修补 AMI 并更新 Auto Scaling 组 - Amazon Systems Manager
Amazon Web Services 文档中描述的 Amazon Web Services 服务或功能可能因区域而异。要查看适用于中国区域的差异,请参阅中国的 Amazon Web Services 服务入门

修补 AMI 并更新 Auto Scaling 组

以下示例使用新修补的 AMI 更新自动扩缩组。此方法确保新映像自动可供使用 Auto Scaling 组的不同计算环境使用。

此示例中自动化的最后一步使用 Python 函数创建将使用新修补的 AMI 的新启动模板。然后更新自动扩缩组以使用新的启动模板。在此类型的 Auto Scaling 方案中,用户可以终止 Auto Scaling 组中的现有实例以强制启动使用新映像的实例。或者,用户可以等待以允许缩减或扩展事件正常启动较新的实例。

开始前的准备工作

在开始本示例之前,请完成以下任务。

  • 为自动化(Amazon Systems Manager 的一项功能)配置 IAM 角色。Systems Manager 需要实例配置文件角色和服务角色 ARN 来处理自动化。有关更多信息,请参阅设置自动化

创建 PatchAMIAndUpdateASG 运行手册

使用以下过程创建 PatchAMIAndUpdateASG 运行手册,它将修补您为 SourceAMI 参数指定的 AMI。运行手册还会更新自动扩缩组以使用最新修补后的 AMI。

创建运行手册并运行

  1. 访问 https://console.aws.amazon.com/systems-manager/,打开 Amazon Systems Manager 控制台。

  2. 在导航窗格中,选择 文档

    -或者-

    如果首先打开 Amazon Systems Manager 主页,选择菜单图标 ( ) 以打开导航窗格,然后在导航窗格中选择文档

  3. 创建文档下拉菜单中,选择自动化

  4. 名称字段中,输入 PatchAMIAndUpdateASG

  5. 选择 Editor(编辑器)选项卡,然后选择 Edit(编辑)。

  6. 出现提示时选择 OK(确定),然后删除 Document editor(文档编辑器)字段中的内容。

  7. Document editor(文档编辑器)字段中,粘贴以下 YAML 示例运行手册内容。

    --- description: Systems Manager Automation Demo - Patch AMI and Update ASG schemaVersion: '0.3' assumeRole: '{{ AutomationAssumeRole }}' parameters: AutomationAssumeRole: type: String description: '(Required) The ARN of the role that allows Automation to perform the actions on your behalf. If no role is specified, Systems Manager Automation uses your IAM permissions to execute this document.' default: '' SourceAMI: type: String description: '(Required) The ID of the AMI you want to patch.' SubnetId: type: String description: '(Required) The ID of the subnet where the instance from the SourceAMI parameter is launched.' SecurityGroupIds: type: StringList description: '(Required) The IDs of the security groups to associate with the instance launched from the SourceAMI parameter.' NewAMI: type: String description: '(Optional) The name of of newly patched AMI.' default: 'patchedAMI-{{global:DATE_TIME}}' TargetASG: type: String description: '(Required) The name of the Auto Scaling group you want to update.' InstanceProfile: type: String description: '(Required) The name of the IAM instance profile you want the source instance to use.' SnapshotId: type: String description: (Optional) The snapshot ID to use to retrieve a patch baseline snapshot. default: '' RebootOption: type: String description: '(Optional) Reboot behavior after a patch Install operation. If you choose NoReboot and patches are installed, the instance is marked as non-compliant until a subsequent reboot and scan.' allowedValues: - NoReboot - RebootIfNeeded default: RebootIfNeeded Operation: type: String description: (Optional) The update or configuration to perform on the instance. The system checks if patches specified in the patch baseline are installed on the instance. The install operation installs patches missing from the baseline. allowedValues: - Install - Scan default: Install mainSteps: - name: startInstances action: 'aws:runInstances' timeoutSeconds: 1200 maxAttempts: 1 onFailure: Abort inputs: ImageId: '{{ SourceAMI }}' InstanceType: m5.large MinInstanceCount: 1 MaxInstanceCount: 1 IamInstanceProfileName: '{{ InstanceProfile }}' SubnetId: '{{ SubnetId }}' SecurityGroupIds: '{{ SecurityGroupIds }}' - name: verifyInstanceManaged action: 'aws:waitForAwsResourceProperty' timeoutSeconds: 600 inputs: Service: ssm Api: DescribeInstanceInformation InstanceInformationFilterList: - key: InstanceIds valueSet: - '{{ startInstances.InstanceIds }}' PropertySelector: '$.InstanceInformationList[0].PingStatus' DesiredValues: - Online onFailure: 'step:terminateInstance' - name: installPatches action: 'aws:runCommand' timeoutSeconds: 7200 onFailure: Abort inputs: DocumentName: AWS-RunPatchBaseline Parameters: SnapshotId: '{{SnapshotId}}' RebootOption: '{{RebootOption}}' Operation: '{{Operation}}' InstanceIds: - '{{ startInstances.InstanceIds }}' - name: stopInstance action: 'aws:changeInstanceState' maxAttempts: 1 onFailure: Continue inputs: InstanceIds: - '{{ startInstances.InstanceIds }}' DesiredState: stopped - name: createImage action: 'aws:createImage' maxAttempts: 1 onFailure: Continue inputs: InstanceId: '{{ startInstances.InstanceIds }}' ImageName: '{{ NewAMI }}' NoReboot: false ImageDescription: Patched AMI created by Automation - name: terminateInstance action: 'aws:changeInstanceState' maxAttempts: 1 onFailure: Continue inputs: InstanceIds: - '{{ startInstances.InstanceIds }}' DesiredState: terminated - name: updateASG action: 'aws:executeScript' timeoutSeconds: 300 maxAttempts: 1 onFailure: Abort inputs: Runtime: python3.8 Handler: update_asg InputPayload: TargetASG: '{{TargetASG}}' NewAMI: '{{createImage.ImageId}}' Script: |- from __future__ import print_function import datetime import json import time import boto3 # create auto scaling and ec2 client asg = boto3.client('autoscaling') ec2 = boto3.client('ec2') def update_asg(event, context): print("Received event: " + json.dumps(event, indent=2)) target_asg = event['TargetASG'] new_ami = event['NewAMI'] # get object for the ASG we're going to update, filter by name of target ASG asg_query = asg.describe_auto_scaling_groups(AutoScalingGroupNames=[target_asg]) if 'AutoScalingGroups' not in asg_query or not asg_query['AutoScalingGroups']: return 'No ASG found matching the value you specified.' # gets details of an instance from the ASG that we'll use to model the new launch template after source_instance_id = asg_query.get('AutoScalingGroups')[0]['Instances'][0]['InstanceId'] instance_properties = ec2.describe_instances( InstanceIds=[source_instance_id] ) source_instance = instance_properties['Reservations'][0]['Instances'][0] # create list of security group IDs security_groups = [] for group in source_instance['SecurityGroups']: security_groups.append(group['GroupId']) # create a list of dictionary objects for block device mappings mappings = [] for block in source_instance['BlockDeviceMappings']: volume_query = ec2.describe_volumes( VolumeIds=[block['Ebs']['VolumeId']] ) volume_details = volume_query['Volumes'] device_name = block['DeviceName'] volume_size = volume_details[0]['Size'] volume_type = volume_details[0]['VolumeType'] device = {'DeviceName': device_name, 'Ebs': {'VolumeSize': volume_size, 'VolumeType': volume_type}} mappings.append(device) # create new launch template using details returned from instance in the ASG and specify the newly patched AMI time_stamp = time.time() time_stamp_string = datetime.datetime.fromtimestamp(time_stamp).strftime('%m-%d-%Y_%H-%M-%S') new_template_name = f'{new_ami}_{time_stamp_string}' try: ec2.create_launch_template( LaunchTemplateName=new_template_name, LaunchTemplateData={ 'BlockDeviceMappings': mappings, 'ImageId': new_ami, 'InstanceType': source_instance['InstanceType'], 'IamInstanceProfile': { 'Arn': source_instance['IamInstanceProfile']['Arn'] }, 'KeyName': source_instance['KeyName'], 'SecurityGroupIds': security_groups } ) except Exception as e: return f'Exception caught: {str(e)}' else: # update ASG to use new launch template asg.update_auto_scaling_group( AutoScalingGroupName=target_asg, LaunchTemplate={ 'LaunchTemplateName': new_template_name } ) return f'Updated ASG {target_asg} with new launch template {new_template_name} which uses AMI {new_ami}.' outputs: - createImage.ImageId
  8. 选择创建自动化

  9. 在导航窗格中,选择自动化,然后选择执行自动化

  10. Choose document(选择文档)页面上,选择 Owned by me(我拥有的)选项卡。

  11. 搜索 PatchAMIAndUpdateASG 运行手册,然后选择 PatchAMIAndUpdateASG 卡中的按钮。

  12. 选择 Next (下一步)

  13. 选择简单执行

  14. 指定输入参数的值。确保您指定的 SubnetIdSecurityGroupIds 允许访问公有 Systems Manager 端点或 Systems Manager 的接口端点。

  15. 选择执行

  16. 自动化完成后,在 Amazon EC2 控制台中,选择 Auto Scaling(自动扩缩),然后选择 Launch Templates(启动配置)。验证您是否看到了新的启动模板,并且它使用了新的 AMI。

  17. 选择 Auto Scaling,然后选择 Auto Scaling 组. 验证自动扩缩组使用了新的启动模板。

  18. 终止 Auto Scaling 组中的一个或多个实例。替换实例使用新的 AMI 启动。