用于 Object2Vec 推理的数据格式 - Amazon SageMaker
AWS 文档中描述的 AWS 服务或功能可能因区域而异。要查看适用于中国区域的差异,请参阅中国的 AWS 服务入门

本文属于机器翻译版本。若本译文内容与英语原文存在差异,则一律以英文原文为准。

用于 Object2Vec 推理的数据格式

GPU 优化:分类或回归

由于 GPU 内存稀缺,可以指定 INFERENCE_PREFERRED_MODE 环境变量来优化将推理网络加载到 GPU 中是分类/回归还是输出:编码器嵌入。如果您的大多数推理用于分类或回归,请指定 INFERENCE_PREFERRED_MODE=classification。 下面是一个批量转换示例,用于说明如何使用 4 个针对分类/回归推理进行优化的 p3.2xlarge 实例:

transformer = o2v.transformer(instance_count=4, instance_type="ml.p2.xlarge", max_concurrent_transforms=2, max_payload=1, # 1MB strategy='MultiRecord', env={'INFERENCE_PREFERRED_MODE': 'classification'}, # only useful with GPU output_path=output_s3_path)

输入: 分类或回归请求格式

Content-type:application/json

{ "instances" : [ {"in0": [6, 17, 606, 19, 53, 67, 52, 12, 5, 10, 15, 10178, 7, 33, 652, 80, 15, 69, 821, 4], "in1": [16, 21, 13, 45, 14, 9, 80, 59, 164, 4]}, {"in0": [22, 1016, 32, 13, 25, 11, 5, 64, 573, 45, 5, 80, 15, 67, 21, 7, 9, 107, 4], "in1": [22, 32, 13, 25, 1016, 573, 3252, 4]}, {"in0": [774, 14, 21, 206], "in1": [21, 366, 125]} ] }

Content-type:application/jsonlines

{"in0": [6, 17, 606, 19, 53, 67, 52, 12, 5, 10, 15, 10178, 7, 33, 652, 80, 15, 69, 821, 4], "in1": [16, 21, 13, 45, 14, 9, 80, 59, 164, 4]} {"in0": [22, 1016, 32, 13, 25, 11, 5, 64, 573, 45, 5, 80, 15, 67, 21, 7, 9, 107, 4], "in1": [22, 32, 13, 25, 1016, 573, 3252, 4]} {"in0": [774, 14, 21, 206], "in1": [21, 366, 125]}

对于分类问题,分数向量的长度对应于 num_classes。 对于回归问题,长度为 1。

输出:分类或回归响应格式

Accept: application/json

{ "predictions": [ { "scores": [ 0.6533935070037842, 0.07582679390907288, 0.2707797586917877 ] }, { "scores": [ 0.026291321963071823, 0.6577019095420837, 0.31600672006607056 ] } ] }

Accept: application/jsonlines

{"scores":[0.195667684078216,0.395351558923721,0.408980727195739]} {"scores":[0.251988261938095,0.258233487606048,0.489778339862823]} {"scores":[0.280087798833847,0.368331134319305,0.351581096649169]}

在分类和回归格式中,分数应用于单个标签。