Deep Learning AMI with Conda - Deep Learning AMI
Services or capabilities described in Amazon Web Services documentation might vary by Region. To see the differences applicable to the China Regions, see Getting Started with Amazon Web Services in China (PDF).

Deep Learning AMI with Conda

The Conda DLAMI uses conda virtual environments, they are present either multi-framework or single framework DLAMIs. These environments are configured to keep the different framework installations separate and streamline switching between frameworks. This is great for learning and experimenting with all of the frameworks the DLAMI has to offer. Most users find that the new Deep Learning AMI with Conda is perfect for them.

They are updated often with the latest versions from the frameworks, and have the latest GPU drivers and software. They are generally referred to as the Amazon Deep Learning AMI in most documents. These DLAMIs support Ubuntu20.04, Amazon Linux 2 Operating systems. Operating systems support depends on support from upstream OS.

Stable Versus Release Candidates

The Conda AMIs use optimized binaries of the most recent formal releases from each framework. Release candidates and experimental features are not to be expected. The optimizations depend on the framework's support for acceleration technologies like Intel's MKL DNN, which speeds up training and inference on C5 and C4 CPU instance types. The binaries are also compiled to support advanced Intel instruction sets including but not limited to AVX, AVX-2, SSE4.1, and SSE4.2. These accelerate vector and floating point operations on Intel CPU architectures. Additionally, for GPU instance types, the CUDA and cuDNN are updated with whichever version the latest official release supports.

The Deep Learning AMI with Conda automatically installs the most optimized version of the framework for your Amazon EC2 instance upon the framework's first activation. For more information, refer to Using the Deep Learning AMI with Conda.

If you want to install from source, using custom or optimized build options, the Deep Learning Base AMIs might be a better option for you.

Python 2 Deprecation

The Python open source community has officially ended support for Python 2 on January 1, 2020. The TensorFlow and PyTorch community have announced that the TensorFlow 2.1 and PyTorch 1.4 releases are the last ones supporting Python 2. Previous releases of the DLAMI (v26, v25, etc) that contain Python 2 Conda environments continue to be available. However, we provide updates to the Python 2 Conda environments on previously published DLAMI versions only if there are security fixes published by the open-source community for those versions. DLAMI releases with the latest versions of the TensorFlow and PyTorch frameworks do not contain the Python 2 Conda environments.

CUDA Support

Specific CUDA version numbers can be found in the GPU DLAMI release notes.

Next Up

DLAMI Architecture Options