Amazon HyperPod Essential Commands Guide
Amazon Amazon SageMaker HyperPod provides extensive command-line functionality for managing training workflows. This guide covers essential commands for common operations, from connecting to your cluster to monitoring job progress.
Prerequisites
Before using these commands, ensure you have completed the following setup:
-
HyperPod cluster with RIG created (typically in us-east-1)
-
Output Amazon S3 bucket created for training artifacts
-
IAM roles configured with appropriate permissions
-
Training data uploaded in correct JSONL format
-
FSx for Lustre sync completed (verify in cluster logs on first job)
Topics
Installing Recipe CLI
Navigate to the root of your recipe repository before running the installation command.
Standard public repository (contains Nova 1.0 recipes) + [Forge] Nova Forge repository (contains Nova 2.0 recipes)
Run the following commands to install the HyperPod CLI:
Note
Make sure you aren’t in an active conda / anaconda / miniconda environment or another virtual environment
If you are, please exit the environment using:
-
conda deactivatefor conda / anaconda / miniconda environments -
deactivatefor python virtual environments
git clone -b release_v2 https://github.com/aws/sagemaker-hyperpod-cli.git cd sagemaker-hyperpod-cli pip install -e . cd .. root_dir=$(pwd) export PYTHONPATH=${root_dir}/sagemaker-hyperpod-cli/src/hyperpod_cli/sagemaker_hyperpod_recipes/launcher/nemo/nemo_framework_launcher/launcher_scripts:$PYTHONPATH mkdir NovaForgeHyperpodCLI cd NovaForgeHyperpodCLI aws s3 cp s3://nova-forge-c7363-206080352451-us-east-1/v1/ ./ --recursive pip install -e . curl -fsSL -o get_helm.sh https://raw.githubusercontent.com/helm/helm/main/scripts/get-helm-3 chmod 700 get_helm.sh ./get_helm.sh rm -f ./get_helm.sh
Tip
To use a new virtual
environmentpip install -e ., run:
-
python -m venv nova_forge -
source nova_forge/bin/activate -
Your command line will now display (nova_forge) at the beginning of your prompt
-
This ensures there are no competing dependencies when using the CLI
Purpose: Installs the HyperPod CLI in editable mode, allowing you to use updated recipes without reinstalling each time. It also enables you to add new recipes that the CLI can automatically pick up.
Connecting to your cluster
Connect the HyperPod CLI to your cluster before running any jobs:
export AWS_REGION=us-east-1 && hyperpod connect-cluster --cluster-name <your-cluster-name> --region us-east-1
Important
This command creates a context file (/tmp/hyperpod_context.json) that
subsequent commands require. If you see an error about this file not found, re-run the
connect command.
Pro tip: You can further configure your cluster to
always use the kubeflow namespace by adding the --namespace
kubeflow argument to your command as follows:
export AWS_REGION=us-east-1 && \ hyperpod connect-cluster \ --cluster-name <your-cluster-name> \ --region us-east-1 \ --namespace kubeflow
This saves you the effort of adding the -n kubeflow in every command when
interacting with your jobs.
Starting a training job
See Common Issues for frequently seen problems and their resolution.
If running PPO/RFT jobs, ensure you add label selector settings to
src/hyperpod_cli/sagemaker_hyperpod_recipes/recipes_collection/cluster/k8s.yaml
so that all pods are schedule on the same node.
label_selector: required: sagemaker.amazonaws.com/instance-group-name: - <rig_group>
Launch a training job using a recipe with optional parameter overrides:
hyperpod start-job -n kubeflow \ --recipe fine-tuning/nova/nova_micro_p5_gpu_sft \ --override-parameters '{ "instance_type": "ml.p5.48xlarge", "container": "708977205387.dkr.ecr.us-east-1.amazonaws.com/nova-fine-tune-repo:HP-SFT-DATAMIX-latest" }'
Expected output:
Final command: python3 <path_to_your_installation>/NovaForgeHyperpodCLI/src/hyperpod_cli/sagemaker_hyperpod_recipes/main.py recipes=fine-tuning/nova/nova_micro_p5_gpu_sft cluster_type=k8s cluster=k8s base_results_dir=/local/home/<username>/results cluster.pullPolicy="IfNotPresent" cluster.restartPolicy="OnFailure" cluster.namespace="kubeflow" container="708977205387.dkr.ecr.us-east-1.amazonaws.com/nova-fine-tune-repo:HP-SFT-DATAMIX-latest" Prepared output directory at /local/home/<username>/results/<job-name>/k8s_templates Found credentials in shared credentials file: ~/.aws/credentials Helm script created at /local/home/<username>/results/<job-name>/<job-name>_launch.sh Running Helm script: /local/home/<username>/results/<job-name>/<job-name>_launch.sh NAME: <job-name> LAST DEPLOYED: Mon Sep 15 20:56:50 2025 NAMESPACE: kubeflow STATUS: deployed REVISION: 1 TEST SUITE: None Launcher successfully generated: <path_to_your_installation>/NovaForgeHyperpodCLI/src/hyperpod_cli/sagemaker_hyperpod_recipes/launcher/nova/k8s_templates/SFT { "Console URL": "https://us-east-1.console.aws.amazon.com/sagemaker/home?region=us-east-1#/cluster-management/<your-cluster-name>" }
Checking job status
Monitor your running jobs using kubectl:
kubectl get pods -o wide -w -n kubeflow | (head -n1 ; grep <your-job-name>)
Understanding pod statuses
The following table explains common pod statuses:
Status |
Description |
|---|---|
|
Pod accepted but not yet scheduled onto a node, or waiting for container images to be pulled |
|
Pod bound to a node with at least one container running or starting |
|
All containers completed successfully and won't restart |
|
All containers terminated with at least one ending in failure |
|
Pod state cannot be determined (usually due to node communication issues) |
|
Container repeatedly failing; Kubernetes backing off from restart attempts |
|
Unable to pull container image from registry |
|
Container terminated for exceeding memory limits |
|
Job or Pod finished successfully (batch job completion) |
Tip
Use the -w flag to watch pod status updates in real-time. Press
Ctrl+C to stop watching.
Monitoring job logs
You can view your logs one of three ways:
Create the MLflow App
Example Amazon CLI command
aws sagemaker-mlflow create-mlflow-app \ --name <app-name> \ --artifact-store-uri <s3-bucket-name> \ --role-arn <role-arn> \ --region <region-name>
Example output
{ "Arn": "arn:aws:sagemaker:us-east-1:111122223333:mlflow-app/app-LGZEOZ2UY4NZ" }
Generate pre-signed URL
Example Amazon CLI command
aws sagemaker-mlflow create-presigned-mlflow-app-url \ --arn <app-arn> \ --region <region-name> \ --output text
Example output
https://app-LGZEOZ2UY4NZ.mlflow.sagemaker.us-east-1.app.aws/auth?authToken=eyJhbGciOiJIUzI1NiJ9.eyJhdXRoVG9rZW5JZCI6IkxETVBPUyIsImZhc0NyZWRlbnRpYWxzIjoiQWdWNGhDM1VvZ0VYSUVsT2lZOVlLNmxjRHVxWm1BMnNhZ3JDWEd3aFpOSmdXbzBBWHdBQkFCVmhkM010WTNKNWNIUnZMWEIxWW14cFl5MXJaWGtBUkVFd09IQmtVbU5IUzJJMU1VTnVaVEl3UVhkUE5uVm9Ra2xHTkZsNVRqTTNXRVJuTTNsalowNHhRVFZvZERneVdrMWlkRlZXVWpGTWMyWlRUV1JQWmpSS2R6MDlBQUVBQjJGM2N5MXJiWE1BUzJGeWJqcGhkM002YTIxek9uVnpMV1ZoYzNRdE1Ub3pNVFF4TkRZek1EWTBPREk2YTJWNUx6Y3dOMkpoTmpjeExUUXpZamd0TkRFeU5DMWhaVFUzTFRrMFlqTXdZbUptT1RJNU13QzRBUUlCQUhnQjRVMDBTK3ErVE51d1gydlFlaGtxQnVneWQ3YnNrb0pWdWQ2NmZjVENVd0ZzRTV4VHRGVllHUXdxUWZoeXE2RkJBQUFBZmpCOEJna3Foa2lHOXcwQkJ3YWdiekJ0QWdFQU1HZ0dDU3FHU0liM0RRRUhBVEFlQmdsZ2hrZ0JaUU1FQVM0d0VRUU1yOEh4MXhwczFBbmEzL1JKQWdFUWdEdTI0K1M5c2VOUUNFV0hJRXJwdmYxa25MZTJteitlT29pTEZYNTJaeHZsY3AyZHFQL09tY3RJajFqTWFuRjMxZkJyY004MmpTWFVmUHRhTWdJQUFCQUE3L1pGT05DRi8rWnVPOVlCVnhoaVppSEFSLy8zR1I0TmR3QWVxcDdneHNkd2lwTDJsVWdhU3ZGNVRCbW9uMUJnLy8vLy93QUFBQUVBQUFBQUFBQUFBQUFBQUFFQUFBUTdBMHN6dUhGbEs1NHdZbmZmWEFlYkhlNmN5OWpYOGV3T2x1NWhzUWhGWFllRXNVaENaQlBXdlQrVWp5WFY0ZHZRNE8xVDJmNGdTRUFOMmtGSUx0YitQa0tmM0ZUQkJxUFNUQWZ3S1oyeHN6a1lDZXdwRlNpalFVTGtxemhXbXBVcmVDakJCOHNGT3hQL2hjK0JQalY3bUhOL29qcnVOejFhUHhjNSt6bHFuak9CMHljYy8zL2JuSHA3NVFjRE8xd2NMbFJBdU5KZ2RMNUJMOWw1YVVPM0FFMlhBYVF3YWY1bkpwTmZidHowWUtGaWZHMm94SDJSNUxWSjNkbG40aGVRbVk4OTZhdXdsellQV253N2lTTDkvTWNidDAzdVZGN0JpUnRwYmZMN09JQm8wZlpYSS9wK1pUNWVUS2wzM2tQajBIU3F6NisvamliY0FXMWV4VTE4N1QwNHpicTNRcFhYMkhqcDEvQnFnMVdabkZoaEwrekZIaUV0Qjd4U1RaZkZsS2xRUUhNK0ZkTDNkOHIyRWhCMjFya2FBUElIQVBFUk5Pd1lnNmFzM2pVaFRwZWtuZVhxSDl3QzAyWU15R0djaTVzUEx6ejh3ZTExZVduanVTai9DZVJpZFQ1akNRcjdGMUdKWjBVREZFbnpNakFuL3Y3ajA5c2FMczZnemlCc2FLQXZZOWpib0JEYkdKdGZ0N2JjVjl4eUp4amptaW56TGtoVG5pV2dxV3g5MFZPUHlWNWpGZVk1QTFrMmw3bDArUjZRTFNleHg4d1FrK0FqVGJuLzFsczNHUTBndUtESmZKTWVGUVczVEVrdkp5VlpjOC9xUlpIODhybEpKOW1FSVdOd1BMU21yY1l6TmZwVTlVOGdoUDBPUWZvQ3FvcW1WaUhEYldaT294bGpmb295cS8yTDFKNGM3NTJUaVpFd1hnaG9haFBYdGFjRnA2NTVUYjY5eGxTN25FaXZjTTlzUjdTT3REMEMrVHIyd0cxNEJ3Zm9NZTdKOFhQeVRtcmQ0QmNKOEdOYnVZTHNRNU9DcFlsV3pVNCtEcStEWUI4WHk1UWFzaDF0dzJ6dGVjVVQyc0hsZmwzUVlrQ0d3Z1hWam5Ia2hKVitFRDIrR3Fpc3BkYjRSTC83RytCRzRHTWNaUE02Q3VtTFJkMnZLbnozN3dUWkxwNzdZNTdMQlJySm9Tak9idWdNUWdhOElLNnpWL2VtcFlSbXJsVjZ5VjZ6S1h5aXFKWFk3TTBXd3dSRzd5Q0xYUFRtTGt3WGE5cXF4NkcvZDY1RS83V3RWMVUrNFIxMlZIUmVUMVJmeWw2SnBmL2FXWFVCbFQ2ampUR0M5TU1uTk5OVTQwZHRCUTArZ001S1d2WGhvMmdmbnhVcU1OdnFHblRFTWdZMG5ZL1FaM0RWNFozWUNqdkFOVWVsS1NCdkxFbnY4SEx0WU9uajIrTkRValZOV1h5T1c4WFowMFFWeXU0ZU5LaUpLQ1hJbnI1N3RrWHE3WXl3b0lZV0hKeHQwWis2MFNQMjBZZktYYlhHK1luZ3F6NjFqMkhIM1RQUmt6dW5rMkxLbzFnK1ZDZnhVWFByeFFmNUVyTm9aT2RFUHhjaklKZ1FxRzJ2eWJjbFRNZ0M5ZXc1QURVcE9KL1RrNCt2dkhJMDNjM1g0UXcrT3lmZHFUUzJWb3N4Y0hJdG5iSkZmdXliZi9lRlZWRlM2L3lURkRRckhtQ1RZYlB3VXlRNWZpR20zWkRhNDBQUTY1RGJSKzZSbzl0S3c0eWFlaXdDVzYwZzFiNkNjNUhnQm5GclMyYytFbkNEUFcrVXRXTEF1azlISXZ6QnR3MytuMjdRb1cvSWZmamJucjVCSXk3MDZRTVR4SzhuMHQ3WUZuMTBGTjVEWHZiZzBvTnZuUFFVYld1TjhFbE11NUdpenZxamJmeVZRWXdBSERCcDkzTENsUUJuTUdVQ01GWkNHUGRPazJ2ZzJoUmtxcWQ3SmtDaEpiTmszSVlyanBPL0h2Z2NZQ2RjK2daM3lGRjMyTllBMVRYN1FXUkJYZ0l4QU5xU21ZTHMyeU9uekRFenBtMUtnL0tvYmNqRTJvSDJkZHcxNnFqT0hRSkhkVWRhVzlZL0NQYTRTbWxpN2pPbGdRPT0iLCJjaXBoZXJUZXh0IjoiQVFJQkFIZ0I0VTAwUytxK1ROdXdYMnZRZWhrcUJ1Z3lkN2Jza29KVnVkNjZmY1RDVXdHeDExRlBFUG5xU1ZFbE5YVUNrQnRBQUFBQW9qQ0Jud1lKS29aSWh2Y05BUWNHb0lHUk1JR09BZ0VBTUlHSUJna3Foa2lHOXcwQkJ3RXdIZ1lKWUlaSUFXVURCQUV1TUJFRURHemdQNnJFSWNEb2dWSTl1d0lCRUlCYitXekkvbVpuZkdkTnNYV0VCM3Y4NDF1SVJUNjBLcmt2OTY2Q1JCYmdsdXo1N1lMTnZUTkk4MEdkVXdpYVA5NlZwK0VhL3R6aGgxbTl5dzhjcWdCYU1pOVQrTVQxdzdmZW5xaXFpUnRRMmhvN0tlS2NkMmNmK3YvOHVnPT0iLCJzdWIiOiJhcm46YXdzOnNhZ2VtYWtlcjp1cy1lYXN0LTE6MDYwNzk1OTE1MzUzOm1sZmxvdy1hcHAvYXBwLUxHWkVPWjJVWTROWiIsImlhdCI6MTc2NDM2NDYxNSwiZXhwIjoxNzY0MzY0OTE1fQ.HNvZOfqft4m7pUS52MlDwoi1BA8Vsj3cOfa_CvlT4uw
Open presigned URL and view the app
Click
https://app-LGZEOZ2UY4NZ.mlflow.sagemaker.us-east-1.app.aws/auth?authToken=eyJhbGciOiJIUzI1NiJ9.eyJhdXRoVG9rZW5JZCI6IkxETVBPUyIsImZhc0NyZWRlbnRpYWxzIjoiQWdWNGhDM1VvZ0VYSUVsT2lZOVlLNmxjRHVxWm1BMnNhZ3JDWEd3aFpOSmdXbzBBWHdBQkFCVmhkM010WTNKNWNIUnZMWEIxWW14cFl5MXJaWGtBUkVFd09IQmtVbU5IUzJJMU1VTnVaVEl3UVhkUE5uVm9Ra2xHTkZsNVRqTTNXRVJuTTNsalowNHhRVFZvZERneVdrMWlkRlZXVWpGTWMyWlRUV1JQWmpSS2R6MDlBQUVBQjJGM2N5MXJiWE1BUzJGeWJqcGhkM002YTIxek9uVnpMV1ZoYzNRdE1Ub3pNVFF4TkRZek1EWTBPREk2YTJWNUx6Y3dOMkpoTmpjeExUUXpZamd0TkRFeU5DMWhaVFUzTFRrMFlqTXdZbUptT1RJNU13QzRBUUlCQUhnQjRVMDBTK3ErVE51d1gydlFlaGtxQnVneWQ3YnNrb0pWdWQ2NmZjVENVd0ZzRTV4VHRGVllHUXdxUWZoeXE2RkJBQUFBZmpCOEJna3Foa2lHOXcwQkJ3YWdiekJ0QWdFQU1HZ0dDU3FHU0liM0RRRUhBVEFlQmdsZ2hrZ0JaUU1FQVM0d0VRUU1yOEh4MXhwczFBbmEzL1JKQWdFUWdEdTI0K1M5c2VOUUNFV0hJRXJwdmYxa25MZTJteitlT29pTEZYNTJaeHZsY3AyZHFQL09tY3RJajFqTWFuRjMxZkJyY004MmpTWFVmUHRhTWdJQUFCQUE3L1pGT05DRi8rWnVPOVlCVnhoaVppSEFSLy8zR1I0TmR3QWVxcDdneHNkd2lwTDJsVWdhU3ZGNVRCbW9uMUJnLy8vLy93QUFBQUVBQUFBQUFBQUFBQUFBQUFFQUFBUTdBMHN6dUhGbEs1NHdZbmZmWEFlYkhlNmN5OWpYOGV3T2x1NWhzUWhGWFllRXNVaENaQlBXdlQrVWp5WFY0ZHZRNE8xVDJmNGdTRUFOMmtGSUx0YitQa0tmM0ZUQkJxUFNUQWZ3S1oyeHN6a1lDZXdwRlNpalFVTGtxemhXbXBVcmVDakJCOHNGT3hQL2hjK0JQalY3bUhOL29qcnVOejFhUHhjNSt6bHFuak9CMHljYy8zL2JuSHA3NVFjRE8xd2NMbFJBdU5KZ2RMNUJMOWw1YVVPM0FFMlhBYVF3YWY1bkpwTmZidHowWUtGaWZHMm94SDJSNUxWSjNkbG40aGVRbVk4OTZhdXdsellQV253N2lTTDkvTWNidDAzdVZGN0JpUnRwYmZMN09JQm8wZlpYSS9wK1pUNWVUS2wzM2tQajBIU3F6NisvamliY0FXMWV4VTE4N1QwNHpicTNRcFhYMkhqcDEvQnFnMVdabkZoaEwrekZIaUV0Qjd4U1RaZkZsS2xRUUhNK0ZkTDNkOHIyRWhCMjFya2FBUElIQVBFUk5Pd1lnNmFzM2pVaFRwZWtuZVhxSDl3QzAyWU15R0djaTVzUEx6ejh3ZTExZVduanVTai9DZVJpZFQ1akNRcjdGMUdKWjBVREZFbnpNakFuL3Y3ajA5c2FMczZnemlCc2FLQXZZOWpib0JEYkdKdGZ0N2JjVjl4eUp4amptaW56TGtoVG5pV2dxV3g5MFZPUHlWNWpGZVk1QTFrMmw3bDArUjZRTFNleHg4d1FrK0FqVGJuLzFsczNHUTBndUtESmZKTWVGUVczVEVrdkp5VlpjOC9xUlpIODhybEpKOW1FSVdOd1BMU21yY1l6TmZwVTlVOGdoUDBPUWZvQ3FvcW1WaUhEYldaT294bGpmb295cS8yTDFKNGM3NTJUaVpFd1hnaG9haFBYdGFjRnA2NTVUYjY5eGxTN25FaXZjTTlzUjdTT3REMEMrVHIyd0cxNEJ3Zm9NZTdKOFhQeVRtcmQ0QmNKOEdOYnVZTHNRNU9DcFlsV3pVNCtEcStEWUI4WHk1UWFzaDF0dzJ6dGVjVVQyc0hsZmwzUVlrQ0d3Z1hWam5Ia2hKVitFRDIrR3Fpc3BkYjRSTC83RytCRzRHTWNaUE02Q3VtTFJkMnZLbnozN3dUWkxwNzdZNTdMQlJySm9Tak9idWdNUWdhOElLNnpWL2VtcFlSbXJsVjZ5VjZ6S1h5aXFKWFk3TTBXd3dSRzd5Q0xYUFRtTGt3WGE5cXF4NkcvZDY1RS83V3RWMVUrNFIxMlZIUmVUMVJmeWw2SnBmL2FXWFVCbFQ2ampUR0M5TU1uTk5OVTQwZHRCUTArZ001S1d2WGhvMmdmbnhVcU1OdnFHblRFTWdZMG5ZL1FaM0RWNFozWUNqdkFOVWVsS1NCdkxFbnY4SEx0WU9uajIrTkRValZOV1h5T1c4WFowMFFWeXU0ZU5LaUpLQ1hJbnI1N3RrWHE3WXl3b0lZV0hKeHQwWis2MFNQMjBZZktYYlhHK1luZ3F6NjFqMkhIM1RQUmt6dW5rMkxLbzFnK1ZDZnhVWFByeFFmNUVyTm9aT2RFUHhjaklKZ1FxRzJ2eWJjbFRNZ0M5ZXc1QURVcE9KL1RrNCt2dkhJMDNjM1g0UXcrT3lmZHFUUzJWb3N4Y0hJdG5iSkZmdXliZi9lRlZWRlM2L3lURkRRckhtQ1RZYlB3VXlRNWZpR20zWkRhNDBQUTY1RGJSKzZSbzl0S3c0eWFlaXdDVzYwZzFiNkNjNUhnQm5GclMyYytFbkNEUFcrVXRXTEF1azlISXZ6QnR3MytuMjdRb1cvSWZmamJucjVCSXk3MDZRTVR4SzhuMHQ3WUZuMTBGTjVEWHZiZzBvTnZuUFFVYld1TjhFbE11NUdpenZxamJmeVZRWXdBSERCcDkzTENsUUJuTUdVQ01GWkNHUGRPazJ2ZzJoUmtxcWQ3SmtDaEpiTmszSVlyanBPL0h2Z2NZQ2RjK2daM3lGRjMyTllBMVRYN1FXUkJYZ0l4QU5xU21ZTHMyeU9uekRFenBtMUtnL0tvYmNqRTJvSDJkZHcxNnFqT0hRSkhkVWRhVzlZL0NQYTRTbWxpN2pPbGdRPT0iLCJjaXBoZXJUZXh0IjoiQVFJQkFIZ0I0VTAwUytxK1ROdXdYMnZRZWhrcUJ1Z3lkN2Jza29KVnVkNjZmY1RDVXdHeDExRlBFUG5xU1ZFbE5YVUNrQnRBQUFBQW9qQ0Jud1lKS29aSWh2Y05BUWNHb0lHUk1JR09BZ0VBTUlHSUJna3Foa2lHOXcwQkJ3RXdIZ1lKWUlaSUFXVURCQUV1TUJFRURHemdQNnJFSWNEb2dWSTl1d0lCRUlCYitXekkvbVpuZkdkTnNYV0VCM3Y4NDF1SVJUNjBLcmt2OTY2Q1JCYmdsdXo1N1lMTnZUTkk4MEdkVXdpYVA5NlZwK0VhL3R6aGgxbTl5dzhjcWdCYU1pOVQrTVQxdzdmZW5xaXFpUnRRMmhvN0tlS2NkMmNmK3YvOHVnPT0iLCJzdWIiOiJhcm46YXdzOnNhZ2VtYWtlcjp1cy1lYXN0LTE6MDYwNzk1OTE1MzUzOm1sZmxvdy1hcHAvYXBwLUxHWkVPWjJVWTROWiIsImlhdCI6MTc2NDM2NDYxNSwiZXhwIjoxNzY0MzY0OTE1fQ.HNvZOfqft4m7pUS52MlDwoi1BA8Vsj3cOfa_CvlT4uw
View
Pass to recipe under run block of your HyperPod recipe
Recipe
run mlflow_tracking_uri: arn:aws:sagemaker:us-east-1:111122223333:mlflow-app/app-LGZEOZ2UY4NZ
View
Using CloudWatch
Your logs are available in your Amazon account that contains the hyperpod cluster under
CloudWatch. To view them in your browser, navigate to the CloudWatch homepage in your account and
search for your cluster name. For example, if your cluster were called
my-hyperpod-rig the log group would have the prefix:
-
Log group:
/aws/sagemaker/Clusters/my-hyperpod-rig/{UUID} -
Once you're in the log group, you can find your specific log using the node instance ID such as -
hyperpod-i-00b3d8a1bf25714e4.-
i-00b3d8a1bf25714e4here represents the hyperpod friendly machine name where your training job is running. Recall how in the previous commandkubectl get pods -o wide -w -n kubeflow | (head -n1 ; grep my-cpt-run)output we captured a column called NODE. -
The "master" node run was in this case running on hyperpod-
i-00b3d8a1bf25714e4and thus we'll use that string to select the log group to view. Select the one that saysSagemakerHyperPodTrainingJob/rig-group/[NODE]
-
Using CloudWatch Insights
If you have your job name handy and don't wish to go through all the steps above, you
can simply query all logs under
/aws/sagemaker/Clusters/my-hyperpod-rig/{UUID} to find the individual
log.
CPT:
fields @timestamp, @message, @logStream, @log | filter @message like /(?i)Starting CPT Job/ | sort @timestamp desc | limit 100
For job completion replace Starting CPT Job with CPT Job
completed
Then you can click through the results and pick the one that says "Epoch 0" since that will be your master node.
Using the AmazonAmazon CLI
You may choose to tail your logs using the Amazon CLI. Before doing so, please check
your aws cli version using aws --version. It is also recommended to use this
utility script that helps in live log tracking in your terminal
for V1:
aws logs get-log-events \ --log-group-name /aws/sagemaker/YourLogGroupName \ --log-stream-name YourLogStream \ --start-from-head | jq -r '.events[].message'
for V2:
aws logs tail /aws/sagemaker/YourLogGroupName \ --log-stream-name YourLogStream \ --since 10m \ --follow
Listing active jobs
View all jobs running in your cluster:
hyperpod list-jobs -n kubeflow
Example output:
{ "jobs": [ { "Name": "test-run-nhgza", "Namespace": "kubeflow", "CreationTime": "2025-10-29T16:50:57Z", "State": "Running" } ] }
Canceling a job
Stop a running job at any time:
hyperpod cancel-job --job-name <job-name> -n kubeflow
Finding your job name
Option 1: From your recipe
The job name is specified in your recipe's run block:
run: name: "my-test-run" # This is your job name model_type: "amazon.nova-micro-v1:0:128k" ...
Option 2: From list-jobs command
Use hyperpod list-jobs -n kubeflow and copy the Name field
from the output.
Running an evaluation job
Evaluate a trained model or base model using an evaluation recipe.
Prerequisites
Before running evaluation jobs, ensure you have:
-
Checkpoint Amazon S3 URI from your training job's
manifest.jsonfile (for trained models) -
Evaluation dataset uploaded to Amazon S3 in the correct format
-
Output Amazon S3 path for evaluation results
Command
Run the following command to start an evaluation job:
hyperpod start-job -n kubeflow \ --recipe evaluation/nova/nova_2_0/nova_lite/nova_lite_2_0_p5_48xl_gpu_bring_your_own_dataset_eval \ --override-parameters '{ "instance_type": "p5.48xlarge", "container": "708977205387.dkr.ecr.us-east-1.amazonaws.com/nova-evaluation-repo:SM-HP-Eval-latest", "recipes.run.name": "<your-eval-job-name>", "recipes.run.model_name_or_path": "<checkpoint-s3-uri>", "recipes.run.output_s3_path": "s3://<your-bucket>/eval-results/", "recipes.run.data_s3_path": "s3://<your-bucket>/eval-data.jsonl" }'
Parameter descriptions:
-
recipes.run.name: Unique name for your evaluation job -
recipes.run.model_name_or_path: Amazon S3 URI frommanifest.jsonor base model path (e.g.,nova-micro/prod) -
recipes.run.output_s3_path: Amazon S3 location for evaluation results -
recipes.run.data_s3_path: Amazon S3 location of your evaluation dataset
Tips:
-
Model-specific recipes: Each model size (micro, lite, pro) has its own evaluation recipe
-
Base model evaluation: Use base model paths (e.g.,
nova-micro/prod) instead of checkpoint URIs to evaluate base models
Evaluation data format
Input format (JSONL):
{ "metadata": "{key:4, category:'apple'}", "system": "arithmetic-patterns, please answer the following with no other words: ", "query": "What is the next number in this series? 1, 2, 4, 8, 16, ?", "response": "32" }
Output format:
{ "prompt": "[{'role': 'system', 'content': 'arithmetic-patterns, please answer the following with no other words: '}, {'role': 'user', 'content': 'What is the next number in this series? 1, 2, 4, 8, 16, ?'}]", "inference": "['32']", "gold": "32", "metadata": "{key:4, category:'apple'}" }
Field descriptions:
-
prompt: Formatted input sent to the model -
inference: Model's generated response -
gold: Expected correct answer from input dataset -
metadata: Optional metadata passed through from input
Common issues
-
ModuleNotFoundError: No module named 'nemo_launcher', you might've to addnemo_launcherto your python path based on wherehyperpod_cliis installed. Sample command:export PYTHONPATH=<path_to_hyperpod_cli>/sagemaker-hyperpod-cli/src/hyperpod_cli/sagemaker_hyperpod_recipes/launcher/nemo/nemo_framework_launcher/launcher_scripts:$PYTHONPATH -
FileNotFoundError: [Errno 2] No such file or directory: '/tmp/hyperpod_current_context.json'indicates you missed running the hyperpod connect cluster command. -
If you don't see your job scheduled, double check if the output of your HyperPod CLI has this section with job names and other metadata. If not, re-install helm chart by running:
curl -fsSL -o get_helm.sh https://raw.githubusercontent.com/helm/helm/main/scripts/get-helm-3 chmod 700 get_helm.sh ./get_helm.sh rm -f ./get_helm.sh