Amazon EMR on EKS 6.13.0 releases
This page describes the new and updated functionality for Amazon EMR that is specific to the Amazon EMR on EKS deployment. For details about Amazon EMR running on Amazon EC2 and about the Amazon EMR 6.13.0 release in general, see Amazon EMR 6.13.0 in the Amazon EMR Release Guide.
Amazon EMR on EKS 6.13 releases
The following Amazon EMR 6.13.0 releases are available for Amazon EMR on EKS. Select a specific emr-6.13.0-XXXX release to view more details such as the related container image tag.
-
emr-6.13.0-spark-rapids-latest
-
emr-6.13.0-spark-rapids-20230814
-
emr-6.13.0-java11-latest
-
emr-6.13.0-java11-20230814
-
emr-6.13.0-java17-latest
-
emr-6.13.0-java17-20230814
-
emr-6.13.0-java17-al2023-latest
-
emr-6.13.0-java17-al2023-20230814
-
emr-6.13.0-spark-rapids-java17-latest
-
emr-6.13.0-spark-rapids-java17-20230814
-
emr-6.13.0-spark-rapids-java17-al2023-latest
-
emr-6.13.0-spark-rapids-java17-al2023-20230814
-
notebook-spark/emr-6.13.0-latest
-
notebook-spark/emr-6.13.0-20230814
-
notebook-spark/emr-6.13.0-spark-rapids-latest
-
notebook-spark/emr-6.13.0-spark-rapids-20230814
-
notebook-spark/emr-6.13.0-java11-latest
-
notebook-spark/emr-6.13.0-java11-20230814
-
notebook-spark/emr-6.13.0-java17-latest
-
notebook-spark/emr-6.13.0-java17-20230814
-
notebook-spark/emr-6.13.0-java17-al2023-latest
-
notebook-spark/emr-6.13.0-java17-al2023-20230814
-
notebook-python/emr-6.13.0-latest
-
notebook-python/emr-6.13.0-20230814
-
notebook-python/emr-6.13.0-spark-rapids-latest
-
notebook-python/emr-6.13.0-spark-rapids-20230814
-
notebook-python/emr-6.13.0-java11-latest
-
notebook-python/emr-6.13.0-java11-20230814
-
notebook-python/emr-6.13.0-java17-latest
-
notebook-python/emr-6.13.0-java17-20230814
-
notebook-python/emr-6.13.0-java17-al2023-latest
-
notebook-python/emr-6.13.0-java17-al2023-20230814
Release notes
Release notes for Amazon EMR on EKS 6.13.0
-
Supported applications ‐ Amazon SDK for Java 1.12.513, Apache Spark 3.4.1-amzn-0, Apache Hudi 0.13.1-amzn-0, Apache Iceberg 1.3.0-amzn-0, Delta 2.4.0, Apache Spark RAPIDS 23.06.0-amzn-1, Jupyter Enterprise Gateway 2.6.0.amzn
-
Supported components ‐
aws-sagemaker-spark-sdk
,emr-ddb
,emr-goodies
,emr-s3-select
,emrfs
,hadoop-client
,hudi
,hudi-spark
,iceberg
,spark-kubernetes
. -
Supported configuration classifications
For use with StartJobRun and CreateManagedEndpoint APIs:
Classifications Descriptions core-site
Change values in the
core-site.xml
Hadoop file.emrfs-site
Change EMRFS settings.
spark-metrics
Change values in the
metrics.properties
Spark file.spark-defaults
Change values in the
spark-defaults.conf
Spark file.spark-env
Change values in the Spark environment.
spark-hive-site
Change values in the
hive-site.xml
Spark file.spark-log4j
Change values in the
log4j2.properties
Spark file.emr-job-submitter
Configuration for job submitter pod.
For use specifically with CreateManagedEndpoint APIs:
Classifications Descriptions jeg-config
Change values in Jupyter Enterprise Gateway
jupyter_enterprise_gateway_config.py
file.jupyter-kernel-overrides
Change value for the Kernel Image in Jupyter Kernel Spec file.
Configuration classifications allow you to customize applications. These often correspond to a configuration XML file for the application, such as
spark-hive-site.xml
. For more information, see Configure Applications.
Notable features
The following features are included with the 6.13 release of Amazon EMR on EKS.
-
Amazon Linux 2023 - With Amazon EMR on EKS 6.13 and higher, you can launch Spark with AL2023 as operating system together with Java 17 runtime. To do this, use release label with
al2023
in its name. For example:emr-6.13.0-java17-al2023-latest
. We recommend that you validate and run performance tests before you move your production workloads to AL2023 and Java 17. -
Amazon EMR on EKS with Apache Flink (public preview) - Amazon EMR on EKS releases 6.13 and higher support Apache Flink, available in public preview. With this launch, you can run your Apache Flink-based application along with other types of applications on the same Amazon EKS cluster. This helps improve resource utilization and simplify infrastructure management. If you already run big data frameworks on Amazon EKS, you can now let Amazon EMR automate your provisioning and management.