AWS services or capabilities described in AWS Documentation may vary by region/location. Click Getting Started with Amazon AWS to see specific differences applicable to the China (Beijing) Region.

You are viewing documentation for version 2 of the AWS SDK for Ruby. Version 3 documentation can be found here.

Class: Aws::SageMaker::Types::MonitoringJobDefinition

Inherits:
Struct
  • Object
show all
Defined in:
(unknown)

Overview

Note:

When passing MonitoringJobDefinition as input to an Aws::Client method, you can use a vanilla Hash:

{
  baseline_config: {
    constraints_resource: {
      s3_uri: "S3Uri",
    },
    statistics_resource: {
      s3_uri: "S3Uri",
    },
  },
  monitoring_inputs: [ # required
    {
      endpoint_input: { # required
        endpoint_name: "EndpointName", # required
        local_path: "ProcessingLocalPath", # required
        s3_input_mode: "Pipe", # accepts Pipe, File
        s3_data_distribution_type: "FullyReplicated", # accepts FullyReplicated, ShardedByS3Key
      },
    },
  ],
  monitoring_output_config: { # required
    monitoring_outputs: [ # required
      {
        s3_output: { # required
          s3_uri: "MonitoringS3Uri", # required
          local_path: "ProcessingLocalPath", # required
          s3_upload_mode: "Continuous", # accepts Continuous, EndOfJob
        },
      },
    ],
    kms_key_id: "KmsKeyId",
  },
  monitoring_resources: { # required
    cluster_config: { # required
      instance_count: 1, # required
      instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
      volume_size_in_gb: 1, # required
      volume_kms_key_id: "KmsKeyId",
    },
  },
  monitoring_app_specification: { # required
    image_uri: "ImageUri", # required
    container_entrypoint: ["ContainerEntrypointString"],
    container_arguments: ["ContainerArgument"],
    record_preprocessor_source_uri: "S3Uri",
    post_analytics_processor_source_uri: "S3Uri",
  },
  stopping_condition: {
    max_runtime_in_seconds: 1, # required
  },
  environment: {
    "ProcessingEnvironmentKey" => "ProcessingEnvironmentValue",
  },
  network_config: {
    enable_inter_container_traffic_encryption: false,
    enable_network_isolation: false,
    vpc_config: {
      security_group_ids: ["SecurityGroupId"], # required
      subnets: ["SubnetId"], # required
    },
  },
  role_arn: "RoleArn", # required
}

Defines the monitoring job.

Returned by:

Instance Attribute Summary collapse

Instance Attribute Details

#baseline_configTypes::MonitoringBaselineConfig

Baseline configuration used to validate that the data conforms to the specified constraints and statistics

Returns:

#environmentHash<String,String>

Sets the environment variables in the Docker container.

Returns:

  • (Hash<String,String>)

    Sets the environment variables in the Docker container.

#monitoring_app_specificationTypes::MonitoringAppSpecification

Configures the monitoring job to run a specified Docker container image.

Returns:

#monitoring_inputsArray<Types::MonitoringInput>

The array of inputs for the monitoring job. Currently we support monitoring an Amazon SageMaker Endpoint.

Returns:

#monitoring_output_configTypes::MonitoringOutputConfig

The array of outputs from the monitoring job to be uploaded to Amazon Simple Storage Service (Amazon S3).

Returns:

#monitoring_resourcesTypes::MonitoringResources

Identifies the resources, ML compute instances, and ML storage volumes to deploy for a monitoring job. In distributed processing, you specify more than one instance.

Returns:

  • (Types::MonitoringResources)

    Identifies the resources, ML compute instances, and ML storage volumes to deploy for a monitoring job.

#network_configTypes::NetworkConfig

Specifies networking options for an monitoring job.

Returns:

#role_arnString

The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.

Returns:

  • (String)

    The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.

#stopping_conditionTypes::MonitoringStoppingCondition

Specifies a time limit for how long the monitoring job is allowed to run.

Returns: