使用创建用于文本分类的 AutoML 作业 API - Amazon SageMaker
Amazon Web Services 文档中描述的 Amazon Web Services 服务或功能可能因区域而异。要查看适用于中国区域的差异,请参阅 中国的 Amazon Web Services 服务入门 (PDF)

本文属于机器翻译版本。若本译文内容与英语原文存在差异,则一律以英文原文为准。

使用创建用于文本分类的 AutoML 作业 API

以下说明说明如何使用 “ SageMaker API参考” 创建 Amazon A SageMaker utopilot 作业,作为文本分类问题类型的试点实验。

注意

诸如文本和图像分类、时间序列预测以及大型语言模型的微调等任务仅通过 AutoML 版本 2 提供。REST API如果你选择的语言是 Python,你可以SDK直接引Amazon SDK for Python (Boto3)用 Amaz SageMaker on Python 的 A uto MLV2 对象

喜欢用户界面便利性的用户可以使用 Amazon SageMaker Canv as 访问预训练模型和生成式 AI 基础模型,或者创建针对特定文本、图像分类、预测需求或生成式 AI 量身定制的自定义模型。

您可以通过使用 Amazon Autopilot 支持的任何语言调用CreateAutoMLJobV2API操作来以编程方式创建 SageMaker 自动驾驶文本分类实验。 Amazon CLI

有关此API操作如何转换为所选语言的函数的信息,请参阅的 “另请参” 部分CreateAutoMLJobV2并选择。SDK例如,对于 Python 用户,请参阅 Amazon SDK for Python (Boto3)中 create_auto_ml_job_v2 的完整请求语法。

以下是文本分类中使用的CreateAutoMLJobV2API操作的必填和可选输入请求参数的集合。

必需参数

在调用 CreateAutoMLJobV2 以创建 Autopilot 实验进行文本分类时,您必须提供以下值:

所有其他参数都是可选的。

可选参数

以下各节提供了一些可以传递给文本分类 AutoML 作业的可选参数的详细信息。

您可以提供自己的验证数据集和自定义的数据拆分比率,也可以让 Autopilot 自动拆分数据集。

每个AutoMLJobChannel对象(参见必填参数 A utoMLJob InputDataConfig)都有ChannelType,可以将其设置为training或指定在构建机器学习模型时如何使用数据的validation值。

数据来源至少需要一个,最多可以有两个:一个用于训练数据,一个用于验证数据。如何将数据拆分为训练和验证数据集,取决于您有一个还是两个数据来源。

如何将数据拆分为训练和验证数据集,取决于您有一个还是两个数据来源。

  • 如果您只有一个数据来源,则默认情况下 ChannelType 设置为 training,并且必须具有此值。

    • 如果未设置 AutoMLDataSplitConfig 中的 ValidationFraction 值,则默认情况下,将使用来自此来源中数据的 0.2 (20%) 进行验证。

    • 如果 ValidationFraction 设置为介于 0 和 1 之间的值,则根据指定的值拆分数据集,该值指定用于验证的数据集的比例。

  • 如果您有两个数据来源,则其中一个 AutoMLJobChannel 对象的 ChannelType 必须设置为默认值 training。另一个数据来源的 ChannelType 必须设置为 validation。这两个数据源必须具有相同的格式(要CSV么是 Parquet),也必须具有相同的架构。在这种情况下,您不可为 ValidationFraction 设置值,因为每个来源的所有数据都用于训练或验证。设置此值会导致错误。

要为 AutoML 作业的最佳候选模型启用自动部署,请在 AutoML 任务请求中包括 ModelDeployConfig。这将允许将最佳模型部署到 SageMaker 端点。以下是可供自定义的配置。