本文属于机器翻译版本。若本译文内容与英语原文存在差异,则一律以英文原文为准。
Lp-规范(LP)
Lp-norm (LP) 测量训练数据集中观察到的标签的小面分布之间的 p 范数距离。该指标是非负面的,因此无法检测到反向偏差。
L 的公式p-norm 如下所示:
LpP (P)aP, Pd) = (Σy|Pa-Pd||P)p 1/p
其中点 x 和 y 之间的 p 范数距离定义如下:
Lp(x, y) = (|x)1-Y1|P+ | x2-Y2|P+... +|xn-Yn|P)p 1/p
2 标准是欧几里得标准。假设你有三个类别的结果分布,例如iy {y0y1y2} = 在大学招生多类别场景中 {已接受、等候名单、拒绝}。分面的结果计数之间的差异的平方和一个和D. 生成的欧几里得距离的计算方式如下:
L2P (P)aP, Pd) = [(na0)-nd0))2+ (na(1)-nd(1))2+ (na2)-nd2))2]1/2
其中:
-
nai)是第 i 个类别结果的数量一个: 例如 na0)是方面的数量一个接受。
-
ndi)是第 i 个类别结果的数量D: 例如 nd2)是方面的数量D拒绝。
二进制、多类别和连续结果的 LP 值范围为 [0, √2),其中:
-
接近零的值表示标签的分布情况类似。
-
正值意味着标签分布差异,分歧越积极就越大。
-