Using Neptune full-text search in Gremlin queries - Amazon Neptune
Services or capabilities described in Amazon Web Services documentation might vary by Region. To see the differences applicable to the China Regions, see Getting Started with Amazon Web Services in China.

Using Neptune full-text search in Gremlin queries

NeptuneSearchStep enables full-text search queries for the part of a Gremlin traversal that is not converted into Neptune steps. For example, consider a query like the following.

g.withSideEffect("Neptune#fts.endpoint", "your-es-endpoint-URL") .V() .tail(100) .has("name", "Neptune#fts mark*") <== # Limit the search on name

This query is converted into the following optimized traversal in Neptune.

Neptune steps: [ NeptuneGraphQueryStep(Vertex) { JoinGroupNode { PatternNode[(?1, <~label>, ?2, <~>) . project distinct ?1 .], {estimatedCardinality=INFINITY} }, annotations={path=[Vertex(?1):GraphStep], maxVarId=4} }, NeptuneTraverserConverterStep ] + not converted into Neptune steps: [NeptuneTailGlobalStep(100), NeptuneTinkerpopTraverserConverterStep, NeptuneSearchStep { JoinGroupNode { SearchNode[(idVar=?3, query=mark*, field=name) . project ask .], {endpoint=your-OpenSearch-endpoint-URL} } JoinGroupNode { SearchNode[(idVar=?3, query=mark*, field=name) . project ask .], {endpoint=your-OpenSearch-endpoint-URL} } }]

The following examples are of Gremlin queries against air-routes data:

Gremlin basic case-insensitive match query

g.withSideEffect("Neptune#fts.endpoint", "your-OpenSearch-endpoint-URL") .withSideEffect('Neptune#fts.queryType', 'match') .V().has("city","Neptune#fts dallas") ==>v[186] ==>v[8]

Gremlin match query

g.withSideEffect("Neptune#fts.endpoint", "your-OpenSearch-endpoint-URL") .withSideEffect('Neptune#fts.queryType', 'match') .V().has("city","Neptune#fts southampton") .local(values('code','city').fold()) .limit(5) ==>[SOU, Southampton]

Gremlin fuzzy query

g.withSideEffect("Neptune#fts.endpoint", "your-OpenSearch-endpoint-URL") .V().has("city","Neptune#fts allas~").values('city').limit(5) ==>Dallas ==>Dallas ==>Walla Walla ==>Velas ==>Altai

Gremlin query_string fuzzy query

g.withSideEffect("Neptune#fts.endpoint", "your-OpenSearch-endpoint-URL") .withSideEffect('Neptune#fts.queryType', 'query_string') .V().has("city","Neptune#fts allas~").values('city').limit(5) ==>Dallas ==>Dallas

Gremlin query_string regular expression query

g.withSideEffect("Neptune#fts.endpoint", "your-OpenSearch-endpoint-URL") .withSideEffect('Neptune#fts.queryType', 'query_string') .V().has("city","Neptune#fts /[dp]allas/").values('city').limit(5) ==>Dallas ==>Dallas

Gremlin hybrid query

This query uses a Neptune internal index and the OpenSearch index in the same query.

g.withSideEffect("Neptune#fts.endpoint", "your-OpenSearch-endpoint-URL") .V().has("region","GB-ENG") .has('city','Neptune#fts L*') .values('city') .dedup() .limit(10) ==>London ==>Leeds ==>Liverpool ==>Land's End

Simple Gremlin full-text search example

g.withSideEffect("Neptune#fts.endpoint", "your-OpenSearch-endpoint-URL") .V().has('desc','Neptune#fts regional municipal') .local(values('code','desc').fold()) .limit(100) ==>[HYA, Barnstable Municipal Boardman Polando Field] ==>[SPS, Sheppard Air Force Base-Wichita Falls Municipal Airport] ==>[ABR, Aberdeen Regional Airport] ==>[SLK, Adirondack Regional Airport] ==>[BFD, Bradford Regional Airport] ==>[EAR, Kearney Regional Airport] ==>[ROT, Rotorua Regional Airport] ==>[YHD, Dryden Regional Airport] ==>[TEX, Telluride Regional Airport] ==>[WOL, Illawarra Regional Airport] ==>[TUP, Tupelo Regional Airport] ==>[COU, Columbia Regional Airport] ==>[MHK, Manhattan Regional Airport] ==>[BJI, Bemidji Regional Airport] ==>[HAS, Hail Regional Airport] ==>[ALO, Waterloo Regional Airport] ==>[SHV, Shreveport Regional Airport] ==>[ABI, Abilene Regional Airport] ==>[GIZ, Jizan Regional Airport] ==>[USA, Concord Regional Airport] ==>[JMS, Jamestown Regional Airport] ==>[COS, City of Colorado Springs Municipal Airport] ==>[PKB, Mid Ohio Valley Regional Airport]

Gremlin query using query_string With '+' and '-' Operators

Although the query_string query type is much less forgiving than the default simple_query_string type, it does allow for more precise queries. The first query below uses query_string, while the second use the default simple_query_string:

g.withSideEffect("Neptune#fts.endpoint", "your-OpenSearch-endpoint-URL") .withSideEffect('Neptune#fts.queryType', 'query_string') . V().has('desc','Neptune#fts +London -(Stansted|Gatwick)') .local(values('code','desc').fold()) .limit(10) ==>[LHR, London Heathrow] ==>[YXU, London Airport] ==>[LTN, London Luton Airport] ==>[SEN, London Southend Airport] ==>[LCY, London City Airport]

Notice how simple_query_string in the examples below quietly ignores the '+' and '-' operators:

g.withSideEffect("Neptune#fts.endpoint", "your-OpenSearch-endpoint-URL") .V().has('desc','Neptune#fts +London -(Stansted|Gatwick)') .local(values('code','desc').fold()) .limit(10) ==>[LHR, London Heathrow] ==>[YXU, London Airport] ==>[LGW, London Gatwick] ==>[STN, London Stansted Airport] ==>[LTN, London Luton Airport] ==>[SEN, London Southend Airport] ==>[LCY, London City Airport] ==>[SKG, Thessaloniki Macedonia International Airport] ==>[ADB, Adnan Menderes International Airport] ==>[BTV, Burlington International Airport]
g.withSideEffect("Neptune#fts.endpoint", "your-OpenSearch-endpoint-URL") .withSideEffect('Neptune#fts.queryType', 'query_string') .V().has('desc','Neptune#fts +(regional|municipal) -(international|bradford)') .local(values('code','desc').fold()) .limit(10) ==>[CZH, Corozal Municipal Airport] ==>[MMU, Morristown Municipal Airport] ==>[YBR, Brandon Municipal Airport] ==>[RDD, Redding Municipal Airport] ==>[VIS, Visalia Municipal Airport] ==>[AIA, Alliance Municipal Airport] ==>[CDR, Chadron Municipal Airport] ==>[CVN, Clovis Municipal Airport] ==>[SDY, Sidney Richland Municipal Airport] ==>[SGU, St George Municipal Airport]

Gremlin query_string query with AND and OR operators

g.withSideEffect("Neptune#fts.endpoint", "your-OpenSearch-endpoint-URL") .withSideEffect('Neptune#fts.queryType', 'query_string') .V().has('desc','Neptune#fts (St AND George) OR (St AND Augustin)') .local(values('code','desc').fold()) .limit(10) ==>[YIF, St Augustin Airport] ==>[STG, St George Airport] ==>[SGO, St George Airport] ==>[SGU, St George Municipal Airport]

Gremlin term query

g.withSideEffect("Neptune#fts.endpoint", "your-OpenSearch-endpoint-URL") .withSideEffect('Neptune#fts.queryType', 'term') .V().has("SKU","Neptune#fts ABC123DEF9") .local(values('code','city').fold()) .limit(5) ==>[AUS, Austin]

Gremlin prefix query

g.withSideEffect("Neptune#fts.endpoint", "your-OpenSearch-endpoint-URL") .withSideEffect('Neptune#fts.queryType', 'prefix') .V().has("icao","Neptune#fts ka") .local(values('code','icao','city').fold()) .limit(5) ==>[AZO, KAZO, Kalamazoo] ==>[APN, KAPN, Alpena] ==>[ACK, KACK, Nantucket] ==>[ALO, KALO, Waterloo] ==>[ABI, KABI, Abilene]

Using Lucene syntax in Neptune Gremlin

In Neptune Gremlin, you can also write very powerful queries using the Lucene query syntax. Note that Lucene syntax is only supported for query_string queries in OpenSearch.

Assume the following data:

g.addV("person") .property(T.id, "p1") .property("name", "simone") .property("surname", "rondelli") g.addV("person") .property(T.id, "p2") .property("name", "simone") .property("surname", "sengupta") g.addV("developer") .property(T.id, "p3") .property("name", "simone") .property("surname", "rondelli")

Using Lucene syntax, which is invoked when the queryType is query_string, you can search this data by name and surname as follows:

g.withSideEffect("Neptune#fts.endpoint", "es_enpoint") .withSideEffect("Neptune#fts.queryType", "query_string") .V() .has("*", "Neptune#fts predicates.name.value:simone AND predicates.surname.value:rondelli") ==> v[p1], v[p3]

Note that in the has() step above, the field is replaced by "*"). Actually, any value placed there is overridden by the fields that you access within the query. You access the name field using predicates.name.value, because that is how the data model is structured.

You can search by name, surname and label, as follows:

g.withSideEffect("Neptune#fts.endpoint", getEsEndpoint()) .withSideEffect("Neptune#fts.queryType", "query_string") .V() .has("*", "Neptune#fts predicates.name.value:simone AND predicates.surname.value:rondelli AND entity_type:person") ==> v[p1]

The label is accessed using entity_type, again because that is how the data model is structured.

You can also include nesting conditions:

g.withSideEffect("Neptune#fts.endpoint", getEsEndpoint()) .withSideEffect("Neptune#fts.queryType", "query_string") .V() .has("*", "Neptune#fts (predicates.name.value:simone AND predicates.surname.value:rondelli AND entity_type:person) OR predicates.surname.value:sengupta") ==> v[p1], v[p2]

Inserting a modern TinkerPop graph

g.addV('person').property(T.id, '1').property('name', 'marko').property('age', 29) .addV('personr').property(T.id, '2').property('name', 'vadas').property('age', 27) .addV('software').property(T.id, '3').property('name', 'lop').property('lang', 'java') .addV('person').property(T.id, '4').property('name', 'josh').property('age', 32) .addV('software').property(T.id, '5').property('name', 'ripple').property('lang', 'java') .addV('person').property(T.id, '6').property('name', 'peter').property('age', 35) g.V('1').as('a').V('2').as('b').addE('knows').from('a').to('b').property('weight', 0.5f).property(T.id, '7') .V('1').as('a').V('3').as('b').addE('created').from('a').to('b').property('weight', 0.4f).property(T.id, '9') .V('4').as('a').V('3').as('b').addE('created').from('a').to('b').property('weight', 0.4f).property(T.id, '11') .V('4').as('a').V('5').as('b').addE('created').from('a').to('b').property('weight', 1.0f).property(T.id, '10') .V('6').as('a').V('3').as('b').addE('created').from('a').to('b').property('weight', 0.2f).property(T.id, '12') .V('1').as('a').V('4').as('b').addE('knows').from('a').to('b').property('weight', 1.0f).property(T.id, '8')

Sort by string field value example

g.withSideEffect("Neptune#fts.endpoint", "your-OpenSearch-endpoint-URL") .withSideEffect('Neptune#fts.queryType', 'query_string') .withSideEffect('Neptune#fts.sortOrder', 'asc') .withSideEffect('Neptune#fts.sortBy', 'name') .V().has('name', 'Neptune#fts marko OR vadas OR ripple')

Sort by non-string field value example

g.withSideEffect("Neptune#fts.endpoint", "your-OpenSearch-endpoint-URL") .withSideEffect('Neptune#fts.queryType', 'query_string') .withSideEffect('Neptune#fts.sortOrder', 'asc') .withSideEffect('Neptune#fts.sortBy', 'age.value') .V().has('name', 'Neptune#fts marko OR vadas OR ripple')

Sort by ID field value example

g.withSideEffect("Neptune#fts.endpoint", "your-OpenSearch-endpoint-URL") .withSideEffect('Neptune#fts.queryType', 'query_string') .withSideEffect('Neptune#fts.sortOrder', 'asc') .withSideEffect('Neptune#fts.sortBy', 'Neptune#fts.entity_id') .V().has('name', 'Neptune#fts marko OR vadas OR ripple')

Sort by label field value example

g.withSideEffect("Neptune#fts.endpoint", "your-OpenSearch-endpoint-URL") .withSideEffect('Neptune#fts.queryType', 'query_string') .withSideEffect('Neptune#fts.sortOrder', 'asc') .withSideEffect('Neptune#fts.sortBy', 'Neptune#fts.entity_type') .V().has('name', 'Neptune#fts marko OR vadas OR ripple')

Sort by document_type field value example

g.withSideEffect("Neptune#fts.endpoint", "your-OpenSearch-endpoint-URL") .withSideEffect('Neptune#fts.queryType', 'query_string') .withSideEffect('Neptune#fts.sortOrder', 'asc') .withSideEffect('Neptune#fts.sortBy', 'Neptune#fts.document_type') .V().has('name', 'Neptune#fts marko OR vadas OR ripple')