AWS Step Functions
开发人员指南
AWS 文档中描述的 AWS 服务或功能可能因区域而异。要查看适用于中国区域的差异,请参阅中国的 AWS 服务入门

使用 Step Functions 管理 Amazon SageMaker 训练作业

Step Functions can control some AWS services directly from the Amazon 状态语言. For more information, see:

支持的 Amazon SageMaker API 和语法:

下面是一个创建 Amazon SageMaker 转换任务,指定 DataSourceTransformOutput 的 Amazon S3 位置的 Task 状态。

{ "SageMaker CreateTransformJob": { "Type": "Task", "Resource": "arn:aws:states:::sagemaker:createTransformJob.sync", "Parameters": { "ModelName": "SageMakerCreateTransformJobModel-9iFBKsYti9vr", "TransformInput": { "CompressionType": "None", "ContentType": "text/csv", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": "s3://my-s3bucket-example-1/TransformJobDataInput.txt" } } }, "TransformOutput": { "S3OutputPath": "s3://my-s3bucket-example-1/TransformJobOutputPath" }, "TransformResources": { "InstanceCount": 1, "InstanceType": "ml.m4.xlarge" }, "TransformJobName": "sfn-binary-classification-prediction" }, "Next": "ValidateOutput" },

For information on how to configure IAM when using Step Functions with other AWS services, see 集成服务的 IAM 策略.