优化多个算法以超参数优化以找到最佳模型 - Amazon SageMaker
Amazon Web Services 文档中描述的 Amazon Web Services 服务或功能可能因区域而异。要查看适用于中国区域的差异,请参阅中国的 Amazon Web Services 服务入门

本文属于机器翻译版本。若本译文内容与英语原文存在差异,则一律以英文原文为准。

优化多个算法以超参数优化以找到最佳模型

要使用 Amazon SageMaker 创建新的超参数优化 (HPO) 作业,可调整多个算法,您必须提供适用于所有要测试的算法的作业设置以及每个算法的训练定义。您还必须指定要用于优化作业的资源。

  • 这些区域有:作业设置配置包括热启动、提前停止和调整策略。仅当优化单个算法时热启动和提前停止才可用。

  • 这些区域有:训练作业定义可在需要时指定名称、算法源、目标度量和值范围,以配置每个训练作业的超参数值集。它为每个培训作业配置数据输入、数据输出位置和任何检查点存储位置的通道。该定义还为每个培训作业配置要部署的资源,包括实例类型和计数、托管竞价训练和停止条件。

  • 这些区域有:调整作业资源:要部署,包括超参数优化作业可并发运行的并发训练作业的最大数以及超参数优化作业可运行的训练作业的最大数目。

入门

您可以从控制台创建新的超参数优化作业、克隆作业、向作业添加标签或编辑标签。您还可以使用搜索功能按名称、创建时间或状态查找作业。或者,您也可以使用 SageMaker API 进行超参数调整作业。