Getting started with a Domain dataset group (SDK for JavaScript v3)
This tutorial shows you how to use the Amazon SDK for JavaScript v3 to create a Domain dataset group for the VIDEO_ON_DEMAND domain. In this tutorial, you create a recommender for the Top picks for you use case.
To view the code used in this tutorial on GitHub, see Amazon Personalize code examples for SDK for JavaScript v3
When you finish the getting started exercise, to avoid incurring unnecessary charges, delete the resources that you created. For more information, see Requirements for deleting Amazon Personalize resources.
Topics
Prerequisites
The following are prerequisite steps for completing this tutorial:
-
Complete the Getting started prerequisites to set up the required permissions and create the training data. If you also completed the Getting started with a Domain dataset group (console), you can reuse the same source data. If you are using your own source data, make sure that your data is formatted like in the prerequisites.
-
Set up the SDK for JavaScript and Amazon credentials as specified in the Setting up the SDK for JavaScript procedure in the Amazon SDK for JavaScript Developer Guide.
Tutorial
In the following steps, you install the required dependencies. Then you create a dataset group, import data, create a recommender for the Top picks for you use case, and get recommendations.
If you use Node.js, you can run each code sample
by saving the sample as a JavaScript file and then running node <fileName.js>
.
After you complete the prerequisites, install the following Amazon Personalize dependencies:
-
@aws-sdk/client-personalize
-
@aws-sdk/client-personalize-runtime
-
@aws-sdk/client-personalize-events (optional for this tutorial, but required if you want to record events after you create your recommender)
The following is an example of a package.json
file you can use. To install the dependencies with Node.js, navigate
to where you saved the package.json
file and run npm install
.
{ "name": "personalize-js-project", "version": "1.0.0", "description": "personalize operations", "type": "module", "author": "Author Name <email@address.com>", "license": "ISC", "dependencies": { "@aws-sdk/client-personalize": "^3.350.0", "@aws-sdk/client-personalize-events": "^3.350.0", "@aws-sdk/client-personalize-runtime": "^3.350.0", "fs": "^0.0.1-security" }, "compilerOptions": { "resolveJsonModule": true, "esModuleInterop": true } }
After you install the dependencies, create your Amazon Personalize clients. In this tutorial, the code samples assume you create
the clients in a file named personalizeClients.js
stored in a directory named libs
.
The following is an example of a personalizeClient.js
file.
import { PersonalizeClient } from "@aws-sdk/client-personalize"; import { PersonalizeRuntimeClient } from "@aws-sdk/client-personalize-runtime"; import { PersonalizeEventsClient } from "@aws-sdk/client-personalize-events"; // Set your Amazon region. const REGION = "
region
"; //e.g. "us-east-1" const personalizeClient = new PersonalizeClient({ region: REGION}); const personalizeEventsClient = new PersonalizeEventsClient({ region: REGION}); const personalizeRuntimeClient = new PersonalizeRuntimeClient({ region: REGION}); export { personalizeClient, personalizeEventsClient, personalizeRuntimeClient };
After you create your Amazon Personalize clients, import the historical data you created when you completed the Getting started prerequisites. To import historical data into Amazon Personalize, do the following:
-
Save the following Avro schema as a JSON file in your working directory. This schema matches the columns in the CSV file that you created when you completed the Creating the training data (Domain dataset group).
{ "type": "record", "name": "Interactions", "namespace": "com.amazonaws.personalize.schema", "fields": [ { "name": "USER_ID", "type": "string" }, { "name": "ITEM_ID", "type": "string" }, { "name": "EVENT_TYPE", "type": "string" }, { "name": "TIMESTAMP", "type": "long" } ], "version": "1.0" }
-
Create a domain schema in Amazon Personalize with the following
createDomainSchema.js
code. ReplaceSCHEMA_PATH
with the path to the schema.json file you just created. Update thecreateSchemaParam
to specify a name for the schema, and fordomain
specifyVIDEO_ON_DEMAND
.// Get service clients module and commands using ES6 syntax. import { CreateSchemaCommand } from "@aws-sdk/client-personalize"; import { personalizeClient } from "./libs/personalizeClients.js"; // Or, create the client here. // const personalizeClient = new PersonalizeClient({ region: "REGION"}); import fs from 'fs'; let schemaFilePath = "SCHEMA_PATH"; let mySchema = ""; try { mySchema = fs.readFileSync(schemaFilePath).toString(); } catch (err) { mySchema = 'TEST' // for unit tests. } // Set the domain schema parameters. export const createDomainSchemaParam = { name: 'NAME', /* required */ schema: mySchema, /* required */ domain: 'DOMAIN' /* required for a domain dataset group, specify ECOMMERCE or VIDEO_ON_DEMAND */ }; export const run = async () => { try { const response = await personalizeClient.send(new CreateSchemaCommand(createDomainSchemaParam)); console.log("Success", response); return response; // For unit tests. } catch (err) { console.log("Error", err); } }; run();
-
Create a domain dataset group in Amazon Personalize with the following
createDomainDatasetGroup.js
code. Update thedomainDatasetGroupParams
to specify a name for the dataset group, and fordomain
specifyVIDEO_ON_DEMAND
.// Get service clients module and commands using ES6 syntax. import { CreateDatasetGroupCommand } from "@aws-sdk/client-personalize"; import { personalizeClient } from "./libs/personalizeClients.js"; // Or, create the client here. // const personalizeClient = new PersonalizeClient({ region: "REGION"}); // Set the domain dataset group parameters. export const domainDatasetGroupParams = { name: 'NAME', /* required */ domain: 'DOMAIN' /* required for a domain dsg, specify ECOMMERCE or VIDEO_ON_DEMAND */ } export const run = async () => { try { const response = await personalizeClient.send(new CreateDatasetGroupCommand(domainDatasetGroupParams)); console.log("Success", response); return response; // For unit tests. } catch (err) { console.log("Error", err); } }; run();
-
Create an Item interactions dataset in Amazon Personalize with the following
createDataset.js
code. Update thecreateDatasetParam
to specify the Amazon Resource Name (ARN) of the dataset group and schema you just created, give the dataset a name, and fordatasetType
, specifyInteractions
.// Get service clients module and commands using ES6 syntax. import { CreateDatasetCommand } from "@aws-sdk/client-personalize"; import { personalizeClient } from "./libs/personalizeClients.js"; // Or, create the client here. // const personalizeClient = new PersonalizeClient({ region: "REGION"}); // Set the dataset's parameters. export const createDatasetParam = { datasetGroupArn: 'DATASET_GROUP_ARN', /* required */ datasetType: 'DATASET_TYPE', /* required */ name: 'NAME', /* required */ schemaArn: 'SCHEMA_ARN' /* required */ } export const run = async () => { try { const response = await personalizeClient.send(new CreateDatasetCommand(createDatasetParam)); console.log("Success", response); return response; // For unit tests. } catch (err) { console.log("Error", err); } }; run();
-
Import your data with the following
createDatasetImportJob.js
code. Update thedatasetImportJobParam
to specify the following:-
Specify a name for the job and specify your Interactions dataset's ARN.
-
For
dataLocation
, specify the Amazon S3 bucket path (s3://
) where you stored the training data.https://amzn-s3-demo-bucket.s3.region-code.amazonaws.com
/folder name
/ratings.csv -
For
roleArn
specify the Amazon Resource Name for your Amazon Personalize service role. You created this role as part of the Getting started prerequisites.
// Get service clients module and commands using ES6 syntax. import {CreateDatasetImportJobCommand } from "@aws-sdk/client-personalize"; import { personalizeClient } from "./libs/personalizeClients.js"; // Or, create the client here. // const personalizeClient = new PersonalizeClient({ region: "REGION"}); // Set the dataset import job parameters. export const datasetImportJobParam = { datasetArn: 'DATASET_ARN', /* required */ dataSource: { /* required */ dataLocation: 'S3_PATH' }, jobName: 'NAME',/* required */ roleArn: 'ROLE_ARN' /* required */ } export const run = async () => { try { const response = await personalizeClient.send(new CreateDatasetImportJobCommand(datasetImportJobParam)); console.log("Success", response); return response; // For unit tests. } catch (err) { console.log("Error", err); } }; run();
-
After your dataset import job completes, you are ready create a recommender.
To create a recommender, use the following createRecommender.js
code.
Update the createRecommenderParam
with the following:
Specify a name for the recommender, specify your dataset group's ARN, and for recipeArn
specify
arn:aws:personalize:::recipe/aws-vod-top-picks
.
// Get service clients module and commands using ES6 syntax. import { CreateRecommenderCommand } from "@aws-sdk/client-personalize"; import { personalizeClient } from "./libs/personalizeClients.js"; // Or, create the client here. // const personalizeClient = new PersonalizeClient({ region: "REGION"}); // Set the recommender's parameters. export const createRecommenderParam = { name: 'NAME', /* required */ recipeArn: 'RECIPE_ARN', /* required */ datasetGroupArn: 'DATASET_GROUP_ARN' /* required */ } export const run = async () => { try { const response = await personalizeClient.send(new CreateRecommenderCommand(createRecommenderParam)); console.log("Success", response); return response; // For unit tests. } catch (err) { console.log("Error", err); } }; run();
After you create a recommender, you use it to get recommendations. Use the following
getRecommendations.js
code to get recommendations for a user. Update the getRecommendationsParam
to specify the ARN of the recommender you created in the previous step, and specify a user ID (for example,
123
).
// Get service clients module and commands using ES6 syntax. import { GetRecommendationsCommand } from "@aws-sdk/client-personalize-runtime"; import { personalizeRuntimeClient } from "./libs/personalizeClients.js"; // Or, create the client here. // const personalizeRuntimeClient = new PersonalizeRuntimeClient({ region: "REGION"}); // Set the recommendation request parameters. export const getRecommendationsParam = { recommenderArn: 'RECOMMENDER_ARN', /* required */ userId: 'USER_ID', /* required */ numResults: 15 /* optional */ } export const run = async () => { try { const response = await personalizeRuntimeClient.send(new GetRecommendationsCommand(getRecommendationsParam)); console.log("Success!", response); return response; // For unit tests. } catch (err) { console.log("Error", err); } }; run();