Invoke your endpoint - Amazon SageMaker AI
Services or capabilities described in Amazon Web Services documentation might vary by Region. To see the differences applicable to the China Regions, see Getting Started with Amazon Web Services in China (PDF).

Invoke your endpoint

Note

We recommend that you test your model deployment in Amazon SageMaker Canvas before invoking a SageMaker AI endpoint programmatically.

You can use your Amazon SageMaker Canvas models that you've deployed to a SageMaker AI endpoint in production with your applications. Invoke the endpoint programmatically the same way that you invoke any other SageMaker AI real-time endpoint. Invoking an endpoint programmatically returns a response object which contains the same fields described in Test your deployment.

For more detailed information about how to programmatically invoke endpoints, see Invoke models for real-time inference.

The following Python examples show you how to invoke your endpoint based on the model type.

The following example shows you how to invoke a JumpStart foundation model that you've deployed to an endpoint.

import boto3 import pandas as pd client = boto3.client("runtime.sagemaker") body = pd.DataFrame( [['feature_column1', 'feature_column2'], ['feature_column1', 'feature_column2']] ).to_csv(header=False, index=False).encode("utf-8") response = client.invoke_endpoint( EndpointName="endpoint_name", ContentType="text/csv", Body=body, Accept="application/json" )

The following example shows you how to invoke numeric or categorical prediction models.

import boto3 import pandas as pd client = boto3.client("runtime.sagemaker") body = pd.DataFrame(['feature_column1', 'feature_column2'], ['feature_column1', 'feature_column2']).to_csv(header=False, index=False).encode("utf-8") response = client.invoke_endpoint( EndpointName="endpoint_name", ContentType="text/csv", Body=body, Accept="application/json" )

The following example shows you how to invoke time series forecasting models. For a complete example of how to test invoke a time series forecasting model, see Time-Series Forecasting with Amazon SageMaker Autopilot.

import boto3 import pandas as pd csv_path = './real-time-payload.csv' data = pd.read_csv(csv_path) client = boto3.client("runtime.sagemaker") body = data.to_csv(index=False).encode("utf-8") response = client.invoke_endpoint( EndpointName="endpoint_name", ContentType="text/csv", Body=body, Accept="application/json" )

The following example shows you how to invoke image prediction models.

import boto3 client = boto3.client("runtime.sagemaker") with open("example_image.jpg", "rb") as file: body = file.read() response = client.invoke_endpoint( EndpointName="endpoint_name", ContentType="application/x-image", Body=body, Accept="application/json" )

The following example shows you how to invoke text prediction models.

import boto3 import pandas as pd client = boto3.client("runtime.sagemaker") body = pd.DataFrame([["Example text 1"], ["Example text 2"]]).to_csv(header=False, index=False).encode("utf-8") response = client.invoke_endpoint( EndpointName="endpoint_name", ContentType="text/csv", Body=body, Accept="application/json" )