java.lang.Object
software.amazon.awssdk.services.mediaconvert.model.ColorCorrector
All Implemented Interfaces:
Serializable, SdkPojo, ToCopyableBuilder<ColorCorrector.Builder,ColorCorrector>

@Generated("software.amazon.awssdk:codegen") public final class ColorCorrector extends Object implements SdkPojo, Serializable, ToCopyableBuilder<ColorCorrector.Builder,ColorCorrector>
Settings for color correction.
See Also:
  • Method Details

    • brightness

      public final Integer brightness()
      Brightness level.
      Returns:
      Brightness level.
    • clipLimits

      public final ClipLimits clipLimits()
      Specify YUV limits and RGB tolerances when you set Sample range conversion to Limited range clip.
      Returns:
      Specify YUV limits and RGB tolerances when you set Sample range conversion to Limited range clip.
    • colorSpaceConversion

      public final ColorSpaceConversion colorSpaceConversion()
      Specify the color space you want for this output. The service supports conversion between HDR formats, between SDR formats, from SDR to HDR, and from HDR to SDR. SDR to HDR conversion doesn't upgrade the dynamic range. The converted video has an HDR format, but visually appears the same as an unconverted output. HDR to SDR conversion uses tone mapping to approximate the outcome of manually regrading from HDR to SDR. When you specify an output color space, MediaConvert uses the following color space metadata, which includes color primaries, transfer characteristics, and matrix coefficients: * HDR 10: BT.2020, PQ, BT.2020 non-constant * HLG 2020: BT.2020, HLG, BT.2020 non-constant * P3DCI (Theater): DCIP3, SMPTE 428M, BT.709 * P3D65 (SDR): Display P3, sRGB, BT.709 * P3D65 (HDR): Display P3, PQ, BT.709

      If the service returns an enum value that is not available in the current SDK version, colorSpaceConversion will return ColorSpaceConversion.UNKNOWN_TO_SDK_VERSION. The raw value returned by the service is available from colorSpaceConversionAsString().

      Returns:
      Specify the color space you want for this output. The service supports conversion between HDR formats, between SDR formats, from SDR to HDR, and from HDR to SDR. SDR to HDR conversion doesn't upgrade the dynamic range. The converted video has an HDR format, but visually appears the same as an unconverted output. HDR to SDR conversion uses tone mapping to approximate the outcome of manually regrading from HDR to SDR. When you specify an output color space, MediaConvert uses the following color space metadata, which includes color primaries, transfer characteristics, and matrix coefficients: * HDR 10: BT.2020, PQ, BT.2020 non-constant * HLG 2020: BT.2020, HLG, BT.2020 non-constant * P3DCI (Theater): DCIP3, SMPTE 428M, BT.709 * P3D65 (SDR): Display P3, sRGB, BT.709 * P3D65 (HDR): Display P3, PQ, BT.709
      See Also:
    • colorSpaceConversionAsString

      public final String colorSpaceConversionAsString()
      Specify the color space you want for this output. The service supports conversion between HDR formats, between SDR formats, from SDR to HDR, and from HDR to SDR. SDR to HDR conversion doesn't upgrade the dynamic range. The converted video has an HDR format, but visually appears the same as an unconverted output. HDR to SDR conversion uses tone mapping to approximate the outcome of manually regrading from HDR to SDR. When you specify an output color space, MediaConvert uses the following color space metadata, which includes color primaries, transfer characteristics, and matrix coefficients: * HDR 10: BT.2020, PQ, BT.2020 non-constant * HLG 2020: BT.2020, HLG, BT.2020 non-constant * P3DCI (Theater): DCIP3, SMPTE 428M, BT.709 * P3D65 (SDR): Display P3, sRGB, BT.709 * P3D65 (HDR): Display P3, PQ, BT.709

      If the service returns an enum value that is not available in the current SDK version, colorSpaceConversion will return ColorSpaceConversion.UNKNOWN_TO_SDK_VERSION. The raw value returned by the service is available from colorSpaceConversionAsString().

      Returns:
      Specify the color space you want for this output. The service supports conversion between HDR formats, between SDR formats, from SDR to HDR, and from HDR to SDR. SDR to HDR conversion doesn't upgrade the dynamic range. The converted video has an HDR format, but visually appears the same as an unconverted output. HDR to SDR conversion uses tone mapping to approximate the outcome of manually regrading from HDR to SDR. When you specify an output color space, MediaConvert uses the following color space metadata, which includes color primaries, transfer characteristics, and matrix coefficients: * HDR 10: BT.2020, PQ, BT.2020 non-constant * HLG 2020: BT.2020, HLG, BT.2020 non-constant * P3DCI (Theater): DCIP3, SMPTE 428M, BT.709 * P3D65 (SDR): Display P3, sRGB, BT.709 * P3D65 (HDR): Display P3, PQ, BT.709
      See Also:
    • contrast

      public final Integer contrast()
      Contrast level.
      Returns:
      Contrast level.
    • hdr10Metadata

      public final Hdr10Metadata hdr10Metadata()
      Use these settings when you convert to the HDR 10 color space. Specify the SMPTE ST 2086 Mastering Display Color Volume static metadata that you want signaled in the output. These values don't affect the pixel values that are encoded in the video stream. They are intended to help the downstream video player display content in a way that reflects the intentions of the the content creator. When you set Color space conversion to HDR 10, these settings are required. You must set values for Max frame average light level and Max content light level; these settings don't have a default value. The default values for the other HDR 10 metadata settings are defined by the P3D65 color space. For more information about MediaConvert HDR jobs, see https://docs.aws.amazon.com/console/mediaconvert/hdr.
      Returns:
      Use these settings when you convert to the HDR 10 color space. Specify the SMPTE ST 2086 Mastering Display Color Volume static metadata that you want signaled in the output. These values don't affect the pixel values that are encoded in the video stream. They are intended to help the downstream video player display content in a way that reflects the intentions of the the content creator. When you set Color space conversion to HDR 10, these settings are required. You must set values for Max frame average light level and Max content light level; these settings don't have a default value. The default values for the other HDR 10 metadata settings are defined by the P3D65 color space. For more information about MediaConvert HDR jobs, see https://docs.aws.amazon.com/console/mediaconvert/hdr.
    • hdrToSdrToneMapper

      public final HDRToSDRToneMapper hdrToSdrToneMapper()
      Specify how MediaConvert maps brightness and colors from your HDR input to your SDR output. The mode that you select represents a creative choice, with different tradeoffs in the details and tones of your output. To maintain details in bright or saturated areas of your output: Choose Preserve details. For some sources, your SDR output may look less bright and less saturated when compared to your HDR source. MediaConvert automatically applies this mode for HLG sources, regardless of your choice. For a bright and saturated output: Choose Vibrant. We recommend that you choose this mode when any of your source content is HDR10, and for the best results when it is mastered for 1000 nits. You may notice loss of details in bright or saturated areas of your output. HDR to SDR tone mapping has no effect when your input is SDR.

      If the service returns an enum value that is not available in the current SDK version, hdrToSdrToneMapper will return HDRToSDRToneMapper.UNKNOWN_TO_SDK_VERSION. The raw value returned by the service is available from hdrToSdrToneMapperAsString().

      Returns:
      Specify how MediaConvert maps brightness and colors from your HDR input to your SDR output. The mode that you select represents a creative choice, with different tradeoffs in the details and tones of your output. To maintain details in bright or saturated areas of your output: Choose Preserve details. For some sources, your SDR output may look less bright and less saturated when compared to your HDR source. MediaConvert automatically applies this mode for HLG sources, regardless of your choice. For a bright and saturated output: Choose Vibrant. We recommend that you choose this mode when any of your source content is HDR10, and for the best results when it is mastered for 1000 nits. You may notice loss of details in bright or saturated areas of your output. HDR to SDR tone mapping has no effect when your input is SDR.
      See Also:
    • hdrToSdrToneMapperAsString

      public final String hdrToSdrToneMapperAsString()
      Specify how MediaConvert maps brightness and colors from your HDR input to your SDR output. The mode that you select represents a creative choice, with different tradeoffs in the details and tones of your output. To maintain details in bright or saturated areas of your output: Choose Preserve details. For some sources, your SDR output may look less bright and less saturated when compared to your HDR source. MediaConvert automatically applies this mode for HLG sources, regardless of your choice. For a bright and saturated output: Choose Vibrant. We recommend that you choose this mode when any of your source content is HDR10, and for the best results when it is mastered for 1000 nits. You may notice loss of details in bright or saturated areas of your output. HDR to SDR tone mapping has no effect when your input is SDR.

      If the service returns an enum value that is not available in the current SDK version, hdrToSdrToneMapper will return HDRToSDRToneMapper.UNKNOWN_TO_SDK_VERSION. The raw value returned by the service is available from hdrToSdrToneMapperAsString().

      Returns:
      Specify how MediaConvert maps brightness and colors from your HDR input to your SDR output. The mode that you select represents a creative choice, with different tradeoffs in the details and tones of your output. To maintain details in bright or saturated areas of your output: Choose Preserve details. For some sources, your SDR output may look less bright and less saturated when compared to your HDR source. MediaConvert automatically applies this mode for HLG sources, regardless of your choice. For a bright and saturated output: Choose Vibrant. We recommend that you choose this mode when any of your source content is HDR10, and for the best results when it is mastered for 1000 nits. You may notice loss of details in bright or saturated areas of your output. HDR to SDR tone mapping has no effect when your input is SDR.
      See Also:
    • hue

      public final Integer hue()
      Hue in degrees.
      Returns:
      Hue in degrees.
    • maxLuminance

      public final Integer maxLuminance()
      Specify the maximum mastering display luminance. Enter an integer from 0 to 2147483647, in units of 0.0001 nits. For example, enter 10000000 for 1000 nits.
      Returns:
      Specify the maximum mastering display luminance. Enter an integer from 0 to 2147483647, in units of 0.0001 nits. For example, enter 10000000 for 1000 nits.
    • sampleRangeConversion

      public final SampleRangeConversion sampleRangeConversion()
      Specify how MediaConvert limits the color sample range for this output. To create a limited range output from a full range input: Choose Limited range squeeze. For full range inputs, MediaConvert performs a linear offset to color samples equally across all pixels and frames. Color samples in 10-bit outputs are limited to 64 through 940, and 8-bit outputs are limited to 16 through 235. Note: For limited range inputs, values for color samples are passed through to your output unchanged. MediaConvert does not limit the sample range. To correct pixels in your input that are out of range or out of gamut: Choose Limited range clip. Use for broadcast applications. MediaConvert conforms any pixels outside of the values that you specify under Minimum YUV and Maximum YUV to limited range bounds. MediaConvert also corrects any YUV values that, when converted to RGB, would be outside the bounds you specify under Minimum RGB tolerance and Maximum RGB tolerance. With either limited range conversion, MediaConvert writes the sample range metadata in the output.

      If the service returns an enum value that is not available in the current SDK version, sampleRangeConversion will return SampleRangeConversion.UNKNOWN_TO_SDK_VERSION. The raw value returned by the service is available from sampleRangeConversionAsString().

      Returns:
      Specify how MediaConvert limits the color sample range for this output. To create a limited range output from a full range input: Choose Limited range squeeze. For full range inputs, MediaConvert performs a linear offset to color samples equally across all pixels and frames. Color samples in 10-bit outputs are limited to 64 through 940, and 8-bit outputs are limited to 16 through 235. Note: For limited range inputs, values for color samples are passed through to your output unchanged. MediaConvert does not limit the sample range. To correct pixels in your input that are out of range or out of gamut: Choose Limited range clip. Use for broadcast applications. MediaConvert conforms any pixels outside of the values that you specify under Minimum YUV and Maximum YUV to limited range bounds. MediaConvert also corrects any YUV values that, when converted to RGB, would be outside the bounds you specify under Minimum RGB tolerance and Maximum RGB tolerance. With either limited range conversion, MediaConvert writes the sample range metadata in the output.
      See Also:
    • sampleRangeConversionAsString

      public final String sampleRangeConversionAsString()
      Specify how MediaConvert limits the color sample range for this output. To create a limited range output from a full range input: Choose Limited range squeeze. For full range inputs, MediaConvert performs a linear offset to color samples equally across all pixels and frames. Color samples in 10-bit outputs are limited to 64 through 940, and 8-bit outputs are limited to 16 through 235. Note: For limited range inputs, values for color samples are passed through to your output unchanged. MediaConvert does not limit the sample range. To correct pixels in your input that are out of range or out of gamut: Choose Limited range clip. Use for broadcast applications. MediaConvert conforms any pixels outside of the values that you specify under Minimum YUV and Maximum YUV to limited range bounds. MediaConvert also corrects any YUV values that, when converted to RGB, would be outside the bounds you specify under Minimum RGB tolerance and Maximum RGB tolerance. With either limited range conversion, MediaConvert writes the sample range metadata in the output.

      If the service returns an enum value that is not available in the current SDK version, sampleRangeConversion will return SampleRangeConversion.UNKNOWN_TO_SDK_VERSION. The raw value returned by the service is available from sampleRangeConversionAsString().

      Returns:
      Specify how MediaConvert limits the color sample range for this output. To create a limited range output from a full range input: Choose Limited range squeeze. For full range inputs, MediaConvert performs a linear offset to color samples equally across all pixels and frames. Color samples in 10-bit outputs are limited to 64 through 940, and 8-bit outputs are limited to 16 through 235. Note: For limited range inputs, values for color samples are passed through to your output unchanged. MediaConvert does not limit the sample range. To correct pixels in your input that are out of range or out of gamut: Choose Limited range clip. Use for broadcast applications. MediaConvert conforms any pixels outside of the values that you specify under Minimum YUV and Maximum YUV to limited range bounds. MediaConvert also corrects any YUV values that, when converted to RGB, would be outside the bounds you specify under Minimum RGB tolerance and Maximum RGB tolerance. With either limited range conversion, MediaConvert writes the sample range metadata in the output.
      See Also:
    • saturation

      public final Integer saturation()
      Saturation level.
      Returns:
      Saturation level.
    • sdrReferenceWhiteLevel

      public final Integer sdrReferenceWhiteLevel()
      Specify the reference white level, in nits, for all of your SDR inputs. Use to correct brightness levels within HDR10 outputs. The following color metadata must be present in your SDR input: color primaries, transfer characteristics, and matrix coefficients. If your SDR input has missing color metadata, or if you want to correct input color metadata, manually specify a color space in the input video selector. For 1,000 nit peak brightness displays, we recommend that you set SDR reference white level to 203 (according to ITU-R BT.2408). Leave blank to use the default value of 100, or specify an integer from 100 to 1000.
      Returns:
      Specify the reference white level, in nits, for all of your SDR inputs. Use to correct brightness levels within HDR10 outputs. The following color metadata must be present in your SDR input: color primaries, transfer characteristics, and matrix coefficients. If your SDR input has missing color metadata, or if you want to correct input color metadata, manually specify a color space in the input video selector. For 1,000 nit peak brightness displays, we recommend that you set SDR reference white level to 203 (according to ITU-R BT.2408). Leave blank to use the default value of 100, or specify an integer from 100 to 1000.
    • toBuilder

      public ColorCorrector.Builder toBuilder()
      Description copied from interface: ToCopyableBuilder
      Take this object and create a builder that contains all of the current property values of this object.
      Specified by:
      toBuilder in interface ToCopyableBuilder<ColorCorrector.Builder,ColorCorrector>
      Returns:
      a builder for type T
    • builder

      public static ColorCorrector.Builder builder()
    • serializableBuilderClass

      public static Class<? extends ColorCorrector.Builder> serializableBuilderClass()
    • hashCode

      public final int hashCode()
      Overrides:
      hashCode in class Object
    • equals

      public final boolean equals(Object obj)
      Overrides:
      equals in class Object
    • equalsBySdkFields

      public final boolean equalsBySdkFields(Object obj)
      Description copied from interface: SdkPojo
      Indicates whether some other object is "equal to" this one by SDK fields. An SDK field is a modeled, non-inherited field in an SdkPojo class, and is generated based on a service model.

      If an SdkPojo class does not have any inherited fields, equalsBySdkFields and equals are essentially the same.

      Specified by:
      equalsBySdkFields in interface SdkPojo
      Parameters:
      obj - the object to be compared with
      Returns:
      true if the other object equals to this object by sdk fields, false otherwise.
    • toString

      public final String toString()
      Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be redacted from this string using a placeholder value.
      Overrides:
      toString in class Object
    • getValueForField

      public final <T> Optional<T> getValueForField(String fieldName, Class<T> clazz)
    • sdkFields

      public final List<SdkField<?>> sdkFields()
      Specified by:
      sdkFields in interface SdkPojo
      Returns:
      List of SdkField in this POJO. May be empty list but should never be null.