本文属于机器翻译版本。若本译文内容与英语原文存在差异,则一律以英文原文为准。
将模型部署到 Amazon EC2
要获得预测,请EC2使用 Amazon 将您的模型部署到亚马逊 SageMaker。
将模型部署到 SageMaker 托管服务
要EC2使用 Amazon 通过 Amazon SageMaker 托管模型,请创建并运行训练作业通过调用xgb_model
估算器的deploy
方法部署您训练过的模型。调用该deploy
方法时,必须指定要用于托管终端节点的 EC2 ML 实例的数量和类型。
import sagemaker from sagemaker.serializers import CSVSerializer xgb_predictor=xgb_model.deploy( initial_instance_count=1, instance_type='ml.t2.medium', serializer=CSVSerializer() )
-
initial_instance_count
(int) – 要部署模型的实例数量。 -
instance_type
(str) – 要操作已部署模型的实例类型。 -
serializer
(int)-将各种格式( NumPy 数组、列表、文件或缓冲区)的输入数据序列化为CSV格式的字符串。我们之所以使用它,是因为该XGBoost算法接受CSV格式的输入文件。
该deploy
方法创建可部署模型,配置 SageMaker托管服务端点,然后启动终端节点来托管模型。有关更多信息,请参阅 Amaz on Python SageMaker deploy
方法生成的端点的名称,请运行以下代码:
xgb_predictor.endpoint_name
这应该返回 xgb_predictor
的端点名称。端点名称的格式为 "sagemaker-xgboost-YYYY-MM-DD-HH-MM-SS-SSS"
。此端点在 ML 实例中保持活动状态,您可以随时进行即时预测,除非稍后将其关闭。复制此端点名称并保存,以便在 SageMaker Studio 或 SageMaker笔记本实例中的其他地方重复使用和进行实时预测。
提示
要详细了解如何编译和优化模型以部署到 Amazon EC2 实例或边缘设备,请参阅使用 Neo 编译和部署模型。
(可选)使用 SageMaker 预测器重用托管端点
将模型部署到终端节点后,您可以通过配对端点来设置新的 SageMaker 预测变量,并在任何其他笔记本中持续进行实时预测。以下示例代码演示如何使用 Pred SageMaker ictor 类使用相同的端点设置新的预测变量对象。重新使用 xgb_predictor
中使用的端点名称。
import sagemaker xgb_predictor_reuse=sagemaker.predictor.Predictor( endpoint_name="
sagemaker-xgboost-YYYY-MM-DD-HH-MM-SS-SSS
", sagemaker_session=sagemaker.Session(), serializer=sagemaker.serializers.CSVSerializer() )
xgb_predictor_reuse
Predictor 的行为与原始 xgb_predictor
完全相同。有关更多信息,请参阅 Amaz SageMaker on Python SDK
(可选)利用批量转换进行预测
您可以运行一次性批量推理作业,使用批处理变换对测试数据集进行预测,而不必在生产环境中 SageMaker 托管终端节点。模型训练完成后,您可以将估计SageMaker器transformer
former 类的对象。批量转换器从指定的 S3 存储桶中读取输入数据并进行预测。
运行批量转换作业
运行以下代码,将测试数据集的特征列转换为CSV文件并上传到 S3 存储桶:
X_test.to_csv('test.csv', index=False, header=False) boto3.Session().resource('s3').Bucket(bucket).Object( os.path.join(prefix, 'test/test.csv')).upload_file('test.csv')
为批处理转换任务指定 S3 存储桶URIs的输入和输出,如下所示:
# The location of the test dataset batch_input = 's3://{}/{}/test'.format(bucket, prefix) # The location to store the results of the batch transform job batch_output = 's3://{}/{}/batch-prediction'.format(bucket, prefix)
创建一个 transformer 对象,指定最少数量的参数:
instance_count
和instance_type
参数用于运行批量转换作业,output_path
参数用于保存预测数据,如下所示:transformer = xgb_model.transformer( instance_count=1, instance_type='ml.m4.xlarge', output_path=batch_output )
通过执行
transformer
对象的transform()
方法启动批量转换作业,如下所示:transformer.transform( data=batch_input, data_type='S3Prefix', content_type='text/csv', split_type='Line' ) transformer.wait()
批量转换作业完成后, SageMaker 创建保存在
batch_output
路径中的test.csv.out
预测数据,该数据应采用以下格式:s3://sagemaker-<region>-111122223333/demo-sagemaker-xgboost-adult-income-prediction/batch-prediction
。运行以下 Amazon CLI 命令下载批量转换作业的输出数据:! aws s3 cp {batch_output} ./ --recursive
这应该在当前工作目录下创建
test.csv.out
文件。您将能够看到根据XGBoost训练作业的逻辑回归预测的浮点值。