 中验证并强制执行 TLS 1487

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

在浏览器脚本中验证并强制执行 TLS

当您在浏览器脚本 JavaScript 中使用 SDK 时，浏览器设置会控制所使用的 TLS 版本。浏览器使用的
TLS 版本无法通过脚本发现或设置，必须由用户配置。要验证和强制执行浏览器脚本中使用的 TLS 版
本，请参阅特定浏览器的说明。

Microsoft Internet Explorer

1. 打开 Internet Explorer。

2. 从菜单栏中选择工具 - Internet 选项 - 高级选项卡。

3. 向下滚动到安全类别，手动选中使用 TLS 1.2 选项框。

4. 单击确定。

5. 关闭浏览器并重新启动 Internet Explorer。

Microsoft Edge

1. 在 Windows 菜单搜索框中，键入Internet options。

2. 在最佳匹配下，单击 Internet 选项。

3. 在 Internet 属性窗口的高级选项卡上，向下滚动到安全部分。

4. 选中用户 TLS 1.2 复选框。

5. 单击确定。

Google Chrome

1. 打开 Google Chrome。

2. 按 Alt F 并选择设置。

3. 向下滚动并选择显示高级设置...。

4. 向下滚动到系统部分，然后单击打开代理设置...。

5. 选择高级选项卡。

6. 向下滚动到安全类别，手动选中使用 TLS 1.2 选项框。

7. 单击确定。

8. 关闭浏览器并重启 Google Chrome。

在浏览器脚本中验证并强制执行 TLS 1488

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

Mozilla Firefox

1. 打开 Firefox。

2. 在地址栏中键入 about:config，然后按 Enter。

3. 在搜索字段中输入 tls。找到并双击 security.tls.version.min 条目。

4. 将整数值设置为 3 以强制将 TLS 1.2 协议设为默认协议。

5. 单击确定。

6. 关闭浏览器并重启 Mozilla Firefox。

Apple Safari

没有启用 SSL 协议的选项。如果您使用的是 Safari 浏览器 7 或更高版本，则会自动启用 TLS 1.2。

在 v 适用于 JavaScript 的 Amazon SDK 3 请求中检索 TLS 版本

您可以使用以下脚本记录 Amazon SDK 请求中使用的 TLS 版本：

import { S3Client, ListBucketsCommand } from "@aws-sdk/client-s3";
import tls from "tls";

const client = new S3Client({ region: "us-east-1" });

const tlsSocket = new tls.TLSSocket();

client.middlewareStack.add((next, context) => async (args) => {
 console.log(`Using TLS version: ${tlsSocket.getProtocol()}`);
 return next(args);
});

最后一条命令会输出当前使用的 TLS 版本，如下例所示。

Using TLS version: TLSv1.3

在 v 适用于 JavaScript 的 Amazon SDK 3 请求中检索 TLS 版本 1489

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

从适用于 JavaScript 的 Amazon SDK 的 2.x 版迁移到 3.x 版
适用于 JavaScript 的 Amazon SDK 版本 3 是对版本 2 的重大重写。本部分将说明两个版本之间的差
异，并说明如何从适用于 JavaScript 的 SDK 版本 2 迁移到版本 3。

使用 codemod 将您的代码迁移到适用于 JavaScript 的 SDK v3

适用于 JavaScript 的 Amazon SDK 版本 3 (v3) 带有客户端配置和实用程序的现代化界面，其中包括
凭证、Amazon S3 分段上传、DynamoDB 文档客户端、Waiter 等。您可以在 适用于 JavaScript 的
Amazon SDK GitHub 存储库迁移指南中找到 v2 中的更改内容以及 v3 中与每项更改对应的内容。

要充分利用适用于 JavaScript 的 Amazon SDK v3，我们建议使用下面描述的 codemod 脚本。

使用 codemod 迁移现有的 v2 代码

aws-sdk-js-codemod 中的 codemod 脚本集合可帮助迁移您现有的适用于 JavaScript 的 Amazon
SDK（v2）应用程序，以使用 v3 API。您可以按以下方式运行转换。

$ npx aws-sdk-js-codemod -t v2-to-v3 PATH...

例如，假设您有以下代码，它用于从 v2 创建一个 Amazon DynamoDB 客户端并调用 listTables 运
算。

// example.ts
import AWS from "aws-sdk";

const region = "us-west-2";
const client = new AWS.DynamoDB({ region });
await client.listTables({}).promise()
 .then(console.log)
 .catch(console.error);

你可以按如下方式对 example.ts 运行我们的 v2-to-v3 转换。

$ npx aws-sdk-js-codemod -t v2-to-v3 example.ts

转换会将 DynamoDB 导入转换为 v3，创建 v3 客户端，然后调用 listTables 运算，如下所示。

使用 codemod 迁移到 v3 1490

https://github.com/aws/aws-sdk-js-v3/blob/main/UPGRADING.md
https://github.com/aws/aws-sdk-js-v3/blob/main/UPGRADING.md
https://www.npmjs.com/package/aws-sdk-js-codemod

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

// example.ts
import { DynamoDB } from "@aws-sdk/client-dynamodb";

const region = "us-west-2";
const client = new DynamoDB({ region });
await client.listTables({})
 .then(console.log)
 .catch(console.error);

我们已经针对常见使用案例实现了转换。如果您的代码无法正确转换，请使用示例输入代码和观察到/
预期的输出代码创建错误报告或功能请求。如果某个现有问题已经报告了您的特定使用案例，请通过投
赞同票表示支持。

版本 3 中的新增功能

适用于 JavaScript 的 SDK 版本 3（v3）包含以下新功能。

模块化软件包

用户现在可以为每项服务使用单独的软件包。

新的中间件堆栈

用户现在可以使用中间件堆栈来控制操作调用的生命周期。

此外，该 SDK 是用 TypeScript 编写的，具有许多优点，例如静态输入。

Important

本指南中 v3 的代码示例是用 ECMAScript 6（ES6）编写的。ES6 带来了新的语法和新功能，
使您的代码更现代、更具可读性，并能做到更多的事情。要使用 ES6，您需要使用 Node.js 版
本 13.x 或更高版本。要下载并安装最新版本的 Node.js，请参阅 Node.js 下载。有关更多信
息，请参阅 JavaScript ES6/CommonJS 语法。

模块化软件包

适用于 JavaScript 的 SDK 版本 2（v2）要求您使用整个 Amazon SDK，如下所示。

版本 3 中的新增功能 1491

https://github.com/awslabs/aws-sdk-js-codemod/issues/new?assignees=&labels=bug%2Ctriage&template=bug_report.yml&title=%5BBug%3F%5D%3A+
https://github.com/awslabs/aws-sdk-js-codemod/issues/new?assignees=&labels=enhancement&template=feature_request.yml&title=%5BFeature%5D%3A+
https://github.com/awslabs/aws-sdk-js-codemod/issues?q=is%3Aissue+is%3Aopen+sort%3Aupdated-desc
https://nodejs.org/en/download/

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

var AWS = require("aws-sdk");

如果您的应用程序使用许多 Amazon 服务，那么加载整个 SDK 不是问题。但是，如果您只需要使用少
量 Amazon 服务，则意味着需要使用不需要或不使用的代码来增加应用程序的大小。

在 v3 中，您只能加载和使用所需的各项 Amazon 服务。以下示例显示了这一点，通过它您可以访问
Amazon DynamoDB (DynamoDB)。

import { DynamoDB } from "@aws-sdk/client-dynamodb";

您不仅可以加载和使用各项 Amazon 服务，还可以仅加载和使用所需的服务命令。以下示例显示了这
一点，通过它您可以访问 DynamoDB 客户端和 ListTablesCommand 命令。

import {
 DynamoDBClient,
 ListTablesCommand
} from "@aws-sdk/client-dynamodb";

Important

不应将子模块导入模块中。例如，以下代码可能会导致错误：

import { CognitoIdentity } from "@aws-sdk/client-cognito-identity/
CognitoIdentity";

以下是正确的代码。

import { CognitoIdentity } from "@aws-sdk/client-cognito-identity";

比较代码大小

在版本 2（v2）中，列出您在 us-west-2 区域的所有 Amazon DynamoDB 表的简单代码示例可能如
下所示。

var AWS = require("aws-sdk");
// Set the Region
AWS.config.update({ region: "us-west-2" });

比较代码大小 1492

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

// Create DynamoDB service object
var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

// Call DynamoDB to retrieve the list of tables
ddb.listTables({ Limit: 10 }, function (err, data) {
 if (err) {
 console.log("Error", err.code);
 } else {
 console.log("Tables names are ", data.TableNames);
 }
});

V3 如下所示。

import {
 DynamoDBClient,
 ListTablesCommand
} from "@aws-sdk/client-dynamodb";

const dbclient = new DynamoDBClient({ region: "us-west-2" });

try {
 const results = await dbclient.send(new ListTablesCommand);

 for (const item of results.TableNames) {
 console.log(item);
 }
} catch (err) {
 console.error(err)
}

aws-sdk 软件包会为您的应用程序增加大约 40 MB。将 var AWS = require("aws-sdk") 替换为
import {DynamoDB} from "@aws-sdk/client-dynamodb" 可将开销减少到大约 3 MB。将导
入限制为仅 DynamoDB 客户端和 ListTablesCommand 命令，可将开销减少到 100 KB 以下。

// Load the DynamoDB client and ListTablesCommand command for Node.js
import {
 DynamoDBClient,
 ListTablesCommand
} from "@aws-sdk/client-dynamodb";
const dbclient = new DynamoDBClient({});

比较代码大小 1493

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

在 v3 中调用命令

您可以使用 v2 或 v3 命令在 v3 中执行操作。要使用 v3 命令，请导入命令和所需的 Amazon 服务包客
户端，然后使用异步/等待模式通过 .send 方法运行命令。

要使用 v2 命令，您需要导入所需的 Amazon 服务包，然后使用回调或异步/等待模式直接在软件包中
运行 v2 命令。

使用 v3 命令

v3 为每个 Amazon 服务包提供了一组命令，使您能够对该 Amazon 服务执行操作。安装 Amazon
服务后，您可以浏览项目中 node-modules/@aws-sdk/client-PACKAGE_NAME/commands
folder. 的可用命令

您必须导入要使用的命令。例如，以下代码可加载 DynamoDB 服务和 CreateTableCommand 命
令。

import { DynamoDB, CreateTableCommand } from "@aws-sdk/client-dynamodb";

要以推荐的异步/等待模式调用这些命令，请使用以下语法。

CLIENT.send(new XXXCommand);

例如，以下示例使用推荐的异步/等待模式创建 DynamoDB 表。

import { DynamoDB, CreateTableCommand } from "@aws-sdk/client-dynamodb";
const dynamodb = new DynamoDB({ region: "us-west-2" });
const tableParams = {
 TableName: TABLE_NAME
};

try {
 const data = await dynamodb.send(new CreateTableCommand(tableParams));
 console.log("Success", data);
} catch (err) {
 console.log("Error", err);
};

在 v3 中调用命令 1494

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

使用 v2 命令

要在适用于 JavaScript 的 SDK 中使用 v2 命令，您需要导入完整的 Amazon 服务包，如以下代码所
示。

const { DynamoDB } = require('@aws-sdk/client-dynamodb');

要以推荐的异步/等待模式调用 v2 命令，请使用以下语法。

client.command(parameters);

以下示例使用 v2 createTable 命令，通过推荐的异步/等待模式创建 DynamoDB 表。

const { DynamoDB } = require('@aws-sdk/client-dynamodb');
const dynamoDB = new DynamoDB({ region: 'us-west-2' });
var tableParams = {
 TableName: TABLE_NAME
};
async function run() => {
 try {
 const data = await dynamoDB.createTable(tableParams);
 console.log("Success", data);
 }
 catch (err) {
 console.log("Error", err);
 }
};
run();

以下示例使用 v2 createBucket 命令，通过回调模式创建 Amazon S3 存储桶。

const { S3 } = require('@aws-sdk/client-s3');
const s3 = new S3({ region: 'us-west-2' });
var bucketParams = {
 Bucket : BUCKET_NAME
};
function run() {
 s3.createBucket(bucketParams, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {

在 v3 中调用命令 1495

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 console.log("Success", data.Location);
 }
 })
};
run();

新的中间件堆栈

借助 SDK v2，您可以通过为请求附加事件侦听器，在请求生命周期的多个阶段修改请求。这种方法可
能使调试请求生命周期中的错误变得困难。

在 v3 中，您可以使用新的中间件堆栈来控制操作调用的生命周期。这种方法有几个好处。堆栈中的每
个中间件阶段都会在对请求对象进行任何更改后调用下一个中间件阶段。这也使调试堆栈中的问题变得
更加容易，因为您可以准确地看到哪些被调用的中间件阶段导致了错误。

以下示例使用中间件向 Amazon DynamoDB 客户端（我们之前创建并演示了该客户端）添加自定义
标头。第一个参数是一个接受 next 的函数，该函数指要调用的堆栈中的下一个中间件阶段，还有
context，这是一个包含有关正在调用的操作的一些信息的对象。该函数返回一个接受 args 的函
数，这是一个包含传递给操作和请求的参数的对象。它使用 args 调用下一个中间件，然后返回结果。

dbclient.middlewareStack.add(
 (next, context) => args => {
 args.request.headers["Custom-Header"] = "value";
 return next(args);
 },
 {
 name: "my-middleware",
 override: true,
 step: "build"
 }
);

dbclient.send(new PutObjectCommand(params));

适用于 JavaScript 的 Amazon SDK v2 和 v3 之间的区别

本部分介绍了适用于 JavaScript 的 Amazon SDK 从 v2 到 v3 版本的主要变更。由于 v3 是对 v2 的模
块化重写，因此两者在一些基础概念上存在差异。您可以在我们的博客文章中了解这些变更。以下博客
文章将帮助您快速入门：

新的中间件堆栈 1496

https://www.amazonaws.cn/blogs/developer/category/developer-tools/aws-sdk-for-javascript-in-node-js/

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• Modular packages in 适用于 JavaScript 的 Amazon SDK
• Introducing Middleware Stack in Modular 适用于 JavaScript 的 Amazon SDK

以下是适用于 JavaScript 的 Amazon SDK 从 v2 到 v3 的接口更改摘要。其目的是帮助您轻松找到已熟
悉的 v2 API 在 v3 中的等效项。

主题

• 客户端构造函数

• 凭证提供程序

• Amazon S3 注意事项

• DynamoDB 文档客户端

• 等待器和签名器

• 有关特定服务客户端的说明

客户端构造函数

此列表通过 v2 配置参数编制索引。

• computeChecksums
• v2：当服务接受有效载荷主体时（目前仅 S3 支持），是否计算有效载荷主体的 MD5 校验和。
• v3：适用的 S3 命令（PutObject、PutBucketCors 等）将自动计算请求有效载荷的 MD5 校验和。

您也可以在命令的 ChecksumAlgorithm 参数中指定其他校验和算法，以使用不同的校验和算
法。更多信息请参阅 S3 功能公告。

• convertResponseTypes
• v2：解析响应数据时是否转换类型。
• v3：已弃用。此选项被视为不具备类型安全特性，因为它不会转换 JSON 响应中的转换时间戳或

base64 二进制文件等类型。

• correctClockSkew
• v2：是否应用时钟偏差校正和重试因客户端时钟偏差导致失败的请求。
• v3：已弃用。SDK 始终应用时钟偏差校正。

• systemClockOffset
• v2：以毫秒为单位的偏差值，适用于所有签名时间。
• v3：无变更。

• credentials
• v2：用于对请求进行签名的 Amazon 凭证。

客户端构造函数 1497

https://www.amazonaws.cn/blogs/developer/modular-packages-in-aws-sdk-for-javascript/
https://www.amazonaws.cn/blogs/developer/middleware-stack-modular-aws-sdk-js/
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/Config.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/Config.html#computeChecksums-property
https://www.amazonaws.cn/blogs/aws/new-additional-checksum-algorithms-for-amazon-s3/
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/Config.html#convertResponseTypes-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/Config.html#correctClockSkew-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/Config.html#systemClockOffset-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/Config.html#credentials-property

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• v3：无变更。该函数也可以是用于返回凭证的异步函数。如果该函数返回 expiration
(Date)，则系统在过期日期临近时将再次调用该函数。有关 AwsAuthInputConfig 凭证的详细
信息，请参阅 v3 API 参考。

• endpointCacheSize

• v2：存储来自端点发现操作的端点的全局缓存大小。
• v3：无变更。

• endpointDiscoveryEnabled

• v2：是否动态调用由服务提供的端点操作。
• v3：无变更。

• hostPrefixEnabled

• v2：是否将请求参数编入主机名前缀。
• v3：已弃用。SDK 会在必要时始终自动注入主机名前缀。

• httpOptions

一组要传递给底层 HTTP 请求的选项。在 v3 中，这些选项的聚合方式有所不同。您可以通过提供
新的 requestHandler 对其进行配置。以下是在 Node.js 运行时设置 http 选项的示例。您可以在
NodeHttpHandler 的 v3 API 参考中找到更多信息。

默认情况下，所有 v3 请求都使用 HTTPS。您只需提供自定义的 httpsAgent。

const { Agent } = require("https");
const { Agent: HttpAgent } = require("http");
const { NodeHttpHandler } = require("@smithy/node-http-handler");
const dynamodbClient = new DynamoDBClient({
 requestHandler: new NodeHttpHandler({
 httpsAgent: new Agent({
 /*params*/
 }),
 connectionTimeout: /*number in milliseconds*/,
 socketTimeout: /*number in milliseconds*/
 }),
});

如果您要传递的是使用 http 的自定义端点，则需提供 httpAgent。

const { Agent } = require("http");
const { NodeHttpHandler } = require("@smithy/node-http-handler");

const dynamodbClient = new DynamoDBClient({

客户端构造函数 1498

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/interfaces/_aws_sdk_middleware_signing.awsauthinputconfig-1.html#credentials
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/Config.html#endpointCacheSize-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/Config.html#endpointDiscoveryEnabled-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/Config.html#hostPrefixEnabled-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/Config.html#httpOptions-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-smithy-node-http-handler/

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 requestHandler: new NodeHttpHandler({
 httpAgent: new Agent({
 /*params*/
 }),
 }),
 endpoint: "http://example.com",
});

如果客户端在浏览器中运行，则可使用另一组选项。您可以在 FetchHttpHandler 的 v3 API 参考中找
到更多信息。

const { FetchHttpHandler } = require("@smithy/fetch-http-handler");
const dynamodbClient = new DynamoDBClient({
 requestHandler: new FetchHttpHandler({
 requestTimeout: /* number in milliseconds */
 }),
});

httpOptions 的每个选项说明如下：

• proxy

• v2：用于代理请求的 URL。
• v3：您可以遵循 Configuring proxies for Node.js 中的说明，设置具有代理程序的代理。

• agent

• v2：用于执行 HTTP 请求的代理对象。用于连接池。
• v3：您可以按照上述示例配置 httpAgent 或 httpsAgent。

• connectTimeout

• v2：将套接字设置为在连接服务器失败后经过 connectTimeout 毫秒后超时。
• v3：connectionTimeout 可在 NodeHttpHandler 选项中使用。

• timeout

• v2：请求在自动终止前可以耗费的毫秒数。
• v3：socketTimeout 可在 NodeHttpHandler 选项中使用。

• xhrAsync

• v2：SDK 是否发送异步 HTTP 请求。
• v3：已弃用。请求始终为异步。

• xhrWithCredentials

• v2：设置 XMLHttpRequest 对象的“withCredentials”属性。
• v3：不可用。SDK 继承默认的获取配置。客户端构造函数 1499

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-smithy-fetch-http-handler/
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/node-configuring-proxies.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-smithy-node-http-handler/
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-smithy-node-http-handler/
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• logger
• v2：用于响应 .write()（如流）或 .log()（如控制台对象）调用的对象，用于记录请求相关

信息。
• v3：无变更。v3 提供更精细的日志。

• maxRedirects
• v2：服务请求中允许跟随的重定向最大次数。
• v3：已弃用。SDK 不会跟随重定向，以避免意外的跨区域请求。

• maxRetries
• v2：服务请求可执行的最大重试次数。
• v3：已更改为 maxAttempts。更多信息请参阅 RetryInputConfig 的 v3 API 参考。请注

意，maxAttempts 应设置为 maxRetries + 1。

• paramValidation
• v2：是否应在发送请求前根据操作描述对输入参数进行验证。
• v3：已弃用。SDK 在运行时不会在客户端进行验证。

• region
• v2：要向其发送服务请求的区域。
• v3：无变更。它也可以是用于返回区域字符串的异步函数。

• retryDelayOptions
• v2：一组选项，用于配置可重试错误的重试延迟。
• v3：已弃用。SDK 通过 retryStrategy 客户端构造函数选项支持更灵活的重试策略。更多信息

请参阅 v3 API 参考。

• s3BucketEndpoint
• v2：提供的端点是否指向单个存储桶（如果其地址为根 API 端点，则为 false）。
• v3：已更改为 bucketEndpoint。更多信息请参阅 bucketEndpoint 的 v3 API 参考。请注意，当

设置为 true 时，需在 Bucket 请求参数中指定请求端点，原始端点将被覆盖。而在 v2 中，客户
端构造函数中的请求端点会覆盖 Bucket 请求参数。

• s3DisableBodySigning
• v2：使用签名版本 v4 时是否禁用 S3 正文签名。
• v3：已重命名为 applyChecksum。

• s3ForcePathStyle
• v2：是否强制为 S3 对象使用路径类型 URL。
• v3：已重命名为 forcePathStyle。

• s3UseArnRegion
• v2：是否使用请求资源 ARN 推断出的区域覆盖请求区域。
• v3：已重命名为 useArnRegion。

客户端构造函数 1500

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/Config.html#logger-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/Config.html#maxRedirects-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/Config.html#maxRetries-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-smithy-middleware-retry/Interface/RetryInputConfig/
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/Config.html#paramValidation-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/Config.html#region-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/Config.html#retryDelayOptions-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-smithy-util-retry/
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/Config.html#s3BucketEndpoint-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-middleware-bucket-endpoint/Interface/BucketEndpointInputConfig/
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/Config.html#s3DisableBodySigning-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/Config.html#s3ForcePathStyle-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/Config.html#s3UseArnRegion-property

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• s3UsEast1RegionalEndpoint
• v2：当区域设置为“us-east-1”时，是将 s3 请求发送到全局端点还是“us-east-1”区域端点。
• v3：已弃用。当区域设置为 us-east-1 时，S3 客户端将始终使用区域端点。您可以将区域设置

为 aws-global，以向 S3 全局端点发送请求。

• signatureCache
• v2：是否缓存用于签署请求的签名（覆盖 API 配置）。
• v3：已弃用。SDK 始终缓存哈希签名密钥。

• signatureVersion
• v2：用于签署请求的签名版本（覆盖 API 配置）。
• v3：已弃用。v2 SDK 中支持的签名 V2 已被 Amazon 弃用。v3 仅支持签名 v4。

• sslEnabled
• v2：是否为请求启用 SSL。
• v3：已重命名为 tls。

• stsRegionalEndpoints
• v2：是将 sts 请求发送到全局端点还是区域端点。
• v3：已弃用。如果设置为特定区域，STS 客户端将始终使用区域端点。您可以将区域设置为 aws-
global，以向 STS 全局端点发送请求。

• useAccelerateEndpoint
• v2：是否在 S3 服务中使用加速端点。
• v3：无变更。

凭证提供程序

在 v2 中，适用于 JavaScript 的 SDK 提供了可供选择的凭证提供程序列表，以及默认在 Node.js
上可用的凭证提供程序链，该链会尝试从所有最常见的提供程序那里加载 Amazon 凭证。适用于
JavaScript 的 SDK v3 简化了凭证提供程序的界面，使其更易于使用且更便于编写自定义凭证提供程
序。除了新增的凭证提供程序链外，适用于 JavaScript 的 SDK v3 还提供了与 v2 等效的凭证提供程序
列表。

以下是 v2 中的所有凭证提供程序及其在 v3 中的对应等效项。

默认凭证提供程序

默认凭证提供程序是适用于 JavaScript 的 SDK 在您未显式提供凭证时解析 Amazon 凭证的方式。

• v2：Node.js 中的 CredentialProviderChain 按以下顺序从来源解析凭证：
• 环境变量

凭证提供程序 1501

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/Config.html#s3UsEast1RegionalEndpoint-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/Config.html#signatureCache-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/Config.html#signatureVersion-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/Config.html#sslEnabled-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/Config.html#stsRegionalEndpoints-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/Config.html#useAccelerateEndpoint-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/CredentialProviderChain.html
https://docs.amazonaws.cn/sdk-for-javascript/v2/developer-guide/loading-node-credentials-environment.html

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 共享的凭证文件
• ECS 容器凭证
• 启动外部进程
• 指定文件中的 OIDC 令牌
• Amazon EC2 实例元数据 -

如果上述凭证提供程序之一无法解析 Amazon 凭证，则链将回退至下一个提供程序，直至解析出有
效凭证；如果所有提供程序均失败，链将引发错误。

在浏览器和 React Native 运行时中，凭证链为空，凭证必须进行显式设置。

• v3：defaultProvider。凭证来源和回退顺序在 v3 中保持不变。它还支持 Amazon IAM Identity
Center 凭证。

临时证书

• v2：ChainableTemporaryCredentials 表示从 AWS.STS 获取的临时凭证。如果未提供任何额
外参数，凭证将从 AWS.STS.getSessionToken() 操作中获取。如果提供了 IAM 角色，则将使用
AWS.STS.assumeRole() 操作获取该角色的凭证。AWS.ChainableTemporaryCredentials
与 AWS.TemporaryCredentials 在处理 masterCredentials 和刷新方面存在差
异。AWS.ChainableTemporaryCredentials 通过用户传递的 masterCredentials 刷新已过期的
凭证，从而支持 STS 凭证链。然而，AWS.TemporaryCredentials 在实例化过程中会以递归方
式折叠 masterCredentials，从而阻止了需要中间临时凭证的凭证刷新操作。

在 v2 中，原始的 TemporaryCredentials 已被弃用，替换为
ChainableTemporaryCredentials。

• v3：fromTemporaryCredentials。您可以从 @aws-sdk/credential-providers 包中调用
fromTemporaryCredentials()。示例如下：

import { FooClient } from "@aws-sdk/client-foo";
import { fromTemporaryCredentials } from "@aws-sdk/credential-providers"; // ES6
 import
// const { FooClient } = require("@aws-sdk/client-foo");
// const { fromTemporaryCredentials } = require("@aws-sdk/credential-providers"); //
 CommonJS import

const sourceCredentials = {
 // A credential can be a credential object or an async function that returns a
 credential object
};

凭证提供程序 1502

https://docs.amazonaws.cn/sdk-for-javascript/v2/developer-guide/loading-node-credentials-shared.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/RemoteCredentials.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-sourcing-external.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/TokenFileWebIdentityCredentials.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/modules/_aws_sdk_credential_providers#fromnodejsproviderchain-1
https://docs.amazonaws.cn/singlesignon/latest/userguide/what-is.html
https://docs.amazonaws.cn/singlesignon/latest/userguide/what-is.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/ChainableTemporaryCredentials.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/TemporaryCredentials.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-credential-providers/#fromtemporarycredentials

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

const client = new FooClient({
 credentials: fromTemporaryCredentials({
 masterCredentials: sourceCredentials,
 params: { RoleArn },
 }),
});

Amazon Cognito 身份凭证

从 Amazon Cognito 身份服务加载凭证，通常在浏览器中使用。

• v2：CognitoIdentityCredentials 表示通过 Amazon Cognito 身份服务从 STS Web 身份联合
验证中检索到的凭证。

• v3：Cognito Identity Credential Provider@aws/credential-providers
程序包提供了两个凭证提供程序函数：其中一个是 fromCognitoIdentity，接收
身份 ID 并调用 cognitoIdentity:GetCredentialsForIdentity；另一个是
fromCognitoIdentityPool，接收身份池 ID，首次调用时先调用 cognitoIdentity:GetId，
然后调用 fromCognitoIdentity。后续调用后者时不会重新调用 GetId。

提供程序实现了 Amazon Cognito 开发人员指南中所述的“简化流程”。“经典流程”不支持先调用
cognito:GetOpenIdToken 再调用 sts:AssumeRoleWithWebIdentity 的操作方式。如果您
需要，请向我们提交功能请求。

// fromCognitoIdentityPool example
import { fromCognitoIdentityPool } from "@aws-sdk/credential-providers"; // ES6
 import
// const { fromCognitoIdentityPool } = require("@aws-sdk/credential-providers"); //
 CommonJS import

const client = new FooClient({
 region: "us-east-1",
 credentials: fromCognitoIdentityPool({
 clientConfig: cognitoIdentityClientConfig, // Optional
 identityPoolId: "us-east-1:1699ebc0-7900-4099-b910-2df94f52a030",
 customRoleArn: "arn:aws:iam::1234567890:role/MYAPP-CognitoIdentity", // Optional
 logins: {
 // Optional
 "graph.facebook.com": "FBTOKEN",
 "www.amazon.com": "AMAZONTOKEN",
 "api.twitter.com": "TWITTERTOKEN",

凭证提供程序 1503

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/CognitoIdentityCredentials.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/modules/_aws_sdk_credential_providers.html
https://www.npmjs.com/package/@aws-sdk/credential-providers
https://www.npmjs.com/package/@aws-sdk/credential-providers
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/modules/_aws_sdk_credential_providers.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/modules/_aws_sdk_credential_providers.html
https://docs.amazonaws.cn/cognito/latest/developerguide/authentication-flow.html
https://github.com/aws/aws-sdk-js-v3/issues/new?assignees=&labels=feature-request&template=---feature-request.md&title=

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

 },
 }),
});

// fromCognitoIdentity example
import { fromCognitoIdentity } from "@aws-sdk/credential-providers"; // ES6 import
// const { fromCognitoIdentity } = require("@aws-sdk/credential-provider-cognito-
identity"); // CommonJS import

const client = new FooClient({
 region: "us-east-1",
 credentials: fromCognitoIdentity({
 clientConfig: cognitoIdentityClientConfig, // Optional
 identityId: "us-east-1:128d0a74-c82f-4553-916d-90053e4a8b0f",
 customRoleArn: "arn:aws:iam::1234567890:role/MYAPP-CognitoIdentity", // Optional
 logins: {
 // Optional
 "graph.facebook.com": "FBTOKEN",
 "www.amazon.com": "AMAZONTOKEN",
 "api.twitter.com": "TWITTERTOKEN",
 },
 }),
});

Amazon EC2 元数据（IMDS）凭证

表示从 Amazon EC2 实例上的元数据服务接收的凭证。

• v2：EC2MetadataCredentials

• v3：fromInstanceMetadata。创建一个凭证提供程序，该程序将从 Amazon EC2 实例元数据服
务获取凭证。

import { fromInstanceMetadata } from "@aws-sdk/credential-providers"; // ES6 import
// const { fromInstanceMetadata } = require("@aws-sdk/credential-providers"); //
 CommonJS import

const client = new FooClient({
 credentials: fromInstanceMetadata({
 maxRetries: 3, // Optional
 timeout: 0, // Optional
 }),

凭证提供程序 1504

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/CognitoIdentityCredentials.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-credential-providers/#fromcontainermetadata-and-frominstancemetadata

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

});

Amazon ECS 凭证

表示从指定 URL 接收的凭证。该提供程序将从由 AWS_CONTAINER_CREDENTIALS_RELATIVE_URI
或 AWS_CONTAINER_CREDENTIALS_FULL_URI 环境变量指定的 URI 请求临时凭证。

• v2：ECSCredentials 或 RemoteCredentials

• v3：fromContainerMetadata。创建一个凭证提供程序，该程序将从 Amazon ECS Container 元
数据服务获取凭证。

import { fromContainerMetadata } from "@aws-sdk/credential-providers"; // ES6 import

const client = new FooClient({
 credentials: fromContainerMetadata({
 maxRetries: 3, // Optional
 timeout: 0, // Optional
 }),
});

文件系统凭证

• v2：FileSystemCredentials。表示来自磁盘上某个 JSON 文件的凭证。
• v3：已弃用。您可以显式读取 JSON 文件并将其提供给客户端。如果您需要，请向我们提交功能请

求。

SAML 凭证提供程序

• v2：SAMLCredentials 表示从 STS SAML 支持中检索到的凭证。
• v3：不可用。如果您需要，请向我们提交功能请求。

共享凭证文件凭证

从共享凭证文件中加载凭证（默认路径为 ~/.aws/credentials，或由
AWS_SHARED_CREDENTIALS_FILE 环境变量定义）。该文件在不同 Amazon SDK 和工具中均受支
持。更多信息请参阅共享配置和凭证文件文档。

凭证提供程序 1505

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/RemoteCredentials.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-credential-providers/#fromcontainermetadata-and-frominstancemetadata
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/FileSystemCredentials.html
https://github.com/aws/aws-sdk-js-v3/issues/new?assignees=&labels=feature-request&template=---feature-request.md&title=
https://github.com/aws/aws-sdk-js-v3/issues/new?assignees=&labels=feature-request&template=---feature-request.md&title=
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SAMLCredentials.html
https://github.com/aws/aws-sdk-js-v3/issues/new?assignees=&labels=feature-request&template=---feature-request.md&title=
https://docs.amazonaws.cn/sdkref/latest/guide/creds-config-files.html

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• v2：SharedIniFileCredentials

• v3：fromIni

import { fromIni } from "@aws-sdk/credential-providers";
// const { fromIni } from("@aws-sdk/credential-providers");

const client = new FooClient({
 credentials: fromIni({
 configFilepath: "~/.aws/config", // Optional
 filepath: "~/.aws/credentials", // Optional
 mfaCodeProvider: async (mfaSerial) => {
 // implement a pop-up asking for MFA code
 return "some_code";
 }, // Optional
 profile: "default", // Optional
 clientConfig: { region }, // Optional
 }),
});

Web 身份凭证

使用 OIDC 令牌从磁盘文件中检索凭证。常用于 Amazon EKS。

• v2：TokenFileWebIdentityCredentials

• v3：fromTokenFile

import { fromTokenFile } from "@aws-sdk/credential-providers"; // ES6 import
// const { fromTokenFile } from("@aws-sdk/credential-providers"); // CommonJS import

const client = new FooClient({
 credentials: fromTokenFile({
 // Optional. If skipped, read from `AWS_ROLE_ARN` environmental variable
 roleArn: "arn:xxxx",
 // Optional. If skipped, read from `AWS_ROLE_SESSION_NAME` environmental variable
 roleSessionName: "session:a",
 // Optional. STS client config to make the assume role request.
 clientConfig: { region },
 }),

凭证提供程序 1506

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/SharedIniFileCredentials.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/modules/_aws_sdk_credential_providers.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/TokenFileWebIdentityCredentials.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-credential-providers/#fromtokenfile

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

});

Web 身份联合验证凭证

从 STS Web 身份联合验证支持中检索凭证。

• v2：WebIdentityCredentials

• v3：fromWebToken

import { fromWebToken } from "@aws-sdk/credential-providers"; // ES6 import
// const { fromWebToken } from("@aws-sdk/credential-providers"); // CommonJS import

const client = new FooClient({
 credentials: fromWebToken({
 // Optional. If skipped, read from `AWS_ROLE_ARN` environmental variable
 roleArn: "arn:xxxx",
 // Optional. If skipped, read from `AWS_ROLE_SESSION_NAME` environmental variable
 roleSessionName: "session:a",
 // Optional. STS client config to make the assume role request.
 clientConfig: { region },
 }),
});

Amazon S3 注意事项

Amazon S3 分段上传

在 v2 中，Amazon S3 客户端包含一个 upload() 操作，该操作支持利用 Amazon S3 提供的分段上
传功能上传大型对象。

v3 中提供了 @aws-sdk/lib-storage 程序包。它支持 v2 upload() 操作提供的所有功能，同时
支持 Node.js 和浏览器运行时。

Amazon S3 预签名 URL

在 v2 中，Amazon S3客户端包含 getSignedUrl() 和 getSignedUrlPromise() 操作，用于生成
URL，供用户用来从 Amazon S3 上传或下载对象。

Amazon S3 注意事项 1507

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/WebIdentityCredentials.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-credential-providers/#fromwebtoken
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/S3.html#upload-property
https://docs.amazonaws.cn/AmazonS3/latest/userguide/mpuoverview.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/mpuoverview.html
https://github.com/aws/aws-sdk-js-v3/blob/main/lib/lib-storage
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/S3.html#getSignedUrl-property
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/S3.html#getSignedUrlPromise-property

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

v3 中提供了 @aws-sdk/s3-request-presigner 程序包。该程序包包含 getSignedUrl() 和
getSignedUrlPromise() 操作的函数。这篇博客文章对该程序包进行了详细探讨。

Amazon S3 区域重定向

如果向 Amazon S3 客户端传递了错误的区域，且随后引发 PermanentRedirect（状态码 301）错
误，则 v3 的 Amazon S3 客户端会支持区域重定向（以前在 v2 中称为 Amazon S3 全局客户端）。您
可以在客户端配置中使用 followRegionRedirects 标志，使 Amazon S3 客户端遵循区域重定向，
并支持其作为全局客户端的功能。

Note

请注意，此功能可能会导致额外延迟，因为当收到状态码为 301 的 PermanentRedirect 错
误时，系统会使用更正后的区域重试失败的请求。仅当您事先无法确定存储桶所在区域时，才
应使用此功能。

Amazon S3 流式传输和缓冲响应

v3 SDK 倾向于不缓冲规模可能较大的响应。这种情况常见于 Amazon S3 的 GetObject 操作，该操
作在 v2 中返回 Buffer，但在 v3 中返回 Stream。

对于 Node.js，您必须使用流或对客户端及其请求处理程序进行垃圾回收，通过释放套接字来保持连接
处于打开状态，以便处理新流量。

// v2
const get = await s3.getObject({ ... }).promise(); // this buffers consumes the stream
 already.

// v3, consume the stream to free the socket
const get = await s3.getObject({ ... }); // object .Body has unconsumed stream
const str = await get.Body.transformToString(); // consumes the stream

// other ways to consume the stream include writing it to a file,
// passing it to another consumer like an upload, or buffering to
// a string or byte array.

有关更多信息，请参阅套接字耗尽部分。

Amazon S3 注意事项 1508

https://github.com/aws/aws-sdk-js-v3/tree/main/packages/s3-request-presigner
https://www.amazonaws.cn/blogs/developer/generate-presigned-url-modular-aws-sdk-javascript/
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-middleware-sdk-s3/Interface/S3InputConfig/
https://github.com/aws/aws-sdk-js-v3/blob/main/supplemental-docs/CLIENTS.md#request-handler-requesthandler

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

DynamoDB 文档客户端

v3 中 DynamoDB 文档客户端的基本用法

• 在 v2 中，您可以使用 AWS.DynamoDB.DocumentClient 类来调用原生 JavaScript 类型（如数
组、数字和对象）的 DynamoDB API。这通过将属性值的概念抽象化，简化了 Amazon DynamoDB
项的处理。

• v3 中提供了等效的 @aws-sdk/lib-dynamodb 客户端。该客户端与 v3 SDK 中的常规服务客户端
类似，区别在于它在构造函数中使用一个基本的 DynamoDB 客户端。

示例：

import { DynamoDBClient } from "@aws-sdk/client-dynamodb"; // ES6 import
// const { DynamoDBClient } = require("@aws-sdk/client-dynamodb"); // CommonJS import
import { DynamoDBDocumentClient, PutCommand } from "@aws-sdk/lib-dynamodb"; // ES6
 import
// const { DynamoDBDocumentClient, PutCommand } = require("@aws-sdk/lib-dynamodb"); //
 CommonJS import

// Bare-bones DynamoDB Client
const client = new DynamoDBClient({});

// Bare-bones document client
const ddbDocClient = DynamoDBDocumentClient.from(client); // client is DynamoDB client

await ddbDocClient.send(
 new PutCommand({
 TableName,
 Item: {
 id: "1",
 content: "content from DynamoDBDocumentClient",
 },
 })
);

编组时的 Undefined 值

• 在 v2 中，在对 DynamoDB 进行编组时，对象中的 undefined 值会自动被忽略。

DynamoDB 文档客户端 1509

https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/DynamoDB/DocumentClient.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/modules/_aws_sdk_lib_dynamodb.html

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

• 在 v3 中，@aws-sdk/lib-dynamodb 中的默认编组行为已变更：不再省略包含 undefined 值的
对象。为了与 v2 的功能保持一致，开发人员必须在 DynamoDB 文档客户端的 marshallOptions
中将 removeUndefinedValues 显式设置为 true。

示例：

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";
import { DynamoDBDocumentClient, PutCommand } from "@aws-sdk/lib-dynamodb";

const client = new DynamoDBClient({});

// The DynamoDBDocumentClient is configured to handle undefined values properly
const ddbDocClient = DynamoDBDocumentClient.from(client, {
 marshallOptions: {
 removeUndefinedValues: true
 }
});

await ddbDocClient.send(
 new PutCommand({
 TableName,
 Item: {
 id: "123",
 content: undefined // This value will be automatically omitted.
 array: [1, undefined], // The undefined value will be automatically omitted.
 map: { key: undefined }, // The "key" will be automatically omitted.
 set: new Set([1, undefined]), // The undefined value will be automatically
 omitted.
 };
 })
);

有关更多示例和配置，请参见程序包 README 文件。

等待器和签名器

本页面描述了在适用于 JavaScript 的 Amazon SDK v3 中使用等待器和签名器的方法。

Waiter

在 v2 中，所有等待器都绑定到服务客户端类，您需要在等待器的输入中指定客户端将要等待的预设状
态。例如，您需要调用 waitFor("bucketExists")来等待新创建的存储桶准备就绪。

等待器和签名器 1510

https://github.com/aws/aws-sdk-js-v3/blob/main/lib/lib-dynamodb/README.md
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/S3.html#bucketExists-waiter

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

在 v3 中，如果您的应用程序不需要等待器，就无需导入。此外，您只需导入需要等待特定目标状态的
等待器。这样既可以缩减捆绑包的大小，又可以提升性能。以下是存储桶创建完成后等待其准备就绪的
示例：

import { S3Client, CreateBucketCommand, waitUntilBucketExists } from "@aws-sdk/client-
s3"; // ES6 import
// const { S3Client, CreateBucketCommand, waitUntilBucketExists } = require("@aws-sdk/
client-s3"); // CommonJS import

const Bucket = "BUCKET_NAME";
const client = new S3Client({ region: "REGION" });
const command = new CreateBucketCommand({ Bucket });

await client.send(command);
await waitUntilBucketExists({ client, maxWaitTime: 60 }, { Bucket });

有关如何配置等待器的所有信息，请参阅有关 适用于 JavaScript 的 Amazon SDK v3 中的等待器的博
客文章。

Amazon CloudFront 签名器

在 v2 中，您可以使用 AWS.CloudFront.Signer 对请求进行签名，从而访问受限的 Amazon
CloudFront 分配。

v3 与 @aws-sdk/cloudfront-signer 程序包提供的相同实用程序。

Amazon RDS 签名器

在 v2 中，您可以使用 AWS.RDS.Signer 生成用于 Amazon RDS 数据库的身份验证令牌。

在 v3 中，类似的实用程序类可在 @aws-sdk/rds-signer 程序包中找到。

Amazon Polly 签名器

在 v2 中，您可以使用 AWS.Polly.Presigner 为由 Amazon Polly 服务合成的语音生成签名
URL。

在 v3 中，类似的实用程序函数可在 @aws-sdk/polly-request-presigner 程序包中找到。

等待器和签名器 1511

https://www.amazonaws.cn/blogs/developer/waiters-in-modular-aws-sdk-for-javascript/
https://www.amazonaws.cn/blogs/developer/waiters-in-modular-aws-sdk-for-javascript/
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/CloudFront/Signer.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/modules/_aws_sdk_cloudfront_signer.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/RDS/Signer.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/modules/_aws_sdk_rds_signer.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/Polly/Presigner.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/modules/_aws_sdk_polly_request_presigner.html

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

有关特定服务客户端的说明

Amazon Lambda

Lambda 调用响应类型在 v2 和 v3 中有所不同。

// v2
import { Lambda } from "@aws-sdk/client-lambda";
import AWS from "aws-sdk";

const lambda = new AWS.Lambda({ REGION });
const invoke = await lambda.invoke({
 FunctionName: "echo",
 Payload: JSON.stringify({ message: "hello" }),
}).promise();

// in v2, Lambda::invoke::Payload is automatically converted to string via a
// specific code customization.
const payloadIsString = typeof invoke.Payload === "string";
console.log("Invoke response payload type is string:", payloadIsString);

const payloadObject = JSON.parse(invoke.Payload);
console.log("Invoke response object", payloadObject);

// v3
const lambda = new Lambda({ REGION });
const invoke = await lambda.invoke({
 FunctionName: "echo",
 Payload: JSON.stringify({ message: "hello" }),
});

// in v3, Lambda::invoke::Payload is not automatically converted to a string.
// This is to reduce the number of customizations that create inconsistent behaviors.
const payloadIsByteArray = invoke.Payload instanceof Uint8Array;
console.log("Invoke response payload type is Uint8Array:", payloadIsByteArray);

// To maintain the old functionality, only one additional method call is needed:
// v3 adds a method to the Uint8Array called transformToString.
const payloadObject = JSON.parse(invoke.Payload.transformToString());
console.log("Invoke response object", payloadObject);

有关特定服务客户端的说明 1512

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

Amazon SQS

MD5 校验和

要跳过对消息正文进行 MD5 校验和计算，请在配置对象上将 md5 设置为 false。否则，SDK 默认会为
发送的消息计算校验和，并验证已检索消息的校验和。

// Example: Skip MD5 checksum in Amazon SQS
import { SQS } from "@aws-sdk/client-sqs";

new SQS({
 md5: false // note: only available in v3.547.0 and higher
});

在 Amazon SQS 操作中使用自定义 QueueUrl 作为输入参数时，v2 允许提供自定义 QueueUrl 来覆
盖 Amazon SQS 客户端的默认端点。

多区域消息

在 v3 中，您应为每个区域使用一个客户端。Amazon 区域应在客户端级别进行初始化，且不应在请求
之间更改。

import { SQS } from "@aws-sdk/client-sqs";

const sqsClients = {
 "us-east-1": new SQS({ region: "us-east-1" }),
 "us-west-2": new SQS({ region: "us-west-2" }),
};

const queues = [
 { region: "us-east-1", url: "https://sqs.us-east-1.amazonaws.com/{AWS_ACCOUNT}/
MyQueue" },
 { region: "us-west-2", url: "https://sqs.us-west-2.amazonaws.com/{AWS_ACCOUNT}/
MyOtherQueue" },
];

for (const { region, url } of queues) {
 const params = {
 MessageBody: "Hello",
 QueueUrl: url,
 };
 await sqsClients[region].sendMessage(params);

有关特定服务客户端的说明 1513

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

}

自定义终端节点

在 v3 中，当使用自定义端点（即与默认的 Amazon SQS 公有端点不同的端点）时，您应始终在
Amazon SQS 客户端中设置该端点，同时还需设置 QueueUrl 字段。

import { SQS } from "@aws-sdk/client-sqs";

const sqs = new SQS({
 // client endpoint should be specified in v3 when not the default public SQS endpoint
 for your region.
 // This is required for versions <= v3.506.0
 // This is optional but recommended for versions >= v3.507.0 (a warning will be
 emitted)
 endpoint: "https://my-custom-endpoint:8000/",
});

await sqs.sendMessage({
 QueueUrl: "https://my-custom-endpoint:8000/1234567/MyQueue",
 Message: "hello",
});

如果您未使用自定义端点，则无需在客户端设置 endpoint。

import { SQS } from "@aws-sdk/client-sqs";

const sqs = new SQS({
 region: "us-west-2",
});

await sqs.sendMessage({
 QueueUrl: "https://sqs.us-west-2.amazonaws.com/1234567/MyQueue",
 Message: "hello",
});

补充文档

下表包含补充文档的链接，这些文档将帮助您使用和了解适用于 JavaScript 的 Amazon SDK（v3）。

补充文档 1514

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

名称 备注

SDK 客户端 有关初始化 SDK 客户端及常见可配置构造函数
参数的信息。

升级说明（2.x 到 3.x） 有关从适用于 JavaScript 的 Amazon
SDK（v2）升级的信息。

在 Amazon Lambda Node.js 运行时中使用适用
于 JavaScript 的 Amazon SDK（v3）

在 Amazon Lambda 中使用适用于 JavaScript
的 Amazon SDK（v3）的最佳实践。

性能 关于 Amazon SDK 团队优化 SDK 性能的信息，
其中包含配置 SDK 以实现高效运行的技巧。

TypeScript 适用于 JavaScript 的 Amazon SDK（v3）相关
TypeScript 技巧和常见问题。

错误处理 处理适用于 JavaScript 的 Amazon SDK（v3）
相关错误的技巧。

有效实践 使用适用于 JavaScript 的 Amazon SDK（v3）
的一般建议。

补充文档 1515

https://github.com/aws/aws-sdk-js-v3/blob/main/supplemental-docs/CLIENTS.md
https://github.com/aws/aws-sdk-js-v3/blob/main/UPGRADING.md
https://github.com/aws/aws-sdk-js-v3/blob/main/supplemental-docs/AWS_LAMBDA.md
https://github.com/aws/aws-sdk-js-v3/blob/main/supplemental-docs/AWS_LAMBDA.md
https://github.com/aws/aws-sdk-js-v3/blob/main/supplemental-docs/performance/README.md
https://github.com/aws/aws-sdk-js-v3/blob/main/supplemental-docs/TYPESCRIPT.md
https://github.com/aws/aws-sdk-js-v3/blob/main/supplemental-docs/ERROR_HANDLING.md
https://github.com/aws/aws-sdk-js-v3/blob/main/supplemental-docs/EFFECTIVE_PRACTICES.md

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

适用于 JavaScript 的 Amazon SDK 版本 3 的文档历史记录

文档历史记录

下表介绍了 2020 年 10 月 20 日之后 适用于 JavaScript 的 Amazon SDK V3 版本中的重要更改。如需
获取对此文档的更新的通知，您可以订阅 RSS 源。

变更 说明 日期

现在，所有区域的所有
Amazon 服务 API 终端节点都
支持 TLS 1.3

更新了支持的 TLS 版本和用于
记录 TLS 版本的方法。

2025 年 4 月 10 日

使用 @smithy/types 生成客户
端

更新内容：使用 @smithy/t
ypes 程序包生成客户端。

2025 年 2 月 15 日

使用校验和实现数据完整性保
护

更新内容：有关自动校验和计
算的详细信息。

2025 年 1 月 15 日

Amazon S3 校验和 添加了有关如何在 Amazon S3
中使用灵活校验和的部分。

2025 年 1 月 1 日

对 DynamoDB 中基于账户的端
点的支持

在 DynamoDB 中 适用于
JavaScript 的 Amazon SDK 增
加了对基于账户的终端节点的
支持。

2024 年 9 月 26 日

SDK 日志记录的新主题 添加了描述如何记录使用的
SDK 进行 JavaScript 的 API 调
用的主题，包括有关使用中间
件记录请求的信息。

2024 年 9 月 26 日

公告 更新了顶部横幅，其中包含了
Internet Explorer 11 end-of-su
pport 提醒

2022 年 9 月 23 日

次要更新 对明确性和修复损坏的链接进
行了小幅更新。添加了指向

2022 年 8 月 22 日

文档历史记录 1516

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/amazon-sdk-javascript-guide-doc-history.rss

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

Amazon SDKs 和工具参考指
南的意识链接。

强制使用最低 TLS 版本 添加了有关 TLS 1.3 的信息。 2022 年 3 月 31 日

更新了在 Node.js 中设置凭证
的主题

更新有关在 Node.js 中为 适用
于 JavaScript 的 Amazon SDK
V3 设置凭据的主题。

2020 年 10 月 20 日

迁移到 v3 添加了描述如何迁移到 适用于
JavaScript 的 Amazon SDK v3
的主题。

2020 年 10 月 20 日

开始使用 更新了浏览器入门和开始使
用适用于 JavaScript V3 的
Amazon SDK 的 Node.js 的主
题。

2020 年 10 月 20 日

浏览器生成器 Amazon 浏览器生成器的相关
信息已被删除，因为 适用于
JavaScript 的 Amazon SDK V3
不需要这些信息。

2020 年 10 月 20 日

更新了 Amazon Transcribe 服
务示例

更新了 V3 的 Amazon
Transcribe 服务示例。 适用于
JavaScript 的 Amazon SDK

2020 年 10 月 20 日

更新了 Amazon Simple
Notification Service 服务示例

更新了 适用于 JavaScript 的
Amazon SDK V3 的 Amazon
简单通知服务示例。

2020 年 10 月 20 日

更新了 Amazon Simple Email
Service 服务示例

更新了 适用于 JavaScript 的
Amazon SDK V3 的 Amazon
简单电子邮件服务示例。

2020 年 10 月 20 日

更新了 Amazon Redshift 服务
示例

更新了 V3 的亚马逊 Redshift
服务示例。 适用于 JavaScript
的 Amazon SDK

2020 年 10 月 20 日

文档历史记录 1517

适用于 JavaScript 的 Amazon SDK SDK 版本 3 开发人员指南

更新了 Amazon Lex 服务示例 更新了 适用于 JavaScript 的
Amazon SDK V3 的 Amazon
Lex 服务示例。

2020 年 10 月 20 日

AWS Elemental MediaConvert
服务示例已更新

更新了 适用于 JavaScript 的
Amazon SDK V3 的 AWS
Elemental MediaConvert 服务
示例。

2020 年 10 月 20 日

Amazon Lambda 服务示例已
更新

更新了 适用于 JavaScript 的
Amazon SDK V3 的 Amazon
Lambda 服务示例。

2020 年 10 月 20 日

适用于 JavaScript 的 Amazon
SDK V3 开发者指南预览

已发布 适用于 JavaScript 的
Amazon SDK V3 开发者指南
的预发行版。

2020 年 10 月 19 日

文档历史记录 1518

	适用于 JavaScript 的 Amazon SDK
	Table of Contents
	
	适用于 JavaScript 的 Amazon SDK 是什么？
	开始使用 SDK
	SDK 主要版本的维护和支持
	将 SDK 与 Node.js 配合使用
	将 SDK 与 Amazon Amplify 结合使用
	将 SDK 与 Web 浏览器结合使用
	在 V3 中使用浏览器
	常见使用案例
	关于示例
	资源

	开始使用 Amazon 适用的 SDK JavaScript
	使用 SDK 进行身份验证 Amazon
	启动 Amazon 访问门户会话
	使用控制台登录凭证
	更多身份验证信息

	开始使用 Node.js
	情景
	先决条件
	步骤 1：设置软件包结构并安装客户端程序包
	步骤 2：添加必要的导入和 SDK 代码
	步骤 3：运行示例

	开始使用浏览器
	情景
	步骤 1：创建一个 Amazon Cognito 身份池和 IAM 角色
	步骤 2：将策略添加到创建的 IAM 角色
	步骤 3：添加 Amazon S3 存储桶和对象
	步骤 4：设置浏览器代码
	步骤 5：运行示例
	清理

	React Native 入门
	情景
	完成先决条件任务
	步骤 1：创建一个 Amazon Cognito 身份池
	步骤 2：将策略添加到创建的 IAM 角色
	第 3 步：使用创建应用程序 create-react-native-app
	步骤 4：安装 Amazon S3 程序包和其他依赖项
	步骤 5：编写 React Native 代码
	步骤 6：运行示例
	可能的增强功能

	设置 SDK 适用于 JavaScript
	先决条件
	设置 Amazon Node.js 环境
	支持的 Web 浏览器

	安装适用于 JavaScript
	加载适用于 JavaScript

	配置适用于 JavaScript 的 SDK
	每个服务的配置
	设置每个服务的配置

	设置 Amazon 区域
	在客户端类构造函数中
	使用环境变量
	使用共享配置文件
	设置区域的优先顺序

	设置凭证
	凭证的最佳实践
	在 Node.js 中设置凭证
	凭证提供程序链
	从 IAM 角色在 Node.js 中加载适用于亚马逊的证书 EC2
	加载 Node.js Lambda 函数的凭证

	在 Web 浏览器中设置凭证
	使用 Amazon Cognito 身份对用户进行身份验证
	配置 Amazon Cognito 身份凭证对象
	将未经身份验证的用户切换为经过身份验证的用户
	最初未经身份验证的用户
	切换为经过身份验证的用户

	Node.js 注意事项
	使用内置 Node.js 模块
	使用 npm 程序包
	在 Node.js 中配置 maxSockets
	在 Node.js 中重复使用具有保持连接功能的连接
	配置 Node.js 的代理
	在 Node.js 中注册证书包

	浏览器脚本注意事项
	为浏览器构建 SDK
	使用 SDK 生成器构建适用于 JavaScript 的 SDK

	跨源资源共享 (CORS)
	CORS 工作原理
	是否需要 CORS 配置？
	配置 Amazon S3 存储桶的 CORS
	CORS 配置示例

	使用 Webpack 捆绑应用程序
	安装 Webpack
	配置 Webpack
	运行 Webpack
	使用 Webpack 捆绑
	适用于 Node.js 的捆绑

	在适用于 JavaScript 的 SDK 中使用 Amazon 服务
	创建和调用服务对象。
	指定服务对象参数
	在 TypeScript 中使用 @smithy/types 生成客户端
	场景：从输入和输出结构中移除 undefined
	场景：缩小 Smithy-TypeScript 生成的客户端的输出有效载荷 blob 类型

	异步调用服务
	管理异步调用
	使用异步/等待
	使用 JavaScript Promise
	协调多个 Promise
	Promise 的浏览器和 Node.js 支持

	使用匿名回调函数

	创建服务客户端请求
	处理服务客户端响应
	访问在响应中返回的数据
	访问错误信息

	使用 JSON
	将 JSON 作为服务对象参数

	记录适用于 JavaScript 的 Amazon SDK调用
	使用中间件记录请求

	在 DynamoDB 中使用基于 Amazon 账户的端点
	使用 Amazon S3 校验和实现数据完整性保护
	上传对象
	使用预先计算的校验和值
	分段上传

	JavaScript 代码示例的 SDK
	JavaScript ES6/CommonJS 语法
	AWS Elemental MediaConvert 示例
	在 MediaConvert 中创建和管理转码作业
	情景
	完成先决条件任务
	定义简单的转码作业
	创建转码作业
	取消转码作业
	列出最近的转码作业

	在 MediaConvert 中使用作业模板
	情景
	完成先决条件任务
	创建作业模板
	从作业模板创建转码作业
	列出作业模板
	删除作业模板

	Amazon Lambda 示例
	Amazon Lex 示例
	Amazon Polly 示例
	情景
	先决条件任务
	使用创建 Amazon 资源 Amazon CloudFormation
	将使用 Amazon Polly 录制的音频上传到 Amazon S3

	Amazon Redshift 示例
	Amazon Redshift 示例
	先决条件任务
	创建 Amazon Redshift 集群
	修改 Amazon Redshift 集群
	查看 Amazon Redshift 集群的详细信息
	删除 Amazon Redshift 集群

	Amazon Simple Email Service 示例
	管理 Amazon SES 身份
	情景
	先决条件任务
	列出身份
	验证电子邮件地址身份
	验证域身份
	删除身份

	在 Amazon SES 中使用电子邮件模板
	情景
	先决条件任务
	列出电子邮件模板
	获取电子邮件模板
	创建电子邮件模板
	更新电子邮件模板
	删除电子邮件模板

	使用 Amazon SES 发送电子邮件
	情景
	先决条件任务
	电子邮件发送要求
	发送电子邮件
	使用模板发送电子邮件
	使用模板批量发送电子邮件

	Amazon Simple Notification Service 示例
	在 Amazon SNS 中管理主题
	情景
	先决条件任务
	创建主题
	列出主题
	删除主题
	获取主题属性
	设置主题属性

	在 Amazon SNS 中发布消息
	情景
	先决条件任务
	将消息发布到 SNS 主题

	在 Amazon SNS 中管理订阅
	情景
	先决条件任务
	列出对主题的订阅
	将电子邮件地址订阅到主题
	确认订阅

	将应用程序端点订阅到主题
	将 Lambda 函数订阅到主题
	从主题取消订阅

	使用 Amazon SNS 发送 SMS 消息
	情景
	先决条件任务
	获取 SMS 属性
	设置 SMS 属性
	检查电话号码是否已选择不接收消息
	列出已退出的电话号码
	发布 SMS 消息

	Amazon Transcribe 示例
	Amazon Transcribe 示例
	先决条件任务
	启动 Amazon Transcribe 作业
	列出 Amazon Transcribe 作业
	删除 Amazon Transcribe 作业

	Amazon Transcribe Medical 示例
	先决条件任务
	启动 Amazon Transcribe Medical 转录作业
	列出 Amazon Transcribe Medical 作业
	删除 Amazon Transcribe Medical 作业

	在亚马逊 EC2 实例上设置 Node.js
	先决条件
	过程
	创建 Amazon 机器映像 (AMI)
	相关资源

	使用 API Gateway 调用 Lambda
	完成先决条件任务
	创建 Amazon 资源
	使用创建 Amazon 资源 Amazon CloudFormation
	填充表

	创建 Amazon Lambda 函数
	配置 SDK
	扫描 DynamoDB 表
	捆绑 Lambda 函数

	部署 Lambda 函数
	配置 API Gateway 以调用 Lambda 函数
	创建 rest API
	测试 API Gateway 方法
	部署 API Gateway 方法

	删除资源

	创建计划事件以执行 Amazon Lambda 函数
	完成先决条件任务
	创建 Amazon 资源
	使用创建 Amazon 资源 Amazon CloudFormation
	填充 DynamoDB 表

	创建 Amazon Lambda 函数
	配置 SDK
	扫描 DynamoDB 表
	捆绑 Lambda 函数

	部署 Lambda 函数
	配置 CloudWatch 为调用 Lambda 函数
	删除资源

	构建 Amazon Lex 聊天机器人
	先决条件
	创建 Amazon 资源
	使用创建 Amazon 资源 Amazon CloudFormation

	创建 Amazon Lex 机器人
	创建 HTML
	创建浏览器脚本
	后续步骤

	适用于 JavaScript (v3) 代码示例的 SDK
	使用适用于 JavaScript (v3) 的 SDK 的 API Gateway 示例
	场景
	创建无服务器应用程序来管理照片
	使用 API Gateway 调用 Lambda 函数

	使用适用于 JavaScript (v3) 的软件开发工具包的 Aurora 示例
	场景
	创建 Aurora Serverless 工作项跟踪器

	使用适用于 JavaScript (v3) 的 SDK 的 Auto Scaling 示例
	操作
	AttachLoadBalancerTargetGroups

	场景
	构建和管理弹性服务

	使用适用于 JavaScript (v3) 的 SDK 的 Amazon Bedrock 示例
	开始使用
	开始使用 Amazon Bedrock

	操作
	GetFoundationModel
	ListFoundationModels

	使用适用于 JavaScript (v3) 的 SDK 的亚马逊 Bedrock 运行时示例
	开始使用
	开始使用 Amazon Bedrock

	场景
	在 Amazon Bedrock 上调用多个基础模型
	将工具与 Converse API 结合使用

	Amazon Nova
	Converse
	ConverseStream
	场景：将工具与 Converse API 搭配使用

	Amazon Nova Canvas
	InvokeModel

	Anthropic Claude
	Converse
	ConverseStream
	InvokeModel
	InvokeModelWithResponseStream

	Cohere Command
	Converse
	ConverseStream

	Meta Llama
	Converse
	ConverseStream
	InvokeModel
	InvokeModelWithResponseStream

	Mistral AI
	Converse
	ConverseStream
	InvokeModel

	使用适用于 JavaScript (v3) 的 SDK 的 Amazon 基岩代理示例
	开始使用
	开始使用 Amazon Bedrock 代理

	操作
	CreateAgent
	DeleteAgent
	GetAgent
	ListAgentActionGroups
	ListAgents

	使用适用于 JavaScript (v3) 的 SDK 的 Amazon 基岩代理运行时示例
	操作
	InvokeAgent
	InvokeFlow

	CloudWatch 使用适用于 JavaScript (v3) 的 SDK 的示例
	操作
	DeleteAlarms
	DescribeAlarmsForMetric
	DisableAlarmActions
	EnableAlarmActions
	ListMetrics
	PutMetricAlarm
	PutMetricData

	CloudWatch 使用适用于 JavaScript (v3) 的 SDK 的事件示例
	操作
	PutEvents
	PutRule
	PutTargets

	CloudWatch 使用适用于 JavaScript (v3) 的 SDK 记录示例
	操作
	CreateLogGroup
	DeleteLogGroup
	DeleteSubscriptionFilter
	DescribeLogGroups
	DescribeSubscriptionFilters
	GetQueryResults
	PutSubscriptionFilter
	StartLiveTail
	StartQuery

	场景
	运行大型查询
	使用计划的事件调用 Lambda 函数

	CodeBuild 使用适用于 JavaScript (v3) 的 SDK 的示例
	操作
	CreateProject

	使用适用于 JavaScript (v3) 的软件开发工具包的亚马逊 Cognito 身份示例
	场景
	创建 Amazon Textract 浏览器应用程序

	使用适用于 JavaScript (v3) 的软件开发工具包的 Amazon Cognito 身份提供商示例
	开始使用
	开始使用 Amazon Cognito

	操作
	AdminGetUser
	AdminInitiateAuth
	AdminRespondToAuthChallenge
	AssociateSoftwareToken
	ConfirmDevice
	ConfirmSignUp
	DeleteUser
	InitiateAuth
	ListUsers
	ResendConfirmationCode
	RespondToAuthChallenge
	SignUp
	UpdateUserPool
	VerifySoftwareToken

	场景
	使用 Lambda 函数自动确认已知用户
	向需要 MFA 的用户池注册用户

	使用适用于 (v3) 的软件开发工具包的 Amazon Comprehend 示例 JavaScript
	场景
	构建 Amazon Transcribe 流式传输应用程序
	构建 Amazon Lex 聊天机器人
	创建用于分析客户反馈的应用程序

	使用适用于 JavaScript (v3) 的软件开发工具包的亚马逊 DocumentDB 示例
	无服务器示例
	通过 Amazon DocumentDB 触发器调用 Lambda 函数

	使用适用于 (v3) 的 SDK JavaScript 的 DynamoDB 示例
	开始使用
	开始使用 DynamoDB

	基本功能
	了解基本功能

	操作
	BatchExecuteStatement
	BatchGetItem
	BatchWriteItem
	CreateTable
	DeleteItem
	DeleteTable
	DescribeTable
	DescribeTimeToLive
	ExecuteStatement
	GetItem
	ListTables
	PutItem
	Query
	Scan
	UpdateItem
	UpdateTimeToLive

	场景
	构建应用程序以将数据提交到 DynamoDB 表
	将多个值与单个属性进行比较
	有条件地更新项目的 TTL
	对表达式运算符进行计数
	创建无服务器应用程序来管理照片
	创建启用了热吞吐量的表
	创建设置了 TTL 的项目
	使用 PartiQL DELETE 删除数据
	使用 PartiQL INSERT 插入数据
	从浏览器调用 Lambda 函数
	执行高级查询操作
	执行列表操作
	执行映射操作
	执行设置操作
	使用批量 PartiQL 语句查询表
	使用 PartiQL 来查询表
	使用全局二级索引查询表
	使用 begins_with 条件查询表
	使用日期范围查询表
	使用复杂的筛选表达式查询表
	使用动态筛选表达式查询表
	使用嵌套属性查询表
	通过分区查询表
	通过强一致性读取查询表
	使用 PartiQL SELECT 查询数据
	查询 TTL 项目
	使用日期和时间模式查询表
	了解更新表达式顺序
	更新表的热吞吐量设置
	更新项目的 TTL
	使用 PartiQL UPDATE 更新数据
	使用 API Gateway 调用 Lambda 函数
	使用原子计数器操作
	使用条件运算
	使用表达式属性名称
	使用计划的事件调用 Lambda 函数

	无服务器示例
	通过 DynamoDB 触发器调用 Lambda 函数
	通过 DynamoDB 触发器报告 Lambda 函数批处理项目失败

	使用适用于 JavaScript (v3) 的软件开发工具包的亚马逊 EC2 示例
	开始使用
	你好 Amazon EC2

	基本功能
	了解基本功能

	操作
	AllocateAddress
	AssociateAddress
	AuthorizeSecurityGroupIngress
	CreateKeyPair
	CreateLaunchTemplate
	CreateSecurityGroup
	DeleteKeyPair
	DeleteLaunchTemplate
	DeleteSecurityGroup
	DescribeAddresses
	DescribeIamInstanceProfileAssociations
	DescribeImages
	DescribeInstanceTypes
	DescribeInstances
	DescribeKeyPairs
	DescribeRegions
	DescribeSecurityGroups
	DescribeSubnets
	DescribeVpcs
	DisassociateAddress
	MonitorInstances
	RebootInstances
	ReleaseAddress
	ReplaceIamInstanceProfileAssociation
	RunInstances
	StartInstances
	StopInstances
	TerminateInstances
	UnmonitorInstances

	场景
	构建和管理弹性服务

	ELB-使用适用于 JavaScript (v3) 的 SDK 的版本 2 示例
	开始使用
	你好 ELB

	操作
	CreateListener
	CreateLoadBalancer
	CreateTargetGroup
	DeleteLoadBalancer
	DeleteTargetGroup
	DescribeLoadBalancers
	DescribeTargetGroups
	DescribeTargetHealth

	场景
	构建和管理弹性服务

	Amazon Entity Resolution 数据匹配服务 使用适用于 JavaScript (v3) 的 SDK 的示例
	开始使用
	你好 Amazon Entity Resolution 数据匹配服务

	操作
	CreateMatchingWorkflow
	CreateSchemaMapping
	DeleteMatchingWorkflow
	DeleteSchemaMapping
	GetMatchingJob
	GetSchemaMapping
	ListSchemaMappings
	StartMatchingJob
	TagResource

	EventBridge 使用适用于 JavaScript (v3) 的 SDK 的示例
	操作
	PutEvents
	PutRule
	PutTargets

	场景
	使用计划的事件调用 Lambda 函数

	使用适用于 JavaScript (v3) 的软件开发工具包的亚马逊 Glacier 示例
	操作
	CreateVault
	UploadArchive

	Amazon Glue 使用适用于 JavaScript (v3) 的 SDK 的示例
	开始使用
	你好 Amazon Glue

	基本功能
	了解基本功能

	操作
	CreateCrawler
	CreateJob
	DeleteCrawler
	DeleteDatabase
	DeleteJob
	DeleteTable
	GetCrawler
	GetDatabase
	GetDatabases
	GetJob
	GetJobRun
	GetJobRuns
	GetTables
	ListJobs
	StartCrawler
	StartJobRun

	HealthImaging 使用适用于 JavaScript (v3) 的 SDK 的示例
	开始使用
	你好 HealthImaging

	操作
	CopyImageSet
	CreateDatastore
	DeleteDatastore
	DeleteImageSet
	GetDICOMImportJob
	GetDatastore
	GetImageFrame
	GetImageSet
	GetImageSetMetadata
	ListDICOMImportJobs
	ListDatastores
	ListImageSetVersions
	ListTagsForResource
	SearchImageSets
	StartDICOMImportJob
	TagResource
	UntagResource
	UpdateImageSetMetadata

	场景
	开始使用影像集和影像帧
	标记数据存储
	标记映像集

	使用适用于 JavaScript (v3) 的开发工具包的 IAM 示例
	开始使用
	开始使用 IAM

	基本功能
	了解基本功能

	操作
	AttachRolePolicy
	CreateAccessKey
	CreateAccountAlias
	CreateGroup
	CreateInstanceProfile
	CreatePolicy
	CreateRole
	CreateSAMLProvider
	CreateServiceLinkedRole
	CreateUser
	DeleteAccessKey
	DeleteAccountAlias
	DeleteGroup
	DeleteInstanceProfile
	DeletePolicy
	DeleteRole
	DeleteRolePolicy
	DeleteSAMLProvider
	DeleteServerCertificate
	DeleteServiceLinkedRole
	DeleteUser
	DetachRolePolicy
	GetAccessKeyLastUsed
	GetAccountPasswordPolicy
	GetPolicy
	GetRole
	GetServerCertificate
	GetServiceLinkedRoleDeletionStatus
	ListAccessKeys
	ListAccountAliases
	ListAttachedRolePolicies
	ListGroups
	ListPolicies
	ListRolePolicies
	ListRoles
	ListSAMLProviders
	ListServerCertificates
	ListUsers
	PutRolePolicy
	UpdateAccessKey
	UpdateServerCertificate
	UpdateUser
	UploadServerCertificate

	场景
	构建和管理弹性服务

	Amazon IoT SiteWise 使用适用于 JavaScript (v3) 的 SDK 的示例
	开始使用
	你好 Amazon IoT SiteWise

	基本功能
	了解基本功能

	操作
	BatchPutAssetPropertyValue
	CreateAsset
	CreateAssetModel
	CreateGateway
	DeleteAsset
	DeleteAssetModel
	DeleteGateway
	DescribeAssetModel
	DescribeGateway
	GetAssetPropertyValue
	ListAssetModels

	使用适用于 JavaScript (v3) 的 SDK 的 Kinesis 示例
	操作
	PutRecords

	无服务器示例
	通过 Kinesis 触发器调用 Lambda 函数
	通过 Kinesis 触发器报告 Lambda 函数批处理项目失败

	使用适用于 JavaScript (v3) 的软件开发工具包的 Lambda 示例
	开始使用
	开始使用 Lambda

	基本功能
	了解基本功能

	操作
	CreateFunction
	DeleteFunction
	GetFunction
	Invoke
	ListFunctions
	UpdateFunctionCode
	UpdateFunctionConfiguration

	场景
	使用 Lambda 函数自动确认已知用户
	创建无服务器应用程序来管理照片
	创建用于分析客户反馈的应用程序
	从浏览器调用 Lambda 函数
	使用 API Gateway 调用 Lambda 函数
	使用计划的事件调用 Lambda 函数

	无服务器示例
	使用 Lambda 函数连接到 Amazon RDS 数据库
	通过 Kinesis 触发器调用 Lambda 函数
	通过 DynamoDB 触发器调用 Lambda 函数
	通过 Amazon DocumentDB 触发器调用 Lambda 函数
	通过 Amazon MSK 触发器调用 Lambda 函数
	通过 Amazon S3 触发器调用 Lambda 函数
	通过 Amazon SNS 触发器调用 Lambda 函数
	通过 Amazon SQS 触发器调用 Lambda 函数
	通过 Kinesis 触发器报告 Lambda 函数批处理项目失败
	通过 DynamoDB 触发器报告 Lambda 函数批处理项目失败
	报告使用 Amazon SQS 触发器进行 Lambda 函数批处理项目失败

	使用适用于 JavaScript (v3) 的软件开发工具包的 Amazon Lex 示例
	场景
	构建 Amazon Lex 聊天机器人

	使用适用于 JavaScript (v3) 的软件开发工具包的亚马逊位置示例
	开始使用
	Hello Amazon Location

	基本功能
	了解基本功能

	操作
	BatchUpdateDevicePosition
	CalculateRoute
	CreateGeofenceCollection
	CreateMap
	CreateRouteCalculator
	CreateTracker
	DeleteGeofenceCollection
	DeleteMap
	DeleteRouteCalculator
	DeleteTracker
	GetDevicePosition
	PutGeofence

	使用适用于 JavaScript (v3) 的软件开发工具包的亚马逊 MSK 示例
	无服务器示例
	通过 Amazon MSK 触发器调用 Lambda 函数

	Amazon 使用适用于 JavaScript (v3) 的软件开发工具包对示例进行个性化设置
	操作
	CreateBatchInferenceJob
	CreateBatchSegmentJob
	CreateCampaign
	CreateDataset
	CreateDatasetExportJob
	CreateDatasetGroup
	CreateDatasetImportJob
	CreateEventTracker
	CreateFilter
	CreateRecommender
	CreateSchema
	CreateSolution
	CreateSolutionVersion

	Amazon 使用适用于 JavaScript (v3) 的软件开发工具包对事件进行个性化设置示例
	操作
	PutEvents
	PutItems
	PutUsers

	Amazon 使用适用于 JavaScript (v3) 的软件开发工具包对运行时进行个性化示例
	操作
	GetPersonalizedRanking
	GetRecommendations

	使用适用于 JavaScript (v3) 的软件开发工具包的亚马逊 Pinpoint 示例
	操作
	SendMessages

	使用适用于 JavaScript (v3) 的软件开发工具包的 Amazon Polly 示例
	场景
	创建用于分析客户反馈的应用程序

	使用适用于 JavaScript (v3) 的开发工具包的 Amazon RDS 示例
	场景
	创建 Aurora Serverless 工作项跟踪器

	无服务器示例
	使用 Lambda 函数连接到 Amazon RDS 数据库

	使用适用于 JavaScript (v3) 的软件开发工具包的 Amazon RDS 数据服务示例
	场景
	创建 Aurora Serverless 工作项跟踪器

	使用适用于 JavaScript (v3) 的软件开发工具包的亚马逊 Redshift 示例
	操作
	CreateCluster
	DeleteCluster
	DescribeClusters
	ModifyCluster

	使用适用于 (v3) 的软件开发工具包的亚马逊 Rekognition 示例 JavaScript
	场景
	创建无服务器应用程序来管理照片
	检测图像中的对象

	使用适用于 JavaScript (v3) 的软件开发工具包的 Amazon S3 示例
	开始使用
	开始使用 Amazon S3

	基本功能
	了解基本功能

	操作
	CopyObject
	CreateBucket
	DeleteBucket
	DeleteBucketPolicy
	DeleteBucketWebsite
	DeleteObject
	DeleteObjects
	GetBucketAcl
	GetBucketCors
	GetBucketPolicy
	GetBucketWebsite
	GetObject
	GetObjectLegalHold
	GetObjectLockConfiguration
	GetObjectRetention
	ListBuckets
	ListObjectsV2
	PutBucketAcl
	PutBucketCors
	PutBucketPolicy
	PutBucketWebsite
	PutObject
	PutObjectLegalHold
	PutObjectLockConfiguration
	PutObjectRetention

	场景
	创建预签名 URL
	创建无服务器应用程序来管理照片
	创建列出 Amazon S3 对象的网页
	创建 Amazon Textract 浏览器应用程序
	删除存储桶中的所有对象
	检测图像中的对象
	锁定 Amazon S3 对象
	提出条件请求
	上传或下载大文件

	无服务器示例
	通过 Amazon S3 触发器调用 Lambda 函数

	SageMaker 使用适用于 JavaScript (v3) 的 SDK 的人工智能示例
	开始使用
	你好 SageMaker AI

	操作
	CreatePipeline
	DeletePipeline
	DescribePipelineExecution
	StartPipelineExecution

	场景
	开始使用地理空间作业和管道

	使用适用于 JavaScript (v3) 的 SDK 的 Secrets Manager 示例
	操作
	GetSecretValue

	使用适用于 JavaScript (v3) 的软件开发工具包的 Amazon SES 示例
	操作
	CreateReceiptFilter
	CreateReceiptRule
	CreateReceiptRuleSet
	CreateTemplate
	DeleteIdentity
	DeleteReceiptFilter
	DeleteReceiptRule
	DeleteReceiptRuleSet
	DeleteTemplate
	GetTemplate
	ListIdentities
	ListReceiptFilters
	ListTemplates
	SendBulkTemplatedEmail
	SendEmail
	SendRawEmail
	SendTemplatedEmail
	UpdateTemplate
	VerifyDomainIdentity
	VerifyEmailIdentity

	场景
	构建 Amazon Transcribe 流式传输应用程序
	创建 Aurora Serverless 工作项跟踪器
	检测图像中的对象

	使用适用于 JavaScript (v3) 的软件开发工具包的亚马逊 SNS 示例
	开始使用
	开始使用 Amazon SNS

	操作
	CheckIfPhoneNumberIsOptedOut
	ConfirmSubscription
	CreateTopic
	DeleteTopic
	GetSMSAttributes
	GetTopicAttributes
	ListSubscriptions
	ListTopics
	Publish
	SetSMSAttributes
	SetTopicAttributes
	Subscribe
	Unsubscribe

	场景
	构建应用程序以将数据提交到 DynamoDB 表
	创建无服务器应用程序来管理照片
	创建 Amazon Textract 浏览器应用程序
	将消息发布到队列
	使用 API Gateway 调用 Lambda 函数
	使用计划的事件调用 Lambda 函数

	无服务器示例
	通过 Amazon SNS 触发器调用 Lambda 函数

	使用适用于 JavaScript (v3) 的软件开发工具包的亚马逊 SQS 示例
	开始使用
	开始使用 Amazon SQS

	操作
	ChangeMessageVisibility
	CreateQueue
	DeleteMessage
	DeleteMessageBatch
	DeleteQueue
	GetQueueAttributes
	GetQueueUrl
	ListQueues
	ReceiveMessage
	SendMessage
	SetQueueAttributes

	场景
	创建 Amazon Textract 浏览器应用程序
	将消息发布到队列

	无服务器示例
	通过 Amazon SQS 触发器调用 Lambda 函数
	报告使用 Amazon SQS 触发器进行 Lambda 函数批处理项目失败

	使用 JavaScript (v3) 软件开发工具包的 Step Functions 示例
	操作
	StartExecution

	Amazon STS 使用适用于 JavaScript (v3) 的 SDK 的示例
	操作
	AssumeRole

	Amazon Web Services 支持 使用适用于 JavaScript (v3) 的 SDK 的示例
	开始使用
	你好 Amazon Web Services 支持

	基本功能
	了解基本功能

	操作
	AddAttachmentsToSet
	AddCommunicationToCase
	CreateCase
	DescribeAttachment
	DescribeCases
	DescribeCommunications
	DescribeSeverityLevels
	ResolveCase

	使用适用于 JavaScript (v3) 的 Systems Manager 示例
	开始使用
	开始使用 Systems Manager

	基本功能
	了解基本功能

	操作
	CreateDocument
	CreateMaintenanceWindow
	CreateOpsItem
	DeleteDocument
	DeleteMaintenanceWindow
	DescribeOpsItems
	ListCommandInvocations
	SendCommand
	UpdateMaintenanceWindow
	UpdateOpsItem

	使用适用于 JavaScript (v3) 的软件开发工具包的 Amazon Textract 示例
	场景
	创建 Amazon Textract 浏览器应用程序
	创建用于分析客户反馈的应用程序

	使用适用于 JavaScript (v3) 的软件开发工具包的 Amazon Transcribe 示例
	操作
	DeleteMedicalTranscriptionJob
	DeleteTranscriptionJob
	ListMedicalTranscriptionJobs
	ListTranscriptionJobs
	StartMedicalTranscriptionJob
	StartTranscriptionJob

	场景
	构建 Amazon Transcribe 流式传输应用程序

	使用 JavaScript (v3) 软件开发工具包的 Amazon Translate 示例
	场景
	构建 Amazon Transcribe 流式传输应用程序
	构建 Amazon Lex 聊天机器人
	创建用于分析客户反馈的应用程序

	本 Amazon 产品或服务的安全性
	本 Amazon 产品或服务中的数据保护
	身份和访问管理
	受众
	使用身份进行身份验证
	Amazon Web Services 账户 root 用户
	联合身份
	IAM 用户和群组
	IAM 角色

	使用策略管理访问
	基于身份的策略
	基于资源的策略
	访问控制列表 (ACLs)
	其他策略类型
	多个策略类型

	如何 Amazon Web Services 服务 使用 IAM
	对 Amazon 身份和访问进行故障排除
	我无权在以下位置执行操作 Amazon
	我无权执行 iam：PassRole
	我想允许我以外的人 Amazon Web Services 账户 访问我的 Amazon 资源

	此 Amazon 产品或服务的合规性验证
	本 Amazon 产品或服务的弹性
	本 Amazon 产品或服务的基础设施安全
	强制使用最低版本的 TLS
	在 Node.js 中验证并强制执行 TLS
	验证 OpenSSL 和 TLS 的版本
	检查支持的最低和最高 TLS 版本
	强制使用最低版本的 TLS

	在浏览器脚本中验证并强制执行 TLS
	在 v 适用于 JavaScript 的 Amazon SDK 3 请求中检索 TLS 版本

	从适用于 JavaScript 的 Amazon SDK 的 2.x 版迁移到 3.x 版
	使用 codemod 将您的代码迁移到适用于 JavaScript 的 SDK v3
	使用 codemod 迁移现有的 v2 代码

	版本 3 中的新增功能
	模块化软件包
	比较代码大小
	在 v3 中调用命令
	使用 v3 命令
	使用 v2 命令

	新的中间件堆栈
	适用于 JavaScript 的 Amazon SDK v2 和 v3 之间的区别
	客户端构造函数
	凭证提供程序
	默认凭证提供程序
	临时证书
	Amazon Cognito 身份凭证
	Amazon EC2 元数据（IMDS）凭证
	Amazon ECS 凭证
	文件系统凭证
	SAML 凭证提供程序
	共享凭证文件凭证
	Web 身份凭证
	Web 身份联合验证凭证

	Amazon S3 注意事项
	Amazon S3 分段上传
	Amazon S3 预签名 URL
	Amazon S3 区域重定向
	Amazon S3 流式传输和缓冲响应

	DynamoDB 文档客户端
	v3 中 DynamoDB 文档客户端的基本用法
	编组时的 Undefined 值

	等待器和签名器
	Waiter
	Amazon CloudFront 签名器
	Amazon RDS 签名器
	Amazon Polly 签名器

	有关特定服务客户端的说明
	Amazon Lambda
	Amazon SQS
	MD5 校验和
	多区域消息
	自定义终端节点

	补充文档

	适用于 JavaScript 的 Amazon SDK 版本 3 的文档历史记录
	文档历史记录

