Configuring columns used when creating an Amazon Personalize domain recommender
When you create a recommender, you can modify the columns Amazon Personalize considers when training the models backing your recommender.
You might do this to experiment with different combinations of training data. Or you might exclude columns without meaningful data. For example, you might have a column that you want to use only to filter recommendations. You can exclude this column from training and Amazon Personalize considers it only when filtering.
You can't exclude EVENT_TYPE columns. By default, Amazon Personalize uses all columns that can be used when training. The following data is always excluded from training:
-
Columns with the boolean data type
-
Custom string fields that aren't categorical or textual
You can't include impressions data in training, but if your use case or recipe uses it, Amazon Personalize uses impressions data to guide exploration when you get recommendations.
The following code samples show how configure columns used when training with the Amazon CLI or the Amazon SDKs. To do this with the Amazon Personalize console, you specify the columns to use on the Advanced configuration page when you create the recommender. For more information, see Creating recommenders (console).
To exclude columns from training, provide the excludedDatasetColumns
object in the
trainingDataConfig
as part of the recommender configuration. For each key in the object, provide the
dataset type. For each value, provide the list of columns to exclude. For more information, see Configuring columns used when creating an Amazon Personalize domain
recommender.
aws personalize create-recommender \ --name
recommender name
\ --dataset-group-arndataset group ARN
\ --recipe-arnrecipe ARN
\ --recommender-config "{\"trainingDataConfig\": {\"excludedDatasetColumns\": { \"datasetType
\" : [ \"column1Name
\", \"column2Name
\"]}}}"
To exclude columns from training, provide the excludedDatasetColumns
object in the
trainingDataConfig
as part of the recommender configuration. For each key, provide the dataset type. For
each value, provide the list of columns to exclude. The following code shows how to exclude columns from training when
you create a recommender. For more information, see Configuring columns used when creating an Amazon Personalize domain
recommender.