Setting up Neptune ML without using the quick-start Amazon CloudFormation template - Amazon Neptune
Services or capabilities described in Amazon Web Services documentation might vary by Region. To see the differences applicable to the China Regions, see Getting Started with Amazon Web Services in China.

Setting up Neptune ML without using the quick-start Amazon CloudFormation template

1. Start with a working Neptune DB cluster

If you don't use the Amazon CloudFormation quick-start template to set up Neptune ML, you will need an existing Neptune DB cluster to work with. If you want, you can use one you already have, or clone one that you are already using, or you can create a new one (see Create a DB cluster).

Make sure that the Neptune DB cluster you will be using is running at least engine version If it's running an earlier engine version, you can upgrade it as described in Neptune engine updates.

2. Install the Neptune-Export service

If you haven't already done so, install the Neptune-Export service, as explained in Using the Neptune-Export service to export Neptune data.

Add an inbound rule to the NeptuneExportSecurityGroup security group that the install creates, with the following settings:

  • Type: Custom TCP

  • Protocol: TCP

  • Port range: 80 - 443

  • Source: (Neptune DB cluster security group ID)

3. Create a custom NeptuneLoadFromS3 IAM role

If you have not already done so, create a custom NeptuneLoadFromS3 IAM role, as explained in Creating an IAM role to access Amazon S3.

Create a custom NeptuneSageMakerIAMRole role

Use the IAM console to create a custom NeptuneSageMakerIAMRole, using the following policy:

{ "Version": "2012-10-17", "Statement": [ { "Action": [ "ec2:CreateNetworkInterface", "ec2:CreateNetworkInterfacePermission", "ec2:CreateVpcEndpoint", "ec2:DeleteNetworkInterface", "ec2:DeleteNetworkInterfacePermission", "ec2:DescribeDhcpOptions", "ec2:DescribeNetworkInterfaces", "ec2:DescribeRouteTables", "ec2:DescribeSecurityGroups", "ec2:DescribeSubnets", "ec2:DescribeVpcEndpoints", "ec2:DescribeVpcs" ], "Resource": "*", "Effect": "Allow" }, { "Action": [ "ecr:GetAuthorizationToken", "ecr:GetDownloadUrlForLayer", "ecr:BatchGetImage", "ecr:BatchCheckLayerAvailability" ], "Resource": "*", "Effect": "Allow" }, { "Action": [ "iam:PassRole" ], "Resource": [ "arn:aws:iam::*:role/*" ], "Condition": { "StringEquals": { "iam:PassedToService": [ "" ] } }, "Effect": "Allow" }, { "Action": [ "kms:CreateGrant", "kms:Decrypt", "kms:GenerateDataKey*" ], "Resource": "arn:aws:kms:*:*:key/*", "Effect": "Allow" }, { "Action": [ "logs:CreateLogGroup", "logs:CreateLogStream", "logs:PutLogEvents", "logs:DescribeLogGroups", "logs:DescribeLogStreams", "logs:GetLogEvents" ], "Resource": [ "arn:aws:logs:*:*:log-group:/aws/sagemaker/*" ], "Effect": "Allow" }, { "Action": [ "sagemaker:CreateEndpoint", "sagemaker:CreateEndpointConfig", "sagemaker:CreateHyperParameterTuningJob", "sagemaker:CreateModel", "sagemaker:CreateProcessingJob", "sagemaker:CreateTrainingJob", "sagemaker:CreateTransformJob", "sagemaker:DeleteEndpoint", "sagemaker:DeleteEndpointConfig", "sagemaker:DeleteModel", "sagemaker:DescribeEndpoint", "sagemaker:DescribeEndpointConfig", "sagemaker:DescribeHyperParameterTuningJob", "sagemaker:DescribeModel", "sagemaker:DescribeProcessingJob", "sagemaker:DescribeTrainingJob", "sagemaker:DescribeTransformJob", "sagemaker:InvokeEndpoint", "sagemaker:ListTags", "sagemaker:ListTrainingJobsForHyperParameterTuningJob", "sagemaker:StopHyperParameterTuningJob", "sagemaker:StopProcessingJob", "sagemaker:StopTrainingJob", "sagemaker:StopTransformJob", "sagemaker:UpdateEndpoint", "sagemaker:UpdateEndpointWeightsAndCapacities" ], "Resource": [ "arn:aws:sagemaker:*:*:*" ], "Effect": "Allow" }, { "Action": [ "sagemaker:ListEndpointConfigs", "sagemaker:ListEndpoints", "sagemaker:ListHyperParameterTuningJobs", "sagemaker:ListModels", "sagemaker:ListProcessingJobs", "sagemaker:ListTrainingJobs", "sagemaker:ListTransformJobs" ], "Resource": "*", "Effect": "Allow" }, { "Action": [ "s3:GetObject", "s3:PutObject", "s3:DeleteObject", "s3:AbortMultipartUpload", "s3:ListBucket" ], "Resource": [ "arn:aws:s3:::*" ], "Effect": "Allow" } ] }

While creating this role, edit the trust relationship so that it reads as follows:

{ "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Principal": { "Service": [ "", "", "" ] }, "Action": "sts:AssumeRole" } ] }

Finally, copy the ARN assigned to this new NeptuneSageMakerIAMRole role.

Configure your DB cluster to enable Neptune ML

To set up your DB cluster for Neptune ML

  1. In the Neptune console, navigate to Parameter Groups and then to the DB cluster parameter group associated with the DB cluster you will be using. Set the neptune_ml_iam_role parameter to the ARN assigned to the NeptuneSageMakerIAMRole role that you just created.

  2. Navigate to Databases, then select the DB cluster you will be using for Neptune ML. Select Actions then Manage IAM roles.

  3. On the Manage IAM roles page, select Add role and add the NeptuneSageMakerIAMRole. Then add the NeptuneLoadFromS3 role.

  4. Reboot the writer instance of your DB cluster.

Create two SageMaker endpoints in your Neptune VPC

Finally, to give the Neptune engine access the necessary SageMaker management APIs, you need to create two SageMaker endpoints in your Neptune VPC, as explained in Create two endpoints for SageMaker in your Neptune VPC.