Services or capabilities described in Amazon Web Services documentation might vary by Region. To see the differences applicable to the China Regions,
see Getting Started with Amazon Web Services in China
(PDF).
Publishing metric attribution reports to Amazon S3
For all bulk data, if you provide an Amazon S3 bucket when you create your metric attribution,
you can choose to publish metric reports to your Amazon S3 bucket each time you create a dataset import job
for interactions data.
To publish metrics to Amazon S3, you provide a path to your Amazon S3 bucket in your metric attribution. Then you publish
reports to Amazon S3 when you create a dataset import job. When the job completes, you can find the metrics in your Amazon S3 bucket. Each time you publish metrics, Amazon Personalize creates a
new file in your Amazon S3 bucket. The file name includes the import method and date as follows:
AggregatedAttributionMetrics - ImportMethod
-
Timestamp
.csv
The following is an example of how the first few rows of a metric report CSV file might appear. The metric in
this example reports on the total clicks from two different recommenders over 15 minute intervals. Each recommender is identified
by its Amazon Resource Name (ARN) in the EVENT_ATTRIBUTION_SOURCE column.
METRIC_NAME,EVENT_TYPE,VALUE,MATH_FUNCTION,EVENT_ATTRIBUTION_SOURCE,TIMESTAMP
COUNTWATCHES,WATCH,12.0,samplecount,arn:aws:personalize:us-west-2:acctNum:recommender/recommender1Name,1666925124
COUNTWATCHES,WATCH,112.0,samplecount,arn:aws:personalize:us-west-2:acctNum:recommender/recommender2Name,1666924224
COUNTWATCHES,WATCH,10.0,samplecount,arn:aws:personalize:us-west-2:acctNum:recommender/recommender1Name,1666924224
COUNTWATCHES,WATCH,254.0,samplecount,arn:aws:personalize:us-west-2:acctNum:recommender/recommender2Name,1666922424
COUNTWATCHES,WATCH,112.0,samplecount,arn:aws:personalize:us-west-2:acctNum:recommender/recommender1Name,1666922424
COUNTWATCHES,WATCH,100.0,samplecount,arn:aws:personalize:us-west-2:acctNum:recommender/recommender2Name,1666922424
......
.....
Publishing metrics for bulk data to Amazon S3 (console)
To publish metrics to an Amazon S3 bucket with the Amazon Personalize console, create a dataset import job and choose
Publish metrics for this import job in Publish event metrics to S3.
For step-by-step instructions, see Creating a dataset import job
(console).
Publishing metrics for bulk data to Amazon S3 (Amazon CLI)
To publish metrics to an Amazon S3 bucket with the Amazon Command Line Interface (Amazon CLI), use the following code to create a dataset import
job and provide the publishAttributionMetricsToS3
flag. If you don't want to publish metrics for a
particular job, omit the flag. For information on each parameter, see CreateDatasetImportJob.
aws personalize create-dataset-import-job \
--job-name dataset import job name
\
--dataset-arn dataset arn
\
--data-source dataLocation=s3://amzn-s3-demo-bucket
/filename
\
--role-arn roleArn
\
--import-mode INCREMENTAL
\
--publish-attribution-metrics-to-s3
Publishing metrics for bulk data to Amazon S3 (Amazon SDKs)
To publish metrics to an Amazon S3 bucket with the Amazon SDKs, create a dataset import job and set
publishAttributionMetricsToS3
to true. For information on each parameter, see CreateDatasetImportJob.
- SDK for Python (Boto3)
-
import boto3
personalize = boto3.client('personalize')
response = personalize.create_dataset_import_job(
jobName = 'YourImportJob
',
datasetArn = 'dataset_arn
',
dataSource = {'dataLocation':'s3://amzn-s3-demo-bucket/file.csv
'},
roleArn = 'role_arn
',
importMode = 'INCREMENTAL',
publishAttributionMetricsToS3 = True
)
dsij_arn = response['datasetImportJobArn']
print ('Dataset Import Job arn: ' + dsij_arn)
description = personalize.describe_dataset_import_job(
datasetImportJobArn = dsij_arn)['datasetImportJob']
print('Name: ' + description['jobName'])
print('ARN: ' + description['datasetImportJobArn'])
print('Status: ' + description['status'])
- SDK for Java 2.x
-
public static String createPersonalizeDatasetImportJob(PersonalizeClient personalizeClient,
String jobName,
String datasetArn,
String s3BucketPath,
String roleArn,
ImportMode importMode,
boolean publishToS3) {
long waitInMilliseconds = 60 * 1000;
String status;
String datasetImportJobArn;
try {
DataSource importDataSource = DataSource.builder()
.dataLocation(s3BucketPath)
.build();
CreateDatasetImportJobRequest createDatasetImportJobRequest = CreateDatasetImportJobRequest.builder()
.datasetArn(datasetArn)
.dataSource(importDataSource)
.jobName(jobName)
.roleArn(roleArn)
.importMode(importMode)
.publishAttributionMetricsToS3(publishToS3)
.build();
datasetImportJobArn = personalizeClient.createDatasetImportJob(createDatasetImportJobRequest)
.datasetImportJobArn();
DescribeDatasetImportJobRequest describeDatasetImportJobRequest = DescribeDatasetImportJobRequest.builder()
.datasetImportJobArn(datasetImportJobArn)
.build();
long maxTime = Instant.now().getEpochSecond() + 3 * 60 * 60;
while (Instant.now().getEpochSecond() < maxTime) {
DatasetImportJob datasetImportJob = personalizeClient
.describeDatasetImportJob(describeDatasetImportJobRequest)
.datasetImportJob();
status = datasetImportJob.status();
System.out.println("Dataset import job status: " + status);
if (status.equals("ACTIVE") || status.equals("CREATE FAILED")) {
break;
}
try {
Thread.sleep(waitInMilliseconds);
} catch (InterruptedException e) {
System.out.println(e.getMessage());
}
}
return datasetImportJobArn;
} catch (PersonalizeException e) {
System.out.println(e.awsErrorDetails().errorMessage());
}
return "";
}
- SDK for JavaScript v3
// Get service clients and commands using ES6 syntax.
import { CreateDatasetImportJobCommand, PersonalizeClient } from
"@aws-sdk/client-personalize";
// create personalizeClient
const personalizeClient = new PersonalizeClient({
region: "REGION"
});
// Set the dataset import job parameters.
export const datasetImportJobParam = {
datasetArn: 'DATASET_ARN', /* required */
dataSource: {
dataLocation: 's3://amzn-s3-demo-bucket/<folderName>/<CSVfilename>.csv' /* required */
},
jobName: 'NAME', /* required */
roleArn: 'ROLE_ARN', /* required */
importMode: "FULL", /* optional, default is FULL */
publishAttributionMetricsToS3: true /* set to true to publish metrics to Amazon S3 bucket */
};
export const run = async () => {
try {
const response = await personalizeClient.send(new CreateDatasetImportJobCommand(datasetImportJobParam));
console.log("Success", response);
return response; // For unit tests.
} catch (err) {
console.log("Error", err);
}
};
run();