Amazon Web Services 文档中描述的 Amazon Web Services 服务或功能可能因区域而异。要查看适用于中国区域的差异,请参阅
中国的 Amazon Web Services 服务入门
(PDF)。
本文属于机器翻译版本。若本译文内容与英语原文存在差异,则一律以英文原文为准。
编译模型 (Amazon Command Line Interface)
本节介绍如何使用 Amazon Command Line Interface (CLI) 管理机器学习模型的 Amazon SageMaker Neo 编译任务。您可以创建、描述、停止和列出编译作业。
创建编译作业
通过该CreateCompilationJobAPI操作,您可以指定数据输入格式、用于存储模型的 S3 存储桶、用于写入已编译模型的 S3 存储桶以及目标硬件设备或平台。
下表演示了如何CreateCompilationJob
API根据目标设备还是平台进行配置。
- Device Example
-
{
"CompilationJobName": "neo-compilation-job-demo
",
"RoleArn": "arn:aws:iam::<your-account>
:role/service-role/AmazonSageMaker-ExecutionRole-yyyymmddThhmmss
",
"InputConfig": {
"S3Uri": "s3://<your-bucket>
/sagemaker/neo-compilation-job-demo-data/train
",
"DataInputConfig": "{'data': [1,3,1024,1024]}
",
"Framework": "MXNET
"
},
"OutputConfig": {
"S3OutputLocation": "s3://<your-bucket>
/sagemaker/neo-compilation-job-demo-data/compile
",
# A target device specification example for a ml_c5 instance family
"TargetDevice": "ml_c5
"
},
"StoppingCondition": {
"MaxRuntimeInSeconds": 300
}
}
如果您使用框架训练模型并且目标设备是目标,则可以选择指定用于该FrameworkVersion
字段的 PyTorch ml_*
框架版本。
{
"CompilationJobName": "neo-compilation-job-demo",
"RoleArn": "arn:aws:iam::<your-account>
:role/service-role/AmazonSageMaker-ExecutionRole-yyyymmddThhmmss",
"InputConfig": {
"S3Uri": "s3://<your-bucket>
/sagemaker/neo-compilation-job-demo-data/train",
"DataInputConfig": "{'data': [1,3,1024,1024]}",
"Framework": "PYTORCH",
"FrameworkVersion": "1.6"
},
"OutputConfig": {
"S3OutputLocation": "s3://<your-bucket>
/sagemaker/neo-compilation-job-demo-data/compile",
# A target device specification example for a ml_c5 instance family
"TargetDevice": "ml_c5",
# When compiling for ml_* instances using PyTorch framework, use the "CompilerOptions" field in
# OutputConfig to provide the correct data type ("dtype") of the model’s input. Default assumed is "float32"
"CompilerOptions": "{'dtype': 'long'}"
},
"StoppingCondition": {
"MaxRuntimeInSeconds": 300
}
}
- Platform Example
-
{
"CompilationJobName": "neo-test-compilation-job
",
"RoleArn": "arn:aws:iam::<your-account>:
role/service-role/AmazonSageMaker-ExecutionRole-yyyymmddThhmmss
",
"InputConfig": {
"S3Uri": "s3://<your-bucket>
/sagemaker/neo-compilation-job-demo-data/train
",
"DataInputConfig": "{'data': [1,3,1024,1024]}
",
"Framework": "MXNET
"
},
"OutputConfig": {
"S3OutputLocation": "s3://<your-bucket>
/sagemaker/neo-compilation-job-demo-data/compile
",
# A target platform configuration example for a p3.2xlarge instance
"TargetPlatform": {
"Os": "LINUX
",
"Arch": "X86_64
",
"Accelerator": "NVIDIA
"
},
"CompilerOptions": "{'cuda-ver': '10.0', 'trt-ver': '6.0.1', 'gpu-code': 'sm_70'
}"
},
"StoppingCondition": {
"MaxRuntimeInSeconds": 300
}
}
对于该OutputConfig
API操作,TargetDevice
和运TargetPlatform
API算是相互排斥的。您必须从两个选项中选择一个。
要查找DataInputConfig
依赖框架的JSON字符串示例,请参阅 Neo 期望的输入数据形状。
有关设置配置的更多信息,请参阅 SageMaker API参考中的InputConfigOutputConfig、和TargetPlatformAPI操作。
配置JSON文件后,运行以下命令来创建编译作业:
aws sagemaker create-compilation-job \
--cli-input-json file://job.json \
--region us-west-2
# You should get CompilationJobArn
通过运行以下命令描述编译作业:
aws sagemaker describe-compilation-job \
--compilation-job-name $JOB_NM \
--region us-west-2
通过运行以下命令停止编译作业:
aws sagemaker stop-compilation-job \
--compilation-job-name $JOB_NM \
--region us-west-2
# There is no output for compilation-job operation
通过运行以下命令列出编译作业:
aws sagemaker list-compilation-jobs \
--region us-west-2