Using TensorFlow-Neuron and the Amazon Neuron Compiler
This tutorial shows how to use the Amazon Neuron compiler to compile the Keras ResNet-50 model and export it as a saved model in SavedModel format. This format is a typical TensorFlow model interchangeable format. You also learn how to run inference on an Inf1 instance with example input.
For more information about the Neuron SDK, see the Amazon Neuron SDK documentation
Prerequisites
Before using this tutorial, you should have completed the set up steps in Launching a DLAMI Instance with Amazon Neuron. You should also have a familiarity with deep learning and using the DLAMI.
Activate the Conda environment
Activate the TensorFlow-Neuron conda environment using the following command:
source activate aws_neuron_tensorflow_p36
To exit the current conda environment, run the following command:
source deactivate
Resnet50 Compilation
Create a Python script called tensorflow_compile_resnet50.py
that
has the following content. This Python script compiles the Keras ResNet50 model and
exports it as a saved model.
import os import time import shutil import tensorflow as tf import tensorflow.neuron as tfn import tensorflow.compat.v1.keras as keras from tensorflow.keras.applications.resnet50 import ResNet50 from tensorflow.keras.applications.resnet50 import preprocess_input # Create a workspace WORKSPACE = './ws_resnet50' os.makedirs(WORKSPACE, exist_ok=True) # Prepare export directory (old one removed) model_dir = os.path.join(WORKSPACE, 'resnet50') compiled_model_dir = os.path.join(WORKSPACE, 'resnet50_neuron') shutil.rmtree(model_dir, ignore_errors=True) shutil.rmtree(compiled_model_dir, ignore_errors=True) # Instantiate Keras ResNet50 model keras.backend.set_learning_phase(0) model = ResNet50(weights='imagenet') # Export SavedModel tf.saved_model.simple_save( session = keras.backend.get_session(), export_dir = model_dir, inputs = {'input': model.inputs[0]}, outputs = {'output': model.outputs[0]}) # Compile using Neuron tfn.saved_model.compile(model_dir, compiled_model_dir) # Prepare SavedModel for uploading to Inf1 instance shutil.make_archive(compiled_model_dir, 'zip', WORKSPACE, 'resnet50_neuron')
Compile the model using the following command:
python tensorflow_compile_resnet50.py
The compilation process will take a few minutes. When it completes, your output should look like the following:
... INFO:tensorflow:fusing subgraph neuron_op_d6f098c01c780733 with neuron-cc INFO:tensorflow:Number of operations in TensorFlow session: 4638 INFO:tensorflow:Number of operations after tf.neuron optimizations: 556 INFO:tensorflow:Number of operations placed on Neuron runtime: 554 INFO:tensorflow:Successfully converted ./ws_resnet50/resnet50 to ./ws_resnet50/resnet50_neuron ...
After compilation, the saved model is zipped
at ws_resnet50/resnet50_neuron.zip
. Unzip the
model and download the sample image for inference using the
following commands:
unzip ws_resnet50/resnet50_neuron.zip -d . curl -O https://raw.githubusercontent.com/awslabs/mxnet-model-server/master/docs/images/kitten_small.jpg
ResNet50 Inference
Create a Python script called tensorflow_infer_resnet50.py
that
has the following content. This script runs inference on the downloaded model using a
previously compiled inference model.
import os import numpy as np import tensorflow as tf from tensorflow.keras.preprocessing import image from tensorflow.keras.applications import resnet50 # Create input from image img_sgl = image.load_img('kitten_small.jpg', target_size=(224, 224)) img_arr = image.img_to_array(img_sgl) img_arr2 = np.expand_dims(img_arr, axis=0) img_arr3 = resnet50.preprocess_input(img_arr2) # Load model COMPILED_MODEL_DIR = './ws_resnet50/resnet50_neuron/' predictor_inferentia = tf.contrib.predictor.from_saved_model(COMPILED_MODEL_DIR) # Run inference model_feed_dict={'input': img_arr3} infa_rslts = predictor_inferentia(model_feed_dict); # Display results print(resnet50.decode_predictions(infa_rslts["output"], top=5)[0])
Run inference on the model using the following command:
python tensorflow_infer_resnet50.py
Your output should look like the following:
... [('n02123045', 'tabby', 0.6918919), ('n02127052', 'lynx', 0.12770271), ('n02123159', 'tiger_cat', 0.08277027), ('n02124075', 'Egyptian_cat', 0.06418919), ('n02128757', 'snow_leopard', 0.009290541)]
Next Step
Using Amazon Neuron TensorFlow Serving